WO2016086564A1 - 带自驱动分离热管储能装置的太阳能热泵供热系统及控制方法 - Google Patents

带自驱动分离热管储能装置的太阳能热泵供热系统及控制方法 Download PDF

Info

Publication number
WO2016086564A1
WO2016086564A1 PCT/CN2015/076227 CN2015076227W WO2016086564A1 WO 2016086564 A1 WO2016086564 A1 WO 2016086564A1 CN 2015076227 W CN2015076227 W CN 2015076227W WO 2016086564 A1 WO2016086564 A1 WO 2016086564A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
electromagnetic
heat
solar
electronic expansion
Prior art date
Application number
PCT/CN2015/076227
Other languages
English (en)
French (fr)
Inventor
蒋绿林
姜钦青
王昌领
Original Assignee
常州海卡太阳能热泵有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201410708946.3A external-priority patent/CN104501462B/zh
Priority claimed from CN201410709491.7A external-priority patent/CN104501451B/zh
Application filed by 常州海卡太阳能热泵有限公司 filed Critical 常州海卡太阳能热泵有限公司
Publication of WO2016086564A1 publication Critical patent/WO2016086564A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/06Heat pumps characterised by the source of low potential heat

Definitions

  • the invention relates to the field of solar thermal utilization and solar heat pump technology, in particular to a solar heat pump heating system and a control method with a self-driven separation heat pipe energy storage device.
  • Solar energy is an inexhaustible source of clean energy. Making full use of solar energy resources in industrial and agricultural production, domestic heating, and heating can save traditional energy and reduce environmental pollution.
  • solar thermal utilization technology uses solar collectors (mainly all-glass vacuum tube collectors, all-glass vacuum heat pipe collectors and flat-plate solar collectors) to absorb solar energy into heat to heat the medium flowing through the collector.
  • the heated medium is used as a heat source for heating domestic hot water, heating and industrial heating.
  • the solar collector system has a large installation area, low heat utilization efficiency and low heat supply load under low ambient temperature and low solar radiation intensity.
  • the need for energy storage devices and the need to install antifreeze measures during cold winters have limited the application of solar thermal utilization technology in production and life.
  • the heat pump technology utilizes the principle of thermodynamic Carnot cycle, which consumes a small amount of high-quality energy (such as electric energy) to transport a large amount of heat from a low-temperature heat source to a high-temperature heat source, and the heat transferred is divided by the high-quality energy consumed.
  • high-quality energy such as electric energy
  • COP energy efficiency ratio
  • Common heat pump application technologies include air source heat pump technology and water (ground) source heat pump technology, which extract heat from two low-temperature heat sources, air and water (ground) sources.
  • the air source heat pump is greatly affected by the ambient temperature. At low temperature, the evaporation temperature of the evaporator decreases and the frost on the surface of the evaporator fin needs to be defrost, which greatly reduces the efficiency of the air source heat pump and limits the air source.
  • the promotion of heat pumps especially in cold regions.
  • the water source heat pump in the water source pump is limited by the water source.
  • the long-term heat pump from the ground source heat pump will cause: First, the soil is unbalanced during the whole year, and the second long-term heat takes the soil temperature gradually. The drop causes a drop in heat pump efficiency, which can lead to a collapse of the heat pump system in severe cases.
  • the combination of solar energy and heat pump technology mainly includes direct expansion and indirect expansion.
  • the collector of direct expansion solar heat pump is directly used as the evaporator of the heat pump system, the refrigerant directly absorbs the solar radiation energy evaporation; the indirect expansion solar heat pump
  • the collector is separated from the heat pump evaporator, and the refrigerant absorbs heat from the hot water obtained by the collector to evaporate, and there is a secondary heat exchange process.
  • the direct-expansion solar heat pump is compact in structure, and due to the heat absorption and evaporation of the refrigerant, the temperature of the collector is relatively low and evenly distributed, the heat collecting efficiency can always be kept at a high level, and the area of the required solar collector is greatly reduced, and the solar heat pump is realized. The best technical way to supply heat.
  • flat-plate solar collectors are simple in terms of heat collecting area, easy to install, easy to combine with buildings, and as a heat pump evaporator, and more importantly, the flat solar collectors are boring.
  • the temperature is much lower than the smoldering temperature of the vacuum tube solar collector. Therefore, the choice of flat solar collectors as the collector of solar heat pumps is the best technology choice.
  • the heat collected by the solar collector evaporator is greatly affected by the changes in solar radiation intensity and ambient temperature, and the solar radiation intensity is greatly affected by the climate (such as winter and summer), the environment (such as the inter-submarine), and the solar incident angle.
  • Extremely unstable the solar collector is a huge test for the evaporator of the heat pump, while the flat temperature of the flat solar collector is as high as 130 ° C, while the vacuum temperature of the vacuum tube solar collector is as high as 250 ° C.
  • the range of evaporation temperature and pressure of the working medium of the heat pump in the solar collector evaporator will become wide, and the existing heat pump system cannot adapt to these complicated and varied working conditions at all.
  • the existing heat pump compressor has an evaporation temperature range of -15 ° C to 25 ° C, which is not suitable for the working conditions of the solar heat pump.
  • solar heat pumps do not work properly at night and in rainy weather, and waste of energy is generated when solar energy is sufficient.
  • energy storage technology mostly uses active energy storage, using external power to store energy inside the energy storage material, and consumes a certain amount of external energy in the energy storage process, so that the efficiency of the entire solar heat pump heat exchange system is reduced.
  • the heating load of the system is large, and the area of the solar collector evaporator is large.
  • multiple collectors and evaporators are required to operate in parallel, which is often affected by various factors. Different collectors have different operating conditions, and the system often requires long distances and large differentials.
  • the refrigerant is sent, and the arrangement of the collector evaporator is limited to the irregular arrangement of the site or the like. At the same time, it will be affected by different degrees of shading during operation, so that the refrigerant flow rate through each solar collector evaporator is inconsistent, and the heat obtained by each solar collector evaporator is also inconsistent. Improper control will make the whole solar collector system efficient. Falling, in severe cases, can even lead to the collapse of the solar heat pump heat exchange system.
  • the return air temperature of the heat pump compressor has a certain working range. Excessive return air temperature will cause damage to the compressor motor. When the solar radiation intensity is large, the return air temperature of the compressor must be controlled not to exceed the limit value. The compressor is always operating within the allowable operating range.
  • the flat solar collector is a collector when there is a sun, and is a radiator when there is no sun.
  • the temperature of the solar collector core is the same as the ambient temperature, and the application in the severe cold area must solve the problem of antifreeze.
  • the technical problem to be solved by the present invention is to provide a solar heat pump heating system and a control method with a self-driven separation heat pipe energy storage device, which can improve the operation efficiency of the heat pump system and the stability of continuous operation, and can improve the utilization rate of solar energy. Meet the complex and variable working conditions of solar heat pumps and realize the sun Productization of heat pump heating technology.
  • a technical solution adopted by the present invention is to provide a solar heat pump heating system with a self-driven separation heat pipe energy storage device, including: a solar collector evaporator array, a return air temperature control unit, and a self-driven a unit, a main unit, an energy storage unit, and an end heat exchange unit, wherein the solar collector evaporator array is connected to a return air temperature control unit, and the return air temperature control unit is respectively connected to the self-driving unit and the host unit,
  • the drive unit is further connected to the host unit and the energy storage unit, respectively, and the energy storage unit is also connected to the host unit, and the host unit is connected to the terminal heat exchange unit.
  • the solar collector evaporator array comprises a plurality of solar collector evaporator modules arranged in parallel, the solar collector evaporator module comprising a solar collector evaporator, a first electron expansion a valve, a first controller, a first temperature sensor, and a first pressure transmitter, the first electronic expansion valve being coupled to an inlet end of the solar collector evaporator, the outlet end of the solar collector evaporator being provided with a first a temperature sensor and a first pressure transmitter, wherein the first temperature sensor and the first pressure transmitter are connected to the first controller through a signal line, and the first controller is further connected to the first electronic expansion valve through the signal line.
  • a fifth solenoid valve is connected to the liquid phase main pipe in the solar collector evaporator array.
  • the solar collector evaporator comprises a heat absorbing core, a transparent cover, a heat insulating frame and a heat insulating back plate, and the heat absorbing core is sucked by a solar selective coating on the surface.
  • the hot plate and the back surface are arranged by the evaporating heat exchange tube, and the evaporating heat exchange tube and the heat absorbing plate are combined by welding and expansion, the upper part of the heat absorbing core is provided with a transparent cover, the side is provided with a heat preservation frame, and the bottom is provided with a bottom. Insulation backboard.
  • the return air temperature control unit includes a second electronic expansion valve, a second controller, a second temperature sensor, a second pressure transmitter, and a first solenoid valve
  • the second One end of the electronic expansion valve is connected to the first electromagnetic valve
  • the other end of the second electronic expansion valve is simultaneously connected with the liquid phase main pipe of the solar collector evaporator array and the self-driving unit
  • the other end of the first electromagnetic valve is simultaneously Too a gas phase main pipe of the solar energy collector evaporator array is connected to the main unit
  • the second temperature sensor and the second pressure transmitter are disposed between the return air temperature control unit and the main unit
  • the second pressure transmitter is connected to the second controller through a signal line
  • the second controller is connected to the second electronic expansion valve through the signal line.
  • the self-drive unit includes a constant pressure reservoir, a first check valve, a second check valve, a third check valve, a condensate reservoir, a second solenoid valve, a third electromagnetic valve and a sixth electromagnetic valve, wherein the outlet end of the first one-way valve is simultaneously connected with the return air temperature control unit and the main unit, and the inlet end of the first one-way valve is connected with the sixth electromagnetic valve, the sixth electromagnetic
  • the other end of the valve is connected to the bottom of the constant pressure reservoir, the side interface of the constant pressure reservoir is connected to the outlet end of the second check valve, and the inlet end of the second check valve is connected to the side of the condensate reservoir Connected, the top interface of the condensate reservoir is connected to the second solenoid valve, the other end of the second solenoid valve is connected to the host unit, and the bottom interface of the condensate reservoir is connected to the outlet end of the third check valve, the third one-way The inlet end of the valve is connected
  • the main unit includes a first electromagnetic three-way valve, a second electromagnetic three-way valve, a third electromagnetic three-way valve, a fourth electromagnetic three-way valve, a compressor, and a four-way reversing a valve, a third electronic expansion valve, a third controller, a third temperature sensor, a fourth temperature sensor, a fifth temperature sensor and a fourth solenoid valve, the I interface end of the first electromagnetic three-way valve and the return air temperature control Single connection, the II interface end of the first electromagnetic three-way valve is connected with the I interface end of the four-way reversing valve, and the II, III and IV interface ends of the four-way reversing valve are respectively connected with the suction end of the compressor and the second electromagnetic
  • the I interface end of the three-way valve is connected with the exhaust end of the compressor
  • the II interface end of the second electromagnetic three-way valve is connected with the end heat exchange unit
  • the III interface end of the second electromagnetic three-way valve is simultaneously with the energy storage unit and
  • the third electronic expansion valve
  • the energy storage unit comprises a plate heat exchanger, a water pump and a buried pipe, and one end of the refrigerant pipe of the plate heat exchanger and the third electromagnetic valve in the self-drive unit Connected to one end of the third electronic expansion valve in the main unit, and the other end of the refrigerant circuit of the plate heat exchanger is simultaneously connected with the III interface end of the fourth electromagnetic valve and the fourth electromagnetic three-way valve in the main unit, the plate heat exchanger One end of the water pipe is connected to the inlet end of the buried pipe, and the other end of the water pipe of the plate heat exchanger is connected to the outlet end of the water pump, and the inlet end of the water pump is connected to the outlet end of the buried pipe.
  • the terminal heat exchange unit comprises a heat exchanger, one end of the heat exchanger is connected to the II interface end of the second electromagnetic three-way valve in the main unit, and the other end of the heat exchanger is connected to the host The II interface end of the fourth electromagnetic three-way valve in the unit is connected.
  • a technical solution adopted by the present invention is to provide a solar heat pump heating system control method with a self-driven separation heat pipe energy storage device, including five operation modes: solar heat pump heating mode, self-driving Separate heat pipe energy storage mode, energy storage heat pump heating mode, cooling mode And the snow melting defrosting mode, the specific control process of each operating mode is as follows:
  • the specific working process of the solar heat pump heating mode is:
  • the solar collector evaporator in the solar collector evaporator array contains a small amount of refrigerant inside, and the temperature of the refrigerant in the solar collector evaporator is substantially equal to the ambient temperature, and the solar energy gradually emerges with the sun.
  • the collector evaporator begins to absorb solar radiation energy, and the temperature and pressure of the refrigerant in the solar collector evaporator gradually rise.
  • the solar heat pump heating mode is turned on, firstly, the fifth electromagnetic valve is opened, the liquid refrigerant enters each solar collector evaporator module, and the liquid refrigerant enters each solar collector evaporator through the corresponding first electronic expansion valve, and starts. Evaporating and absorbing heat, the temperature inside the solar collector evaporator begins to drop,
  • the compressor After a delay period, the compressor is started, and the gaseous refrigerant from the solar collector evaporator array enters the compressor through the first electromagnetic three-way valve and the four-way reversing valve (I ⁇ II), and is compressed into a high temperature and high pressure overheating.
  • the gaseous refrigerant, the high temperature and high pressure superheated gaseous refrigerant passes through the four-way reversing valve (IV ⁇ III) and the second electromagnetic three-way valve (I ⁇ II) into the heat exchanger of the end heat exchange unit to condense and release heat, after condensation
  • the liquid refrigerant enters the solar collector evaporator array through the fourth electromagnetic three-way valve (II ⁇ I), the third electromagnetic three-way valve (II ⁇ I) and the fifth electromagnetic valve, and the liquid refrigerant enters each solar energy set separately.
  • the thermal evaporator module is turned into a low-temperature low-pressure gas-liquid two-phase refrigerant after being throttled by the first electronic expansion valve, and the low-temperature low-pressure gas
  • the liquid two-phase refrigerant becomes a superheated gaseous refrigerant after absorbing the solar radiation energy in the solar collector evaporator, and the superheated gaseous refrigerant from each solar collector evaporator is collected and then enters the compressor, so that the reciprocating cycle works.
  • the first temperature sensor and the first pressure transmitter disposed at the outlet of the solar collector evaporator transmit the acquired temperature and pressure signals to the first controller through the signal line, and the first controller converts the temperature and pressure signals into corresponding
  • the superheat degree ⁇ T 1 is compared with the set target superheat degree ⁇ T s1 and a control command is issued to the first electronic expansion valve:
  • the first electronic expansion valve controls the refrigerant flow rate according to the real-time superheat of the refrigerant at the outlet of the solar collector evaporator, and ensures that the superheat degree ⁇ T 1 of the refrigerant at the outlet of the solar collector evaporator is close to or equal to the set target superheat degree. ⁇ T s1 ;
  • the first solenoid valve in the return air temperature control unit is turned on, the second temperature sensor and the second pressure change
