WO2016087324A1 - Polyamides ignifugés comportant des sels d'acide sulfonique - Google Patents

Polyamides ignifugés comportant des sels d'acide sulfonique Download PDF

Info

Publication number
WO2016087324A1
WO2016087324A1 PCT/EP2015/077887 EP2015077887W WO2016087324A1 WO 2016087324 A1 WO2016087324 A1 WO 2016087324A1 EP 2015077887 W EP2015077887 W EP 2015077887W WO 2016087324 A1 WO2016087324 A1 WO 2016087324A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
molding compositions
thermoplastic molding
compositions according
acid
Prior art date
Application number
PCT/EP2015/077887
Other languages
German (de)
English (en)
Inventor
Michael Roth
Klaus Uske
Christoph Minges
Michaela HEUßLER
Martina BIEHL
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Publication of WO2016087324A1 publication Critical patent/WO2016087324A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • C08K5/42Sulfonic acids; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0869Acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0869Acids or derivatives thereof
    • C08L23/0884Epoxide containing esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K2003/026Phosphorus

Definitions

  • the invention relates to thermoplastic molding compositions containing
  • thermoplastic polyamide A) 10 to 98% by weight of a thermoplastic polyamide
  • thermoplastic polyester C) 1 to 30 wt .-% of a thermoplastic polyester
  • G 0 to 30 wt .-% of other additives, wherein the sum of the weight percent A) to G) gives 100%.
  • the present invention relates to the use of such molding compositions for the production of fibers, films and moldings and the moldings, fibers and films of any kind obtainable in this case.
  • red phosphorus tends to be affected under adverse conditions, e.g. elevated temperature, humidity, presence of alkali or oxygen, for the formation of decomposition products, such as hydrogen phosphide and acids of the monohydric to pentavalent phosphorus.
  • decomposition products such as hydrogen phosphide and acids of the monohydric to pentavalent phosphorus.
  • thermoplastics e.g. Although polyamides, incorporated red phosphorus is largely protected due to the embedding in the polymer against thermal oxidation, but it can also come here in the longer term to the formation of decomposition products.
  • thermoplastic molding compositions containing an effectively stabilized red phosphorus as a flame retardant i. have a lower phosphorus and phosphinic acid.
  • a good resistance during processing and a particularly homogeneous dispersibility in the plastic melt should be achieved.
  • the vertical fire test to be improved as well as the annealing resistance. Accordingly, the molding compositions defined above were found. Preferred embodiments can be taken from the subclaims.
  • the molding compositions according to the invention contain 10 to 98, preferably 20 to 90 and in particular 20 to 70 wt .-% of at least one polyamide.
  • the polyamides of the molding compositions according to the invention generally have a viscosity number of 90 to 350, preferably 1 10 to 240 ml / g, determined in a 0.5 wt .-% solution in 96 wt .-% sulfuric acid at 25 ° C according to ISO 307.
  • Semicrystalline or amorphous resins having a weight average molecular weight of at least 5,000 such as U.S. Patents 2,071,250, 2,071,251, 2,130,523, 2,130,948, 2,241,322, 2,312,966, 2,512,606 and 3,393,210 are preferred.
  • Examples include polyamides derived from lactams having 7 to 13 ring members, such as polycaprolactam, polycapryllactam and polylaurolactam and polyamides obtained by reacting dicarboxylic acids with diamines.
  • Suitable dicarboxylic acids are alkanedicarboxylic acids having 6 to 12, in particular 6 to 10, carbon atoms and aromatic dicarboxylic acids.
  • adipic acid, azelaic acid, sebacic acid, dodecanedioic acid and terephthalic and / or isophthalic acid may be mentioned as acids.
  • Suitable diamines are particularly alkanediamines having 6 to 12, especially 6 to 8 carbon atoms and m-xylylenediamine are suitable (for example Ultramid ® X17 from BASF SE, a 1: 1 molar proportionality nis of MXDA with adipic acid), di- (4-aminophenyl) methane, di- (4-amino-cyclohexyl) -methane, 2,2-di- (4-aminophenyl) -propane, 2,2-di- (4-aminocyclohexyl) -propane or 1,5-diamino-2- methylpentane.
  • Ultramid ® X17 from BASF SE, a 1: 1 molar proportionality nis of MXDA with adipic acid
  • di- (4-aminophenyl) methane di- (4-amino-cyclohexyl) -methane
  • Preferred polyamides are Polyhexamethylenadipinklamid, Polyhexamethylensebacin- acid amide and polycaprolactam and copolyamides 6/66, in particular with a share of 5 to 95 wt .-% of caprolactam units (eg Ultramid ® C31 BASF SE).
  • polystyrene resin Suitable polyamides are obtainable from ⁇ -aminoalkyl nitriles such as aminocapronitrile (PA 6) and adiponitrile with hexamethylenediamine (PA 66) by so-called direct polymerization in the presence of water, as for example in DE-A 10313681, EP-A 1 198491 and EP 922065.
  • PA 6 aminocapronitrile
  • PA 66 adiponitrile with hexamethylenediamine
  • polyamides which are e.g. are obtainable by condensation of 1, 4-diaminobutane with adipic acid at elevated temperature (polyamide 4.6). Manufacturing processes for polyamides of this structure are known e.g. in EP-A 38 094, EP-A 38 582 and EP-A 39 524 described.
  • polyamides which are obtainable by copolymerization of two or more of the abovementioned monomers or mixtures of a plurality of polyamides are suitable, the mixing ratio being arbitrary. Particular preference is given to mixtures of polyamide 66 with other polyamides, in particular copolyamides 6/66. Furthermore, such partially aromatic copolyamides as PA 6 / 6T and PA 66 / 6T have proven to be particularly advantageous, the triamine content is less than 0.5, preferably less than 0.3 wt .-% (see EP-A 299 444). Further high-temperature-resistant polyamides are known from EP-A 19 94 075 (PA 6T / 6I / MXD6). The production of the preferred partly aromatic copolyamides with a low triamine content can be carried out by the processes described in EP-A 129 195 and 129 196.
  • PA 46 tetramethylenediamine, adipic acid
  • PA 66 hexamethylenediamine, adipic acid
  • PA 69 hexamethylenediamine, azelaic acid
  • PA 610 hexamethylenediamine, sebacic acid
  • PA 612 hexamethylenediamine, decanedicarboxylic acid
  • PA 613 hexamethylenediamine, undecanedicarboxylic acid
  • PA 1212 1, 12-dodecanediamine, decanedicarboxylic acid
