WO2016086383A1 - 弹性纤维干法纺丝组件和纺丝部件 - Google Patents

弹性纤维干法纺丝组件和纺丝部件 Download PDF

Info

Publication number
WO2016086383A1
WO2016086383A1 PCT/CN2014/093008 CN2014093008W WO2016086383A1 WO 2016086383 A1 WO2016086383 A1 WO 2016086383A1 CN 2014093008 W CN2014093008 W CN 2014093008W WO 2016086383 A1 WO2016086383 A1 WO 2016086383A1
Authority
WO
WIPO (PCT)
Prior art keywords
spinning
conversion
polymer solution
inlet
metering
Prior art date
Application number
PCT/CN2014/093008
Other languages
English (en)
French (fr)
Inventor
袁祖涛
张运启
Original Assignee
郑州中远氨纶工程技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 郑州中远氨纶工程技术有限公司 filed Critical 郑州中远氨纶工程技术有限公司
Priority to JP2017547033A priority Critical patent/JP6450468B2/ja
Priority to KR1020177014908A priority patent/KR101934380B1/ko
Priority to US15/533,034 priority patent/US20180291526A1/en
Priority to PCT/CN2014/093008 priority patent/WO2016086383A1/zh
Priority to EP14907342.1A priority patent/EP3228734B1/en
Priority to BR112017011558-1A priority patent/BR112017011558B1/pt
Publication of WO2016086383A1 publication Critical patent/WO2016086383A1/zh
Priority to US18/196,409 priority patent/US20230279584A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/06Feeding liquid to the spinning head
    • D01D1/09Control of pressure, temperature or feeding rate
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/04Dry spinning methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/01Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with flat filtering elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/50Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with multiple filtering elements, characterised by their mutual disposition
    • B01D29/56Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with multiple filtering elements, characterised by their mutual disposition in series connection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D35/00Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
    • B01D35/02Filters adapted for location in special places, e.g. pipe-lines, pumps, stop-cocks
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/02Preparation of spinning solutions
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/10Filtering or de-aerating the spinning solution or melt
    • D01D1/106Filtering
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D4/00Spinnerette packs; Cleaning thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D4/00Spinnerette packs; Cleaning thereof
    • D01D4/02Spinnerettes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D4/00Spinnerette packs; Cleaning thereof
    • D01D4/02Spinnerettes
    • D01D4/027Spinnerettes containing inserts
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D4/00Spinnerette packs; Cleaning thereof
    • D01D4/06Distributing spinning solution or melt to spinning nozzles
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D4/00Spinnerette packs; Cleaning thereof
    • D01D4/04Cleaning spinnerettes or other parts of the spinnerette packs
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/06Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyethers
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/12Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyureas
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/061Load-responsive characteristics elastic