  • the transmitter transmits the acquired temperature and pressure signals to the second controller through the signal line, and the second controller converts the temperature and pressure signals into corresponding superheat degrees ⁇ T 2 and compares them with the set target superheat degree ⁇ T s2 .
  • the set target superheat degree ⁇ T s2 ⁇ T s1 +1, and a control command is issued to the second electronic expansion valve:
  • the minimum opening degree of the second electronic expansion valve can reach zero opening degree
  • Constant pressure inside the reservoir can be kept constant pressure P h, to ensure that in heat pipe separated from the driving mode of the storage reservoir of constant pressure solar collector array normal evaporator liquid supply,
  • the range of the P h is: P 2 ⁇ P ⁇ P h ⁇ P 1 , P 1 is a high pressure formed by the sun exposure in the solar collector evaporator, and P 2 is a low pressure formed by condensation in the plate heat exchanger, and P is self. Drives the separation heat pipe system working pressure.
  • the self-driven separation heat pipe storage mode Before the self-driven separation heat pipe storage mode is turned on, there is only a small amount of refrigerant in the solar collector evaporator. In the case of solar irradiation, the refrigerant in the solar collector evaporator quickly becomes superheated.
  • the gaseous refrigerant when the degree of superheat ⁇ T 1 > ⁇ Ts+1, the opening degree of each of the first electronic expansion valves in the solar collector evaporator module is always increased to the maximum opening degree.
  • the self-driven separation heat pipe energy storage mode is turned on, the fourth electromagnetic valve is closed, and the liquid refrigerant in the constant pressure liquid storage device enters the solar energy through the sixth electromagnetic valve, the first one-way valve and the fifth electromagnetic valve under the action of the pressure P h Collecting the heat evaporator array, the refrigerant then enters the solar collector evaporator module separately, and the refrigerant enters through the first electronic expansion valve (the opening degree of each first electronic expansion valve at this time is the maximum opening degree) To the solar collector evaporator, the solar collector evaporator starts to rise under the sun and forms a high pressure P 1 , at which time the condensate reservoir is in communication with the solar collector evaporator due to the condensation of the gaseous refrigerant.
  • the condensate accumulator and the plate heat exchanger are all connected with the solar collector evaporator array, the gaseous refrigerant does not condense in the condensate accumulator, and the gaseous refrigerant condenses in the plate heat exchanger to form a low pressure P 2
  • the system pressure is restored to the working pressure P (P 1 >P>P 2 ), and the liquid refrigerant condensed in the plate heat exchanger enters the condensate liquid storage through the third solenoid valve and the third one-way valve under the principle of the connected device. , condensing the pressure inside the reservoir P ⁇ P h , condensing the reservoir for storage,
  • the sixth electromagnetic valve and the fifth electromagnetic valve are first closed, and the second electromagnetic valve and the third electromagnetic valve are closed after a delay;
  • first electromagnetic three-way valve III ⁇ II
  • second electromagnetic three-way valve II ⁇ II
  • third electromagnetic three-way valve II ⁇ III
  • fourth electromagnetic three-way valve II ⁇ I
  • Four-way reversing valve IV ⁇ III, I ⁇ II
  • fourth electromagnetic valve closed: first electromagnetic valve, second electromagnetic valve, third electromagnetic valve, fifth electromagnetic valve, sixth electromagnetic valve;
  • the heat storage mode of the energy storage heat pump is turned on, and the refrigerant is converted into a gaseous state by absorbing heat stored in the underground soil in the plate heat exchanger, and the gaseous working medium passes through the fourth electromagnetic valve, the first electromagnetic three-way valve (III ⁇ II), and The four-way reversing valve (I ⁇ II) enters the compressor to become a high temperature and high pressure superheated gaseous working medium, and the high temperature and high pressure superheated gaseous working medium passes through the four-way reversing valve (IV ⁇ III) and the second electromagnetic three-way valve (I ⁇ II)
  • the heat exchanger in the end heat exchange unit is condensed and released, and the condensed liquid working medium enters the third through the fourth electromagnetic three-way valve (II ⁇ I) and the third electromagnetic three-way valve (II ⁇ III).
  • the electronic expansion valve is a gas-liquid two-phase working medium that is throttled into a low temperature and a low pressure.
  • the low temperature and low pressure gas-liquid two-phase working medium enters the plate heat exchanger to absorb the heat from the underground soil storage and then becomes a gaseous working medium to complete a heat pumping machine.
  • the third controller obtains the superheat degree ⁇ T 3 according to the temperature signals of the third temperature sensor and the fifth temperature sensor, compares with the set target superheat degree ⁇ T s3 , and issues a control command to the third electronic expansion valve:
  • first electromagnetic three-way valve II ⁇ III
  • second electromagnetic three-way valve II ⁇ I
  • third electromagnetic Three-way valve III ⁇ II
  • fourth electromagnetic three-way valve II ⁇ II
  • four-way reversing valve IV ⁇ I, III ⁇ II
  • fourth solenoid valve closed: first solenoid valve, second Solenoid valve, third electromagnetic valve, fifth electromagnetic valve, sixth electromagnetic valve;
  • the refrigerant When the cooling mode is turned on, the refrigerant becomes a gaseous refrigerant after absorbing heat in the heat exchanger, and the gaseous refrigerant enters the compressor through the second electromagnetic three-way valve (II ⁇ I) and the four-way switching valve (III ⁇ II).
  • the third controller obtains the superheat degree ⁇ T 4 according to the temperature signals of the third temperature sensor and the fourth temperature sensor, compares with the set target superheat degree ⁇ T s4 , and issues a control command to the third electronic expansion valve:
  • first electromagnetic three-way valve II ⁇ I
  • second electromagnetic three-way valve III ⁇ I
  • third electromagnetic three-way valve II ⁇ I
  • fourth electromagnetic three-way valve II ⁇ III
  • Four-way reversing valve IV ⁇ I, III ⁇ II
  • fifth solenoid valve closed: first solenoid valve, second solenoid valve, third solenoid valve, fourth solenoid valve, Six solenoid valves;
  • the specific working process of the snow melting defrosting mode is:
  • the snow melting defrosting mode is turned on, the refrigerant absorbs the heat from the underground soil storage in the plate heat exchanger and becomes a gaseous state, and the gaseous working medium passes through the second electromagnetic valve (III ⁇ I) and the four-way reversing valve (III ⁇ II) Entering the compressor, the high temperature and high pressure superheated gaseous refrigerant after compression enters the solar collector evaporator array through the four-way reversing valve (IV ⁇ I) and the first electromagnetic three-way valve (II ⁇ I), and the high temperature and high pressure superheated gas cooling
  • the agent enters each solar collector evaporator to perform condensation heat release, and the condensation heat is used for melting snow defrost, and the condensed liquid refrigerant is throttled by each first electronic expansion valve, and then merged through the fifth electromagnetic valve and the third electromagnetic
  • the three-way valve (I ⁇ II) and the fourth electromagnetic three-way valve (I ⁇ III) enter the plate heat exchanger in the energy storage unit to absorb the
  • the invention has the beneficial effects that the solar heat pump heating system and the control method with the self-driven separation heat pipe energy storage device combine the heat pump technology, the solar heat utilization technology and the self-driven separation heat pipe energy storage technology, and adopt the solar energy as the heat pump system.
  • the low-temperature heat source while using energy storage devices to store rich solar energy and provide low-temperature heat source, can improve the efficiency of the heat pump system and the stability of continuous operation, and improve the utilization of solar energy; install solar energy sets in the heat pump system
  • the refrigerant evacuation device of the thermal evaporator, the compressor return air temperature control device and the refrigerant flow control device connected in parallel with the multi-solar heat collection evaporator satisfy the complicated and variable working conditions of the solar heat pump, and realize the solar heat pump heating technology.
  • FIG. 1 is a schematic structural view of a solar heat pump heating system with a self-driven split heat pipe energy storage device according to a preferred embodiment of the present invention
  • FIG. 2 is a schematic structural view of a solar collector evaporator module
  • Figure 3 is a cross-sectional view showing the A-A cross section of the solar collector evaporator of Figure 2;
  • FIG. 4 is a schematic structural view of another preferred embodiment of a solar heat pump heating system with a self-driven split heat pipe energy storage device according to the present invention
  • FIG. 5 is a schematic structural view of the phase change energy storage box of Figure 4.
  • FIG. 6 is a control flow chart of an electronic expansion valve in a solar heat pump heating mode in a solar heat pump heating system with a self-driven separation heat pipe energy storage device according to the present invention
  • an embodiment of the present invention includes:
  • a solar heat pump heating system with a self-driven separation heat pipe energy storage device comprising: a solar collector evaporator array 1, a return gas temperature control unit 2, a self-drive unit 3, a host unit 4, an energy storage unit 5, and a terminal exchange Thermal unit 6.
  • the solar collector evaporator array 1 is connected to the return air temperature control unit 2, and the return air temperature control unit 2 is connected to the self-driving unit 3 and the host unit 4, respectively, and the self-drive unit 3 is respectively connected to the host unit 4 Connected to the energy storage unit 5, which is also connected to the host unit 4, the main The machine unit 4 is in turn connected to the end heat exchange unit 6.
  • the solar collector evaporator array 1 includes a plurality of solar collector evaporator modules 11 arranged in parallel, the solar collector evaporator module 11 includes a solar collector evaporator 111, a first electronic expansion valve 112, and a first control The device 113, the first temperature sensor 114 and the first pressure transmitter 115.
  • the first electronic expansion valve 112 is connected to the inlet end of the solar collector evaporator 111, and the outlet end of the solar collector evaporator 111 is provided with a first temperature sensor 114 and a first pressure transmitter 115, A temperature sensor 114 and a first pressure transmitter 115 are connected to the first controller 113 via a signal line, and the first controller 113 is further connected to the first electronic expansion valve 112 through a signal line.
  • a fifth solenoid valve 12 is connected to the liquid phase main pipe.
  • the solar collector evaporator 111 includes a heat absorbing core 1111, a transparent cover plate 1112, a heat insulating frame 1113, and a heat insulating back plate 1114.
  • the heat absorbing core 1111 is made of a heat absorbing plate and a back surface with a solar selective coating on the surface.
  • the composition of the evaporative heat exchange tube arranged in a serpentine shape, the evaporating heat exchange tube and the heat absorbing plate are combined by welding and expansion joint, the transparent heat insulating core 1111 is provided with a transparent cover 1112, the side is provided with a heat insulating frame 1113, and the bottom is provided with heat preservation. Back 1114 board.
  • the solar collector evaporator array 1 is not limited to that shown in FIG. 1.
  • the solar collector evaporator module 11 can be randomly and randomly connected in parallel, and the number and position of the solar collector evaporator modules 11 can be within an allowable range. Change.
  • the return air temperature control unit 2 includes a second electronic expansion valve 21, a second controller 22, a second temperature sensor 25, a second pressure transmitter 24, and a first solenoid valve 23, the second electronic expansion valve 21
  • One end of the second electronic expansion valve 21 is connected to the first electromagnetic valve 23, and the other end of the second electronic expansion valve 21 is simultaneously heated with the solar collector.
  • the liquid phase main pipe of the generator array 1 is connected to the self-driving unit 3, and the other end of the first electromagnetic valve 23 is simultaneously connected to the gas phase main pipe of the solar heat collecting evaporator array 1 and the main unit 4, the second temperature
  • the sensor 25 and the second pressure transmitter 24 are disposed between the return air temperature control unit 2 and the main unit 4, and the second temperature sensor 25 and the second pressure transmitter 24 are connected to the second controller 22 via signal lines.
  • the second controller 22 is further connected to the second electronic expansion valve 21 via a signal line.
  • the self-drive unit 3 includes a constant pressure reservoir 31, a first check valve 32, a second check valve 33, a third check valve 34, a condensate reservoir 37, a second solenoid valve 36, and a third electromagnetic a valve 35 and a sixth solenoid valve 38, the outlet end of the first check valve 32 is simultaneously connected to the return air temperature control unit 2 and the main unit 4, and the inlet end of the first check valve 32 is connected to the sixth solenoid valve 38.
  • the other end of the sixth solenoid valve 38 is connected to the bottom of the constant pressure accumulator 31.
  • the side port of the constant pressure accumulator 31 is connected to the outlet end of the second check valve 33, and the inlet of the second check valve 33 is connected.
  • the end is connected to the side of the condensate reservoir 37, the top port of the condensate reservoir 37 is connected to the second solenoid valve 36, and the other end of the second solenoid valve 36 is connected to the main unit 4, and the bottom port of the condensate reservoir 37 Connected to the outlet end of the third check valve 34, the inlet end of the third check valve 34 is connected to the third solenoid valve 35, and the other end of the third solenoid valve 35 is connected to the energy storage unit 5.
  • the constant pressure accumulator 31 in the self-driving unit 3 can also ensure normal liquid storage and liquid supply of the accumulator by other forms.
  • the main unit 4 includes a first electromagnetic three-way valve 409, a second electromagnetic three-way valve 410, a third electromagnetic three-way valve 411, a fourth electromagnetic three-way valve 412, a compressor 401, a four-way reversing valve 402, and a a three-electron expansion valve 403, a third controller 404, a third temperature sensor 405, a fourth temperature sensor 406, and a fifth Temperature sensor 407 and fourth solenoid valve 408,
  • the I interface end of the first electromagnetic three-way valve 409 is connected to the return air temperature control unit 2, and the II interface end of the first electromagnetic three-way valve 409 is connected to the I interface end of the four-way reversing valve 402, and the four-way reversing direction
  • the II, III, and IV interface ends of the valve 402 are respectively connected to the suction end of the compressor 401, the I interface end of the second electromagnetic three-way valve 410, and the exhaust end of the compressor 401, and the second electromagnetic three-way valve 410 is II.
  • the interface end is connected to the end heat exchange unit 6, and the III interface end of the second electromagnetic three-way valve 410 is connected to the energy storage unit 5 and the third electronic expansion valve 403 at the same time, and the other end of the third electronic expansion valve 403 and the third electromagnetic
  • the III interface end of the three-way valve 411 is connected, the I interface end of the third electromagnetic three-way valve 411 is connected to the self-drive unit 3, and the I interface between the II interface end of the third electromagnetic three-way valve 411 and the fourth electromagnetic three-way valve 412 End connection, the II interface end of the fourth electromagnetic three-way valve is connected with the end heat exchange unit 6, and the III interface end of the fourth electromagnetic three-way valve 412 is simultaneously connected with the energy storage unit 5 and the fourth electromagnetic valve 408, the fourth electromagnetic valve The other end of the 408 is simultaneously connected to the III interface end of the first electromagnetic three-way valve 409 and the second power in the self-drive unit 3.
  • the magnetic valve 36 is connected,
  • the third temperature sensor 405 is disposed at the air return port of the compressor 401
  • the fourth temperature sensor 406 is disposed between the III interface end of the third electromagnetic three-way valve 411 and the third electronic expansion valve 403
  • the fifth temperature sensor 407 is disposed at The other end of the third electronic expansion valve 403, the third temperature sensor 405, the fourth temperature sensor 406, and the fifth temperature sensor 407 are respectively connected to the third controller 404 through a signal line, and the third controller 404 passes the signal line and the third The three-electron expansion valve 403 is connected.
  • the energy storage unit 5 includes a plate heat exchanger 51, a water pump 52, and a ground pipe 53.
  • One end of the refrigerant circuit of the plate heat exchanger 51 is simultaneously connected with the third electromagnetic valve 35 and the main unit in the self-drive unit 3.
  • One end of the electronic expansion valve 403 is connected, and the other end of the refrigerant circuit of the plate heat exchanger 51 is simultaneously connected to the III interface end of the fourth electromagnetic valve 408 and the second electromagnetic three-way valve 412 in the main unit 4, and the plate heat exchanger 51 is connected.
  • One end of the water line is connected to the inlet end of the buried pipe 53, the other end of the water line of the plate heat exchanger 51 is connected to the outlet end of the water pump 52, and the inlet end of the water pump 52 is connected to the outlet end of the buried pipe 53.
  • the energy storage unit 5 is not limited to the one shown in FIG. 1, and may also be directly expanded soil energy storage, water tank energy storage, solid-liquid phase material storage energy, and the like.