  • PA 1313 1, 13-diaminotridecane, undecanedicarboxylic acid
  • PA 6T hexamethylenediamine, terephthalic acid
  • PA 9T 1, 9-nonanediamine, terephthalic acid
  • PA MXD6 m-xylylenediamine, adipic acid
  • PA 6I hexamethylenediamine, isophthalic acid
  • PA 6-3-T trimethylhexamethylenediamine, terephthalic acid
  • PA 6 / 6T (see PA 6 and PA 6T)
  • PA 6/66 (see PA 6 and PA 66)
  • PA 6/12 see PA 6 and PA 12
  • PA 66/6/610 see PA 66, PA 6 and PA 610)
  • PA 6I / 6T see PA 61 and PA 6T
  • PA PA PACM 12 diaminodicyclohexylmethane, laurolactam
  • PA 6I / 6T / PACM such as PA 6I / 6T + diaminodicyclohexylmethane
  • PA PDA-T phenylenediamine, terephthalic acid
  • Preferred flame retardant B) is elemental red phosphorus, in particular in combination with glass fiber-reinforced molding compositions, which can be used in untreated form.
  • preparations in which the phosphorus is superficially with low molecular weight liquid substances such as silicone oil, paraffin oil or esters of phthalic acid (especially dioctyl phthalate, see EP 176 836) or adipic acid or with polymeric or oligomeric compounds, e.g. is coated with phenolic resins or aminoplasts and polyurethanes (see EP-A 384 232, DE-A 196 48 503).
  • phlegmatizers are generally contained in amounts of 0.05 to 5 wt .-%, based on 100 wt .-% B).
  • concentrates of red phosphorus for example in a polyamide or elastomers are suitable as flame retardants.
  • polyolefin homo- and copolymers are useful as concentrate polymers.
  • the proportion of the concentrate polymer-if no polyamide is used as a thermoplastic- should not be more than 35% by weight, based on the weight of the components A) and B), in the molding compositions according to the invention.
  • Preferred concentrate compositions are
  • Bi 30 to 90 wt .-%, preferably from 45 to 70 wt .-% of a polyamide or
  • the polyamide used for the batch can be different from A) or preferably equal to A), so that incompatibilities or melting point differences have no negative effect on the molding composition.
  • the average particle size (dso) of the phosphor particles distributed in the molding compositions is preferably in the range from 0.0001 to 0.5 mm; in particular from 0.001 to 0.2 mm.
  • the content of component B) in the molding compositions according to the invention is 0.1 to 60, preferably 0.5 to 40 and in particular 1 to 15 wt .-%, based on the sum of components A) to G).
  • the molding compositions according to the invention contain 1 to 30, preferably 5 to 28 and in particular 15 to 25 wt .-% of at least one thermoplastic polyester.
  • polyesters C) based on aromatic dicarboxylic acids and an aliphatic or aromatic dihydroxy compound are used.
  • a first group of preferred polyesters are polyalkylene terephthalates, in particular those having 2 to 10 carbon atoms in the alcohol part.
  • Such polyalkylene terephthalates are known per se and described in the literature. They contain an aromatic ring in the main chain derived from the aromatic dicarboxylic acid.
  • the aromatic ring may also be substituted, e.g. by halogen such as chlorine and bromine or by C 1 -C 4 -alkyl groups such as methyl, ethyl, i- or n-propyl and n-, i- or t-butyl groups.
  • polyalkylene terephthalates can be prepared by reacting aromatic dicarboxylic acids, their esters or other ester-forming derivatives with aliphatic dihydroxy compounds in a manner known per se.
  • Preferred dicarboxylic acids are 2,6-naphthalenedicarboxylic acid, terephthalic acid and isophthalic acid or mixtures thereof. Up to 30 mol%, preferably not more than 10 mol% of the aromatic dicarboxylic acids can be replaced by aliphatic or cycloaliphatic dicarboxylic acids such as adipic acid, azelaic acid, sebacic acid, dodecanedioic acids and cyclohexanedicarboxylic acids.
  • aliphatic dihydroxy compounds are diols having 2 to 6 carbon atoms, in particular 1, 2-ethanediol, 1, 3-propanediol, 1, 4-butanediol, 1, 6-hexanediol, 1, 4-hexanediol, 1, 4-cyclohexanediol, 1 , 4-cyclohexanedimethanol and neopentyl glycol or mixtures thereof.
  • polyesters C) are polyalkylene terephthalates which are derived from alkanediols having 2 to 6 C atoms.
  • polyethylene terephthalate, polypropylene terephthalate and polybutylene terephthalate or mixtures thereof are preferred.
  • PET and / or PBT which contain up to 1 wt .-%, preferably up to 0.75 wt .-% 1, 6-hexanediol and / or 2-methyl-1, 5-pentanediol as further monomer units.
  • the viscosity number of the polyesters C) is generally in the range from 50 to 220, preferably from 80 to 160 (measured in a 0.5% strength by weight solution in a phenol / o-dichlorobenzene mixture (wt : 1 at 25 ° C) according to ISO 1628.
  • polyesters whose carboxyl end group content is up to 100 meq / kg, preferably up to 50 meq / kg and in particular up to 40 meq / kg of polyester.
  • Such polyesters can be prepared, for example, by the process of DE-A 44 01 055.
  • the carboxyl end group content is usually determined by titration methods (e.g., potentiometry).
  • Particularly preferred molding compositions contain as component C) a mixture of polyesters whose main constituent is polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • the proportion of polyethylene terephthalate in the mixture is preferably 50 to 100, in particular 75 to 100% by weight, based on 100 wt .-% C).
  • PET recyclates also termed scrap PET
  • PBT polyalkylene terephthalates
  • Post Industrial Recyclate these are production waste in polycondensation or in processing, e.g. Sprues in injection molding processing, start-up goods in injection molding or extrusion or edge sections of extruded sheets or foils.
  • Post Consumer Recyclate are plastic items that are collected and processed after use by the end user. By far the dominating items in terms of volume are blow-molded PET bottles for mineral water, soft drinks and juices. Both types of recycled material can be present either as regrind or in the form of granules. In the latter case, the slag cyclates after separation and purification are melted in an extruder and granulated. This usually facilitates the handling, the flowability and the metering for further processing steps.
  • the maximum edge length should be 10 mm, preferably less than 8 mm.
  • the residual moisture content after drying is preferably ⁇ 0.2%, in particular ⁇ 0.05%.