Definitions

  • the invention relates to the technical field of elastic fiber production, in particular to an elastic fiber dry spinning assembly and a spinning component.
  • the structure of the existing spinning assembly includes a casing 1a having a plurality of mutually separated polymer solution passages 2a longitudinally.
  • the portion of the casing other than the passage is a cavity 3a, and the cavity 3a is used internally.
  • the fluid medium in heat exchange with the polymer solution in the channel is provided with a spinneret 4a in the passage.
  • the chemical raw materials required for the production of elastic fibers are polymerized to form a polymer solution, and the polymer solution is metered and distributed by a metering device to form a flow of each polymer solution, and each polymer solution solution flows into each channel of the temperature control box and The tow is ejected through the spinnerets in each channel to form a tow.
  • the spinneret In the process of dry spinning of elastic fibers such as spandex fibers, the spinneret is prone to clogging, gelation, etc., and the spinnerets need to be replaced or cleaned regularly or periodically. Since the conventional spin pack spinneret shown in Fig. 33 is installed inside the polymer solution passage and needs to be replaced or cleaned and maintained, it is usually necessary to remove the entire spinning assembly from the spinning member during maintenance, or, usually, Each spinneret is separately removed from each of the polymer solution channels, etc., which is time consuming, labor inefficient, and often interrupts the continuous production of the fibers.
  • Embodiments of the present invention provide an elastic fiber dry spinning assembly and a spinning member.
  • an elastic fiber dry spinning assembly comprising:
  • the temperature control box includes: a box body, the box body is longitudinally provided with a plurality of mutually separated polymer solution channels; the area of the box body other than each of the polymer solution channels is a cavity for circulating a fluid medium that exchanges heat with the polymer solution for elastic fiber dry spinning in the channel of the polymer solution;
  • the spinning portion detachably connected to the temperature control box, the spinning portion comprising a plurality of mutually insulated spinning hole groups, a plurality of the spinning hole groups and a plurality of the polymer solution channels
  • the exits correspond to each other.
  • an elastic fiber dry spinning component comprising:
  • the metering device is detachably connected to the temperature control box for metering and a plurality of the polymerizations
  • the solution solution channel distributes the polymer solution for the elastic fiber dry spinning.
  • the technical solution provided by the embodiments of the present invention can be used in, but not limited to, a dry spinning process of elastic fibers such as spandex fibers.
  • a spinning assembly provided on the one hand of the present invention, a temperature control box for temperature control of a polymer solution for elastic fiber dry spinning, and a spinning nozzle for spinning a polymer solution after temperature control treatment
  • the unit is provided as two relatively independent components and is detachably integrated into a detachable but relatively fixed unit for easy installation, maintenance and continuous production of the fiber, for example, in a spinning assembly.
  • the spinning part can be separated from the temperature control box, and the other spinning part of the cleaning can be replaced with the current spinning part.
  • the replacement is simple and convenient, and the influence on the continuous production of the fiber is small, and the replacement time is very small. It is short, and the spinning part can be cleaned after separation, which reduces the cleaning workload and improves the convenience and efficiency of installation and maintenance.
  • the spinning component provided by another aspect of the embodiment of the invention has the technical effect of the spinning component, and the components of the measuring device, the temperature control box and the spinning section are organically integrated into a spinning component from top to bottom.
  • the two can be detachably connected, the implementation is very flexible, and the structure is also very compact, so that the spacing between adjacent tows of the formed elastic fibers can be greatly reduced on the basis of meeting the production requirements, thereby Spraying more tows in a limited space increases the productivity of the spinning assembly and reduces the energy consumption per ton of product, thereby reducing the production cost of the product.
  • FIG. 1 is a schematic perspective view showing a three-dimensional structure of an elastic fiber dry spinning assembly according to an embodiment of the present invention
  • FIG. 2 is a schematic cross-sectional structural view of an elastic fiber dry spinning assembly according to an embodiment of the present invention
  • FIG. 3 is a schematic perspective view of a temperature control box for an elastic fiber dry spinning according to an embodiment of the present invention
  • FIG. 4 is a schematic cross-sectional structural view of a temperature control box for dry spinning of elastic fibers according to an embodiment of the present invention
  • Figure 5 is a schematic cross-sectional view taken along line A-A of Figure 4.
  • 6a is a schematic structural diagram of an intermediate component according to an embodiment of the present invention.
  • 6b is a schematic structural diagram of another intermediate component according to an embodiment of the present invention.
  • FIG. 7a is a schematic structural diagram of still another intermediate component according to an embodiment of the present invention.
  • FIG. 7b is a schematic structural diagram of still another intermediate component according to an embodiment of the present invention.
  • FIG. 8 is a schematic cross-sectional structural view of another temperature control box for dry spinning of elastic fibers according to an embodiment of the present invention.
  • FIG. 9 is a perspective structural view showing another elastic fiber dry spinning component according to an embodiment of the present invention. intention;
  • FIG. 10 is a schematic cross-sectional structural view of another elastic fiber dry spinning component according to an embodiment of the present invention.
  • Figure 11a is a cross-sectional view taken along line A-A of Figure 10;
  • Figure 11b is a cross-sectional view taken along line B-B of Figure 10;
  • Figure 11c is a cross-sectional view taken along line C-C of Figure 10;
  • Figure 11d is a cross-sectional view taken along line D-D of Figure 10;
  • Figure 11e is a cross-sectional view taken along line E-E of Figure 10;
  • Figure 11f is a cross-sectional view taken along the line F-F of Figure 10;
  • FIG. 12 is a schematic structural diagram of a first first metering device according to an embodiment of the present invention.
  • 13a is a schematic diagram of an arrangement of an inlet and an outlet of a metering unit according to an embodiment of the present invention
  • FIG. 13b is a schematic diagram of an arrangement arrangement of interface conversion components according to an embodiment of the present invention.
  • 13c is a schematic diagram of an arrangement of an interface conversion component outlet according to an embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of a second first metering device according to an embodiment of the present invention.
  • FIG. 15 is a schematic structural diagram of a third first metering device according to an embodiment of the present invention.
  • FIG. 16 is a schematic structural diagram of a fourth first metering device according to an embodiment of the present invention.
  • FIG. 17 is a schematic structural diagram of an interface conversion unit according to an embodiment of the present disclosure.
  • FIG. 18 is a schematic structural diagram of a fifth first metering device according to an embodiment of the present invention.
  • FIG. 19 is a schematic structural diagram of a sixth first metering device according to an embodiment of the present invention.
  • FIG. 20 is a schematic structural diagram of a seventh first metering device according to an embodiment of the present invention.
  • FIG. 21 is a schematic structural diagram of an eighth first metering device according to an embodiment of the present invention.
  • FIG. 22 is a schematic structural diagram of a ninth first metering device according to an embodiment of the present invention.
  • Figure 22b is a cross-sectional view of Figure 22a
  • Figure 22c is a cross-sectional view taken along line A-A of Figure 22b;
  • Figure 22d is a cross-sectional view taken along line B-B of Figure 22b;
  • Figure 22e is a cross-sectional view taken along line C-C of Figure 22b;
  • FIG. 23 is a schematic structural diagram of a metering device according to an embodiment of the present invention.
  • Figure 24 is a cross-sectional view of Figure 23;
  • 25 is a schematic diagram of an outlet arrangement manner of one side of a metering unit according to an embodiment of the present invention.
  • FIG. 26 is a schematic diagram of an arrangement manner of an inlet of a first conversion board according to an embodiment of the present invention.
  • FIG. 27 is a schematic diagram of an outlet arrangement manner of a first conversion board according to an embodiment of the present invention.
  • FIG. 28 is a schematic structural diagram of another metering device according to an embodiment of the present invention.
  • Figure 29 is a cross-sectional view of Figure 28;
  • Figure 30 is a cross-sectional view taken along the line A-A of the second conversion plate of Figure 29;
  • Figure 31 is a schematic view showing the structure of an elastic fiber dry spinning component according to an embodiment of the present invention.
  • FIG. 32 is a schematic structural view of another elastic fiber dry spinning component according to an embodiment of the present invention.
  • Figure 34 is a schematic view showing the structure of an elastic fiber dry spinning member in the prior art.
  • 11-first metering device 111-metering unit; 1111-importing unit inlet; 1112-metering unit outlet; 1113, 1123-circle; 112-interface conversion unit; 1121-interface conversion unit inlet; 1122-interface conversion Exit of the section; 1124-straight; 11201-first distribution plate; 11201'-first distribution daughterboard; 11202-second distribution plate; 11202'-second distribution daughterboard; 112011-through hole of the first distribution plate; 11203-seal ring; 11204-seal; 112021-flow-converting channel; 112022-through hole of second distribution plate; 113-bolt; 1141-solution inlet; 1142-solution flow channel; 115-gear motor; Coupling
  • 12-second metering device 121-metering unit; 1212-metering unit outlet; 1213, 1223-circle; 1214-conversion-converting channel; 122-first conversion plate; 1221-first conversion plate inlet; Outlet of the first conversion plate; 1224, 1252-straight; 1225-solution inlet; 124-drive shaft; 125-second conversion plate; 1251-through hole; 126-spinning assembly;
  • 3-temperature control box 31-box; 32-polymer solution channel; 320-polymer solution channel pore wall; 321-polymer solution channel inlet; 322-polymer solution channel outlet; 323, 324- Straight line; 33-cavity; 34-fluid medium; 35-intermediate part; 350-static mixer; 351-shunt part; 352-convergence part; 3511-inlet sub-portion; 3512-outlet sub-section; Flow section; 35111-hollow cylinder inlet section; 35112-inverted cone table distribution section; 36-seal ring; 371-fluid medium inlet; 372-fluid medium outlet; 38-filter component; 39-annular polymerization Stream of solution;
  • 4-spinning section 41-spinning hole group; 411-spinning hole; 412-spinning head; 413-straight line; 6-insulation board; 7-filter assembly; 8-heat protection board.
  • an elastic fiber dry spinning assembly comprising:
  • the temperature control box 3 includes: a box body 31, the box body 31 is longitudinally provided with a plurality of mutually separated polymer solution channels 32;
  • the area outside the solution passage 32 is a cavity for circulating a fluid medium that exchanges heat with the polymer solution for elastic fiber dry spinning in the channel of the polymer solution.
  • the distribution of the plurality of mutually isolated polymer solution channels 32 can be designed according to actual needs, such as distributing a plurality of polymer solution channels 32 into one or more rows and the like.
  • the detachable connection between the spinning section 4 and the temperature control box 3 is not limited, and may be, for example, but not limited to, bolted, screwed, snapped, or the like.
  • the distribution of the plurality of mutually isolated orifice groups 41 can also be designed according to actual needs. For example, the plurality of orifice groups 41 can be distributed into one or more rows corresponding to the plurality of polymer solution channels 32.
  • the spinning assembly provided by the embodiment of the invention can be used in a dry spinning process of an elastic fiber such as spandex fiber, and the spinning assembly is used for a temperature control box for temperature control of the polymer solution for elastic fiber dry spinning.
  • the spinning section for spinning the temperature-treated polymer solution is provided as two relatively independent components and is detachably integrated into a detachable but relatively fixed position for easy spinning.
  • the installation, maintenance and continuous production of the components for example, when the spinning assembly is replaced or cleaned and maintained, the spinning section can be separated from the temperature control box, and the other spinning section of the cleaning can be replaced with the current spinning section.
  • the replacement is simple and convenient, has little effect on the continuous production of the fiber, and can clean the spinning part after separation, thereby reducing the cleaning workload and improving the efficiency.
  • the overall structure of the spinning section 4 may be determined according to, but not limited to, the cross-sectional shape of the ramp used for dry spinning of the elastic fiber.
  • the spinning portion 4 may have a rectangular structure as a whole, but the plurality of the spinning hole groups 41 are linearly arranged, and the spinneret having a rectangular structure is advantageous for the rectangular shape used for dry spinning of the elastic fibers. Ramp adaptation.
  • the spinning hole group 41 includes: a spinning hole 411 and a spinneret sub-section disposed in the spinning hole 411, and the spinneret sub-section includes at least one spinneret 412 And at least one of the plurality of the spinning hole groups includes a spinneret sub-portion detachably connected to the corresponding spinning hole, the solution improves the maintenance and installation of the spinneret cleaning and replacement Sex.
  • a scheme in which the spinneret sub-section includes a plurality of spinnerets 412 can increase the number of tows and increase productivity.
  • the detachable connection manner of the spinneret subsection and the corresponding spinneret hole included in at least one of the plurality of the spinning orifice groups is not limited, and may be, for example, but not limited to, the spinneret subsection and Corresponding nozzle holes are interspersed into a connection or a threaded connection for ease of installation and maintenance, for example, a spray comprising a plurality of spinnerets 412
  • the wire head as a whole is pressed into the corresponding nozzle hole by interference, and the installation method is simple and convenient for positioning the respective spinnerets.
  • the plurality of spinnerets 412 integrally included in the spinning section 4 are linearly spaced apart on one or more parallel straight lines to be adapted to the spinnering process for the rectangular ramps used for dry spinning of the elastic fibers.
  • a side of the spinning section 4 away from the temperature control box 3 is provided with a heat protection plate 8 for reducing the spinning box during the use (the spinning box includes but is not limited to a ramp, etc.) Heat transfer of the spinning section 4.
  • the spinning assembly provided by the embodiment of the present invention is connected to the spinning box, for example, the spinning assembly can be installed on the upper part of the spinning box, and the spinning section is located in the temperature control box and Between the spinning boxes, the capillary bundle of the polymer solution ejected from the spinning section 4 is contacted by a temperature-controlled gas flow in the spinning box, and the solvent in the ejected material is removed by heat exchange to form an elastic fiber tow.
  • Temperature controlled gas flow can include, but is not limited to, temperature controlled air, temperature controlled nitrogen, temperature controlled inert gas, and the like. Since the temperature of the temperature-controlled airflow is generally high, the temperature-controlled airflow in the spinning box is transmitted to the spinning section 4, and a temperature difference is introduced to different parts of the spinning section 4, thereby affecting product quality.
  • a heat protection plate 8 is disposed on one side of the spinning portion 4 away from the temperature control box. By thermal isolation of the heat protection plate 8, heat transfer from the temperature control airflow in the spinning box to the spinning portion can be reduced, thereby facilitating Guarantee the quality of the product.
  • the material selected for the heat protection plate may be determined according to actual needs, and may be, but not limited to, a material that is not thermally conductive, such as a resin; the specific structure of the heat protection plate can be flexibly designed under the premise that the fiber production is normal; The embodiments of the present invention are not limited thereto.
  • At least one inlet of the orifice group 41 is provided with a filter assembly 7.
  • the filter assembly 7 By providing the filter assembly 7 at the inlet of the orifice group 41, the solution flowing out of the polymer solution passage can be filtered again through the filter assembly 7 before entering the orifice group 41, extending the replacement or cleaning of the orifice group.
  • the maintenance cycle due to the low cost of the filter assembly and easy replacement, therefore, the solution indirectly increases the production efficiency by extending the maintenance cycle of the orifice group.
  • the material selected by the filter may be determined according to actual needs, and may be, but not limited to, made of materials such as metal; the specific structure of the shape and size of the filter may be flexibly designed under the premise that the fiber production is normal; The embodiments of the invention are not limited in this regard.
  • the filtering component comprises: a multi-layer filter network assembled together, and at least two layers of the filter mesh have different mesh numbers, and the solution is filtered together by a multi-layer filter network set with different mesh numbers, which is beneficial to improvement.
  • the plurality of stacked filters are also provided with a sealed edging.
  • the material selected for the sealing edging can be determined according to actual needs, and the portion covering the edge of the multi-layer filter can be made by using materials such as soft material, corrosion-resistant rubber, etc., and the solution achieves the above technical effects. On the basis of this, it is also possible to seal the inlet of the orifice group and reduce the probability of introduction of impurities.
  • the spinning assembly is further provided with a first rotating device for rotating the spinning assembly to change the orientation of the spinning portion away from the side of the temperature control box.
  • the orientation of the side of the spinning section away from the temperature control box may be changed by the first rotating device rotating the spinning assembly in whole or in part, such that the rotating spinning section is away from the side of the temperature control box
  • At least one component in the spin section is convenient
  • a state of operation such as disassembly, installation, cleaning, or maintenance, which may include, but is not limited to, an upward state in which the spinning assembly is rotated at a certain angle (e.g., 180 degrees) in whole or in part, and the like. This solution improves the ease of handling, installation, cleaning or maintenance.
  • the main function of the temperature control box in the dry spinning production process of elastic fibers such as spandex is to keep the temperature of the polymer solution in the channel constant.
  • the temperature has a large influence on the viscosity of the polymer solution of the dry spun elastic fiber. If the temperature of the polymer solution flowing into the orifice is not uniform, it will directly affect the viscosity of the polymer solution passing through the passage, thereby affecting the rheology of the polymer solution entering the spinneret, which may cause spray through the spinneret.
  • the tow is unstable, such as uneven thickness of the tow, intermittent and so on.
  • the temperature control capability of the temperature control box becomes more important under the condition that the flow rate of the polymer solution of the temperature control box is continuously increased.
  • the inventors of the present invention found in the process of practicing the embodiments of the present invention that in the dry spinning production process of elastic fibers such as spandex based on the existing temperature control box, as shown in FIG. 32, the polymer solution passage 2a flows.
  • the inner polymer solution undergoes non-contact heat exchange with the fluid medium in the cavity 3a through the wall surface of the polymer solution passage 2a, since the polymer solution flowing into the polymer solution passage 2a is a solid stream having a certain size,
  • the degree of heat exchange between different parts of the polymer solution and the fluid medium may vary, especially when the polymer solution is a solid stream having a larger size and/or a faster flow rate of the polymer solution, etc., the polymer solution
  • the center portion temperature is lower than the edge portion, etc., i.e., different portions of the radial temperature difference of the polymer solution in the polymer solution passage 2a, so that the temperature of the polymer solution flowing into the nozzle hole 4a unevenness constant. Since the temperature has a large influence on the viscosity of the polymer solution for dry spinning of elastic fibers such as spandex, if the temperature of the polymer solution flowing into the orifice 4a is not uniform, it directly affects the passage through the passage.
  • the viscosity of the polymer solution which in turn affects the rheology of the polymer solution entering the spinneret, may cause the tow of the spinneret to be unstable, such as uneven thickness of the tow, intermittent, etc., affecting the fiber. Quality, if serious, may affect the continuous operation of dry spinning.
  • FIG. 3 is a schematic perspective structural view of a temperature control box for dry spinning of an elastic fiber according to an embodiment of the present invention
  • FIG. 4 is a schematic cross-sectional structural view of a temperature control box for dry spinning of an elastic fiber according to an embodiment of the present invention
  • Figure 5 is a cross-sectional view taken along line AA of Figure 4;
  • a temperature control box for dry spinning of elastic fibers according to an embodiment of the present invention includes:
  • box body 31 is longitudinally provided with a plurality of mutually separated polymer solution channels 32;
  • a region of the tank 31 other than each of the polymer solution passages 32 is a cavity 33 for circulating a polymer solution for elastic fiber dry spinning in the polymer solution passage 32.
  • An intermediate member 35 is provided in the polymer solution passage 32 for reducing the temperature difference between different portions of the polymer solution flowing out of the polymer solution passage 32.
  • the temperature control box provided by the embodiment of the invention can be used in the dry spinning production process of elastic fibers such as spandex. Since the influence of the temperature on the viscosity of the polymer solution for preparing the spandex is relatively large, the temperature control box provided by the embodiment of the present invention is used in the dry spinning process of the spandex, and the beneficial effects obtained are also more obvious.
  • the chemical raw materials required for the production of elastic fibers are polymerized to form a polymer solution, and the polymer solution is metered and distributed by a metering device to form a flow of each polymer solution, and each polymer solution solution flows into the temperature control box.
  • the polymer solution flowing into the channels of each polymer solution acts as an intermediate member disposed in each polymer solution channel to reduce the polymer solution flowing out through the respective polymer solution channels 32.
  • the temperature difference between the different portions is such that the polymer solution flowing out through the respective polymer solution channels 32 is kept at a constant temperature and uniform in viscosity.
  • the constant temperature and uniform viscosity of the polymer solution enters the spinneret in the dry spinning production process for spin coating, which is beneficial to ensure the rheological property of the polymer solution entering the spinneret, so that the spinneret is ejected.
  • the tow is stabilized, thereby increasing the product quality of the prepared fiber.
  • the specific structure of the intermediate member 35 is not limited in the present invention, and a specific structure that can realize the function of the intermediate member 35 can be designed according to actual needs.
  • the intermediate member 35 includes: a static mixer 350 for dispersing and mixing the polymer solution entering the channel of the polymer solution to reduce different radial portions of the polymer solution. Temperature difference.
  • the specific structure of the static mixer can be designed according to actual needs, and the comparison of the present invention is not limited.
  • the static mixer 350 may employ a twist-like structure as shown in Figure 6a by which the polymer solution alternately flows clockwise and counterclockwise in the polymer solution channel to increase the polymer solution and polymer.
  • the frequency of heat exchange of the pore walls 320 of the solution channels increases the heat exchange efficiency of different portions of the polymer solution, thereby minimizing the temperature differential across different portions of the polymer solution flowing out of the polymer solution channels.
  • the static mixer 350 can employ a cross-over structure as shown in Figure 6b, by which different portions of the polymer solution are split and remixed multiple times in the polymer solution channel to increase polymer solution and polymerization.
  • the heat exchange frequency of the pore walls 320 of the solution channel also increases the heat exchange between different parts of the polymer solution, improves the heat exchange efficiency of different parts of the polymer solution, thereby minimizing the passage through the polymer solution.
  • the intermediate member 35 includes a diverting portion 351 for converting a cross-sectional shape of the polymer solution entering the polymer solution channel from a solid shape to a hollow annular shape.
  • the solid shape means that the polymer solution in the channel of the polymer solution as a whole forms a stream, and the inside of the stream has no spatial distribution like a cavity.
  • the hollow annular shape means that the polymer solution in the polymer channel forms a stream distributed in a ring shape, the center portion of the stream having a spatial distribution similar to a cavity. Since the polymer solution in the polymer solution channel 32 is through the polymer solution channel 32 The wall surface exchanges heat with the fluid medium 34 in the cavity 33.
  • the solution converts the cross-sectional shape of the polymer solution entering the polymer solution channel into a hollow annular shape through the diverting portion, so that the polymer solution diameter
  • the distribution is as close as possible to the polymer solution channel 32, increasing the contact area of the heat exchange so that different portions of the polymer solution radially, through the wall of the polymer solution channel 32 and the fluid medium within the cavity 33, achieve sufficient, uniform heat. Exchange, thereby reducing the temperature difference between different portions of the polymer solution in the radial direction.
  • the solid shape is a circular shape
  • the hollow annular shape is a circular ring shape, and the solution can be more matched with the case of a circular polymer solution channel, thereby improving heat exchange efficiency and Uniformity.
  • the flow dividing portion 351 includes: an inlet liquid portion 3511, a liquid discharge portion 3512, and a flow guiding portion 3513; the liquid inlet sub-portion 3511 and the flow guiding sub-portion 3513 are disposed in the longitudinal direction; the liquid discharge The sub-portion 3512 communicates with the liquid inlet sub-portion 3511 for drawing the polymer solution entering the liquid-injecting sub-portion 3511 to the outer wall of the flow guiding sub-portion 3513 and flowing down the outer wall.
  • the polymer solution metered and distributed by the metering device flows into the liquid inlet portion, and the cross-sectional area of the polymer solution flowing into the liquid inlet portion is a solid stream (such as a polymer solution stream having a circular cross section). And then flowing out through the liquid outlet portion and flowing along the outer wall of the flow guiding portion, there is no polymer solution inside the guiding portion, and the cross section of the polymer solution flowing down the outer wall of the guiding portion is a hollow stream (such as a cross section)
  • the annular polymer solution stream 39) thus increases the contact area of the polymer solution with the wall surface of the polymer solution passage 32 so that different portions of the polymer solution pass radially through the wall of the polymer solution passage 32. A sufficient, uniform heat exchange with the fluid medium within the cavity 33 is achieved thereby reducing the temperature differential across different portions of the polymer solution in the radial direction.
  • the inner diameter of the liquid inlet sub-portion 3511 is smaller than the outer diameter of the flow guiding sub-portion 3513, and the liquid discharging sub-portion 3512 has an expanded structure.
  • the outlet of the liquid discharge sub-portion 3512 having an expanded structure is distributed along the outer edge of the flow guiding sub-portion 3513.
  • the polymer solution in the liquid inlet sub-portion 3511 having a smaller inner diameter can be led out through the outlet of the liquid-extracting portion 3512, and the outer diameter is larger.
  • the outer wall of the sub-portion 3513 flows down (see the arrow of FIG. 7a for the flow of the polymer solution), whereby the cross section of the polymer solution is converted from a solid shape such as a circle to a hollow ring shape such as a circular ring.
  • the liquid inlet sub-portion 3511 includes a hollow cylinder liquid inlet portion 35111 and an inverted frustum distribution portion 35112 which are disposed in the longitudinal direction; the upper surface of the inverted frustum distribution portion 35112 communicates with the hollow cylinder liquid inlet portion 35111 The lower surface is non-connected to the flow guiding portion 3513; the inlet of the liquid discharging sub-portion 3512 having the expanded structure communicates with the side surface of the inverted frustum distributing portion 35112.
  • the flow guiding sub-portion may have a cylindrical structure, and the guiding sub-portion may be designed as a hollow or solid structure according to actual needs, and the hollow structure is also beneficial to save consumables.
