WO2016086486A1 - 一种电子线路板x光检查图像生成方法及其装置 - Google Patents

一种电子线路板x光检查图像生成方法及其装置 Download PDF

Info

Publication number
WO2016086486A1
WO2016086486A1 PCT/CN2014/095655 CN2014095655W WO2016086486A1 WO 2016086486 A1 WO2016086486 A1 WO 2016086486A1 CN 2014095655 W CN2014095655 W CN 2014095655W WO 2016086486 A1 WO2016086486 A1 WO 2016086486A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
real image
circuit board
sided
real
Prior art date
Application number
PCT/CN2014/095655
Other languages
English (en)
French (fr)
Inventor
万文学
Original Assignee
深圳市凯意科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市凯意科技有限公司 filed Critical 深圳市凯意科技有限公司
Priority to CN201480001861.XA priority Critical patent/CN104541285B/zh
Publication of WO2016086486A1 publication Critical patent/WO2016086486A1/zh
Priority to US15/611,834 priority patent/US10151711B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/302Contactless testing
    • G01R31/308Contactless testing using non-ionising electromagnetic radiation, e.g. optical radiation
    • G01R31/309Contactless testing using non-ionising electromagnetic radiation, e.g. optical radiation of printed or hybrid circuits or circuit substrates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/02Constructional details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/10Power supply arrangements for feeding the X-ray tube
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/26Measuring, controlling or protecting
    • H05G1/265Measurements of current, voltage or power
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/26Measuring, controlling or protecting
    • H05G1/30Controlling

