WO2016086380A1 - 一种物体检测方法、装置及遥控移动设备、飞行器 - Google Patents

一种物体检测方法、装置及遥控移动设备、飞行器 Download PDF

Info

Publication number
WO2016086380A1
WO2016086380A1 PCT/CN2014/092994 CN2014092994W WO2016086380A1 WO 2016086380 A1 WO2016086380 A1 WO 2016086380A1 CN 2014092994 W CN2014092994 W CN 2014092994W WO 2016086380 A1 WO2016086380 A1 WO 2016086380A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
image capturing
incoming
lens
incoming light
Prior art date
Application number
PCT/CN2014/092994
Other languages
English (en)
French (fr)
Inventor
谢捷斌
赵丛
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201480005443.8A priority Critical patent/CN105518490A/zh
Priority to PCT/CN2014/092994 priority patent/WO2016086380A1/zh
Publication of WO2016086380A1 publication Critical patent/WO2016086380A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties

Definitions

  • the present invention relates to the field of optical detection technologies, and in particular, to an object detection method and apparatus, and a remote control mobile device and an aircraft.
  • various optical cameras can further analyze objects based on captured photos and videos to achieve target recognition and even rough target distance detection.
  • the multi-camera-based vision system can be applied to various types of remote-controlled mobile devices such as aircrafts and remote-controlled cars, which can accurately perform object analysis and detection on the environment, as well as object distance detection, and realize automatic obstacle avoidance and other functions.
  • the camera alone cannot perform object analysis and distance detection. It is also necessary to use the distance sensor such as ultrasonic wave or radar to determine the obstacles such as glass in the field of view of the lens, and increase the avoidance. The cost of the barrier.
  • the embodiment of the invention provides an object detecting method and device, a remote control mobile device and an aircraft, which can detect mirror objects such as glass in a simple, fast and low-cost manner.
  • an embodiment of the present invention provides an object detection method, including:
  • the image acquisition assembly comprising at least two optical lenses configured with polarizing plates;
  • the polarizing plates disposed on each lens are at different elevation angles
  • determining that the field of view of the image capturing component exists before the specular object includes:
  • Determining whether there is polarized light in the incoming light of each of the image capturing components is determined according to the change information between the respective light intensities.
  • the determining, according to the change information between the respective light intensities, whether there is polarized light in the incoming light of each of the image capturing components including:
  • the determining, according to the change information between the respective light intensities, whether there is polarized light in the incoming light of each of the image capturing components including:
  • the minimum of the calculated differences is greater than a predetermined threshold, determining that there is polarized light in the incoming ray and determining that there is a specular object in the field of view of the image acquisition component.
  • the method before detecting the light intensity of the incoming light of each of the image capturing components, the method further includes:
  • the light source module is invoked to emit light to facilitate performing the light intensity of the incoming light of each of the detected image acquisition components.
  • the detecting the light intensity of the incoming light of each of the image capturing components comprises:
  • the light intensity of the incoming light corresponding to the lens is calculated according to the acquired gray value.
  • the detecting the light intensity of the incoming light of each of the image capturing components comprises:
  • the light intensity of the incoming light corresponding to the lens is calculated according to the obtained three color values.
  • an embodiment of the present invention provides an object detecting apparatus, including:
  • a detecting module configured to detect a light intensity of an incoming light of each of the image capturing components, the image capturing component comprising at least two optical lenses configured with a polarizing plate;
  • a determining module configured to determine that there is a specular object in a field of view of the image capturing component when it is determined that there is polarized light in the incoming light based on the detected respective light intensities.
  • the polarizing plates disposed on each of the image capturing components are at different angles of departure; the device further includes:
  • a judging module configured to determine, according to the change information between the respective light intensities, whether there is polarized light in the incoming light of each of the image capturing components.
  • the determining module includes:
  • a determining unit configured to determine whether there is a difference in light intensity of incoming light of each lens in the image capturing component
  • the first determining unit is configured to determine that there is polarized light in the incoming light when the determination result of the determining unit is that there is a difference, and determine that a specular object exists in a field of view of the image capturing component.
  • the determining module includes:
  • a difference calculation unit for calculating a difference in light intensity of incoming light between each lens
  • a second determining unit configured to determine, when the calculation result of the difference calculation unit is that the minimum value of the calculated difference is greater than a preset threshold, determine that the polarized light exists in the incoming light, and determine the location There is a specular object in the field of view of the image acquisition component.
  • the device further includes:
  • a light source module configured to invoke the light source to emit light, so as to perform the light intensity of the incoming light for detecting each lens in the image capturing component.
  • the detecting module includes:
  • a first acquiring unit configured to acquire a gray value of an image collected by each lens in the image capturing component
  • the first calculating unit is configured to calculate a light intensity of the incoming light corresponding to the lens according to the acquired gray value.
  • the detecting module includes:
  • a second acquiring unit configured to acquire three color values of an image collected by each lens in the image capturing component
  • a second calculating unit configured to calculate a light intensity of the incoming light corresponding to the lens according to the acquired three color values.
  • an embodiment of the present invention further provides a remote control mobile device, including: an image acquisition component including at least two optical lenses configured with a polarizing plate, and a controller, wherein:
  • the controller is configured to detect a light intensity of an incoming light of each of the image capturing components, the image capturing component comprising at least two optical lenses configured with a polarizing plate; if determined based on the detected respective light intensities If there is polarized light in the incoming ray, it is determined that there is a specular object in the field of view of the image acquisition component.
  • the polarizing plates disposed on each lens are at different elevation angles
  • the controller is further configured to determine, according to the change information between the respective light intensities, whether there is polarized light in the incoming light of each of the image capturing components.
  • the controller is specifically configured to determine whether there is a difference in light intensity of the incoming light of each lens in the image capturing component; if there is a difference, determining that the incoming light has polarized light, and A specular object is present within the field of view of the image acquisition component.
  • the controller is specifically configured to calculate a difference in light intensity of the incoming light between each lens; if the minimum value of the calculated difference is greater than a preset threshold, determine the transmission There is polarized light in the incoming light and it is determined that there is a specular object within the field of view of the image acquisition component.
  • the remote control mobile device further includes:
  • a light emitting device for invoking light source illumination to facilitate performing light intensity detection of the incoming light of each of the image capturing components.
  • the controller is specifically configured to acquire a gray value of an image collected by each lens in the image capturing component, and calculate a light intensity of the incoming light corresponding to the lens according to the acquired gray value.
  • the controller is specifically configured to acquire three color values of an image collected by each lens in the image capturing component, and calculate a light intensity of the incoming light corresponding to the lens according to the obtained three color values.
  • an embodiment of the present invention further provides an aircraft, comprising: an image acquisition component including at least two optical lenses configured with a polarizing plate, and a controller, wherein:
  • the controller is configured to detect a light intensity of an incoming light of each of the image capturing components, the image capturing component comprising at least two optical lenses configured with a polarizing plate; if determined based on the detected respective light intensities If there is polarized light in the incoming ray, it is determined that there is a specular object in the field of view of the image acquisition component.
  • the embodiment of the invention can be applied to moving objects such as an aircraft and a remote control car, and can detect the mirror object in the moving direction of the moving object relatively easily and quickly, especially the glass mirror surface which may affect the movement of the moving object.
  • moving objects such as an aircraft and a remote control car
  • the mirror object in the moving direction of the moving object relatively easily and quickly, especially the glass mirror surface which may affect the movement of the moving object.
  • the more lenses that are covered with a polarizing plate the larger the area of the specular object in the field of view of the lens, the higher the accuracy.
  • the cost of the embodiment of the present invention is low.
  • FIG. 1 is a schematic flow chart of an object detecting method according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing a polarizing plate disposed in a lens