  • the liquid inlet sub-section of the solution has a compact structure, and the solution can effectively disperse a small bundle of polymer solution entering the polymer solution channel from a solid circular stream to a circle centered on the waveguide.
  • An annular stream thereby increasing the flow of polymer solution on the outer wall of the flow guide
  • the contact area of the wall of the polymer solution channel thereby increasing the efficiency and uniformity of heat exchange through the wall to the heat exchange medium in the cavity.
  • the intermediate component provided by the solution has a lower structural cost.
  • the inner diameter of the liquid inlet portion 3511 is larger than the outer diameter of the flow guiding portion 3513, and the liquid discharging portion 3512 is disposed at the liquid inlet.
  • the bottom surface of the portion 3511 is distributed along the outer edge of the flow guiding portion 3513.
  • the polymer solution in the liquid inlet portion 3511 having a larger inner diameter can be taken out through the outlet of the liquid outlet portion 3512 and then flowed along the outer wall of the smaller outer diameter guide portion 3513 (refer to the flow of the polymer solution) The arrow of Figure 7b), thereby converting the cross section of the polymer solution from a solid shape to a hollow annular shape.
  • the liquid inlet sub-portion has a hollow cylindrical structure
  • the flow guiding sub-portion has a cylindrical structure, thereby realizing conversion of a cross section of the polymer solution from a circular solid shape to a hollow shape such as a circular ring shape. Ring shape.
  • the intermediate member may further include: a confluence portion 352 connected to the lower portion of the diverting portion 351 for converging the polymer solution flowing out of the diverting portion 351 into a solid stream.
  • the confluence has a tapered structure.
  • the polymer solution flowing down the outer wall of the flow guiding portion re-converges into a solid stream after passing through the confluent portion 352 having a structure such as a taper, thereby facilitating the polymer.
  • the polymer solution flowing out of the solution channel flows exactly into the spinneret for subsequent spinning.
  • the intermediate component provided by the solution has a lower structural cost.
  • At least one inlet of the polymer solution channel 32 of the plurality of polymer solution channels is provided with a sealing ring 36, for example, in each of the polymer solution channels 32.
  • the inlet is provided with a sealing ring 36 to prevent the polymer solution from flowing into the cavity.
  • the tank body 31 is further provided with a fluid medium inlet 371 and a fluid medium outlet 372.
  • the fluid medium 34 flows into the cavity 33 through the fluid medium inlet 371 and passes through the chamber.
  • the fluid medium outlet 372 flows out of the tank 31.
  • the solution facilitates flow control of the fluid medium in the cavity by providing an inlet and an outlet of the fluid medium on the tank, rapidly exchanges heat with the polymer solution in the polymer solution passage through the flow of the fluid medium, and controls the fluid.
  • the temperature of the medium is such that the polymer solution in the channel of the polymer solution is uniformly thermostated.
  • the position design of the fluid medium inlet 371 and the fluid medium outlet 372 can be determined according to actual needs.
  • the fluid medium inlet 371 is disposed at a portion of the upper surface of the casing 31 near a side of the casing 31, and the fluid medium outlet 372 is disposed on the upper surface of the casing 31 near the casing. The portion of the other side of the body 31.
  • the solution facilitates the sufficient flow of the fluid medium in different parts of the cavity to ensure the constant temperature of the fluid medium in the cavity, thereby maintaining the thermal insulation of the polymer solution in the polymer solution channel.
  • the temperature control box further includes: a filtering component 38 disposed under the intermediate component 35 for filtering the polymer solution flowing out of the intermediate component 35.
  • the filter component 38 can include, but is not limited to, a screen. The arrangement of the filter member under the intermediate member facilitates reducing the impurity content of the polymer solution entering the spinneret, thereby facilitating the improvement of product quality and prolonging the maintenance cycle of the spinneret replacement or cleaning.
  • the elastic fiber dry spinning assembly may further include a metering device 1 as shown in FIGS. 10-11f, the metering device 1 and the
  • the temperature control box 3 is detachably connected for metering and dispensing the polymer solution for the elastic fiber dry spinning to a plurality of the polymer solution channels.
  • the solution organically integrates the components of the measuring device 1, the temperature control box 3, the spinning section 4 and the like from top to bottom into a spinning assembly as a whole, and the two can be detachably connected, and the implementation is very flexible and the structure is very flexible.
  • a heat insulation board 6 is disposed between the metering device 1 and the temperature control box 3 for reducing heat exchange of the temperature control box 3 to the metering device 1.
  • the heat exchange fluid medium needs to be circulated in the cavity of the temperature control box for the purpose of temperature control of the polymer solution, and the temperature of the fluid medium and/or the fluid medium can be determined according to actual process conditions.
  • the metering device and the temperature control box are detachably connected in the upper and lower order, and the solution may be adversely affected by the different types and/or different temperature fluid mediums.
  • the heat insulation plate is arranged between the two to thermally isolate the two, thereby reducing the heat that may be transferred to the metering device by the temperature control box, thereby ensuring the guarantee The quality of the product.
  • the material selected for the heat insulation board may be determined according to actual needs, and may be, but not limited to, a material that is not thermally conductive, such as a resin; the specific structure of the heat insulation board can be flexibly designed under the premise that the fiber production is normal; The embodiments of the present invention are not limited thereto.
  • the spinning member is further provided with a second rotating device for rotating the spinning member to change the orientation of the spinning portion away from the side of the temperature control box.
  • the orientation of the side of the spinning section away from the temperature control box may be changed by the second rotating means rotating the spinning member in whole or in part so that the spinning section is rotated away from the side of the temperature control box
  • At least one component in the spinning section is convenient for a state of operation such as disassembly, installation, cleaning or maintenance, and the state may include, but is not limited to, an upward state in which the spinning assembly is rotated at a certain angle (for example, 180 degrees) in whole or in part. . This solution improves the ease of handling, installation, cleaning or maintenance.
  • the metering device comprises at least one inlet and a plurality of outlets, at least a plurality of outlets are linearly arranged; at least a plurality of inlets and outlets of the polymer solution passages of the temperature control box are linearly arranged; At least a plurality of orifice groups of the spinning section are linearly arranged. At least a plurality of outlets of the metering unit in the metering device are arranged in a non-linear arrangement (for example, the metering device comprises at least one first metering device 11 , an outlet of a plurality of metering units of a metering unit 111 of a first metering device 11 The center trajectory of the 1112 is a circle 1113 as shown in FIG.
  • the central trajectory of the outlet 1122 of the plurality of interface conversion portions of the interface conversion portion 112 of the device 11 is a straight line 1124 as shown in FIG. 11c, and is at the inlet of at least a plurality of the polymer solution channels of the temperature control box.
  • the central trajectory is a line 323 as shown in Figure 11d; the outlet of at least a plurality of said polymer solution channels of the temperature control box (e.g., the center of the outlet 322 of the plurality of polymer solution channels of the temperature control box 3)
  • the trajectory is in a straight line 324) as shown in FIG. 11e, and is linearly arranged corresponding to at least a plurality of nozzle groups of the spinning portion and correspondingly connected (for example, the plurality of nozzle holes 41 of the spinning section 4)
  • the center trajectory is a straight line 413 as shown in Fig. 11f.
  • the “non-linear arrangement” includes a plurality of inlets or outlets as a group or divided into groups, and the arrangement manner of each group of inlets or outlets is arranged in a non-linear manner, for example, each Group inlets or outlets are distributed over a circle or arc, etc.;
  • the "consistent non-linear arrangement” includes the same or similar non-linear arrangement of different groups of inlets or outlets, for example, different groups of imports or exports Arranged on a circumference or arc of the same radius and connected in one-to-one correspondence, or different sets of inlets or outlets are dispersedly arranged on a circumference or arc having a different radius and are in one-to-one correspondence;
  • the "linear arrangement” includes a plurality of inlets Or the outlets are grouped or divided into groups, and the arrangement of the inlets or outlets of each group is arranged in a straight line manner.
  • each group of inlets or outlets are respectively arranged in a straight line or dispersedly arranged in a plurality of parallels with a certain interval.
  • the "corresponding linear arrangement” includes the same or similar linear arrangement of different sets of inlets or outlets.
  • the "circumference”, “arc”, “straight line” are used to indicate the approximate trajectory shape of a plurality of inlet or outlet center lines or contours.
  • the metering device of the conventional technology adopts the metering pump head 34a as shown in FIG. 34
  • the metering pump head 34a is a standard product of the pump head manufacturer, and generally includes an inlet and a plurality of outlets.
  • the outlet 34b of the metering pump head is non-linearly dispersedly arranged on one or more circumferences
  • the inlet 34e (s) of the spinning assembly is linearly dispersed in two linear lines with a certain interval, the metering pump head
  • the non-linear arrangement of the outlets 34b and the linear arrangement of the inlets of the spinning assemblies 34d are not corresponding.
  • a metal hose 34c is usually required.
  • 34b is connected via a portion of the metal hose 34c to the inlet 34e of the partial spinning assembly.
  • the outlet of the metering device and the inlet connection of the spinning assembly need to be used.
  • Many metal hoses add a lot of connectors, which increases the possibility of forming leaks.
  • the length and bending degree of different metal hoses are difficult to ensure the same, which may result in a metered solution.
  • the flow before the flow reaches the spinneret in the spinning assembly is different, so the rheology of the solution sprayed through the spinneret may be different, especially for the finer solution flow, which results in a larger spin box.
  • the physical properties of the spandex coming out may be inconsistent.
  • the outlet of the metering device and the inlet of the spinning assembly do not need to be metal hoses and can be directly connected, the defects that may be caused by the use of metal hose connections in the prior art can be overcome.
  • the metering device 1 can include one or more first metering devices, and the temperature control box is detachably coupled to at least one of the first metering devices.
  • the first metering device 11 may include: at least one metering unit 111 and at least one interface converting portion 112, wherein: the metering unit 111 includes at least one inlet and a plurality of outlets, and the metering Multiple of unit 111 The interface is in a non-linear arrangement; the interface conversion portion 112 includes a plurality of inlets and a plurality of outlets correspondingly connected through the plurality of flow-converting channels, at least a portion of the inlet of the interface conversion portion 112 and a metering unit At least partially exiting and correspondingly communicating, a plurality of outlets of the interface conversion portion 112 are linearly arranged, wherein at least a portion of the outlet of the interface conversion portion 112 and at least a portion of the polymer solution of the temperature control box 3
  • the channels are in a
  • a polymer solution for dry spinning of fibers such as spandex flows through the inlet of the metering unit for precise metering and distribution, and the metering unit measures a small number of small strands.
  • the solution flow is distributed to the inlet of each of the interface conversion portions, and flows out from the outlet of the interface conversion portion via the respective respective flow conversion conversion channels.
  • the solution flow flowing out through the outlet of the interface conversion portion enters a spinning assembly in a subsequent process of fiber spinning such as spandex for filtration, heat preservation and/or spinning, and the discharged tow is
  • the solvent is volatilized in a cavity spinning box containing a high temperature to form a fiber tow such as spandex.
  • the inlet, the diversion conversion channel and the outlet of the interface conversion part may be designed as different parts that communicate with each other according to the needs of the actual process, or may be designed as different parts of an integral part, such as an inlet and an outlet respectively.
  • the embodiments of the present invention do not limit the two ends of the flow conversion channel.
  • the interface conversion unit is added to the metering device, and the plurality of outlets of the metering unit that are non-linearly arranged are directly connected to the plurality of inlets that are non-linearly arranged by the interface conversion unit.
  • the plurality of inlets of the interface conversion unit that are non-linearly arranged are connected to the plurality of outlets that are linearly arranged through the plurality of flow-converting conversion channels, thereby finally converting the nonlinear arrangement of the outlets of the metering units into linear Arrangement.
  • the metering device can be applied to, but not limited to, fiber dry spinning production such as spandex, in order to realize the straight matching of the plurality of inlets linearly arranged in the downstream process such as the spinning assembly and the fiber spinning component. even.
  • a metering device is used to accurately meter and distribute the polymer solution for spandex preparation, and to deliver the metered and dispensed small solution stream separately to the spinning assembly for spandex formation.
  • Process processing At present, the plurality of inlets of the spinning assembly are mainly arranged in a linear arrangement.
  • the linear arrangement of the outlets of the interface conversion portion in the metering device provided by the embodiment of the present invention can be correspondingly designed according to the linear arrangement of the plurality of inlets of the spinning assembly, so that
  • the metering device provided by the embodiment of the invention can convert the non-linear arrangement of the existing metering unit into the outlet of the linear array to match the linear arrangement of the plurality of inlets of the spinning assembly (eg, the linear arrangement is the same) And the position corresponds to), thereby realizing that the metal hose can be directly connected between the outlet of the metering device and the inlet of the spinning assembly, thereby saving the space required for arranging the metal hose joint, and the space saved can be arranged more.
  • the multiple solution flow inlets and outlets allow the spinning assembly to eject more tows in a limited space, thereby increasing efficiency and reducing production costs.
  • the interface conversion unit and the meter is provided to improve the convenience of cleaning and maintenance.
  • the number of the metering units may be determined according to actual production requirements, and may be one or more.
  • the metering unit is a component for realizing the precise metering and dispensing function of the polymer solution for fiber production such as spandex. To realize this function, the specific device structure of the metering unit is not limited. In practical applications, it is optional but not limited to Standard metering pump from the manufacturer.
  • the quantity of the inlet and the outlet of the metering unit can also be determined according to the actual production requirements.
  • the metering unit can include one inlet or multiple inlets, one or more outlets, and multiple measuring units.
  • the outlet is symmetrically and non-linearly arranged around the inlet of the metering unit, and the polymer solution for spandex production flows in through the inlet of the metering unit, and is accurately metered and distributed into a plurality of equal small solution streams through a plurality of outlets of the metering unit.
  • an inlet 1111 of the metering unit is located at a center of a circle, and an outlet 1112 (a plurality of outlets) of the metering unit is dispersedly arranged in a plurality of concentric circles. On the circumference of 1113, this solution can place more outlets on the metering unit 111.
  • a plurality of outlets of the metering unit may be dispersedly arranged on a circumference or an arc; or, a plurality of outlets of the metering unit are also dispersedly arranged.
  • the embodiment of the present invention is not limited to the arcs of a plurality of concentric circles.
  • the number of the interface conversion sections may be determined according to actual production requirements, and may be one or more.
  • the interface conversion unit is a component for realizing the non-linear arrangement of the outlet of the metering unit to the linear arrangement conversion. To implement this function, the specific device structure of the interface conversion unit is not limited.
  • the interface conversion unit includes a plurality of inlets, a plurality of outlets, and a plurality of flow-converting conversion channels, and an inlet is connected to an outlet via a flow-converting conversion channel. In an optional implementation manner, as shown in FIG.
  • an interface conversion portion 112 includes a plurality of inlets and a plurality of outlets, and a non-linear arrangement of the inlets 1121 (at least a portion of the inlets) of the interface conversion portion and an outlet 1112 of the metering unit
  • the non-linear arrangement of the plurality of outlets corresponds to at least part of the inlet of the interface conversion portion being arranged on a circumference or an arc, or dispersedly arranged on a circumference or an arc of a plurality of concentric circles, for example:
  • the inlets 1121 (at least partially inlets) of the interface conversion portion may be dispersedly arranged on the circumference of the plurality of concentric circles 1123.
  • outlets 1112 the plurality of outlets of one of the metering units are dispersedly arranged on a circumference
  • the inlets 1121 (at least part of the inlets) of the interface conversion portion are also correspondingly arranged on a circumference; an outlet 1122 (a plurality of outlets) of the interface conversion portion is dispersedly arranged on a plurality of parallel lines having a certain interval, such as Dispersely arranged on two parallel lines with a certain interval.
  • the solution can arrange more outlets on the interface conversion part and the layout structure is more compact to meet the application requirements of higher density spinning; of course, if the space permits or the number of outlets is not large, the interface conversion part
  • the outlets are also arbitrarily arranged on a line 1124, as shown in FIG. 13c, which is not limited by the embodiment of the present invention.
  • a sealing ring may be disposed at a corresponding connection between the outlet 1112 of the metering unit and the inlet 1121 of the interface conversion portion to prevent the solutions of the different outlets of the metering unit from circulating with each other, thereby ensuring accurate measurement results.
  • the nonlinear (eg, circumferential) arrangement of the plurality of outlets of the metering unit is A non-linear (eg, circumferential) arrangement of at least a portion of the inlet of the interface conversion portion, a linear (eg, linear) arrangement of the plurality of outlets of the interface conversion portion, and a spinning process in the dry spinning process of the spandex dry spinning process
  • the linear (e.g., linear) arrangement of the inlets of the components corresponds to thereby converting the non-linear layout of the metering unit outlets to the linear layout required for the inlet of the spinning components via the interface conversion.
  • the number of metering units, interface conversion parts and their assembly relationships can be flexibly selected according to actual needs such as actual capacity and equipment layout convenience.
  • the metering device shown in FIG. 12 may include a metering unit 111 and an interface converting portion 112, and the plurality of outlets of the metering unit 111 are nonlinearly corresponding to the plurality of inlets of the interface converting portion 112 (eg, circumference) Arranging and correspondingly communicating, the plurality of inlets of the interface conversion unit 112 are respectively connected to the plurality of outlets of the interface conversion unit 112 via the plurality of flow conversion conversion channels inside the interface conversion unit, and the interface conversion unit is
  • the outlets are arranged linearly (e.g., in a straight line), corresponding to the linear arrangement of the plurality of inlets of the spinning component in the subsequent process of the spandex dry spinning, facilitating direct docking of the two.
  • the solution can arrange one or more metering devices according to actual capacity and process requirements, and directly connect a plurality of metering devices arranged with a spinning component to meet the application requirements of higher density spinning.
  • the metering device shown in FIG. 14 may include a plurality of metering units 111 (two metering units are illustrated in the figure) and an interface converting unit 112, and multiple outlets of each metering unit 111 and the interface are converted.
  • a part of the inlets of the part are arranged in a corresponding non-linear (such as a circumferential shape) and are correspondingly connected.
  • the plurality of inlets of the interface conversion part 112 are respectively connected to the plurality of flow-converting channels inside the interface conversion part and the interface conversion part 112.
  • outlets are correspondingly connected, and the plurality of outlets of the interface conversion portion are arranged linearly (such as in a straight line), corresponding to the linear arrangement of the plurality of inlets of the spinning component in the subsequent process of the spandex dry spinning, which is convenient for the direct Docking.
  • a plurality of metering units share an interface conversion unit, and the nonlinear outlet arrangement manner of the plurality of metering units is converted to the linear outlet arrangement mode, and the structure is compact and the space utilization rate is high.
  • the metering device shown in FIG. 15 may include one metering unit 111 and a plurality of interface converting portions 112 (two interface converting portions are illustrated in the figure), at least a part of the outlet of the metering unit 111 and an interface
  • the inlets of the conversion portion are arranged in a corresponding non-linear (such as an arc shape) and are correspondingly connected.
  • the plurality of inlets of each of the interface conversion portions 112 and the plurality of current-converting conversion channels inside the interface conversion portion are respectively associated with the interface conversion portion 112.
  • the plurality of outlets are correspondingly connected, and the plurality of outlets of the interface conversion sections are arranged linearly (eg, linearly), corresponding to the linear arrangement of the plurality of inlets of the spinning component in the subsequent process of the spandex dry spinning, which is convenient for the two Direct docking.
  • the two interface conversion parts share one metering unit, and realize the conversion of the non-linear outlet arrangement mode of the metering unit to the linear outlet arrangement mode, the structure is compact, the layout is flexible, and the space utilization rate is high.
  • the interface conversion portion in order to reduce the thickness of the interface conversion portion, includes: at least one first distribution plate and at least one second distribution plate connected to each other;
  • the first distribution plate includes a plurality of through holes, and an inlet of at least a portion of the through holes of the first distribution plate is correspondingly non-linearly arranged and correspondingly connected to an outlet of the metering unit;
  • Distribution The plate includes a plurality of flow guiding conversion channels and a plurality of through holes, one end of a flow guiding conversion channel of the second distribution plate is connected to an outlet of a through hole of the first distribution plate, and the other end is connected to the second An inlet of a through hole of the distribution plate, and an outlet of the plurality of through holes of the second distribution plate are linearly arranged.
  • the number and/or assembly relationship of the first distribution plate, the second distribution plate, and the metering unit can be determined according to actual needs, and the implementation manner is very flexible, and can meet the practical application requirements of different equipment assembly and process production.
  • an interface conversion portion 112 includes a first distribution plate 11201 and a second distribution plate 11202.
  • the first distribution plate 11201 includes a plurality of through holes, and a through hole 112011 of the first distribution plate.
  • the inlet is arranged in a non-linear (eg, circumferential) manner with the outlet 1112 of the metering unit.
  • the second distribution plate 11202 and the first distribution plate 11201 are connected to each other with a plurality of diversions.
  • each of the diversion conversion channels 112021 is connected to the outlet of the through hole 112011 of the first distribution plate, and the other end is connected to the inlet of the through hole 112022 of the second distribution plate, the second distribution plate
  • the exits of the through holes 112022 are linearly arranged, such as being dispersedly arranged on two parallel lines having a certain interval.
  • the metering device includes two metering units 111, a first distribution plate 11201, and a second distribution plate 11202.
  • the plurality of outlets of each metering unit 111 are arranged in a non-linear (e.g., circumferential) arrangement with the inlets of the partial through holes of the first distribution plate 11201, and the two metering units share a first distribution plate and a second distribution plate.
  • the metering device includes two metering units 111, two first distribution plates 11201, and a second distribution plate 11202.
  • the plurality of outlets of each metering unit 111 are arranged in a non-linear (eg, circumferential) manner with the inlets of the plurality of through holes of a first distribution plate 11201, each metering unit corresponding to a first distribution plate, and two metering units and The two first distribution plates share a second distribution plate.
  • the metering device includes a metering unit 111, two first distribution plates 11201 and two second distribution plates 11202, inlets of the plurality of through holes of the two first distribution plates 11201 and the metering
  • the plurality of outlets of the unit 111 are arranged in a corresponding non-linearity (such as a circumferential shape), and the outlets of the plurality of through holes of each of the first distribution plates 11201 correspond to the plurality of through holes of a second distribution plate 11202 via the flow guiding conversion channel.
  • Connected, and the outlets of the plurality of through holes of each of the second distribution plates 11202 are linearly arranged (e.g., linear).
  • the metering unit 111 and the first distribution plate 11201 are detachably connected, and/or the first distribution plate 11201 and the second distribution plate 11202 are detachably connected.
  • the two can be connected by, but not limited to, the bolts 113 to achieve detachable separation of the two, and the convenience of maintenance such as cleaning is improved.
  • a sealing ring may be disposed between the inlet of the through hole 112011 of the first distribution plate and the outlet 1112 of the metering unit. 11203, to avoid the circulation of solutions of different outlets of the metering unit, thereby ensuring accurate measurement results.
  • a sealing member 11204 is disposed at a corresponding connection between the outlet of the through hole 112011 of the first distribution plate and one end of the flow guiding conversion channel 112021 of the second distribution plate to avoid the interface conversion portion. The solutions in the different flow-converting channels are circulated to each other, thereby ensuring accurate measurement results.
  • the first distribution board may be set to one level according to actual needs (as shown in FIG. 16), or may be designed as multiple stages.
  • the first distribution board 11201 includes a plurality of first distribution daughter boards 11201 ′, wherein the first distribution daughter board 11201 ′ includes a plurality of through holes, and the outlets of the through holes of the first distribution daughter boards 11201 ′ of each stage are non-linearly arranged,
  • the first distribution daughter board 11201' is sequentially stacked and correspondingly connected, wherein an inlet of a through hole of the first first distribution daughter board 11201' (ie, the first distribution daughter board closest to the outlet of the metering unit) is An outlet of the metering unit is correspondingly connected, and an outlet of the first distribution daughter board (ie, the first distribution daughter board closest to the second distribution board) of the last stage and an outlet of the second distribution board One end of a flow guiding conversion channel is correspondingly connected.
  • a second distribution plate may be set to one level according to actual needs (as shown in FIG. 15), or may be designed as multiple stages, as shown in FIG. 21, and the second distribution plate 11202 includes a plurality of second distribution daughter boards 11202', wherein the second distribution daughter board 11202' includes a plurality of flow conversion channels and a plurality of through holes, and each of the through holes of the second distribution daughter board 11202' of each stage
  • the outlets are linearly arranged, and the plurality of second distribution daughter boards 11202' are sequentially stacked and correspondingly connected, wherein the primary second distribution daughter board 11202' (ie, the second distribution partner closest to the first distribution plate outlet)
  • One end of a flow guiding conversion channel of the plate is in communication with an outlet of the first distribution plate, and an inlet of the flow guiding conversion channel of the second distribution daughter plate of the second stage and the second distribution of the upper stage
  • the outlets of the through holes of the daughter board are correspondingly connected.