Definitions

  • the present invention relates to the field of electronic circuit board inspection technology, and in particular, to a method and device for generating an X-ray inspection image of an electronic circuit board.
  • X-ray inspection systems for BGA and CSP applications on the market today can be broadly divided into two broad categories: two-dimensional systems and CT systems. All of these devices can be operated offline or online and checked online or sampled. For example, HP's 5DX can be used online, and the choice of offline or online devices depends on the application.
  • All X-ray inspection equipment is basically X-ray projection onto the image receiver for imaging.
  • the X-ray emitting tube generates X-rays through the test sample (for example, an electronic circuit board), and generates a projection on the image receiver according to the difference in density and atomic weight of the sample material, and the higher the density, the more the shadow of the substance is. deep. The closer to the X-ray tube, the larger the shadow, and the smaller the shadow.
  • the two-dimensional X-ray system simultaneously visualizes a two-dimensional image of all components on both sides of the electronic circuit board.
  • the 3D CT X-ray system uses a series of 2D images to reconstruct image information to produce an image of a certain surface. This technique produces an image of a cross section on the sample being tested.
  • Another three-dimensional CTX optical inspection system is called X-ray layering (Laminography). It reconstructs an image of a cross section by combining image data of a certain cross section while eliminating image information of other cross sections.
  • the X-ray layering system can also be online or offline, but it is slow to use online, because it takes time to reconstruct data using multiple images. It requires multiple 2D images and complex operations to reconstruct information. this needs Take a few minutes to finish.
  • the inventor found in the process of implementing the invention that the two-dimensional X-ray inspection system has the advantages of low cost, high speed and good imaging effect, but when the double-sided PCB is encountered, the double-sided component is worn by the X-ray. Interference is formed when the image is formed through imaging. For example, as shown in FIG. 1 , a true image of a double-sided PCB board photographed by X-rays, because of the mutual interference of the double-sided devices, the real information of the solder joint cannot be obtained, thereby failing to realize Automatic inspection, the goal of online inspection cannot be achieved.
  • the existing manufacturers use the CT technology, namely the three-dimensional CTX optical inspection system, for example, Agilent Technologies' 5DX series, Omron X700, Teradyne's ClearVue system.
  • the advantage of CT technology is that it can actually check the internal structure of the electronic circuit board and analyze the specific shape of the defect, the disadvantage is that the cost is high, and the CT inspection time is too long (usually it takes up to 5 minutes for a CT image to be obtained). The machine is very bulky due to the need to rotate the sample or target.
  • the invention discloses a method for generating an X-ray inspection image of an electronic circuit board and a device thereof, which use the generated simulated image or real image of each surface to identify the interference image element to be filtered in the double-sided real image, and obtain the detected by data calculation.
  • the real image of the target thereby enabling on-line inspection of the double-sided electronic circuit board, improving the inspection efficiency of the double-sided electronic circuit board, and simplifying the inspection equipment, saving inspection costs.
  • the invention provides a method for generating an X-ray inspection image of an electronic circuit board, comprising:
  • An electronic circuit board X-ray inspection image generation method includes:
  • X-ray imaging the electronic circuit board to generate a real image of the electronic circuit board, the real image comprising a double-sided real image element;
  • the data file of the electronic circuit board includes: CAD coordinate data of the electronic circuit board, a printed circuit board circuit design file, and a component database;
  • the database of the component generates a standard component library according to the package related standard of the component, and the special device is customized and generated;
  • the parameters of the X-ray machine include: X-ray tube voltage, angle of the X-ray tube, angle of the detector, resolution, and/or target current.
  • Each side of the board simulates an image.
  • the X-ray machine parameters are preset or determined according to the line design file and component parameters.
  • the interference image element in the real image that needs to be filtered by the real image generated by the real image is identified from the real image, and the dry image is filtered from the real image.
  • the image element is generated to generate a real image of the object to be inspected, including:
  • the image features of the interference image elements are filtered with image features of the real image to generate a real image of the object under test.
  • the real image element corresponding to the simulated image of each surface in the real image is identified according to the simulated image of each surface, and the real interference image element that needs to be filtered by the real image of the detected target is determined, specifically include:
  • the reverse real image element corresponding to the reverse simulation image is identified from the real image according to the reverse simulation image, and the interference image element in the reverse real image that needs to be filtered to generate the front real image is determined.
  • the image features comprise imaged grayscale and/or pixels.
  • the simulated image and the real image comprise a two-dimensional image.
  • the present invention also provides an electronic circuit board X-ray inspection image generating apparatus, comprising:
  • An analog image generating unit configured to respectively generate a simulated image of each surface of the electronic circuit board according to a data file of the double-sided electronic circuit board and parameters of the X-ray machine;
  • a double-sided real image generating unit configured to perform X-ray imaging on the electronic circuit board to generate a real image of the electronic circuit board, where the real image includes a double-sided real image element;
  • a target image real image generating unit configured to identify an interference image element in a real image that needs to be filtered by generating a real image of the object to be inspected from the real image according to the simulated image of each surface, and filter the image from the real image
  • the interference image element is described to generate a real image of the object to be inspected.
  • the data file of the electronic circuit board includes: CAD coordinate data of the electronic circuit board, a printed circuit board circuit design file, and a component database;
  • the database of the component generates a standard component library according to the package related standard of the component, and the special device is customized and generated;
  • the basic parameters of the X-ray machine include: X-ray tube voltage, angle of the X-ray tube, angle of the detector, resolution, and/or target current.
  • the simulated image generating unit further includes:
  • the obtaining module is configured to obtain CAD coordinate data of the electronic circuit board, the printed circuit board circuit design file from the data file of the electronic circuit board, and obtain component parameters from the database of the component.
  • the simulated image generating unit further includes:
  • the parameter determining module of the X-ray machine is configured to preset or determine parameters of the X-ray machine according to the printed circuit board circuit design file and component parameters.
  • the detected target real image generating unit includes:
  • An identification module configured to identify, according to each surface simulation image, a real image element corresponding to the simulated image of the detected object in the real image, and determine an interference image element in the real image that needs to be filtered by the real image of the detected target,
  • the calculation module filters the image features of the interference image elements by using image features of the real image to generate a real image of the object to be inspected.
  • the image features comprise imaged grayscale and/or pixels.
  • the simulated image and the real image comprise a two-dimensional image.
  • the invention also provides a method for generating an X-ray inspection image of an electronic circuit board, which comprises:
  • the X-ray machine parameters for generating the one-sided real image and the two-sided real image are consistent.
  • the X-ray machine parameters include: an X-ray tube voltage, an X-ray tube angle, an angle of the detector, Resolution and / or target current.
  • the interference image element that needs to be filtered by generating a real image of the detected object is recognized from the double-sided real image according to the one-sided real image, and the interference image element is filtered from the real image to generate The real image of the target being examined, including:
  • the image features of the interference image elements are filtered with image features of the double-sided real image to generate a real image of the object under inspection.
  • the real image element corresponding to the one-sided real image in the real image is identified according to the one-sided real image, and the interference image image element that needs to be filtered to generate the real image of the detected object is determined, which specifically includes:
  • the real image element corresponding to the reverse real image is identified from the double-sided real image according to the reverse real image, and the interference image element that needs to be filtered to generate the front real image is determined.
  • the method of the present invention further comprises: separately performing X-ray imaging on the printed circuit board on which the electronic circuit board is fabricated, and generating a real image of the printed circuit board, and the real image of the printed circuit board itself can be used as a target to be inspected, or
  • the one-sided real image and the real image of the printed circuit board identify the interference image element that needs to be filtered in the real image of the double-sided real image to be generated;
  • the image features of the interference image elements are filtered with image features of the double-sided real image to generate a real image of the object under inspection.
  • the interference image element that needs to be filtered to generate the real image of the object to be inspected in the real image of the double-sided real image is identified according to the real image of the single-sided real image and the real image of the printed circuit board;
  • the positive image is generated from the real image on both sides.
  • Interferometric image elements that need to be filtered to generate a real image of the printed circuit board are identified from the two-sided real image based on the positive and negative single-sided real images and the printed circuit board real image.
  • the image features comprise imaged grayscale and/or pixels.
  • the real image comprises a two-dimensional image.
  • the present invention also provides an electronic circuit board X-ray inspection image generating apparatus, including:
  • a real image generating unit configured to perform X-ray imaging on the electronic circuit board to respectively generate a single-sided real image and a double-sided real image of the electronic circuit board
  • a detected object real image generating unit configured to identify, from the double-sided real image, an interference image element that needs to be filtered by generating a real image of the object to be inspected according to the one-sided real image, and filter the image from the double-sided real image
  • the interference image element is described to generate a real image of the object to be inspected.
  • the detected target real image generating unit includes:
  • An identification module configured to identify, according to the one-sided real image, a real image element corresponding to the one-sided real image in the double-sided real image, and determine an interference image element that needs to be filtered to generate a real image of the object to be inspected,
  • the calculation module filters the image features of the interference image elements by using image features of the double-sided real image to generate a real image of the object to be inspected.
  • the real image generating unit is further configured to separately perform X-ray imaging on the printed circuit board on which the electronic circuit board is fabricated to generate a real image of the printed circuit board, where the detected target real image generating unit is specifically used for : identifying an interference image element that needs to be filtered in the double-sided real image to generate a real image of the object to be inspected according to the one-sided real image and the real image of the printed circuit board; filtering the interference image element from the double-sided real image to generate a Check the target real image.
  • the detected target real image generating unit includes:
  • the identification module is configured to identify, according to the one-sided real image and the real image of the printed circuit board, the interference image element that needs to be filtered in generating the real image of the object to be inspected in the double-sided real image,
  • a calculation module that filters image of the interference image element by using image features of a double-sided real image Sign, generate a real image of the target being inspected.
  • the image features comprise imaged grayscale and/or pixels.
  • the real image comprises a two-dimensional image.
  • the invention utilizes generating the simulated image or the real image of each surface to identify the interference image element to be filtered in the double-sided real image, and obtains the real image of the object to be inspected through data calculation, thereby realizing online inspection of the double-sided electronic circuit board, and utilizing the present Inventive method, online large-scale inspection does not require CT technology; at the same time, the method can solve the problem of X-ray image interference of the double-sided electronic circuit board, greatly simplifying the online inspection equipment of the electronic circuit board, and reducing the Check the cost of the equipment and improve the inspection efficiency so that it can be fully applied to the online inspection of electronic circuit boards.
  • FIG. 1 is a schematic diagram of a real image of a double-sided electronic circuit board in the prior art
  • FIG. 2 is a schematic flow chart of a method for inspecting a double-sided electronic circuit board according to an embodiment of the present invention
  • FIG. 3 is a schematic view of an apparatus for inspecting a double-sided electronic circuit board according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a double-sided real image of a double-sided electronic circuit board according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a front side analog image of a double-sided electronic circuit board according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a real image on the reverse side of a double-sided electronic circuit board according to an embodiment of the present invention.
  • FIG. 7 and FIG. 8 are schematic diagrams showing imaging of a double-sided electronic circuit board at different angles of an X-ray machine according to an embodiment of the present invention
  • FIG. 9 is a schematic flow chart of a method for inspecting a double-sided electronic circuit board according to another embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a double-sided electronic circuit board inspection apparatus according to another embodiment of the present invention.
  • FIG. 11 is a schematic view showing a real image of a front side of a double-sided electronic circuit board according to another embodiment of the present invention.
  • FIG. 12 is a schematic diagram of a double-sided real image of a double-sided electronic circuit board according to another embodiment of the present invention.
  • FIG. 13 is a schematic diagram of a real image of a reverse side calculated and separated by a double-sided electronic circuit board according to another embodiment of the present invention.
  • FIG. 14 is a schematic diagram of block sampling of 256-step gray values according to an embodiment of the present invention.
  • 15 is a schematic diagram of a straight gradation of a 256-step gray value according to an embodiment of the present invention.
  • FIG. 16 is a schematic diagram of an image decomposition pixel of an X-ray machine according to an embodiment of the present invention.
  • FIG. 2 is a schematic flow chart of an electronic circuit board inspection method according to an embodiment of the present invention. As shown in the figure, the electronic circuit board inspection method of the embodiment of the present invention includes the following steps:
  • the electronic circuit board may be a double-sided electronic circuit board
  • the data file of the electronic circuit board may include: CAD coordinate data of the electronic circuit board, a circuit design file of the printed circuit board, and a component database; wherein, the CAD
  • the coordinate data can be derived from the design file of the electronic circuit board.
  • the component parameters are selected from the component standard library. If there is no special device in the standard library, the user can customize the special device library and select the special device.
  • the parameters of the optical machine may include: X-ray tube voltage and/or target current.
  • the parameters of the X-ray machine can be preset or determined according to the line design file and component parameters. For example, different X-ray tube voltages of different X-ray machines can be set according to empirical data, combined with X-ray machine imaging rules.
  • the simulation images of each surface which are basically consistent with the real images of the respective faces are obtained by computer software simulation.
  • the circuit design file the component parameters and the parameters of the X-ray machine of the electronic circuit board, combined with different X-ray equipment under different X-ray machine parameters
  • An imaging rule is generated to generate simulated images of the respective faces of the electronic circuit board.
  • S203 Perform X-ray imaging on the electronic circuit board to generate a real image of the electronic circuit board, where the real image includes a double-sided real image element;
  • the X-ray imaging of the electronic circuit board can be directly performed, and a double-sided real image of the electronic circuit board including the front and back sides is generated, and the image is a real image of the electronic circuit board, and the real image includes the positive image. All the real elements on the opposite sides, if directly using the real image for inspection, due to the mutual interference of the two-sided real elements, the device will not be able to identify the accurate information of the object to be inspected, and the automatic inspection will not be realized, thus failing to meet the online inspection. need.
  • the real image is processed by using the simulated image generated in S201. For detailed processing, refer to step S205.
  • S205 Identify, according to the simulated image of each surface, an interference image element in a real image that needs to be filtered by generating a real image of the object to be inspected from the real image, and filter the interference image element from the real image to generate a Check the target real image.
  • the image of the interference image in the real image that needs to be filtered by the real image generated by the simulated image of each surface is obtained from the real image, and may include: identifying the real image according to the simulated image of each surface a real image element corresponding to the simulated image of each surface, and determining an interference image element in a real image that needs to be filtered by the real image of the detected object; wherein the simulated image may be any simulated image generated in step S201,
  • computer software can be used to compare the simulated images of each surface with the real images to find the real image elements corresponding to the simulated images in the real image.
  • An interference image element existing in the image, the interference image element being part or all of a real image element corresponding to the simulated image, and the determination of the interference image element may be determined according to the simulated image and the detected target real image to be generated.
  • filtering the interference image element from the real image to generate a real image of the object to be inspected may include: filtering image features of the interference image element with image features of the real image to generate a detected image Target real image.
  • image features may include imaged grayscale and/or Or pixel.
  • the object to be inspected may be a single-sided real image, or may be a part of the defined component.
  • the interference image element in the real image that needs to be filtered by the real image generated by the real image from the real image in step S205 may include:
  • the reverse real image element corresponding to the reverse simulation image is identified from the real image according to the reverse simulation image, and the interference image element in the reverse real image that needs to be filtered to generate the front real image is determined.
  • the image of the interference image in the real image that needs to be filtered by the real image of the object to be inspected from the real image in step S205 may include:
  • the real image elements corresponding to the simulated images of the respective faces are recognized from the real images according to the simulated images of the respective faces, and the interference image elements in the real images that need to be filtered by the real images of the defined partial components are determined.
  • a person skilled in the art may combine the description of the embodiment of the present invention, and may use other methods to filter the real image element corresponding to the simulated image from the real image to obtain a real image of the object to be inspected, which is not limited by the present invention. It is also within the scope of the present invention to generate a real image of the object to be inspected by recognition and calculation according to the simulated image in the embodiment of the present invention.
  • the simulated image and the real image may be two-dimensional images, or may be other types of images, as long as the filtering is performed by using the simulated image technology in the embodiment of the present invention.
  • the embodiment of the present invention uses the generated simulated image to identify the interference image element that needs to be filtered in the real image.
  • the real image of the object to be inspected is obtained, thereby realizing the inspection of the double-sided electronic circuit board.
  • the on-line bulk inspection does not require CT technology; at the same time, the double-sided electron can be solved by using the method.
  • the X-ray image interference problem of the circuit board greatly simplifies the electronic circuit board inspection equipment, reduces the cost of the inspection equipment, and improves the inspection efficiency.
  • FIG. 3 is a schematic diagram of an apparatus for generating an X-ray inspection image of an electronic circuit board according to an embodiment of the present invention.
  • a schematic diagram of an X-ray inspection image generating apparatus for an electronic circuit board according to an embodiment of the present invention includes:
  • the simulated image generating unit 31 is configured to respectively generate a simulated image of each surface of the electronic circuit board according to the data file of the double-sided electronic circuit board and the parameters of the X-ray machine;