  • Suitable aromatic dicarboxylic acids are the compounds already described for the polyalkylene terephthalates. Preference is given to using mixtures of 5 to 100 mol% of isophthalic acid and 0 to 95 mol% of terephthalic acid, in particular mixtures of about 80% of terephthalic acid with 20% of isophthalic acid to approximately equivalent mixtures of these two acids.
  • the aromatic dihydroxy compounds preferably have the general formula in which Z represents an alkylene or cycloalkylene group having up to 8 C atoms, an arylene group having up to 12 C atoms, a carbonyl group, a sulfonyl group, an oxygen or sulfur atom or a chemical bond and in the m is the value 0 to 2 has.
  • the compounds may also carry C 1 -C 6 -alkyl or alkoxy groups and fluorine, chlorine or bromine as substituents on the phenylene groups.
  • Resorcinol and hydroquinone and their nuclear alkylated or ring-halogenated derivatives called. Of these will be
  • polyalkylene terephthalates and wholly aromatic polyesters. These generally contain from 20 to 98% by weight of the polyalkylene terephthalate and from 2 to 80% by weight of the wholly aromatic polyester.
  • polyester block copolymers such as copolyetheresters may also be used. Such products are known per se and are known in the literature, e.g. in the
  • fibrous or particulate fillers D are carbon fibers, glass fibers, glass beads, amorphous silica, calcium silicate, calcium metasilicate, magnesium carbonate, kaolin, chalk, powdered quartz, mica, barium sulfate and feldspar called in amounts of 0 to 55 or 50, preferably from 5 to 50 wt .-%, in particular 10 to 40 wt .-% can be used.
  • Preferred fibrous fillers are carbon fibers, aramid fibers and potassium titanate fibers, glass fibers being particularly preferred as E glass. These can be used as rovings or cut glass in the commercial forms.
  • the fibrous fillers can be surface-pretreated for better compatibility with the thermoplastics with a silane compound. Suitable silane compounds are those of the general formula
  • n is an integer from 2 to 10, preferably 3 to 4
  • n is an integer from 1 to 5, preferably 1 to 2
  • k is an integer from 1 to 3, preferably 1
  • Preferred silane compounds are aminopropyltrimethoxysilane, aminobutyltrimethoxysilane, aminopropyltriethoxysilane, aminobutyltriethoxysilane and the corresponding silanes which contain a glycidyl group as substituent X.
  • the silane compounds are generally used in amounts of 0.01 to 2, preferably 0.025 to 1, 0 and in particular 0.05 to 0.5 wt .-% (based on D)) for surface coating.
  • acicular mineral fillers are also suitable.
  • the term "needle-shaped mineral fillers” is understood to mean a mineral filler with a pronounced, needle-like character.
  • An example is needle-shaped wollastonite.
  • the mineral has an L / D (length: diameter ratio of 8: 1 to 35: 1, preferably 8: 1 to 1: 1: 1)
  • the mineral filler may optionally be pretreated with the silane compounds mentioned above, the pretreatment However, it is not absolutely necessary to use further fillers such as kaolin, calcined kaolin, wollastonite, talc and chalk, as well as platelet-shaped or needle-shaped nanofillers, preferably in quantities of between 0.1 and 10%, boehmite, bentonite, montmorillonite, vermicullite and the like being preferred
  • the platelet-shaped nanofillers according to the prior art are organically modified The addition of the platelet-shaped or needle-shaped nanofillers to
  • Suitable sulfonic acid salts E) have the general formula
  • R is a straight-chain or branched Al kylrest having 1 to 18 carbon atoms, with the proviso that at least one hydrogen of the alkyl radical is substituted by fluorine, y is 1 or 2
  • radicals R are linear or branched alkyl radicals having 1 to 10 C atoms, the methyl, ethyl, propryl, butyl, pentyl or hexyl radical being particularly preferred.
  • R of the above general formula means an alkyl radical as defined above, which is perfluorinated, i. all hydrogen atoms have been replaced by fluorine.
  • Preferred salts are alkali metal salts, with sodium or potassium being particularly preferred. Accordingly, y in the above formula means 1.
  • Preferred salts E) are Na trifluoromethanesulfonate
  • Such salts are commercially available e.g. available as RM65 from the company Miteni SpA.
  • the molding compositions can contain from 0 to 10, preferably from 0.5 to 10, in particular from 1 to 8,% by weight of rubber-elastic polymers (often also referred to as impact modifiers, elastomers or rubbers).
  • rubber-elastic polymers also referred to as impact modifiers, elastomers or rubbers.
  • these are copolymers which are preferably composed of at least two of the following monomers: ethylene, propylene, butadiene, isobutene, isoprene, chloroprene, vinyl acetate, styrene, acrylonitrile and acrylic or methacrylic acid esters having 1 to 18 carbon atoms in the alcohol component.
  • Such polymers are described, for example, in Houben-Weyl, Methods of Organic Chemistry, Vol.
  • Preferred component F are impact modifiers based on ethylene copolymers which are composed of:
  • Fi 40 to 98 wt .-%, preferably 50 to 94.5 wt .-% of ethylene
  • F3 0 to 20 wt .-%, preferably 0.05 to 10 wt .-% of functional monomers selected from the group of ethylenically unsaturated mono- or dicarboxylic acids
  • ethylene copolymers composed of: Fi) 50 to 69.9% by weight of ethylene
  • F3 0.1 to 10 wt .-% of functional monomers according to claim 1, wherein the sum of the weight percent Fi) to F3) gives 100%.
  • the proportion of the functional groups F3) is 0.05 to 5, preferably 0.2 to 4 and in particular 0.3 to 3.5 wt .-%, based on 100 wt .-% F).
  • Particularly preferred components F3) are composed of an ethylenically unsaturated mono- or dicarboxylic acid or a functional derivative of such an acid.
  • esters having 1 to 12 C atoms, in particular 2 to 10 C atoms are suitable, but preference is given to esters having 1 to 12 C atoms, in particular 2 to 10 C atoms.
  • esters examples thereof are methyl, ethyl, propyl, n-, i-butyl and t-butyl, 2-ethylhexyl, octyl and decyl acrylates or the corresponding esters of methacrylic acid. Of these, n-butyl acrylate and 2-ethylhexyl acrylate are particularly preferred.
  • acid-functional and / or latent acid-functional monomers of ethylenically unsaturated mono- or dicarboxylic acids or monomers containing epoxy groups may also be present in the olefin polymers.
  • monomers F3 are acrylic acid, methacrylic acid, tertiary alkyl esters of these acids, in particular butyl acrylate and dicarboxylic acids such as maleic acid and fumaric acid or anhydrides of these acids and their monoesters.