  • FIG. 3 is a schematic flow chart of another object detecting method according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural view of an object detecting device according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of another object detecting apparatus according to an embodiment of the present invention.
  • Figure 6 is a schematic structural view of the judging module of Figure 5;
  • Figure 7 is a schematic structural view of the detecting module of Figure 5;
  • FIG. 8 is a schematic structural diagram of a remote control mobile device according to an embodiment of the present invention.
  • the polarizing plate is respectively disposed in the lenses of the plurality of cameras, and then according to the intensity of the light incoming by the lens, whether or not the polarized light is transmitted, if any, it may be determined that the current lens field of view has a glass, A mirror object such as a water surface.
  • FIG. 1 is a schematic flowchart diagram of an object detecting method according to an embodiment of the present invention.
  • the method may be implemented by an image processor that passes at least two optical lenses with polarizing plates. The difference in the intensity of the incoming light, whether or not there is a detection judgment of the specular object.
  • the method includes:
  • S101 Detecting light intensity of incoming light of each lens in the image capturing component, the image capturing component comprising at least two optical lenses configured with polarizing plates.
  • the lens and the image sensor of each camera in the image capturing component may have the same configuration.
  • the surface of each lens is covered with a polarizing plate, and the orientation angle of each polarizing plate is not the same, so that polarized light has different light intensities after entering the lens.
  • the image acquisition component shown includes four cameras, and the deflection angles between the polarizing plates covered on each camera lens are different by 45 degrees. In order to better determine the difference in light intensity with respect to the collected polarized light.
  • the non-specular objects reflect the scattered light generated by the light through the polarizing plate into the lens of the image capturing component, and each lens
  • the light intensity of the corresponding light does not change.
  • the light intensity of the incoming light corresponding to each lens is the same (or substantially the same), then it can be determined that there is no polarized light in the incoming light, and there are no mirror objects such as glass and water surface in the field of view.
  • the light intensity of the incoming light is not the same, for example, after the 45-degree angular polarizing plate is used for the above, the calculated light intensity is not the same, then it can be determined that there is glass, water surface, etc. in the field of view. Mirror object.
  • the calculation of the light intensity may be calculated based on the gray value of each pixel in the image acquired by the corresponding lens or the RGB (Red, Green, Blue) value.
  • the light intensity is proportional to the gray value, and the RGB three color values are added as the light intensity value.
  • the mirror object After determining the mirror object, especially after the glass wall surface, it can better assist the aircraft such as UAV (Unmanned Aerial Vehicle) and remote control car to avoid the glass wall surface and complete the obstacle avoidance operation.
  • UAV Unmanned Aerial Vehicle
  • remote control car For detecting the specular object, other operations such as UAV water source detection, automatic water extraction, and cleaning of the glass wall surface can be performed.
  • the embodiment of the invention can be applied to moving objects such as an aircraft and a remote control car, and can detect the mirror object in the moving direction of the moving object relatively easily and quickly, especially the glass mirror surface which may affect the movement of the moving object.
  • moving objects such as an aircraft and a remote control car
  • the mirror object in the moving direction of the moving object relatively easily and quickly, especially the glass mirror surface which may affect the movement of the moving object.
  • the more lenses that are covered with a polarizing plate the larger the area of the specular object in the field of view of the lens, the higher the accuracy.
  • the cost of the embodiment of the present invention is low.
  • FIG. 3 it is a schematic flowchart of another object detecting method according to an embodiment of the present invention.
  • the method may be implemented by an image processor that transmits at least two optical lenses with polarizing plates. The difference in the intensity of the incoming light, whether or not there is a detection judgment of the specular object.
  • the method includes:
  • the light source module is called to emit light.
  • the S201 is performed to facilitate performing the light intensity of the incoming light of each of the detected image acquisition components.
  • you can call your own light source to assist in the detection of polarized light so that in low-light environments, you can also capture images and perform light intensity detection for each lens.
  • the spectrum of the light source in the light source module needs to coincide with the received spectrum of the camera in the image acquisition component in order to properly perform subsequent light intensity detection, that is, if the light source is in the visible light band, the camera must also sense visible light. If the light source is in the infrared band, the camera must also sense infrared light.
  • S202 Detecting light intensity of incoming light of each lens in the image capturing component, the image capturing component comprising at least two optical lenses configured with polarizing plates.
  • the S202 may specifically include: acquiring gray values of images collected by each of the image capturing components; The acquired gray value calculates the light intensity of the incoming light corresponding to the lens.
  • the S202 may specifically include: acquiring three color values of the image collected by each of the image capturing components; The tristimulus value calculates the light intensity of the incoming light corresponding to the lens.
  • S203 Determine, according to the change information between the respective light intensities, whether there is polarized light in the incoming light of each lens in the image capturing component.
  • the S203 may specifically include:
  • a threshold may be preset based on the difference in the off-angle of the polarizer covered by each lens in the image capturing component to better judge the polarized light in the environment, and the S203 may specifically include :
  • the minimum of the calculated differences is greater than a predetermined threshold, determining that there is polarized light in the incoming ray and determining that there is a specular object in the field of view of the image acquisition component.
  • the mirror object After determining the mirror object, especially after the glass wall surface, it can better assist the aircraft such as UAV, remote control car, etc. to avoid the glass wall surface and complete the obstacle avoidance operation.
  • the aircraft such as UAV, remote control car, etc.
  • other operations such as UAV water source detection, automatic water extraction, and cleaning of the glass wall surface can be performed.
  • the embodiment of the invention can be applied to moving objects such as an aircraft and a remote control car, and can detect the mirror object in the moving direction of the moving object relatively easily and quickly, especially the glass mirror surface which may affect the movement of the moving object.
  • moving objects such as an aircraft and a remote control car
  • the mirror object in the moving direction of the moving object relatively easily and quickly, especially the glass mirror surface which may affect the movement of the moving object.
  • the more lenses that are covered with a polarizing plate the larger the area of the specular object in the field of view of the lens, the higher the accuracy.
  • the cost of the embodiment of the present invention is low.
  • the object detecting device, the remote control mobile device, and the flight of the embodiment of the present invention will be described in detail below.
  • FIG. 4 is a schematic structural diagram of an object detecting apparatus according to an embodiment of the present invention.
  • the apparatus of the embodiment of the present invention may be configured in an apparatus such as an aircraft or a remote control car, and specifically, the embodiment of the present invention
  • the device includes:
  • a detecting module 1 for detecting light intensity of incoming light of each lens in the image capturing component, the image capturing component comprising at least two optical lenses configured with polarizing plates;
  • the determining module 2 is configured to determine that there is a specular object in a field of view of the image capturing component when it is determined that there is polarized light in the incoming light based on the detected respective light intensities.
  • the lens and the image sensor of each camera in the image capturing component may have the same configuration.
  • the surface of each lens is covered with a polarizing plate, and the polarizing angle of each polarizing plate is not the same, so that polarized light has different light intensities after entering the lens.
  • each of the image acquisition components can be referred to FIG. 2.
  • the scattered light generated by the non-mirror objects reflected light passes through the polarizing plate and enters the lens of the image capturing component, and the detecting Module 1 will detect that the light intensity of the light corresponding to each lens is the same or substantially the same. If the light intensity of the incoming light corresponding to each lens is the same (or substantially the same), the detecting module 1 can determine that there is no polarized light in the incoming light, and the determining module 2 can determine that there is no glass or water surface in the field of view. Wait for mirror objects.
  • the detection module 1 detects that the light intensity of the incoming light is not the same, for example, after the 45-degree angular polarizing plates are mutually different, the calculated light intensity is not the same, then the determining module 2 It is possible to determine the presence of mirrored objects such as glass and water in the field of view.
  • the calculation of the light intensity can be calculated based on the gray value or the RGB value of each pixel in the image acquired by the corresponding lens.