  • the second distribution plate as a multi-stage second distribution daughter plate structure
  • the linear arrangement of the plurality of outlets of the first distribution plate can be converted into a linear arrangement of larger or smaller adjacent outlet spacings. Therefore, the process difficulty is reduced, so that the outlet arrangement of the second distribution plate after conversion is better matched and directly docked with the inlet of the spinning box of the dry spinning process of the spandex.
  • the metering device further comprises: at least one driving device, drivingly connected to at least one of the metering units.
  • the driving device may include, but is not limited to, a speed reducing motor 115.
  • the speed reducing motor 115 may be drivingly connected to the metering unit through a connecting member such as the coupling 116 to implement solution metering for the metering unit. Precise control of the distribution.
  • the number of the driving devices may be correspondingly set according to the number of the measuring units.
  • At least a portion of the metering units may also share a driving device, such as two metering units sharing a geared motor for driving control, which reduces the drive required for the metering device.
  • a driving device such as two metering units sharing a geared motor for driving control, which reduces the drive required for the metering device.
  • the total number of devices simplifies the structure of the equipment and saves equipment costs.
  • the interface conversion unit further includes at least a solution inlet, wherein the solution inlet is in communication with at least one inlet of a metering unit via a solution flow channel.
  • a solution inlet is in communication with at least one inlet of a metering unit via a solution flow channel.
  • an interface conversion portion includes one or more solution inlets 1141 and one or more solution flow guiding channels 1142, and each solution inlet 1141 passes through a solution guiding channel 1142.
  • the solution inlet of the interface conversion unit can provide a total inlet of a solution such as a spandex dry spinning polymer for the metering unit, thereby improving the integration degree of the interface conversion portion,
  • the overall structure of the metering device is more compact and improves space utilization.
  • an embodiment of the present invention further provides an elastic fiber dry spinning component.
  • the elastic fiber dry spinning component comprises: a spinning assembly and at least one of the metering devices provided by any one of the above technical solutions, wherein the spinning assembly is connected to each of the metering devices, wherein the interface conversion At least a portion of the outlet of the portion is linearly aligned and correspondingly communicated with at least a portion of the inlet of the spin pack, and the polymer solution enters the spinning through at least an inlet of the metering unit and an outlet of the interface converter Component.
  • the spinning assembly comprises a plurality of inlets, and the plurality of inlets are linearly arranged.
  • the plurality of inlets of the spinning assembly may be dispersedly arranged in a straight line, or The plurality of inlets of the spinning assembly can be dispersedly arranged on a plurality of parallel straight lines having a certain interval.
  • the metering device can accurately meter and distribute the polymer solution, and convert the non-linear arrangement of the plurality of outlets of the metering unit into a linear arrangement corresponding to the linear arrangement of the plurality of inlets of the spinning assembly, and can The inlet of the spinning assembly is mated directly.
  • the polymer solution enters into the spinning assembly through at least one inlet of the metering unit and an outlet of the interface conversion portion, is filtered, insulated, and ejected through the spinneret to enter a cavity spinning box containing high temperature.
  • the solution stream is processed in a spinning box to form a tow, and the tow is wound to form a spandex.
  • the elastic fiber dry spinning component provided by the embodiment of the invention realizes that the metal hose can be directly connected between the outlet of the metering device and the inlet of the spinning component, thereby saving the space required for arranging the metal hose connector.
  • the space saved can be arranged with more solution flow inlets and outlets, so that the spinning assembly can spray more tows in a limited space, thereby improving efficiency and reducing production cost of the product.
  • the number of the metering devices may be determined according to actual production requirements, and may be one or more, and the implementation manner is very flexible.
  • a spinning assembly may be disposed under the metering device as shown in FIG. 12 to form a spinning assembly.
  • the elastic fiber dry spinning component directly matches the outlet of the interface conversion portion 112 with the inlet of the spinning assembly; or, as shown in FIG. 14, FIG. 15, FIG. 16, FIG. 18, FIG. 19, FIG. 21.
  • a spinning assembly is disposed under the metering device of any of Figures 22a and the like, and the outlet 1122 of the interface conversion portion is directly coupled to the inlet of the spinning assembly, or the outlet of the through hole 112022 of the second distribution plate is Matching directly with the inlet of the spinning assembly, or directly connecting the outlet of the through hole of the second distribution daughter plate 11202' with the inlet of the spinning assembly, etc., thereby saving the need for arranging the metal hose connector Space, improve space utilization and spinning efficiency, and reduce production costs of products.
  • the spinning assembly is pluckable Use, but is not limited to, any of the spinning assemblies provided by embodiments of the present invention.
  • the spinning assembly is detachably coupled to at least one of the metering devices to further improve the convenience and efficiency of equipment cleaning, maintenance, and the like.
  • the metering device 1 may include one or more second metering devices, and the temperature control box is detachably coupled to at least one of the second metering devices.
  • the second metering device 12 may include: at least one metering unit 121 and at least one first conversion board 122;
  • the metering unit 121 includes at least one inlet
  • At least one side of the metering unit 121 is provided with a plurality of outlets arranged in a non-linear arrangement, and correspondingly connected to a plurality of inlets arranged on at least one side of the first conversion plate 122 in a corresponding non-linear arrangement;
  • a lower end surface of the first conversion plate 122 is provided with a plurality of outlets arranged in a line, and an inlet and an outlet of the first conversion plate are connected by a flow guiding conversion channel;
  • the outlet of the first conversion plate 122 is linearly aligned and correspondingly connected to at least a portion of the polymer solution passage of the temperature control box, and the polymer solution for the elastic fiber dry spinning is at least An inlet of the metering unit 121 and an outlet of the first converter plate 121 enter the corresponding polymer solution passage.
  • a polymer solution for dry spinning of fibers such as spandex flows through the inlet of the metering unit for precise metering and distribution, and the metering unit measures a small number of small strands.
  • the solution stream is distributed to the inlet of each of the first converter plates, and flows out from the outlet of the first converter plate after each of the corresponding flow conversion channels.
  • the solution flow flowing out through the outlet of the first conversion plate enters a spinning assembly in a subsequent process of fiber spinning such as spandex for filtration, heat preservation and/or spinning, etc., and the tow is ejected.
  • the solvent is volatilized in a cavity spinning box containing a high temperature to form a fiber tow such as spandex.
  • the extension line of the central axis of the metering unit (shown by a broken line in the figure) is used as a reference line, and the surface of the metering unit along the left-right direction of the reference line is the left and right sides of the metering unit, and the surface of the left azimuth a surface of the right side of the metering unit is a right side surface of the metering unit;
  • a first conversion board is connected to at least one of the left side surface and the right side surface of the metering unit, first a surface of the first conversion plate is a side surface of the first conversion plate, and is represented as a left side surface or a right side surface of the first conversion board according to a difference in relative left and right orientations;
  • a metering unit is connected to at least one of the left side surface and the right side surface; the lower two surfaces of the first conversion board are respectively referred to as an upper end surface and a lower end surface.
  • the inlet, the diversion conversion channel and the outlet of the first conversion plate may be designed as different parts that communicate with each other according to the needs of the actual process, or may be designed as different parts of an integral part, such as an inlet and an outlet respectively.
  • the embodiments of the present invention do not limit this.
  • the technical solution provided by the embodiment of the present invention adds the first conversion plate to the metering device, and on the one hand, the plurality of outlets of the measuring unit at least one side are non-linearly arranged and the first conversion is provided on the side thereof.
  • the plurality of inlets of the non-linear arrangement of the plates are directly connected to each other.
  • the plurality of inlets of the first conversion plate are arranged in a non-linear arrangement, and the plurality of current-converting switches are connected to each other in a linear arrangement. Since the plurality of outlets provided on the lower end surface of the first conversion plate are linearly arranged, the solution realizes converting the nonlinear arrangement of the outlets of the metering units into a linear arrangement.
  • the metering device can be applied to, but not limited to, fiber dry spinning production such as spandex, in order to realize the straight matching of the plurality of inlets linearly arranged in the downstream process such as the spinning assembly and the fiber spinning component. even.
  • a metering device is used for accurately metering and dispensing a polymer solution for spandex preparation, and a metered and dispensed small solution stream is separately delivered to the spinning assembly for carrying out The subsequent process of spandex formation.
  • the plurality of inlets of the spinning assembly are mainly arranged in a linear arrangement.
  • the linear arrangement of the outlets of the first conversion plate in the metering device provided by the embodiment of the present invention can be correspondingly designed according to the linear arrangement of the plurality of inlets of the spinning assembly, such that By using the metering device provided by the embodiment of the invention, the non-linear arrangement of the existing metering unit can be converted into the outlet of the linear array to match the linear arrangement of the plurality of inlets of the spinning assembly (such as linear arrangement).
  • the metering unit and the first conversion board are detachably connected to improve convenience of cleaning, maintenance, assembly, and the like.
  • the number of the metering units may be determined according to actual production requirements, and may be one or more.
  • the metering unit is a member for realizing the precise metering and dispensing function of the polymer solution for fiber production such as spandex. To realize this function, the specific device structure of the metering unit is not limited.
  • the quantity of the inlet and the outlet of the metering unit can also be determined according to the actual production requirements.
  • the metering unit can include an inlet or a plurality of inlets, at least one side of the metering unit (as shown in Figure 23). The left side surface and/or the right side surface shown in FIG.
  • the 24 may be provided with a plurality of outlets, and the plurality of outlets of the metering unit are symmetrically arranged centrally on the left side of the metering unit And/or the right side, such as spandex, fiber dry spinning polymer solution flows into the inlet of the metering unit, and after precise metering, is distributed into a plurality of equal small solution streams through a plurality of outlets of the metering unit.
  • the outlet 1212 (the plurality of outlets) of the metering unit is dispersedly arranged on the circumference of a plurality of concentric circles 1213 on a certain side of the metering unit.
  • This solution can deploy more outlets on the metering unit 121.
  • a plurality of outlets of the metering unit may also be dispersedly arranged on a circumference or an arc of at least one side of the metering unit; or, The plurality of outlets are also arranged in a plurality of concentric circular arcs on a certain side, which is not limited in this embodiment of the present invention.
  • the number of the first conversion plates may be determined according to actual production requirements, and may be one or more.
  • the first conversion plate is a portion for realizing non-linear arrangement of the outlet of the metering unit to the linear arrangement conversion In order to realize this function, the specific device structure of the first conversion board is not limited.
  • the first conversion plate includes a plurality of inlets, a plurality of outlets, and a plurality of flow guiding conversion channels, and an inlet is connected to an outlet via a flow guiding conversion channel; the plurality of inlets are non-linearly arranged on the first conversion plate At least one side, such as a left side of the first conversion plate, is non-linearly arranged with a plurality of inlets, and/or a right side of the first conversion plate is non-linearly arranged with a plurality of inlets; a plurality of outlets are linearly arranged at the first As shown in FIG.
  • the lower end surface of the conversion plate 1214 can be opened as a straight line or a fold line according to actual needs; and a plurality of outlets provided on the lower end surface of the first conversion plate are dispersedly arranged.
  • a first conversion plate 122 includes a plurality of inlets and a plurality of outlets, and an inlet 1221 (a plurality of inlets) of the first conversion plate disposed on a side of the first conversion plate a non-linear arrangement corresponding to a non-linear arrangement of the outlet 1212 (a plurality of outlets) of the metering unit disposed on a side of the metering unit, that is, a plurality of inlets provided on at least one side of the first converter board Dispersingly arranged on a circumference or a circular arc of the side surface, or dispersedly arranged on a circumference or a circular arc of a plurality of concentric circles of the side surface, for example, an inlet 1221 of the first conversion plate disposed on a side of the first conversion plate
  • the (multiple inlets) may be dispersedly arranged on the circumference or arc of the plurality of concentric circles 1223 on the side.
  • An outlet 1222 of the first conversion plate provided on a lower end surface of the first conversion plate 122 is dispersedly arranged on a plurality of parallel straight lines 1224 having a certain interval on the lower end surface.
  • the solution can arrange more outlets on the first conversion board and has a compact layout structure to meet the application requirements of higher density spinning; of course, if the space permits or the number of outlets is small, the first one
  • the plurality of outlets of the conversion plate are also arbitrarily arranged on a line 1224, as shown in FIG.
  • two opposite sides of the metering unit are respectively connected to the first conversion board, that is, one of the two opposite sides of the metering unit is disposed in a non-linear arrangement.
  • the outlets are respectively connected to a plurality of inlets corresponding to a non-linear connection provided on one side of the first conversion plate.
  • each of the two sides of each metering unit 121 is connected to a first conversion plate 122, and the outlets of the lower end faces of the first conversion plates 122 are linearly arranged to be displayed on a different side.
  • the non-linearly arranged outlets are each converted into a linearly arranged outlet.
  • the two first conversion boards share a metering unit, which is compact in structure, flexible in layout, and high in space utilization.
  • the outlets which are non-linearly arranged on different sides of the metering unit can be respectively converted into linearly arranged outlets to improve the efficiency of the outlet conversion.
  • two opposite sides of the first conversion board are respectively connected to the metering unit, that is, a non-linear arrangement is provided on each of two opposite sides of the first conversion board.
  • the plurality of inlets respectively correspond to a plurality of outlets connected to one side of the metering unit and corresponding to the non-linear connection.
  • the two metering units of the solution share a first conversion board, the layout is flexible, and the space utilization rate is high, and the outlets which are non-linearly arranged on one side of the two metering units can be respectively converted into linearly arranged outlets through a first conversion board. To improve export conversion efficiency.
  • At least one of the first conversion boards 122 is further provided with at least one solution.
  • a liquid inlet 1225 wherein the solution inlet 1225 is connected to at least one inlet of the metering unit 121 via a solution flow guiding channel, so that the metering unit can supply the metering unit such as spandex dry spinning through the solution inlet of the first conversion plate.
  • the total inlet of the solution such as the polymer for the wire improves the integration degree of the first conversion plate, so that the overall structure of the metering device is more compact and the space utilization rate is improved.
  • the opening position of the solution inlet can be determined according to actual needs.
  • the solution inlet 1225 can be disposed on the upper end surface of the first conversion plate 2 to improve layout flexibility.
  • the solution inlet and the solution flow guiding channel may be provided on each of the first conversion plates according to actual needs, or may be selected in some of the first conversion plates.
  • the solution inlet and the solution flow guiding channel are provided on the first conversion plate, and the implementation is very flexible, which is not limited by the embodiment of the present invention.
  • the metering unit 121 is detachably connected to the first conversion board 122 to improve convenience and flexibility of cleaning, maintenance, assembly, and the like.
  • the driving device may include, but is not limited to, a geared motor, which reduces the required use of the metering device.
  • the total number of drives reduces the structure of the device and saves on equipment costs.
  • the driving device may include a transmission shaft, at least a part of the metering unit is serially connected to the transmission shaft.
  • the three metering units 121 share a driving device.
  • the driving device comprises a transmission shaft 124.
  • the three metering units 121 are serially connected in series on the transmission shaft.
  • the metering device may further include: at least one second conversion board 125, and one of the second conversion boards 125 is provided.
  • a through hole 1251, the inlet and the outlet of the plurality of through holes 1251 are linearly arranged on the upper end surface and the lower end surface of the second conversion plate 125, respectively; wherein at least a portion of the inlet of the through hole 1251 and the At least a part of the outlets 1222 of the plurality of first conversion plates arranged in a line arranged in a lower end surface of the first conversion plate 122 are correspondingly connected; at least a part of the outlets of the second conversion plate 125 and the temperature control At least a portion of the polymer solution channels of the tank are arranged in a corresponding linear arrangement and correspondingly connected, and the polymer solution for elastic spinning of the elastic fibers enters through at least one inlet of the metering unit 121 and an outlet of the
  • the solution can adjust the outlet spacing of the first conversion plate and the like through the passage of the second conversion plate, thereby improving the matching of the measuring device with the equipment such as the spinning assembly in the dry spinning process of the fiber such as spandex.
  • the connection of the plurality of first conversion plates is integrated as a whole by the second conversion, so that the stability of the overall metering device is also improved.
  • the inlet and the outlet of the plurality of through holes 1251 of the second conversion plate 125 are linearly arranged on the upper end surface and the lower end surface of the second conversion plate, respectively, and may include:
  • the inlet of the through hole 1251 is dispersedly arranged on the straight line 1252 of the upper end surface of the second conversion plate 125, and the outlets of the plurality of the through holes 1251 are dispersedly arranged in a line of the lower end surface of the second conversion plate 125.
  • the inlets of the plurality of through holes 1251 are dispersedly arranged on the second conversion plate 125
  • a plurality of parallel straight lines 1252 having a certain interval on the upper end surface, and an outlet of the plurality of the through holes 1251 are dispersedly arranged on a plurality of parallel straight lines 1252 having a certain interval on the lower end surface of the second conversion plate 125.
  • the solution can meet the application requirements of multiple inlet matching direct connection of the metering device and the equipment such as the spandex in the dry spinning process, such as the spinning component, and the implementation is very flexible.
  • the number of the second conversion boards may be determined according to actual production requirements, and may be one or more, and the implementation manner is very flexible.
  • the number of the second conversion boards may be the same as the first conversion.
  • the number of the plates is the same, or the number of the second conversion plates may be different from the number of the first conversion plates.
  • the plurality of second conversion boards can share a first conversion board, that is, a plurality of outlets arranged in a linear arrangement of the lower end surface of the first conversion board are divided into multiple groups. Each set of outlets corresponds to an inlet of a plurality of through holes arranged in a line arranged by the second conversion plate.
  • the solution can convert a plurality of outlets of the lower end surface of one first conversion plate into a plurality of second conversion plates to meet different linear arrangement of equipment such as a spinning assembly in a dry spinning process such as spandex.
  • the import matches the direct connection of the outlets.
  • a plurality of first conversion boards may share a second conversion board, that is, a plurality of through holes arranged in a linear arrangement of the second conversion board are divided into multiple groups, and each The inlet of the group of through holes corresponds to a plurality of outlets connected to the lower end surface of the first conversion plate and corresponding to the linear connection.
  • a plurality of outlets each having a linearly arranged lower end surface of each of the six first conversion plates 122 are connected to the inlets of different through holes of the same second conversion plate 125, and the solution can be passed through a second conversion plate.
  • the plurality of outlets of the lower end faces of the plurality of first conversion plates are converted into an outlet arrangement manner of a plurality of inlet matching direct connections which are arranged in different linear alignments of the spinning assembly, such as spandex, in a post-spinning process. And the stability of the overall metering device is improved.
  • the first conversion board is detachably connected to the second conversion board to improve convenience and flexibility of cleaning, maintenance, assembly, and the like.
  • an embodiment of the present invention further provides an elastic fiber dry spinning component.
  • the elastic fiber dry spinning component comprises: a spinning assembly and at least one of the second metering devices provided by any one of the above technical solutions, the spinning assembly being connected to each of the second metering devices, the spinning
  • the wire assembly can adopt the structure of any of the spinning assemblies provided by the embodiments of the present invention.
  • the spinning assembly comprises a plurality of inlets, and the plurality of inlets are linearly arranged.
  • the plurality of inlets of the spinning assembly may be dispersedly arranged in a straight line, or The plurality of inlets of the spinning assembly can be dispersedly arranged on a plurality of parallel straight lines having a certain interval.
  • the second metering device can accurately meter and distribute the polymer solution, and convert the non-linear arrangement of the plurality of outlets of the metering unit into a linear arrangement corresponding to the linear arrangement of the plurality of inlets of the spinning assembly, and It can be directly connected to the inlet of the spinning assembly.
  • At least a portion of the outlets of the first conversion plate are linearly aligned and correspondingly connected with at least a portion of the inlets of the spinning assembly, and the polymer solution passes through at least one of the metering units.
  • An inlet and an outlet of the first converter plate enter the spinning assembly.
  • the polymer solution enters into the spinning assembly through at least one inlet of the metering unit and an outlet of the first conversion plate, is filtered, insulated, and ejected through the spinneret to enter a space containing high temperature.
  • the cavity spinning box, the solution flow is processed in the spinning box to form a tow, and the tow is wound to form a spandex.
  • the number and assembly manner of the first conversion plate and the spinning assembly can be determined according to actual production requirements of the process, and the implementation manner is very flexible.
  • one first conversion plate can correspond to one spinning assembly.
  • the plurality of outlets linearly arranged at the lower end surface of the first conversion plate are directly connected with the plurality of inlets of the spinning assembly in a linear arrangement, thereby saving the metal hose required for the connection of the second metering device and the spinning assembly. Increased space utilization and capacity.
  • a plurality of first conversion plates may share a spinning assembly.
  • a second metering device includes six first conversion plates 122, and the lower end faces of the first conversion plates are linearly arranged at the outlets respectively.
  • a portion of the inlets of a spin pack 126 are arranged in a corresponding linear arrangement and are correspondingly in communication.
  • the solution can convert the outlets of the plurality of metering units through a plurality of first conversion plates into a plurality of imported matching direct connections that meet different linear arrangements of equipment such as spinning components in a dry spinning process such as spandex.
  • the export arrangement is to achieve a flexible layout and better meet the actual needs of fiber process production differentiation.
  • the spinning assembly 126 can be, but is not limited to, any of the spinning assemblies provided by embodiments of the present invention.
  • a plurality of spinning assemblies may share a first conversion plate, such that a portion of the outlet of the first conversion plate is directly connected to an inlet of a spinning assembly linearly arranged, and the other portion of the outlet is formed with another spinning assembly.
  • the linearly arranged inlets are matched directly, and the solution can directly match the plurality of outlets of one first conversion plate to the linearly arranged inlets of the plurality of spinning assemblies, so as to realize flexible layout and better meet the difference in fiber processing production. Actual needs.
  • At least a portion of the outlet of the second conversion plate is linearly aligned and correspondingly connected to at least a portion of the inlet of the spinning assembly, and the polymer solution passes through at least one of the metering units.
  • the inlet and the outlet of the second conversion plate enter the spinning assembly.
  • the polymer solution enters the spinning assembly through at least one inlet of the metering unit and an outlet of the second converter plate, is filtered, insulated, and ejected through the spinneret to enter a space containing high temperature.
  • the cavity spinning box, the solution flow is processed in the spinning box to form a tow, and the tow is wound to form a spandex.
  • the number and assembly manner of the second conversion plate and the spinning assembly can be determined according to actual production requirements of the process, and the implementation manner is very flexible.
  • one second conversion plate can correspond to one spinning assembly.
  • the outlets of the plurality of through holes which are linearly arranged at the lower end surface of the second conversion plate 125 are directly connected to the plurality of inlets of the spinning assembly 126 which are linearly arranged, thereby saving the second metering device.
  • the metal hose required to connect to the spinning assembly increases space utilization and productivity.
  • a plurality of second conversion plates may share a spinning assembly at the lower end of each of the second conversion plates.
  • the outlets of the plurality of through holes arranged in a line are respectively linearly aligned and correspondingly connected to a portion of the inlet of the spinning assembly.
  • the solution can convert the outlet of the metering unit through a plurality of second conversion plates into a plurality of inlet-matching direct-connecting outlets that meet different linear arrangements of equipment such as spinning components in a dry spinning process such as spandex. Arrangement to achieve a flexible layout to better meet the actual needs of fiber process production differentiation.
  • a plurality of spinning assemblies may share a second conversion plate, such as an outlet of a portion of the through hole at a lower end surface of the second conversion plate, which is directly aligned with an inlet of a spinning assembly, and other portions.
  • the outlet of the through hole is directly connected with the inlet of the linear arrangement of the other spinning assembly, and the solution can directly match the outlets of the plurality of through holes of one second conversion plate to the linearly arranged inlets of the plurality of spinning assemblies.
  • it is better to meet the actual needs of the differentiation of fiber production.
  • the elastic fiber dry spinning component provided by the embodiment of the invention realizes that the metal hose can be directly connected between the outlet of the second metering device and the inlet of the spinning component, thereby saving the need for arranging the metal hose connector.
  • the occupied space and the space saved can be arranged with more solution flow inlets and outlets, so that the spinning assembly can spray more tows in a limited space, thereby improving efficiency and reducing production cost of the product.
  • the spinning assembly is detachably coupled to at least one of the second metering devices to further improve convenience and efficiency of equipment cleaning, maintenance, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

