WO2016085268A1 - 클로 폴형 모터 및 이를 포함하고 있는 가전기기 - Google Patents

클로 폴형 모터 및 이를 포함하고 있는 가전기기 Download PDF

Info

Publication number
WO2016085268A1
WO2016085268A1 PCT/KR2015/012778 KR2015012778W WO2016085268A1 WO 2016085268 A1 WO2016085268 A1 WO 2016085268A1 KR 2015012778 W KR2015012778 W KR 2015012778W WO 2016085268 A1 WO2016085268 A1 WO 2016085268A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
core
core body
phase coil
rough
Prior art date
Application number
PCT/KR2015/012778
Other languages
English (en)
French (fr)
Inventor
나가사키야스마사
나카가와유키노리
소노다야스유키
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015037471A external-priority patent/JP6545480B2/ja
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to CN201580064490.4A priority Critical patent/CN107210626B/zh
Priority to US15/527,615 priority patent/US10714989B2/en
Publication of WO2016085268A1 publication Critical patent/WO2016085268A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies

Definitions

  • the present invention relates to a method for manufacturing a claw pole type motor and a claw pole type motor used in various fields such as a refrigerator or an automobile, and to a home appliance including the same.
  • a claw pole type motor is a motor having a stator in which a plurality of coarse poles extending in a rotational axis linear direction are arranged in the circumferential direction and a rotor in which a plurality of permanent magnets are arranged in the circumferential direction. It refers to a motor that rotates the rotor by using attraction and repulsion between the co-stimulation and the permanent magnet.
  • the motor disclosed in Patent Document 1 corresponds to a typical claw pole type motor.
  • the stator has a V-phase core and a W-phase rough magnetic pole having a U-phase core having a U-phase core body disposed at equal intervals on the outer circumference and a V-phase core body having a V-phase rough magnetic pole disposed at equal intervals on the outer circumference.
  • a U-phase core having a W-phase core main body disposed at equal intervals on the outer circumference and having a U-phase coil, a V-phase coil, and a W magnetizing a U-phase rough magnetic pole, a V-phase rough magnetic pole and a W-phase rough magnetic pole Phase coils are provided.
  • the U-phase core body has a first stretching portion extending toward the W-phase core
  • the V-phase core body has a U-phase core and a second stretching portion extending toward the W-phase core
  • the W-phase core body is directed toward the U-phase core. It is provided with the 3rd extending part extended.
  • the V-phase core is disposed between the U-phase core and the W-phase core, which are combined in the rotation axis direction.
  • a UV gap due to a manufacturing error may be formed between the front end surface of the first stretching part and the front end surface extending toward the U-phase core of the second stretching part.
  • a VW gap due to a manufacturing error may be formed between the distal end surface extending toward the W-phase core of the second stretching portion and the distal end surface of the third stretching portion.
  • the U-phase core body, V-phase core body and W-phase coil when the magnetic flux is generated by the current flowing in the U-phase coil, V-phase coil or W-phase coil, the U-phase core body, V-phase core body and The magnetic flux passes through the W-phase core body, where the magnetic flux passing between the U-phase core body and the V-phase core body and the magnetic flux passing between the V-phase core body and the W-phase core body are formed in the first stretching portion and the second stretching portion. It passes between or between a 2nd extending part and a 3rd extending part. Thus they pass through either the UV gap or the VW gap.
  • the magnetic flux passing between the U-phase core body and the W-phase core body is between the first and second stretching portions and between the second and third stretching portions so that the V-phase core is disposed therebetween. As it passes, it passes through both the UV and VW gaps.
  • the UV gap and the VW gap have a layer of air, and the air permeability is significantly different from that of the core iron, so the UV gap and the VW gap become magnetoresistance.
  • the magnetic resistance of the magnetic flux passing through both the UV gap and the VW gap becomes larger than the magnetic flux passing through either the UV gap or the VW gap, and thus the amount of magnetic flux decreases, resulting in distortion in the amount of magnetic flux for magnetizing the rough magnetic pole.
  • the amount of magnetic flux is distorted, there is a problem in that the rotation of the motor is deteriorated and vibration or noise is generated in the motor.
  • a first space is formed between the U-phase core body and the V-phase core body, and a second space is also formed between the V-phase core body and the W-phase core body.
  • the U-phase coil, the V-phase coil and the W-phase coil are disposed in a space formed inside the core, and the V-phase coil is divided into two V-phase coil elements connected in series.
  • the U phase coil and one V phase coil element are disposed in the first space, and the one V phase coil element and the W phase coil are disposed in the second space.
  • the coil can be arranged inside the core, thereby miniaturizing the motor.
  • the motor configured as described above applies an applied voltage to each coil so that a current flows and generates magnetic flux around the coil so that the magnetic flux passes through each core body to magnetize the rough magnetic pole.
  • the magnetic poles of the rough magnetic poles can be appropriately changed by sequentially changing the coils applying the applied voltage by changing the winding directions of the U-phase coil, the V-phase coil, and the W-phase coil.
  • the magnetic flux amounts for magnetizing the co-stimulus of the U-phase core and the W-phase core are the same as the magnetic flux amounts generated in the U-phase coil and the W-phase coil, respectively.
  • the magnetic flux that magnetizes the co-stimulation of the V-phase core is the amount of magnetic flux generated by each V-phase coil element, but the magnetic flux generated by each V-phase coil element is the magnetic flux directed to the co-stimulation of the V-phase core and the U-phase core. Or the magnetic flux directed to the co-stimulus of the W-phase core. Therefore, the magnetic flux amount from each V-phase coil element to the co-stimulus of the V-phase core is half of the generated magnetic flux.
  • the amount of magnetic flux generated by each V-phase coil element is equal to the magnetic flux generated by the U-phase coil or the W-phase coil.
  • the number of turns of the U-phase coil, each V-phase coil element, and the W-phase coil must be the same.
  • the coil resistance value is also the same. Therefore, the resistance values of the U-phase coil, the W-phase coil, and each V-phase coil element are the same. Therefore, since the resistance value of a V phase coil becomes the sum of the resistance values of each V phase coil element, it becomes larger than the resistance values of a U phase coil and a W phase coil. As such, if the resistance values of the U-phase coil, the V-phase coil, and the W-phase coil are different, current flowing through each core is unbalanced, and there is a problem in that the rotation of the motor is unstable and vibration or noise is generated.
  • the motor described in Patent Document 2 has a problem in that the distortion of the cogging torque and the linkage flux cannot be reduced. That is, in order to solve this problem, the circumferential angle of the rough magnetic pole should be 130 ° to 160 °. However, the motor described in Patent Literature 2 can have a maximum circumferential angle of the rough magnetic pole only up to 120 °, thereby preventing distortion of the linkage flux. There is a problem that cannot be reduced.
  • the U-phase core, the V-phase core, or the W-phase core are formed by pressing a powdered magnetic material in the rotational axis direction, an error occurs in the dimensional accuracy in the rotational axis direction.
  • a gap may occur between the V-phase core body and the W-phase core body.
  • the permeability of the air is significantly different from the permeability of the magnetic material constituting the core so that the air can become a magnetoresistance, and the magnetoresistance causes variation in the amount of magnetic flux passing through each core. Therefore, this variation in the amount of magnetic flux may affect the motor performance.
  • the motor disclosed further in patent document 3 corresponds to the motor which combined these after dividing a stator into several parts and manufacturing each part by pressing.
  • the mass density of the whole stator can be increased by increasing the mass density of each part, but when assembling a plurality of divided elements divided in the radial direction, the central axes of the plurality of divided elements are matched. If the central axis is distorted, the roundness of the rough stimulus may be reduced and the rotation of the motor may be distorted, and vibration or noise of the motor may occur.
  • Patent Document 1 is Japanese Patent Application Laid-Open No. 2007-116847
  • Patent Document 2 is Japanese Patent Publication No. 2005-160285
  • Patent Document 3 is Japanese Patent Publication No. 2008-079384.
  • the home appliance includes a claw pole type motor, wherein the claw pole type motor has a first core body disposed on a rotating shaft and a central portion of the first core body in the rotation axis direction.
  • a first core including an extended first extension portion and a plurality of first pair of magnetic poles extending in the rotation axis direction on an outer portion of the first core body, and a second core body and the second core disposed on the rotation shaft;
  • a second core including a plurality of second pairs of magnetic poles extending in the direction of the rotation axis in an outer portion of the core body, and extending in the direction of the rotation axis in a center portion of the third core body and the third core body disposed on the rotation axis;
  • a third core including a second extending portion and a plurality of third pair of magnetic poles extending in the direction of the rotation axis on an outer portion of the third core body;
  • the magnetic flux passing between the U-phase core body and the V-phase core body passes through a UV gap formed between the outer periphery of the second core body and the first stretching portion of the first core body, and the V-phase core body.
  • the magnetic flux passing between the W-phase core body passes through a VW gap formed between the outer periphery of the second core body and the second stretching portion of the third core body, and passes between the U-phase core body and the W-phase core body.
  • the magnetic resistance is the same and the amount of magnetic flux is uniform, so that vibration and noise of the motor can be suppressed.
  • the gap through which magnetic flux passes is made one, the reduction of magnetic flux amount can be reduced to the minimum.
  • the present invention is the outer winding portion, the first stretching portion and the second stretching portion is formed in a cylindrical shape having a central hole, the first stretching portion and the second stretching portion can be inserted into the center hole of the outer winding portion.
  • the present invention can equalize the length of the first stretched portion and the length of the second stretched portion wrapped by the outer periphery.
  • the magnetic flux density passing through the UV gap formed between the first stretching portion and the outer winding portion and the magnetic flux density passing through the VW gap formed between the second stretching portion and the outer winding portion become similar, so that the vibration and noise of the motor can be suppressed more. have.
  • the first core, the second core and the third core of the claw pole type motor may be formed by pressing a powdered magnetic material in the direction of the rotation axis.
  • a gap is formed in the direction of the rotation axis, and the gap is very large due to manufacturing error, which causes a problem of deterioration of motor characteristics.