  • the light intensity is proportional to the gray value, and the RGB three color values are added as the light intensity value.
  • the mirror object After determining the mirror object, especially after the glass wall surface, it can better assist the aircraft such as UAV, remote control car, etc. to avoid the glass wall surface and complete the obstacle avoidance operation.
  • the aircraft such as UAV, remote control car, etc.
  • other operations can be performed, such as automatic water intake by the UAV, cleaning of the glass wall surface, and the like.
  • the embodiment of the invention can be applied to moving objects such as an aircraft and a remote control car, and can detect the mirror object in the moving direction of the moving object relatively easily and quickly, especially the glass mirror surface which may affect the movement of the moving object.
  • moving objects such as an aircraft and a remote control car
  • the mirror object in the moving direction of the moving object relatively easily and quickly, especially the glass mirror surface which may affect the movement of the moving object.
  • the more lenses that are covered with a polarizing plate the larger the area of the specular object in the field of view of the lens, the higher the accuracy.
  • the cost of the embodiment of the present invention is low.
  • FIG. 5 is a schematic structural diagram of another object detecting device according to an embodiment of the present invention.
  • the device in the embodiment of the present invention may be configured in an aircraft, a remote control car, and the like.
  • the device includes the detecting module 1 and the determining module 2 described above.
  • the polarizing plates disposed on each of the image capturing components are at different angles of departure; include:
  • the determining module 3 is configured to determine, according to the change information between the respective light intensities, whether there is polarized light in the incoming light of each of the image capturing components.
  • the judging module 3 of the embodiment of the present invention may include:
  • a determining unit 31 configured to determine whether there is a difference in light intensity of incoming light of each lens in the image capturing component
  • the first determining unit 32 is configured to determine that there is polarized light in the incoming light when the determination result of the determining unit 31 is that there is a difference, and determine that a specular object exists in a field of view of the image capturing component. .
  • the judging module 3 of the embodiment of the present invention may further include:
  • a difference calculating unit 33 configured to calculate a difference in light intensity of incoming light between each lens
  • the second determining unit 34 is configured to determine, when the calculation result of the difference calculation unit 33 is that the minimum value of the calculated difference values is greater than a preset threshold, determine that polarized light exists in the incoming light, and determine There is a specular object in the field of view of the image acquisition component.
  • the judging module 3 may only include the combination of the judging unit 31 and the first determining unit 32, or may only include the combination of the difference calculating unit 33 and the second determining unit 34.
  • apparatus of the embodiment of the present invention may further include:
  • the light source module 4 is configured to invoke the light source to facilitate performing the light intensity of the incoming light for detecting each of the image capturing components.
  • the detecting module 1 may include:
  • the first obtaining unit 11 is configured to acquire a gray value of an image collected by each lens in the image capturing component
  • the first calculating unit 12 is configured to calculate the light intensity of the incoming light corresponding to the lens according to the acquired gray value.
  • the detecting module 1 may further include:
  • a second acquiring unit 13 configured to acquire three color values of an image collected by each lens in the image capturing component
  • the second calculating unit 14 is configured to calculate the light intensity of the incoming light corresponding to the lens according to the acquired three color values.
  • the detection module 1 may only include the combination of the first acquisition unit 11 and the first calculation unit 12, or may only include the combination of the second acquisition unit 13 and the second calculation unit 14.
  • the embodiment of the invention can be applied to moving objects such as an aircraft and a remote control car, and can detect the mirror object in the moving direction of the moving object relatively easily and quickly, especially the glass mirror surface which may affect the movement of the moving object.
  • moving objects such as an aircraft and a remote control car
  • the mirror object in the moving direction of the moving object relatively easily and quickly, especially the glass mirror surface which may affect the movement of the moving object.
  • the more lenses that are covered with a polarizing plate the larger the area of the specular object in the field of view of the lens, the higher the accuracy.
  • the cost of the embodiment of the present invention is low.
  • FIG. 8 is a schematic structural diagram of a remote control mobile device according to an embodiment of the present invention.
  • the remote control mobile device in the embodiment of the present invention may specifically be a UAV, a car, and the like that can be remotely controlled.
  • the The remote control mobile device includes: an image capture component 100 including at least two optical lenses configured with polarizing plates, and a controller 200, further comprising a memory 300 in which an object detection application is stored, the controller 200 passing Calling the object detection application performs the following functions.
  • the controller 200 is configured to detect a light intensity of an incoming light of each of the image capturing components, the image capturing component comprising at least two optical lenses configured with a polarizing plate; if determined based on the detected respective light intensities If there is polarized light in the incoming light, it is determined that there is a specular object in the field of view of the image capturing component.
  • the polarizing plates disposed on each lens are at different lifting angles
  • the controller 200 is further configured to determine, according to the change information between the respective light intensities, whether there is polarized light in the incoming light of each of the image capturing components.
  • controller 200 is specifically configured to determine whether there is a difference in light intensity of the incoming light of each lens in the image capturing component; if there is a difference, determining that there is polarized light in the incoming light, And determining that there is a specular object in the field of view of the image acquisition component.
  • controller 200 is specifically configured to calculate a difference in light intensity of the incoming light between each lens; if the minimum value of the calculated differences is greater than a preset threshold, determine the There is polarized light in the incoming ray and it is determined that there is a specular object within the field of view of the image acquisition component.
  • apparatus of the embodiment of the present invention may further include:
  • the illuminating device 400 is configured to invoke the light source to emit light to facilitate performing the detecting of the light intensity of the incoming light of each of the image capturing components.
  • controller 200 is specifically configured to acquire a gray value of an image collected by each lens in the image capturing component, and calculate a light intensity of the incoming light corresponding to the lens according to the acquired gray value.
  • controller 200 is specifically configured to acquire three color values of an image collected by each lens in the image capturing component, and calculate a light intensity of the incoming light corresponding to the lens according to the obtained three color values.
  • controller 200 the illuminating device 400, and the like mentioned in the embodiments of the present invention may refer to the description of related steps in the method embodiments of FIG. 1 to FIG.
  • the embodiment of the invention can be applied to moving objects such as an aircraft and a remote control car, and can detect the mirror object in the moving direction of the moving object relatively easily and quickly, especially the glass mirror surface which may affect the movement of the moving object.
  • moving objects such as an aircraft and a remote control car
  • the mirror object in the moving direction of the moving object relatively easily and quickly, especially the glass mirror surface which may affect the movement of the moving object.
  • the more lenses that are covered with a polarizing plate the larger the area of the specular object in the field of view of the lens, the higher the accuracy.
  • the cost of the embodiment of the present invention is low.
  • An embodiment of the present invention further provides an aircraft, and the aircraft may specifically include: an image acquisition component including at least two optical lenses configured with a polarizing plate, and a controller, wherein:
  • the controller is configured to detect a light intensity of an incoming light of each of the image capturing components, the image capturing component comprising at least two optical lenses configured with a polarizing plate; if determined based on the detected respective light intensities If there is polarized light in the incoming ray, it is determined that there is a specular object in the field of view of the image acquisition component.
  • the embodiment of the invention can be applied to moving objects such as an aircraft and a remote control car, and can detect the mirror object in the moving direction of the moving object relatively easily and quickly, especially the glass mirror surface which may affect the movement of the moving object.
  • moving objects such as an aircraft and a remote control car
  • the mirror object in the moving direction of the moving object relatively easily and quickly, especially the glass mirror surface which may affect the movement of the moving object.
  • the more lenses that are covered with a polarizing plate the larger the area of the specular object in the field of view of the lens, the higher the accuracy.
  • the cost of the embodiment of the present invention is low.
  • the related apparatus and method disclosed may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used. Combinations can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer processor to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Abstract