一种弹性纤维干法纺丝组件和纺丝部件。纺丝组件包括:一控温箱(3),其包括:一箱体(31),箱体(31)纵向设有多个相互隔离的聚合物溶液通道(32);箱体(31)内除各聚合物溶液通道(32)之外的区域为空腔,空腔用于流通与所述聚合物溶液通道(32)内的弹性纤维干纺用聚合物溶液进行热交换的流体介质;一喷丝部(4),与控温箱(3)可拆卸式连接,喷丝部(4)包括多个相互隔离的喷丝孔组(41),多个喷丝孔组(41)与多个聚合物溶液通道(32)的出口对应连通。纺丝部件包括一计量装置和一上述纺丝组件;计量装置与控温箱(3)可拆卸式连接,用于计量并向多个聚合物溶液通道(32)分配所述弹性纤维干纺用聚合物溶液。该纺丝组件和纺丝部件安装、维护方便,效率高。

Description

弹性纤维干法纺丝组件和纺丝部件 技术领域
本发明涉及弹性纤维生产技术领域,具体涉及一种弹性纤维干法纺丝组件和纺丝部件。
背景技术
氨纶是一种应用非常广泛的弹性纤维。纺丝组件在如氨纶等弹性纤维干法纺丝生产工艺过程中主要作用是保持通道内的聚合物溶液恒温并喷丝。现有纺丝组件的结构请参见图33,包括纵向设有多个相互隔离的聚合物溶液通道2a的箱体1a,箱体除通道之外的部分为空腔3a,空腔3a内通有用于与通道内的聚合物溶液进行热交换的流体介质,通道内设有喷丝头4a。弹性纤维生产所需的化学原料经过聚合反应形成聚合物溶液,聚合物溶液经计量装置计量和分配后形成各股聚合物溶液流,各股聚合物溶液流对应流入控温箱的各通道内并经各通道内的喷丝头喷出,形成丝束。
在进行如氨纶纤维等弹性纤维干法纺丝过程中,喷丝头易发生堵塞、结胶等现象,需要时常或定期对喷丝头进行更换或清洗等维护。由于如图33所示的传统纺丝组件喷丝头安装在聚合物溶液通道内部,需要进行更换或清洗维护时,维护时通常需要将整个纺丝组件从纺丝部件中拆下,或者,通常分别将各个喷丝头从各个聚合物溶液通道内取出,等等,费时费工,效率低下,且通常可能中断纤维的连续生产。
发明内容
在下文中给出关于本发明的简要概述,以便提供关于本发明的某些方面的基本理解。应当理解,这个概述并不是关于本发明的穷举性概述。它并不是意图确定本发明的关键或重要部分,也不是意图限定本发明的范围。其目的仅仅是以简化的形式给出某些概念,以此作为稍后论述的更详细描述的前序。
本发明实施例提供一种弹性纤维干法纺丝组件和纺丝部件。
一方面,本发明实施例提供了一种弹性纤维干法纺丝组件,包括:
一控温箱,所述控温箱包括:一箱体,所述箱体纵向设有多个相互隔离的聚合物溶液通道;所述箱体内除各所述聚合物溶液通道之外的区域为空腔,所述空腔用于流通与所述聚合物溶液通道内的弹性纤维干纺用聚合物溶液进行热交换的流体介质;
一喷丝部,与所述控温箱可拆卸式连接,所述喷丝部包括多个相互隔离的喷丝孔组,多个所述喷丝孔组与多个所述聚合物溶液通道的出口对应连通。
另一方面,本发明实施例提供了一种弹性纤维干法纺丝部件,包括:
一计量装置和一上述任一所述的纺丝组件;
所述一计量装置与所述控温箱可拆卸式连接,用于计量并向多个所述聚合 物溶液通道分配所述弹性纤维干纺用聚合物溶液。
本发明实施例提供的技术方案可用于但不限于氨纶纤维等弹性纤维的干法纺丝工艺中。
本发明实施例一方面提供的纺丝组件,将用于对弹性纤维干纺用聚合物溶液进行温度控制的控温箱,与用于对温控处理后的聚合物溶液进行喷丝的喷丝部,设置为二个相对独立的部件且采用可拆卸连接的方式集成为一个可拆卸但位置相对固定的整体,便于纺丝组件的安装、维护及纤维的连续生产,例如,在对纺丝组件进行更换或清洗维护时,可将喷丝部与控温箱分离,将清洁的另一喷丝部更换当前的喷丝部,更换简单方便快捷,对纤维的连续生产影响很小,更换时间很短,且分离后对喷丝部进行清洗即可,减少了清洗工作量,提高了安装、维护的方便性和效率。
本发明实施例另一方面提供的纺丝部件在具有纺丝组件可实现技术效果的基础上,将计量装置、控温箱、喷丝部等部件自上而下顺序有机集成为一纺丝组件整体,任二者之间均可拆卸式连接,实现方式非常灵活,结构也很紧凑,使得形成的弹性纤维相邻丝束之间的间距在满足生产要求的基础上可以大大减小,由此在有限的空间内喷出更多的丝束,提高纺丝组件的产能,降低了吨产品的能耗,由此降低产品的生产成本。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种弹性纤维干法纺丝组件的立体结构示意图;
图2为本发明实施例提供的一种弹性纤维干法纺丝组件的剖面结构示意图;
图3为本发明实施例提供的一种弹性纤维干法纺丝用控温箱的立体结构示意图;
图4为本发明实施例提供的一种弹性纤维干法纺丝用控温箱的剖面结构示意图;
图5为图4中A-A向的截面示意图;
图6a为本发明实施例提供的一种中间部件的结构示意图;
图6b为本发明实施例提供的另一种中间部件的结构示意图;
图7a为本发明实施例提供的又一种中间部件的结构示意图;
图7b为本发明实施例提供的再一种中间部件的结构示意图;
图8为本发明实施例提供的另一种弹性纤维干法纺丝用控温箱的剖面结构示意图;
图9为本发明实施例提供的另一种弹性纤维干法纺丝部件的立体结构示 意图;
图10为本发明实施例提供的另一种弹性纤维干法纺丝部件的剖面结构示意图;
图11a为图10的A-A向截面图;
图11b为图10的B-B向截面图;
图11c为图10的C-C向截面图;
图11d为图10的D-D向截面图;
图11e为图10的E-E向截面图;
图11f为图10的F-F向截面图;
图12为本发明实施例提供的第一种第一计量装置的结构示意图;
图13a为本发明实施例提供的一种计量单元的进口、出口排列方式示意图;
图13b为本发明实施例提供的一种接口转换部件进口排列方式示意图;
图13c为本发明实施例提供的一种接口转换部件出口排列方式示意图;
图14为本发明实施例提供的第二种第一计量装置的结构示意图;
图15为本发明实施例提供的第三种第一计量装置的结构示意图;
图16为本发明实施例提供的第四种第一计量装置的结构示意图;
图17为本发明实施例提供的一种接口转换部的结构示意图;
图18为本发明实施例提供的第五种第一计量装置的结构示意图;
图19为本发明实施例提供的第六种第一计量装置的结构示意图;
图20为本发明实施例提供的第七种第一计量装置的结构示意图;
图21为本发明实施例提供的第八种第一计量装置的结构示意图;
图22a为本发明实施例提供的第九种第一计量装置的结构示意图;
图22b为图22a的剖视图;
图22c为图22b的A-A向截面图;
图22d为图22b的B-B向截面图;
图22e为图22b的C-C向截面图;
图23为本发明实施例提供的一种计量装置的结构示意图;
图24为图23的剖视图;
图25为本发明实施例提供的一种计量单元的一侧面的出口排列方式示意图;
图26为本发明实施例提供的一种第一转换板的进口排列方式示意图;
图27为本发明实施例提供的一种第一转换板的出口排列方式示意图;
图28为本发明实施例提供的另一种计量装置的结构示意图;
图29为图28的剖视图;
图30为图29中第二转换板的A-A向截面图;
图31为本发明实施例提供的一种弹性纤维干法纺丝部件的结构示意图;
图32为本发明实施例提供的另一种弹性纤维干法纺丝部件的结构示意图;
图33为现有技术提供的弹性纤维干法纺丝组件的剖面结构示意图;
图34为现有技术中弹性纤维干法纺丝部件的结构示意图。
附图标记如下:
1a-箱体;2a-聚合物溶液通道;3a-空腔;4a-喷丝头;34a-计量泵头;34b-计量泵头的出口;34c-金属软管;34d-纺丝组件;34e-纺丝组件的进口;
1-计量装置;
11-第一计量装置;111-计量单元;1111-计量单元的进口;1112-计量单元的出口;1113,1123-圆;112-接口转换部;1121-接口转换部的进口;1122-接口转换部的出口;1124-直线;11201-第一分配板;11201’-第一分配子板;11202-第二分配板;11202’-第二分配子板;112011-第一分配板的通孔;11203-密封圈;11204-密封件;112021-导流转换通道;112022-第二分配板的通孔;113-螺栓;1141-溶液进口;1142-溶液导流通道;115-减速电机;116-联轴器;
12-第二计量装置;121-计量单元;1212-计量单元的出口;1213,1223-圆;1214-导流转换通道;122-第一转换板;1221-第一转换板的进口;1222-第一转换板的出口;1224,1252-直线;1225-溶液进口;124-传动轴;125-第二转换板;1251-通孔;126-纺丝组件;
3-控温箱;31-箱体;32-聚合物溶液通道;320-聚合物溶液通道的孔壁;321-聚合物溶液通道的进口;322-聚合物溶液通道的出口;323,324-直线;33-空腔;34-流体介质;35-中间部件;350-静态混合器;351-分流部;352-汇流部;3511-进液子部;3512-出液子部;3513-导流子部;35111-空心圆筒进液部;35112-倒锥台分配部;36-密封圈;371-流体介质入口;372-流体介质出口;38-过滤部件;39-圆环形的聚合物溶液流束;
4-喷丝部;41-喷丝孔组;411-喷丝孔;412-喷丝头;413-直线;6-隔热板;7-过滤组件;8-热防护板。
本领域技术人员应当理解,附图中的元件仅仅是为了简单和清楚起见而示出的,而且不一定是按比例绘制的。例如,附图中某些元件的尺寸可能相对于其他元件放大了,以便有助于提高对本发明实施例的理解。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。在本发明的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。应当注意,为了清楚的目的,附图和说明中省略了与本发明无关的、本领域普通技术人员已知的部件和处理的表示和 描述。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1和图2所示,本发明实施例提供了一种弹性纤维干法纺丝组件,包括:
一控温箱3,所述控温箱3包括:一箱体31,所述箱体31纵向设有多个相互隔离的聚合物溶液通道32;所述箱体31内除各所述聚合物溶液通道32之外的区域为空腔,所述空腔用于流通与所述聚合物溶液通道内的弹性纤维干纺用聚合物溶液进行热交换的流体介质。多个相互隔离的聚合物溶液通道32的分布方式可根据实际需要设计,如可将多个聚合物溶液通道32分布为一排或多排等。
一喷丝部4,与所述控温箱3可拆卸式连接,所述喷丝部4包括多个相互隔离的喷丝孔组41,多个所述喷丝孔组41与多个所述聚合物溶液通道32的出口对应连通。喷丝部4与控温箱3之间的可拆卸连接方式不受限制,例如可采用但不限于螺栓连接、螺纹连接、卡接等等。多个相互隔离的喷丝孔组41的分布方式也可根据实际需要设计,如可将多个喷丝孔组41分布为与多个聚合物溶液通道32对应的一排或多排等。
本发明实施例提供的纺丝组件可用于但不限于氨纶纤维等弹性纤维的干法纺丝工艺中,纺丝组件将用于对弹性纤维干纺用聚合物溶液进行温度控制的控温箱,与用于对温控处理后的聚合物溶液进行喷丝的喷丝部,设置为二个相对独立的部件且采用可拆卸连接的方式集成为一个可拆卸但位置相对固定的整体,便于纺丝组件的安装、维护及纤维的连续生产,例如,在对纺丝组件进行更换或清洗维护时,可将喷丝部与控温箱分离,将清洁的另一喷丝部更换当前的喷丝部,更换简单方便快捷,对纤维的连续生产影响很小,且分离后对喷丝部进行清洗即可,减少了清洗工作量,提高了效率。
可选的,所述喷丝部4的整体结构可根据但不限于与弹性纤维干法纺丝所使用的甬道的截面形状确定。例如,所述喷丝部4整体可具有但不限于矩形结构,多个所述喷丝孔组41呈线性排列,具有矩形结构的喷丝板有利于与弹性纤维干法纺丝所使用的矩形甬道适配。
可选的,一所述喷丝孔组41包括:一喷丝孔411以及设于所述喷丝孔411内的一喷丝头子部,一所述喷丝头子部包括至少一喷丝头412;多个所述喷丝孔组中至少一所述喷丝孔组包括的喷丝头子部与相应喷丝孔可拆卸式连接,该方案提高了喷丝头清洗、更换等维护和安装的方便性。其中,一所述喷丝头子部包括多个喷丝头412的方案可增加丝束的数量,提高产能。此外,多个所述喷丝孔组中至少一所述喷丝孔组包括的喷丝头子部与相应喷丝孔的可拆卸连接方式不受限制,例如可采用但不限于喷丝头子部与相应喷丝孔过盈压入连接或螺纹连接等方式,以便于安装和维护,例如,将包括多个喷丝头412的一喷 丝头子部作为一个整体采用过盈压入相应喷丝孔,该方案安装方法简单且方便各喷丝头的定位。喷丝部4整体包括的多个喷丝头412线性间隔分布在一条或多条平行直线上,以与弹性纤维干法纺丝所使用的矩形甬道适配进行喷丝工艺处理。
可选的,所述喷丝部4远离所述控温箱3的一面设有一热防护板8,用于减少在使用过程中纺丝箱(所述纺丝箱包括但不限于甬道等)向所述喷丝部4的热传递。在干纺如氨纶等弹性纤维的过程,本发明实施例提供的纺丝组件与纺丝箱连接,如可将纺丝组件安装在纺丝箱的上方等部位,喷丝部位于控温箱和纺丝箱之间,喷丝部4喷出的聚合物溶液毛细孔束经纺丝箱内的温控气流接触,通过热交换来去除喷出物质中的溶剂以形成弹性纤维丝束,所述温控气流可包括但不限于温控空气、温控氮气、温控惰性气体等。由于温控气流的温度通常较高,因此,纺丝箱内的温控气流会传递给喷丝部4,给喷丝部4不同部位引入温差,由此影响产品品质,为此,该方案在所述喷丝部4远离控温箱的一面设有一热防护板8,通过热防护板8的热隔离,就可以减少纺丝箱内的温控气流向喷丝部的热传递,进而有利于保证产品的品质。所述热防护板选用的材料可根据实际需要确定,可采用但不限于如树脂等不易导热的材料制得;所述热防护板的具体结构可在满足纤维生产正常进行的前提下灵活设计;本发明实施例对此均不限制。
可选的,至少一所述喷丝孔组41的入口处设有一过滤组件7。通过在喷丝孔组41的入口处设置过滤组件7,使得从聚合物溶液通道流出的溶液可经过滤组件7再次过滤之后再进入喷丝孔组41,延长了喷丝孔组的更换或清洗的维护周期,由于过滤组件成本较低,更换方便,因此,该方案通过延长喷丝孔组的维护周期的方式也间接提高了生产效率。所述过滤网选用的材料可根据实际需要确定,可采用但不限于如金属等材料制得;所述过滤网的形状、大小等具体结构可在满足纤维生产正常进行的前提下灵活设计;本发明实施例对此均不限制。可选的,所述过滤组件包括:集合在一起的多层过滤网,至少二层所述过滤网的目数不同,该方案通过目数不同的多层过滤网集合一起进行过滤,有利于改善分级过滤的效果。进一步可选的,集合在一起的多层所述过滤网还设有一密封包边。所述密封包边选用的材料可根据实际需要确定,可采用但不限于如软材质的铝、耐腐蚀的橡胶等材料制得包覆多层过滤网边缘的部分,该方案在实现上述技术效果的基础上,还可达到对喷丝孔组入口进行密封的效果,降低杂质引入的概率。
可选的,所述纺丝组件还配置有第一旋转装置,用于使所述纺丝组件旋转而改变所述喷丝部远离所述控温箱一面的朝向。例如,可通过所述第一旋转装置使纺丝组件整体或局部旋转的方式来改变喷丝部远离所述控温箱的一面的朝向,使得旋转后喷丝部远离所述控温箱的一面处于喷丝部的至少一组件便于 拆卸、安装、清洗或维护等操作的状态,该状态可包括但不限于使得纺丝组件整体或局部旋转一定角度(如180度)后处于朝上的状态等。该方案提高了拆卸、安装、清洗或维护等操作的方便性。
控温箱在如氨纶等弹性纤维干法纺丝生产工艺过程中主要作用是保持通道内的聚合物溶液恒温。对于如氨纶等弹性纤维而言,温度对干法纺丝弹性纤维的聚合物溶液的黏性具有较大的影响。如果流入喷丝孔的聚合物溶液温度不均匀恒定,则会直接影响通过所述通道的聚合物溶液的黏性,进而影响聚合物溶液进入喷丝头的流变性,可能造成经喷丝头喷出的丝束不稳定,如丝束粗细不均、时断时续等。特别是随着弹性纤维干法纺丝速度的不断提高,通过控温箱的聚合物溶液流速不断增加的情形下,控温箱的控温能力显得更为重要。
本发明发明人在实践本发明实施例的过程中发现,在基于现有的控温箱进行如氨纶等弹性纤维的干法纺丝生产过程中,如图32所示,流入聚合物溶液通道2a内的聚合物溶液通过聚合物溶液通道2a的壁面与空腔3a内的流体介质进行非接触式热交换,由于流入聚合物溶液通道2a内的聚合物溶液为具有一定尺寸的实心流束,因此,聚合物溶液的不同部分与流体介质的热交换的程度可能存在差异,特别是当聚合物溶液为具有较大尺寸的实心流束和/或聚合物溶液流速较快等情形下,聚合物溶液流束径向越靠近聚合物溶液通道2a壁面的部分与空腔3a中的流体介质的热交换就越充分,越远离聚合物溶液通道2a壁面的部分(如聚合物溶液流束的中心部分)与空腔3a中的流体介质的热交换就越不充分,这样,就导致聚合物溶液径向自中心向边缘的不同部分存在一定的温度分布,如中心部分温度低于边缘部分等,也就是说,聚合物溶液通道2a内的聚合物溶液径向的不同部分存在温差,使得流入喷丝孔4a的聚合物溶液温度不均匀恒定。由于温度对如氨纶等弹性纤维干法纺丝用的聚合物溶液的黏性具有较大的影响,如果流入喷丝孔4a的聚合物溶液温度不均匀恒定,则会直接影响通过所述通道的聚合物溶液的黏性,进而影响聚合物溶液进入喷丝头的流变性,可能造成经喷丝头喷出的丝束不稳定,如丝束粗细不均、时断时续等,影响了纤维品质,严重的话可能影响干法纺丝的连续作业。
为此,本发明提供了一种新型的弹性纤维干法纺丝用控温箱。图3为本发明实施例提供的弹性纤维干法纺丝用控温箱的立体结构示意图;图4为本发明实施例提供的一种弹性纤维干法纺丝用控温箱的剖面结构示意图;图5为图4中的A-A向截面示意图。如图3-图5所示,本发明实施例提供的一种弹性纤维干法纺丝用控温箱包括:
一箱体31,所述箱体31纵向设有多个相互隔离的聚合物溶液通道32;
所述箱体31内除各所述聚合物溶液通道32之外的区域为空腔33,所述空腔33用于流通与所述聚合物溶液通道32内的弹性纤维干纺用聚合物溶液进行热交换的流体介质34;
一所述聚合物溶液通道32内设有一中间部件35,所述中间部件35用于减小经所述聚合物溶液通道32流出的聚合物溶液不同部分的温差。
本发明实施例提供的控温箱,可用于如氨纶等弹性纤维干法纺丝生产过程中。由于温度对用于制备氨纶的聚合物溶液的黏性的影响相对较大,因此,将本发明实施例提供的控温箱用于氨纶的干法纺丝工艺中,获得的有益效果也更为明显。
实际生产过程中,弹性纤维生产所需的化学原料经过聚合反应形成聚合物溶液,聚合物溶液经计量装置计量和分配后形成各股聚合物溶液流,各股聚合物溶液流对应流入控温箱的各聚合物溶液通道32内,流入各聚合物溶液通道内的聚合物溶液经设于各聚合物溶液通道内的中间部件的作用,可减小经各聚合物溶液通道32流出的聚合物溶液不同部分的温差,使得经各聚合物溶液通道32流出的聚合物溶液恒温且黏度均匀。将该恒温且黏度均匀的聚合物溶液进入干法纺丝生产后道工序中的喷丝头进行喷丝处理,有利于保证聚合物溶液进入喷丝头的流变性,使得喷丝头喷出的丝束稳定,由此提高了所制备的纤维的产品品质。
需要说明的是,本发明对所述中间部件35的具体结构并不限制,可根据实际需要设计可实现所述中间部件35功能的具体结构。
可选的,所述中间部件35包括:一静态混合器350,用于对进入所述聚合物溶液通道内的聚合物溶液进行分散和混合,以减小所述聚合物溶液径向不同部分的温差。所述静态混合器的具体结构可根据实际需要设计,本发明对比并不限制。例如,所述静态混合器350可采用如图6a所示的类似麻花的结构,通过该结构使得聚合物溶液在聚合物溶液通道内顺时针、逆时针交替流动,以增加聚合物溶液和聚合物溶液通道的孔壁320的热交换频率,提高聚合物溶液不同部分的热交换效率,由此尽可能减小经聚合物溶液通道流出的聚合物溶液不同部分的温差。又例如,所述静态混合器350可采用如图6b所示的类似交叉的结构,通过该结构使得聚合物溶液的不同部分在聚合物溶液通道内多次分流再混合,增加聚合物溶液和聚合物溶液通道的孔壁320的热交换频率的同时,也增加了聚合物溶液不同部分之间的热交换,提高聚合物溶液不同部分的热交换效率,由此尽可能减小经聚合物溶液通道流出的聚合物溶液不同部分的温差。
或者,可选的,所述中间部件35包括:一分流部351,用于将进入所述聚合物溶液通道内聚合物溶液的截面形状由实心形状转换为空心的环形形状。所述实心形状是指所述聚合物溶液通道内的聚合物溶液整体形成一个流束,该流束内部没有类似空腔的空间分布。所述空心的环形形状是指所述聚合物通道内的聚合物溶液形成以某一环形分布的流束,该流束中心部分具有类似空腔的空间分布。由于聚合物溶液通道32内的聚合物溶液是通过聚合物溶液通道32的 壁面与空腔33内的流体介质34进行热交换,该方案通过分流部将进入所述聚合物溶液通道内聚合物溶液的截面形状由实心形状转换为空心的环形形状,使得该聚合物溶液径向尽可能贴近聚合物溶液通道32分布,增加热交换的接触面积,以便该聚合物溶液径向的不同部分通过聚合物溶液通道32的壁面与空腔33内的流体介质实现充分、均匀的热交换,由此减少了聚合物溶液径向不同部分的温差。可选的,所述实心形状为圆形,所述空心的环形形状为圆环形,该方案可与圆形的聚合物溶液通道的情形更为匹配,可更好的提高热交换的效率和均一性。
所述分流部的具体结构设计非常灵活,本发明对此并不限制。例如,所述分流部351包括:进液子部3511、出液子部3512和导流子部3513;所述进液子部3511和所述导流子部3513纵向依次设置;所述出液子部3512与所述进液子部3511连通,用于将进入所述进液子部3511的聚合物溶液引出至所述导流子部3513的外壁并沿所述外壁流下。实际生产过程中,经计量装置计量和分配的聚合物溶液流入进液子部,流入进液子部的聚合物溶液截面积为实心流束(如截面为圆形的聚合物溶液流束等),然后经出液子部引出并沿导流子部的外壁流下,导流子部内部没有聚合物溶液,沿着导流子部外壁流下的聚合物溶液的截面即为空心流束(如截面为圆环形的聚合物溶液流束39),这样就增加了聚合物溶液与聚合物溶液通道32的壁面的接触面积,以便该聚合物溶液径向的不同部分通过聚合物溶液通道32的壁面与空腔33内的流体介质实现充分、均匀的热交换,由此减少了聚合物溶液径向不同部分的温差。