  • the present invention can reduce the manufacturing error because part of the gap (UV gap, VW gap) in the radial direction can improve the characteristics of the motor more.
  • the first core is a U-phase core including a plurality of U-phase co-stimulations extending in an axial direction to the first core body and the second core is connected to the second core body.
  • the third core is a W-phase core including a plurality of W-phase rough magnetic poles extending in an axial direction to the third core body and the U-phase
  • the core, the V-phase core and the W-core further include a U-phase coil, a V-phase coil and a W-phase coil for magnetizing the respective cores, wherein the U-phase coil is disposed between the U-phase core body and the V-phase core body.
  • the W phase coil is disposed between the V phase core body and the W phase core body, and the V phase coil is a first phase V phase disposed between the U phase core body and the V phase core body.
  • Coil element and the V-phase core The second phase V phase coil element disposed between the main body and the W phase core main body may be a home appliance connected in series.
  • the diameter of some or all of the V phase coil diameters is larger than that of the U phase coils and the W phase coils.
  • the resistance value of the second V-phase coil element can be made close to the resistance value of the U-phase coil and the W-phase coil.
  • the resistance values of the U-phase coil, V-phase coil, and W-phase coil are uniform, so that if the voltage is constant, current can flow evenly in each phase, reducing the occurrence of torque pulsation and preventing vibration or noise caused by instability of the motor rotation. can do.
  • the resistance value of the V-phase coil can be reduced by changing only the coil diameter without changing the windings of the U-phase coil, the V-phase coil, and the W-phase coil. Therefore, the number of V-phase coils and W-phase coils are the same, and the magnetic flux can be uniformly passed to stabilize the motor rotation.
  • the first V-phase coil element may be disposed outside the U-phase coil and the second V-phase coil element may be disposed outside the W-phase coil.
  • the length of the inner coil becomes shorter than the length of the outer coil. Therefore, since the coil resistance value is proportional to the coil length, the resistance value of the coil disposed inside is smaller than the resistance value of the coil arranged outside.
  • the resistance value of the first V-phase coil element and the second V-phase coil element it can be made small so that the resistance values of the U-phase coil and the W-phase coil can be similar. If the resistance values are similar, the current flows in a balanced state to stabilize the rotation of the motor.
  • D1 / D2 is 1.0 or more and 1.4 or less. Being able to maximize the efficiency of the present invention.
  • the number of turns of the said 1st V-phase coil element or the said 2nd V-phase coil element differs from the number of turns of the said U-phase coil or the said W-phase coil.
  • U-phase cores, V-phase cores, and W-phase cores are manufactured by pressing powder iron cores in an axial direction, and the cores thus produced are likely to have gaps in the axial length. Therefore, the length of the magnetic path is different for each core or the magnetic resistance is generated in the micro voids of the joint portion between each core, the magnetic flux unevenness due to manufacturing error may occur in the U-phase core, V-phase core and W-phase core.
  • the coil resistance value can be adjusted by varying the number of windings of the first V-phase coil element, the second V-phase coil element, the U-phase coil, or the W-phase coil.
  • the said 1st V-phase coil element is arrange
  • the said 2nd V-phase coil element is arrange
  • the said U phase coil and the said W phase One part or all part of a coil diameter is set large compared with the said V-phase coil diameter.
  • the resistance value of the first V-phase coil element and the second V-phase coil element disposed inside can be reduced, and in the case of the U-phase coil and W-phase coil disposed outside, the coil diameter is increased to increase the resistance. You can lower the value. Therefore, the resistance value of the U-phase coil, the V-phase coil, and the W-phase coil can be made equal to allow the current to flow in a balanced manner to stabilize the rotation of the motor.
  • the U-phase rough magnetic pole, the V-phase rough magnetic pole, and the W-phase rough magnetic pole are arranged so as to appear repeatedly in the circumferential direction in this order, and the U-phase rough magnetic pole, the V-phase rough magnetic pole, And a plurality of rotors in which a plurality of N-poles and S-poles are alternately arranged in the circumferential direction corresponding to the W-phase rough magnetic poles, and the sum of the U-phase rough magnetic poles, the V-phase rough magnetic poles, and the W-phase rough magnetic poles.
  • S When the number of poles of the rotor is P, the ratio of S and P may be the following formula (1).
  • a unit consisting of two magnetic poles in which the N pole and the S pole are arranged in the circumferential direction on the rotor side in correspondence with the U-phase rough magnetic pole, the V-phase rough magnetic pole on the stator side, and (n + 1) )can be arranged.
  • the circumferential angle of one unit is 360 °
  • the circumferential angle obtained by adding the U-phase rough magnetic pole, the V-phase rough magnetic pole and the W-phase rough magnetic pole is 360 ⁇ (n + 1). Therefore, the circumferential angle of each of the U-phase co-stimulus, V-phase co-stimulation, and W-phase co-stimulation can be 120 ° or more, thereby reducing the cogging torque and the distortion of the linkage flux, thereby reducing vibration and noise of the motor.
  • n becomes 1 in said Formula (1).
  • the circumferential angle obtained by combining the U-phase rough magnetic pole, the V-phase rough magnetic pole and the W-phase rough magnetic pole may be 360 ° ⁇ 2 and 720 °, and the circumferential angle of each rough magnetic pole may be 240 ° maximum. Therefore, the circumferential angle of the rough magnetic pole can be set to 120 ° or more, thereby reducing the cogging torque and the distortion of the linkage flux, thereby reducing vibration and noise of the motor.
  • the width in the circumferential direction of the rough stimulus is 130 ° or more and 160 ° or less, that is, the circumferential angle of each rough stimulus is 130 ° or more, 160 ° or less, and more preferably 150 °, As shown in Fig. 18, the cogging torque and the linkage flux can be reduced, so that the vibration and noise of the motor can be reduced more effectively.
  • a claw pole type motor includes a first extending portion extending in a direction of the rotation axis to a first core body and a central portion of the first core body disposed on a rotating shaft, and an outer portion of the first core body.
  • a first core including a plurality of first pair magnetic poles extending in the rotation axis direction, a second core body disposed on the rotation shaft, and a plurality of agents extending in the rotation axis direction on an outer portion of the second core body;
  • the second core including two pairs of magnetic poles, a third core body disposed on the rotating shaft, and a second stretching portion extending in the rotation axis direction to the center portion of the third core body and the third core body outer portion;
  • a third core including a plurality of third magnetic poles extending in a rotation axis direction, wherein the second core is formed at a central portion of the second core body.
  • Enclosing section and the second elongated portion may further include a oegam.
  • a method of manufacturing a claw pole type motor is a method of manufacturing a pole type motor including a plurality of cores including a core body and a plurality of operation poles coupled to the core body so as to extend in a rotation axis direction.
  • the plurality of rough magnetic poles may be repeatedly displayed in the circumferential direction in order, and may include a molding process in which a mold is disposed between the rough magnetic poles.
  • the coarse poles can be arranged at equal intervals in the circumferential direction, so that the rotation of the motor can be smoothed and vibration and noise can be reduced.
  • the said plurality of cores are U-phase core main body arrange
  • a V phase core including a plurality of V phase coarse poles, a W phase core body disposed on the rotation axis line below the V phase core body, and a plurality of W phase coarse poles coupled to the W phase core body and the W phase It is made of a W-phase core including a second stretching portion coupled to the rotation axis in the linear direction on the core body, wherein the V-phase core body is the first stretching portion and the second And an outer wound portion surrounding the bride, wherein the molding process fixes the first stretched portion, the second stretched portion, and the outer wound portion with a resin and partially or entirely inside the first stretched portion and the second stretched portion.
  • the U-phase core body and the W-phase core body are disposed in the direction of the rotation axis in a circumferential direction such that the U-phase core body and the V-phase core body and the V-phase core body and the W-phase core body are arranged in the circumferential direction.
  • the circumferential direction perpendicular to the direction of the rotation axis is significantly superior to the dimensions in the direction of the direction of the rotation axis. Almost no gap is generated between the core body and between the V-phase core body and the W-phase core body. In addition, since the core body is fixed in a crimped state between the U-phase core body and the W-phase core body, it is possible to prevent the occurrence of voids therebetween, thereby reducing vibration and noise of the motor.
  • the core body can be reliably crimped, whereby the manufacturability can be stabilized.
  • stretching part are crimped
  • a resin layer is formed so that a extending
  • a member which is combined with the U-phase core body, the V-phase core body, and the W-phase core body for example, a bearing inserted into approximately the center of the U-phase core body, the V-phase core body, and the W-phase core body, etc. Since the resin layer can be interposed between the members, heat generated in the U-phase core body, the V-phase core body, and the W-phase core body can be prevented from being transferred.
  • a claw pole type motor manufactured using the method described above is another embodiment of the present invention.
  • the method for manufacturing a claw pole type motor of the present invention is a method for manufacturing a claw pole type motor including a plurality of cores having a core body and a plurality of cores provided to extend in a linear direction of rotation axis around the core body. A plurality of parts obtained by concatenating the annular member into concentric circles are combined, and the plurality of coarse magnetic poles are integrally held at the outer peripheral edge of the part disposed at the outermost side.
  • the coarse stimulus is integrally held on the outer periphery of the part that is arranged on the outermost side, the coarse stimulus is positioned by itself when the part is positioned so that the coarse stimulus can be easily positioned as compared with the case where the part and the coarse stimulus are installed separately You can decide.
  • At least the said coarse magnetic pole is comprised by press-processing the soft magnetic material which consists of powder in the rotational axis linear direction.
  • the material which comprises the said rough magnetic pole is different from the material which comprises the said part.
  • iron-based insulating particles can be used only for co-stimulation, and materials different from iron-based insulating particles can be used for each part, thereby reducing costs.
  • the material which comprises the said coarse pole has a volume resistivity larger than the material which comprises the said part is used.
  • the material constituting the rough stimulus can increase the electrical resistance of the rough stimulus, thereby reducing the eddy current generated on the surface of the rough stimulus.