一种物体检测方法、装置及遥控移动设备、飞行器,其中,所述方法包括:检测图像采集组件中每一个镜头的传入光线的光强度,所述图像采集组件包括至少两个配置有偏振片的光学镜头;如果基于检测到的各个光强度确定出传入光线中存在偏振光,则确定所述图像采集组件的视场范围内存在镜面物体。采用上述物体检测方法及其装置,将其应用到遥控移动设备以及飞行器中,可简便、快捷、低成本地检测出玻璃等镜面物体。

Description

一种物体检测方法、装置及遥控移动设备、飞行器 技术领域
本发明涉及光学检测技术领域,尤其涉及一种物体检测方法、装置及遥控移动设备、飞行器。
背景技术
各种光学相机除了单纯地用于拍摄照片、录取视频外,还可以进一步地根据拍摄的照片和视频,进行对象分析,达到目标识别,甚至进行粗略的实现目标距离的检测。
目前,基于多摄像头的视觉系统可以应用在飞行器、遥控汽车等各类遥控移动设备中,能够较为准确地对环境进行对象分析检测,以及对象距离检测,实现自动避障等功能。
但是对于玻璃、水面等镜面物体,单独使用相机并不能够完成对象分析和距离检测,还需要借助于超声波、雷达等测距传感器才能确定镜头的视场范围内存在玻璃等障碍物,增加了避障的成本。
发明内容
本发明实施例提供了一种物体检测方法、装置及遥控移动设备、飞行器,可简便、快捷、低成本地检测出玻璃等镜面物体。
一方面,本发明实施例提供了一种物体检测方法,包括:
检测图像采集组件中每一个镜头的传入光线的光强度,所述图像采集组件包括至少两个配置有偏振片的光学镜头;
如果基于检测到的各个光强度确定出传入光线中存在偏振光,则确定所述图像采集组件的视场范围内存在镜面物体。
其中可选地,所述图像采集组件中,每一个镜头上配置的偏振片处于不同的起偏角;
所述如果基于检测到的各个光强度确定出传入光线中存在偏振光,则确定所述图像采集组件的视场范围内存在镜面物体之前,包括:
根据所述各个光强度之间的变化信息判断所述图像采集组件中每一个镜头的传入光线中是否存在偏振光。
其中可选地,所述根据所述各个光强度之间的变化信息判断所述图像采集组件中每一个镜头的传入光线中是否存在偏振光,包括:
确定所述图像采集组件中各镜头的传入光线的光强度是否存在差异;
若存在差异,则确定所述传入光线中存在偏振光,并确定所述所述图像采集组件的视场范围内存在镜面物体。
其中可选地,所述根据所述各个光强度之间的变化信息判断所述图像采集组件中每一个镜头的传入光线中是否存在偏振光,包括:
计算每一个镜头之间传入光线的光强度的差值;
如果计算得到的差值中的最小值大于预设的阈值,则确定所述传入光线中存在偏振光,并确定所述所述图像采集组件的视场范围内存在镜面物体。
其中可选地,所述检测图像采集组件中每一个镜头的传入光线的光强度之前,还包括:
调用光源模块发光,以便于执行所述检测图像采集组件中每一个镜头的传入光线的光强度。
其中可选地,所述检测图像采集组件中每一个镜头的传入光线的光强度,包括:
获取图像采集组件中每一个镜头所采集到的图像的灰度值;
根据获取的灰度值计算对应镜头的传入光线的光强度。
其中可选地,所述检测图像采集组件中每一个镜头的传入光线的光强度,包括:
获取图像采集组件中每一个镜头所采集到的图像的三色值;
根据获取的三色值计算对应镜头的传入光线的光强度。
另一方面,本发明实施例还提供了一种物体检测装置,包括:
检测模块,用于检测图像采集组件中每一个镜头的传入光线的光强度,所述图像采集组件包括至少两个配置有偏振片的光学镜头;
确定模块,用于在基于检测到的各个光强度确定出传入光线中存在偏振光时,确定所述图像采集组件的视场范围内存在镜面物体。
其中可选地,所述图像采集组件中的每一个镜头上配置的偏振片处于不同的起偏角;所述装置还包括:
判断模块,用于根据所述各个光强度之间的变化信息判断所述图像采集组件中每一个镜头的传入光线中是否存在偏振光。
其中可选地,所述判断模块包括:
判断单元,用于确定所述图像采集组件中各镜头的传入光线的光强度是否存在差异;
第一确定单元,用于在所述判断单元的判断结果为存在差异时,确定所述传入光线中存在偏振光,并确定所述所述图像采集组件的视场范围内存在镜面物体。
其中可选地,所述判断模块包括:
差值计算单元,用于计算每一个镜头之间传入光线的光强度的差值;
第二确定单元,用于在所述差值计算单元的计算结果为计算得到的差值中的最小值大于预设的阈值,则确定所述传入光线中存在偏振光,并确定所述所述图像采集组件的视场范围内存在镜面物体。
其中可选地,所述装置还包括:
光源模块,用于调用光源发光,以便于执行所述检测图像采集组件中每一个镜头的传入光线的光强度。
其中可选地,所述检测模块包括:
第一获取单元,用于获取图像采集组件中每一个镜头所采集到的图像的灰度值;
第一计算单元,用于根据获取的灰度值计算对应镜头的传入光线的光强度。
其中可选地,所述检测模块包括:
第二获取单元,用于获取图像采集组件中每一个镜头所采集到的图像的三色值;
第二计算单元,用于根据获取的三色值计算对应镜头的传入光线的光强度。
再一方面,本发明实施例还提供了一种遥控移动设备,包括:包括至少两个配置有偏振片的光学镜头的图像采集组件,控制器,其中:
所述控制器,用于检测图像采集组件中每一个镜头的传入光线的光强度,所述图像采集组件包括至少两个配置有偏振片的光学镜头;如果基于检测到的各个光强度确定出传入光线中存在偏振光,则确定所述图像采集组件的视场范围内存在镜面物体。
其中可选地,所述图像采集组件中,每一个镜头上配置的偏振片处于不同的起偏角;
所述控制器,还用于根据所述各个光强度之间的变化信息判断所述图像采集组件中每一个镜头的传入光线中是否存在偏振光。
其中可选地,所述控制器,具体用于确定所述图像采集组件中各镜头的传入光线的光强度是否存在差异;若存在差异,则确定所述传入光线中存在偏振光,并确定所述所述图像采集组件的视场范围内存在镜面物体。
其中可选地,所述控制器,具体用于计算每一个镜头之间传入光线的光强度的差值;如果计算得到的差值中的最小值大于预设的阈值,则确定所述传入光线中存在偏振光,并确定所述所述图像采集组件的视场范围内存在镜面物体。
其中可选地,所述遥控移动设备还包括:
发光装置,用于调用光源发光,以便于执行所述检测图像采集组件中每一个镜头的传入光线的光强度。
其中可选地,所述控制器,具体用于获取图像采集组件中每一个镜头所采集到的图像的灰度值;根据获取的灰度值计算对应镜头的传入光线的光强度。
其中可选地,所述控制器,具体用于获取图像采集组件中每一个镜头所采集到的图像的三色值;根据获取的三色值计算对应镜头的传入光线的光强度。
又一方面,本发明实施例还提供了一种飞行器,包括:包括至少两个配置有偏振片的光学镜头的图像采集组件,控制器,其中:
所述控制器,用于检测图像采集组件中每一个镜头的传入光线的光强度,所述图像采集组件包括至少两个配置有偏振片的光学镜头;如果基于检测到的各个光强度确定出传入光线中存在偏振光,则确定所述图像采集组件的视场范围内存在镜面物体。
本发明实施例可应用在飞行器、遥控汽车等移动物体上,能够较为简便、快捷地对移动物体运动方向上存在镜面物体进行检测,特别是面积较大的可能会影响移动物体运动的玻璃镜面等物体的检测,所使用的覆盖有偏振片的镜头越多,镜头视野内的镜面物体的面积越大,则精度越高。并且本发明实施例所需成本较低。
附图说明
图1是本发明实施例的一种物体检测方法的流程示意图;
图2是镜头中配置偏振片的示意图;