  • Suitable latent acid-functional monomers are those compounds which form free acid groups under the polymerization conditions or during the incorporation of the olefin polymers into the molding compositions. Examples of these are anhydrides of dicarboxylic acids having up to 20 carbon atoms, in particular maleic anhydride and tertiary C 1 -C 12 -alkyl esters of the abovementioned acids, in particular tert. Butyl acrylate and tert-butyl methacrylate.
  • the preparation of the ethylene copolymers described above can be carried out by processes known per se, preferably by random copolymerization under high pressure and elevated temperature.
  • the melt index of the ethylene copolymers is generally in the range of 1 to
  • the molecular weight of these ethylene copolymers is between 10,000 and 500,000 g / mol, preferably between 15,000 and 400,000 g / mol (Mn, determined by GPC in 1, 2,4-trichlorobenzene with PS calibration).
  • the ethylene copolymers described above can be prepared by methods known per se, preferably by random copolymerization under high pressure and elevated temperature. Corresponding methods are generally known.
  • Preferred elastomers are also emulsion polymers, their preparation e.g. Blackley is described in the monograph "Emulsion Polymerization.”
  • the emulsifiers and catalysts which can be used are known per se, particular preference is given to copolymers which contain no units F2) but which have neutralized the acid component F3) with Zn. acrylic acid copolymers which have been neutralized with zinc up to 72% (commercially available as Suryn® 9520 from Dupont).
  • Further additives G) may be present in amounts of up to 30, preferably up to 20 wt .-%.
  • the molding compositions according to the invention may contain 0.05 to 3, preferably 0.1 to 1, 5 and in particular 0.1 to 1 wt .-% of a lubricant.
  • Al alkali, alkaline earth or ester or amides of fatty acids having 10 to 44 carbon atoms, preferably having 12 to 44 carbon atoms.
  • the metal ions are preferably alkaline earth and Al, with Ca or Mg being particularly preferred.
  • Preferred metal salts are Ca-stearate and Ca-montanate as well as Al-stearate. It is also possible to use mixtures of different salts, the mixing ratio being arbitrary.
  • the carboxylic acids can be 1- or 2-valent. Examples which may be mentioned are pelargonic acid, palmitic acid, lauric acid, margaric acid, dodecanedioic acid, behenic acid and particularly preferably stearic acid, capric acid and montanic acid (mixture of fatty acids having 30 to 40 carbon atoms).
  • the aliphatic alcohols can be 1 - to 4-valent.
  • examples of alcohols are n-butanol, n-octanol, stearyl alcohol, ethylene glycol, propylene glycol, neopentyl glycol, pentaerythritol, with glycerol and pentaerythritol being preferred.
  • the aliphatic amines can be 1 - to 3-valent. Examples of these are stearylamine, ethylenediamine, propylenediamine, hexamethylenediamine, di (6-aminohexyl) amine, with ethylenediamine and hexamethylenediamine being particularly preferred.
  • Preferred esters or amides are corresponding to glyceryl distearate, glycerol tristearate, ethylenediamine distearate, glycerol monopalmitate, glycerol trilaurate, glycerol monobehenate and pentaerythritol tetrastearate.
  • the molding compositions of the invention 0.05 to 3, preferably 0.1 to 1, 5 and in particular 0.1 to 1 wt .-% of a Cu stabilizer, preferably a Cu (l) - halide, in particular Mixture with an alkali halide, preferably KJ, in particular in the ratio 1: 4, included.
  • Suitable salts of monovalent copper are preferably Cu (I) complexes with PPh 3, copper (I) acetate, copper (I) chloride, bromide and iodide. These are contained in amounts of 5 to 500 ppm of copper, preferably 10 to 250 ppm, based on polyamide. The advantageous properties are obtained in particular when the copper is present in molecular distribution in the polyamide.
  • a typical concentrate consists, for example, of 79 to 95% by weight of polyamide and 21 to 5% by weight of a mixture of copper iodide or bromide and potassium iodide.
  • concentration of the solid homogeneous solution of copper is preferably between 0.3 and 3, in particular between 0.5 and 2 wt .-%, based on the total weight of the solution and the molar ratio of copper (I) iodide to potassium iodide is between 1 and 1 1, 5, preferably between 1 and 5.
  • Suitable polyamides for the concentrate are homopolyamides and copolyamides, in particular polyamide 6 and polyamide 6.6.
  • Suitable hindered phenols G are in principle all compounds having a phenolic structure which have at least one sterically demanding group on the phenolic ring.
  • R 1 and R 2 are an alkyl group, a substituted alkyl group or a substituted triazole group, wherein the radicals R 1 and R 2 may be the same or different and R 3 is an alkyl group, a substituted alkyl group, an alkoxy group or a substituted amino group.
  • Antioxidants of the type mentioned are described, for example, in DE-A 27 02 661 (US Pat. No. 4,360,617).
  • Another group of preferred sterically hindered phenols are derived from substituted benzenecarboxylic acids, especially substituted benzenepropionic acids.
  • Particularly preferred compounds of this class are compounds of the formula HO-W // -CH, - CH, - COROC-CH, - CH,
  • R 4 , R 5 , R 7 and R 8 independently of one another are C 1 -C 8 -alkyl groups which in turn may be substituted (at least one of which is a sterically demanding group) and R 6 is a bivalent aliphatic radical having 1 to 10 C atoms means that may also have CO bonds in the main chain.
  • a total of sterically hindered phenols may be mentioned: 2,2'-methylenebis (4-methyl-6-tert-butylphenol), 1,6-hexanediol bis [3- (3,5-di-tert. -butyl-4-hydroxyphenyl) -propionate], pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], distearyl-3,5-di-tert.
  • butyl-4-hydroxybenzylphosphonate 2,6,7-trioxa-1-phosphabicyclo [2.2.2] oct-4-ylmethyl-3,5-di-tert-butyl-4-hydroxyhydro-cinnamate , 3,5-di-tert-butyl-4-hydroxyphenyl-3,5-distearyl-thiotriazylamine, 2- (2'-hydroxy-3'-hydroxy-3 ', 5'-di-tert-butylphenyl) 5-chlorobenzotriazole, 2,6-di-tert-butyl-4-hydroxymethylphenol, 1, 3,5-trimethyl-2,4,6-tris- (3,5-di-tert-butyl-4-) hydroxybenzyl) benzene, 4,4'-methylenebis (2,6-di-tert-butylphenol), 3,5-di-tert-butyl-4-hydroxybenzyl-dimethylamine.