  • the manufacturing method of the claw pole type motor of this invention further comprising the coil which magnetizes the said rough magnetic pole, and the said some parts consist of a 1st part and the 2nd part arrange
  • the outer diameter of the said 2nd part is larger than the outer diameter of the said coil.
  • a claw pole type motor may be manufactured using a combination of the first part, a combination of the second part, and a coil, and a combination of the second part and the coil of the combination of the first part. Can be.
  • the manufacturing process of this manufacturing method is easier to produce a claw pole motor by combining the first part and the second part to manufacture each core, placing the coil in the gap between the cores, and then improving the assemblability compared to the manufacturing method of fixing them. It can manufacture.
  • the said 1st part is comprised by the some dividing element which divided
  • an electrical resistance is generated between the three divided elements divided in the radial direction provided in the second part, so that the eddy current flowing in the circumferential direction can be reduced by this electrical resistance.
  • the first part holding the rough stimulus is not divided in the radial direction, the roundness of the rough stimulus can be prevented from decreasing.
  • the said 1st part and the said 2nd part are pressed and fixed.
  • the plurality of cores may include a U phase core having a U phase core body, a V phase core having a V phase core body, and a W phase core having a W phase core body.
  • the coil consists of a U-phase coil, a V-phase coil and a W-phase coil, wherein the U-phase coil is disposed between the U-phase core body and the V-phase core body, and the W-phase coil is the V-phase core body and the W-phase coil.
  • the V-phase coil Disposed between a phase core body, wherein the V-phase coil comprises a first V-phase coil element and a second V-phase coil element connected in series, wherein the first V-phase coil element is the U-phase core body and the V-phase core.
  • the second V-phase coil element is disposed between the V-phase core body and the W-phase core body.
  • the U phase coil and the first V phase coil element are disposed in the space formed between the U phase core body and the V phase core body, and the second V phase is formed in the space formed between the V phase core body and the W phase core body. Since the claw pole type motor can be manufactured by disposing the coil element and the W-phase coil, it is possible to manufacture the claw pole type motor with substantially three core bodies and two coils, thereby improving the production efficiency.
  • the claw pole type motor manufactured using the above method is also one of this invention.
  • FIG. 1 is a perspective view of a claw pole type motor according to an embodiment of the present invention.
  • FIG. 2 is a perspective view showing a claw pole type motor rotor and a stator according to an embodiment of the present invention.
  • FIG 3 is a perspective view of a rotor according to an embodiment of the present invention.
  • FIG. 4 is a perspective view of a stator according to an embodiment of the present invention.
  • FIG. 5 is an exploded view of a stator according to an embodiment of the present invention.
  • FIG. 6 is a cross-sectional view AA of the stator according to the embodiment of the present invention.
  • FIG. 7 is a plan view showing the circumferential angle of the claw pole type motor according to the embodiment of the present invention.
  • FIG. 8 is a cross-sectional view showing a method for manufacturing a claw pole type motor according to an embodiment of the present invention.
  • FIG. 9 is a perspective view showing a method for manufacturing a U-phase core according to an embodiment of the present invention.
  • FIG. 14 is a view showing the inside of a refrigerator including a claw pole type motor according to an embodiment of the present invention.
  • FIG. 15 is a view showing the appearance of a known air conditioner including a claw pole type motor according to an embodiment of the present invention.
  • FIG. 15 is a view showing the appearance of a known air conditioner including a claw pole type motor according to an embodiment of the present invention.
  • FIG. 16 is a view showing an inner surface of a well-known air conditioner including a claw pole type motor according to an embodiment of the present invention.
  • FIG. 17A is a graph showing waveforms of alternating current in a conventional claw pole type motor
  • (b) is a graph showing waveforms of alternating current in a claw pole type motor of the present embodiment.
  • 19 is a graph showing the torque pulsation and the position of the rotor of the conventional claw pole type motor.
  • first may be referred to as the second component
  • second component may also be referred to as the first component.
  • the term “and / or” includes any combination of a plurality of related items or any item of a plurality of related items.
  • the claw pole type motor 1 in this embodiment is a motor used in various fields, such as a refrigerator, an air conditioner, and a motor vehicle, and is used for many fields with good efficiency.
  • the configuration and manufacturing method of the claw pole type motor 1 will be described, and the refrigerator 100 and the outdoor unit 200 of the air conditioner including the claw pole type motor 1 will be described. Although this has been described with reference to the refrigerator 100 and the outdoor unit 200 of the air conditioner, the claw pole type motor 1 is not simply included in the refrigerator 100 and the outdoor unit 200 of the air conditioner, It may be included in a home appliance.
  • FIG. 1 is a perspective view of a claw pole type motor according to an embodiment of the present invention
  • FIG. 2 is a perspective view of a claw pole type motor rotor and a stator according to an embodiment of the present invention.
  • FIG. 3 is a perspective view of a rotor according to an embodiment of the present invention
  • FIG. 4 is a perspective view of a stator according to an embodiment of the present invention
  • FIG. 5 is an exploded view of the stator according to an embodiment of the present invention.
  • the claw pole type motor 1 has a plurality of coarse magnetic poles extending in the axial direction with the rotor 2 in which a plurality of permanent magnets 18 (the magnetic poles described in claims) are arranged in the inner circumferential direction.
  • (5) (5a, 5b, 5c) includes the stator 3 arrange
  • the rotor 2 is rotated by the attractive force and repulsive force generated between the permanent magnet 18 of the rotor 2 and the coarse magnetic pole 5 of the stator 3, the rotor 2 is virtual in the center thereof It can be rotated in the circumferential direction with respect to the rotation axis installed as.
  • the rotor 2 is open on one side and has a closed cylindrical shape on the other side, and a rotating shaft 4 for rotating the rotor 2 around the closed end surface is provided. It can be inserted and fixed.
  • a plurality of permanent magnets 18 having a long piece shape extending in the rotational axis direction are arranged at equal intervals in the circumferential direction.
  • the plurality of permanent magnets 18 are alternately arranged alternately in the N pole and the S pole in the circumferential direction.
  • the number of permanent magnets 18 is 24.
  • the permanent magnet 18a of the N pole and the permanent magnet 18b of the S pole which are adjacent to the circumferential direction are referred to as a unit 23 and will be described using the same.
  • the stator 3 has a U-phase core 8, a V-phase core 9, and a W-phase which are magnetic circuits for magnetizing the rough magnetic poles 5 (5a, 5b, 5c).
  • the core 10 may include a U-phase coil 14, a V-phase coil 15, and a W-phase coil 16 for magnetizing the cores, respectively.
  • the U-phase core 8 includes a plurality of U-phase rough magnetic poles provided around the U-phase core body 19 and the U-phase core body 19 which extend in the axial direction. 5a).
  • the U-phase core main body 19 has a ring-like member on one surface of the ring-like member 11a and the ring-like member 11a, which integrally hold the U-phase rough magnetic poles 5a, which are arranged at equal intervals from each other by 60 °. It may include a central cylindrical member 12a integrally mounted on the same axis as 11a.
  • the central cylindrical member 12a corresponds to the first stretching portion described in the claims and may protrude in the same direction as the direction in which the U-phase rough magnetic pole 5a extends.
  • the V-phase core 9 is linearly coupled to the outer periphery of the V-phase core body 20 and the V-phase core body 20 disposed below the U-phase core body 19 in the axial direction.
  • a plurality of V-phase rough magnetic poles 5b may be provided.
  • the V-shaped core body 20 has the same axial height as the center cylindrical member 12b having a center hole and the center cylindrical member 12b, and has a radial shape from the center in the axial direction of the center cylindrical member 12b. It has a plurality of arms 17 extending therefrom.
  • the central cylindrical member 12b corresponds to the outer periphery described in the claims, and its inner diameter may be the same as the outer diameter of the central cylindrical member 12a of the U-shaped core 8.
  • the arm 17 is integrally coupled in the middle of the extension direction of the V-phase rough magnetic pole 5b and the V-phase rough magnetic pole 5b extends in both axial directions so as to be in line symmetry with respect to the arm 17. There may be.
  • the six V-phase rough magnetic poles 5b provided at the distal ends thereof may also be arranged at equal intervals by 60 °. .
  • the W-phase core 10 includes a plurality of W-phase core bodies 21 disposed below the V-phase core bodies 20 and the W-phase core bodies 21 that extend in the axial direction.
  • the W-phase rough magnetic pole 5c can be provided.
  • the W-phase core main body 21 corresponds to one surface of the ring state member 11c and the ring state member 11c which integrally hold the W phase coarse magnetic poles 5c arranged at equal intervals at intervals of 60 ° from each other. It may include a central cylindrical member 12c integrally mounted on the same axis as the state member 11c.
  • the center cylindrical member 12c corresponds to the second stretching portion in the claims and projects toward the U-shaped core body 19, and the W-phase rough magnetic pole 5c is in the same direction as the direction in which the central cylindrical member 12c projects. It may extend toward. This direction is opposite to the extending direction of the U-phase rough magnetic pole 5a, and the 1st extending
  • the inner and outer diameters of the central cylindrical member 12c may be the same as the inner and outer diameters of the central cylindrical member 12a of the U-shaped core 8, respectively.
  • the centerline of the U-phase core body 19 and the centerline of the W-phase core body 21 coincide with the rotation axis as shown in FIG.
  • the front end face of the central cylindrical member 12a and the front end face of the central cylindrical member 12c face each other so that they may be adjacent or attached to each other.
  • the front end portions of the central cylindrical member 12a and the central cylindrical member 12c may be attached to the center hole of the central cylindrical member 12b so that the center line of the V-shaped core body 20 coincides with the rotation axis. .
  • the U-phase core 8, the V-phase core 9, and the W-phase core 10 may be fixed by resin or the like.
  • the UW gap G1 can be formed between the front end surface of the center cylindrical member 12a, and the front end surface of the center cylindrical member 12c.
  • a UV gap G2 is formed between the front end face of the central cylindrical member 12b and the outer circumferential surface of the central cylindrical member 12a, and between the front end face of the central cylindrical member 12b and the outer circumferential surface of the central cylindrical member 12c.
  • the VW gap G3 may be formed.