图3是本发明实施例的另一种物体检测方法的流程示意图;
图4是本发明实施例的一种物体检测装置的结构示意图;
图5是本发明实施例的另一种物体检测装置的结构示意图;
图6是图5中判断模块的结构示意图;
图7是图5中检测模块的结构示意图;
图8是本发明实施例的一种遥控移动设备的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例通过在多个相机的镜头中分别配置偏振片,然后根据镜头传入的光线的强度来确定是否有偏振光传入,如果有,则可以确定当前镜头视野范围内存在如玻璃、水面等镜面物体对象。
具体的,请参见图1,是本发明实施例的一种物体检测方法的流程示意图,该方法可以由一个图像处理器具体实现,该图像处理器通过对至少两个带有偏振片的光学镜头传入的光强度的差异,完成是否存在镜面物体的检测判断。具体的,所述方法包括:
S101:检测图像采集组件中每一个镜头的传入光线的光强度,所述图像采集组件包括至少两个配置有偏振片的光学镜头。
在本发明实施例中,所述图像采集组件中每个相机的镜头和图像传感器可以是一样的配置。而在每一个镜头的表面上覆盖一层偏振片,每一个偏振片的方位起偏角并不相同,这样可以使得偏振光进入镜头后具有不同的光强度。
具体请参见图2所示,所示图像采集组件包括4个相机,每个相机镜头上覆盖的偏振片之间的起偏角相差45度。以便于较好地对采集到的偏振光确定出光强度差异。
S102:如果基于检测到的各个光强度确定出传入光线中存在偏振光,则确定所述图像采集组件的视场范围内存在镜面物体。
如果所述图像采集组件的视野范围内仅包括墙面、地毯等非镜面的物体,那么这些非镜面的物体反射光线产生的散射光经过偏振片进入所述图像采集组件的镜头后,每一个镜头所对应光的光强度并不会改变。每一个镜头对应的传入光线的光强度相同(或基本相同),则可以确定传入光线中不存在偏振光,视野范围内不存在玻璃、水面等镜面物体。
而如果检测到传入的光线的光强度并不一样,例如,经过针对上述的彼此成45度角偏振片后,计算得到的光强度并不相同,则可以确定视野范围内存在玻璃、水面等镜面物体。具体的,对于同一空间的偏振光,基于上述提及的覆盖有彼此成45度角偏振片的镜头,可对应地计算出每一个镜头的传入光线的光强度:I0=I*cos(θ)*cos(θ),I1=I*cos(θ-π/4)*cos(θ-π/4),I2=I*cos(θ+π/4)*cos(θ+π/4),I3=I*cos(θ-π/2)*cos(θ-π/2),因此I0≠I1≠I2≠I3,从而确定所述图像采集组件的视场范围内存在镜面物体。
其中,光强度的计算具体可以基于对应镜头采集到的图像中各个像素点的灰度值或者RGB(Red Green Blue,红、绿、蓝)值计算得到。光强度正比于灰度值,而RGB三色值相加则可作为光强度值。
确定到镜面物体后,特别是玻璃墙面后,可以较好地协助飞行器如UAV(Unmanned Aerial Vehicle,无人驾驶飞行器)、遥控汽车等避开玻璃墙面,完成避障操作。当然,检测到镜面物体后,还可以执行其他操作,例如UAV水源检测、自动取水、清洗玻璃墙面等。
本发明实施例可应用在飞行器、遥控汽车等移动物体上,能够较为简便、快捷地对移动物体运动方向上存在镜面物体进行检测,特别是面积较大的可能会影响移动物体运动的玻璃镜面等物体的检测,所使用的覆盖有偏振片的镜头越多,镜头视野内的镜面物体的面积越大,则精度越高。并且本发明实施例所需成本较低。
再请参见图3,是本发明实施例的另一种物体检测方法的流程示意图,该方法可以由一个图像处理器具体实现,该图像处理器通过对至少两个带有偏振片的光学镜头传入的光强度的差异,完成是否存在镜面物体的检测判断。具体的,所述方法包括:
S201:调用光源模块发光。
执行所述S201以便于执行所述检测图像采集组件中每一个镜头的传入光线的光强度。在光线较暗的环境中,可以调用自带的光源协助进行偏振光的检测,以便在光线较暗的环境中,也能够拍摄到图像并进行每一个镜头的光强度检测。该光源模块中光源的光谱需要与图像采集组件中相机的接收光谱吻合,以便于正确执行后续的光强度检测,即:如果光源是可见光波段,相机也必须感应可见光。如果光源是红外光波段,相机也必须感应红外光。
S202:检测图像采集组件中每一个镜头的传入光线的光强度,所述图像采集组件包括至少两个配置有偏振片的光学镜头。
其中,当所述图像采集组件中的每一个图像采集装置为单色的灰度相机时,所述S202具体可以包括:获取图像采集组件中每一个镜头所采集到的图像的灰度值;根据获取的灰度值计算对应镜头的传入光线的光强度。
而当所述图像采集组件中的每一个图像采集装置为三色的RGB相机时,所述S202具体可以包括:获取图像采集组件中每一个镜头所采集到的图像的三色值;根据获取的三色值计算对应镜头的传入光线的光强度。
S203:根据所述各个光强度之间的变化信息判断所述图像采集组件中每一个镜头的传入光线中是否存在偏振光。
其中,在环境中存在较大面积的镜面物体时,可以仅仅基于光强度是否不同来确定是否存在偏振光,所述S203具体可以包括:
确定所述图像采集组件中各镜头的传入光线的光强度是否存在差异;若存在差异,则确定所述传入光线中存在偏振光,并确定所述所述图像采集组件的视场范围内存在镜面物体。
为了减小误差的影响,可以基于图像采集组件中各镜头覆盖的偏振片的起偏角的差异来预设一个阈值以便更好地对环境中的偏振光进行判断,所述S203具体还可以包括:
计算每一个镜头之间传入光线的光强度的差值;
如果计算得到的差值中的最小值大于预设的阈值,则确定所述传入光线中存在偏振光,并确定所述所述图像采集组件的视场范围内存在镜面物体。
S204:如果基于检测到的各个光强度确定出传入光线中存在偏振光,则确定所述图像采集组件的视场范围内存在镜面物体。
确定到镜面物体后,特别是玻璃墙面后,可以较好地协助飞行器如UAV、遥控汽车等避开玻璃墙面,完成避障操作。当然,检测到镜面物体后,还可以执行其他操作,例如UAV水源检测、自动取水、清洗玻璃墙面等。
本发明实施例可应用在飞行器、遥控汽车等移动物体上,能够较为简便、快捷地对移动物体运动方向上存在镜面物体进行检测,特别是面积较大的可能会影响移动物体运动的玻璃镜面等物体的检测,所使用的覆盖有偏振片的镜头越多,镜头视野内的镜面物体的面积越大,则精度越高。并且本发明实施例所需成本较低。
下面再对本发明实施例的物体检测装置、遥控移动设备以及飞行进行详细描述。
再请参见图4,是本发明实施例的一种物体检测装置的结构示意图,本发明实施例的所述装置可配置在飞行器、遥控汽车等设备中,具体的,本发明实施例的所述装置包括:
检测模块1,用于检测图像采集组件中每一个镜头的传入光线的光强度,所述图像采集组件包括至少两个配置有偏振片的光学镜头;
确定模块2,用于在基于检测到的各个光强度确定出传入光线中存在偏振光时,确定所述图像采集组件的视场范围内存在镜面物体。
在本发明实施例中,所述图像采集组件中每个相机的镜头和图像传感器可以是一样的配置。而在每一个镜头的表面上覆盖一层偏振片,每一个偏振片的起偏角并不相同,这样可以使得偏振光进入镜头后具有不同的光强度。
同样,所述图像采集组件中每一个镜头的偏振片覆盖情况可参考图2所示。