  • a tube-and-tube evaporative condenser 541 is disposed in the phase change energy storage tank 54, and the phase change energy storage tank 54 is also filled with a solid-liquid phase change energy storage material 542.
  • the energy storage unit 5 uses a solid-liquid phase change material for energy storage, please refer to FIG. 4 and FIG.
  • the end heat exchange unit 6 includes a heat exchanger 61.
  • One end of the heat exchanger 61 is connected to the II interface end of the second electromagnetic three-way valve 410 in the main unit 4, and the other end of the heat exchanger 61 is in the main unit 4.
  • the II interface end of the fourth electromagnetic three-way valve 412 is connected.
  • the heating medium of the heat exchanger 61 in the terminal heat exchange unit 6 is water, air or other fluid to be heated or the like.
  • the solar heat pump heating system with self-driven separation heat pipe energy storage device of the invention can be divided into the following five operation modes according to actual needs:
  • the solar heat pump heating mode, the self-driven separation heat pipe energy storage mode, the energy storage heat pump heating mode, the cooling mode and the snow melting and defrost mode are as follows:
  • first electromagnetic three-way valve 409 (I ⁇ II), second electromagnetic three-way valve 410 (I ⁇ II), third electromagnetic three-way valve 411 (II ⁇ I), fourth electromagnetic three-way valve 412 (II) ⁇ I), four-way reversing valve 402 (IV ⁇ III, I ⁇ II), closed: second solenoid valve 36, third solenoid valve 35, fourth solenoid valve 408, sixth solenoid valve 38, other components as appropriate Turn it on or off.
  • the system can control the refrigerant flow rate of each solar collector evaporator 111 in the solar collector evaporator array 1 so that the saturation pressure and saturation temperature of the refrigerant from each solar collector evaporator 111 are obtained.
  • the superheat degree is equal, the system can control the return air temperature entering the compressor 401, and the refrigerant can be evacuated to the solar heat collecting evaporator 111 when the system is shut down, to ensure that the solar heat collecting evaporator 111 has as little memory as possible after the system is shut down.
  • the refrigerant prevents the temperature and pressure of the refrigerant in the solar collector evaporator 111 from being too high due to being exposed to the solar collector evaporator 111 after the system is shut down.
  • the specific working process of the solar heat pump heating mode is:
  • the solar collector evaporator 111 in the solar collector evaporator array 1 contains a small amount of refrigerant inside, and then the temperature of the refrigerant in the solar collector evaporator 111 is substantially equal to the ambient temperature, as the sun gradually Appearing, the solar collector evaporator 111 begins to absorb solar radiation energy, and the temperature and pressure of the refrigerant in the solar collector evaporator 111 gradually rise;
  • the solar heat pump heating mode is turned on, firstly, the fifth electromagnetic valve 12 is turned on, the liquid refrigerant enters each solar heat collecting evaporator module 11, and the liquid refrigerant enters each solar heat collecting evaporator through the corresponding first electronic expansion valve 112.
  • the solar heat pump heating mode is turned on, firstly, the fifth electromagnetic valve 12 is turned on, the liquid refrigerant enters each solar heat collecting evaporator module 11, and the liquid refrigerant enters each solar heat collecting evaporator through the corresponding first electronic expansion valve 112.
  • evaporation begins and absorbs heat, and the temperature in the solar collector evaporator 111 begins to decrease;
  • the compressor 401 After a delay period, the compressor 401 is started, and the gaseous state of the solar collector evaporator array 1 is started.
  • the refrigerant enters the compressor 401 via the first electromagnetic three-way valve 409 and the four-way switching valve 402 (I ⁇ II), and is compressed into a high temperature and high pressure superheated gaseous refrigerant, and the high temperature and high pressure superheated gaseous refrigerant is reversible through four directions.
  • the valve 402 (IV ⁇ III) and the second electromagnetic three-way valve 410 (I ⁇ II) enter the heat exchanger 61 in the terminal heat exchange unit 6 to condense and release heat, and the condensed liquid refrigerant passes through the fourth electromagnetic three-way valve 412.
  • the third electromagnetic three-way valve 411 (II ⁇ I) and the fifth electromagnetic valve 12 enter the solar collector evaporator array 1, and the liquid refrigerant enters each solar collector evaporator module 11, respectively.
  • the electronic expansion valve 112 After the electronic expansion valve 112 is throttled, it becomes a low-temperature and low-pressure gas-liquid two-phase refrigerant, and the low-temperature and low-pressure gas-liquid two-phase refrigerant enters the solar collector evaporator 111, and absorbs the solar radiation energy to become a superheated gaseous refrigerant.
  • the superheated gaseous refrigerant from each solar collector evaporator 111 is collected and then enters the compressor 401, so that the reciprocating cycle works;
  • the first temperature sensor 114 and the first pressure transmitter 115 disposed at the outlet of the solar collector evaporator 111 transmit the acquired temperature and pressure signals to the first controller 113 through the signal line, and the first controller 113 sets the temperature and The pressure signal is converted into a corresponding superheat degree ⁇ T 1 and compared with the set target superheat degree ⁇ T s1 , and a control command is issued to the first electronic expansion valve 112:
  • the first electronic expansion valve 112 controls the refrigerant flow rate according to the real-time superheat degree of the refrigerant at the outlet of the solar heat collecting evaporator 111, and ensures that the superheat degree ⁇ T 1 of the refrigerant at the outlet of the solar heat collecting evaporator 111 is close to or equal to the set value.
  • the refrigerant at the outlet of all the solar collector evaporator modules 11 in the solar collector evaporator array 1 passes.
  • the heat ⁇ T 1 is close to or equal to the set target superheat degree ⁇ T s1 ,
  • the first solenoid valve 23 in the return air temperature control unit 2 is turned on, and the second temperature sensor 25 is turned on.
  • the minimum opening of the second electronic expansion valve 21 can reach zero opening.
  • Second electromagnetic valve 36 Opening: second electromagnetic valve 36, third electromagnetic valve 35, fifth electromagnetic valve 12, sixth electromagnetic valve 38, first electromagnetic three-way valve 409 (I ⁇ III), water pump 52, closed: first electromagnetic valve 23,
  • the second electromagnetic three-way valve 410, the third electromagnetic three-way valve 411, and the fourth electromagnetic three-way valve 412, other components are turned on or off as occasion demands.
  • Constant pressure within the pressure reservoir 31 can be kept constant P h, to ensure that in heat pipe separated from the driving mode of the constant-voltage energy storage reservoir 31 solar collector array 1 normal evaporator liquid supply,
  • the range of the P h is: P 2 ⁇ P ⁇ P h ⁇ P 1 , P 1 is a high pressure formed by the sun exposure in the solar collector evaporator 111, and P 2 is a low pressure formed by condensation in the plate heat exchanger 51, P Separate the heat pipe system working pressure for self-driving.
  • the self-driven separation heat pipe energy storage mode Before the self-driven separation heat pipe energy storage mode is turned on, there is only a small amount of refrigerant in the solar heat collecting evaporator 111. In the case of solar irradiation, the refrigerant in the solar heat collecting evaporator 111 quickly becomes superheated. For a large gaseous refrigerant, when the degree of superheat ⁇ T 1 > ⁇ T s1 +1, the opening degree of each of the first electronic expansion valves 112 in the solar heat collecting evaporator module 11 is increased until the maximum opening degree.
  • the height of the condensate reservoir 37 in the self-drive unit 3 needs to be lower than the height of the plate heat exchanger 51 or the phase change energy storage tank 54 in the energy storage unit 5.
  • the self-driven separation heat pipe energy storage mode is turned on, the fourth electromagnetic valve 408 is closed, and the liquid refrigerant in the constant pressure accumulator 31 is subjected to the pressure P h , passes through the sixth electromagnetic valve 38, the first check valve 32 and the fifth electromagnetic
  • the valve 12 enters the solar collector evaporator array 1, and the refrigerant then enters the solar collector evaporator module 11, respectively, and the refrigerant passes through the first electronic expansion valve 112 (the opening of each first electronic expansion valve 112 at this time)
  • the degree is the maximum opening degree) and then enters the solar collector evaporator 111. Under the solar irradiation, the internal pressure begins to rise and forms a high pressure P 1 .
  • the condensate reservoir 37 and the solar collector The evaporator 111 is in communication, since the gaseous refrigerant does not condense in the condensate reservoir 37, the condensate reservoir 37 does not affect the increase in pressure in the solar collector evaporator 111, and in the third check valve 34 under the action of the condensate liquid refrigerant reservoir 37 can not enter inside the plate heat exchanger 51, thereby forming a high pressure P 1, the condensed liquid refrigerant in the accumulator 37 in the high pressure P 1 is condensed in the liquid reservoir 37 Under the action, through the second check valve 33 Into the constant pressure accumulator 31 to form a liquid refrigerant delivery;
  • the condensate accumulator 37 and the plate heat exchanger 51 are both in communication with the solar heat collector evaporator array 1, the gaseous refrigerant does not condense in the condensate accumulator 37, and the gaseous refrigerant condenses in the plate heat exchanger 51. And forming a low pressure P 2 , the system pressure is restored to the working pressure P (P 2 ⁇ P ⁇ P 1 ), and the liquid refrigerant condensed in the plate heat exchanger 51 passes through the third solenoid valve 35 and the third under the principle of the communicating device.
  • the check valve 34 enters the condensate accumulator 37, condenses the pressure in the accumulator 37 P ⁇ P h , and condenses the accumulator 37 for liquid storage.
  • the sixth solenoid valve 38 and the fifth solenoid valve 12 are first closed, and the second solenoid valve 36 and the third solenoid valve 35 are closed after a delay.
  • the condensed heat released by the refrigerant in the plate heat exchanger 51 is used for underground soil energy storage.
  • first electromagnetic three-way valve 409 (III ⁇ II), second electromagnetic three-way valve 410 (I ⁇ II), Three electromagnetic three-way valve 411 (II ⁇ III), fourth electromagnetic three-way valve 412 (II ⁇ I), four-way reversing valve 402 (IV ⁇ III, I ⁇ II), fourth electromagnetic valve 408, closed: a solenoid valve 23, a second solenoid valve 36, a third solenoid valve 35, a fifth solenoid valve 12, a sixth solenoid valve 38;
  • the heat storage mode of the energy storage heat pump is turned on, and the refrigerant is absorbed into the heat stored in the underground soil in the plate heat exchanger 51 to become a gaseous state, and the gaseous working medium passes through the fourth electromagnetic valve 408 and the first electromagnetic three-way valve 409 (III ⁇ II) and the four-way reversing valve 402 (I ⁇ II) enter the compressor 401 to become a high temperature and high pressure superheated gaseous working medium, and the high temperature and high pressure superheated gaseous working medium passes through the four-way reversing valve 402 (IV ⁇ III) and the second
  • the electromagnetic three-way valve 410 (I ⁇ II) enters the heat exchanger 61 in the end heat exchange unit 6 to perform condensation heat release, and the condensed liquid working medium passes through the fourth electromagnetic three-way valve 412 (II ⁇ I) and the third electromagnetic three.
  • the valve 411 enters the third electronic expansion valve 403, and is throttled into a low-temperature and low-pressure gas-liquid two-phase working medium, and the low-temperature and low-pressure gas-liquid two-phase working medium enters the plate heat exchanger 51 to absorb the underground soil storage. After the heat is turned into a gaseous working medium, a heat pump working cycle is completed, and the cycle is repeated.
  • the third controller 404 derives the superheat degree ⁇ T 3 according to the temperature signals of the third temperature sensor 405 and the fifth temperature sensor 407, and compares with the set target superheat degree ⁇ T s3 to issue a control command to the third electronic expansion valve 403:
  • first electromagnetic three-way valve 409 (II ⁇ III), second electromagnetic three-way valve 410 (II ⁇ I), Three electromagnetic three-way valve 411 (III ⁇ II), fourth electromagnetic three-way valve 412 (I ⁇ II), four-way reversing valve 402 (IV ⁇ I, III ⁇ II), fourth electromagnetic valve 408, closed: a solenoid valve 23, a second solenoid valve 36, a third solenoid valve 35, a fifth solenoid valve 12, a sixth solenoid valve 38;
  • the refrigerant becomes a gaseous refrigerant after absorbing heat in the heat exchanger 61, and the gaseous refrigerant enters through the second electromagnetic three-way valve 410 (II ⁇ I) and the four-way switching valve 402 (III ⁇ II).
  • the compressor 401 becomes a high temperature and high pressure superheated gaseous refrigerant, and the high temperature and high pressure superheated gaseous refrigerant passes through the four-way switching valve 402 (IV ⁇ I), the first electromagnetic three-way valve 409 (II ⁇ III), and the fourth electromagnetic valve.
  • the 408 enters the plate heat exchanger 51 to be condensed into a liquid refrigerant, and the condensed heat is discharged into the underground soil, and the condensed liquid refrigerant enters the third electronic expansion valve 403 to reduce the low-temperature and low-pressure gas-liquid two-phase refrigerant, and the low-temperature and low-pressure gas.
  • the liquid two-phase refrigerant enters the heat exchanger 61 in the terminal heat exchange unit 6 through the third electromagnetic three-way valve 411 (III ⁇ II) and the fourth electromagnetic three-way switching valve 412 (I ⁇ II) to absorb heat. Forming a gaseous refrigerant, completing a refrigeration cycle, and thus reciprocating cycle work;
  • the third controller 404 derives the superheat degree ⁇ T 4 according to the temperature signals of the third temperature sensor 405 and the fourth temperature sensor 406, and compares with the set target superheat degree ⁇ T s4 to issue a control command to the third electronic expansion valve 403:
  • first electromagnetic three-way valve 409 (II ⁇ I), second electromagnetic three-way valve 410 (III ⁇ I), Three electromagnetic three-way valve 411 (I ⁇ II), fourth electromagnetic three-way valve 412 (I ⁇ III), four-way reversing valve 402 (IV ⁇ I, III ⁇ II), fifth solenoid valve 12, closed: a solenoid valve 23, a second solenoid valve 36, a third solenoid valve 35, a fourth solenoid valve 408, a sixth solenoid valve 38;
  • the specific working process of the snow melting defrosting mode is:
  • the snow melting defrosting mode is turned on, the refrigerant absorbs the heat stored in the underground soil in the plate heat exchanger 51 and becomes a gaseous state, and the gaseous working medium passes through the second electromagnetic valve 410 (III ⁇ I) and the four-way reversing valve 402 ( III ⁇ II) enters the compressor 401, and the superheated gaseous refrigerant of high temperature and high pressure after compression enters the solar collector evaporator array through the four-way reversing valve 402 (IV ⁇ I) and the first electromagnetic three-way valve 409 (II ⁇ I).
  • the high temperature and high pressure superheated gaseous refrigerant enters each solar heat collecting evaporator 111 to perform condensation heat release, and the condensation heat is used for melting snow defrost, and the condensed liquid refrigerant is throttled by each first electronic expansion valve 112, and then merged. Passing through the fifth electromagnetic valve 12, the third electromagnetic three-way valve 411 (I ⁇ II) and the fourth electromagnetic three-way valve 412 (I ⁇ III) into the plate heat exchanger 51 in the energy storage unit 5 to absorb the underground soil storage. The heat, complete a cycle, and so work in a reciprocating cycle.
  • the terminal heat exchange unit 6 does not need heat temporarily, and when the solar irradiation intensity is high at this time, the system turns on the self-driven separation heat pipe energy storage mode;
  • the system turns on the energy storage heat pump heating mode
  • the system When there is frost on snowy days or winter mornings, the system first turns on the snow melting and defrost mode, melts the snow or frost on the surface of the solar collector evaporator, and then switches to the solar heat pump heating mode;
  • Intelligent switching can be achieved in the above various operating modes.
  • the collector plate core in the flat solar collector plate and the heat pump evaporator are integrated to form a whole plate tube-wing evaporator, the evaporation heat transfer is even and sufficient, the surface temperature of the entire collector plate core is uniform, and the surface heat is greatly reduced.
  • the migration loss, while the vapor-liquid phase heat is tens of times higher than the convective heat transfer, and the working temperature is relatively low, which is more than double the efficiency of the ordinary solar collector system;
  • the invention can achieve the control of the evaporation temperature of the refrigerant, the air source heat pump evaporation temperature is higher than the same ambient temperature, so the solar heat pump system COP value is higher than the air source heat pump system COP value above 50;
  • the energy storage heat pump heating to make up for the congenital defects of solar energy: discontinuity, to ensure continuous heating;
  • the solar collector evaporator refrigerant evacuation device ensures that the pressure inside the solar collector evaporator will not increase sharply due to exposure after the system is shut down, and the compressor return temperature will not appear too high when the system is turned on;
  • the snow melting and defrosting function can melt the snow and frost on the surface of the solar collector evaporator in winter;
  • the improved heat pump compressor has the characteristics of wide evaporation temperature range (upper limit temperature reaches 45 °C) and high suction temperature (upper limit temperature reaches 80 °C), which is suitable for the complicated and variable working conditions of solar heat pumps;