  • the front end of the central cylindrical member 12a and the central cylindrical member 12c may be wrapped in the central cylindrical member 12b, wherein the depth of the central cylindrical member 12a and the depth of the central cylindrical member 12b are It can be configured to be the same.
  • the magnetic flux density passing through the UV gap G2 and the magnetic flux density passing through the VW gap G3 can be made the same, so that the vibration and noise of the motor can be suppressed by a more uniform flux amount.
  • the widths of the UV gaps G2, UW gaps G1, and VW gaps G3 are 0, but the widths of the UV gaps G2 and VW gaps G3 are UW gaps. (G1) can be significantly smaller than the error range of the width.
  • the U-phase core 8, the V-phase core 9, and the W-phase core 10 are formed by pressing a powdery magnetic material in the rotational axis direction, so that the dimension accuracy in the rotational axis direction is worse than that in the radial direction and the UV in the radial direction This is because the manufacturing error of the UW gap G1 in the rotation axis direction is larger than the gap G2 and the VW gap G3.
  • the combined U-phase rough magnetic poles 5a, V-phase rough magnetic poles 5b, and W-phase rough magnetic poles 5c may be repeatedly displayed in the circumferential direction by 20 ° shifts from each other in the above order. And in this embodiment, the number of the rough poles 5 which combined the U-phase rough magnetic pole 5a, the V-phase rough magnetic pole 5b, and the W-phase rough magnetic pole 5c becomes 18 pieces.
  • the number of permanent magnets 18 of the rotor 2 is P
  • the U-phase rough magnetic pole 5a of the stator 3 and the V-phase rough magnetic pole 5b.
  • the following equation (1) can be established when the total number of W-phase rough magnetic poles 5c is S.
  • the rotor 2 side corresponds to the U-phase rough magnetic pole 5a, V-phase rough magnetic pole 5b, and W-phase rough magnetic pole 5c on the stator 3 side.
  • Two units 23 consisting of two permanent magnets 18a and 18b may be arranged.
  • the circumferential angles of the permanent magnet 18a magnetized to the N pole and the permanent magnet 18b magnetized to the S pole are 180 °, respectively, so that the circumferential angle of one unit 23 is 180 °. May be 360 °.
  • the circumferential angle which combined the U-phase rough magnetic pole 5a, the V-phase rough magnetic pole 5b, and the W-phase rough magnetic pole 5c corresponding to the two units 23 is 360x2. It can be 720 °. Accordingly, the circumferential angle of each rough magnetic pole 5 may be 240 ° divided by 720 ° by 3, and the circumferential angle of each rough magnetic pole 5 may be maximum 240 °.
  • the circumferential angles of the U-phase rough magnetic pole 5a, the V-phase rough magnetic pole 5b, and the W-phase rough magnetic pole 5c are preferably 130 ° or more and 160 ° or less, and more preferably 150. Being ° improves the efficiency of the present invention.
  • the U-phase coil 14 may be formed by winding a hull having a predetermined diameter on the first bobbin 7a made of an insulator.
  • the first bobbin 7a may be disposed in the space S1 formed between the U-phase core body 19 and the V-phase core body 20 so that the center line and the rotation axis thereof coincide. However, this space S1 may be sealed by resin.
  • the W-phase coil 16 may be constructed by winding a hull having a predetermined diameter on a second bobbin 7b made of an insulator.
  • the second bobbin 7b may be disposed in a space S2 formed between the V-phase core body 20 and the W-phase core body 21 so that the center line and the rotation axis thereof coincide. However, this space S2 may be sealed by resin.
  • the V-phase coil 15 may consist of a first V-phase coil element 15a and a second V-phase coil element 15b connected in series as shown in FIG.
  • the first V-phase coil element 15a may be constructed by winding a hull having a predetermined diameter on a first bobbin 7a made of an insulator, and the first bobbin 7a has a center line and a rotation axis as described above. It may be arranged in the space S1 to coincide.
  • the second V-phase coil element 15b may be constructed by winding a hull having a predetermined diameter on a second bobbin 7b made of an insulator, and the second bobbin 7b coincides with the center line and the rotation axis thereof as described above. It may be arranged in the space (S2) to be.
  • the first V-phase coil element 15a is disposed outside the space S1
  • the U-phase coil 14 is disposed inside the space S1
  • the second V-phase coil element 15b is disposed outside the W in the space S2.
  • Phase coil 16 may be disposed.
  • the winding direction of the U-phase coil 14 When the winding direction of the U-phase coil 14 is positive, the winding direction of the first V-phase coil element 15a is positive, the winding direction of the second V-phase coil element 15b is negative, and the W-phase coil 16 Winding direction may be wound to be added and these coils may be connected to the winding end terminals not shown.
  • the diameters of the first V-phase coil element 15a and the second V-phase coil element 15b are larger than the diameters of the U-phase coil 14 and the W-phase coil 16 as shown in FIG. Can be.
  • the coil resistance value is R [ ⁇ ]
  • the coil diameter is D [mm]
  • the coil length is L [mm]
  • the resistivity of the metal constituting the coil is a
  • the equation (2) shows that as the coil diameter increases, the coil resistance value decreases, and as the number of coil turns increases or the circumference of the coil increases, the coil resistance value increases.
  • FIG. 8 is a view showing a method for manufacturing a claw pole type motor according to an embodiment of the present invention
  • FIG. 9 is a view showing a method for manufacturing a U-phase core according to one embodiment of the present invention.
  • FIG. 11 is a figure which shows the manufacturing method of a W phase core which concerns on one Embodiment of this invention.
  • the core manufacturing process which press-processes the U-shaped core 8, the V-phase core 9, and the W-phase core 10, for example, powder-like soft magnetic material to a rotation axis direction is implemented.
  • a steel plate etc. can be used for a press working material.
  • the front end surface of the center cylindrical member 12a and the front end surface of the center cylindrical member 12c face each other such that the center lines of the U-shaped core body 19 and the W-shaped core body 21 coincide with the rotation axis.
  • the front end portions of the center cylindrical member 12a and the center cylindrical member 12c are attached to the center hole of the center cylindrical member 12b with almost no gap, and the V-phase core 9 between the U-phase core 8 and the W-phase core 10. ).
  • the U-phase coil 14 and the first V-phase coil element 15a are disposed in the space S1 formed between the U-phase core body 19 and the V-phase core body 20 and the second V-phase coil element ( 15b) and the W-phase coil 16 can be arrange
  • FIG. The U-phase core 8, the V-phase core 9, the W-phase core 10, the U-phase coil 14, the V-phase coil 15, and the W-phase coil 16 arranged in this manner are combined to form a stator forming member ( It is called 30).
  • stator forming member 30 can be arrange
  • the upper mold 31 and the lower mold 32 may be provided with a recess for accommodating the stator forming member 30 therein.
  • the upper die 31 has an opening end provided with a recessed portion in contact with an opening end provided with a recessed portion of the lower mold 32, and a plurality of injection hole portions 37 for injecting resin are provided on the upper surface thereof as shown in FIG.
  • the insertion pin hole 40 for inserting the insertion pin 38 may be installed.
  • the lower mold 32 may be provided with a positioning convex 39 for positioning the stator forming member 30 as shown in FIG. 8, and the positioning convex 39 is 20 ° at a machine angle. It can be arranged in the circumferential direction alternately.
  • stator forming member 30 is fitted to the recess of the lower mold 32, the opening end provided with the recess of the lower mold 32 and the opening end provided with the recess of the upper mold 31 coincide with each other.
  • the stator forming member 30 can be accommodated in the 31 and the lower die 32.
  • the positioning convex portion 39 provided in the lower mold 32 and the U-shaped rough magnetic pole 5a, the V-shaped rough magnetic pole 5b, and the W-shaped rough magnetic pole 5c of the stator forming member 30 may be in contact with each other. have.
  • the insertion pin 38 is inserted into the insertion pin hole 40 provided in the upper mold 31, and the upper pin is pressed while the stator forming member 30 is pressed into the lower mold 32 by the insertion pin 38.
  • the molding process which fixes the stator forming member 30 by injecting resin from the injection hole part 37 provided in 31 can be performed.
  • the insertion pin 38 pressurizes the central cylindrical member 12a of the U-shaped core 8.
  • the distal end face of the central cylindrical member 12a of the U-shaped core 8 having the strongest strength with respect to the load in the rotational axis direction and the distal end surface of the central cylindrical member 12c of the W-shaped core 10 are engaged with each other. They can be contacted without gaps.
  • the front end surface of the center cylindrical member 12a and the front end surface of the center cylindrical member 12c can be fixed by resin in the crimped state.
  • the U-shaped rough magnetic pole 5a, the V-shaped rough magnetic pole 5b, and the W-shaped rough magnetic pole 5c are positioned and fixed to the said position by the positioning convex part 39 provided in the lower metal mold
  • the resin layer may be formed on at least a part of the inner surface of the central cylindrical member 12a and at least a part of the inner surface of the central cylindrical member 12c.
  • a claw pole type motor can also be manufactured as follows.
  • the U-phase core main body 19 is comprised from the 1st U-phase part 41 and the 2nd U-phase part 42 as shown in FIG.
  • the first U-shaped part 41 and the second U-shaped part 42 can be formed by dividing a member having a substantially circular shape into two concentric circles.
  • the first U-phase part 41 may include a plurality of U-phase rough magnetic poles 5a disposed on the outer side of the second U-phase part 42 and disposed at equal intervals in the circumferential direction. Can be.
  • the second U-shaped part 42 is attached to the inside of the first U-shaped part 41 with almost no gap, and a cylindrical member may be provided on the inner surface thereof.
  • the outer diameters of the second U-phase part 42 include the U-phase coil 14, the V-phase coil 15 (the first V-phase coil element 15a and the second V-phase coil element 15b), It may be larger than the outer diameter of the W-phase coil 16.
  • the second U-shaped part 42 may be arranged in the circumferential direction of the three dividing elements divided in the radial direction at intervals of 120 °.
  • the V-phase core body 20 may be configured of a first V-phase part 43 and a second V-phase part 44 disposed inside the first V-phase part 43.