  • the antioxidants G which can be used individually or as mixtures, are in an amount of from 0.05 to 3% by weight, preferably from 0.1 to 1.5% by weight, in particular from 0.1 to 1 Wt .-%, based on the total weight of the molding compositions A) to G).
  • sterically hindered phenols having no more than one sterically hindered group ortho to the phenolic hydroxy group have been found to be particularly advantageous; especially when assessing color stability when stored in diffused light for extended periods of time.
  • the molding compositions according to the invention may contain 0.05 to 5, preferably 0.1 to 2 and in particular 0.25 to 1, 5 wt .-% of a nigrosine.
  • Nigrosines are generally understood to mean a group of black or gray indulene-related phenazine dyes (azine dyes) in various forms (water-soluble, fat-soluble, spray-soluble) which are useful in wool dyeing and printing, in the blackening of silks, for dyeing leather, shoe creams, varnishes, plastics, stoving lacquers, inks and the like, as well as being used as microscope dyes.
  • azine dyes in various forms (water-soluble, fat-soluble, spray-soluble) which are useful in wool dyeing and printing, in the blackening of silks, for dyeing leather, shoe creams, varnishes, plastics, stoving lacquers, inks and the like, as well as being used as microscope dyes.
  • nigrosine is obtained by heating nitrobenzene, aniline, and aniline with anhydrous metal.
  • Component G can be used as free base or else as salt (for example hydrochloride). Further details on nigrosines can be found, for example, in the electronic lexicon Rompp Online, Version 2.8, Thieme-Verlag Stuttgart, 2006, keyword "nigrosine".
  • thermoplastic molding compositions of the invention may contain conventional processing aids such as stabilizers, antioxidants, agents against thermal decomposition and decomposition by ultraviolet light, lubricants and mold release agents, colorants such as dyes and pigments, nucleating agents, plasticizers, etc.
  • antioxidants and heat stabilizers are sterically hindered phenols and / or phosphites and amines (eg TAD), hydroquinones, aromatic secondary amines such as diphenylamines, various substituted representatives of these groups and mixtures thereof in concentrations up to 1 wt .-%, based on the Called weight of the thermoplastic molding compositions.
  • TAD sterically hindered phenols and / or phosphites and amines
  • aromatic secondary amines such as diphenylamines
  • UV stabilizers which are generally used in amounts of up to 2 wt .-%, based on the molding composition, various substituted resorcinols, salicylates, Benzotriazo- le and benzophenones may be mentioned.
  • inorganic pigments such as titanium dioxide, ultramarine blue, iron oxide and carbon black, furthermore organic pigments such as phthalocyanines, quinacridones, perylenes and also dyes such as anthraquinones as colorants.
  • organic pigments such as phthalocyanines, quinacridones, perylenes and also dyes such as anthraquinones as colorants.
  • nucleating agents sodium phenylphosphinate, alumina, silica and preferably talc may be used.
  • thermoplastic molding compositions according to the invention can be prepared by processes known per se, in which the starting components are mixed in customary mixing devices, such as screw extruders, Brabender mills or Banbury mills, and then extruded. After extrusion, the extrudate can be cooled and comminuted. It is also possible to premix individual components and then to add the remaining starting materials individually and / or likewise mixed.
  • the mixing temperatures are usually 230 to 320 ° C.
  • the components B) to G) can be mixed with a prepolymer, formulated and granulated.
  • the granules obtained are then condensed in the solid phase under inert gas continuously or discontinuously at a temperature below the melting point of component A) to the desired viscosity.
  • thermoplastic molding compositions according to the invention are distinguished by good flame retardance and excellent glow-wire resistance and phosphorus stability. These are therefore suitable for the production of fibers, films and moldings of any kind.
  • thermoplastic molding compositions can be used, for example, in the motor vehicle, electrical, electronics, telecommunications, information technology, entertainment, computer industry, in vehicles and other means of transportation, in ships, spaceships, in the household, in office equipment, sports, in medicine and in general in objects and building parts which require increased fire protection.
  • flow-improved polyamides for the production of components for structuralgerate, such as fryers, irons, buttons, and applications in the garden and leisure sector possible.
  • Component A is a compound having Component A:
  • Component B is a compound having Component B:
  • Irganox ® 1098 from BASF SE N, N'-hexane-1, 6-diyl bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl propionamide])
  • plastic molding compounds were prepared by compounding.
  • the individual components were mixed for this purpose in a twin-screw extruder ZSK 26 (Berstorff) at a throughput of 20 kg / h and about 270 ° C at a flat temperature profile, discharged as a strand, cooled to Granuliernote and granulated.
  • the specimens for the examination listed in Table 1 were sprayed on an Arburg 420C injection molding machine at a melt temperature of about 270 ° C. and a mold temperature of about 80 ° C.
  • test specimens for the tension tests were produced according to ISO 527-2: / 1993 and the test specimens for the impact measurements according to ISO 179-2 / 1 eA.
  • the MVR measurements were carried out according to ISO 1 133.
  • the flame retardance of the molding compositions was determined, on the one hand, by the method UL94-V (Underwrite's Laboratories Inc. Standard of Safety, "Test for Flammability of Plastic Materials for Parts in Devices and Appliances", p. 14 to p. 18 Northbrook 1998) ,
  • the glow-wire resistance GWFI (Glow Wire Flammability Index) on boards was performed according to IEC 60695-2-12.
  • the GWFI is a general suitability test for plastics in contact with live parts. The highest temperature is determined in which one of the following conditions is fulfilled in 3 consecutive tests: a) no ignition of the sample or b) afterburning time or afterglow time ⁇ 30 s after the end of the contact time of the filament and no ignition of the substrate.
  • the compositions of the molding compositions and the results of the measurements are shown in the table:

Abstract

L'invention concerne des matières à mouler thermoplastiques contenant A) 10 à 98 % en poids d'un polyamide thermoplastique, B) 0,1 à 60 % en poids de phosphore rouge, C) 1 à 30 % en poids d'un polyester thermoplastique, D) 0 à 55 % en poids d'une charge fibreuse ou particulaire, ou leurs mélanges, E) 0,001 à 1 % en poids d'un sel d'acide sulfonique aliphatique fluoré, F) 0 à 10 % en poids d'un polymère élastique caoutchouteux, G) 0 à 30 % en poids d'autres additifs, la somme des pourcentages en poids de A) à G) étant égale à 100 %. La présente invention concerne en outre l'utilisation de ces matières à mouler pour la production de fibres, de films et d'éléments moulés et les éléments moulés, les fibres et les films de tout type ainsi obtenus.
PCT/EP2015/077887 2014-12-01 2015-11-27 Polyamides ignifugés comportant des sels d'acide sulfonique WO2016087324A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP14195588.0 2014-12-01
EP14195588 2014-12-01

Publications (1)

Publication Number Publication Date
WO2016087324A1 true WO2016087324A1 (fr) 2016-06-09

Family

ID=52133808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/077887 WO2016087324A1 (fr) 2014-12-01 2015-11-27 Polyamides ignifugés comportant des sels d'acide sulfonique

Country Status (1)

Country Link
WO (1) WO2016087324A1 (fr)