一种可选的实现方式,如图3和图7a所示,所述进液子部3511的内径小于所述导流子部3513的外径,所述出液子部3512具有外扩式结构,具有外扩式结构的所述出液子部3512的出口沿所述导流子部3513的外边缘分布。该方案通过将出液子部设计为具有外扩式结构,可将内径较小的进液子部3511内的聚合物溶液经出液子部3512的出口引出后沿外径较大的导流子部3513的外壁流下(聚合物溶液的流向请参考图7a的箭头所示),由此将聚合物溶液的截面由圆形等实心形状转换为如圆环形等空心的环形形状。
所述进液子部的具体结构可根据实际需要设计,本发明对此并不限制。例如,所述进液子部3511包括纵向依次设置的空心圆筒进液部35111和倒锥台分配部35112;所述倒锥台分配部35112上表面与所述空心圆筒进液部35111连通,下表面与所述导流子部3513非连通式连接;具有外扩式结构的所述出液子部3512的进口与所述倒锥台分配部35112的侧面连通。所述导流子部可具有圆柱结构,可根据实际需要将导流子部设计为空心或实心结构,设计为空心结构还有利于节省耗材。该方案中所述进液子部的结构紧凑,采用该方案可有效的将进入聚合物溶液通道内的较小束的聚合物溶液由实心圆流束分散为以导流子部为中心的圆环形流束,由此提高导流子部外壁流动的聚合物溶液与 聚合物溶液通道的壁面的接触面积,进而提高经该壁面与空腔中换热介质热交换的效率和均一性。采用该方案提供的所述中间部件的结构成本较低。
另一种可选的实现方式,如图7b所示,所述进液子部3511的内径大于所述导流子部3513的外径,所述出液子部3512设于所述进液子部3511的底面并沿所述导流子部3513的外边缘分布。该方案可将内径较大的进液子部3511内的聚合物溶液经出液子部3512的出口引出后沿外径较小的导流子部3513的外壁流下(聚合物溶液的流向请参考图7b的箭头所示),由此将聚合物溶液的截面由实心形状转换为空心的环形形状。可选的,所述进液子部具有空心圆筒结构,所述导流子部具有圆柱结构,由此实现将聚合物溶液的截面由圆形的实心形状转换为如圆环形的空心的环形形状。
进一步的,所述中间部件还可包括:一汇流部352,连接于所述分流部351的下方,用于将所述分流部351流出的聚合物溶液汇聚为一实心流束。可选的,所述汇流部具有锥形结构。例如,如图7a和图7b所示的箭头所示,导流子部外壁流下的聚合物溶液经具有如锥形等结构的汇流部352后重新汇聚为一实心流束,从而便于将聚合物溶液通道流出的聚合物溶液准确流入喷丝头以进行后续的喷丝处理。采用该方案提供的所述中间部件的结构成本较低。
在上述任一技术方案的基础上,可选的,多个所述聚合物溶液通道中至少一聚合物溶液通道32的进口设有一密封圈36,例如可以在每个所述聚合物溶液通道32的进口设有一密封圈36,以免聚合物溶液流入所述空腔。
可选的,如图8所示,所述箱体31上还设有流体介质入口371和流体介质出口372,所述流体介质34经所述流体介质入口371流入所述空腔33并经所述流体介质出口372流出所述箱体31。该方案通过在箱体上设置流体介质的入口和出口,便于对空腔中的流体介质进行流动控制,通过流体介质的流动与聚合物溶液通道内的聚合物溶液快速进行热交换,并控制流体介质的温度以保证聚合物溶液通道内的聚合物溶液均匀恒温。
所述流体介质入口371和所述流体介质出口372的位置设计,可根据实际需要确定。可选的,所述流体介质入口371设于所述箱体31上表面靠近所述箱体31的一侧面的部位,所述流体介质出口372设于所述箱体31上表面靠近所述箱体31的另一侧面的部位。该方案有利于箱体空腔不同部位的流体介质充分流动来保证空腔内的流体介质恒温,由此实现对聚合物溶液通道内的聚合物溶液进行保温。
可选的,所述控温箱还包括:过滤部件38,设于所述中间部件35的下方,用于对所述中间部件35流出的聚合物溶液进行过滤处理。所述过滤部件38可包括但不限于滤网。通过在所述中间部件下方设置所述过滤部件的方案有利于减少进入喷丝头的聚合物溶液的杂质含量,由此有利于提高产品品质,延长喷丝头的更换或清洗等维护周期。
在上述任一技术方案的基础上,可选的,本发明实施例提供的弹性纤维干法纺丝组件还可包括一计量装置1,如图10-图11f所示,计量装置1与所述控温箱3可拆卸式连接,用于计量并向多个所述聚合物溶液通道分配所述弹性纤维干纺用聚合物溶液。该方案通过将计量装置1、控温箱3、喷丝部4等部件自上而下顺序有机集成为一纺丝组件整体,任二者之间均可拆卸式连接,实现方式非常灵活,结构也很紧凑,使得形成的弹性纤维相邻丝束之间的间距在满足生产要求的基础上可以大大减小,由此在有限的空间内喷出更多的丝束,提高纺丝组件的产能,降低了吨产品的能耗,由此降低产品的生产成本。
可选的,所述计量装置1和所述控温箱3之间设有一隔热板6,用于减少所述控温箱3向所述计量装置1的热交换。控温箱的空腔内需要流通热交换的流体介质来实现对对聚合物溶液进行温度控制的目的,所述流体介质和/或所述流体介质的温度可根据实际工艺条件确定。本发明实施例提供的纺丝组件中,计量装置和控温箱上下依次可拆卸式连接,为了适应不同类型和/或不同温度流体介质可能对所述计量装置带来的不良影响,该方案在保证纤维干法生产正常进行的情况下通过在二者之间设置隔热板的方式,来对二者进行热隔离,由此减少由控温箱可能向计量装置传递的热量,进而有利于保证产品的品质。所述隔热板选用的材料可根据实际需要确定,可采用但不限于如树脂等不易导热的材料制得;所述隔热板的具体结构可在满足纤维生产正常进行的前提下灵活设计;本发明实施例对此均不限制。
可选的,所述纺丝部件还配置有第二旋转装置,用于使所述纺丝部件旋转而改变所述喷丝部远离所述控温箱一面的朝向。例如,可通过所述第二旋转装置使纺丝部件整体或局部旋转的方式来改变喷丝部远离所述控温箱的一面的朝向,使得旋转后喷丝部远离所述控温箱的一面处于喷丝部的至少一组件便于拆卸、安装、清洗或维护等操作的状态,该状态可包括但不限于使得纺丝组件整体或局部旋转一定角度(如180度)后处于朝上的状态等。该方案提高了拆卸、安装、清洗或维护等操作的方便性。
可选的,所述计量装置包括至少一个进口和多个出口、至少多个出口呈线性排列;所述控温箱的至少多个所述聚合物溶液通道的进口和出口均呈线性排列;所述喷丝部的至少多个喷丝孔组的呈线性排列。所述计量装置中计量单元的至少多个出口呈非线性排列(例如,所述计量装置包括至少一第一计量装置11,一第一计量装置11的一计量单元111的多个计量单元的出口1112的中心轨迹呈如图11a所示的圆1113,第一计量装置11的一接口转换部112的多个接口转换部的进口1121的中心轨迹呈如图11b所示的圆1123,第一计量装置11的一接口转换部112的多个接口转换部的出口1122的中心轨迹呈如图11c所示的直线1124),与所述控温箱的至少多个所述聚合物溶液通道的进口呈对应的线性排列且对应连通(例如,控温箱3的多个聚合物溶液通道的进口321 的中心轨迹呈如图11d所示的直线323);所述控温箱的至少多个所述聚合物溶液通道的出口(例如,控温箱3的多个聚合物溶液通道的出口322的中心轨迹呈如图11e所示的直线324),与所述喷丝部的至少多个喷丝孔组呈对应的线性排列且对应连通(例如,喷丝部4的多个喷丝孔组41的中心轨迹呈如图11f所示的直线413)。
其中,本发明实施例中,所述“非线性排列”包括多个进口或出口作为一组或分为多组,各组进口或出口的排列方式分别采用非直线的方式进行排列,例如,每组进口或出口分布在某圆周或某圆弧上,等等;所述“呈对应的非线性排列”包括不同组进口或出口的非线性排列方式相同或相似,例如,不同组进口或出口分散排列在相同半径的圆周或圆弧上且一一对应连通,或者,不同组进口或出口分散排列在半径不同的圆周或圆弧上且一一对应连通;所述“线性排列”包括多个进口或出口作为一组或分为多组,各组进口或出口的排列方式采用直线的方式进行排列,例如,每组进口或出口分别分散排列在某直线或分散排列在多条具有一定间隔的平行直线上,等等;所述“呈对应的线性排列”包括不同组进口或出口的线性排列方式相同或相似。所述“圆周”、“圆弧”、“直线”用于表示多个进口或出口中心连线或轮廓线的大致轨迹形状。
发明人在实践本发明实施例过程中发现,传统技术中计量装置采用如图34所示的计量泵头34a,计量泵头34a是泵头生产厂家的标准产品,通常包括一个进口和多个出口34b,计量泵头的出口34b(多个)在一个或多个圆周上非线性分散排列,纺丝组件的进口34e(多个)在两条具有一定间隔的直线线性分散排列,计量泵头的出口34b的非线性排列方式和纺丝组件34d的进口的线性排列方式是不对应的,为了实现二者连接通常需要采用金属软管34c,简洁起见,图中仅示意了部分计量泵头的出口34b经部分金属软管34c与部分纺丝组件的进口34e连接的情形。随着氨纶纺丝工艺技术的不断发展,每个纺丝工位生产的氨纶根数不断增多,并且氨纶更细,采用传统的计量装置时,计量装置的出口和纺丝组件的入口连接需要采用很多的金属软管,这样就增加了很多连接头,由此增加形成漏点的可能性;此外,不同金属软管的长度、弯曲程度等很难保证完全相同,由此可能造成计量后的溶液流到达纺丝组件内的喷丝头前的压力不同,因此经过喷丝头喷出的溶液的流变性可能不同,特别是对于更细的溶液流差别更大,进而造成从同一个纺丝箱出来的氨纶的物理性能可能不一致。而如果计量装置的出口与纺丝组件的进口无需采用金属软管而可直接对应连接,则可克服现有技术中因采用金属软管连接可能导致的缺陷。
一种可选的实现方式中,所述计量装置1可包括一个或多个第一计量装置,所述控温箱与至少一所述第一计量装置可拆卸式连接。请参考图12,一所述第一计量装置11可包括:至少一计量单元111和至少一接口转换部112,其中:一所述计量单元111包括至少一进口和多个出口,一所述计量单元111的多个 出口呈非线性排列;一所述接口转换部112包括经多个导流转换通道对应连通的多个进口和多个出口,一所述接口转换部112的至少部分进口与一所述计量单元的至少部分出口且对应连通,一所述接口转换部112的多个出口呈线性排列,其中,一所述接口转换部112的至少部分出口与所述控温箱3的至少部分所述聚合物溶液通道呈对应的线性排列且对应连通,弹性纤维干法纺丝用聚合物溶液至少经一所述计量单元111的进口和一所述接口转换部112的出口进入相应的所述聚合物溶液通道。
在如氨纶等纤维干法纺丝生产中,如氨纶等纤维干法纺丝用的聚合物溶液经所述计量单元的进口流入以进行精确计量和分配,所述计量单元计量好的多股小溶液流分配至各所述接口转换部的进口、经各相应的所述导流转换通道后自所述接口转换部的出口流出。经所述接口转换部的出口流出的溶液流进入如氨纶等纤维干法纺丝的后道工序中的纺丝组件,以进行过滤、保温和/或喷丝等处理,喷出的丝束在含有高温的空腔纺丝箱中进行溶剂挥发,形成如氨纶等纤维丝束。
所述接口转换部的进口、导流转换通道、出口,可根据实际工艺的需要设计为相互连通的不同部位,或者,也可设计为某一整体部件的不同部位,如进口和出口分别为导流转换通道的两端等等,本发明实施例对此不做限制。
本发明实施例提供的技术方案通过在计量装置中增设所述接口转换部,一方面计量单元的呈非线性排列的多个出口与所述接口转换部呈非线性排列的多个进口直接对应连通,另一方面所述接口转换部呈非线性排列的多个进口经多个导流转换通道对应连通其呈线性排列的多个出口,最终实现将计量单元的出口的非线性排列方式转换为线性排列方式。所述计量装置可应用但不限于氨纶等纤维干法纺丝生产中,以实现计量装置的出口与纤维纺丝部件等后道工序中如纺丝组件等设备线性排列的多个进口的匹配直连。
例如,在氨纶干法纺丝生产中,计量装置用于对氨纶制备用聚合物溶液进行精确计量和分配,并将计量和分配后的小溶液流分别输送到纺丝组件以进行氨纶生成的后道工序处理。目前,纺丝组件的多个进口主要采用线性排列,本发明实施例提供的计量装置中接口转换部的出口的线性排列方式可根据纺丝组件的多个进口的线性排列方式对应设计,这样,采用本发明实施例提供的计量装置就可将现有计量单元的非线性排列方式转换为线性排列方式的出口,使之与纺丝组件的多个进口的线性排列方式匹配(如线性排列方式相同且位置对应),由此实现了计量装置的出口与纺丝组件的进口之间无需金属软管即可实现直接对应连接,节省因布置金属软管接头需占用的空间,节省的空间可以布置更多的溶液流进出口,使得纺丝组件可以在有限的空间内喷出更多的丝束,从而提高效率,降低产品的生产成本。
本发明实施例提供的技术方案中,可选的,所述接口转换部和所述计量单 元可拆卸式连接,以提高清洗、维护等的方便性。
所述计量单元的数量可根据实际生产需求确定,可为一个或多个。计量单元为用于实现如氨纶等纤维生产用聚合物溶液的精确计量和分配功能的部件,为实现该功能即可,计量单元的具体设备结构并不限制,实际应用中,可选用但不限于生产厂家提供的标准的计量泵。一所述计量单元的进口和出口的数量也可根据实际生产的需要确定,可选的,一所述计量单元可包括一个进口或多个进口、一个或多个出口,一计量单元的多个出口以该计量单元的进口为中心对称且非线性排列,氨纶生产用聚合物溶液经计量单元的进口流入,精确计量后经该计量单元的多个出口分配为多股均等的小溶液流。一个可选的实现方式中,如图13a所示的一计量单元111中,所述计量单元的进口1111位于圆心位置,所述计量单元的出口1112(多个出口)分散排列在多个同心圆1113的圆周上,该方案可在计量单元111上布设更多的出口。当然,如果空间允许或者出口数量不多等情形下,一所述计量单元的多个出口也可分散排列在一圆周或圆弧上;或者,一所述计量单元的多个出口也分散排列在多个同心圆的圆弧上,本发明实施例对此并不限制。
所述接口转换部的数量可根据实际生产需求确定,可为一个或多个。接口转换部为用于实现将计量单元的出口的非线性排列到线性排列转换的部件,为实现该功能即可,接口转换部的具体设备结构并不限制。一所述接口转换部包括多个进口、多个出口和多个导流转换通道,一进口经一导流转换通道与一出口连通。一个可选的实现方式中,如图13b所示,一接口转换部112包括多个进口和多个出口,接口转换部的进口1121(至少部分进口)的非线性排列方式与计量单元的出口1112(多个出口)的非线性排列方式对应,即:一接口转换部的至少部分进口排列在一圆周或圆弧上,或者,分散排列在多个同心圆的圆周或圆弧上,例如:一所述接口转换部的进口1121(至少部分进口)可分散排列在多个同心圆1123的圆周上,当然,如果一所述计量单元的出口1112(多个出口)分散排列在一圆周上,则该接口转换部的进口1121(至少部分进口)也相应的分散排列在一圆周上;一所述接口转换部的出口1122(多个出口)分散排列在多条具有一定间隔的平行直线上,如分散排列在两条具有一定间隔的平行直线上。该方案可在接口转换部上布设更多的出口且布局结构较为紧凑,以满足更高密度纺丝的应用需求;当然,如果空间允许或者出口数量不多等情形下,一所述接口转换部的出口(多个出口)也可分散排列在一直线1124上,如图13c所示,本发明实施例对此并不限制。
可选的,一所述计量单元的出口1112与一所述接口转换部的进口1121的对应连接处可设有一密封圈,以避免计量单元不同出口的溶液相互流通,由此保证精确的计量结果。
进一步可选的,一计量单元的多个出口的非线性(如圆周状)排列方式与 一接口转换部的至少部分进口的非线性(如圆周状)排列方式对应,一接口转换部的多个出口的线性(如直线状)排列方式与氨纶干法纺丝后道工序中的纺丝组件的进口的线性(如直线状)排列方式对应,由此通过接口转换部将计量单元出口的非线性布局转换为纺丝部件进口所需的线性布局。在实际使用过程中,可根据实际产能和设备布局方便性等实际需求,灵活选择计量单元、接口转换部的数量及其装配关系。
例如,如图12所示的计量装置,可包括一个计量单元111和一个接口转换部112,该计量单元111的多个出口与该接口转换部112的多个进口呈对应的非线性(如圆周状)排列且对应连通,该接口转换部112的多个进口经该接口转换部内部的多个导流转换通道分别与该接口转换部112的多个出口对应连通,且该接口转换部的多个出口呈线性(如直线状)排列,与氨纶干法纺丝后续工序中纺丝部件的多个进口的线性排列方式对应,便于二者的直接对接。该方案可根据实际产能和工艺需要布设一个或多个计量装置,将布设的多个计量装置与一纺丝部件直接对接,以满足更高密度纺丝的应用需求。
又例如,如图14所示的计量装置,可包括多个计量单元111(图中示意出了两个计量单元)和一个接口转换部112,每个计量单元111的多个出口与该接口转换部的部分进口呈对应的非线性(如圆周状)排列且对应连通,该接口转换部112的多个进口经该接口转换部内部的多个导流转换通道分别与该接口转换部112的多个出口对应连通,且该接口转换部的多个出口呈线性(如直线状)排列,与氨纶干法纺丝后续工序中纺丝部件的多个进口的线性排列方式对应,便于二者的直接对接。该方案中多个计量单元公用一个接口转换部,实现多个计量单元的非线性出口排列方式向线性出口排列方式转换,结构紧凑,空间利用率高。
又例如,如图15所示的计量装置,可包括1个计量单元111和多个接口转换部112(图中示意出了两个接口转换部),该计量单元111的至少部分出口与一接口转换部的进口呈对应的非线性(如圆弧状)排列且对应连通,每个接口转换部112的多个进口经该接口转换部内部的多个导流转换通道分别与该接口转换部112的多个出口对应连通,且各接口转换部的多个出口呈线性(如直线状)排列,与氨纶干法纺丝后续工序中纺丝部件的多个进口的线性排列方式对应,便于二者的直接对接。该方案中两个接口转换部公用一个计量单元,实现计量单元的非线性出口排列方式向线性出口排列方式转换,结构紧凑,布局灵活,空间利用率高。
本发明实施例提供的任一技术方案中,为了减小接口转换部的厚度,可选的,一所述接口转换部包括:相互连接的至少一第一分配板和至少一第二分配板;一所述第一分配板包括多个通孔,一所述第一分配板的至少部分通孔的进口与一所述计量单元的出口呈对应的非线性排列且对应连通;一所述第二分配 板包括多个导流转换通道和多个通孔,所述第二分配板的一导流转换通道的一端连通一所述第一分配板的一通孔的出口、另一端连通一所述第二分配板的一通孔的进口,一所述第二分配板的多个通孔的出口呈线性排列。该方案通过较小厚度的接口转换部,即可实现多个计量单元的非线性出口排列方式向线性出口排列方式转换,结构紧凑,空间利用率更高。
所述第一分配板、第二分配板、计量单元的数量和/或装配关系可根据实际需要确定,实现方式非常灵活,可满足不同设备装配、工艺生产的实际应用需求。
例如,如图16所示,一接口转换部112包括一第一分配板11201和一第二分配板11202,第一分配板11201包括多个通孔,一所述第一分配板的通孔112011的进口与一所述计量单元的出口1112呈对应的非线性(如圆周状)排列,如图17所示,第二分配板11202与第一分配板11201对应连接的一面开设有多个导流转换通道112021,每个导流转换通道112021的一端连通一所述第一分配板的通孔112011的出口,另一端连通一所述第二分配板的通孔112022的进口,第二分配板的通孔112022(多个通孔)的出口呈线性排列,如分散排列在两条具有一定间隔的平行直线上。
又例如,如图18所示,计量装置包括两个计量单元111、一个第一分配板11201和一个第二分配板11202。每个计量单元111的多个出口与该第一分配板11201的部分通孔的进口呈非线性(如圆周状)排列,两个计量单元公用一个第一分配板和第二分配板。
又例如,如图19所示,计量装置包括两个计量单元111、两个第一分配板11201和一个第二分配板11202。每个计量单元111的多个出口与一第一分配板11201的多个通孔的进口呈非线性(如圆周状)排列,每个计量单元对应一个第一分配板,且两个计量单元和两个第一分配板公用一个第二分配板。
又例如,如图20所示,计量装置包括一个计量单元111、两个第一分配板11201和两个第二分配板11202,两个第一分配板11201的多个通孔的进口与该计量单元111的多个出口呈相应的非线性(如圆周状)排列,每个第一分配板11201的多个通孔的出口经导流转换通道与一第二分配板11202的多个通孔对应连通,且每个第二分配板11202的多个通孔的出口呈线性(如直线状)排列。
上述技术方案中,可选的,所述计量单元111和所述第一分配板11201可拆卸式连接,和/或,所述第一分配板11201和所述第二分配板11202可拆卸式连接,如二者可通过但不限于螺栓113连接,以实现二者的可拆卸分离,提高清洗等维护的方便性。
为了避免接口转换部不同进口的溶液相互流通,可选的,一所述第一分配板的通孔112011的进口与一所述计量单元的出口1112之间可设置一密封圈 11203,以避免计量单元不同出口的溶液相互流通,由此保证精确的计量结果。此外,可选的,一所述第一分配板的通孔112011的出口与一所述第二分配板的导流转换通道112021的一端的对应连接处设有一密封件11204,以避免接口转换部的不同导流转换通道内的溶液相互流通,由此保证精确的计量结果。
进一步的,一所述第一分配板可根据实际需要设置为一级(如图16所示),或者,也可设计为多级,如图21所示,一所述第一分配板11201包括:多级第一分配子板11201’,一所述第一分配子板11201’包括多个通孔,各级所述第一分配子板11201’的各通孔的出口呈非线性排列,多级所述第一分配子板11201’依次叠设且对应连通,其中,初级所述第一分配子板11201’(即:最靠近计量单元出口的第一分配子板)的一通孔的进口与一所述计量单元的一出口对应连通,末级所述第一分配子板(即:最靠近第二分配板的第一分配子板)的一通孔的出口与一所述第二分配板的一导流转换通道的一端对应连通。该方案通过将第一分配板设计为多级第一分配子板的结构,可实现将计量单元的多个出口的圆周状排列逐级转换为半径逐渐增大的圆周或圆弧状排列,由此降低工艺加工难度。