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

一种带自驱动分离热管储能装置的太阳能热泵供热系统及控制方法,其中太阳能集热蒸发器阵列(1)与回气温度控制单元(2)连接,回气温度控制单元(2)分别与自驱动单元(3)和主机单元(4)连接,自驱单元(3)分别与主机单元(4)和储能单元(5)连接,储能单元(5)还与主机单元(4)连接,主机单元(4)再与末端换热单元(6)连接。通过将热泵、太阳能热利用和自驱动分离热管储能技术结合,以太阳能作为低温热源,利用储能装置储存富裕太阳能及提供低温热源,提高热泵系统运行效率和太阳能利用率,加装太阳能集热蒸发器制冷剂抽空装置、压缩机回气温度控制装置和多太阳能集热蒸发器并联制冷剂流量控制装置,满足太阳能热泵复杂多变的工况,实现太阳能热泵供热技术产品化。

Description

带自驱动分离热管储能装置的太阳能热泵供热系统及控制方法 技术领域
本发明涉及太阳能热利用和太阳能热泵技术领域,特别是涉及一种带自驱动分离热管储能装置的太阳能热泵供热系统及控制方法。
背景技术
太阳能是一种取之不尽用之不竭的清洁能源,在工农业生产、生活供热、采暖等方面充分利用太阳能资源可以节约传统能源、降低环境污染。
常规的太阳能热利用技术采用太阳能集热器(主要有全玻璃真空管集热器、全玻璃真空热管集热器和平板太阳能集热器)吸收太阳能转化为热能用来加热流经集热器的介质,加热的介质用来作为加热生活热水、采暖和工业供热的热源。
但由于太阳能能量密度小、连续性差以及受环境、天气变化的影响等缺点,使得太阳能集热系统安装面积大、在低环境温度和低太阳辐照强度下热利用效率低、供热负荷不稳定需要储能装置以及在寒冷的冬季需要加装防冻措施等等,限制了太阳能热利用技术在生产生活中的应用。
热泵技术是利用热力学卡诺循环的原理,消耗少量高品味能源(如电能)将大量的热能从低温热源向高温热源输送,输送的热量除以所消耗高品味能源 称为热泵的能效比(COP),热泵技术已大规模应用于工业生产和人们的日常生活中,如制取生活热水和采暖。
常见的热泵供热应用技术有空气源热泵技术和水(地)源热泵技术,分别从空气和水(地)源这两种低温热源中提取热量。但空气源热泵受环境温度的影响很大,在低温环境温度下由于蒸发器蒸发温度的降低以及蒸发器翅片表面的结霜需要除霜,使得空气源热泵的效率大大降低,限制了空气源热泵的推广使用,尤其在寒冷地区。而水(地)源热泵中水源热泵受水源的限制,地源热泵长期从土壤中取热会造成:第一、土壤全年的取放热不平衡,第二、长期取热导致土壤温度逐步下降,带来热泵效率的下降,严重的时候会导致热泵系统的崩溃。
将热泵技术和太阳能热利用技术结合,以太阳能作为热泵系统的低温热源,既能提高热泵系统运行效率,又能提高太阳能的利用率。太阳能与热泵技术的结合主要有直接膨胀式和间接膨胀式两种,直接膨胀式太阳能热泵的集热器直接作为热泵系统的蒸发器,制冷剂直接吸收太阳辐射能蒸发;间接膨胀式太阳能热泵的集热器与热泵蒸发器分开,制冷剂从集热器获得的热水中吸收热量蒸发,存在二次换热过程。
直膨太阳能热泵结构紧凑,并且由于制冷剂吸热蒸发,集热器温度相对不高且分布均匀,集热效率能始终保持在较高水平,所需太阳能集热器面积大大缩小,是实现太阳能热泵供热的最佳技术途径。
在众多太阳能集热器中,平板式太阳能集热器由于集热面积大、安装方便、易与建筑结合以及作为热泵的蒸发器制作简单,更为主要的是平板式太阳能集热器的闷晒温度远较真空管式太阳能集热器的闷晒温度低。所以选择平板太阳能集热器作为太阳能热泵的集热蒸发器是最佳的技术选择。
太阳能集热蒸发器的集热量受太阳辐射强度和环境温度变化的影响很大,其中太阳辐射强度受气候(如冬夏两季)、环境(如间阴间晴)以及太阳能入射角的影响很大且极不稳定,使得太阳能集热器作为热泵的蒸发器承受巨大的考验,同时平板太阳能集热器的闷晒温度高达130℃以上,而真空管式太阳能集热器的闷晒温度更是高达250℃以上,太阳能集热蒸发器内热泵工作介质蒸发温度及压力的范围将变得很宽,现有热泵系统根本无法适应这些复杂多变的工况。
现有热泵压缩机的蒸发温度范围-15℃~25℃,无法适合太阳能热泵的工况。
另外,太阳能热泵在夜间和阴雨天气无法正常工作,而在太阳能能量充足时会产生富余能量的浪费。将太阳能热泵技术和储能技术结合,利用储能设备储存太阳能,能起到削峰填谷的作用,可以很好地克服太阳能不连续的缺陷。目前,储能技术多采用主动储能,利用外界动力,将能量储至蓄能材料内部,在储能过程要消耗一定的外界能量,使得整个太阳能热泵换热系统的效率降低。
当太阳能热泵应用到大型工程中时,系统供热负荷较大,所需太阳能集热蒸发器面积较大,此时需要多块集热蒸发器并联运行,受各种因素影响,这就经常出现不同集热蒸发器运行状况不同,且系统也经常需要长距离、大高差运 送制冷剂,集热蒸发器布置受限于场地等无法规则布置。同时在运行过程中会受到不同程度遮荫的影响,使得通过各太阳能集热蒸发器的制冷剂流量不一致,各太阳能集热蒸发器获得的热量也不一致,控制不当会使得整个太阳能集热系统效率下降,严重的时候甚至会导致太阳能热泵换热系统的崩溃。
热泵压缩机的回气温度有一定的工作范围,过高的回气温度会引起压缩机电机的损毁,当太阳辐照强度较大时,必须控制压缩机的回气温度不超过极限值,保证压缩机一直处在允许工况范围内正常运行。
热泵系统停机后,太阳能集热蒸发器内温度和压力会因为暴晒而剧增,使得太阳能集热蒸发器承受巨大的压力,同时当热泵系统再次开机时会出现压缩机回气温度过高而引起压缩机的损毁。
平板太阳能集热器在有太阳时是集热器,在没太阳时是散热器,太阳能集热板芯温度和环境温度相同,在严寒地区应用的必须解决防冻问题。
在严寒地区,太阳能集热器表面经常会收到雪、霜覆盖,这样会影响太阳能热泵的正常运行。
上述技术缺陷和技术难题都是本发明需要解决的。
发明内容
本发明主要解决的技术问题是提供一种带自驱动分离热管储能装置的太阳能热泵供热系统及控制方法,能够提高热泵系统运行效率和连续运行的稳定性,又能提高太阳能的利用率,满足了太阳能热泵复杂多变的工况,并实现了太阳 能热泵供热技术的产品化。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种带自驱动分离热管储能装置的太阳能热泵供热系统,包括:太阳能集热蒸发器阵列、回气温度控制单元、自驱单元、主机单元、储能单元和末端换热单元,所述太阳能集热蒸发器阵列与回气温度控制单元连接,所述回气温度控制单元分别与自驱动单元和主机单元连接,所述自驱单元再分别与主机单元和储能单元连接,所述储能单元还与主机单元连接,所述主机单元再与末端换热单元连接。
在本发明一个较佳实施例中,所述太阳能集热蒸发器阵列包括多个并联设置的太阳能集热蒸发器模块,所述太阳能集热蒸发器模块包括太阳能集热蒸发器、第一电子膨胀阀、第一控制器、第一温度传感器和第一压力变送器,所述第一电子膨胀阀连接在太阳能集热蒸发器的入口端,所述太阳能集热蒸发器的出口端设置有第一温度传感器和第一压力变送器,所述第一温度传感器和第一压力变送器通过信号线与第一控制器连接,第一控制器再通过信号线与第一电子膨胀阀连接,所述太阳能集热蒸发器阵列中的液相干管上连接有第五电磁阀。
在本发明一个较佳实施例中,所述太阳能集热蒸发器包括吸热板芯、透明盖板、保温边框和保温背板,所述吸热板芯由表面带太阳能选择性涂层的吸热板和背面蛇形布置的蒸发换热管组成,蒸发换热管与吸热板通过焊接和胀接结合,吸热板芯上部设有透明盖板,侧边设有保温边框,底部设有保温背板。
在本发明一个较佳实施例中,所述回气温度控制单元包括第二电子膨胀阀、第二控制器、第二温度传感器、第二压力变送器和第一电磁阀,所述第二电子膨胀阀的一端与第一电磁阀连接,第二电子膨胀阀的另一端同时与太阳能集热蒸发器阵列的液相干管和自驱动单元连接,所述第一电磁阀的另一端同时与太 阳能集热蒸发器阵列的气相干管和主机单元连接,所述第二温度传感器和第二压力变送器设置在回气温度控制单元与主机单元之间,所述第二温度传感器和第二压力变送器通过信号线与第二控制器连接,第二控制器再通过信号线与第二电子膨胀阀连接。
在本发明一个较佳实施例中,所述自驱单元包括恒压储液器、第一单向阀、第二单向阀、第三单向阀、冷凝储液器、第二电磁阀、第三电磁阀和第六电磁阀,所述第一单向阀的出口端同时与回气温度控制单元和主机单元连接,第一单向阀的入口端与第六电磁阀连接,第六电磁阀的另一端与恒压储液器的底部接口连接,恒压储液器的侧面接口与第二单向阀的出口端连接,第二单向阀的入口端与冷凝储液器的侧面接口连接,冷凝储液器的顶部接口与第二电磁阀连接,第二电磁阀的另一端与主机单元连接,冷凝储液器的底部接口与第三单向阀的出口端连接,第三单向阀的入口端连与第三电磁阀连接,第三电磁阀的另一端与储能单元连接。
在本发明一个较佳实施例中,所述主机单元包括第一电磁三通阀、第二电磁三通阀、第三电磁三通阀、第四电磁三通阀、压缩机、四通换向阀、第三电子膨胀阀、第三控制器、第三温度传感器、第四温度传感器、第五温度传感器和第四电磁阀,所述第一电磁三通阀的Ⅰ接口端与回气温度控制单连接,第一电磁三通阀的Ⅱ接口端与四通换向阀的Ⅰ接口端连接,四通换向阀的Ⅱ、Ⅲ、Ⅳ接口端分别与压缩机的吸气端、第二电磁三通阀的Ⅰ接口端以及压缩机的排气端连接,第二电磁三通阀的Ⅱ接口端与末端换热单元连接,第二电磁三通阀的Ⅲ接口端与同时与储能单元和第三电子膨胀阀连接,第三电子膨胀阀的另一 端与第三电磁三通阀的Ⅲ接口端连接,第三电磁三通阀的Ⅰ接口端与自驱单元连接,第三电磁三通阀的Ⅱ接口端与第四电磁三通阀的Ⅰ接口端连接,第四电磁三通阀的Ⅱ接口端与末端换热单元连接,第四电磁三通阀的Ⅲ接口端同时与储能单元和第四电磁阀连接,第四电磁阀的另一端同时与第一电磁三通阀的Ⅲ接口端和自驱单元中的第二电磁阀连接,第三温度传感器设置在压缩机的回气口处,第四温度传感器设置在第三电磁三通阀的Ⅲ接口端与第三电子膨胀阀之间,第五温度传感器设置在第三电子膨胀阀的另一端,第三温度传感器、第四温度传感器和第五温度传感器分别通过信号线与第三控制器连接,第三控制器再通过信号线与第三电子膨胀阀连接。
在本发明一个较佳实施例中,所述储能单元包括板式换热器、水泵和地埋管,所述板式换热器的制冷剂管路一端同时与自驱单元中的第三电磁阀和主机单元中第三电子膨胀阀的一端连接,板式换热器的制冷剂管路另一端同时与主机单元中第四电磁阀和第四电磁三通阀的Ⅲ接口端连接,板式换热器的水管路一端与地埋管的入口端连接,板式换热器的水管路另一端与水泵的出口端连接,水泵的入口端与地埋管的出口端连接。
在本发明一个较佳实施例中,所述末端换热单元包括换热器,换热器的一端与主机单元中第二电磁三通阀的Ⅱ接口端连接,换热器的另一端与主机单元中的第四电磁三通阀的Ⅱ接口端连接。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种带自驱动分离热管储能装置的太阳能热泵供热系统的控制方法,包括五种运行模式:太阳能热泵制热模式、自驱动分离热管储能模式、储能热泵制热模式、制冷模式 和融雪化霜模式,各个运行模式的具体控制过程如下:
一、太阳能热泵制热模式
开启:第一电磁三通阀(Ⅰ→Ⅱ)、第二电磁三通阀(Ⅰ→Ⅱ)、第三电磁三通阀(Ⅱ→Ⅰ)、第四电磁三通阀(Ⅱ→Ⅰ)、四通换向阀(Ⅳ→Ⅲ、Ⅰ→Ⅱ),关闭:第二电磁阀、第三电磁阀、第四电磁阀和第六电磁阀,其它部件视情况开启或关闭;
太阳能热泵制热模式的具体工作过程为:
太阳能热泵启动前,太阳能集热蒸发器阵列中的太阳能集热蒸发器内部含有少量制冷剂,这时太阳能集热蒸发器内制冷剂的温度与环境温度基本相等,随着太阳的逐渐出现,太阳能集热蒸发器开始吸收太阳辐射能量,太阳能集热蒸发器内制冷剂温度和压力逐渐上升,
此时太阳能热泵制热模式开启,首先开启第五电磁阀,液态制冷剂进入各太阳能集热蒸发器模块,液态制冷剂通过相应的第一电子膨胀阀进入到各太阳能集热蒸发器内部,开始蒸发并吸收热量,太阳能集热蒸发器内的温度开始下降,
在延迟一段时间后,启动压缩机,太阳能集热蒸发器阵列出来的气态制冷剂经第一电磁三通阀和四通换向阀(Ⅰ→Ⅱ)进入到压缩机,压缩成高温高压的过热气态制冷剂,高温高压的过热气态制冷剂经四通换向阀(Ⅳ→Ⅲ)和第二电磁三通阀(Ⅰ→Ⅱ)进入末端换热单元中的换热器冷凝放热,冷凝后的液态制冷剂经第四电磁三通阀(Ⅱ→Ⅰ)、第三电磁三通阀(Ⅱ→Ⅰ)和第五电磁阀进入太阳能集热蒸发器阵列,液态制冷剂再分别进入各太阳能集热蒸发器模块,经第一电子膨胀阀节流后变成低温低压的气液两相制冷剂,低温低压的气 液两相制冷剂在太阳能集热蒸发器内吸收太阳辐照能后变成过热气态制冷剂,各太阳能集热蒸发器出来的过热气态制冷剂汇集后再进入压缩机,如此往复循环工作,
设置在太阳能集热蒸发器出口处的第一温度传感器和第一压力变送器将获取的温度和压力信号通过信号线传输给第一控制器,第一控制器将温度和压力信号转换成对应的过热度ΔT1,并与设定的目标过热度ΔTs1进行比较,并对第一电子膨胀阀发出控制指令:
当ΔT1>ΔTs1+1时,第一电子膨胀阀的开度增大,
当ΔT1<ΔTs1-1时,第一电子膨胀阀的开度减小,
当ΔTs1-1≤ΔT1≤ΔTs1+1时,第一电子膨胀阀的开度不变,
所述第一电子膨胀阀的开度控制检测周期为t1时间,所述t1=1mins;
第一电子膨胀阀根据太阳能集热蒸发器出口处制冷剂的实时过热度来控制其制冷剂流量,确保太阳能集热蒸发器出口处制冷剂的过热度ΔT1接近或等于设定的目标过热度ΔTs1
如果从太阳能集热蒸发器阵列出来的过热气态制冷剂温度超过了回气温度控制单元的设定温度T时,回气温度控制单元中第一电磁阀开启,第二温度传感器和第二压力变送器将获取的温度和压力信号通过信号线传输给第二控制器,第二控制器将温度、压力信号转换成对应的过热度ΔT2,并与设定的目标过热度ΔTs2进行比较,所述设定的目标过热度ΔTs2=ΔTs1+1,并对第二电子膨胀阀发出控制指令:
当ΔT2>ΔTs2+1时,第二电子膨胀阀的开度增大,
当ΔT2<ΔTs2时,第二电子膨胀阀的开度减小,
当ΔTs2≤ΔT2≤ΔTs2+1时,第二电子膨胀阀的开度不变,
所述第二电子膨胀阀的开度控制检测周期为t2时间,所述t2=1mins;
此时,末端换热单元冷凝后的液态制冷剂一部分进入太阳能集热蒸发器阵列,另一部分流向第二电子膨胀阀,经第二电子膨胀阀节流后的低温低压的气液两相制冷剂与从太阳能集热蒸发器阵列出来的过热气态制冷剂混合,降低过热气态制冷剂的温度,确保其低于压缩机允许的最高回气温度,混合后的气态制冷剂再进入压缩机;
所述第二电子膨胀阀的最小开度可以到达零开度;
系统需要关机时,首先关闭第五电磁阀和第一电磁阀,停止供液,太阳能集热蒸发器阵列中残留的液态制冷剂会继续蒸发,直到全部干枯形成过热蒸汽,压缩机延迟一定时间后停止运行,即太阳能热泵制热系统关机完成;
二、自驱动分离热管储能模式
开启:第二电磁阀、第三电磁阀、第五电磁阀、第六电磁阀、第一电磁三通阀(Ⅰ→Ⅲ)、水泵,关闭:第一电磁阀、第二电磁三通阀、第三电磁三通阀、第四电磁三通阀,其他部件视情况开启或关闭;