  • the electronic circuit board is a double-sided electronic circuit board structure
  • the data file of the electronic circuit board may include: CAD coordinate data of the electronic circuit board, a printed circuit board design file, and a component library; wherein, the CAD coordinate data It can be exported from the design file of the electronic circuit board.
  • the component parameters are selected from the component standard library. If there is no special device in the standard library, the user can customize the special device library and select the special device, X-ray machine.
  • the parameters may include: X-ray tube voltage and/or target current.
  • the parameters of the X-ray machine can be preset or determined according to the line design file and component parameters.
  • a double-sided real image generating unit 33 configured to perform X-ray imaging on the electronic circuit board to generate a real image of the electronic circuit board, where the real image includes a double-sided real image element;
  • the X-ray imaging of the electronic circuit board can be directly performed, and a double-sided real image including the front and back sides is generated, and the image is a real image of the electronic circuit board, and the real image includes the front and back sides.
  • the real element on it can be directly performed, and a double-sided real image including the front and back sides.
  • the detected target real image generating unit 35 is configured to identify, from the real image, the interference image element in the real image that needs to be filtered by the real image generated by the simulated image of each surface, and filter from the real image.
  • the interference image element generates a real image of the object to be inspected.
  • the image of the interference image in the real image that needs to be filtered by the real image generated by the simulated image of each surface is obtained from the real image, and may include: identifying the real image according to the simulated image of each surface And real image elements corresponding to the simulated images of the respective faces, and determined An interference image element in a real image that needs to be filtered by the real image of the object to be inspected; wherein each of the surface simulation images may be any one of the simulated images generated by the simulation image generation unit, and the computer software may be mainly used in the specific recognition process.
  • the interference image element is part or all of the real image element corresponding to the simulated image, and the determination of the interference image element may be determined according to the simulated image and the detected target real image element to be generated.
  • the simulated image generating unit 31 further includes:
  • the obtaining module 311 is configured to obtain CAD coordinate data of the electronic circuit board, a printed circuit board circuit design file, and obtain component parameters from a database of components from a data file of the electronic circuit board.
  • the parameter determining module 313 of the X-ray machine is configured to preset or determine parameters of the X-ray machine according to the line design file and component parameters.
  • the detected target real image generating unit 35 includes:
  • the identification module 351 is configured to identify, according to each surface simulation image, a real image element corresponding to the simulated image of each surface in the real image, and determine an interference image element in the real image that needs to be filtered to generate the real image of the object to be inspected,
  • the identification module 351 can identify a frontal real image element corresponding to the frontal simulated image from the real image according to the frontal simulated image, and determine an interference image in the frontal real image that needs to be filtered to generate the reverse real image. Element, or,
  • the reverse real image element corresponding to the reverse simulation image is identified from the real image according to the reverse simulation image, and the interference image element in the reverse real image that needs to be filtered to generate the front real image is determined.
  • the calculating module 353 filters the image features of the interference image elements by using image features of the real image to generate a real image of the object to be inspected.
  • filtering the interference image element from the real image to generate a real image of the detected object may include: filtering the image of the interference image element by using an image feature of the real image. Like the feature, a real image of the object to be inspected is generated.
  • the image features may include imaging gradations and/or pixels.
  • a person skilled in the art may combine the description of the embodiment of the present invention, and may use other methods to filter the real image element corresponding to the simulated image from the real image to obtain a real image of the object to be inspected, which is not limited by the present invention. It is also within the scope of the present invention to generate a real image of the object to be inspected by recognition and calculation according to the simulated image in the embodiment of the present invention.
  • the simulated image and the real image may be two-dimensional images, or may be images generated by three-dimensional or other means, as long as the image is divided by using the simulated image technology in the embodiment of the present invention.
  • the simulated image and the real image may be two-dimensional images, or may be images generated by three-dimensional or other means, as long as the image is divided by using the simulated image technology in the embodiment of the present invention.
  • the electronic circuit board X-ray inspection image generating device may be an image processing device integrated inside the computer, including a processor, a memory, and a bus. Both the processor and the memory are connected to the bus.
  • the processor is used to:
  • X-ray imaging the electronic circuit board to generate a real image of the electronic circuit board, the real image comprising a double-sided real image element;
  • the above operations performed by the processor may be stored in the memory in the form of a program, and when the above operations need to be performed, the program is transferred to the processor to perform processing.
  • FIG. 4 is a schematic diagram of a true image of a double-sided electronic circuit board
  • FIG. 5 is a schematic diagram of a simulated image of a front side of an electronic circuit board according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a real image of a reverse side of an electronic circuit board according to an embodiment of the present invention.
  • Fig. 4 since the images of the front and back sides are included, the two-sided images form interference, and the images of the front and back sides cannot be distinguished.
  • the embodiment of the present invention may take the following steps to the real image of the object to be inspected, for example, the reverse real image:
  • X-ray imaging the electronic circuit board normally, for example, generating a double-sided true image diagram containing the real image elements of the front and back sides as shown in FIG.
  • the computer identifies the frontal image elements in the real X-ray image (eg, as shown in Figure 4) based on the simulated frontal image features, such as grayscale or/and pixels (eg, as shown in Figure 5), and passes The feature values of the front image elements such as grayscale or/and pixels are subtracted from the real image after the calculation.
  • the parameters of the X-ray machine may further include: an angle of the X-ray tube or an angle of the detector, and in order to obtain more comprehensive information of the measured object, the X-ray machine may be
  • the image receiver or electronic circuit board or X-ray tube (depending on the different design of the device) rotates at a certain angle for X-ray imaging.
  • the double-sided electronic circuit board is in X. Schematic diagram of imaging at different angles of the optical machine, wherein FIG. 7 and FIG. 8 are schematic diagrams of imaging before and after the X-ray machine is rotated by 90 degrees.
  • Obtaining comprehensive information on the target to be measured by adjusting the angle of the X-ray tube or the angle of the detector is particularly necessary in some cases. For example, there are two welds of the same size and opposite thickness on the front and back sides of the measured object. At the time of the point, if the front and back sides of the image are only imaged from the main view angle, it is impossible to identify whether there are two solder joints of the same shape and size, because the image elements for the two solder joints are the same in the front and back images, however, If the X-ray machine is adjusted to a certain angle, for example, rotated 90 degrees and then imaged, because the thickness between the two solder joints is different, the image elements for the two solder joints in the generated front and back images are not the same.
  • FIG. 9 is a schematic flow chart of a method for inspecting a double-sided electronic circuit board according to another embodiment of the present invention. It is shown that the method of the invention comprises the following steps:
  • S901 Perform X-ray imaging on the electronic circuit board to respectively generate a single-sided real image and a double-sided real image of the electronic circuit board;
  • the X-ray imaging of the electronic circuit board can be directly performed, and a single-sided real image including only one electronic circuit board and a double-sided real image including the front and back electronic circuit boards are respectively generated, wherein one side is generated.
  • the X-ray machine parameters of the real image and the double-sided real image are the same.
  • the parameters of the X-ray machine may include: X-ray tube voltage, angle of the X-ray tube, angle of the detector, resolution, and/or target current.
  • the real image of a single-sided electronic circuit board can be obtained by soldering a single-sided electronic component on a PCB and performing X-ray imaging to obtain a true image of the single-sided electronic circuit board, and soldering the electronic component on the other side of the PCB. After the device, a double-sided electronic circuit board is obtained, and under the same X-ray machine parameters, the double-sided electronic circuit board is X-ray imaged to obtain a double-sided real image.
  • the printed circuit board on which the electronic circuit board is fabricated may be separately X-ray imaged to generate a real image of the printed circuit board.
  • the real image of the printed circuit board itself can be used as the object to be inspected, and the interference image element required to generate the real image of the object to be inspected in the real image of the double-sided real image can be identified according to the real image of the single-sided real image and the real image of the printed circuit board;
  • the image features of the interference image elements are filtered with image features of the double-sided real image to generate a real image of the object under inspection.
  • S903 Identify, according to the one-sided real image, an interference image element that needs to be filtered by generating a real image of the object to be inspected from the double-sided real image, and filter the interference image element from the double-sided real image to generate a detected image.
  • Target real image Identify, according to the one-sided real image, an interference image element that needs to be filtered by generating a real image of the object to be inspected from the double-sided real image, and filter the interference image element from the double-sided real image to generate a detected image.
  • Target real image Identify, according to the one-sided real image, an interference image element that needs to be filtered by generating a real image of the object to be inspected from the double-sided real image, and filter the interference image element from the double-sided real image to generate a detected image.
  • the interference image element that needs to be filtered by the one-sided real image to generate the real image of the object to be inspected according to the one-sided real image may include: identifying a double-sided real image according to the one-sided real image.
  • the process can mainly use computer software
  • the single-sided real image is compared with the double-sided real image to find the real image element corresponding to the single-sided real image in the double-sided real image, and at the same time, in order to generate the real image of the detected object, it is necessary to filter out the double-sided real image.
  • the interference image element is present, the interference image element being part or all of the real image element corresponding to the one-sided real image, and the determination of the interference image element may be determined according to the one-sided real image and the real image of the object to be detected to be generated.
  • filtering the interference image element from the double-sided real image to generate a real image of the object to be inspected may include: filtering an image feature of the interference image element by using an image feature of the double-sided real image. Generate a real image of the object being inspected.
  • the image features may include imaging gradations and/or pixels.
  • the interference image element required to generate the real image of the object to be inspected may be identified from the double-sided real image according to the single-sided real image and the real image of the printed circuit board, and from the double-sided The interference image element is filtered in the real image to generate a real image of the object to be inspected.
  • the object to be inspected can be a single-sided real image, or it can be a part of the defined component, or it can be a real image of the printed circuit board.
  • Image elements which can include:
  • the real image elements corresponding to the reverse real image are identified from the double-sided real image based on the reverse real image and the printed circuit board real image, and the interference image elements that need to be filtered to generate the front real image are determined.
  • the interference image in the real image to be filtered to generate the real image of the object to be inspected is recognized from the double-sided real image according to the one-sided real image and the real image of the printed circuit board.
  • Elements can include:
  • the interference image in the real image that needs to be filtered to generate the real image of the object to be inspected is recognized from the two-sided real image according to the one-sided real image and the real image of the printed circuit board.
  • Elements can include:
  • a person skilled in the art may combine the description of the embodiment of the present invention, and may use other methods to filter the real image element corresponding to each surface image from the real image to obtain a real image of the object to be inspected, and the present invention does not It is also within the scope of the present invention to define a real image of the object to be inspected by recognition and calculation according to the one-sided real image in the embodiment of the present invention.
  • the real image may be a two-dimensional image, or may be other types of images, as long as the single-sided real image technology is used for filtering in the embodiment of the present invention, which is within the protection scope of the present invention. .
  • the embodiment of the present invention utilizes the method of the present invention to generate a single-sided real image, identify an interference image element that needs to be filtered in a double-sided real image, and obtain a real image of the object to be inspected by data calculation, thereby implementing inspection of the double-sided electronic circuit board.
  • the online large-scale inspection does not require CT technology; at the same time, the method can solve the problem of X-ray image interference of the double-sided electronic circuit board, greatly simplifying the electronic circuit board inspection equipment, and reducing the cost of the inspection equipment. , improve inspection efficiency.
  • FIG. 10 is a schematic diagram of a double-sided electronic circuit board inspection apparatus according to another embodiment of the present invention. As shown in FIG. 10, the apparatus of the present invention includes:
  • the real image generating unit 101 is configured to perform X-ray imaging on the electronic circuit board to respectively generate a single-sided real image and a double-sided real image of the electronic circuit board;
  • the X-ray imaging of the electronic circuit board can be directly performed, and a single-sided real image including only one electronic circuit board and a double-sided real image including the front and back electronic circuit boards are respectively generated, wherein one side is generated.
  • the X-ray machine parameters of the real image and the double-sided real image are the same.
  • the parameters of the X-ray machine may include: X-ray tube voltage, angle of the X-ray tube, angle of the detector, resolution, and/or target current.
  • each surface electronic circuit board can be formed by soldering one electronic component on a PCB and performing X-ray imaging to obtain a true image of the single-sided electronic circuit board, and soldering the electronic component on the other side of the PCB board. After obtaining a double-sided electronic circuit board, X-ray imaging of the double-sided electronic circuit board under the same X-ray machine parameters can obtain a double-sided real image.
  • the detected target real image generating unit 103 is configured to identify, from the double-sided real image, the interference image element that needs to be filtered by generating the real image of the detected object according to the one-sided real image, and filter from the double-sided real image.
  • the interference image element generates a real image of the object to be inspected.
  • the detected target real image generating unit 103 includes:
  • the identification module 1031 is configured to identify a real image element corresponding to the one-sided real image in the double-sided real image according to the one-sided real image, and determine an interference image element that needs to be filtered to generate the real image of the object to be inspected,
  • the identification module 1031 may identify a front real image element corresponding to the front real image from the double-sided real image according to the front real image, and determine an interference image element that needs to be filtered to generate the reverse real image, or ,
  • the reverse real image element corresponding to the reverse real image is identified from the double-sided real image according to the reverse real image, and the interference image element that needs to be filtered to generate the front real image is determined.
  • the calculating module 353 filters the image features of the interference image elements by using image features of the double-sided real image to generate a real image of the object to be inspected.
  • filtering the interference image element from the double-sided real image to generate a real image of the object to be inspected may include: filtering an image feature of the interference image element by using an image feature of the double-sided real image. Generate a real image of the object being inspected.
  • the image features may include imaging Grayscale and / or pixels.
  • a person skilled in the art may combine the description of the embodiment of the present invention, and may use other methods to filter the real image element corresponding to the single-sided real image from the double-sided real image to obtain a real image of the object to be inspected.
  • the present invention is not limited, and it is within the scope of the present invention to provide a real image of the object to be inspected by recognition and calculation according to the one-sided real image in the embodiment of the present invention.
  • the real image may be a two-dimensional image, or may be an image generated by three-dimensional or other means, as long as the single-sided real image technology is used for segmentation in the embodiment of the present invention.
  • the single-sided real image technology is used for segmentation in the embodiment of the present invention.
  • the electronic circuit board X-ray inspection image generating device may be an image processing device integrated inside the computer, including a processor, a memory, and a bus. Both the processor and the memory are connected to the bus.
  • the processor is used to:
  • the above operations performed by the processor may be stored in the memory in the form of a program, and when the above operations need to be performed, the program is transferred to the processor to perform processing.
  • FIG. 11 is a schematic diagram of a real image of a double-sided electronic circuit board according to an embodiment of the present invention
  • FIG. 12 is a schematic diagram of a double-sided real image of a double-sided electronic circuit board according to an embodiment of the present invention
  • FIG. 13 is a double-sided electronic circuit board according to an embodiment of the present invention
  • a schematic diagram of the separated reverse real image is calculated; wherein, in Fig. 12, since the images of the front and back sides are included, the two images form interference, and the images of the front and back sides cannot be distinguished.
  • the embodiment of the present invention may take the following steps:
  • the computer recognizes the frontal image element in the double-sided true X-ray image according to the true frontal image feature, such as grayscale or/and pixels, and subtracts the feature value of the frontal image element from the double-sided real image by calculation, for example Grayscale or / and pixels).
  • true frontal image feature such as grayscale or/and pixels
  • FIGS. 14, 15, and 16 are schematic diagrams of block sampling of 256-order gray value according to an embodiment of the present invention.
  • FIG. 15 is a schematic diagram of a straight-line gradient of 256-order gray value according to an embodiment of the present invention.
  • FIG. 16 is an image decomposition pixel of an X-ray machine according to an embodiment of the present invention; schematic diagram.
  • the image represented by the X-ray machine is a picture displayed based on the black and white brightness value.
  • the black and white brightness can be divided into several levels of values.
  • the value of dividing the black and white brightness is called the gray level value, and the common is the 256 order gray level.
  • the X-ray machine picture is a picture made up of tens of thousands of pixels, and the grid of each pixel is filled with a gray value.
  • the overall display is the X-ray machine image we have seen. As shown in Fig. 16, each of the grids is filled with a number representing the gray value.
  • the simulated image and the real image may be two-dimensional images, or may be three-dimensional or other types of images, as long as the simulated image or the single-sided real in the embodiment of the present invention is adopted. Segmentation by image technology is within the scope of the present invention.
  • the embodiment of the invention uses the generated simulation image to identify the interference image to be filtered in the real image, and obtains the real image of the object to be inspected through data calculation, thereby realizing online inspection of the double-sided electronic circuit board, and using the method of the invention, the online type is large
  • the batch inspection does not require CT technology; at the same time, the invention can solve the problem of X-ray image interference of the double-sided electronic circuit board, greatly simplifying the electronic line inspection equipment, reducing the cost of the inspection equipment, and improving the inspection efficiency. So that it can be fully applied to the online inspection of electronic circuit boards.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pulmonology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Theoretical Computer Science (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