类似的,一所述第二分配板可根据实际需要设置为一级(如图15所示),或者,也可设计为多级,如图21所示,一所述第二分配板11202包括:多级第二分配子板11202’,一所述第二分配子板11202’包括多个导流转换通道和多个通孔,各级所述第二分配子板11202’的各通孔的出口呈线性排列,多级所述第二分配子板11202’依次叠设且对应连通,其中,初级所述第二分配子板11202’(即:最靠近第一分配板出口的第二分配子板)的一导流转换通道的一端与一所述第一分配板的一出口对应连通,下一级所述第二分配子板的导流转换通道的进口与上一级所述第二分配子板的通孔的出口对应连通。该方案通过将第二分配板设计为多级第二分配子板的结构,可实现将第一分配板的多个出口的直线排列逐级转换为相邻出口间距更大或更小的直线排列,由此降低工艺加工难度,使得转换后第二分配板的出口排列方式与氨纶干法纺丝后道工序的纺丝箱的进口更好匹配和直接对接。
可选的,所述计量装置还包括:至少一驱动装置,与至少一所述计量单元驱动连接。例如,如图12-图21所示,所述驱动装置可包括但不限于减速电机115,减速电机115可通过联轴器116等连接部件与计量单元驱动连接,以对计量单元实现溶液计量和分配的精准控制。其中,所述驱动装置的数量可根据所述计量单元的数量对应设置。或者,在包括多个计量单元的情形下,至少部分所述计量单元也可公用一所述驱动装置,如两台计量单元公用一个减速电机进行驱动控制,该方案减少计量装置所需使用的驱动装置的总数量,简化设备结构,节约设备成本。
在上述任一技术方案的基础上,可选的,一所述接口转换部还包括有至少 一个溶液进口,一所述溶液进口经一溶液导流通道与一所述计量单元的至少一进口连通。例如,如图17、图22a-图22e所示,一接口转换部包括有一个或多个溶液进口1141以及一个或多个溶液导流通道1142,每个溶液进口1141经一溶液导流通道1142与一计量单元的进口1111对应连通,这样,经接口转换部的溶液进口就可以为计量单元提供如氨纶干法纺丝用聚合物等溶液的总进口,提高了接口转换部的集成度,使得的计量装置的整体结构更为紧凑,提高空间利用率。
进一步的,本发明实施例还提供了一种弹性纤维干法纺丝部件。该弹性纤维干法纺丝部件包括:一纺丝组件以及上述任一技术方案提供的至少一所述的计量装置,所述纺丝组件与各所述计量装置连接,其中,一所述接口转换部的至少部分出口与所述纺丝组件的至少部分进口呈对应的线性排列且对应连通,聚合物溶液至少经一所述计量单元的进口和一所述接口转换部的出口进入所述纺丝组件。
其中,所述纺丝组件包括多个进口,多个进口呈线性排列,例如,根据氨纶干法纺丝生产的实际需要,可将纺丝组件的多个进口分散排列在一条直线上,或者,可将纺丝组件的多个进口分散排列在多条具有一定间隔的平行直线上。
所述计量装置可将聚合物溶液进行精确计量和分配,将计量单元多个出口的非线性排列方式转换为与所述纺丝组件多个进口的线性排列方式对应的线性排列方式,并可与所述纺丝组件的进口匹配直连。
聚合物溶液至少经一所述计量单元的进口和一所述接口转换部的出口进入纺丝组件内,被过滤、保温并经喷丝头喷出后进入一个含有高温的空腔纺丝箱,溶液流在纺丝箱经工艺处理形成丝束,将丝束收卷就形成了氨纶。
本发明实施例提供的弹性纤维干法纺丝部件实现了计量装置的出口与纺丝组件的进口之间无需金属软管即可实现直接对应连接,节省因布置金属软管接头需占用的空间,节省的空间可以布置更多的溶液流进出口,使得纺丝组件可以在有限的空间内喷出更多的丝束,从而提高效率,降低产品的生产成本。
可选的,所述计量装置的数量可根据实际生产需求确定,可为一个或多个,实现方式非常灵活,例如,可在如图12所示的计量装置的下方设置一纺丝组件形成一弹性纤维干法纺丝部件,将接口转换部112的出口与纺丝组件的进口匹配直连;或者,也可在如图14、图15、图16、图18、图19、图20、图21、图22a等任一所述的计量装置的下方设置一纺丝组件,将接口转换部的出口1122与纺丝组件的进口匹配直连,或者,将第二分配板的通孔112022的出口与纺丝组件的进口匹配直连,或者,将第二分配子板11202’的通孔的出口与纺丝组件的进口匹配直连,等等,由此节省因布置金属软管接头需占用的空间,提高空间利用率和纺丝效率,降低产品的生产成本。其中,所述纺丝组件可采 用但不限于本发明实施例提供的任一种纺丝组件。
可选的,所述纺丝组件与至少一所述计量装置可拆卸式连接,以进一步提高设备清洗、维护等的方便性和效率。
另一种可选的实现方式中,所述计量装置1可包括一个或多个第二计量装置,所述控温箱与至少一所述第二计量装置可拆卸式连接。请参考图23,一所述第二计量装置12可包括:至少一计量单元121和至少一第一转换板122;
一所述计量单元121包括至少一进口;
一所述计量单元121的至少一侧面设有呈非线性排列的多个出口,与一所述第一转换板122的至少一侧面设有的呈对应非线性排列的多个进口对应连通;
一所述第一转换板122的下端面设有呈线性排列的多个出口,一所述第一转换板的一进口与一出口之间通过一导流转换通道连通;
其中,一所述第一转换板122的至少部分出口与所述控温箱的至少部分所述聚合物溶液通道呈对应的线性排列且对应连通,弹性纤维干法纺丝用聚合物溶液至少经一所述计量单元121的进口和一所述第一转换板121的出口进入相应的所述聚合物溶液通道。
在如氨纶等纤维干法纺丝生产中,如氨纶等纤维干法纺丝用的聚合物溶液经所述计量单元的进口流入以进行精确计量和分配,所述计量单元计量好的多股小溶液流分配至各所述第一转换板的进口、经各相应的所述导流转换通道后自所述第一转换板的出口流出。经所述第一转换板的出口流出的溶液流进入如氨纶等纤维干法纺丝的后道工序中的纺丝组件,以进行过滤、保温和/或喷丝等处理,喷出的丝束在含有高温的空腔纺丝箱中进行溶剂挥发,形成如氨纶等纤维丝束。
本发明实施例中:以计量单元中心轴线(图中虚线所示)延长线为参考线,所述计量单元的沿该参考线左右方位的表面为该计量单元的左右侧面,位于左方位的表面为该计量单元的左侧面,位于右方位的表面为该计量单元的右侧面;一所述计量单元的左侧面、右侧面中的至少一个侧面连接有一第一转换板,第一转换板与计量单元连接的某表面为该第一转换板的一个侧面,根据相对左右方位的不同相应表示为该第一转换板的左侧面或右侧面;一所述第一转换板的左侧面、右侧面中的至少一个侧面连接有一计量单元;所述第一转换板上下两个表面分别称为上端面和下端面。所述第一转换板的进口、导流转换通道、出口,可根据实际工艺的需要设计为相互连通的不同部位,或者,也可设计为某一整体部件的不同部位,如进口和出口分别为导流转换通道的两端等等,本发明实施例对此不做限制。
本发明实施例提供的技术方案通过在计量装置中增设所述第一转换板,一方面计量单元至少一侧面呈非线性排列的多个出口与设于其侧面的第一转换 板呈非线性排列的多个进口匹配直连,另一方面所述第一转换板呈非线性排列的多个进口经多个导流转换通对应连通设于其下端面的呈线性排列的多个出口,由于第一转换板下端面设有的多个出口呈线性排列,因此,该方案实现了将计量单元的出口的非线性排列方式转换为线性排列方式。所述计量装置可应用但不限于氨纶等纤维干法纺丝生产中,以实现计量装置的出口与纤维纺丝部件等后道工序中如纺丝组件等设备线性排列的多个进口的匹配直连。
例如,在如氨纶等弹性纤维干法纺丝生产中,计量装置用于对氨纶制备用聚合物溶液进行精确计量和分配,并将计量和分配后的小溶液流分别输送到纺丝组件以进行氨纶生成的后道工序处理。目前,纺丝组件的多个进口主要采用线性排列,本发明实施例提供的计量装置中第一转换板的出口的线性排列方式可根据纺丝组件的多个进口的线性排列方式对应设计,这样,采用本发明实施例提供的计量装置就可将现有计量单元的非线性排列方式转换为线性排列方式的出口,使之与纺丝组件的多个进口的线性排列方式匹配(如线性排列方式相同且位置对应),由此实现了计量装置的出口与纺丝组件的进口之间无需金属软管即可实现直接对应连接,节省因布置金属软管接头需占用的空间,节省的空间可以布置更多的溶液流进出口,使得纺丝组件可以在有限的空间内喷出更多的丝束,从而提高效率,降低产品的生产成本。
本发明实施例提供的技术方案中,可选的,所述计量单元和所述第一转换板可拆卸式连接,以提高清洗、维护、装配等的方便性。
所述计量单元的数量可根据实际生产需求确定,可为一个或多个。计量单元为用于实现如氨纶等纤维生产用聚合物溶液的精确计量和分配功能的部件,为实现该功能即可,计量单元的具体设备结构并不限制。一所述计量单元的进口和出口的数量也可根据实际生产的需要确定,可选的,一所述计量单元可包括一个进口或多个进口,该计量单元的至少一个侧面(如图23-图24所示的左侧面和/或右侧面)可设有多个出口,该计量单元的多个出口以该计量单元的进口为中心对称且非线性排列在该计量单元的左侧面和/或右侧面,如氨纶等纤维干法纺丝用聚合物溶液经计量单元的进口流入,精确计量后经该计量单元的多个出口分配为多股均等的小溶液流。一个可选的实现方式中,如图25所示的一计量单元121中,所述计量单元的出口1212(多个出口)分散排列在该计量单元某个侧面的多个同心圆1213的圆周上,该方案可在计量单元121上布设更多的出口。当然,如果空间允许或者出口数量不多等情形下,一所述计量单元的多个出口也可分散排列在该计量单元至少一个侧面的一圆周或圆弧上;或者,一所述计量单元的多个出口也分散排列在某个侧面的多个同心圆的圆弧上,本发明实施例对此并不限制。
所述第一转换板的数量可根据实际生产需求确定,可为一个或多个。所述第一转换板为用于实现将计量单元的出口的非线性排列到线性排列转换的部 件,为实现该功能即可,第一转换板的具体设备结构并不限制。一所述第一转换板包括多个进口、多个出口和多个导流转换通道,一进口经一导流转换通道与一出口连通;多个进口呈非线性排列在该第一转换板的至少一个侧面,如第一转换板的左侧面非线性排列有多个进口,和/或,第一转换板的右侧面非线性排列有多个进口;多个出口呈线性排列在该第一转换板的下端面,导流转换通道1214如图24所示,可根据实际需要开设为直线、折线等通道;一所述第一转换板的下端面设有的多个出口分散排列在该下端面的一直线上,或者,分散排列在该下端面的多条具有一定间隔的平行直线上。一个可选的实现方式中,如图26所示,一第一转换板122包括多个进口和多个出口,设于第一转换板某侧面的第一转换板的进口1221(多个进口)的非线性排列方式,与设于计量单元某侧面的计量单元的出口1212(多个出口)的非线性排列方式对应,即:一所述第一转换板的至少一侧面设有的多个进口分散排列在该侧面的一圆周或圆弧上,或者,分散排列在该侧面的多个同心圆的圆周或圆弧上,例如:设于第一转换板某侧面的第一转换板的进口1221(多个进口)可分散排列在该侧面的多个同心圆1223的圆周或圆弧上。一所述第一转换板122的下端面设有的第一转换板的出口1222分散排列在该下端面的多条具有一定间隔的平行直线1224上。该方案可在第一转换板上布设更多的出口且布局结构较为紧凑,以满足更高密度纺丝的应用需求;当然,如果空间允许或者出口数量不多等情形下,一所述第一转换板的多个出口也可分散排列在一直线1224上,如图27所示,本发明实施例对此并不限制。
可选的,一所述计量单元的两个相对侧面分别对应连接一所述第一转换板,即:一所述计量单元的两个相对侧面中每个侧面设有的呈非线性排列的多个出口,各对应连通一所述第一转换板的一侧面设有的呈对应非线性连接的多个进口。例如,如图23和图24所示,每个计量单元121的两侧面分别连接一个第一转换板122,各第一转换板122的下端面的出口呈线性排列,以将一不同侧面上呈非线性排列的出口分别转换为线性排列的出口。该方案两个第一转换板公用一个计量单元,结构紧凑,布局灵活,空间利用率高,可将计量单元不同侧面上呈非线性排列的出口分别转换为线性排列的出口,提高出口转换效率。
可选的,一所述第一转换板的两个相对侧面分别对应连接一所述计量单元,即:一所述第一转换板的两个相对侧面中每个侧面设有的呈非线性排列的多个进口,分别对应连通一所述计量单元的一侧面设有的呈对应非线性连接的多个出口。该方案两个计量单元公用一个第一转换板,布局灵活,空间利用率高,可通过一个第一转换板将两个计量单元各自一侧面上呈非线性排列的出口分别转换为线性排列的出口,提高出口转换效率。
可选的,参考图23和图24,至少一所述第一转换板122还设有至少一溶 液进口1225,一所述溶液进口1225经一溶液导流通道与一所述计量单元121的至少一进口连通,这样,经第一转换板的溶液进口就可以为计量单元提供如氨纶干法纺丝用聚合物等溶液的总进口,提高了第一转换板的集成度,使得的计量装置的整体结构更为紧凑,提高空间利用率。所述溶液进口的开设位置可根据实际需要确定,可选的,所述溶液进口1225可设于第一转换板2的上端面,以提高布局的灵活性。在包括多个所述第一转换板的情形下,可根据实际需要,在每个所述第一转换板上设所述溶液进口和所述溶液导流通道,也可选择在其中部分所述第一转换板上设所述溶液进口和所述溶液导流通道,实现方式非常灵活,本发明实施例对此并不限制。
可选的,所述计量单元121与所述第一转换板122可拆卸式连接,以提高清洗、维护、装配等的方便性和灵活性。
在包括多个所述计量单元的情形下,本发明实施例中至少部分所述计量单元公用一所述驱动装置,所述驱动装置可包括但不限于减速电机,该方案减少计量装置所需使用的驱动装置的总数量,简化设备结构,节约设备成本。进一步的,所述驱动装置可包括一传动轴,至少部分所述计量单元串接在所述传动轴上,例如,如图23和图24所示,三个计量单元121公用一驱动装置,该驱动装置包括一传动轴124,三个计量单元121依次串接在该传动轴上,该方案可简化传动结构,实现多个计量单元的同步精准计量和分配。
在本发明实施例上述任一技术方案的基础上,如图28和图29所示,所述计量装置还可包括:至少一第二转换板125,一所述第二转换板125设有多个通孔1251,多个所述通孔1251的进口和出口分别呈线性排列在所述第二转换板125的上端面和下端面;其中,至少部分所述通孔1251的进口与一所述第一转换板122的下端面设有的呈线性排列的多个该第一转换板的出口1222中的至少部分出口对应连通;一所述第二转换板125的至少部分出口与所述控温箱的至少部分所述聚合物溶液通道呈对应的线性排列且对应连通,弹性纤维干法纺丝用聚合物溶液至少经一所述计量单元121的进口和一所述第二转换板的出口进入相应的所述聚合物溶液通道。该方案可通过第二转换板的通道调节所述第一转换板的出口间距等,由此提高计量装置与如氨纶等纤维干法纺丝后道工序中的如纺丝组件等设备匹配直连的灵活性,此外,通过第二转换帮将多个第一转换板的出口连接为一整体,故还有利于提高所述计量装置整体的稳定性。
参考图28-图30,一所述第二转换板125的多个通孔1251的进口和出口分别呈线性排列在所述第二转换板的上端面和下端面,可包括:多个所述通孔1251的进口分散排列在所述第二转换板125的上端面的一直线1252上,且多个所述通孔1251的出口分散排列在所述第二转换板125的下端面的一直线1252上;或者,多个所述通孔1251的进口分散排列在所述第二转换板125的 上端面的多条具有一定间隔的平行直线1252上,且多个所述通孔1251的出口分散排列在所述第二转换板125的下端面的多条具有一定间隔的平行直线1252上。该方案可满足计量装置与如氨纶等纤维干法纺丝后道工序中如纺丝组件等设备呈不同线性排列的多个进口匹配直连的应用需求,实现方式非常灵活。
本发明实施例中,所述第二转换板的数量可根据实际生产需求确定,可为一个或多个,实现方式非常灵活,例如,所述第二转换板的数量可与所述第一转换板的数量相同,或者,所述第二转换板的数量可与所述第一转换板的数量不同。
一种可选的实现方式中,可多个第二转换板公用一个第一转换板,即:一所述第一转换板的下端面设有的呈线性排列的多个出口分为多组,每组出口对应连通一所述第二转换板设有的呈线性排列的多个通孔的进口。该方案可通过多个第二转换板将一个第一转换板下端面的多个出口,转换为满足如氨纶等纤维干法纺丝后道工序中如纺丝组件等设备呈不同线性排列的多个进口匹配直连的出口排列方式。
另一种可选的实现方式中,可多个第一转换板公用一个第二转换板,即:一所述第二转换板设有的呈线性排列的多个通孔分为多组,每组通孔的进口对应连通一所述第一转换板的下端面设有的呈对应线性连接的多个出口。参考图28-图30,六个第一转换板122各自下端面呈线性排列的多个出口均连通到同一第二转换板125的不同通孔的进口,该方案可通过一个第二转换板将多个第一转换板下端面的多个出口,转换为满足如氨纶等纤维干法纺丝后道工序中如纺丝组件等设备呈不同线性排列的多个进口匹配直连的出口排列方式,并且提高了计量装置整体的稳定性。
可选的,所述第一转换板与所述第二转换板可拆卸式连接,以提高清洗、维护、装配等的方便性和灵活性。
进一步的,本发明实施例还提供了一种弹性纤维干法纺丝部件。该弹性纤维干法纺丝部件包括:一纺丝组件以及上述任一技术方案提供的至少一所述的第二计量装置,所述纺丝组件与各所述第二计量装置连接,所述纺丝组件可采用本发明实施例提供的任一中纺丝组件的结构。
其中,所述纺丝组件包括多个进口,多个进口呈线性排列,例如,根据氨纶干法纺丝生产的实际需要,可将纺丝组件的多个进口分散排列在一条直线上,或者,可将纺丝组件的多个进口分散排列在多条具有一定间隔的平行直线上。
所述第二计量装置可将聚合物溶液进行精确计量和分配,将计量单元多个出口的非线性排列方式转换为与所述纺丝组件多个进口的线性排列方式对应的线性排列方式,并可与所述纺丝组件的进口匹配直连。
一种可选的实现方式中,一所述第一转换板的至少部分出口与所述纺丝组件的至少部分进口呈对应的线性排列且对应连通,聚合物溶液至少经一所述计量单元的进口和一所述第一转换板的出口进入所述纺丝组件。该方案中,聚合物溶液至少经一所述计量单元的进口和一所述第一转换板的出口进入纺丝组件内,被过滤、保温并经喷丝头喷出后进入一个含有高温的空腔纺丝箱,溶液流在纺丝箱经工艺处理形成丝束,将丝束收卷就形成了氨纶。其中,所述第一转换板和所述纺丝组件的数量和装配方式,可根据实际工艺生产需求确定,实现方式非常灵活。
例如,可一个第一转换板对应一个纺丝组件。第一转换板下端面呈线性排列的多个出口与该纺丝组件呈对应线性排列的多个进口匹配直连,由此节省了第二计量装置与纺丝组件连接所需的金属软管,提高了空间利用率和产能。
又例如,可多个第一转换板公用一个纺丝组件,如图31所示,一第二计量装置包括六个第一转换板122,各第一转换板下端面呈线性排列的出口分别与一纺丝组件126的部分进口呈对应的线性排列且对应连通。该方案可通过多个第一转换板将多个计量单元的出口,转换为满足如氨纶等纤维干法纺丝后道工序中如纺丝组件等设备呈不同线性排列的多个进口匹配直连的出口排列方式,以实现灵活布局,更好满足纤维工艺生产差异化的实际需求。所述纺丝组件126可采用但不限于本发明实施例提供的任一种纺丝组件。
再例如,可多个纺丝组件公用一个第一转换板,如一所述第一转换板的部分出口与一纺丝组件呈线性排列的进口匹配直连、其他部分出口与另一纺丝组件呈线性排列的进口匹配直连,该方案可将一个第一转换板的多个出口匹配直连到多个纺丝组件各自呈线性排列的进口,以实现灵活布局,更好满足纤维工艺生产差异化的实际需求。
另一种可选的实现方式中,一所述第二转换板的至少部分出口与所述纺丝组件的至少部分进口呈对应的线性排列且对应连通,聚合物溶液至少经一所述计量单元的进口和一所述第二转换板的出口进入所述纺丝组件。该方案中,聚合物溶液至少经一所述计量单元的进口和一所述第二转换板的出口进入纺丝组件内,被过滤、保温并经喷丝头喷出后进入一个含有高温的空腔纺丝箱,溶液流在纺丝箱经工艺处理形成丝束,将丝束收卷就形成了氨纶。其中,所述第二转换板和所述纺丝组件的数量和装配方式,可根据实际工艺生产需求确定,实现方式非常灵活。
例如,可一个第二转换板对应一个纺丝组件。如图32所示,位于第二转换板125下端面呈线性排列的多个通孔的出口与该纺丝组件126呈对应线性排列的多个进口匹配直连,由此节省了第二计量装置与纺丝组件连接所需的金属软管,提高了空间利用率和产能。
又例如,可多个第二转换板公用一个纺丝组件,位于各第二转换板下端面 呈线性排列的多个通孔的出口分别与一所述纺丝组件的部分进口呈对应的线性排列且对应连通。该方案可通过多个第二转换板将计量单元的出口,转换为满足如氨纶等纤维干法纺丝后道工序中如纺丝组件等设备呈不同线性排列的多个进口匹配直连的出口排列方式,以实现灵活布局,更好满足纤维工艺生产差异化的实际需求。
再例如,可多个纺丝组件公用一个第二转换板,如位于一所述第二转换板的下端面的部分通孔的出口与一纺丝组件呈线性排列的进口匹配直连、其他部分通孔的出口与另一纺丝组件呈线性排列的进口匹配直连,该方案可将一个第二转换板的多个通孔的出口匹配直连到多个纺丝组件各自呈线性排列的进口,以实现灵活布局,更好满足纤维工艺生产差异化的实际需求。
可见,本发明实施例提供的弹性纤维干法纺丝部件实现了第二计量装置的出口与纺丝组件的进口之间无需金属软管即可实现直接对应连接,节省因布置金属软管接头需占用的空间,节省的空间可以布置更多的溶液流进出口,使得纺丝组件可以在有限的空间内喷出更多的丝束,从而提高效率,降低产品的生产成本。
可选的,所述纺丝组件与至少一所述第二计量装置可拆卸式连接,以进一步提高设备清洗、维护等的方便性和效率。
在本发明上述各实施例中,实施例的序号仅仅便于描述,不代表实施例的优劣。对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本发明的装置和方法等实施例中,显然,各部件或各步骤是可以分解、组合和/或分解后重新组合的。这些分解和/或重新组合应视为本发明的等效方案。同时,在上面对本发明具体实施例的描述中,针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、要素、步骤或组件的存在,但并不排除一个或更多个其它特征、要素、步骤或组件的存在或附加。
最后应说明的是:虽然以上已经详细说明了本发明及其优点,但是应当理解在不超出由所附的权利要求所限定的本发明的精神和范围的情况下可以进行各种改变、替代和变换。而且,本发明的范围不仅限于说明书所描述的过程、设备、手段、方法和步骤的具体实施例。本领域内的普通技术人员从本发明的公开内容将容易理解,根据本发明可以使用执行与在此所述的相应实施例基本相同的功能或者获得与其基本相同的结果的、现有和将来要被开发的过程、设备、手段、方法或者步骤。因此,所附的权利要求旨在在它们的范围内包括这样的过程、设备、手段、方法或者步骤。