  • the first V-phase part 43 and the second V-phase part 44 may be configured by dividing a portion forming a disc shape into concentric circles.
  • the first V-phase part 43 is disposed outside the second V-phase part 44 and has a ring-shaped body portion and a plurality of arms 17 extending radially from the body portion. And a plurality of V-phase rough magnetic poles 5b integrally held at the center portion in the direction of the rotational axis thereof at the tip of the arm 17.
  • the second V-phase part 44 is integrally formed in a ring-shaped main body portion which is attached to the inner side of the first V-phase part 43 with almost no gap and on the inner surface of the main body portion at the center portion of the rotation shaft. It can be provided with a cylindrical member connected to it.
  • the outer diameters of the second V-phase part 44 include the U-phase coil 14, the V-phase coil 15 (the first V-phase coil element 15a and the second V-phase coil element 15b), It may be larger than the outer diameter of the W-phase coil 16.
  • the second V-phase part 44 may be arranged in the circumferential direction of the three dividing elements divided in the radial direction at a position of 120 °.
  • the W-phase core body 21 may be composed of a first W-phase part 45 and a second W-phase part 46.
  • the first W-phase part 45 and the second W-phase part 46 may be configured by dividing a member having a substantially circular shape into two concentric circles.
  • the 1st W-phase part 45 is equipped with the some W-phase rough magnetic pole 5c arrange
  • the second W-phase part 46 is attached to the inner side of the first W-phase part 45 with almost no gap, so that a cylindrical member may be provided on the inner surface thereof.
  • the outer diameters of the second W-phase part 46 include the U-phase coil 14, the V-phase coil 15 (the first V-phase coil element 15a and the second V-phase coil element 15b), It may be larger than the outer diameter of the W-phase coil 16.
  • the second W-phase part 46 may be configured by arranging three dividing elements divided in the radial direction at the 120 ° position in the circumferential direction.
  • the W-phase part 46 may be formed by pressing a powdery soft magnetic material in the direction of the rotation axis.
  • the U-phase rough magnetic poles 5a, V-phase rough magnetic poles 5b, which are integrally held in the first U-phase parts 41, the first V-phase parts 43, and the first W-phase parts 45 The W-phase rough magnetic pole 5c can be produced at the same time when press working the first U-phase part 41, the first V-phase part 43, and the first W-phase part 45.
  • the material forming the part 46 may be different from the material forming the U-phase rough magnetic pole 5a, the V-phase rough magnetic pole 5b, and the W-phase rough magnetic pole 5c.
  • the materials forming the U-phase rough magnetic pole 5a, the V-phase rough magnetic pole 5b, and the W-phase rough magnetic pole 5c include the second U-phase part 42, the second V-phase part 44, and the first material.
  • One having a higher volume resistivity than the material forming the 2 W phase part 46 can be used.
  • the first part assembly which fixed these with resin can be manufactured by combining in a line direction of a rotation axis.
  • the first U-phase part 41, the first V-phase part 43, and the first W-phase part 45 are U-phase rough magnetic poles 5a, V-phase rough magnetic poles 5b, and W-phase rough magnetic poles ( 5c), the U-phase rough magnetic pole 5a and the V-phase rough magnetic pole 5b are fixed by fixing the first U-phase part 41, the first V-phase part 43, and the first W-phase part 45. ), The position of the W-phase rough stimulus 5c can also be determined.
  • the U-phase rough magnetic pole 5a, the V-phase rough magnetic pole 5b, and the W-phase rough magnetic pole 5c may appear repeatedly in the circumferential direction at equal intervals in the above order on the outer side of the first part assembly.
  • a substantially cylindrical hole may be formed inside the first part assembly.
  • the rotation axis is linearly aligned so that these center axes are aligned. Can be combined to produce a fixed first inner unit.
  • the outer diameters of the second U-phase part 42 and the second V-phase part 44 are U-phase coils 14, V-phase coils 15 (first V-phase coil elements 15a and second V-phase coil elements). (15b), the U-phase coil 14 and the first V-phase coil element 15a larger than the outer diameter of the W-phase coil 16 between the second U-phase part 42 and the second V-phase part 44 It can be accommodated without departing.
  • the 2nd inner-unit which fixed so that these center-axis lines may be made in the state which arrange
  • the outer diameter of the second W-phase part 46 is U-phase coil 14, V-phase coil 15 (first V-phase coil element 15a and second V-phase coil element 15b). ), Larger than the outer diameter of the W-phase coil 16, the second V-phase coil element 15b and the W-phase coil 16 may be accommodated without being separated from the second W-phase part 46.
  • the second inner unit and the first inner unit can be disposed in a substantially cylindrical hole formed inside the first part assembly and above the rotational axis linear direction of the second inner unit to fix them with resin.
  • the W-phase coil 16 and the U-phase coil 14 are reversed in the winding direction of the coil, and the magnetic flux is directed from the U-phase core main body 19 to the U-phase coarse magnetic pole 5a.
  • the U-phase rough magnetic pole 5a can be magnetized to the N pole, and the V-phase rough magnetic pole 5b and the W-phase rough magnetic pole 5c can be magnetized to the S pole.
  • the first V-phase coil element 15a applies the applied voltage and the first voltage.
  • the current may flow due to the difference in voltage generated in the V-phase coil element 15a and the resistance of the first V-phase coil element 15a.
  • a current may flow in the second V-phase coil element 15b due to the difference between the applied voltage and the voltage generated in the second V-phase coil element 15b and the resistance of the second V-phase coil element 15b.
  • the magnetic flux generated by the current flowing in the first V-phase coil element 15a is directed from the U-phase core body 19 to the V-phase core body 20 or the W-phase core body 21.
  • the magnetic flux can magnetize the V-phase rough magnetic pole 5b and the W-phase rough magnetic pole 5c to the N pole, and at the same time, the U-phase rough magnetic pole 5a to the S pole.
  • the magnetic flux generated by the current flowing in the second V-phase coil element 15b is directed from the W-phase core body 21 toward the V-phase core body 20 or the U-phase core body 19 and to the V-phase coarse magnetic pole 5b.
  • the U phase rough magnetic pole 5a can be magnetized to the N pole
  • the W phase rough magnetic pole 5c can be magnetized to the S pole.
  • the rough magnetic pole 5 of the V-phase core 9 magnetizes to the N-pole, and at the same time, the rough magnetic pole 5 of the U-phase core 8 and the rough magnetic pole 5 of the W-phase core 10 are added. ) Can be magnetized to the S pole.
  • the magnetic pole for magnetizing the rough magnetic pole 5 is changed, and the rough magnetic pole on the stator 3 side.
  • the rotor 2 can rotate by the attractive force and the repulsive force generated between the permanent magnet 18 on the rotor 5 side and the rotor 5.
  • the magnetic flux passing between the U-phase core body 19 and the V-phase core body 20 passes through the UV gap G2 and the magnetic flux passing between the V-phase core body 20 and the W-phase core body 21.
  • the magnetic flux passing through the VW gap G3 and passing between the U-phase core body 19 and the W-phase core body 21 may pass through the UW gap G1. That is, the gap through which the magnetic flux passes may be one even if the magnetic flux passes between any core bodies.
  • the applied voltage of the W-phase coil 16, the applied voltage of the U-phase coil 14, and the applied voltage of the V-phase coil 15 are all the same, and the W-phase coil 16, the U-phase coil 14, and V are the same. Since the induced voltage generated in the phase coil 15 is almost the same, the voltage received from the applied voltage in the W phase coil 16, the U phase coil 14, and the V phase coil 15 may be substantially constant.
  • the diameter of the V-phase coil 15, that is, the diameter of the first V-phase coil element 15a and the second V-phase coil element 15b is determined by the diameter of the W-phase coil 16 and the U-phase coil 14. Since the diameter is larger than the diameter, the resistance value of the U-phase coil 14, the resistance value of the V-phase coil 15, and the resistance value of the W-phase coil 16 can be made almost uniform.
  • the amount of current flowing through the W-phase coil 16, the current flowing through the U-phase coil 14, and the flow current by the V-phase coil 15 are almost the same, so that the current flows in each core in a balanced manner. .
  • the unit 23 of the permanent magnet 18 on the rotor 2 side with respect to the U-phase rough magnetic pole 5a, V-phase rough magnetic pole 5b, and W-phase rough magnetic pole 5c on the stator 3 side Since the two correspond, the circumferential angles of the U-phase rough magnetic pole 5a, the V-phase rough magnetic pole 5b, and the W-phase rough magnetic pole 5c can be increased up to 240 °. In this embodiment, since this circumferential angle is 150 degrees, as shown in FIG. 8, the distortion of the cogging torque and the linkage flux can be reduced.
  • the claw pole type motor of the present embodiment configured as described above has the following special effects.
  • the magnetic resistance is the same, the magnetic flux is uniform, and the vibration and noise of the motor can be suppressed.
  • the gap through which magnetic flux passes is made one, the reduction of magnetic flux amount can be suppressed to the minimum.
  • the current can be flowed to each core in a balanced manner to reduce the occurrence of torque pulsation and to prevent the vibration and noise which make the motor rotation unstable.
  • the resistance value of the V-phase coil 15 can be reduced simply by changing the coil diameter without changing the number of turns of the U-phase coil 14, the V-phase coil 15, and the W-phase coil 16, the U-phase The number of turns of the coil 14, the V-phase coil 15, and the W-phase coil 16 are equal, so that the magnetic flux can be made uniform and the motor rotation can be stabilized.
  • the number of turns of the U-phase coil 14, the first V-phase coil element 15a, the second V-phase coil element 15b, and the W-phase coil 16 are the same. It may be.
  • the coil resistance value can be adjusted by changing the number of turns for each coil. By this, the nonuniformity of the magnetic flux which arises in the U-phase core 8, the V-phase core 9, and the W-phase core 10 can be eliminated.