如果所述图像采集组件的视野范围内仅包括墙面、地毯等非镜面的物体,那么这些非镜面的物体反射光线产生的散射光经过偏振片进入所述图像采集组件的镜头后,所述检测模块1会检测到每一个镜头所对应光的光强度相同或者基本相同。如果每一个镜头对应的传入光线的光强度相同(或基本相同),所述检测模块1可以确定传入光线中不存在偏振光,所述确定模块2可确定视野范围内不存在玻璃、水面等镜面物体。
而如果所述检测模块1检测到传入的光线的光强度并不一样,例如,经过针对上述的彼此成45度角偏振片后,计算得到的光强度并不相同,则所述确定模块2可以确定视野范围内存在玻璃、水面等镜面物体。
光强度的计算具体可以基于对应镜头采集到的图像中各个像素点的灰度值或者RGB值计算得到。光强度正比于灰度值,而RGB三色值相加则可作为光强度值。
确定到镜面物体后,特别是玻璃墙面后,可以较好地协助飞行器如UAV、遥控汽车等避开玻璃墙面,完成避障操作。当然,检测到镜面物体后,还可以执行其他操作,例如UAV自动取水、清洗玻璃墙面等。
本发明实施例可应用在飞行器、遥控汽车等移动物体上,能够较为简便、快捷地对移动物体运动方向上存在镜面物体进行检测,特别是面积较大的可能会影响移动物体运动的玻璃镜面等物体的检测,所使用的覆盖有偏振片的镜头越多,镜头视野内的镜面物体的面积越大,则精度越高。并且本发明实施例所需成本较低。
进一步地再请参见图5,是本发明实施例的另一种物体检测装置的结构示意图,本发明实施例的所述装置可配置在飞行器、遥控汽车等设备中,具体的,本发明实施例的所述装置包括上述的检测模块1和确定模块2,进一步地,在本发明实施例中所述图像采集组件中的每一个镜头上配置的偏振片处于不同的起偏角;所述装置还包括:
判断模块3,用于根据所述各个光强度之间的变化信息判断所述图像采集组件中每一个镜头的传入光线中是否存在偏振光。
具体可选地,请参见图6,本发明实施例的所述判断模块3可包括:
判断单元31,用于确定所述图像采集组件中各镜头的传入光线的光强度是否存在差异;
第一确定单元32,用于在所述判断单元31的判断结果为存在差异时,确定所述传入光线中存在偏振光,并确定所述所述图像采集组件的视场范围内存在镜面物体。
具体可选地,请参见图6,本发明实施例的所述判断模块3还可以包括:
差值计算单元33,用于计算每一个镜头之间传入光线的光强度的差值;
第二确定单元34,用于在所述差值计算单元33的计算结果为计算得到的差值中的最小值大于预设的阈值,则确定所述传入光线中存在偏振光,并确定所述所述图像采集组件的视场范围内存在镜面物体。
可以理解的是,所述判断模块3可仅包括所述判断单元31和第一确定单元32的组合,也可以仅包括所述差值计算单元33和第二确定单元34的组合。
进一步可选地,本发明实施例的所述装置还可以包括:
光源模块4,用于调用光源发光,以便于执行所述检测图像采集组件中每一个镜头的传入光线的光强度。
具体可选地,请参见图7,所述检测模块1可以包括:
第一获取单元11,用于获取图像采集组件中每一个镜头所采集到的图像的灰度值;
第一计算单元12,用于根据获取的灰度值计算对应镜头的传入光线的光强度。
具体可选地,请参见图7,所述检测模块1还可以包括:
第二获取单元13,用于获取图像采集组件中每一个镜头所采集到的图像的三色值;
第二计算单元14,用于根据获取的三色值计算对应镜头的传入光线的光强度。
可以理解的是,所述检测模块1可以仅包括所述第一获取单元11和第一计算单元12的组合,也可以仅包括所述第二获取单元13和第二计算单元14的组合。
需要说明的是,本发明实施例中提及的各个模块及单元的具体实现可参考图1至图3的方法实施例中相关步骤的描述。
本发明实施例可应用在飞行器、遥控汽车等移动物体上,能够较为简便、快捷地对移动物体运动方向上存在镜面物体进行检测,特别是面积较大的可能会影响移动物体运动的玻璃镜面等物体的检测,所使用的覆盖有偏振片的镜头越多,镜头视野内的镜面物体的面积越大,则精度越高。并且本发明实施例所需成本较低。
再请参见图8,是本发明实施例的一种遥控移动设备的结构示意图,本发明实施例的所述遥控移动设备具体可以为可进行遥控控制的UAV、汽车等设备,具体的,所述遥控移动设备包括:包括至少两个配置有偏振片的光学镜头的图像采集组件100,控制器200,进一步还可以包括一个存储器300,该存储器中存储有物体检测应用程序,所述控制器200通过调用该物体检测应用程序执行如下功能。
所述控制器200,用于检测图像采集组件中每一个镜头的传入光线的光强度,所述图像采集组件包括至少两个配置有偏振片的光学镜头;如果基于检测到的各个光强度确定出传入光线中存在偏振光,则确定所述图像采集组件的视场范围内存在镜面物体。
进一步可选地,所述图像采集组件100中,每一个镜头上配置的偏振片处于不同的起偏角;
所述控制器200,还用于根据所述各个光强度之间的变化信息判断所述图像采集组件中每一个镜头的传入光线中是否存在偏振光。
进一步可选地,所述控制器200,具体用于确定所述图像采集组件中各镜头的传入光线的光强度是否存在差异;若存在差异,则确定所述传入光线中存在偏振光,并确定所述所述图像采集组件的视场范围内存在镜面物体。
进一步可选地,所述控制器200,具体用于计算每一个镜头之间传入光线的光强度的差值;如果计算得到的差值中的最小值大于预设的阈值,则确定所述传入光线中存在偏振光,并确定所述所述图像采集组件的视场范围内存在镜面物体。
进一步可选地,本发明实施例的所述装置还可以包括:
发光装置400,用于调用光源发光,以便于执行所述检测图像采集组件中每一个镜头的传入光线的光强度。
进一步可选地,所述控制器200,具体用于获取图像采集组件中每一个镜头所采集到的图像的灰度值;根据获取的灰度值计算对应镜头的传入光线的光强度。
进一步可选地,所述控制器200,具体用于获取图像采集组件中每一个镜头所采集到的图像的三色值;根据获取的三色值计算对应镜头的传入光线的光强度。
需要说明的是,本发明实施例所提及的控制器200、发光装置400等的具体实现可参考图1至图3的方法实施例中相关步骤的描述。
本发明实施例可应用在飞行器、遥控汽车等移动物体上,能够较为简便、快捷地对移动物体运动方向上存在镜面物体进行检测,特别是面积较大的可能会影响移动物体运动的玻璃镜面等物体的检测,所使用的覆盖有偏振片的镜头越多,镜头视野内的镜面物体的面积越大,则精度越高。并且本发明实施例所需成本较低。
本发明实施例还提供了一种飞行器,该飞行器具体可以包括:包括至少两个配置有偏振片的光学镜头的图像采集组件,控制器,其中:
所述控制器,用于检测图像采集组件中每一个镜头的传入光线的光强度,所述图像采集组件包括至少两个配置有偏振片的光学镜头;如果基于检测到的各个光强度确定出传入光线中存在偏振光,则确定所述图像采集组件的视场范围内存在镜面物体。
需要说明的是,本发明实施例所提及的控制器的具体实现可参考图1至图3的方法实施例中相关步骤的描述。
本发明实施例可应用在飞行器、遥控汽车等移动物体上,能够较为简便、快捷地对移动物体运动方向上存在镜面物体进行检测,特别是面积较大的可能会影响移动物体运动的玻璃镜面等物体的检测,所使用的覆盖有偏振片的镜头越多,镜头视野内的镜面物体的面积越大,则精度越高。并且本发明实施例所需成本较低。
在本发明所提供的几个实施例中,应该理解到,所揭露的相关装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得计算机处理器(processor)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (22)