恒压储液器内压力可以保持恒定Ph,确保在自驱动分离热管储能模式下恒压储液器对太阳能集热蒸发器阵列能正常供液,
所述Ph的范围为:P2<P<Ph<P1,P1为太阳能集热蒸发器内闷晒形成的高压,P2为板式换热器内冷凝形成的低压,P为自驱动分离热管系统工作压力。
自驱动分离热管储能模式开启前,太阳能集热蒸发器内只有少量的制冷剂,在太阳辐照的情况下,太阳能集热蒸发器内的制冷剂很快就变成了过热度较大的气态制冷剂,当过热度ΔT1>ΔTs+1时,太阳能集热蒸发器模块中的各个第一 电子膨胀阀的开度会一直增大到最大开度,
自驱动分离热管储能模式的具体工作过程为:
自驱动分离热管储能模式开启,关闭第四电磁阀,恒压储液器内液态制冷剂在压力Ph作用下,经过第六电磁阀、第一单向阀和第五电磁阀进入到太阳能集热蒸发器阵列,制冷剂再分别进入到太阳能集热蒸发器模块,制冷剂经过第一电子膨胀阀(此时的各第一电子膨胀阀开度的开度都为最大开度)后进入到太阳能集热蒸发器,太阳能集热蒸发器在太阳辐照下,内部压力开始上升并形成高压P1,此时冷凝储液器与太阳能集热蒸发器是连通的,由于气态制冷剂在冷凝储液器内不发生冷凝,所以冷凝储液器不会影响太阳能集热蒸发器内压力的升高,并且在第三单向阀的作用下,冷凝储液器内的液态制冷剂不能进入板式换热器,于是在冷凝储液器内形成高压P1,冷凝储液器内的液态制冷剂在高压P1作用下,经第二单向阀进入恒压储液器,形成液态制冷剂的输送;
当恒压储液器内液面上升到设定液位H1时,开启第四电磁阀:
此时冷凝储液器、板式换热器都与太阳能集热蒸发器阵列连通,气态制冷剂在冷凝储液器内不发生冷凝,气态制冷剂在板式换热器内发生冷凝并形成低压P2,系统压力恢复到工作压力P(P1>P>P2),板式换热器中冷凝后的液态制冷剂在连通器原理下,经过第三电磁阀和第三单向阀进入冷凝储液器,冷凝储液器内压力P<Ph,冷凝储液器进行储液,
当恒压储液器内液面下降到设定液位H2时,关闭第四电磁阀如此往复循环运行;
自驱动分离热管储能模式需要关闭时,首先关闭第六电磁阀和第五电磁阀,延迟一段时间后再关闭第二电磁阀和第三电磁阀;
三、储能热泵制热模式
开启:第一电磁三通阀(Ⅲ→Ⅱ)、第二电磁三通阀(Ⅰ→Ⅱ)、第三电磁三通阀(Ⅱ→Ⅲ)、第四电磁三通阀(Ⅱ→Ⅰ)、四通换向阀(Ⅳ→Ⅲ、Ⅰ→Ⅱ)、第四电磁阀,关闭:第一电磁阀、第二电磁阀、第三电磁阀、第五电磁阀、第六电磁阀;
储能热泵制热模式具体工作过程为:
储能热泵制热模式开启,制冷剂在板式换热器内吸收来自于地下土壤储存的热量后变成气态,气态工质经过第四电磁阀、第一电磁三通阀(Ⅲ→Ⅱ)和四通换向阀(Ⅰ→Ⅱ)进入压缩机变成高温高压的过热气态工质,高温高压的过热气态工质经四通换向阀(Ⅳ→Ⅲ)和第二电磁三通阀(Ⅰ→Ⅱ)进入末端换热单元中换热器进行冷凝放热,冷凝后的液态工质经过第四电磁三通阀(Ⅱ→Ⅰ)和第三电磁三通阀(Ⅱ→Ⅲ)进入第三电子膨胀阀,节流成低温低压的气液两相工质,低温低压的气液两相工质进入板式换热器吸收来自于地下土壤储存的热量后变成气态工质,完成一个热泵工质循环,如此往复循环工作;
第三控制器根据第三温度传感器和第五温度传感器的温度信号得出过热度ΔT3,与设定的目标过热度ΔTs3进行比较,对第三电子膨胀阀发出控制指令:
当ΔT3>ΔTs3+1时,第三电子膨胀阀的开度增大,
当ΔT3<ΔTs3-1时,第三电子膨胀阀的开度减小,
当ΔTs3-1≤ΔT3≤ΔTs3+1时,第三电子膨胀阀的开度增大;
所述第三电子膨胀阀的开度控制检测周期为t3时间,所述t3=1mins;
四、制冷模式
开启:第一电磁三通阀(Ⅱ→Ⅲ)、第二电磁三通阀(Ⅱ→Ⅰ)、第三电磁 三通阀(Ⅲ→Ⅱ)、第四电磁三通阀(Ⅰ→Ⅱ)、四通换向阀(Ⅳ→Ⅰ、Ⅲ→Ⅱ)、第四电磁阀,关闭:第一电磁阀、第二电磁阀、第三电磁阀、第五电磁阀、第六电磁阀;
制冷模式具体工作过程为:
制冷模式开启,制冷剂在换热器中吸收热量后变成气态制冷剂,气态制冷剂经过第二电磁三通阀(Ⅱ→Ⅰ)和四通换向阀(Ⅲ→Ⅱ)进入压缩机变成高温高压的过热气态制冷剂,高温高压的过热气态制冷剂经四通换向阀(Ⅳ→Ⅰ)、第一电磁三通阀(Ⅱ→Ⅲ)和第四电磁阀进入板式换热器冷凝成液态制冷剂,冷凝热排入地下土壤,冷凝后的液态制冷剂进入第三电子膨胀阀节流成低温低压的气液两相制冷剂,低温低压的气液两相制冷剂经第三电磁三通阀(Ⅲ→Ⅱ)和第四电磁三通换向阀(Ⅰ→Ⅱ)进入末端换热单元中的换热器中吸收热量后变成气态制冷剂,完成一个制冷循环,如此往复循环工作;
第三控制器根据第三温度传感器和第四温度传感器的温度信号得出过热度ΔT4,与设定的目标过热度ΔTs4进行比较,对第三电子膨胀阀发出控制指令:
当ΔT4>ΔTs4+1时,第三电子膨胀阀的开度增大,
当ΔT4<ΔTs4-1时,第三电子膨胀阀的开度减小,
当ΔTs4-1≤ΔT4≤ΔTs4+1时,第三电子膨胀阀的开度增大;
所述第三电子膨胀阀的开度控制检测周期为t3时间,所述t3=1mins。
五、融雪化霜模式
开启:第一电磁三通阀(Ⅱ→Ⅰ)、第二电磁三通阀(Ⅲ→Ⅰ)、第三电磁三通阀(Ⅰ→Ⅱ)、第四电磁三通阀(Ⅰ→Ⅲ)、四通换向阀(Ⅳ→Ⅰ、Ⅲ→Ⅱ)、第五电磁阀,关闭:第一电磁阀、第二电磁阀、第三电磁阀、第四电磁阀、第 六电磁阀;
融雪化霜模式具体工作过程为:
融雪化霜模式开启,制冷剂在板式换热器内吸收来自于地下土壤储存的热量后变成气态,气态工质经过第二电磁阀(Ⅲ→Ⅰ)和四通换向阀(Ⅲ→Ⅱ)进入压缩机,压缩后高温高压的过热气态制冷剂经四通换向阀(Ⅳ→Ⅰ)和第一电磁三通阀(Ⅱ→Ⅰ)进入太阳能集热蒸发器阵列,高温高压过热气态制冷剂分别进入各太阳能集热蒸发器进行冷凝放热,冷凝热用于融雪化霜,冷凝后的液态制冷剂分别经各第一电子膨胀阀节流后汇合,经第五电磁阀、第三电磁三通阀(Ⅰ→Ⅱ)和第四电磁三通阀(Ⅰ→Ⅲ)进入储能单元中板式换热器内吸收来自于地下土壤储存的热量,完成一个循环,如此往复循环工作。
本发明的有益效果是:本发明带自驱动分离热管储能装置的太阳能热泵供热系统及控制方法将热泵技术、太阳能热利用技术和自驱动分离热管储能技术相结合,以太阳能作为热泵系统的低温热源,同时利用储能装置来储存富裕的太阳能和提供低温热源,既能提高热泵系统运行效率和连续运行的稳定性,又能提高太阳能的利用率;在热泵系统中加装了太阳能集热蒸发器的制冷剂抽空装置、压缩机回气温度控制装置以及多太阳能集热蒸发器并联的制冷剂流量控制装置,满足了太阳能热泵复杂多变的工况,并实现了太阳能热泵供热技术的产品化。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所 需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
图1是本发明的带自驱动分离热管储能装置的太阳能热泵供热系统一较佳实施例的结构示意图;
图2是太阳能集热蒸发器模块的结构示意图;
图3是图2中太阳能集热蒸发器的A-A向截面结构示意图;
图4是本发明的带自驱动分离热管储能装置的太阳能热泵供热系统另一较佳实施例的结构示意图;
图5是图4中的相变储能箱的结构示意图;
图6是本发明的带自驱动分离热管储能装置的太阳能热泵供热系统中太阳能热泵制热模式时电子膨胀阀的控制流程图;
附图中各部件的标记如下:1、太阳能集热蒸发器阵列,11、太阳能集热蒸发器模块,111、太阳能集热蒸发器,1111、吸热板芯,1112、透明盖板,1113、保温边框,1114、保温背板,112、第一电子膨胀阀,113、第一控制器,114、第一温度传感器,115、第一压力变送器,12、第五电磁阀,2、回气温度控制单元,21、第二电子膨胀阀,22、第二控制器,23、第一电磁阀,24、第二压力变送器,25、第二温度传感器,3、自驱单元,31、恒 压储液器,32、第一单向阀,33、第二单向阀,34、第三单向阀,35、第三电磁阀,36、第二电磁阀,37、冷凝储液器,38、第六电磁阀,4、主机单元,401、压缩机,402、四通换向阀,403、第三电子膨胀阀,404、第三控制器,405、第三温度传感器,406、第四温度传感器,407、第五温度传感器,408、第四电磁阀,409、第一电磁三通阀,410、第二电磁三通阀,411、第三电磁三通阀,412、第四电磁三通阀,5、储能单元,51、板式换热器,52、水泵,53、地埋管,54、储能箱,541、管翅式蒸发冷凝器,542、固液相变储能材料,543、保温外壳,6、末端换热单元,61、换热器。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
请参阅图1至图6,本发明实施例包括:
一种带自驱动分离热管储能装置的太阳能热泵供热系统,包括:太阳能集热蒸发器阵列1、回气温度控制单元2、自驱单元3、主机单元4、储能单元5和末端换热单元6。
所述太阳能集热蒸发器阵列1与回气温度控制单元2连接,所述回气温度控制单元2分别与自驱动单元3和主机单元4连接,所述自驱单元3再分别与主机单元4和储能单元5连接,所述储能单元5还与主机单元4连接,所述主 机单元4再与末端换热单元6连接。
所述太阳能集热蒸发器阵列1包括多个并联设置的太阳能集热蒸发器模块11,所述太阳能集热蒸发器模块11包括太阳能集热蒸发器111、第一电子膨胀阀112、第一控制器113、第一温度传感器114和第一压力变送器115。
所述第一电子膨胀阀112连接在太阳能集热蒸发器111的入口端,所述太阳能集热蒸发器111的出口端设置有第一温度传感器114和第一压力变送器115,所述第一温度传感器114和第一压力变送器115通过信号线与第一控制器113连接,第一控制器113再通过信号线与第一电子膨胀阀112连接,所述太阳能集热蒸发器阵列1中的液相干管上连接有第五电磁阀12。
所述太阳能集热蒸发器111包括吸热板芯1111、透明盖板1112、保温边框1113和保温背板1114,所述吸热板芯1111由表面带太阳能选择性涂层的吸热板和背面蛇形布置的蒸发换热管组成,蒸发换热管与吸热板通过焊接和胀接结合,吸热板芯1111上部设有透明盖板1112,侧边设有保温边框1113,底部设有保温背1114板。
其中,太阳能集热蒸发器阵列1不局限于图1中所示,所述太阳能集热蒸发器模块11可以随意无规则的并联,太阳能集热蒸发器模块11的数量和位置在允许范围内可以有变化。
所述回气温度控制单元2包括第二电子膨胀阀21、第二控制器22、第二温度传感器25、第二压力变送器24和第一电磁阀23,所述第二电子膨胀阀21的一端与第一电磁阀23连接,第二电子膨胀阀21的另一端同时与太阳能集热蒸 发器阵列1的液相干管和自驱动单元3连接,所述第一电磁阀23的另一端同时与太阳能集热蒸发器阵列1的气相干管和主机单元4连接,所述第二温度传感器25和第二压力变送器24设置在回气温度控制单元2与主机单元4之间,所述第二温度传感器25和第二压力变送器24通过信号线与第二控制器22连接,第二控制器22再通过信号线与第二电子膨胀阀21连接。
所述自驱单元3包括恒压储液器31、第一单向阀32、第二单向阀33、第三单向阀34、冷凝储液器37、第二电磁阀36、第三电磁阀35和第六电磁阀38,所述第一单向阀32的出口端同时与回气温度控制单元2和主机单元4连接,第一单向阀32的入口端与第六电磁阀38连接,第六电磁阀38的另一端与恒压储液器31的底部接口连接,恒压储液器31的侧面接口与第二单向阀33的出口端连接,第二单向阀33的入口端与冷凝储液器37的侧面接口连接,冷凝储液器37的顶部接口与第二电磁阀36连接,第二电磁阀36的另一端与主机单元4连接,冷凝储液器37的底部接口与第三单向阀34的出口端连接,第三单向阀34的入口端连与第三电磁阀35连接,第三电磁阀35的另一端与储能单元5连接。
自驱单元3中的恒压储液器31还可以通过其他形式来确保储液器的正常储液和供液。
所述主机单元4包括第一电磁三通阀409、第二电磁三通阀410、第三电磁三通阀411、第四电磁三通阀412、压缩机401、四通换向阀402、第三电子膨胀阀403、第三控制器404、第三温度传感器405、第四温度传感器406、第五 温度传感器407和第四电磁阀408,
所述第一电磁三通阀409的Ⅰ接口端与回气温度控制单2连接,第一电磁三通阀409的Ⅱ接口端与四通换向阀402的Ⅰ接口端连接,四通换向阀402的Ⅱ、Ⅲ、Ⅳ接口端分别与压缩机401的吸气端、第二电磁三通阀410的Ⅰ接口端以及压缩机401的排气端连接,第二电磁三通阀410的Ⅱ接口端与末端换热单元6连接,第二电磁三通阀410的Ⅲ接口端与同时与储能单元5和第三电子膨胀阀403连接,第三电子膨胀阀403的另一端与第三电磁三通阀411的Ⅲ接口端连接,第三电磁三通阀411的Ⅰ接口端与自驱单元3连接,第三电磁三通阀411的Ⅱ接口端与第四电磁三通阀412的Ⅰ接口端连接,第四电磁三通阀的Ⅱ接口端与末端换热单元6连接,第四电磁三通阀412的Ⅲ接口端同时与储能单元5和第四电磁阀408连接,第四电磁阀408的另一端同时与第一电磁三通阀409的Ⅲ接口端和自驱单元3中的第二电磁阀36连接,
第三温度传感器405设置在压缩机401的回气口处,第四温度传感器406设置在第三电磁三通阀411的Ⅲ接口端与第三电子膨胀阀403之间,第五温度传感器407设置在第三电子膨胀阀403的另一端,第三温度传感器405、第四温度传感器406和第五温度传感器407分别通过信号线与第三控制器404连接,第三控制器404再通过信号线与第三电子膨胀阀403连接。
所述储能单元5包括板式换热器51、水泵52和地埋管53,所述板式换热器51的制冷剂管路一端同时与自驱单元3中的第三电磁阀35和主机单元4中 电子膨胀阀403的一端连接,板式换热器51的制冷剂管路另一端同时与主机单元4中第四电磁阀408和第二电磁三通阀412的Ⅲ接口端连接,板式换热器51的水管路一端与地埋管53的入口端连接,板式换热器51的水管路另一端与水泵52的出口端连接,水泵52的入口端与地埋管53的出口端连接。
本发明中,储能单元5不局限于图1所示,还可以采用直接膨胀式土壤储能、水箱储能、固液相变材料储能等。
如图5所示,在相变储能箱54中设置有管翅式蒸发冷凝器541,相变储能箱54内部还充满有固液相变储能材料542。
当储能单元5采用固液相变材料储能时,请参照图4和图5所示。
所述末端换热单元6包括换热器61,换热器61的一端与主机单元4中第二电磁三通阀410的Ⅱ接口端连接,换热器61的另一端与主机单元4中的第四电磁三通阀412的Ⅱ接口端连接。
所述末端换热单元6中换热器61的加热介质为水、空气或其他需要加热的流体等。
本发明的带自驱动分离热管储能装置的太阳能热泵供热系统根据实际需要可以分为以下五种运行模式:
太阳能热泵制热模式、自驱动分离热管储能模式、储能热泵制热模式、制冷模式和融雪化霜模式,各个运行模式具体控制过程如下:
一、太阳能热泵制热模式