  • the number S of the sum of (18a) and the permanent magnet 18b magnetized to the S pole is S: P equal to 3: 2 (n + 1). Therefore, the U-phase rough magnetic pole 5a, the V-phase rough magnetic pole 5b and the W-phase rough magnetic pole 5c, that is, the three rough magnetic poles 5 on the stator 3 side, are circumferential directions on the rotor 2 side.
  • the unit 23 composed of two permanent magnets 18a and 18b magnetized to the north pole and the south pole is arranged to correspond to (n + 1).
  • the circumferential angle of one unit 23 is 360 °
  • the circumferential angle of the U-phase rough magnetic pole 5a, the V-phase rough magnetic pole 5b, and the W-phase rough magnetic pole 5c is 360 ⁇ (n + 1). do. Therefore, since the circumferential angle of each rough magnetic pole 5 can be 120 degree or more, the distortion of a cogging torque or a linkage flux can be reduced, and a vibration and a noise of a motor can be reduced.
  • n 1, that is, S: P is 3: 4, the U-phase rough magnetic pole 5a, the V-phase rough magnetic pole 5b, and the W-phase roughness as described above.
  • the circumferential angle of the magnetic pole 5c can be enlarged up to 240 degrees.
  • the circumferential angles of the U-phase rough magnetic pole 5a, the V-phase rough magnetic pole 5b, and the W-phase rough magnetic pole 5c are set to 150 °, so that the distortion of the cogging torque and the linkage flux can be reduced as shown in FIG. .
  • the front end face and the central cylindrical member 12c of the central cylindrical member 12a of the U-phase core body 19 and the W-phase core body 21 disposed adjacent to each other in the rotational axis direction Since the front end surfaces of the front end surfaces are fixed while being pressed together, the front end surface of the central cylindrical member 12a and the front end surface of the central cylindrical member 12c are compressed to prevent generation of voids therebetween. Therefore, the vibration and noise of the motor can be reduced by that amount.
  • the coarse magnetic pole 5 is arrange
  • the U-shaped core body has a very good dimension in the circumferential direction, which is a direction perpendicular to the rotational axis linear direction, as compared with the dimensions in the rotational axis linear direction. Spaces hardly occur between 19 and the V-phase core body 20 and between the V-phase core body 20 and the W-phase core body 21.
  • the core body is fixed in a crimped state between the U-phase core body 19 and the W-phase core body 21, so that voids can be prevented from occurring. Therefore, it is possible to improve the efficiency of the motor by reducing the vibration or noise of the motor.
  • the roundness of the rough magnetic pole 5 can be reduced and the motor rotation can be prevented from being distorted, and vibration and noise of the motor can be reduced.
  • the rough magnetic pole 5 is integrally held at the outer peripheral edge of the first part disposed at the outermost side, when the first part is positioned, the position of the rough magnetic pole 5 is determined by itself and the part and the rough magnetic pole ( The position of the rough magnetic pole 5 can be easily determined as compared with the installation of 5).
  • the material constituting the rough stimulus 5 is different from the material constituting the parts 41, 42, 43, 44, 45, and 46, expensive iron-based insulating particles are used only for the rough stimulus 5, and the parts 41, 42, 43, 44, 45, 46) can use a material different from iron-based insulating particles, thereby reducing the cost.
  • the material constituting the rough magnetic pole 5 has a higher volume resistivity than the material constituting the second parts 42, 44, and 46, so that the electrical resistance of the rough magnetic pole 5 is increased, so that the surface of the rough magnetic pole 5 is increased.
  • the eddy current generated in can be reduced.
  • the second parts 42, 44, and 46 are configured by arranging three divided elements divided in the radial direction in the circumferential direction, an electrical resistance is generated between these divided elements, and the eddy current flowing in the circumferential direction by the electrical resistance. There is also an effect that can be reduced.
  • the outer diameters of the second parts 42, 44, and 46 are U-phase coil 14, V-phase coil 15 (first V-phase coil element 15a and second V-phase coil element 15b), W
  • the stator 3 may be manufactured by accommodating the first inner unit and the second inner unit after the first part assembly is manufactured because it is larger than the outer diameter of the phase coil 16. By configuring in this way, assembling property can be improved.
  • the stator is configured using a U phase core, a V phase core, a W phase core, a U phase coil, a V phase coil, and a W phase coil, but is not limited to this configuration. What is the stator configured using three cores? It does not matter.
  • the first core described in the claims corresponds to the U-phase core
  • the second core described in the claims corresponds to the V-phase core
  • the third core described in the claims corresponds to the W-phase core, but is not limited thereto.
  • the core, the second core, and the third core may correspond to any of the U phase core, the V phase core, and the W phase core.
  • the outer periphery part of Claim was a center cylindrical member, it is not limited to this shape.
  • one side of the arm may be the outer periphery.
  • one end surface of the arm arranged converging in the radial shape may be arranged in proximity or abutment with the outer peripheral surfaces of the central cylindrical member of the U-phase core and the W-phase core.
  • the depth in the rotational axis linear direction where the distal end portion of the central cylindrical member of the U-phase core body is fitted to the central cylindrical member of the V-phase core body, and the distal end portion of the central cylindrical member of the W-phase core body are the
  • the depth of the rotational axis linear direction fitted to the central cylindrical member is configured to be the same, but is not limited thereto.
  • the depth in the direction of the rotation axis in which the leading end portion of the central cylindrical member of the U-phase core body is fitted to the central cylindrical member of the V-phase core body is such that the tip portion of the central cylindrical member of the W-phase core body is the central cylindrical member of the V-phase core body. It may be configured to be deeper than the depth in the direction of the rotation axis fitted to the vice versa and vice versa.
  • tip part of the center cylindrical member of the U-phase core main body 51 and the W-phase core main body 53 small is provided, and the U-phase core main body 51 and the W-phase
  • the second joining surface may be formed by fitting the central cylindrical member of the V-phase core body 52 to the recessed portion of the core body 53.
  • all diameters of the first V-phase coil element and the second V-phase coil element are larger than the U-phase coil 14 and the W-phase coil 16, but the first V-phase coil element and the second V-phase coil are Some diameters of the elements may be large.
  • the said angle of the stator costimulus was set to 120 degrees, this angle can be changed suitably. In order to perform this change, what is necessary is just to change suitably the number of coarse poles which a U-phase core, a V-phase core, and a W-phase core have, and the angle to arrange
  • the first V-phase coil element and the U-phase coil are configured by winding individual hulls on the first bobbin, but may also be configured by winding the same hull.
  • the second V-phase coil element and the W-phase coil are constructed by winding individual hulls on the second bobbin, but may also be constructed by winding the same hull.
  • S: P is 3: 4, but the present invention is not limited thereto, and other values may be used as long as Expression (1) is satisfied.
  • the circumferential angle of the rough magnetic pole is not limited to 150 °, and may be any value as long as it is in the range of 130 ° or more and 160 ° or less.
  • the resin layer is formed on the inner surface of the central cylindrical member 12a and the inner surface of the central cylindrical member 12c, but may be configured without such a resin layer.
  • the manufacturing method of the stator is not limited to the above-described process, and for example, the U-phase coil body and the V-phase core body are manufactured after the U-phase core body, the V-phase core body, and the W-phase core body are manufactured. It may be manufactured by arranging the first V-phase coil element and by arranging and fixing the second V-phase coil element and the W-phase coil between the V-phase core body and the W-phase core body.
  • the rough stimulus and the part are made of different materials, but the rough stimulus and the part may be made of the same material.
  • the permanent magnet is used as the magnetic pole of the rotor in the above embodiment, the present invention is not limited thereto.
  • an electromagnet or the like may be used as long as it has a stimulus.
  • the claw pole type motor 1 is not limited to the refrigerator and the air conditioner but may be applied to various other home appliances.
  • FIG. 14 is a view showing the inside of a refrigerator including a claw pole type motor according to an embodiment of the present invention.
  • a refrigerator including a claw pole type motor 1 includes a main body 110 forming an exterior of a refrigerator, storage chambers 121 and 122 storing storage materials, and a storage chamber. Cooling apparatuses 161, 171, 181, 182, 191 and 192 for cooling the 121 and 122, and temperature sensing units 141, 142 and 143 for sensing the temperature of the storage chambers 121 and 122.
  • the outside of the main body 110 is provided with a storage chamber (121, 122) for storing the storage and the duct (not shown) is provided with the evaporator (191, 192) described later, the main body 110 is provided with the storage chamber (121, 122)
  • the wall surface of) may include a hole (not shown) for the air cooled by the evaporator (191, 192) flows between the duct (not shown) and the storage compartment (121, 122).
  • the storage chambers 121 and 122 are divided into a freezing chamber 121 for freezing and storing the stored matter and a refrigerator compartment 122 for storing and storing the stored matter in the freezer compartment 122. ) Has an open front face.
  • the freezing chamber 121 and the refrigerating chamber 122 are shielded by the doors 131 and 132, respectively. Doors 131 and 132 of the refrigerator 100 may be provided with an input unit 111 and a display unit 112 to be described later.
  • the storage chambers 121 and 122 are provided with temperature sensing units 141, 142 and 143 for sensing the temperature of the storage chambers 121 and 122, and the first temperature sensing unit 141 for sensing the temperature of the freezing chamber 121, It includes a second temperature detection unit 142 for detecting the temperature of the refrigerating chamber (122).
  • the temperature sensing units 141, 142, and 143 may further include an external temperature sensing unit 143 provided outside the refrigerator 100 to sense a temperature outside the refrigerator 100.
  • the temperature sensing units 141, 142, and 143 may employ a thermistor whose battery resistance changes with temperature.
  • the cooling fans 151 and 152 introduce the air cooled by the evaporators 191 and 192 provided in the duct (not shown) into the storage chambers 121 and 122.
  • the cooling devices 161, 171, 181, 182, 191, and 192 include a condenser 171 for condensing the gaseous refrigerant, expansion valves 181 and 182 for reducing the condensed liquid refrigerant, and an evaporator for evaporating the reduced liquid refrigerant. 191 and 192 and a compressor 161 for compressing the evaporated gaseous refrigerant.
  • the refrigerant changes in phase from the liquid phase to the gaseous phase. In this process, the refrigerant absorbs latent heat to cool the air of the evaporators 191 and 192 and the evaporators 191 and 192.