  1. 一种物体检测方法,其特征在于,包括:
    检测图像采集组件中每一个镜头的传入光线的光强度,所述图像采集组件包括至少两个配置有偏振片的光学镜头;
    如果基于检测到的各个光强度确定出传入光线中存在偏振光,则确定所述图像采集组件的视场范围内存在镜面物体。
  2. 如权利要求1所述的方法,其特征在于,所述图像采集组件中,每一个镜头上配置的偏振片处于不同的起偏角;
    所述如果基于检测到的各个光强度确定出传入光线中存在偏振光,则确定所述图像采集组件的视场范围内存在镜面物体之前,包括:
    根据所述各个光强度之间的变化信息判断所述图像采集组件中每一个镜头的传入光线中是否存在偏振光。
  3. 如权利要求2所述的方法,其特征在于,所述根据所述各个光强度之间的变化信息判断所述图像采集组件中每一个镜头的传入光线中是否存在偏振光,包括:
    确定所述图像采集组件中各镜头的传入光线的光强度是否存在差异;
    若存在差异,则确定所述传入光线中存在偏振光,并确定所述所述图像采集组件的视场范围内存在镜面物体。
  4. 如权利要求2所述的方法,其特征在于,所述根据所述各个光强度之间的变化信息判断所述图像采集组件中每一个镜头的传入光线中是否存在偏振光,包括:
    计算每一个镜头之间传入光线的光强度的差值;
    如果计算得到的差值中的最小值大于预设的阈值,则确定所述传入光线中存在偏振光,并确定所述所述图像采集组件的视场范围内存在镜面物体。
  5. 如权利要求1所述的方法,其特征在于,所述检测图像采集组件中每一个镜头的传入光线的光强度之前,还包括:
    调用光源模块发光,以便于执行所述检测图像采集组件中每一个镜头的传入光线的光强度。
  6. 如权利要求1所述的方法,其特征在于,所述检测图像采集组件中每一个镜头的传入光线的光强度,包括:
    获取图像采集组件中每一个镜头所采集到的图像的灰度值;
    根据获取的灰度值计算对应镜头的传入光线的光强度。
  7. 如权利要求1所述的方法,其特征在于,所述检测图像采集组件中每一个镜头的传入光线的光强度,包括:
    获取图像采集组件中每一个镜头所采集到的图像的三色值;
    根据获取的三色值计算对应镜头的传入光线的光强度。
  8. 一种物体检测装置,其特征在于,包括:
    检测模块,用于检测图像采集组件中每一个镜头的传入光线的光强度,所述图像采集组件包括至少两个配置有偏振片的光学镜头;
    确定模块,用于在基于检测到的各个光强度确定出传入光线中存在偏振光时,确定所述图像采集组件的视场范围内存在镜面物体。
  9. 如权利要求8所述的装置,其特征在于,所述图像采集组件中的每一个镜头上配置的偏振片处于不同的起偏角;所述装置还包括:
    判断模块,用于根据所述各个光强度之间的变化信息判断所述图像采集组件中每一个镜头的传入光线中是否存在偏振光。
  10. 如权利要求9所述的装置,其特征在于,所述判断模块包括:
    判断单元,用于确定所述图像采集组件中各镜头的传入光线的光强度是否存在差异;
    第一确定单元,用于在所述判断单元的判断结果为存在差异时,确定所述传入光线中存在偏振光,并确定所述所述图像采集组件的视场范围内存在镜面物体。
  11. 如权利要求9所述的装置,其特征在于,所述判断模块包括:
    差值计算单元,用于计算每一个镜头之间传入光线的光强度的差值;
    第二确定单元,用于在所述差值计算单元的计算结果为计算得到的差值中的最小值大于预设的阈值,则确定所述传入光线中存在偏振光,并确定所述所述图像采集组件的视场范围内存在镜面物体。
  12. 如权利要求8所述的装置,其特征在于,还包括:
    光源模块,用于调用光源发光,以便于执行所述检测图像采集组件中每一个镜头的传入光线的光强度。
  13. 如权利要求8所述的装置,其特征在于,所述检测模块包括:
    第一获取单元,用于获取图像采集组件中每一个镜头所采集到的图像的灰度值;
    第一计算单元,用于根据获取的灰度值计算对应镜头的传入光线的光强度。
  14. 如权利要求8所述的装置,其特征在于,所述检测模块包括:
    第二获取单元,用于获取图像采集组件中每一个镜头所采集到的图像的三色值;
    第二计算单元,用于根据获取的三色值计算对应镜头的传入光线的光强度。
  15. 一种遥控移动设备,其特征在于,包括:包括至少两个配置有偏振片的光学镜头的图像采集组件,控制器,其中:
    所述控制器,用于检测图像采集组件中每一个镜头的传入光线的光强度,所述图像采集组件包括至少两个配置有偏振片的光学镜头;如果基于检测到的各个光强度确定出传入光线中存在偏振光,则确定所述图像采集组件的视场范围内存在镜面物体。
  16. 如权利要求15所述的遥控移动设备,其特征在于,
    所述图像采集组件中,每一个镜头上配置的偏振片处于不同的起偏角;
    所述控制器,还用于根据所述各个光强度之间的变化信息判断所述图像采集组件中每一个镜头的传入光线中是否存在偏振光。
  17. 如权利要求16所述的遥控移动设备,其特征在于,
    所述控制器,具体用于确定所述图像采集组件中各镜头的传入光线的光强度是否存在差异;若存在差异,则确定所述传入光线中存在偏振光,并确定所述所述图像采集组件的视场范围内存在镜面物体。
  18. 如权利要求16所述的遥控移动设备,其特征在于,
    所述控制器,具体用于计算每一个镜头之间传入光线的光强度的差值;如果计算得到的差值中的最小值大于预设的阈值,则确定所述传入光线中存在偏振光,并确定所述所述图像采集组件的视场范围内存在镜面物体。
  19. 如权利要求15所述的遥控移动设备,其特征在于,还包括:
    发光装置,用于调用光源发光,以便于执行所述检测图像采集组件中每一个镜头的传入光线的光强度。
  20. 如权利要求15所述的遥控移动设备,其特征在于,
    所述控制器,具体用于获取图像采集组件中每一个镜头所采集到的图像的灰度值;根据获取的灰度值计算对应镜头的传入光线的光强度。
  21. 如权利要求15所述的遥控移动设备,其特征在于,
    所述控制器,具体用于获取图像采集组件中每一个镜头所采集到的图像的三色值;根据获取的三色值计算对应镜头的传入光线的光强度。
  22. 一种飞行器,其特征在于,包括:包括至少两个配置有偏振片的光学镜头的图像采集组件,控制器,其中:
    所述控制器,用于检测图像采集组件中每一个镜头的传入光线的光强度,所述图像采集组件包括至少两个配置有偏振片的光学镜头;如果基于检测到的各个光强度确定出传入光线中存在偏振光,则确定所述图像采集组件的视场范围内存在镜面物体。
PCT/CN2014/092994 2014-12-04 2014-12-04 一种物体检测方法、装置及遥控移动设备、飞行器 WO2016086380A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480005443.8A CN105518490A (zh) 2014-12-04 2014-12-04 一种物体检测方法、装置及遥控移动设备、飞行器
PCT/CN2014/092994 WO2016086380A1 (zh) 2014-12-04 2014-12-04 一种物体检测方法、装置及遥控移动设备、飞行器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/092994 WO2016086380A1 (zh) 2014-12-04 2014-12-04 一种物体检测方法、装置及遥控移动设备、飞行器