开启:第一电磁三通阀409(Ⅰ→Ⅱ)、第二电磁三通阀410(Ⅰ→Ⅱ)、第三电磁三通阀411(Ⅱ→Ⅰ)、第四电磁三通阀412(Ⅱ→Ⅰ)、四通换向阀402(Ⅳ→Ⅲ、Ⅰ→Ⅱ),关闭:第二电磁阀36、第三电磁阀35、第四电磁阀408、第六电磁阀38,其它部件视情况开启或关闭。
太阳能热泵制热模式运行时,系统能控制太阳能集热蒸发器阵列1中各太阳能集热蒸发器111的制冷剂流量,使得从各太阳能集热蒸发器111出来的制冷剂的饱和压力、饱和温度、过热度都相等,系统能控制进入压缩机401的回气温度,系统关机时还能对太阳能集热蒸发器111进行制冷剂抽空,确保系统停机后太阳能集热蒸发器111内存留尽可能少的制冷剂,防止系统停机后太阳能集热蒸发器111因被晒而导致太阳能集热蒸发器111内制冷剂的温度和压力过高。
太阳能热泵制热模式的具体工作过程为:
太阳能热泵启动前,太阳能集热蒸发器阵列1中的太阳能集热蒸发器111内部含有少量制冷剂,这时太阳能集热蒸发器111内制冷剂的温度与环境温度基本相等,随着太阳的逐渐出现,太阳能集热蒸发器111开始吸收太阳辐射能量,太阳能集热蒸发器111内制冷剂温度和压力逐渐上升;
此时太阳能热泵制热模式开启,首先开启第五电磁阀12,液态制冷剂进入各太阳能集热蒸发器模块11,液态制冷剂通过相应的第一电子膨胀阀112进入到各太阳能集热蒸发器111内部,开始蒸发并吸收热量,太阳能集热蒸发器111内的温度开始下降;
在延迟一段时间后,启动压缩机401,太阳能集热蒸发器阵列1出来的气态 制冷剂经第一电磁三通阀409和四通换向阀402(Ⅰ→Ⅱ)进入到压缩机401,压缩成高温高压的过热气态制冷剂,高温高压的过热气态制冷剂经四通换向阀402(Ⅳ→Ⅲ)和第二电磁三通阀410(Ⅰ→Ⅱ)进入末端换热单元6中的换热器61冷凝放热,冷凝后的液态制冷剂经第四电磁三通阀412(Ⅱ→Ⅰ)、第三电磁三通阀411(Ⅱ→Ⅰ)和第五电磁阀12进入太阳能集热蒸发器阵列1,液态制冷剂再分别进入各太阳能集热蒸发器模块11,经第一电子膨胀阀112节流后变成低温低压的气液两相制冷剂,低温低压的气液两相制冷剂进入太阳能集热蒸发器111,吸收太阳辐照能后变成过热气态制冷剂,各太阳能集热蒸发器111出来的过热气态制冷剂汇集后再进入压缩机401,如此往复循环工作;
设置在太阳能集热蒸发器111出口处的第一温度传感器114和第一压力变送器115将获取的温度和压力信号通过信号线传输给第一控制器113,第一控制器113将温度和压力信号转换成对应的过热度ΔT1,并与设定的目标过热度ΔTs1进行比较,并对第一电子膨胀阀112发出控制指令:
当ΔT1>ΔTs1+1时,第一电子膨胀阀112的开度增大,
当ΔT1<ΔTs1-1时,第一电子膨胀阀112的开度减小,
当ΔTs1-1≤ΔT1≤ΔTs1+1时,第一电子膨胀阀112的开度不变,
所述第一电子膨胀阀112的开度控制检测周期为t1时间,所述t1=1mins。
第一电子膨胀阀112根据太阳能集热蒸发器111出口处制冷剂的实时过热度来控制其制冷剂流量,确保太阳能集热蒸发器111出口处制冷剂的过热度ΔT1接近或等于设定的目标过热度ΔTs1
由于太阳能集热蒸发器阵列1中所有的第一电子膨胀阀112的设定目标过热度都是ΔTs1,所以太阳能集热蒸发器阵列1中所有太阳能集热蒸发器模块11 出口处制冷剂过热度ΔT1都接近或等于设定目标过热度ΔTs1
由于太阳能集热蒸发器阵列1中所有太阳能集热蒸发器111都是并联在一起,所以所有太阳能集热蒸发器111的出口处压力都相等,对应的制冷剂饱和温度也相等,所以太阳能集热蒸发器阵列1中所有太阳能集热蒸发器111出口处制冷剂饱和温度、饱和压力以及过热度都相等。
如果从太阳能集热蒸发器阵列1出来的过热气态制冷剂温度超过了回气温度控制单元2的设定温度T时,回气温度控制单元2中第一电磁阀23开启,第二温度传感器25和第二压力变送器24将获取的温度和压力信号通过信号线传输给控第二制器22,第二控制器22将温度、压力信号转换成对应的过热度ΔT2,并与设定的目标过热度ΔTs2进行比较,所述设定的目标过热度ΔTs2=ΔTs1+1,并对第二电子膨胀阀21发出控制指令:
当ΔT2>ΔTs2+1时,第二电子膨胀阀21的开度增大,
当ΔT2<ΔTs2时,第二电子膨胀阀21的开度减小,
当ΔTs2≤ΔT2≤ΔTs2+1时,第二电子膨胀阀21的开度不变,
所述第二电子膨胀阀21的开度控制检测周期为t2时间,所述t2=1mins。
此时,末端换热单元6冷凝后的液态制冷剂一部分进入太阳能集热蒸发器阵列1,另一部分流向第二电子膨胀阀21,经第二电子膨胀阀21节流后的低温低压的气液两相制冷剂与从太阳能集热蒸发器阵列1出来的过热气态制冷剂混合,降低过热气态制冷剂的温度,确保其低于压缩机允许的最高回气温度,混合后的气态制冷剂再进入压缩机401;
所述第二电子膨胀阀21的最小开度可以到达零开度。
系统需要关机时,首先关闭第五电磁阀12和第一电磁阀23,停止供液,太 阳能集热蒸发器阵列1中残留的液态制冷剂会继续蒸发,直到全部干枯形成过热蒸汽,压缩机401延迟一定时间后停止运行,即太阳能热泵制热系统关机完成。
二、自驱动分离热管储能模式
开启:第二电磁阀36、第三电磁阀35、第五电磁阀12、第六电磁阀38、第一电磁三通阀409(Ⅰ→Ⅲ)、水泵52,关闭:第一电磁阀23、第二电磁三通阀410、第三电磁三通阀411、第四电磁三通阀412,其他部件视情况开启或关闭。
恒压储液器31内压力可以保持恒定Ph,确保在自驱动分离热管储能模式下恒压储液器31对太阳能集热蒸发器阵列1能正常供液,
所述Ph的范围为:P2<P<Ph<P1,P1为太阳能集热蒸发器111内闷晒形成的高压,P2为板式换热器51内冷凝形成的低压,P为自驱动分离热管系统工作压力。
自驱动分离热管储能模式开启前,太阳能集热蒸发器111内只有少量的制冷剂,在太阳辐照的情况下,太阳能集热蒸发器111内的制冷剂很快就变成了过热度较大的气态制冷剂,当过热度ΔT1>ΔTs1+1时,太阳能集热蒸发器模块11中的各个第一电子膨胀阀112的开度会一直增大直到最大开度。
自驱单元3中冷凝储液器37的高度需低于储能单元5中板式换热器51或相变储能箱54的高度。
自驱动分离热管储能模式的具体工作过程为:
自驱动分离热管储能模式开启,关闭第四电磁阀408,恒压储液器31内液态制冷剂在压力Ph作用下,经过第六电磁阀38、第一单向阀32和第五电磁阀 12进入到太阳能集热蒸发器阵列1,制冷剂再分别进入到太阳能集热蒸发器模块11,制冷剂经过第一电子膨胀阀112(此时的各第一电子膨胀阀112开度的开度都为最大开度)后进入到太阳能集热蒸发器111,太阳能集热蒸发器111在太阳辐照下,内部压力开始上升并形成高压P1,此时冷凝储液器37与太阳能集热蒸发器111是连通的,由于气态制冷剂在冷凝储液器37内不发生冷凝,所以冷凝储液器37不会影响太阳能集热蒸发器111内压力的升高,并且在第三单向阀34的作用下,冷凝储液器37内的液态制冷剂不能进入板式换热器51,于是在冷凝储液器37内形成高压P1,冷凝储液器37内的液态制冷剂在高压P1作用下,经第二单向阀33进入恒压储液器31,形成液态制冷剂的输送;
当恒压储液器31内液面上升到设定液位H1时,开启第四电磁阀408;
此时冷凝储液器37、板式换热器51都与太阳能集热蒸发器阵列1连通,气态制冷剂在冷凝储液器37内不发生冷凝,气态制冷剂在板式换热器51内发生冷凝并形成低压P2,系统压力恢复到工作压力P(P2<P<P1),板式换热器51中冷凝后的液态制冷剂在连通器原理下,经过第三电磁阀35和第三单向阀34进入冷凝储液器37,冷凝储液器37内压力P<Ph,冷凝储液器37进行储液,
当恒压储液器31内液面下降到设定液位H2时,关闭第四电磁阀408,如此往复循环运行;
自驱动分离热管储能模式需要关闭时,首先关闭第六电磁阀38和第五电磁阀12,延迟一段时间后再关闭第二电磁阀36和第三电磁阀35。
制冷剂在板式换热器51中释放的冷凝热用于地下土壤储能。
三、储能热泵制热模式
开启:第一电磁三通阀409(Ⅲ→Ⅱ)、第二电磁三通阀410(Ⅰ→Ⅱ)、第 三电磁三通阀411(Ⅱ→Ⅲ)、第四电磁三通阀412(Ⅱ→Ⅰ)、四通换向阀402(Ⅳ→Ⅲ、Ⅰ→Ⅱ)、第四电磁阀408,关闭:第一电磁阀23、第二电磁阀36、第三电磁阀35、第五电磁阀12、第六电磁阀38;
储能热泵制热模式具体工作过程为:
储能热泵制热模式开启,制冷剂在板式换热器51内吸收来自于地下土壤储存的热量后变成气态,气态工质经过第四电磁阀408、第一电磁三通阀409(Ⅲ→Ⅱ)和四通换向阀402(Ⅰ→Ⅱ)进入压缩机401变成高温高压的过热气态工质,高温高压的过热气态工质经四通换向阀402(Ⅳ→Ⅲ)和第二电磁三通阀410(Ⅰ→Ⅱ)进入末端换热单元6中换热器61进行冷凝放热,冷凝后的液态工质经过第四电磁三通阀412(Ⅱ→Ⅰ)和第三电磁三通阀411(Ⅱ→Ⅲ)进入第三电子膨胀阀403,节流成低温低压的气液两相工质,低温低压的气液两相工质进入板式换热器51吸收来自于地下土壤储存的热量后变成气态工质,完成一个热泵工质循环,如此往复循环工作,
第三控制器404根据第三温度传感器405和第五温度传感器407的温度信号得出过热度ΔT3,与设定的目标过热度ΔTs3进行比较,对第三电子膨胀阀403发出控制指令:
当ΔT3>ΔTs3+1时,第三电子膨胀阀403的开度增大,
当ΔT3<ΔTs3-1时,第三电子膨胀阀403的开度减小,
当ΔTs3-1≤ΔT3≤ΔTs3+1时,第三电子膨胀阀403的开度增大。
所述第三电子膨胀阀404的开度控制检测周期为t3时间,所述t3=1mins。
四、制冷模式
开启:第一电磁三通阀409(Ⅱ→Ⅲ)、第二电磁三通阀410(Ⅱ→Ⅰ)、第 三电磁三通阀411(Ⅲ→Ⅱ)、第四电磁三通阀412(Ⅰ→Ⅱ)、四通换向阀402(Ⅳ→Ⅰ、Ⅲ→Ⅱ)、第四电磁阀408,关闭:第一电磁阀23、第二电磁阀36、第三电磁阀35、第五电磁阀12、第六电磁阀38;
制冷模式具体工作过程为:
制冷模式开启,制冷剂在换热器61中吸收热量后变成气态制冷剂,气态制冷剂经过第二电磁三通阀410(Ⅱ→Ⅰ)和四通换向阀402(Ⅲ→Ⅱ)进入压缩机401变成高温高压的过热气态制冷剂,高温高压的过热气态制冷剂经四通换向阀402(Ⅳ→Ⅰ)、第一电磁三通阀409(Ⅱ→Ⅲ)和第四电磁阀408进入板式换热器51冷凝成液态制冷剂,冷凝热排入地下土壤,冷凝后的液态制冷剂进入第三电子膨胀阀403节流成低温低压的气液两相制冷剂,低温低压的气液两相制冷剂经第三电磁三通阀411(Ⅲ→Ⅱ)和第四电磁三通换向阀412(Ⅰ→Ⅱ)进入末端换热单元6中的换热器61中吸收热量后变成气态制冷剂,完成一个制冷循环,如此往复循环工作;
第三控制器404根据第三温度传感器405和第四温度传感器406的温度信号得出过热度ΔT4,与设定的目标过热度ΔTs4进行比较,对第三电子膨胀阀403发出控制指令:
当ΔT4>ΔTs4+1时,第三电子膨胀阀403的开度增大,
当ΔT4<ΔTs4-1时,第三电子膨胀阀403的开度减小,
当ΔTs4-1≤ΔT4≤ΔTs4+1时,第三电子膨胀阀403的开度增大。
所述第三电子膨胀阀404的开度控制检测周期为t3时间,所述t3=1mins。
五、融雪化霜模式
开启:第一电磁三通阀409(Ⅱ→Ⅰ)、第二电磁三通阀410(Ⅲ→Ⅰ)、第 三电磁三通阀411(Ⅰ→Ⅱ)、第四电磁三通阀412(Ⅰ→Ⅲ)、四通换向阀402(Ⅳ→Ⅰ、Ⅲ→Ⅱ)、第五电磁阀12,关闭:第一电磁阀23、第二电磁阀36、第三电磁阀35、第四电磁阀408、第六电磁阀38;
融雪化霜模式的具体工作过程为:
融雪化霜模式开启,制冷剂在板式换热器51内吸收来自于地下土壤储存的热量后变成气态,气态工质经过第二电磁阀410(Ⅲ→Ⅰ)和四通换向阀402(Ⅲ→Ⅱ)进入压缩机401,压缩后高温高压的过热气态制冷剂经四通换向阀402(Ⅳ→Ⅰ)和第一电磁三通阀409(Ⅱ→Ⅰ)进入太阳能集热蒸发器阵列1,高温高压过热气态制冷剂分别进入各太阳能集热蒸发器111进行冷凝放热,冷凝热用于融雪化霜,冷凝后的液态制冷剂分别经各第一电子膨胀阀112节流后汇合,经第五电磁阀12、第三电磁三通阀411(Ⅰ→Ⅱ)和第四电磁三通阀412(Ⅰ→Ⅲ)进入储能单元5中板式换热器51内吸收来自于地下土壤储存的热量,完成一个循环,如此往复循环工作。
末端换热单元6需要热量,且太阳辐照强度达到要求时,系统开启太阳能热泵制热模式;
末端换热单元6暂时不需要热量,且此时太阳辐照强度较高时,系统开启自驱动分离热管储能模式;
在阴雨天或夜间,换热单元6需要热量时,系统开启储能热泵制热模式;
夏天需要制冷时,系统开启制冷模式;
下雪天或冬季早晨有霜时,系统先开启融雪化霜模式,对太阳能集热蒸发器表面的雪或霜进行融化,然后再切换为太阳能热泵制热模式;
上述各种运行模式均可以实现智能化切换。
本发明带自驱动分离热管储能装置的太阳能热泵供热系统及控制方法的有益效果是:
一、将平板太阳能集热板中的集热板芯与热泵蒸发器制成一体形成整板管翼式蒸发器,蒸发换热均匀充分,整个集热板芯表面温度均匀,大大降低了表面热迁移损失,同时汽液相变换热是对流换热的几十倍,且工作温度相对较低,比普通太阳能集热系统效率提高一倍以上;
二、采用直膨式太阳能集热蒸发器,本发明可以实现制冷剂蒸发温度的控制,较相同环境温度下的空气源热泵蒸发温度高,所以太阳能热泵系统COP值较空气源热泵系统COP值高50%以上;
三、自驱动分离热管储能,实现太阳能的免费储存,不需外加任何动力;
四、储能热泵制热,弥补了太阳能的先天缺陷:不连续性,保证制热连续;
五、控制各集热蒸发器的制冷剂流量,确保制冷剂流经每块太阳能集热蒸发器后的过热度都能稳定在设定范围内,从而使得每块太阳能集热蒸发器的集热效率都达到最高,而且太阳能集热蒸发器的安装不受场地、数量的限制;
六、控制压缩机的回气温度,当太阳辐照强度较大时,控制压缩机的回气温度不超过极限值,保证压缩机一直处在允许工况范围内正常运行,增长压缩机使用寿命,减少压缩机故障率;
七、太阳能集热蒸发器制冷剂抽空装置,确保系统停机后太阳能集热蒸发器内压力不会因为暴晒而剧增,系统开机时不会出现压缩机回气温度过高;
八、融雪化霜功能,冬季能对太阳能集热蒸发器表面的雪和霜进行融化;
九、太阳能集热器作为热泵的蒸发器,利用太阳能作为热泵的低温热源,实现了热泵制热的高效,克服了传统热泵系统(如空气源热泵、地源热泵)和太阳能集热系统在寒冷地区效率低下、无法运行的缺点;
十、采用改进型的热泵压缩机,具有蒸发温度范围宽(上限温度达到45℃)、吸气温度高(上限温度达到80℃)的特点,适合太阳能热泵复杂多变的工况;
十一、由于采用的热泵工作制冷剂的冰点低于100℃,彻底解决了系统在极寒地区应用的防冻问题。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书内容所作的等效结构或等效流程变换,或直接或间接运用在其它相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (9)