一种电子线路板X光检查图像生成方法,所述方法包括:根据双面电子线路板的数据文件以及X光机的参数,分别生成所述电子线路板的各面模拟图像,或将所述电子线路板进行X光成像,分别生成所述电子线路板单面真实图像及双面真实图像;根据所述各面模拟图像或单面真实图像从双面真实图像中识别出生成被检目标真实图像所需要过滤的干涉图像元素,并从所述双面真实图像中过滤所述干涉图像元素,生成被检目标真实图像。利用本方法,在线式大批量的电子线路板X光检查不需要CT技术;并可以解决双面电子线路板的X光影像干涉的问题,简化了电子线路板检查设备,降低了检查成本,提高了检查效率,使之可以应用于电子线路板的在线检查。

Description

一种电子线路板X光检查图像生成方法及其装置 【技术领域】
本发明涉及电子线路板检查技术领域,尤其涉及一种电子线路板X光检查图像生成方法及其装置。
【背景技术】
目前面阵列器件的使用诸如QFN、BGA、Flip chip以及CSP等愈来愈普遍。为了保证这类器件在电子线路板组装过程中不可见焊点的焊接质量,X光检查设备正成为日益增长所不可或缺的重要检查工具。其主要原因是它可以穿透封装内部而直接检查焊点质量的好坏。
如今市场上针对BGA和CSP应用的X光检查系统大致可以分成两大类:二维系统以及CT系统。所有这些设备都可以离线操作或者在线操作并作在线检查或者抽样检查。例如HP的5DX可以在线使用,选择离线或者在线设备具体要看应用场合而定。
所有的X光检查设备,不论是二维或者是CT系统原理基本是X-射线投影到影像接收器上成像。X射线发射管产生X射线通过测试样品(例如电子线路板),根据样品材料本身密度与原子量的不同对X射线有不同的吸收量而在影像接收器上产生投影,密度越高的物质阴影越深。越靠近X射线管阴影越大,反之阴影越小。
二维X-射线系统同时显现电子线路板上双面所有组件的二维图像。三维CT的X-射线系统利用一系列的二维图像重建图像信息以产生某一切面的图像,这一技术可以产生被测样品上某一横截面的图像。另外一种三维CTX光检查系统称作X射线分层法(Laminography)。它是经由组合某一横截面的图像资料同时消除其它横截面的图像信息而重建某一横截面的图像。X射线分层法系统也可以是在线式或者是离线式的,但是在线使用时速度很慢,因为利用多张图像重建资料需要时间,它需要利用多张二维图像和复杂的运算以重建信息,而这需要 花好几分钟去完成。
发明人在实现本发明的过程中发现,二维的X光检查系统优点是成本低,速度快,成像效果好,但是当遇到双面PCB的时候,由于双面元器件在X光穿时透成像时形成干涉,比如,如图1所示,为X光拍摄的双面PCB板的真实图像示意图,由于存在双面器件的互相干涉,因此,无法得到焊点的真实信息,从而无法实现自动检查,无法实现在线检查的目标。为了检查焊点内部的结构,解决双面互相干涉的问题,现有各个厂商使用了CT的技术,即三维CTX光检查系统,比如,安捷伦科技的5DX系列,欧姆龙X700,泰瑞达的ClearVue系统。虽然,CT技术的优点是可以真实检查电子线路板的内部结构,分析缺陷的具体形状,缺点是成本很高,CT检查的时间太长(一般得到一张CT影像需要长达5分钟以上),由于需要旋转样件或者标靶,因此机器的体积很大。随着消费类电子尤其是智能手机小型化的发展,电子组装的复杂性大大提高,抽查的方式已经不能够满足高质量产品的品质控制需要,X光设备在线的需求日趋强烈。另一方面,军工以及工业类电子对可靠性很高的要求,也大大加强了这一发展的进程。由于二维设备无法避免双面电子线路板在X光影像方面的相互干涉问题,目前业界仅有的3到5家跨国企业都在采用CT的技术开发在线式的检查设备。但是,由于上述CT的缺点,根本无法满足在线生产的需要(在线生产通常需要X光检查及缺陷判定在20-40秒内完成),因此在消费品领域,没有办法形成真正的销售。
【发明内容】
本发明公开了一种电子线路板X光检查图像生成方法及其装置,利用生成各面的模拟图像或真实图像,识别双面真实图像中需要过滤的干涉图像元素,通过数据计算来得到被检目标的真实图像,从而实现双面电子线路板的在线检查,提高了双面电子线路板的检查效率,并简化了检查设备,节省检查成本。
本发明提供的一种电子线路板X光检查图像生成方法,包括:
一种电子线路板X光检查图像生成方法,包括:
根据双面电子线路板的数据文件以及X光机的参数,分别生成所述电子线路板的各面模拟图像;
将所述电子线路板进行X光成像,生成所述电子线路板真实图像,所述真实图像包含双面真实图像元素;
根据所述各面模拟图像从真实图像中识别出生成被检目标真实图像所需要过滤的真实图像中的干涉图像元素,并从所述真实图像中过滤所述干涉图像元素,生成被检目标真实图像。
可选地,电子线路板的数据文件包括:电子线路板的CAD坐标数据、印刷电路板线路设计文件以及元器件数据库;
所述元器件的数据库按照元器件的封装相关标准生成标准元器件库,特殊器件自定义生成;
所述X光机的参数包括:X光管电压、X光管的角度、探测器的角度、分辨率和/或靶电流。
可选地,所述根据双面电子线路板的数据文件以及X光机的参数,分别生成所述电子线路板的各面模拟图像;包括:
从电子线路板的数据文件中获取电子线路板的CAD坐标数据以及印刷电路板线路设计文件;
从元器件的数据库中获取元器件参数;
根据所述电子线路板的CAD坐标数据、印刷电路板线路设计文件、元器件参数及X光机的参数,结合不同X光设备在不同X光机参数下的成像规律,分别生成所述电子线路板的各面模拟图像。
可选地,所述X光机参数预先设定或根据所述线路设计文件及元器件参数确定。
可选地,根据所述各面模拟图像从真实图像中识别出生成被检目标真实图像所需要过滤的真实图像中的干涉图像元素,并从所述真实图像中过滤所述干 涉图像元素,生成被检目标真实图像,具体包括:
根据各面模拟图像识别出真实图像中与所述各面模拟图像对应的真实图像元素,并确定生成被检目标真实图像所需要过滤的真实图像中的干涉图像元素;
用真实图像的图像特征过滤所述干涉图像元素的图像特征,生成被检目标真实图像。
可选地,所述根据各面模拟图像识别出真实图像中与所述各面模拟图像对应的真实图像元素,并确定生成被检目标真实图像所需要过滤的真实中的干涉图像图像元素,具体包括:
根据正面模拟图像从真实图像中识别出与所述正面模拟图像对应的正面真实图像元素,并确定生成反面真实图像所需要过滤的正面真实图像中的干涉图像元素,或,
根据反面模拟图像从真实图像中识别出与所述反面模拟图像对应的反面真实图像元素,并确定生成正面真实图像所需要过滤的反面真实图像中的干涉图像元素。
可选地,所述图像特征包括成像灰度和/或像素。
可选地,所述模拟图像及真实图像包括二维图像。
本发明还提供了一种电子线路板X光检查图像生成装置,包括:
模拟图像生成单元,用于根据双面电子线路板的数据文件以及X光机的参数,分别生成所述电子线路板的各面模拟图像;
双面真实图像生成单元,用于将所述电子线路板进行X光成像,生成所述电子线路板的真实图像,所述真实图像包含双面真实图像元素;
被检目标真实图像生成单元,用于根据所述各面模拟图像从真实图像中识别出生成被检目标真实图像所需要过滤的真实图像中的干涉图像元素,并从所述真实图像中过滤所述干涉图像元素,生成被检目标真实图像。
可选地,所述电子线路板的数据文件包括:电子线路板的CAD坐标数据、印刷电路板线路设计文件以及元器件数据库;
所述元器件的数据库按照元器件的封装相关标准生成标准元器件库,特殊器件自定义生成;
所述X光机的基本参数包括:X光管电压、X光管的角度、探测器的角度、分辨率和/或靶电流。
可选地,所述模拟图像生成单元还包括:
获取模块,用于从电子线路板的数据文件中获取电子线路板的CAD坐标数据、印刷电路板线路设计文件;以及从元器件的数据库中获取元器件参数。
可选地,所述模拟图像生成单元还包括:
X光机的参数确定模块,用于预先设定或根据所述印刷电路板线路设计文件及元器件参数确定X光机的参数。
可选地,所述被检目标真实图像生成单元包括:
识别模块,用于根据各面模拟图像识别出真实图像中与所述被检目标模拟图像对应的真实图像元素,并确定生成被检目标真实图像所需要过滤的真实图像中的干涉图像元素,
计算模块,利用真实图像的图像特征过滤所述干涉图像元素的图像特征,生成被检目标真实图像。
可选地,所述图像特征包括成像灰度和/或像素。
可选地,所述模拟图像及真实图像包括二维图像。
本发明还提供了一种电子线路板X光检查图像生成方法,其中,包括:
将所述电子线路板进行X光成像,分别生成所述电子线路板的单面真实图像及双面真实图像,
根据所述单面真实图像从双面真实图像中识别出生成被检目标真实图像所需要过滤的干涉图像元素,并从所述双面真实图像中过滤所述干涉图像元素,生成被检目标真实图像。
可选地,生成单面真实图像及双面真实图像的X光机参数一致。
可选地,所述X光机参数包括:X光管电压、X光管的角度、探测器的角度、 分辨率和/或靶电流。
可选地,所述根据所述单面真实图像从双面真实图像中识别出生成被检目标真实图像所需要过滤的干涉图像元素,并从所述真实图像中过滤所述干涉图像元素,生成被检目标真实图像,具体包括:
根据单面真实图像识别出双面真实图像中与所述单面真实图像对应的真实图像元素,并确定生成被检目标真实图像所需要过滤的干涉图像元素;
用双面真实图像的图像特征过滤所述干涉图像元素的图像特征,生成被检目标的真实图像。
可选地,所述根据单面真实图像识别出真实图像中与所述单面真实图像对应的真实图像元素,并确定生成被检目标真实图像所需要过滤的干涉图像图像元素,具体包括:
根据正面真实图像从双面真实图像中识别出与所述正面真实图像对应的真实图像元素,并确定生成反面真实图像所需要过滤的干涉图像元素,或,
根据反面真实图像从双面真实图像中识别出与所述反面真实图像对应的真实图像元素,并确定生成正面真实图像所需要过滤的干涉图像元素。
可选地,本发明方法还包括:将制作所述电子线路板的印刷电路板单独进行X光成像,生成印刷电路板真实图像,印刷电路板的真实图像本身可作为被检目标,也可根据所述单面真实图像及印刷电路板真实图像识别出双面真实图像中生成被检目标真实图像所需要过滤的干涉图像元素;
用双面真实图像的图像特征过滤所述干涉图像元素的图像特征,生成被检目标的真实图像。
可选地,根据单面真实图像及印刷电路板真实图像识别出双面真实图像中生成被检目标真实图像所需要过滤的干涉图像元素;具体包括:
根据正面真实图像及印刷电路板真实图像从双面真实图像中识别出生成反面真实图像所需要过滤的干涉图像元素,或,
根据反面真实图像及印刷电路板真实图像从双面真实图像中识别出生成正 面真实图像所需要过滤的干涉图像元素,或
根据正、反单面真实图像及印刷电路板真实图像从双面真实图像中识别出生成印刷电路板真实图像所需要过滤的干涉图像元素。
可选地,所述图像特征包括成像灰度和/或像素。
可选地,所述真实图像包括二维图像。
本发明还提供一种电子线路板X光检查图像生成装置,其中,包括:
真实图像生成单元,用于将所述电子线路板进行X光成像,分别生成所述电子线路板的单面真实图像及双面真实图像,
被检目标真实图像生成单元,用于根据所述单面真实图像从双面真实图像中识别出生成被检目标真实图像所需要过滤的干涉图像元素,并从所述双面真实图像中过滤所述干涉图像元素,生成被检目标真实图像。
可选地,所述被检目标真实图像生成单元包括:
识别模块,用于根据单面真实图像识别出双面真实图像中与所述单面真实图像对应的真实图像元素,并确定生成被检目标真实图像所需要过滤的干涉图像元素,
计算模块,利用双面真实图像的图像特征过滤所述干涉图像元素的图像特征,生成被检目标真实图像。
可选地,所述真实图像生成单元还用于将制作所述电子线路板的印刷电路板单独进行X光成像,生成印刷电路板真实图像,所述被检目标真实图像生成单元,具体用于:根据单面真实图像及印刷电路板真实图像识别出双面真实图像中生成被检目标真实图像所需要过滤的干涉图像元素;从所述双面真实图像中过滤所述干涉图像元素,生成被检目标真实图像。
可选地,所述被检目标真实图像生成单元包括:
识别模块,用于根据单面真实图像及印刷电路板真实图像识别出双面真实图像中生成被检目标真实图像所需要过滤的干涉图像元素,
计算模块,利用双面真实图像的图像特征过滤所述干涉图像元素的图像特 征,生成被检目标真实图像。
可选地,所述图像特征包括成像灰度和/或像素。
可选地,所述真实图像包括二维图像。