Citations (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2071250A (en) 1931-07-03 1937-02-16 Du Pont Linear condensation polymers
US2071251A (en) 1931-07-03 1937-02-16 Du Pont Fiber and method of producing it
US2130948A (en) 1937-04-09 1938-09-20 Du Pont Synthetic fiber
US2130523A (en) 1935-01-02 1938-09-20 Du Pont Linear polyamides and their production
US2241322A (en) 1938-09-30 1941-05-06 Du Pont Process for preparing polyamides from cyclic amides
US2312966A (en) 1940-04-01 1943-03-02 Du Pont Polymeric material
US2512606A (en) 1945-09-12 1950-06-27 Du Pont Polyamides and method for obtaining same
US3393210A (en) 1964-08-24 1968-07-16 Du Pont Polycarbonamides of bis (para-aminocyclohexyl)methane and dodecanedioic acid
DE1931387A1 (de) 1969-06-20 1970-12-23 Basf Ag Flammschutzausruestung fuer glasfaserverstaerktes Polyamid
US3651014A (en) 1969-07-18 1972-03-21 Du Pont Segmented thermoplastic copolyester elastomers
DE2625691A1 (de) 1975-06-10 1976-12-16 Rhone Poulenc Ind Flammfeste kunststoffmasse
DE2702661A1 (de) 1976-02-05 1977-08-11 Ciba Geigy Ag Stabilisatorsysteme aus triarylphosphiten und phenolen
EP0038094A2 (fr) 1980-03-26 1981-10-21 Stamicarbon B.V. Préparation de polytétraméthylène adipamide à haut poids moléculaire
EP0038582A2 (fr) 1980-03-26 1981-10-28 Stamicarbon B.V. Production d'objets à base de polyamide
EP0039524A1 (fr) 1980-03-26 1981-11-11 Stamicarbon B.V. Préparation de polytétraméthylène adipamide
EP0129196A2 (fr) 1983-06-15 1984-12-27 BASF Aktiengesellschaft Procédé pour la production continue de polyamides
EP0129195A2 (fr) 1983-06-15 1984-12-27 BASF Aktiengesellschaft Procédé pour la production continue de polyamides
EP0176836A2 (fr) 1984-10-03 1986-04-09 Hoechst Aktiengesellschaft Phosphore rouge phlegmatisé
EP0299444A2 (fr) 1987-07-17 1989-01-18 BASF Aktiengesellschaft Copolyamides partiellement aromatiques avec un taux de triamine abaissé
EP0384232A1 (fr) 1989-02-18 1990-08-29 BASF Aktiengesellschaft Masses à mouler thermoplastiques ignifugées à base de phosphore rouge désensibilisé
DE4401055A1 (de) 1994-01-15 1995-07-20 Basf Ag Verfahren zur Herstellung von thermoplastischen Polyestern mit niedrigem Carboxylendgruppengehalt
EP0837100A1 (fr) 1996-10-16 1998-04-22 Toray Industries, Inc. Composition de résine ignifuge
DE19648503A1 (de) 1996-11-22 1998-05-28 Basf Ag Flammgeschützte thermoplastische Formmassen
EP0922065A2 (fr) 1996-08-30 1999-06-16 Basf Aktiengesellschaft Procede pour la preparation de polyamides a partir d'aminonitriles
EP1198491A1 (fr) 1999-07-30 2002-04-24 Basf Aktiengesellschaft Procede de production de polyamides a partir de dinitriles et de diamines
DE10196299T1 (de) * 2000-06-02 2003-05-08 Polyplastics Co Flammenhemmende Harzzusammensetzung
EP1462503A1 (fr) * 2001-12-06 2004-09-29 DAICEL CHEMICAL INDUSTRIES, Ltd. Composition ignifuge, procede de production de cette composition, composition de resine ignifuge, et objet moule produit avec cette composition
DE10313681A1 (de) 2003-03-26 2004-10-07 Basf Ag Verfahren zur Herstellung von Polyamiden
EP1994075A2 (fr) 2006-03-08 2008-11-26 Basf Se Copolyamides partiellement aromatiques à haute cristallinité
WO2010146143A1 (fr) 2009-06-19 2010-12-23 Rhodia Operations Composition d'un alliage de resines de polyamide et de polyester
WO2013030024A1 (fr) 2011-08-26 2013-03-07 Rhodia Operations Composition ignifugee d'un alliage de résines de polyamide et de polyester