  1. 一种带自驱动分离热管储能装置的太阳能热泵供热系统,其特征在于,包括:太阳能集热蒸发器阵列、回气温度控制单元、自驱单元、主机单元、储能单元和末端换热单元,所述太阳能集热蒸发器阵列与回气温度控制单元连接,所述回气温度控制单元分别与自驱动单元和主机单元连接,所述自驱单元再分别与主机单元和储能单元连接,所述储能单元还与主机单元连接,所述主机单元再与末端换热单元连接。
  2. 根据权利要求1所述的带自驱动分离热管储能装置的太阳能热泵供热系统,其特征在于,所述太阳能集热蒸发器阵列包括多个并联设置的太阳能集热蒸发器模块,所述太阳能集热蒸发器模块包括太阳能集热蒸发器、第一电子膨胀阀、第一控制器、第一温度传感器和第一压力变送器,所述第一电子膨胀阀连接在太阳能集热蒸发器的入口端,所述太阳能集热蒸发器的出口端设置有第一温度传感器和第一压力变送器,所述第一温度传感器和第一压力变送器通过信号线与第一控制器连接,第一控制器再通过信号线与第一电子膨胀阀连接,所述太阳能集热蒸发器阵列中的液相干管上连接有第五电磁阀。
  3. 根据权利要求2所述的带自驱动分离热管储能装置的太阳能热泵供热系统,其特征在于,所述太阳能集热蒸发器包括吸热板芯、透明盖板、保温边框和保温背板,所述吸热板芯由表面带太阳能选择性涂层的吸热板和背面蛇形布置的蒸发换热管组成,蒸发换热管与吸热板通过焊接和胀接结合,吸热板芯上部设有透明盖板,侧边设有保温边框,底部设有保温背板。
  4. 根据权利要求1所述的带自驱动分离热管储能装置的太阳能热泵供热系统,其特征在于,所述回气温度控制单元包括第二电子膨胀阀、第二控制器、第二温度传感器、第二压力变送器和第一电磁阀,所述第二电子膨胀阀的一端与第一电磁阀连接,第二电子膨胀阀的另一端同时与太阳能集热蒸发器阵列的液相干管和自驱动单元连接,所述第一电磁阀的另一端同时与太阳能集热蒸发器阵列的气相干管和主机单元连接,所述第二温度传感器和第二压力变送器设置在回气温度控制单元与主机单元之间,所述第二温度传感器和第二压力变送器通过信号线与第二控制器连接,第二控制器再通过信号线与第二电子膨胀阀 连接。
  5. 根据权利要求1所述的带自驱动分离热管储能装置的太阳能热泵供热系统,其特征在于,所述自驱单元包括恒压储液器、第一单向阀、第二单向阀、第三单向阀、冷凝储液器、第二电磁阀、第三电磁阀和第六电磁阀,所述第一单向阀的出口端同时与回气温度控制单元和主机单元连接,第一单向阀的入口端与第六电磁阀连接,第六电磁阀的另一端与恒压储液器的底部接口连接,恒压储液器的侧面接口与第二单向阀的出口端连接,第二单向阀的入口端与冷凝储液器的侧面接口连接,冷凝储液器的顶部接口与第二电磁阀连接,第二电磁阀的另一端与主机单元连接,冷凝储液器的底部接口与第三单向阀的出口端连接,第三单向阀的入口端连与第三电磁阀连接,第三电磁阀的另一端与储能单元连接。
  6. 根据权利要求1所述的带自驱动分离热管储能装置的太阳能热泵供热系统,其特征在于,所述主机单元包括第一电磁三通阀、第二电磁三通阀、第三电磁三通阀、第四电磁三通阀、压缩机、四通换向阀、第三电子膨胀阀、第三控制器、第三温度传感器、第四温度传感器、第五温度传感器和第四电磁阀,
    所述第一电磁三通阀的Ⅰ接口端与回气温度控制单连接,第一电磁三通阀的Ⅱ接口端与四通换向阀的Ⅰ接口端连接,四通换向阀的Ⅱ、Ⅲ、Ⅳ接口端分别与压缩机的吸气端、第二电磁三通阀的Ⅰ接口端以及压缩机的排气端连接,第二电磁三通阀的Ⅱ接口端与末端换热单元连接,第二电磁三通阀的Ⅲ接口端与同时与储能单元和第三电子膨胀阀连接,第三电子膨胀阀的另一端与第三电磁三通阀的Ⅲ接口端连接,第三电磁三通阀的Ⅰ接口端与自驱单元连接,第三电磁三通阀的Ⅱ接口端与第四电磁三通阀的Ⅰ接口端连接,第四电磁三通阀的Ⅱ接口端与末端换热单元连接,第四电磁三通阀的Ⅲ接口端同时与储能单元和 第四电磁阀连接,第四电磁阀的另一端同时与第一电磁三通阀的Ⅲ接口端和自驱单元中的第二电磁阀连接,
    第三温度传感器设置在压缩机的回气口处,第四温度传感器设置在第三电磁三通阀的Ⅲ接口端与第三电子膨胀阀之间,第五温度传感器设置在第三电子膨胀阀的另一端,第三温度传感器、第四温度传感器和第五温度传感器分别通过信号线与第三控制器连接,第三控制器再通过信号线与第三电子膨胀阀连接。
  7. 根据权利要求1所述的带自驱动分离热管储能装置的太阳能热泵供热系统,其特征在于,所述储能单元包括板式换热器、水泵和地埋管,所述板式换热器的制冷剂管路一端同时与自驱单元中的第三电磁阀和主机单元中第三电子膨胀阀的一端连接,板式换热器的制冷剂管路另一端与主机单元中第四电磁阀的一端连接,板式换热器的水管路一端与地埋管的入口端连接,板式换热器的水管路另一端与水泵的出口端连接,水泵的入口端与地埋管的出口端连接。
  8. 根据权利要求1所述的带自驱动分离热管储能装置的太阳能热泵供热系统,其特征在于,所述末端换热单元包括换热器,换热器的一端与主机单元中第二电磁三通阀的Ⅱ接口端连接,换热器的另一端与主机单元中的第四电磁三通阀的Ⅱ接口端连接。
  9. 根据权利要求1~8所述的带自驱动分离热管储能装置的太阳能热泵供热系统的控制方法,其特征在于,包括五种运行模式:太阳能热泵制热模式、自驱动分离热管储能模式、储能热泵制热模式、制冷模式和融雪化霜模式,各个运行模式的具体控制过程如下:
    一、太阳能热泵制热模式
    开启:第一电磁三通阀(Ⅰ→Ⅱ)、第二电磁三通阀(Ⅰ→Ⅱ)、第三电磁三通阀(Ⅱ→Ⅰ)、第四电磁三通阀(Ⅱ→Ⅰ)、四通换向阀(Ⅳ→Ⅲ、Ⅰ→Ⅱ),关闭:第二电磁阀、第三电磁阀、第四电磁阀和第六电磁阀,其它部件视情况开启或关闭;
    太阳能热泵制热模式的具体工作过程为:
    太阳能热泵启动前,太阳能集热蒸发器阵列中的太阳能集热蒸发器内部含有少量制冷剂,这时太阳能集热蒸发器内制冷剂的温度与环境温度基本相等,随着太阳的逐渐出现,太阳能集热蒸发器开始吸收太阳辐射能量,太阳能集热蒸发器内制冷剂温度和压力逐渐上升,
    此时太阳能热泵制热模式开启,首先开启第五电磁阀,液态制冷剂进入各太阳能集热蒸发器模块,液态制冷剂通过相应的第一电子膨胀阀进入到各太阳能集热蒸发器内部,开始蒸发并吸收热量,太阳能集热蒸发器内的温度开始下降,
    在延迟一段时间后,启动压缩机,太阳能集热蒸发器阵列出来的气态制冷剂经第一电磁三通阀和四通换向阀(Ⅰ→Ⅱ)进入到压缩机,压缩成高温高压的过热气态制冷剂,高温高压的过热气态制冷剂经四通换向阀(Ⅳ→Ⅲ)和第二电磁三通阀(Ⅰ→Ⅱ)进入末端换热单元中的换热器冷凝放热,冷凝后的液态制冷剂经第四电磁三通阀(Ⅱ→Ⅰ)、第三电磁三通阀(Ⅱ→Ⅰ)和第五电磁阀进入太阳能集热蒸发器阵列,液态制冷剂再分别进入各太阳能集热蒸发器模块,经第一电子膨胀阀节流后变成低温低压的气液两相制冷剂,低温低压的气液两相制冷剂在太阳能集热蒸发器内吸收太阳辐照能后变成过热气态制冷剂,各太阳能集热蒸发器出来的过热气态制冷剂汇集后再进入压缩机,如此往复循环工作,
    设置在太阳能集热蒸发器出口处的第一温度传感器和第一压力变送器将获取的温度和压力信号通过信号线传输给第一控制器,第一控制器将温度和压力信号转换成对应的过热度ΔT1,并与设定的目标过热度ΔTs1进行比较,并对第一电子膨胀阀发出控制指令:
    当ΔT1>ΔTs1+1时,第一电子膨胀阀的开度增大,
    当ΔT1<ΔTs1-1时,第一电子膨胀阀的开度减小,
    当ΔTs1-1≤ΔT1≤ΔTs1+1时,第一电子膨胀阀的开度不变,
    所述第一电子膨胀阀的开度控制检测周期为t1时间,所述t1=1mins,
    第一电子膨胀阀根据太阳能集热蒸发器出口处制冷剂的实时过热度来控制 其制冷剂流量,确保太阳能集热蒸发器出口处制冷剂的过热度ΔT1接近或等于设定的目标过热度ΔTs1
    如果从太阳能集热蒸发器阵列出来的过热气态制冷剂温度超过了回气温度控制单元的设定温度T时,回气温度控制单元中第一电磁阀开启,第二温度传感器和第二压力变送器将获取的温度和压力信号通过信号线传输给第二控制器,第二控制器将温度、压力信号转换成对应的过热度ΔT2,并与设定的目标过热度ΔTs2进行比较,所述设定的目标过热度ΔTs2=ΔTs1+1,并对第二电子膨胀阀发出控制指令:
    当ΔT2>ΔTs2+1时,第二电子膨胀阀的开度增大,
    当ΔT2<ΔTs2时,第二电子膨胀阀的开度减小,
    当ΔTs2≤ΔT2≤ΔTs2+1时,第二电子膨胀阀的开度不变,
    所述第二电子膨胀阀的开度控制检测周期为t2时间,所述t2=1mins,
    此时,末端换热单元冷凝后的液态制冷剂一部分进入太阳能集热蒸发器阵列,另一部分流向第二电子膨胀阀,经第二电子膨胀阀节流后的低温低压的气液两相制冷剂与从太阳能集热蒸发器阵列出来的过热气态制冷剂混合,降低过热气态制冷剂的温度,确保其低于压缩机允许的最高回气温度,混合后的气态制冷剂再进入压缩机;
    所述第二电子膨胀阀的最小开度可以到达零开度,
    系统需要关机时,首先关闭第五电磁阀和第一电磁阀,停止供液,太阳能集热蒸发器阵列中残留的液态制冷剂会继续蒸发,直到全部干枯形成过热蒸汽,压缩机延迟一定时间后停止运行,即太阳能热泵制热系统关机完成;
    二、自驱动分离热管储能模式
    开启:第二电磁阀、第三电磁阀、第五电磁阀、第六电磁阀、第一电磁三通阀(Ⅰ→Ⅲ)、水泵,关闭:第一电磁阀、第二电磁三通阀、第三电磁三通阀、第四电磁三通阀,其他部件视情况开启或关闭;
    恒压储液器内压力可以保持恒定Ph,确保在自驱动分离热管储能模式下恒压储液器对太阳能集热蒸发器阵列能正常供液,
    所述Ph的范围为:P2<P<Ph<P1,P1为太阳能集热蒸发器内闷晒形成的高压,P2为板式换热器内冷凝形成的低压,P为自驱动分离热管系统工作压力,
    自驱动分离热管储能模式开启前,太阳能集热蒸发器内只有少量的制冷剂,在太阳辐照的情况下,太阳能集热蒸发器内的制冷剂很快就变成了过热度较大的气态制冷剂,当过热度ΔT1>ΔTs+1时,太阳能集热蒸发器模块中的各个第一电子膨胀阀的开度会一直增大到最大开度,
    自驱动分离热管储能模式的具体工作过程为:
    自驱动分离热管储能模式开启,关闭第四电磁阀,恒压储液器内液态制冷剂在压力Ph作用下,经过第六电磁阀、第一单向阀和第五电磁阀进入到太阳能集热蒸发器阵列,制冷剂再分别进入到太阳能集热蒸发器模块,制冷剂经过第一电子膨胀阀(此时的各第一电子膨胀阀开度的开度都为最大开度)后进入到太阳能集热蒸发器,太阳能集热蒸发器在太阳辐照下,内部压力开始上升并形成高压P1,此时冷凝储液器与太阳能集热蒸发器是连通的,由于气态制冷剂在冷凝储液器内不发生冷凝,所以冷凝储液器不会影响太阳能集热蒸发器内压力的升高,并且在第三单向阀的作用下,冷凝储液器内的液态制冷剂不能进入板式换热器,于是在冷凝储液器内形成高压P1,冷凝储液器内的液态制冷剂在高压P1作用下,经第二单向阀进入恒压储液器,形成液态制冷剂的输送;
    当恒压储液器内液面上升到设定液位H1时,开启第四电磁阀:
    此时冷凝储液器、板式换热器都与太阳能集热蒸发器阵列连通,气态制冷剂在冷凝储液器内不发生冷凝,气态制冷剂在板式换热器内发生冷凝并形成低压P2,系统压力恢复到工作压力P(P1>P>P2),板式换热器中冷凝后的液态制冷剂在连通器原理下,经过第三电磁阀和第三单向阀进入冷凝储液器,冷凝储液器内压力P<Ph,冷凝储液器进行储液,
    当恒压储液器内液面下降到设定液位H2时,关闭第四电磁阀如此往复循环运行;
    自驱动分离热管储能模式需要关闭时,首先关闭第六电磁阀和第五电磁阀,延迟一段时间后再关闭第二电磁阀和第三电磁阀;
    三、储能热泵制热模式
    开启:第一电磁三通阀(Ⅲ→Ⅱ)、第二电磁三通阀(Ⅰ→Ⅱ)、第三电磁三通阀(Ⅱ→Ⅲ)、第四电磁三通阀(Ⅱ→Ⅰ)、四通换向阀(Ⅳ→Ⅲ、Ⅰ→Ⅱ)、第四电磁阀,关闭:第一电磁阀、第二电磁阀、第三电磁阀、第五电磁阀、第六电磁阀;
    储能热泵制热模式具体工作过程为:
    储能热泵制热模式开启,制冷剂在板式换热器内吸收来自于地下土壤储存的热量后变成气态,气态工质经过第四电磁阀、第一电磁三通阀(Ⅲ→Ⅱ)和四通换向阀(Ⅰ→Ⅱ)进入压缩机变成高温高压的过热气态工质,高温高压的过热气态工质经四通换向阀(Ⅳ→Ⅲ)和第二电磁三通阀(Ⅰ→Ⅱ)进入末端换热单元中换热器进行冷凝放热,冷凝后的液态工质经过第四电磁三通阀(Ⅱ→Ⅰ)和第三电磁三通阀(Ⅱ→Ⅲ)进入第三电子膨胀阀,节流成低温低压的气液两相工质,低温低压的气液两相工质进入板式换热器吸收来自于地下土壤储存的热量后变成气态工质,完成一个热泵工质循环,如此往复循环工作;
    第三控制器根据第三温度传感器和第五温度传感器的温度信号得出过热度ΔT3,与设定的目标过热度ΔTs3进行比较,对第三电子膨胀阀发出控制指令:
    当ΔT3>ΔTs3+1时,第三电子膨胀阀的开度增大,
    当ΔT3<ΔTs3-1时,第三电子膨胀阀的开度减小,
    当ΔTs3-1≤ΔT3≤ΔTs3+1时,第三电子膨胀阀的开度增大;
    所述第三电子膨胀阀的开度控制检测周期为t3时间,所述t3=1mins;
    四、制冷模式
    开启:第一电磁三通阀(Ⅱ→Ⅲ)、第二电磁三通阀(Ⅱ→Ⅰ)、第三电磁三通阀(Ⅲ→Ⅱ)、第四电磁三通阀(Ⅰ→Ⅱ)、四通换向阀(Ⅳ→Ⅰ、Ⅲ→Ⅱ)、第四电磁阀,关闭:第一电磁阀、第二电磁阀、第三电磁阀、第五电磁阀、第六电磁阀;
    制冷模式具体工作过程为:
    制冷模式开启,制冷剂在换热器中吸收热量后变成气态制冷剂,气态制冷剂经过第二电磁三通阀(Ⅱ→Ⅰ)和四通换向阀(Ⅲ→Ⅱ)进入压缩机变成高温高压的过热气态制冷剂,高温高压的过热气态制冷剂经四通换向阀(Ⅳ→Ⅰ)、 第一电磁三通阀(Ⅱ→Ⅲ)和第四电磁阀进入板式换热器冷凝成液态制冷剂,冷凝热排入地下土壤,冷凝后的液态制冷剂进入第三电子膨胀阀节流成低温低压的气液两相制冷剂,低温低压的气液两相制冷剂经第三电磁三通阀(Ⅲ→Ⅱ)和第四电磁三通换向阀(Ⅰ→Ⅱ)进入末端换热单元中的换热器中吸收热量后变成气态制冷剂,完成一个制冷循环,如此往复循环工作;
    第三控制器根据第三温度传感器和第四温度传感器的温度信号得出过热度ΔT4,与设定的目标过热度ΔTs4进行比较,对第三电子膨胀阀发出控制指令:
    当ΔT4>ΔTs4+1时,第三电子膨胀阀的开度增大,
    当ΔT4<ΔTs4-1时,第三电子膨胀阀的开度减小,
    当ΔTs4-1≤ΔT4≤ΔTs4+1时,第三电子膨胀阀的开度增大;
    所述第三电子膨胀阀的开度控制检测周期为t3时间,所述t3=1mins;
    五、融雪化霜模式
    开启:第一电磁三通阀(Ⅱ→Ⅰ)、第二电磁三通阀(Ⅲ→Ⅰ)、第三电磁三通阀(Ⅰ→Ⅱ)、第四电磁三通阀(Ⅰ→Ⅲ)、四通换向阀(Ⅳ→Ⅰ、Ⅲ→Ⅱ)、第五电磁阀,关闭:第一电磁阀、第二电磁阀、第三电磁阀、第四电磁阀、第六电磁阀;
    融雪化霜模式具体工作过程为:
    融雪化霜模式开启,制冷剂在板式换热器内吸收来自于地下土壤储存的热量后变成气态,气态工质经过第二电磁阀(Ⅲ→Ⅰ)和四通换向阀(Ⅲ→Ⅱ)进入压缩机,压缩后高温高压的过热气态制冷剂经四通换向阀(Ⅳ→Ⅰ)和第一电磁三通阀(Ⅱ→Ⅰ)进入太阳能集热蒸发器阵列,高温高压过热气态制冷剂分别进入各太阳能集热蒸发器进行冷凝放热,冷凝热用于融雪化霜,冷凝后的液态制冷剂分别经各第一电子膨胀阀节流后汇合,经第五电磁阀、第三电磁 三通阀(Ⅰ→Ⅱ)和第四电磁三通阀(Ⅰ→Ⅲ)进入储能单元中板式换热器内吸收来自于地下土壤储存的热量,完成一个循环,如此往复循环工作。
PCT/CN2015/076227 2014-12-01 2015-04-10 带自驱动分离热管储能装置的太阳能热泵供热系统及控制方法 WO2016086564A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201410708946.3A CN104501462B (zh) 2014-12-01 2014-12-01 太阳能热泵系统多集热蒸发器并联装置及制冷剂流量控制方法
CN201410709491.7 2014-12-01
CN201410709491.7A CN104501451B (zh) 2014-12-01 2014-12-01 直膨式太阳能热泵系统压缩机回气温度控制装置及方法
CN201410708946.3 2014-12-01