  • the condenser 171 may be installed in a machine room (not shown) provided below the main body 110 or may be installed outside the main body 110, that is, at the rear of the refrigerator 100.
  • the gaseous refrigerant passes through the condenser 171 and condenses to form a liquid refrigerant. In the process of condensation, the refrigerant releases latent heat.
  • a heat radiating fan (not shown) may be provided to cool the condenser 171 because the condenser 171 is heated due to latent heat emitted from the refrigerant. have.
  • the liquid refrigerant condensed by the condenser 171 has a low pressure due to expansion valves 181 and 182. That is, the expansion valves 181 and 182 depressurize the high pressure liquid refrigerant to a pressure at which the refrigerant can evaporate by throttling action.
  • the throttling action means that the pressure decreases when the fluid passes through a narrow flow path such as a nozzle or an orifice without heat exchange with the outside.
  • the expansion valves 181 and 182 adjust the amount of the refrigerant so that the refrigerant absorbs sufficient heat energy from the evaporators 191 and 192.
  • the opening and closing degree of the expansion valves 181 and 182 is controlled by the driving unit 220 under the control of the controller 210 to be described later.
  • the evaporators 191 and 192 are provided in a duct (not shown) provided in the internal space of the main body 110 to evaporate the low pressure liquid refrigerant reduced by the expansion valves 181 and 182.
  • the refrigerant absorbs latent heat from the evaporators 191 and 192 during evaporation, and the evaporators 191 and 192 deprived of heat energy of the refrigerant cool the air around the evaporators 191 and 192.
  • the low-pressure gaseous refrigerant evaporated by the evaporators 191 and 192 is provided to the compressor 161 again, and the cooling cycle is repeated.
  • the compressor 150 is installed in a machine room (not shown) provided in the lower portion of the main body 110, and compresses the low-pressure gaseous refrigerant evaporated by the evaporators 191 and 192 using the rotational force of the motor and pumps it to the condenser 171. do. Due to the pressure generated in the compressor 150, the refrigerant circulates through the condenser 171, the expansion valves 181 and 182, and the evaporators 191 and 192.
  • the compressor 150 of the refrigerator 100 includes a motor, but various types of motors may be provided.
  • the claw pole type motor 1 corresponding to the present invention may also be provided in the compressor 150 to serve as a motor. In the case of the claw pole type motor 1, the size is not large and the efficiency is good.
  • FIG. 15 is a view showing the appearance of a known air conditioner including a claw pole type motor according to an embodiment of the present invention
  • FIG. 16 is an inner surface of an air conditioner including a claw pole type motor according to an embodiment of the present invention. It is a diagram showing.
  • an air conditioner includes an outdoor unit 200 installed in an outdoor space to perform heat exchange between outdoor air and a refrigerant, and an indoor unit 300 provided in an indoor space to perform heat exchange between indoor air and a refrigerant.
  • the outdoor unit 200 includes an outdoor unit main body 210 forming an exterior of the outdoor unit 200, and an outdoor unit discharge port 211 provided at one side of the outdoor unit main body 210 to discharge heat exchanged air.
  • the indoor unit 300 includes an indoor unit main body 310 that forms an exterior of the indoor unit 300, an indoor unit discharge port 311 provided in front of the indoor unit main body 310 to discharge heat exchanged air, and an operation command for the air conditioner from the user.
  • the control panel 312 receives an input, and a display panel 313 displaying operation information of the air conditioner.
  • the air conditioner is connected between the outdoor unit 200 and the indoor unit 300 together with the outdoor unit 200 and the indoor unit 300, and the gas pipe P1 and the liquid refrigerant, which are passages through which the gaseous refrigerant flows, flow. It includes a liquid pipe (P2) to be a passage, and the gas pipe (P1) and the liquid pipe (P2) extends into the indoor unit 200 and the outdoor unit (300).
  • the outdoor unit 200 may include a compressor 400 that compresses a refrigerant, an outdoor heat exchanger 222 that performs heat exchange between the outdoor air, and a refrigerant, and the refrigerant compressed by the compressor 210 according to a heating or cooling mode.
  • a compressor 400 that compresses a refrigerant
  • an outdoor heat exchanger 222 that performs heat exchange between the outdoor air, and a refrigerant
  • the refrigerant compressed by the compressor 210 according to a heating or cooling mode.
  • Four-way valve 223 to selectively guide to any one of the 222 and the indoor unit 300, the outdoor expansion valve 224 for reducing the refrigerant guided to the outdoor heat exchanger 222 in the heating mode, the liquid refrigerant not yet evaporated Accumulator 225 to prevent the compressor 400 from entering.
  • the compressor 400 compresses the low-pressure gaseous refrigerant to high pressure by using the rotational force of the compressor motor 1 rotating by receiving electrical energy from an external power source.
  • the motor used in the compressor various motors can be used, and the claw pole type motor 1 corresponding to the present invention can also be used as a motor. In the case of the claw pole type motor 1, the size is not large and the efficiency is good.
  • 17 is a diagram comparing waveforms of alternating currents generated when a coil is energized.
  • the conventional claw pole type motor has a U-phase core in which a magnetic flux between a V-phase core and a U-phase core or a W-phase core passes through the joint surface twice between the cores once.
  • the waveform amplitude of the alternating current generated by the V-phase coil is increased by about 25% because it is larger than the magnetic flux between the and the W-phase cores.
  • the waveform phase of the alternating current generated by the U-phase coil and the W-phase coil is distorted by 8 degrees.
  • cogging torque is generated in the range of -0.0009 Nm to 0.0009 Nm in the conventional claw pole type motor, while cogging torque is generated in the range of -0.0002 Nm to 0.0002 Nm in the claw pole type motor of the present embodiment.
  • the claw pole type motor of this embodiment was able to reduce cogging torque to about 1/4 compared with the conventional claw pole type motor.
  • FIG. 19 is a graph showing the torque pulsation and the position of the rotor of the conventional claw pole type motor
  • FIG. 20 is a diagram illustrating an embodiment of the present invention. It is a graph which shows the torque pulsation of a claw pole type motor and the position of a rotor
  • FIG. 21 is a graph which shows the cogging torque and the circumferential direction angle of a coarse pole of a claw pole type motor which concerns on one Embodiment of this invention.
  • the claw pole motor, the first V-phase coil element, and the second V of the present embodiment using the diameters of the first V-phase coil element and the second V-phase coil element larger than those of the U-phase coil and the W-phase coil.
  • Torque pulsation was measured using the conventional claw pole type motor which made the diameter of a phase coil element the same as a U phase coil and a W phase coil.
  • test results are shown in the graphs of FIGS. 19 and 20 below.
  • the vertical axis represents torque and the horizontal axis represents the motor rotation phase position.
  • torque pulsation can be reduced by about 27% compared with the conventional claw pole type motor. This is because the difference between the resistance values of the coils of the U-phase core, the V-phase core, and the W-phase core can be made small so that the current flowing in each core can flow in a balanced manner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

모터의 진동이나 소음을 줄일 수 있는 클로 폴형 모터 제조 방법 및 상기 클로 폴형 모터를 포함하고 있는 가전기기에 관한 발명이다. 회전축 상에 배치되는 제1코어 본체와 상기 제 1코어 본체 중앙 부분에 상기 회전축 방향으로 연장되어 있는 제 1연신부와 상기 제 1코어 본체 외측 부분에 상기 회전축 방향으로 연장되어 있는 복수의 제 1조자극을 포함하는 제1코어와, 상기 회전축 상에 배치되는 제 2코어 본체와 상기 제 2코어 본체 외측 부분에 상기 회전축 방향으로 연장되어 있는 복수의 제 2조자극을 포함하는 제 2코어와 상기 회전축 상에 배치되는 제3코어 본체와 상기 제 3코어 본체 중앙 부분에 상기 회전축 방향으로 연장되어 있는 제 2연신부와 상기 제3 코어 본체 외측 부분에 상기 회전축 방향으로 연장되어 있는 복수의 제 3조자극을 포함하는 제3코어를 포함하고 있고 상기 제 2코어는 상기 제2코어 본체의 중앙 부분에 상기 제 1연신부와 상기 제 2연신부를 감싸는 외감부를 더 포함하는 것을 특징으로 하는 클로 폴형 모터를 포함하고 있는 가전기기에 관한 발명이다.

Description

클로 폴형 모터 및 이를 포함하고 있는 가전기기
본 발명은 냉장고나 자동차 등 다양한 분야에서 사용하는 클로 폴형 모터와 클로 폴형 모터의 제조 방법 및 이를 포함하고 있는 가전기기에 관한 발명이다.
클로 폴형 모터란, 회전축 선방향으로 연장되는 복수의 조자극이 원주 방향으로 배치되어 있는 고정자와 복수의 영구자석이 원주 방향으로 배치되어 있는 회전자를 구비하고 있는 모터로서, 조자극의 자극을 변화시켜 조자극과 영구자석 간의 인력과 척력을 이용하여 회전자를 회전시키는 모터를 말한다. 특허 문헌 1에 공개된 모터가 대표적인 클로 폴형 모터에 해당한다.
고정자는 외주에 등간격으로 배치되어 있는 U상 코어 본체를 구비하는 U상 코어와 V상 조자극이 외주에 등간격으로 배치되어 있는 V상 코어 본체를 구비하는 V상 코어와 W상 조자극이 외주에 등간격으로 배치되어 있는 W상 코어 본체를 구비하는 W상 코어를 구비하고 있고 이와 더불어 U상 조자극, V상 조자극 및 W상 조자극을 자화하는 U상 코일, V상 코일 및 W상 코일을 구비하고 있다.
U상 코어 본체는 W상 코어를 향해 연장되는 제1 연신부를 구비하고 V상 코어 본체는 U상 코어 및 W상 코어를 향해 연장되는 제2 연신부를 구비하고 W상 코어 본체는 U상 코어를 향해 연장되는 제3 연신부를 구비하고 있다. 그리고 V상 코어는 U상 코어와 W상 코어 사이에 배치되어 있으며 이들은 회전축 방향으로 조합되어 있다.