Patent Citations (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2071250A (en) 1931-07-03 1937-02-16 Du Pont Linear condensation polymers
US2071251A (en) 1931-07-03 1937-02-16 Du Pont Fiber and method of producing it
US2130523A (en) 1935-01-02 1938-09-20 Du Pont Linear polyamides and their production
US2130948A (en) 1937-04-09 1938-09-20 Du Pont Synthetic fiber
US2241322A (en) 1938-09-30 1941-05-06 Du Pont Process for preparing polyamides from cyclic amides
US2312966A (en) 1940-04-01 1943-03-02 Du Pont Polymeric material
US2512606A (en) 1945-09-12 1950-06-27 Du Pont Polyamides and method for obtaining same
US3393210A (en) 1964-08-24 1968-07-16 Du Pont Polycarbonamides of bis (para-aminocyclohexyl)methane and dodecanedioic acid
DE1931387A1 (de) 1969-06-20 1970-12-23 Basf Ag Flammschutzausruestung fuer glasfaserverstaerktes Polyamid
US3651014A (en) 1969-07-18 1972-03-21 Du Pont Segmented thermoplastic copolyester elastomers
DE2625691A1 (de) 1975-06-10 1976-12-16 Rhone Poulenc Ind Flammfeste kunststoffmasse
DE2702661A1 (de) 1976-02-05 1977-08-11 Ciba Geigy Ag Stabilisatorsysteme aus triarylphosphiten und phenolen
US4360617A (en) 1976-02-05 1982-11-23 Ciba-Geigy Corporation Stabilizer systems of triarylphosphites and phenols
EP0038094A2 (fr) 1980-03-26 1981-10-21 Stamicarbon B.V. Préparation de polytétraméthylène adipamide à haut poids moléculaire
EP0038582A2 (fr) 1980-03-26 1981-10-28 Stamicarbon B.V. Production d'objets à base de polyamide
EP0039524A1 (fr) 1980-03-26 1981-11-11 Stamicarbon B.V. Préparation de polytétraméthylène adipamide
EP0129196A2 (fr) 1983-06-15 1984-12-27 BASF Aktiengesellschaft Procédé pour la production continue de polyamides
EP0129195A2 (fr) 1983-06-15 1984-12-27 BASF Aktiengesellschaft Procédé pour la production continue de polyamides
EP0176836A2 (fr) 1984-10-03 1986-04-09 Hoechst Aktiengesellschaft Phosphore rouge phlegmatisé
EP0299444A2 (fr) 1987-07-17 1989-01-18 BASF Aktiengesellschaft Copolyamides partiellement aromatiques avec un taux de triamine abaissé
EP0384232A1 (fr) 1989-02-18 1990-08-29 BASF Aktiengesellschaft Masses à mouler thermoplastiques ignifugées à base de phosphore rouge désensibilisé
DE4401055A1 (de) 1994-01-15 1995-07-20 Basf Ag Verfahren zur Herstellung von thermoplastischen Polyestern mit niedrigem Carboxylendgruppengehalt
EP0922065A2 (fr) 1996-08-30 1999-06-16 Basf Aktiengesellschaft Procede pour la preparation de polyamides a partir d'aminonitriles
EP0837100A1 (fr) 1996-10-16 1998-04-22 Toray Industries, Inc. Composition de résine ignifuge
DE19648503A1 (de) 1996-11-22 1998-05-28 Basf Ag Flammgeschützte thermoplastische Formmassen
EP1198491A1 (fr) 1999-07-30 2002-04-24 Basf Aktiengesellschaft Procede de production de polyamides a partir de dinitriles et de diamines
DE10196299T1 (de) * 2000-06-02 2003-05-08 Polyplastics Co Flammenhemmende Harzzusammensetzung
EP1462503A1 (fr) * 2001-12-06 2004-09-29 DAICEL CHEMICAL INDUSTRIES, Ltd. Composition ignifuge, procede de production de cette composition, composition de resine ignifuge, et objet moule produit avec cette composition
DE10313681A1 (de) 2003-03-26 2004-10-07 Basf Ag Verfahren zur Herstellung von Polyamiden
EP1994075A2 (fr) 2006-03-08 2008-11-26 Basf Se Copolyamides partiellement aromatiques à haute cristallinité
WO2010146143A1 (fr) 2009-06-19 2010-12-23 Rhodia Operations Composition d'un alliage de resines de polyamide et de polyester
WO2013030024A1 (fr) 2011-08-26 2013-03-07 Rhodia Operations Composition ignifugee d'un alliage de résines de polyamide et de polyester

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Houben-Weyl, Methoden der organischen Chemie", vol. 14/1, 1961, GEORG-THIEME-VERLAG, pages: 392 - 406
C.B. BUCKNALL: "Toughened Plastics", 1977, APPLIED SCIENCE PUBLISHERS

Similar Documents

Publication Publication Date Title
EP2986673B1 (fr) Polyamide résistant au filament incandescent
EP2652032B1 (fr) Polyamides résistants au fil incandescent
WO2008132111A1 (fr) Matières thermoplastiques à mouler ignifugées
EP1851265B1 (fr) Polyamides resistants au vieillissement thermique
EP2001951B1 (fr) Polyamides thermoconducteurs
EP1511808B1 (fr) Matieres a mouler thermoplastiques noires ignifugees
EP3589696B1 (fr) Polyamide ignifugé à base de pvp
EP2379644B1 (fr) Polyamides résistants au vieillissement thermique
EP3642265A1 (fr) Polyamides comprenant du phosphore et des phosphonates d'aluminium
EP2861666B1 (fr) Polyamide ignifuge comprenant un homopolymère polyacrylonitrile
EP2898009B1 (fr) Polyamide ignifuge avec teinte claire
EP2828336B1 (fr) Polyamide ignifuge teinté en nuances claires
WO2006010543A1 (fr) Polyamides thermostabilises
EP2817363B1 (fr) Mélanges cuo/zno servant de stabilisants pour des polyamides ignifugés
EP2756033B1 (fr) Mélanges d'argent et d'oxyde de zinc en tant que stabilisant pour des polyamides ignifugés contenant du phosphore rouge
WO2010146033A1 (fr) Matières ignifugées à mouler à base de polyamides
WO2016087324A1 (fr) Polyamides ignifugés comportant des sels d'acide sulfonique
WO2015032607A1 (fr) Polyesters ignifugés
EP2702102A1 (fr) Matières à mouler ignifugées
WO2013189779A1 (fr) Polyesters ignifugés comprenant des homopolymères polyacrylonitrile
DE102005005876A1 (de) Elektrisch leitfähige Thermoplasten
WO2013083508A1 (fr) Polyamides ignifugés comprenant des polyesters à cristaux liquides
EP2415827A1 (fr) Polyamides ignifuges dotés de silicate en couche
WO2012013564A1 (fr) Matières moulables ignifugées

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15801808

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15801808

Country of ref document: EP

Kind code of ref document: A1