Publications (1)

Publication Number Publication Date
WO2016086564A1 true WO2016086564A1 (zh) 2016-06-09

Family

ID=56090905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/076227 WO2016086564A1 (zh) 2014-12-01 2015-04-10 带自驱动分离热管储能装置的太阳能热泵供热系统及控制方法

Country Status (1)

Country Link
WO (1) WO2016086564A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106766340A (zh) * 2017-03-24 2017-05-31 合肥天鹅制冷科技有限公司 双源热泵热水机
CN108155439A (zh) * 2018-02-01 2018-06-12 湖南华强电气股份有限公司 一种空调电池冷却单冷系统及控制方法
CN109506289A (zh) * 2018-11-19 2019-03-22 天津城建大学 太阳能-增强型地源热泵联合供能系统及其运行方法
CN111351109A (zh) * 2018-12-20 2020-06-30 大连民族大学 溴化锂热泵耦合太阳能的浮法玻璃余热回收供暖方法
CN113686048A (zh) * 2021-09-15 2021-11-23 浙江浙能技术研究院有限公司 一种适用于城市的直膨式pvt热泵系统及其运行方法
WO2022156237A1 (zh) * 2021-01-21 2022-07-28 北京市京科伦工程设计研究院有限公司 一种基于辐射散热与辐射集热的冷热中央空调系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102379226A (zh) * 2011-07-28 2012-03-21 西安交通大学 一种日光温室调温系统
CN102767921A (zh) * 2012-08-02 2012-11-07 广东工业大学 一种双路预冷的高效热泵装置及其控制方法
DE202012009151U1 (de) * 2012-06-01 2012-11-26 Parabel Energiesysteme GmbH Erweiterte Wärmeenergieversorgungsanlage ,,Solarwärmemanager"
CN102829589A (zh) * 2012-09-21 2012-12-19 青岛海尔空调电子有限公司 具有除霜装置的空调系统及一种中央空调热水系统
CN104501451A (zh) * 2014-12-01 2015-04-08 常州海卡太阳能热泵有限公司 直膨式太阳能热泵系统压缩机回气温度控制装置及方法
CN104633987A (zh) * 2015-01-08 2015-05-20 常州海卡太阳能热泵有限公司 带自驱动分离热管储能装置的太阳能热泵供热系统及控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102379226A (zh) * 2011-07-28 2012-03-21 西安交通大学 一种日光温室调温系统
DE202012009151U1 (de) * 2012-06-01 2012-11-26 Parabel Energiesysteme GmbH Erweiterte Wärmeenergieversorgungsanlage ,,Solarwärmemanager"
CN102767921A (zh) * 2012-08-02 2012-11-07 广东工业大学 一种双路预冷的高效热泵装置及其控制方法
CN102829589A (zh) * 2012-09-21 2012-12-19 青岛海尔空调电子有限公司 具有除霜装置的空调系统及一种中央空调热水系统
CN104501451A (zh) * 2014-12-01 2015-04-08 常州海卡太阳能热泵有限公司 直膨式太阳能热泵系统压缩机回气温度控制装置及方法
CN104633987A (zh) * 2015-01-08 2015-05-20 常州海卡太阳能热泵有限公司 带自驱动分离热管储能装置的太阳能热泵供热系统及控制方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106766340A (zh) * 2017-03-24 2017-05-31 合肥天鹅制冷科技有限公司 双源热泵热水机
CN108155439A (zh) * 2018-02-01 2018-06-12 湖南华强电气股份有限公司 一种空调电池冷却单冷系统及控制方法
CN108155439B (zh) * 2018-02-01 2024-04-26 湖南华强电气股份有限公司 一种空调电池冷却单冷系统及控制方法
CN109506289A (zh) * 2018-11-19 2019-03-22 天津城建大学 太阳能-增强型地源热泵联合供能系统及其运行方法
CN111351109A (zh) * 2018-12-20 2020-06-30 大连民族大学 溴化锂热泵耦合太阳能的浮法玻璃余热回收供暖方法
WO2022156237A1 (zh) * 2021-01-21 2022-07-28 北京市京科伦工程设计研究院有限公司 一种基于辐射散热与辐射集热的冷热中央空调系统
CN113686048A (zh) * 2021-09-15 2021-11-23 浙江浙能技术研究院有限公司 一种适用于城市的直膨式pvt热泵系统及其运行方法
CN113686048B (zh) * 2021-09-15 2024-05-07 浙江浙能技术研究院有限公司 一种适用于城市的直膨式pvt热泵系统及其运行方法

Similar Documents

Publication Publication Date Title
WO2016086564A1 (zh) 带自驱动分离热管储能装置的太阳能热泵供热系统及控制方法
CN102645055B (zh) 自适应匹配的太阳能辅助空气源热泵装置
CN108759144A (zh) 一种复叠式超低温空气源热泵机组及其控制方法
CN103453679B (zh) 家用壁挂式平板太阳能热泵热水器的控制方法
CN104132415B (zh) 太阳能热泵和地源热泵联合空调系统及控制方法
CN105716329B (zh) 直膨式太阳能热泵系统
CN108458493A (zh) 双温区蓄能供热型太阳能热水系统及其工作方法
CN203024489U (zh) 适用于寒冷地区的多热源热泵机组
CN103047802A (zh) 空气源热泵冬季除霜系统
CN102635972B (zh) 蓄冷式太阳能喷射与压缩耦合制冷装置
CN204187754U (zh) 太阳能热泵和地源热泵联合空调系统
CN110030762A (zh) 太阳能-空气源耦合热源多功能热泵系统
CN201954760U (zh) 太阳能热泵复合热水装置
CN104633987B (zh) 带自驱动分离热管储能装置的太阳能热泵供热系统及控制方法
CN208720537U (zh) 一种复叠式太阳能热水机组
CN208222868U (zh) 双温区蓄能供热型太阳能热水系统
CN212481758U (zh) 一种带热回收的三联供热泵机组
CN103032995A (zh) 一种蓄热型多热源热泵机组
CN203454431U (zh) 家用壁挂式平板太阳能热泵热水器
CN202675732U (zh) 自适应匹配的太阳能辅助空气源热泵装置
CN210220292U (zh) 一种高效太阳能喷射制冷及供暖系统
CN112161313A (zh) 一种太阳能空气源热泵联合供暖系统
CN102563973B (zh) 新型太阳能空气源热泵系统及热水制备方法
CN114704893B (zh) 一种多源协同的热泵集成系统
CN202885342U (zh) 可调热管式太阳能热泵

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15865116

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15865116

Country of ref document: EP

Kind code of ref document: A1