Publications (1)

Publication Number Publication Date
WO2016086380A1 true WO2016086380A1 (zh) 2016-06-09

Family

ID=55724989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/092994 WO2016086380A1 (zh) 2014-12-04 2014-12-04 一种物体检测方法、装置及遥控移动设备、飞行器

Country Status (2)

Country Link
CN (1) CN105518490A (zh)
WO (1) WO2016086380A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019000313A1 (zh) * 2017-06-29 2019-01-03 深圳市大疆创新科技有限公司 一种检测方法、检测设备以及飞行器
EP3803273A4 (en) * 2018-10-29 2021-11-17 DJI Technology, Inc. REAL-TIME MAPPING TECHNIQUES IN A MOBILE OBJECT ENVIRONMENT
US11814155B2 (en) * 2018-12-05 2023-11-14 Sony Group Corporation Control apparatus and control method for specular object detection based on an unmanned aerial vehicle's reflection
CN110355607B (zh) * 2019-07-08 2021-04-27 东莞理工学院 一种加工中心的车刀磨损状态的视觉检测系统
CN112051588A (zh) * 2020-09-03 2020-12-08 重庆大学 一种多传感器融合的玻璃识别系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004301708A (ja) * 2003-03-31 2004-10-28 Nagoya Electric Works Co Ltd 車両用路面状態検出装置、車両用路面状態検出方法および車両用路面状態検出装置の制御プログラム
JP2006058122A (ja) * 2004-08-19 2006-03-02 Nagoya Electric Works Co Ltd 路面状態判別方法およびその装置
JP2007064888A (ja) * 2005-09-01 2007-03-15 Tokai Rika Co Ltd 路面状態検出装置
CN101033961A (zh) * 2007-02-06 2007-09-12 浙江大学 基于偏振信息检测野外水体障碍物的方法
CN101610357A (zh) * 2008-06-18 2009-12-23 株式会社理光 摄像装置及路面状态判别方法
CN102901489A (zh) * 2011-07-25 2013-01-30 中兴通讯股份有限公司 路面积水积冰检测方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004301708A (ja) * 2003-03-31 2004-10-28 Nagoya Electric Works Co Ltd 車両用路面状態検出装置、車両用路面状態検出方法および車両用路面状態検出装置の制御プログラム
JP2006058122A (ja) * 2004-08-19 2006-03-02 Nagoya Electric Works Co Ltd 路面状態判別方法およびその装置
JP2007064888A (ja) * 2005-09-01 2007-03-15 Tokai Rika Co Ltd 路面状態検出装置
CN101033961A (zh) * 2007-02-06 2007-09-12 浙江大学 基于偏振信息检测野外水体障碍物的方法
CN101610357A (zh) * 2008-06-18 2009-12-23 株式会社理光 摄像装置及路面状态判别方法
CN102901489A (zh) * 2011-07-25 2013-01-30 中兴通讯股份有限公司 路面积水积冰检测方法及装置

Also Published As

Publication number Publication date
CN105518490A (zh) 2016-04-20

Similar Documents

Publication Publication Date Title
WO2016086380A1 (zh) 一种物体检测方法、装置及遥控移动设备、飞行器
WO2017008224A1 (zh) 一种移动物体的距离检测方法、装置及飞行器
WO2016172960A1 (en) System and method for enhancing image resolution
WO2020085881A1 (en) Method and apparatus for image segmentation using an event sensor
WO2021112406A1 (en) Electronic apparatus and method for controlling thereof
WO2012005387A1 (ko) 다중 카메라와 물체 추적 알고리즘을 이용한 광범위한 지역에서의 물체 이동 감시 방법 및 그 시스템
WO2019225880A1 (en) Semi-dense depth estimation from a dynamic vision sensor (dvs) stereo pair and a pulsed speckle pattern projector
WO2015129966A1 (en) Head mounted display providing closed-view and method of controlling therefor
WO2018098915A1 (zh) 清洁机器人的控制方法及清洁机器人
WO2020130648A1 (en) Electronic device for adaptively altering information display area and operation method thereof
WO2017078213A1 (ko) 촬영영상에서의 움직임 객체 검출 방법 및 이를 이용한 차량 승하차 사고 예방 시스템
WO2019235903A1 (en) Methods and apparatus for capturing media using plurality of cameras in electronic device
WO2017183915A2 (ko) 영상취득 장치 및 그 방법
WO2010008134A2 (en) Image processing method
CN109923856A (zh) 补光控制装置、系统、方法以及移动设备
KR101601475B1 (ko) 야간 주행 시 차량의 보행자 검출장치 및 방법
WO2016167499A1 (ko) 촬영 장치 및 촬영 장치의 제어 방법
WO2020189831A1 (ko) 자율주행 차량의 모니터링 및 제어 방법
WO2015023038A1 (ko) 복수의 투사 영상을 중첩되지 않게 표시 가능한 디스플레이 장치
WO2020171572A1 (en) Electronic apparatus and controlling method thereof
WO2019088407A1 (ko) 보색관계의 필터 어레이를 포함하는 카메라 모듈 및 그를 포함하는 전자 장치
WO2013151208A1 (ko) 기상 현상으로 인해 훼손된 영상을 복원하는 장치 및 방법
WO2016035924A1 (ko) 달리기 감지 방법 및 시스템
WO2014058234A1 (ko) 편광 차분 카메라를 이용한 영상처리 시스템
WO2017007077A1 (ko) 감시 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14907302

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14907302

Country of ref document: EP

Kind code of ref document: A1