本发明利用生成各面模拟图像或真实图像,识别双面真实图像中需要过滤的干涉图像元素,通过数据计算来得到被检目标的真实图像,从而实现双面电子线路板的在线检查,利用本发明方法,在线式大批量的检查不需要CT技术;同时,使用该方法可以解决双面电子线路板的X光影像干涉的问题,极大的简化了电子线路板的在线检查设备,并降低了检查设备的成本,提高了检查效率,使之可以完全应用于电子线路板的在线检查。
【附图说明】
图1为现有技术中双面电子线路板真实图像示意图;
图2为本发明实施例双面电子线路板检查方法流程示意图;
图3为本发明实施例双面电子线路板检查装置示意图;
图4为本发明实施例双面电子线路板双面真实图像示意图;
图5为本发明实施例双面电子线路板正面模拟图像示意图;
图6为本发明实施例双面电子线路板反面真实图像示意图。
图7、图8为本发明实施例双面电子线路板在X光机的不同角度下的成像示意图;
图9为本发明另一实施例双面电子线路板检查方法流程示意图;
图10为本发明另一实施例双面电子线路板检查装置示意图;
图11为本发明另一实施例双面电子线路板正面真实图像示意图;
图12为本发明另一实施例双面电子线路板双面真实图像示意图;
图13为本发明另一实施例双面电子线路板计算分离出来的反面真实图像示意图;
图14为本发明实施例256阶灰度值的方块采样示意图;
图15为本发明实施例256阶灰度值的直条渐变示意图;
图16为本发明实施例X光机图像分解像素示意图。
【具体实施方式】
为了便于理解本发明,下面结合附图和实施例对本发明进行详细说明。
需要说明的是,如果不冲突,本发明实施例以及实施例中的各个特征可以相互结合,均在本发明的保护范围之内。另外,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本说明书中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是用于限制本发明。
图2为本发明实施例电子线路板检查方法流程示意图。如图所示,本发明实施例电子线路板检查方法包括以下步骤:
S201,根据双面电子线路板的数据文件以及X光机的参数,分别生成所述电子线路板的各面模拟图像;
在本发明实施例中,电子线路板可以为双面电子线路板,电子线路板的数据文件可以包括:电子线路板的CAD坐标数据、印刷电路板的线路设计文件以及元器件数据库;其中,CAD坐标数据可以由电子线路板的设计文件导出,元器件参数从元器件标准库中选择,如果标准库中没有的特殊器件,则可以由用户自定义生成特殊器件库,并从中选择特殊器件,X光机的参数可以包括:X光管电压和/或靶电流。X光机的参数可以预先设定或根据所述线路设计文件及元器件参数确定,比如,可以根据经验数据,设定不同的X光机的不同X光管电压,结合X光机成像规律,由计算机软件模拟得到与各面真实图像基本一致的各面模拟图像。
在本发明实施例中,可以根据所述电子线路板的CAD坐标数据、线路设计文件、元器件参数及X光机的参数,结合不同X光设备在不同X光机参数下的 成像规律,分别生成所述电子线路板的各面模拟图像。
S203,将所述电子线路板进行X光成像,生成所述电子线路板真实图像,所述真实图像包含双面真实图像元素;
在本发明实施例中,可以直接对电子线路板进行X光成像,生成包括正反两面的电子线路板双面真实图像,该图像即为电子线路板的真实图像,该真实图像中包含了正反两面上的所有真实元素,如果直接采用该真实图像进行检查,由于存在双面真实元素的互相干涉,设备将无法辨识被检目标的准确信息,将无法实现自动检查,从而无法满足在线检查的需要。本发明实施例中,将采用S201中生成的模拟图像对该真实图像进行处理,详细处理过程请参见步骤S205所述。
S205,根据所述各面模拟图像从真实图像中识别出生成被检目标的真实图像所需要过滤的真实图像中的干涉图像元素,并从所述真实图像中过滤所述干涉图像元素,生成被检目标真实图像。
在本发明实施例中,根据所述各面模拟图像从真实图像中识别出生成被检目标真实图像所需要过滤的真实图像中的干涉图像元素,可以包括:根据各面模拟图像识别出真实图像中与所述各面模拟图像对应的真实图像元素,并确定生成被检目标真实图像所需要过滤的真实图像中的干涉图像元素;其中,模拟图像可以是S201步骤中生成的任意一面模拟图像,具体识别过程中主要可以采用计算机软件将各面模拟图像与真实图像进行比对,找出真实图像中与模拟图像中对应的真实图像元素,同时,为了生成被检目标真实图像,需要过滤掉真实图像中存在的干涉图像元素,所述干涉图像元素为与模拟图像对应的真实图像元素的部分或全部,干涉图像元素的确定可以根据模拟图像以及要生成的被检目标真实图像来确定。
在本发明实施例中,从所述真实图像中过滤所述干涉图像元素,生成被检目标真实图像,可以包括:用真实图像的图像特征过滤掉所述干涉图像元素的图像特征,生成被检目标真实图像。其中,所述图像特征可以包括成像灰度和/ 或像素。
在本发明实施例中,被检目标可以是单面真实图像,也可以是被定义的部分部件,
如果被检目标是单面真实图像,则步骤S205中根据所述各面模拟图像从真实图像中识别出生成被检目标的真实图像所需要过滤的真实图像中的干涉图像元素,可以包括:
根据正面模拟图像从真实图像中识别出与所述正面模拟图像对应的正面真实图像元素,并确定生成反面真实图像所需要过滤的正面真实图像中的干涉图像元素,或,
根据反面模拟图像从真实图像中识别出与所述反面模拟图像对应的反面真实图像元素,并确定生成正面真实图像所需要过滤的反面真实图像中的干涉图像元素。
如果被检目标是被定义的部分部件,则步骤S205中根据所述各面模拟图像从真实图像中识别出生成被检目标的真实图像所需要过滤的真实图像中的干涉图像元素,可以包括:
根据各面模拟图像从真实图像中识别出与所述各面模拟图像对应的真实图像元素,并确定生成被定义的部分部件真实图像所需要过滤的真实图像中的干涉图像元素。
在本发明实施例中,本领域技术人员可以结合本发明实施例的描述,可以采用其他方法从真实图像中过滤掉与模拟图像对应的真实图像元素,得到被检目标真实图像,本发明不作限定,只要本领域技术人员根据本发明实施例中的模拟图像,通过识别及计算生成被检目标真实图像,亦在本发明保护范围之内。
在本发明实施例中,所述模拟图像及真实图像可以是二维图像,也可以是其他类型的图像,只要是采用了本发明实施例中模拟图像技术进行过滤,均在本发明保护范围之内。
本发明实施例利用生成模拟图像,识别真实图像中需要过滤的干涉图像元 素,通过数据计算来得到被检目标的真实图像,从而实现双面电子线路板的检查,利用本发明方法,在线式大批量的检查不需要CT技术;同时,使用本方法可以解决双面电子线路板的X光影像干涉的问题,极大的简化了电子线路板检查设备,并降低了检查设备的成本,提高了检查效率。
图3为本发明实施例电子线路板X光检查图像生成装置示意图。如图所示,本发明实施例电子线路板X光检查图像生成装置示意图包括:
模拟图像生成单元31,用于根据双面电子线路板的数据文件以及X光机的参数,分别生成所述电子线路板的各面模拟图像;
在本发明实施例中,电子线路板为双面电子线路板结构,电子线路板的数据文件可以包括:电子线路板的CAD坐标数据、印刷电路板设计文件以及元器件库;其中,CAD坐标数据可以由电子线路板的设计文件导出,元器件参数从元器件标准库中选择,如果标准库中没有的特殊器件,则可以由用户自定义生成特殊器件库,并从中选择特殊器件,X光机的参数可以包括:X光管电压和/或靶电流。X光机的参数可以预先设定或根据所述线路设计文件及元器件参数确定。
双面真实图像生成单元33,用于将所述电子线路板进行X光成像,生成所述电子线路板真实图像,所述真实图像包含双面真实图像元素;
在本发明实施例中,可以直接对电子线路板板进行X光成像,生成包括正反两面的双面真实图像,该图像即为电子线路板的真实图像,该真实图像中包含了正反两面上的真实元素。
被检目标真实图像生成单元35,用于根据所述各面模拟图像从真实图像中识别出生成被检目标真实图像所需要过滤的真实图像中的干涉图像元素,并从所述真实图像中过滤所述干涉图像元素,生成被检目标真实图像。
在本发明实施例中,根据所述各面模拟图像从真实图像中识别出生成被检目标真实图像所需要过滤的真实图像中的干涉图像元素,可以包括:根据各面模拟图像识别出真实图像中与所述各面模拟图像对应的真实图像元素,并确定 生成被检目标真实图像所需要过滤的真实图像中的干涉图像元素;其中,各面模拟图像可以是模拟图像生成单元生成的各面模拟图像中的任意一面,具体识别过程中主要可以采用计算机软件将模拟图像与真实图像进行比对,找出真实图像中与模拟图像中对应的真实图像元素,同时,为了生成被检目标真实图像,需要过滤掉真实图像中存在的干涉图像元素,所述干涉图像元素为与模拟图像对应的真实图像元素的部分或全部,干涉图像元素的确定可以根据模拟图像以及要生成的被检目标真实图像元素来确定。
在本发明实施例中,所述模拟图像生成单元31还包括:
获取模块311,用于从电子线路板的数据文件中获取电子线路板的CAD坐标数据、印刷电路板线路设计文件;以及从元器件的数据库中获取元器件参数。
X光机的参数确定模块313,用于预先设定或根据所述线路设计文件及元器件参数确定X光机的参数
在本发明实施例中,被检目标真实图像生成单元35,包括:
识别模块351,用于根据各面模拟图像识别出真实图像中与所述各面模拟图像对应的真实图像元素,并确定生成被检目标真实图像所需要过滤的真实图像中的干涉图像元素,
本发明实施例中,识别模块351可以根据正面模拟图像从真实图像中识别出与所述正面模拟图像对应的正面真实图像元素,并确定生成反面真实图像所需要过滤的正面真实图像中的干涉图像元素,或,
根据反面模拟图像从真实图像中识别出与所述反面模拟图像对应的反面真实图像元素,并确定生成正面真实图像所需要过滤的反面真实图像中的干涉图像元素。
计算模块353,利用真实图像的图像特征过滤所述干涉图像元素的图像特征,生成被检目标的真实图像。
在本发明实施例中,从所述真实图像中过滤所述干涉图像元素,生成被检目标真实图像,可以包括:用真实图像的图像特征过滤所述干涉图像元素的图 像特征,生成被检目标真实图像。其中,所述图像特征可以包括成像灰度和/或像素。
在本发明实施例中,本领域技术人员可以结合本发明实施例的描述,可以采用其他方法从真实图像中过滤掉与模拟图像对应的真实图像元素,得到被检目标真实图像,本发明不作限定,只要本领域技术人员根据本发明实施例中的模拟图像,通过识别及计算生成被检目标真实图像,亦在本发明保护范围之内。
在本发明实施例中,所述模拟图像及真实图像可以是二维图像,也可以是三维或者其他的手段生成的图像,只要是采用了本发明实施例中模拟图像技术进行分割,均在本发明保护范围之内。
本发明实施中,电子线路板X光检查图像生成装置可以是集成在计算机内部的图像处理装置,包括处理器、存储器和总线。处理器和存储器均与总线连接。
处理器用于:
根据双面电子线路板的数据文件以及X光机的参数,分别生成所述电子线路板的各面模拟图像;
将所述电子线路板进行X光成像,生成所述电子线路板真实图像,所述真实图像包含双面真实图像元素;
根据所述各面模拟图像从真实图像中识别出生成被检目标真实图像所需要过滤的真实图像中的干涉图像元素,并从所述真实图像中过滤所述干涉图像元素,生成被检目标真实图像。
处理器所执行的上述操作可以以一段程序的形式存储在存储器中,当需要执行上述操作时,将该段程序调入处理器执行处理。
下面结合图4、图5、图6对本发明实施例进行详细阐述。如图4所示为电子线路板双面真实图像示意图,图5为本发明实施例电子线路板正面模拟图像示意图;图6为本发明实施例电子线路板反面真实图像示意图。图4中由于包括了正反两面的图像,两面图像形成了干涉,无法区分正反面的图像。为了得 到被检目标的真实图像,比如,反面真实图像,本发明实施例可以采取以下的步骤:
1、将正反面电子线路板的数据文件输入计算机
2、设定基本的X光设备参数
3、生成计算机模拟的正反面模拟的X光图片,比如,如图5所示为电子线路板的正面模拟X光图像示意图;
4、将电子线路板正常进行X光成像,比如,生成如图4所示的包含了正反面真实图像元素的双面真图像示意图
5、计算机根据模拟的正面图像特征,比如灰度或/和像素(比如,如图5所示),识别真实的X光图像(比如,如图4所示)中的正面图像元素,并通过计算后从真实图像中减掉正面图像元素的特征值例如灰度或/和像素。
6、得到电子线路板反面的真实图像(比如,如图6所示)
通过以上步骤,我们得到了被检物体电子线路板反面的真实图像。