Claims (61)

  1. 一种弹性纤维干法纺丝组件,其特征在于,包括:
    一控温箱,所述控温箱包括:一箱体,所述箱体纵向设有多个相互隔离的聚合物溶液通道;所述箱体内除各所述聚合物溶液通道之外的区域为空腔,所述空腔用于流通与所述聚合物溶液通道内的弹性纤维干纺用聚合物溶液进行热交换的流体介质;
    一喷丝部,与所述控温箱可拆卸式连接,所述喷丝部包括多个相互隔离的喷丝孔组,多个所述喷丝孔组与多个所述聚合物溶液通道的出口对应连通。
  2. 根据权利要求1所述的纺丝组件,其特征在于,所述喷丝部远离所述控温箱的一面设有一热防护板。
  3. 根据权利要求1所述的纺丝组件,其特征在于,至少一所述喷丝孔组的入口处设有一过滤组件。
  4. 根据权利要求3所述的纺丝组件,其特征在于,所述过滤组件包括:集合在一起的多层过滤网,至少二层所述过滤网的目数不同。
  5. 根据权利要求3所述的纺丝组件,其特征在于,集合在一起的多层所述过滤网还设有一密封包边。
  6. 根据权利要求1所述的纺丝组件,其特征在于,
    一所述喷丝孔组包括:一喷丝孔以及设于所述喷丝孔内的一喷丝头子部,一所述喷丝头子部包括至少一喷丝头;
    多个所述喷丝孔组中至少一所述喷丝孔组包括的喷丝头子部与相应喷丝孔可拆卸式连接。
  7. 根据权利要求6所述的纺丝组件,其特征在于,多个所述喷丝孔组中至少一所述喷丝孔组包括的喷丝头子部与相应喷丝孔过盈压入连接或螺纹连接。
  8. 根据权利要求1所述的纺丝组件,其特征在于,所述弹性纤维包括氨纶纤维。
  9. 根据权利要求1-8任一所述的纺丝组件,其特征在于,一所述聚合物溶液通道内设有一中间部件,所述中间部件用于减小经所述聚合物溶液通道流出的聚合物溶液不同部分的温差。
  10. 根据权利要求9所述的纺丝组件,其特征在于,所述中间部件包括:一分流部,用于将进入所述聚合物溶液通道内的聚合物溶液的截面形状由实心形状转换为空心的环形形状。
  11. 根据权利要求10所述的纺丝组件,其特征在于,所述实心形状为圆形,所述空心的环形形状为圆环形。
  12. 根据权利要求10所述的纺丝组件,其特征在于,所述分流部包括:进液子部、出液子部和导流子部;所述进液子部和所述导流子部纵向依次设置;所述出液子部与所述进液子部连通,用于将进入所述进液子部的聚合物溶液引 出至所述导流子部的外壁并沿所述外壁流下。
  13. 根据权利要求12所述的纺丝组件,其特征在于,所述进液子部的内径小于所述导流子部的外径,所述出液子部具有外扩式结构,具有外扩式结构的所述出液子部的出口沿所述导流子部的外边缘分布。
  14. 根据权利要求13所述的纺丝组件,其特征在于,所述进液子部包括纵向依次设置的空心圆筒进液部和倒锥台分配部;所述倒锥台分配部上表面与所述空心圆筒进液部连通,下表面与所述导流子部非连通式连接;具有外扩式结构的所述出液子部的进口与所述倒锥台分配部的侧面连通。
  15. 根据权利要求13所述的纺丝组件,其特征在于,所述导流子部具有圆柱结构。
  16. 根据权利要求12所述的纺丝组件,其特征在于,所述进液子部的内径大于所述导流子部的外径,所述出液子部设于所述进液子部的底面并沿所述导流子部的外边缘分布。
  17. 根据权利要求16所述的纺丝组件,其特征在于,所述进液子部具有空心圆筒结构,所述导流子部具有圆柱结构。
  18. 根据权利要求10所述的纺丝组件,其特征在于,所述中间部件还包括:一汇流部,连接于所述分流部的下方,用于将所述分流部流出的聚合物溶液汇聚为一实心流束。
  19. 根据权利要求18所述的纺丝组件,其特征在于,所述汇流部具有锥形结构。
  20. 根据权利要求9所述的纺丝组件,其特征在于,所述中间部件包括:一静态混合器,用于对进入所述聚合物溶液通道内的聚合物溶液进行分散和混合,以减小所述聚合物溶液径向不同部分的温差。
  21. 根据权利要求9所述的纺丝组件,其特征在于,多个所述聚合物溶液通道中至少一所述聚合物溶液通道的进口设有一密封圈,以免聚合物溶液流入所述空腔。
  22. 根据权利要求9所述的纺丝组件,其特征在于,所述箱体上还设有流体介质入口和流体介质出口,所述流体介质经所述流体介质入口流入所述空腔并经所述流体介质出口流出所述箱体。
  23. 根据权利要求22所述的纺丝组件,其特征在于,所述流体介质入口设于所述箱体上表面靠近所述箱体的一侧面的部位,所述流体介质出口设于所述箱体上表面靠近所述箱体的另一侧面的部位。
  24. 根据权利要求9所述的纺丝组件,其特征在于,还包括:过滤部件,设于所述中间部件的下方,用于对所述中间部件流出的聚合物溶液进行过滤处理。
  25. 根据权利要求9所述的纺丝组件,其特征在于,所述纺丝组件还配置有第一旋转装置,用于使所述纺丝组件旋转而改变所述喷丝部远离所述控温箱 一面的朝向。
  26. 一种弹性纤维干法纺丝部件,其特征在于,包括:
    一计量装置和一如权利要求1-25任一所述的纺丝组件;
    所述一计量装置与所述控温箱可拆卸式连接,用于计量并向多个所述聚合物溶液通道分配所述弹性纤维干纺用聚合物溶液。
  27. 根据权利要求26所述的纺丝部件,其特征在于,所述计量装置和所述控温箱之间设有一隔热板,用于减少所述控温箱向所述计量装置的热交换。
  28. 根据权利要求26所述的纺丝部件,其特征在于,所述纺丝部件还配置有第二旋转装置,用于使所述纺丝部件旋转而改变所述喷丝部远离所述控温箱一面的朝向。
  29. 根据权利要求26-28任一所述的纺丝部件,其特征在于,
    所述计量装置包括至少一进口和多个出口;
    所述计量装置的至少多个出口呈线性排列,与所述控温箱的至少多个所述聚合物溶液通道的进口呈对应的线性排列且对应连通;
    所述控温箱的至少多个所述聚合物溶液通道的出口,与所述喷丝部的至少多个喷丝孔组呈对应的线性排列且对应连通。
  30. 根据权利要求29所述的纺丝部件,其特征在于,所述计量装置包括一个或多个第一计量装置,所述控温箱与至少一所述第一计量装置可拆卸式连接;一所述第一计量装置包括:
    至少一计量单元,一所述计量单元包括至少一进口和多个出口,一所述计量单元的多个出口呈非线性排列;
    至少一接口转换部,一所述接口转换部包括经多个导流转换通道对应连通的多个进口和多个出口,一所述接口转换部的至少部分进口与一所述计量单元的至少部分出口呈对应的非线性排列且对应连通,一所述接口转换部的多个出口呈线性排列,其中,一所述接口转换部的至少部分出口与所述控温箱的至少部分所述聚合物溶液通道呈对应的线性排列且对应连通,弹性纤维干法纺丝用聚合物溶液至少经一所述计量单元的进口和一所述接口转换部的出口进入相应的所述聚合物溶液通道。
  31. 根据权利要求30所述的纺丝部件,其特征在于,一所述计量单元的多个出口呈非线性排列,包括:一所述计量单元的多个出口分散排列在一圆周或圆弧上,或者,分散排列在多个同心圆的圆周或圆弧上。
  32. 根据权利要求30所述的纺丝部件,其特征在于,一所述接口转换部的至少部分进口呈非线性排列,包括:
    一所述接口转换部的至少部分进口分散排列在一圆周或圆弧上,或者,分散排列在多个同心圆的圆周或圆弧上。
  33. 根据权利要求30所述的纺丝部件,其特征在于,一所述接口转换部 的多个出口呈线性排列,包括:一所述接口转换部的多个出口呈线性分散排列在一直线上,或者,分散排列在多条具有一定间隔的平行直线上。
  34. 根据权利要求30所述的纺丝部件,其特征在于,所述接口转换部和所述计量单元可拆卸式连接。
  35. 根据权利要求30所述的纺丝部件,其特征在于,一所述计量单元的一出口与一所述接口转换部的一进口的对应连接处设有一密封圈。
  36. 根据权利要求30所述的纺丝部件,其特征在于,
    一所述接口转换部包括:相互连接的至少一第一分配板和至少一第二分配板;
    一所述第一分配板包括多个通孔,一所述第一分配板的至少部分通孔的进口与一所述计量单元的至少部分出口呈对应的非线性排列且对应连通;
    一所述第二分配板包括多个导流转换通道和多个通孔,所述第二分配板的一导流转换通道的一端连通一所述第一分配板的一通孔的出口、另一端连通一所述第二分配板的一通孔的进口,一所述第二分配板的多个通孔的出口呈线性排列。
  37. 根据权利要求36所述的纺丝部件,其特征在于,一所述第二分配板的多个导流转换通道设于其与所述第一分配板对应连接的一面。
  38. 根据权利要求36所述的纺丝部件,其特征在于,所述计量单元和所述第一分配板可拆卸式连接。
  39. 根据权利要求36所述的纺丝部件,其特征在于,所述第一分配板和所述第二分配板可拆卸式连接。
  40. 根据权利要求36所述的纺丝部件,其特征在于,一所述第一分配板的一通孔的出口与一所述第二分配板的一导流转换通道的一端的对应连接处设有一密封件。
  41. 根据权利要求36所述的纺丝部件,其特征在于,一所述第一分配板包括:多级第一分配子板,一所述第一分配子板包括多个通孔,各级所述第一分配子板的各通孔的出口呈非线性排列,多级所述第一分配子板依次叠设且对应连通,其中,初级所述第一分配子板的一通孔的进口与一所述计量单元的一出口对应连通,末级所述第一分配子板的一通孔的出口与一所述第二分配板的一导流转换通道的一端对应连通。
  42. 根据权利要求36所述的纺丝部件,其特征在于,一所述第二分配板包括:多级第二分配子板,一所述第二分配子板包括多个导流转换通道和多个通孔,各级所述第二分配子板的各通孔的出口呈线性排列,多级所述第二分配子板依次叠设且对应连通,其中,初级所述第二分配子板的一导流转换通道的一端与一所述第一分配板的一出口对应连通,下一级所述第二分配子板的导流转换通道的进口与上一级所述第二分配子板的通孔的出口对应连通。
  43. 根据权利要求30所述的纺丝部件,其特征在于,一所述接口转换部还包括有至少一个溶液进口,一所述溶液进口经一溶液导流通道与一所述计量 单元的至少一进口连通。
  44. 根据权利要求30所述的纺丝部件,其特征在于,还包括:至少一驱动装置,与至少一所述计量单元驱动连接。
  45. 根据权利要求44所述的纺丝部件,其特征在于,在包括多个所述计量单元的情形下,至少部分所述计量单元公用一所述驱动装置。
  46. 根据权利要求29所述的纺丝部件,其特征在于,所述计量装置包括:一个或多个第二计量装置,所述控温箱与至少一所述第二计量装置可拆卸式连接;
    一所述第二计量装置包括:
    至少一计量单元和至少一第一转换板;
    一所述计量单元包括至少一进口;
    一所述计量单元的至少一侧面设有呈非线性排列的多个出口,与一所述第一转换板的至少一侧面设有的呈对应非线性排列的多个进口对应连通;
    一所述第一转换板的下端面设有呈线性排列的多个出口,一所述第一转换板的一进口与一出口之间通过一导流转换通道连通;
    其中,一所述第一转换板的至少部分出口与所述控温箱的至少部分所述聚合物溶液通道呈对应的线性排列且对应连通,弹性纤维干法纺丝用聚合物溶液至少经一所述计量单元的进口和一所述第一转换板的出口进入相应的所述聚合物溶液通道。
  47. 根据权利要求46所述的纺丝部件,其特征在于,一所述计量单元的至少一侧面设有呈非线性排列的多个出口,包括:
    一所述计量单元的至少一侧面设有的多个出口分散排列在该侧面的一圆周或圆弧上,或者,分散排列在该侧面的多个同心圆的圆周或圆弧上。
  48. 根据权利要求46所述的纺丝部件,其特征在于,一所述第一转换板的至少一侧面设有的呈对应非线性排列的多个进口,包括:
    一所述第一转换板的至少一侧面设有的多个进口分散排列在该侧面的一圆周或圆弧上,或者,分散排列在该侧面的多个同心圆的圆周或圆弧上。
  49. 根据权利要求46所述的纺丝部件,其特征在于,一所述第一转换板的下端面设有呈线性排列的多个出口,包括:
    一所述第一转换板的下端面设有的多个出口分散排列在该下端面的一直线上,或者,分散排列在该下端面的多条具有一定间隔的平行直线上。
  50. 根据权利要求46所述的纺丝部件,其特征在于,一所述计量单元的两个相对侧面中每个侧面设有的呈非线性排列的多个出口,各对应连通一所述第一转换板的一侧面设有的呈对应非线性连接的多个进口。
  51. 根据权利要求46所述的纺丝部件,其特征在于,一所述第一转换板的两个相对侧面中每个侧面设有的呈非线性排列的多个进口,分别对应连通一所述计量单元的一侧面设有的呈对应非线性连接的多个出口。
  52. 根据权利要求46所述的纺丝部件,其特征在于,至少一所述第一转换板还设有至少一溶液进口,一所述溶液进口经一溶液导流通道与一所述计量单元的至少一进口连通。
  53. 根据权利要求52所述的纺丝部件,其特征在于,所述溶液进口设于所述第一转换板的上端面。
  54. 根据权利要求46所述的纺丝部件,其特征在于,所述计量单元与所述第一转换板可拆卸式连接。
  55. 根据权利要求46所述的纺丝部件,其特征在于,在包括多个所述计量单元的情形下,至少部分所述计量单元公用一所述驱动装置。
  56. 根据权利要求55所述的纺丝部件,其特征在于,所述驱动装置包括一传动轴,至少部分所述计量单元串接在所述传动轴上。
  57. 根据权利要求46所述的纺丝部件,其特征在于,所述第二计量装置还包括:
    至少一第二转换板,一所述第二转换板设有多个通孔,多个所述通孔的进口和出口分别呈线性排列在所述第二转换板的上端面和下端面;
    至少部分所述通孔的进口与一所述第一转换板的下端面设有的呈线性排列的多个出口中的至少部分出口对应连通;
    其中,一所述第二转换板的至少部分出口与所述控温箱的至少部分所述聚合物溶液通道呈对应的线性排列且对应连通,弹性纤维干法纺丝用聚合物溶液至少经一所述计量单元的进口和一所述第二转换板的出口进入相应的所述聚合物溶液通道。
  58. 根据权利要求57所述的纺丝部件,其特征在于,多个所述通孔的进口和出口分别呈线性排列在所述第二转换板的上端面和下端面,包括:
    多个所述通孔的进口分散排列在所述第二转换板的上端面的一直线上,且多个所述通孔的出口分散排列在所述第二转换板的下端面的一直线上;或者,
    多个所述通孔的进口分散排列在所述第二转换板的上端面的多条具有一定间隔的平行直线上,且多个所述通孔的出口分散排列在所述第二转换板的下端面的多条具有一定间隔的平行直线上。
  59. 根据权利要求57所述的纺丝部件,其特征在于,一所述第一转换板的下端面设有的呈线性排列的多个出口分为多组,每组出口对应连通一所述第二转换板设有的呈线性排列的多个通孔的进口。
  60. 根据权利要求57所述的纺丝部件,其特征在于,一所述第二转换板设有的呈线性排列的多个通孔分为多组,每组通孔的进口对应连通一所述第一转换板的下端面设有的呈对应线性连接的多个出口。
  61. 根据权利要求57所述的纺丝部件,其特征在于,所述第一转换板与所述第二转换板可拆卸式连接。
PCT/CN2014/093008 2014-12-04 2014-12-04 弹性纤维干法纺丝组件和纺丝部件 WO2016086383A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2017547033A JP6450468B2 (ja) 2014-12-04 2014-12-04 弾性繊維の乾式紡糸機及び紡糸装置
KR1020177014908A KR101934380B1 (ko) 2014-12-04 2014-12-04 탄성섬유 건식 방사 소자 및 방사 부품
US15/533,034 US20180291526A1 (en) 2014-12-04 2014-12-04 Spandex fiber dry spinning component and spinning part
PCT/CN2014/093008 WO2016086383A1 (zh) 2014-12-04 2014-12-04 弹性纤维干法纺丝组件和纺丝部件
EP14907342.1A EP3228734B1 (en) 2014-12-04 2014-12-04 Spandex fiber dry spinning component and spinning part
BR112017011558-1A BR112017011558B1 (pt) 2014-12-04 2014-12-04 Componente de fiação a seco de fibras elásticas e parte de fiação a seco de fibra elástica
US18/196,409 US20230279584A1 (en) 2014-12-04 2023-05-11 Spandex fiber dry spinning component and spinning part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/093008 WO2016086383A1 (zh) 2014-12-04 2014-12-04 弹性纤维干法纺丝组件和纺丝部件

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/533,034 A-371-Of-International US20180291526A1 (en) 2014-12-04 2014-12-04 Spandex fiber dry spinning component and spinning part
US18/196,409 Continuation US20230279584A1 (en) 2014-12-04 2023-05-11 Spandex fiber dry spinning component and spinning part

Publications (1)

Publication Number Publication Date
WO2016086383A1 true WO2016086383A1 (zh) 2016-06-09

Family

ID=56090827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/093008 WO2016086383A1 (zh) 2014-12-04 2014-12-04 弹性纤维干法纺丝组件和纺丝部件

Country Status (6)

Country Link
US (2) US20180291526A1 (zh)
EP (1) EP3228734B1 (zh)
JP (1) JP6450468B2 (zh)
KR (1) KR101934380B1 (zh)
BR (1) BR112017011558B1 (zh)
WO (1) WO2016086383A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108823657B (zh) * 2018-08-23 2023-09-29 宁波建嵘科技有限公司 一种多工位喷丝板
CN110735189A (zh) * 2019-11-28 2020-01-31 宁波斯宾拿精密机械制造有限公司 一种基于溶液纺丝技术的纺丝组件及纺丝设备
CN112501698A (zh) * 2020-11-12 2021-03-16 厦门夏曦儿纺织机械有限公司 一种便于拆卸的喷丝机构
CN114293274B (zh) * 2021-12-28 2023-03-14 杭州汇云天丽实业有限公司 一种抗压皱高强度锦纶poy丝的生产装置及使用方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3458616A (en) * 1967-05-11 1969-07-29 Du Pont Dry spinning process and apparatus
US3671653A (en) * 1970-10-19 1972-06-20 Du Pont Gas purging of spinning packs
CN102358960A (zh) * 2011-09-19 2012-02-22 郑州中远氨纶工程技术有限公司 纺丝组件和纺丝部件
CN104389035A (zh) * 2014-12-04 2015-03-04 郑州中远氨纶工程技术有限公司 弹性纤维干法纺丝组件和纺丝部件

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6605678A (zh) * 1966-04-28 1967-10-30
US3509244A (en) * 1967-08-09 1970-04-28 Du Pont Process and apparatus for providing uniform temperature dry-spinning
DE2006022C3 (de) * 1970-02-11 1981-10-15 Basf Ag, 6700 Ludwigshafen Vorrichtung zur Herstellung texturierter Fäden
US4078034A (en) * 1976-12-21 1978-03-07 E. I. Du Pont De Nemours And Company Air gage spinning process
FR2394623A1 (fr) * 1977-06-14 1979-01-12 Rhone Poulenc Textile Filiere
US4332764A (en) * 1980-10-21 1982-06-01 Fiber Industries, Inc. Methods for producing melt-spun filaments
US4617235A (en) * 1983-05-23 1986-10-14 Unitika Ltd. Antistatic synthetic fibers
JPS60199906A (ja) * 1984-03-19 1985-10-09 Toray Ind Inc 紡糸ブロツク
JPS626211A (ja) * 1985-02-06 1987-01-13 Sumitomo Electric Ind Ltd 高配向性樹脂製補強部材およびその製造方法
KR940005924B1 (ko) * 1989-01-12 1994-06-24 가네보가부시끼가이샤 복합 필라멘트사와 그의 제조방법 및 그의 제조용 방사노즐
JP2894880B2 (ja) * 1991-09-13 1999-05-24 株式会社ペトカ ピッチ系炭素繊維紡糸用口金
US5387387A (en) * 1993-09-30 1995-02-07 Alex James & Associates, Inc. Method and apparatus for dry spinning spandex
US6841243B2 (en) * 1999-01-29 2005-01-11 E. I. Du Pont De Nemours And Company High speed melt spinning of fluoropolymer fibers
JP2002105738A (ja) * 2000-09-22 2002-04-10 Toray Ind Inc 溶融紡糸機
KR100460137B1 (ko) * 2002-10-09 2004-12-03 태광산업주식회사 스판덱스 건식방사용 방사구금, 이를 이용하여 제조된스판덱스 및 스판덱스의 제조방법
DE102005053248B4 (de) * 2005-11-08 2016-12-01 Axel Nickel Schmelzblaskopf mit veränderbarer Spinnbreite
US9416465B2 (en) * 2006-07-14 2016-08-16 Sabic Global Technologies B.V. Process for making a high heat polymer fiber
CN102037168B (zh) * 2008-03-19 2012-07-11 英威达技术有限公司 用于合成纤维的纺纱单元
EP2594667B1 (en) * 2009-06-25 2015-01-14 Lubrizol Advanced Materials, Inc. Elastic fibers and fabric
JP5535389B1 (ja) * 2012-10-22 2014-07-02 株式会社リメディオ 乾式紡糸装置、不織布製造装置、および紡糸方法
US20140159263A1 (en) * 2012-12-04 2014-06-12 Karen Lozano Portable apparatuses and methods for the production of microfibers and nanofibers
BR112018071240B1 (pt) * 2016-04-25 2022-07-26 Cytec Industries Inc Conjunto de fieira, método para fiação de fibra, e, uso do conjunto de fieira

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3458616A (en) * 1967-05-11 1969-07-29 Du Pont Dry spinning process and apparatus
US3671653A (en) * 1970-10-19 1972-06-20 Du Pont Gas purging of spinning packs
CN102358960A (zh) * 2011-09-19 2012-02-22 郑州中远氨纶工程技术有限公司 纺丝组件和纺丝部件
CN104389035A (zh) * 2014-12-04 2015-03-04 郑州中远氨纶工程技术有限公司 弹性纤维干法纺丝组件和纺丝部件

Also Published As

Publication number Publication date
EP3228734A4 (en) 2018-06-27
KR20170077224A (ko) 2017-07-05
JP2017535694A (ja) 2017-11-30
US20230279584A1 (en) 2023-09-07
JP6450468B2 (ja) 2019-01-09
EP3228734B1 (en) 2020-09-09
BR112017011558A2 (pt) 2018-02-27
US20180291526A1 (en) 2018-10-11
BR112017011558B1 (pt) 2021-11-09
EP3228734A1 (en) 2017-10-11
KR101934380B1 (ko) 2019-03-25

Similar Documents

Publication Publication Date Title
WO2016086383A1 (zh) 弹性纤维干法纺丝组件和纺丝部件
CN204370055U (zh) 弹性纤维干法纺丝组件和纺丝部件
CN102358960B (zh) 纺丝组件和纺丝部件
CN104389035B (zh) 弹性纤维干法纺丝组件和纺丝部件
WO2016086821A1 (zh) 弹性纤维干法纺丝用控温箱
RU2092631C1 (ru) Устройство для формования термопластичных нитей и шестеренчатый насосик
CN105133052A (zh) 一种无针式静电纺丝设备
CN206157287U (zh) 新型多孔喷丝头
CN214830812U (zh) 一种喷丝板及喷丝机
WO2016086822A1 (zh) 计量装置及氨纶干法纺丝部件
CN104088025A (zh) 一种熔纺氨纶纺丝生产设备及生产方法
CN102517652A (zh) 组装式多喷头喷丝板
WO2016086820A1 (zh) 计量装置及氨纶干法纺丝部件
CN204370052U (zh) 计量装置及氨纶干法纺丝部件
CN204370054U (zh) 计量装置及氨纶干法纺丝部件
CN202401177U (zh) 纺丝组件和纺丝部件
CN207418930U (zh) 单孔中空纤维膜喷丝装置
CN214244696U (zh) 双组份纤维用的纺丝组件
CN112921423B (zh) 双组份纤维纺丝组件
CN220597854U (zh) 一种长丝用在线染色装置
CN221182687U (zh) 气液分布器及列管式反应器
CN214361857U (zh) 一种具有恒温结构的喷丝板
CN216039962U (zh) 一种便于拆装维护的mbr中空膜喷丝头组件
KR101221402B1 (ko) 고밀도 블랜딩 시스템
CN112877792A (zh) 一种喷丝板及喷丝机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14907342

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017547033

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177014908

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017/08195

Country of ref document: TR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15533034

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017011558

Country of ref document: BR

REEP Request for entry into the european phase

Ref document number: 2014907342

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 112017011558

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170531