在本发明实施例中,在本发明实施例中,X光机的参数还可以包括:X光管的角度或者探测器的角度,为了得到被测目标更全面的信息,可以将X光机的影像接收器或者电子线路板或者X光管(视设备的不同设计结构而定)旋转一定的角度来进行X光成像,比如,如图7及图8所示,为双面电子线路板在X光机的不同角度下的成像示意图,其中,图7与图8之间为X光机旋转90度前后的成像示意图。通过调整X光管的角度或者探测器的角度来获得被测目标的全面信息在某些情况下显得尤为必要,比如,被测目标的正反两面存在形状大小相同,但厚度不同的两个焊点时,如果仅从主视图角度进行正反两面成像,则无法识别是否存在两个相同形状大小的焊点,因为正反两面的图像中,针对这两个焊点的图像元素相同,但是,如果将X光机调整一定角度后,比如旋转90度再进行成像,由于两个焊点之间的厚度不同,则生成的正反两面图像中针对这两个焊点的图像元素并不相同。
图9为本发明另一实施例双面电子线路板检查方法流程示意图;如图9所 示,本发明方法包括以下步骤:
S901,将所述电子线路板进行X光成像,分别生成所述电子线路板的单面真实图像及双面真实图像;
在本发明实施例中,可以直接对电子线路板进行X光成像,分别生成仅含一面电子线路板的单面真实图像和包括正反两面电子线路板的双面真实图像,其中,生成单面真实图像及双面真实图像的X光机参数一致,
X光机的参数可以包括:X光管电压、X光管的角度、探测器的角度、分辨率和/或靶电流。
生成单面电子线路板的真实图像可以是在一块PCB板上焊接单面的电子元器件后进行X光成像,得到单面电子线路板真实图像,将该PCB板上焊接上另一面的电子元器件后得到双面电子线路板,在相同X光机参数下,将双面电子线路板进行X光成像,即可得到双面真实图像。
在本发明实施例中,还可以将制作所述电子线路板的印刷电路板单独进行X光成像,生成印刷电路板真实图像。印刷电路板的真实图像本身可作为被检目标,也可根据所述单面真实图像及印刷电路板真实图像识别出双面真实图像中生成被检目标真实图像所需要过滤的干涉图像元素;
用双面真实图像的图像特征过滤所述干涉图像元素的图像特征,生成被检目标的真实图像。
S903,根据所述单面真实图像从双面真实图像中识别出生成被检目标真实图像所需要过滤的干涉图像元素,并从所述双面真实图像中过滤所述干涉图像元素,生成被检目标真实图像。
在本发明实施例中,根据所述单面真实图像从双面真实图像中识别出生成被检目标真实图像所需要过滤的干涉图像元素,可以包括:根据单面真实图像识别出双面真实图像中与所述单面真实图像对应的真实图像元素,并确定生成被检目标真实图像所需要过滤的干涉图像元素;其中,单面真实图像可以是S901步骤中生成的任意一面真实图像,具体识别过程中主要可以采用计算机软件将 单面真实图像与双面真实图像进行比对,找出双面真实图像中与单面真实图像中对应的真实图像元素,同时,为了生成被检目标真实图像,需要过滤掉双面真实图像中存在的干涉图像元素,所述干涉图像元素为与单面真实图像对应的真实图像元素的部分或全部,干涉图像元素的确定可以根据单面真实图像以及要生成的被检目标真实图像来确定。
在本发明实施例中,从所述双面真实图像中过滤所述干涉图像元素,生成被检目标真实图像,可以包括:用双面真实图像的图像特征过滤所述干涉图像元素的图像特征,生成被检目标的真实图像。其中,所述图像特征可以包括成像灰度和/或像素。
在本发明实施例中,还可以根据所述单面真实图像和印刷电路板真实图像从双面真实图像中识别出生成被检目标真实图像所需要过滤的干涉图像元素,并从所述双面真实图像中过滤所述干涉图像元素,生成被检目标真实图像。被检目标可以是单面真实图像,也可以是被定义的部分部件,还可以是印刷电路板真实图像。
如果被检目标是单面真实图像,则根据所述单面真实图像和印刷电路板真实图像从双面真实图像中识别出生成被检目标的真实图像所需要过滤的双面真实图像中的干涉图像元素,可以包括:
根据正面真实图像和印刷电路板真实图像从双面真实图像中识别出与所述正面真实图像对应的真实图像元素,并确定生成反面真实图像所需要过滤的干涉图像元素,或,
根据反面真实图像和印刷电路板真实图像从双面真实图像中识别出与所述反面真实图像对应的真实图像元素,并确定生成正面真实图像所需要过滤的干涉图像元素。
如果被检目标是被定义的部分部件,则根据所述单面真实图像和印刷电路板真实图像从双面真实图像中识别出生成被检目标的真实图像所需要过滤的真实图像中的干涉图像元素,可以包括:
根据单面真实图像和印刷电路板真实图像从双面真实图像中识别出与所述单面真实图像和印刷电路板真实图像对应的真实图像元素,并确定生成被定义的部分部件真实图像所需要过滤的双面真实图像中的干涉图像元素。
如果被检目标是印刷电路板真实图像,则根据所述单面真实图像和印刷电路板真实图像从双面真实图像中识别出生成被检目标的真实图像所需要过滤的真实图像中的干涉图像元素,可以包括:
根据所述单面真实图像及印刷电路板真实图像从双面真实图像中识别出与所述单面真实图像对应的真实图像元素,并确定生成所述印刷电路板真实图像所需要过滤的双面真实图像中的干涉图像元素。
在本发明实施例中,本领域技术人员可以结合本发明实施例的描述,可以采用其他方法从真实图像中过滤掉与各面图像对应的真实图像元素,得到被检目标真实图像,本发明不作限定,只要本领域技术人员根据本发明实施例中的单面真实图像,通过识别及计算生成被检目标真实图像,亦在本发明保护范围之内。
在本发明实施例中,所述真实图像可以是二维图像,也可以是其他类型的图像,只要是采用了本发明实施例中单面真实图像技术进行过滤,均在本发明保护范围之内。
本发明实施例利用生成单面真实图像,识别双面真实图像中需要过滤的干涉图像元素,通过数据计算来得到被检目标的真实图像,从而实现双面电子线路板的检查,利用本发明方法,在线式大批量的检查不需要CT技术;同时,使用本方法可以解决双面电子线路板的X光影像干涉的问题,极大的简化了电子线路板检查设备,并降低了检查设备的成本,提高了检查效率。
图10为本发明另一实施例双面电子线路板检查装置示意图;如图10所示,本发明装置,包括:
真实图像生成单元101,用于将所述电子线路板进行X光成像,分别生成所述电子线路板的单面真实图像及双面真实图像;
在本发明实施例中,可以直接对电子线路板进行X光成像,分别生成仅含一面电子线路板的单面真实图像和包括正反两面电子线路板的双面真实图像,其中,生成单面真实图像及双面真实图像的X光机参数一致,
X光机的参数可以包括:X光管电压、X光管的角度、探测器的角度、分辨率和/或靶电流。
生成各面电子线路板的真实图像可以是在一块PCB板上焊接一面的电子元器件后进行X光成像,得到单面电子线路板真实图像,将该PCB板上焊接上另一面的电子元器件后得到双面电子线路板,在相同X光机参数下,将双面电子线路板进行X光成像,即可得到双面真实图像。
被检目标真实图像生成单元103,用于根据所述单面真实图像从双面真实图像中识别出生成被检目标真实图像所需要过滤的干涉图像元素,并从所述双面真实图像中过滤所述干涉图像元素,生成被检目标真实图像。
在本发明实施例中,被检目标真实图像生成单元103,包括:
识别模块1031,用于根据单面真实图像识别出双面真实图像中与所述单面真实图像对应的真实图像元素,并确定生成被检目标真实图像所需要过滤的干涉图像元素,
本发明实施例中,识别模块1031可以根据正面真实图像从双面真实图像中识别出与所述正面真实图像对应的正面真实图像元素,并确定生成反面真实图像所需要过滤的干涉图像元素,或,
根据反面真实图像从双面真实图像中识别出与所述反面真实图像对应的反面真实图像元素,并确定生成正面真实图像所需要过滤的干涉图像元素。
计算模块353,利用双面真实图像的图像特征过滤所述干涉图像元素的图像特征,生成被检目标真实图像。
在本发明实施例中,从所述双面真实图像中过滤所述干涉图像元素,生成被检目标真实图像,可以包括:用双面真实图像的图像特征过滤所述干涉图像元素的图像特征,生成被检目标真实图像。其中,所述图像特征可以包括成像 灰度和/或像素。
在本发明实施例中,本领域技术人员可以结合本发明实施例的描述,可以采用其他方法从双面真实图像中过滤掉与单面真实图像对应的真实图像元素,得到被检目标真实图像,本发明不作限定,只要本领域技术人员根据本发明实施例中的单面真实图像,通过识别及计算生成被检目标真实图像,亦在本发明保护范围之内。
在本发明实施例中,所述真实图像可以是二维图像,也可以是三维或者其他的手段生成的图像,只要是采用了本发明实施例中单面真实图像技术进行分割,均在本发明保护范围之内。
本发明实施中,电子线路板X光检查图像生成装置可以是集成在计算机内部的图像处理装置,包括处理器、存储器和总线。处理器和存储器均与总线连接。
处理器用于:
将所述电子线路板进行X光成像,分别生成所述电子线路板的单面真实图像及双面真实图像,
根据所述单面真实图像从双面真实图像中识别出生成被检目标真实图像所需要过滤的干涉图像元素,并从所述双面真实图像中过滤所述干涉图像元素,生成被检目标真实图像。
处理器所执行的上述操作可以以一段程序的形式存储在存储器中,当需要执行上述操作时,将该段程序调入处理器执行处理。
下面结合图11、图12、图13对本发明实施例进行详细阐述。如图11所示为本发明实施例双面电子线路板正面真实图像示意图,图12为本发明实施例双面电子线路板双面真实图像示意图;图13为本发明实施例双面电子线路板计算分离出来的反面真实图像示意图;其中,图12中由于包括了正反两面的图像,两面图像形成了干涉,无法区分正反面的图像。为了得到被检目标的真实图像,比如,反面真实图像,本发明实施例可以采取以下的步骤:
1、将仅包含正面元器件的电子线路板进行X光成像,生成将正面电子线路板的真实图像;
2、保证与生成正面真实图像一致的X光机参数,并将包含正反两面元器件的电子线路板进行X光成像;
3、计算机根据真实的正面图像特征,比如灰度或/和像素识别双面真实的X光图像中的正面图像元素,并通过计算后从双面真实图像中减掉正面图像元素的特征值例如灰度或/和像素)。
4、得到电子线路板反面的真实图像(比如,如图13所示)
通过以上步骤,我们得到了被检物体电子线路板反面的真实图像。
下面结合图14、图15、图16进一步阐述利用灰度进行图像计算得到被检目标的真实图像。其中,图14为本发明实施例256阶灰度值的方块采样示意图;图15为本发明实施例256阶灰度值的直条渐变示意图;图16为本发明实施例X光机图像分解像素示意图。
在本发明实施例中,比如,X光机所呈图像是一种基于黑白亮度值显示的图片。而黑白亮度可以划分成若干等级的值,这种划分黑白亮度的值叫做灰阶值,常见的是256阶灰度划分。X光机图片是由数以万计的像素构成的图片,而每一个像素的格子都被一个灰度值所填充,最后整体显示出来就是我们所见到的X光机图像。如图16所示,每一个格子中都填着一个代表灰度值的数字。当保证X射线穿透多层样品时,X光机所得到的多层图像可以看作各层所有像素格里面代表灰度值的数字进行累加后所呈现的图像。
以双层电路板为例,如果我们已经知道其中一层的图像和两层的图像,就可以利用灰度值成像的原理通过计算机分离出另一层的图像,这样就能解决X射线检测中多层相互干扰的问题,从而方便快速检测。
需要说明的是,在本发明实施例中,所述模拟图像及真实图像可以是二维图像,也可以是三维或者其他类型的图像,只要是采用了本发明实施例中模拟图像或单面真实图像技术进行分割,均在本发明保护范围之内。
本发明实施例利用生成模拟图像,识别真实图像中需要过滤的干涉图像,通过数据计算来得到被检目标的真实图像,从而实现双面电子线路板的在线检查,利用本发明方法,在线式大批量的检查不需要CT技术;同时,使用本发明可以解决双面电子线路板的X光影像干涉的问题,极大的简化了电子线检查设备,并降低了检查设备的成本,提高了检查效率,使之可以完全应用于电子线路板的在线检查。
需要说明的是,本发明的说明书及其附图中给出了本发明的较佳的实施例,但是,本发明可以通过许多不同的形式来实现,并不限于本说明书所描述的实施例,这些实施例不作为对本发明内容的额外限制,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。并且,上述各技术特征继续相互组合,形成未在上面列举的各种实施例,均视为本发明说明书记载的范围;进一步地,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (30)

  1. 一种电子线路板X光检查图像生成方法,其特征在于,包括:
    根据双面电子线路板的数据文件以及X光机的参数,分别生成所述电子线路板的各面模拟图像;
    将所述电子线路板进行X光成像,生成所述电子线路板真实图像,所述真实图像包含双面真实图像元素;
    根据所述各面模拟图像从真实图像中识别出生成被检目标真实图像所需要过滤的真实图像中的干涉图像元素,并从所述真实图像中过滤所述干涉图像元素,生成被检目标真实图像。
  2. 根据权利要求1所述的方法,其特征在于,
    电子线路板的数据文件包括:电子线路板的CAD坐标数据、印刷电路板线路设计文件以及元器件数据库;
    所述元器件的数据库按照元器件的封装相关标准生成标准元器件库,特殊器件自定义生成;
    所述X光机的参数包括:X光管电压、X光管的角度、探测器的角度和/或靶功率。
  3. 根据权利要求2所述的方法,其特征在于,所述根据双面电子线路板的数据文件以及X光机的参数,分别生成所述电子线路板的各面模拟图像;包括:
    从电子线路板的数据文件中获取电子线路板的CAD坐标数据以及印刷电路板线路设计文件;
    从元器件的数据库中获取元器件参数;
    根据所述电子线路板的CAD坐标数据、印刷电路板线路设计文件、元器件参数及X光机的参数,结合不同X光设备在不同X光机参数下的成像规律,分别生成所述电子线路板的各面模拟图像。
  4. 根据权利要求3所述的方法,其特征在于,所述X光机参数预先设定或 根据所述线路设计文件及元器件参数确定。
  5. 根据权利要求1所述的方法,其特征在于,根据所述各面模拟图像从真实图像中识别出生成被检目标真实图像所需要过滤的真实图像中的干涉图像元素,并从所述真实图像中过滤所述干涉图像元素,生成被检目标真实图像,具体包括:
    根据各面模拟图像识别出真实图像中与所述各面模拟图像对应的真实图像元素,并确定生成被检目标真实图像所需要过滤的真实图像中的干涉图像元素;
    用真实图像的图像特征过滤所述干涉图像元素的图像特征,生成被检目标的真实图像。
  6. 根据权利要求5所述的方法,其特征在于,所述根据各面模拟图像识别出真实图像中与所述各面模拟图像对应的真实图像元素,并确定生成被检目标真实图像所需要过滤的真实图像中的干涉图像图像元素,具体包括:
    根据正面模拟图像从真实图像中识别出与所述正面模拟图像对应的正面真实图像元素,并确定生成反面真实图像所需要过滤的正面真实图像中的干涉图像元素,或,
    根据反面模拟图像从真实图像中识别出与所述反面模拟图像对应的反面真实图像元素,并确定生成正面真实图像所需要过滤的反面真实图像中的干涉图像元素。
  7. 根据权利要求6所述的方法,其特征在于,所述图像特征包括成像灰度和/或像素。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述模拟图像及真实图像包括二维图像。
  9. 一种电子线路板X光检查图像生成装置,其特征在于,包括:
    模拟图像生成单元,用于根据双面电子线路板的数据文件以及X光机的参数,分别生成所述电子线路板的各面模拟图像;
    双面真实图像生成单元,用于将所述电子线路板进行X光成像,生成所述 电子线路板的真实图像,所述真实图像包含双面真实图像元素;
    被检目标真实图像生成单元,用于根据所述各面模拟图像从真实图像中识别出生成被检目标真实图像所需要过滤的真实图像中的干涉图像元素,并从所述真实图像中过滤所述干涉图像元素,生成被检目标真实图像。
  10. 根据权利要求9所述的装置,其特征在于,
    所述电子线路板的数据文件包括:电子线路板的CAD坐标数据、印刷电路板线路设计文件以及元器件数据库;
    所述元器件的数据库按照元器件的封装相关标准生成标准元器件库,特殊器件自定义生成;
    所述X光机的基本参数包括:X光管电压、X光管的角度、探测器的角度、分辨率和/或靶电流。
  11. 根据权利要求10所述的装置,其特征在于,所述模拟图像生成单元还包括:
    获取模块,用于从电子线路板的数据文件中获取电子线路板的CAD坐标数据、印刷电路板线路设计文件;以及从元器件的数据库中获取元器件参数。
  12. 根据权利要求11所述的装置,其特征在于,所述模拟图像生成单元还包括:
    X光机的参数确定模块,用于预先设定或根据所述印刷电路板线路设计文件及元器件参数确定X光机的参数。
  13. 根据权利要求9所述的装置,其特征在于,所述被检目标真实图像生成单元包括:
    识别模块,用于根据各面模拟图像识别出真实图像中与所述各面模拟图像对应的真实图像元素,并确定生成被检目标真实图像所需要过滤的真实图像中的干涉图像元素,
    计算模块,利用真实图像的图像特征过滤所述干涉图像元素的图像特征,生成被检目标真实图像。
  14. 根据权利要求13所述的装置,其特征在于,所述图像特征包括成像灰度和/或像素。
  15. 根据权利要求9-14中任一项所述的装置,其特征在于,所述模拟图像及真实图像包括二维图像。
  16. 一种电子线路板X光检查图像生成方法,其特征在于,包括:
    将所述电子线路板进行X光成像,分别生成所述电子线路板的单面真实图像及双面真实图像,
    根据所述单面真实图像从双面真实图像中识别出生成被检目标真实图像所需要过滤的干涉图像元素,并从所述双面真实图像中过滤所述干涉图像元素,生成被检目标真实图像。
  17. 根据权利要求16所述的方法,其特征在于,生成单面真实图像及双面真实图像的X光机参数一致。
  18. 根据权利要求17所述的方法,所述X光机参数包括:X光管电压、X光管的角度、探测器的角度、分辨率和/或靶电流。
  19. 根据权利要求16-18任一项所述的方法,其特征在于,根据所述单面真实图像从双面真实图像中识别出生成被检目标真实图像所需要过滤的干涉图像元素,并从所述真实图像中过滤所述干涉图像元素,生成被检目标真实图像,具体包括:
    根据单面真实图像识别出双面真实图像中与所述单面真实图像对应的真实图像元素,并确定生成被检目标真实图像所需要过滤的干涉图像元素;
    用双面真实图像的图像特征过滤所述干涉图像元素的图像特征,生成被检目标的真实图像。
  20. 根据权利要求19所述的方法,其特征在于,所述根据单面真实图像识别出真实图像中与所述单面真实图像对应的真实图像元素,并确定生成被检目标真实图像所需要过滤的干涉图像图像元素,具体包括:
    根据正面真实图像从双面真实图像中识别出与所述正面真实图像对应的真 实图像元素,并确定生成反面真实图像所需要过滤的干涉图像元素,或,
    根据反面真实图像从双面真实图像中识别出与所述反面真实图像对应的真实图像元素,并确定生成正面真实图像所需要过滤的干涉图像元素。
  21. 根据权利要求16-20任一项所述的方法,还包括:将制作所述电子线路板的印刷电路板单独进行X光成像,生成印刷电路板真实图像,所述根据所述单面真实图像从双面真实图像中识别出生成被检目标真实图像所需要过滤的干涉图像元素,并从所述真实图像中过滤所述干涉图像元素,生成被检目标真实图像,具体包括:
    根据单面真实图像及印刷电路板真实图像识别出双面真实图像中生成被检目标真实图像所需要过滤的干涉图像元素;
    用双面真实图像的图像特征过滤所述干涉图像元素的图像特征,生成被检目标的真实图像。
  22. 根据权利要求16-20任一项所述的方法,其特征在于,根据单面真实图像及印刷电路板真实图像识别出双面真实图像中生成被检目标真实图像所需要过滤的干涉图像元素;具体包括:
    根据正面真实图像及印刷电路板真实图像从双面真实图像中识别出生成反面真实图像所需要过滤的干涉图像元素,或,
    根据反面真实图像及印刷电路板真实图像从双面真实图像中识别出生成正面真实图像所需要过滤的干涉图像元素,或
    根据正、反单面真实图像及印刷电路板真实图像从双面真实图像中识别出生成印刷电路板真实图像所需要过滤的干涉图像元素。
  23. 根据权利要求19-22任一项所述的方法,其特征在于,所述图像特征包括成像灰度和/或像素。
  24. 根据权利要求16-23任一项所述的方法,其特征在于,所述真实图像包括二维图像。
  25. 一种电子线路板X光检查图像生成装置,其特征在于,包括:
    真实图像生成单元,用于将所述电子线路板进行X光成像,分别生成所述电子线路板的单面真实图像及双面真实图像,
    被检目标真实图像生成单元,用于根据所述单面真实图像从双面真实图像中识别出生成被检目标真实图像所需要过滤的干涉图像元素,并从所述双面真实图像中过滤所述干涉图像元素,生成被检目标真实图像。
  26. 根据权利要求25所述的装置,其特征在于,所述被检目标真实图像生成单元包括:
    识别模块,用于根据单面真实图像识别出双面真实图像中与所述单面真实图像对应的真实图像元素,并确定生成被检目标真实图像所需要过滤的干涉图像元素,
    计算模块,利用双面真实图像的图像特征过滤所述干涉图像元素的图像特征,生成被检目标真实图像。
  27. 根据权利要求25所述的装置,其特征在于,所述真实图像生成单元还用于将制作所述电子线路板的印刷电路板单独进行X光成像,生成印刷电路板真实图像,所述被检目标真实图像生成单元,具体用于:根据单面真实图像及印刷电路板真实图像识别出双面真实图像中生成被检目标真实图像所需要过滤的干涉图像元素;从所述双面真实图像中过滤所述干涉图像元素,生成被检目标真实图像。
  28. 根据权利要求27所述的装置,其特征在于,所述被检目标真实图像生成单元包括:
    识别模块,用于根据单面真实图像及印刷电路板真实图像识别出双面真实图像中生成被检目标真实图像所需要过滤的干涉图像元素,
    计算模块,利用双面真实图像的图像特征过滤所述干涉图像元素的图像特征,生成被检目标真实图像。
  29. 根据权利要求26或28所述的装置,其特征在于,所述图像特征包括成像灰度和/或像素。
  30. 根据权利要求25-29中任一项所述的装置,其特征在于,所述真实图像包括二维图像。
PCT/CN2014/095655 2014-12-05 2014-12-30 一种电子线路板x光检查图像生成方法及其装置 WO2016086486A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480001861.XA CN104541285B (zh) 2014-12-05 2014-12-30 一种电子线路板x光检查图像生成方法及其装置
US15/611,834 US10151711B2 (en) 2014-12-05 2017-06-02 Method and apparatus for generating X-ray inspection image of electronic circuit board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410736262 2014-12-05
CN201410736262.4 2014-12-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/611,834 Continuation US10151711B2 (en) 2014-12-05 2017-06-02 Method and apparatus for generating X-ray inspection image of electronic circuit board

Publications (1)

Publication Number Publication Date
WO2016086486A1 true WO2016086486A1 (zh) 2016-06-09

Family

ID=56090877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/095655 WO2016086486A1 (zh) 2014-12-05 2014-12-30 一种电子线路板x光检查图像生成方法及其装置

Country Status (2)

Country Link
US (1) US10151711B2 (zh)
WO (1) WO2016086486A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6237218B1 (en) * 1997-01-29 2001-05-29 Kabushiki Kaisha Toshiba Method and apparatus for manufacturing multilayered wiring board and multi-layered wiring board
CN1401107A (zh) * 2000-01-18 2003-03-05 索威森公司 检测印刷电路板缺陷的方法和系统
CN1611929A (zh) * 2003-10-27 2005-05-04 安捷伦科技有限公司 使用x射线检查印刷组件改进缺陷焊点检测的方法和装置
CN1869667A (zh) * 2006-06-08 2006-11-29 李贤伟 一种检测印刷电路板缺陷的轮廓分析方法
CN103543167A (zh) * 2013-10-08 2014-01-29 华南理工大学 一种基于知识库的三维x射线断层扫描检测系统及方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2397382A1 (en) 2000-01-18 2001-07-26 Solvision Inc. Method and system for detecting defects on a printed circuit board
US7245693B2 (en) * 2005-06-02 2007-07-17 Agilent Technologies, Inc. X-ray inspection system having on-axis and off-axis sensors
JP5907824B2 (ja) 2012-06-29 2016-04-26 株式会社リガク X線画像化装置及びx線画像化方法
CN103543168B (zh) 2013-10-12 2015-10-28 华南理工大学 一种多层封装基板缺陷的x射线检测方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6237218B1 (en) * 1997-01-29 2001-05-29 Kabushiki Kaisha Toshiba Method and apparatus for manufacturing multilayered wiring board and multi-layered wiring board
CN1401107A (zh) * 2000-01-18 2003-03-05 索威森公司 检测印刷电路板缺陷的方法和系统
CN1611929A (zh) * 2003-10-27 2005-05-04 安捷伦科技有限公司 使用x射线检查印刷组件改进缺陷焊点检测的方法和装置
CN1869667A (zh) * 2006-06-08 2006-11-29 李贤伟 一种检测印刷电路板缺陷的轮廓分析方法
CN103543167A (zh) * 2013-10-08 2014-01-29 华南理工大学 一种基于知识库的三维x射线断层扫描检测系统及方法

Also Published As

Publication number Publication date
US10151711B2 (en) 2018-12-11
US20170269007A1 (en) 2017-09-21

Similar Documents

Publication Publication Date Title
Malge et al. PCB defect detection, classification and localization using mathematical morphology and image processing tools
CN104713885A (zh) 一种用于pcb板在线检测的结构光辅助双目测量方法
JP6521261B2 (ja) 導電率分布導出方法および導電率分布導出装置
CN104837302B (zh) 品质管理系统以及内部检查装置
CN114494223A (zh) Pcb缺陷检测模型训练方法、装置、电子设备和存储介质
CN113412500B (zh) 模拟装置及模拟方法
Etiene et al. Verifying volume rendering using discretization error analysis
CN117274258A (zh) 主板图像的缺陷检测方法、系统、设备及存储介质
CN114902280A (zh) 分析装置及分析方法
WO2016086486A1 (zh) 一种电子线路板x光检查图像生成方法及其装置
Xiao et al. Adaptive Hybrid Framework for Multiscale Void Inspection of Chip Resistor Solder Joints
Nahar et al. Computer aided system for inspection of assembled PCB
JP4333349B2 (ja) 実装外観検査方法及び実装外観検査装置
JP2020165713A (ja) 検査データ出力装置、表示システムおよび検査データ出力方法
CN104541285B (zh) 一种电子线路板x光检查图像生成方法及其装置
CN112634439B (zh) 一种3d信息展示方法及装置
Kumar et al. Automated quality inspection of PCB assembly using image processing
Han et al. Application of X-ray digital radiography to online automated inspection of interior assembly structures of complex products
Kong A new method of inspection based on shape from shading
WO2024116675A1 (ja) 画像処理装置および画像処理方法
Tuncalp et al. Automated Image Processing System Design for Engineering Education: The Case of Automatic Inspection for Printed Circuit Boards
WO2021181792A1 (ja) 検査システム、検査方法及びプログラム
WO2024095721A1 (ja) 画像処理装置および画像処理方法
Wei et al. Research of express box defect detection based on machine vision
KR102369293B1 (ko) 듀얼 딥러닝을 이용한 제품의 내부 결함 검사 시스템 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14907357

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14907357

Country of ref document: EP

Kind code of ref document: A1