이러한 방법으로 모터가 제조되는 경우 제1 연신부의 선단면과 제2 연신부의 U상 코어를 향해 연장되는 선단면 사이에 제조 오차에 의한 UV갭이 형성될 수 있다. 또한 제2 연신부의 W상 코어를 향해 연장되는 선단면과 제3 연신부의 선단면 사이에도 제조 오차에 의한 VW갭이 형성될 수 있다. 제1 연신부와 제2 연신부 사이, 제2 연신부와 제3 연신부는 서로 접하는 것이 바람직하나 제조 오차나 조립 허용 오차에 의한 갭이 형성되는 경우가 많다.
그리고 상기 U상 코일, V상 코일 또는 W상 코일에 흐르는 전류에 의해 자속이 발생하면 U상 조자극, V상 조자극 및 W상 조자극을 자화하기 위해 U상 코어 본체, V상 코어 본체 및 W상 코어 본체를 자속이 통과하는데 이때 U상 코어 본체와 V상 코어 본체 사이를 통과하는 자속 및 V상 코어 본체와 W상 코어 본체 사이를 통과하는 자속은 제1 연신부 및 제2 연신부의 사이, 또는 제2 연신부 및 제3 연신부의 사이를 통과하게 된다. 따라서 이들은 UV갭 또는 VW갭의 어느 한쪽을 통과한다.
이 때U상 코어 본체와 W상 코어 본체 사이를 통과하는 자속은 그 사이에 V상 코어가 배치되기 위해 제1 연신부 및 제2 연신부의 사이 및 제2 연신부와 제3 연신부의 사이를 통과하므로 UV갭 및 VW갭의 양쪽 모두를 통과하게 된다.
그러나 UV갭 및 VW갭에는 공기의 층이 형성되어 있고 공기 투자율은 코어를 이루는 철의 투자율과 크게 다르므로 UV갭 및 VW갭이 자기저항이 된다.
따라서 UV갭 또는 VW갭의 어느 한쪽을 통과하는 자속에 비해 UV갭 또는 VW갭 양쪽 모두를 통과하는 자속의 자기 저항이 커지고 이에 따라 자속량이 감소하여 조자극을 자화하는 자속량에 왜곡이 생긴다. 이처럼 자속량에 왜곡이 생기면 모터 회전 동작이 나빠져 모터에 진동이나 소음이 생기게 되는 문제점이 있다.
U상 코어, V상 코어 및 W상 코어로 모터를 구성하면 U상 코어 본체와 V상 코어 본체 사이에 제1 공간이 생기며 동시에 V상 코어 본체와 W상 코어 본체 사이에도 제2 공간이 형성되는데 U상 코일, V상 코일 및 W상 코일은 이 코어 내부에 형성된 공간 안에 배치되며 V상 코일은 직렬적으로 연결된 2개의 V상 코일 요소로 나누어져 배치된다.
이 때U상 코일 및 한쪽의 V상 코일 요소는 제1 공간에 배치되며 한쪽의 V상 코일 요소 및 W상 코일은 제2 공간에 배치된다. 이러한 경우 코일을 코어 내부에 배치할 수 있어 모터의 소형화를 꾀할 수 있다.
이처럼 구성된 모터는 각 코일에 인가 전압을 걸어 전류가 흐르게 하고 코일 주변에 자속을 발생시켜 이 자속이 각 코어 본체를 통과하여 조자극을 자화시킨다. 이때 코일이 감겨있는 방향이 다르면 자속 방향이 다르므로 조자극의 자극이 변화된다. 따라서 U상 코일, V상 코일, W상 코일의 감겨 있는 방향을 다르게 하여 인가 전압을 거는 코일을 순차적으로 변경함으로써 조자극의 자극을 적절하게 변화시킬 수 있다.
그리고 여기서 U상 코어, W상 코어의 조자극을 자화하는 자속량은 각각 U상 코일, W상 코일에서 발생하는 자속량과 동일하다.
반면, V상 코어의 조자극을 자화하는 자속량은 각 V상 코일 요소에서 발생한 자속량을 서로 더한 것이지만, 각 V상 코일 요소에서 발생한 자속은 V상 코어의 조자극으로 향하는 자속과 U상 코어 또는 W상 코어의 조자극으로 향하는 자속으로 나눠진다. 따라서, 각 V상 코일 요소로부터 V상 코어의 조자극으로 향하는 자속량은 발생한 자속량의 절반이 된다.
따라서, U상 코어, V상 코어 및 W상 코어의 조자극을 자화시키는 자속량을 균일하게 하려면 각 V상 코일 요소가 발생시키는 자속량을 U상 코일 또는 W상 코일에서 발생하는 자속량과 동일하도록 맞춰야 한다. 따라서 U상 코일, 각 V상 코일 요소, W상 코일의 권수가 모두 동일해야 한다.
그러나 코일 권수를 동일하게 하면 코일 저항값도 동일해지므로 U상 코일, W상 코일 및 각 V상 코일 요소의 저항값은 모두 동일해진다. 따라서, V상 코일의 저항값은 각 V상 코일 요소의 저항값을 합한 값이 되므로 U상 코일 및 W상 코일의 저항값보다 커진다. 이처럼 U상 코일, V상 코일, W상 코일의 저항값이 다르면 각 코어에 흐르는 전류가 불균형하게 되며 모터 회전이 불안정하여 진동이나 소음이 발생하는 문제점이 있다.
또한 특허문헌 2에 공개된 다른 클로 폴형 모터를 보면, U상 조자극, V상 조자극 및 W상 조자극의 개수(S)가 12개, 회전자측의 N극 자극 및 S극 자극의 개수(P)가 8개인 것을 알 수 있다. 따라서 S:P의 관계는 3:2 관계이고 상기 비례 관계에서는 고정자측의 U상 조자극, V상 조자극 및 W상 조자극의 3개 조자극에 대해 회전자측의 N극 자극 및 S극 자극이 대응하게 된다.
도13을 참고하면 이 관계를 알 수 있는데, 전기각을 원주 방향 각도로 나타내면 N극 자극 및 S극 자극의 원주 방향 각도는 모두 180°가 되며 N극 자극 및 S극 자극을 합한 360°의 원주 방향 각도에 U상 조자극, V상 조자극, W상 조자극을 합한 원주 방향 각도가 대응하게 된다. 따라서, 각 조자극의 원주 방향 각도는 각각 최대 120°가 된다.
그러나 특허문헌 2에 기재된 모터에는 코깅 토크 및 쇄교자속의 왜곡을 줄일 수 없다는 문제점이 있다. 즉, 이러한 문제점을 해결하기 위해서는 조자극의 원주 방향 각도를 130° 내지 160°로 해야 하는데 특허문헌 2에 기재된 모터는 조자극의 원주 방향 각도가 최대 120°까지 밖에 할 수 없어 쇄교자속의 왜곡을 줄일 수가 없는 문제가 발생한다.
추가로 U상 코어, V상 코어, W상 코어를 분체상의 자성 재료를 회전축 방향으로 프레스 가공하여 성형할 경우, 회전축 방향의 치수 정밀도에 오차가 발생하므로 U상 코어 본체와 V상 코어 본체의 사이, 및, V상 코어 본체와 W상 코어 본체의 사이에 공극이 발생할 수 도 있다.
이 경우, 공기의 투자율은 코어를 이루는 자성 재료의 투자율과 큰 차이가 있어 공기는 자기 저항이 될 수 있고 자기 저항은 각 코어를 통과하는 자속량에 편차를 발생시킨다. 따라서 이러한 자속량의 편차는 모터 성능에 영향을 줄 수도 있다.
또한 추가로 특허문헌 3에 공개된 모터의 경우, 고정자를 복수 파트로 분할하고 각 파트를 프레스 가공하여 제조한 후에 이들을 조합한 모터에 해당한다. 그러나 이처럼 복수의 파트로 분할하여 제조한 경우 각각의 파트 질량 밀도를 높여 고정자 전체의 질량 밀도를 높일 수 있지만 지름 방향으로 분할된 복수의 분할요소를 조립할 경우, 이들 복수의 분할 요소의 중심축을 일치시키는 것이 어렵고, 이 중심축이 틀어지면, 조자극의 진원도가 저하하여 모터의 회전이 왜곡될 수 있으며 모터의 진동이나 소음이 발생할 수 도 있다.
상기 설명한 공개 특허문헌의 경우 특허문헌 1은 일본특허공개공보 2007-116847호이며 특허문헌 2는 일본특허공개공보 2005-160285호이고 특허문헌 3은 일본특허공개공보 2008-079384호이다.
본 발명은 상기와 같은 문제점을 고려함으로써 모터의 진동이나 소음을 저감할 수 있는 클로 폴형 모터 및 이를 포함하는 가전기기를 제공하는 것을 목적으로 한다.
본 발명의 일 실시예에 따른 가전기기는 클로 폴형 모터를 포함하고 있는 가전기기에서, 상기 클로 폴형 모터는, 회전축 상에 배치되는 제1코어 본체와 상기 제 1코어 본체 중앙 부분에 상기 회전축 방향으로 연장되어 있는 제 1연신부와 상기 제 1코어 본체 외측 부분에 상기 회전축 방향으로 연장되어 있는 복수의 제 1조자극을 포함하는 제1코어와 상기 회전축 상에 배치되는 제 2코어 본체와 상기 제 2코어 본체 외측 부분에 상기 회전축 방향으로 연장되어 있는 복수의 제 2조자극을 포함하는 제 2코어와 상기 회전축 상에 배치되는 제3코어 본체와 상기 제 3코어 본체 중앙 부분에 상기 회전축 방향으로 연장되어 있는 제 2연신부와 상기 제3 코어 본체 외측 부분에 상기 회전축 방향으로 연장되어 있는 복수의 제 3조자극을 포함하는 제3코어를 포함하고 상기 제 2코어는 상기 제2코어 본체의 중앙 부분에 상기 제 1연신부와 상기 제 2연신부를 감싸는 외감부를 더 포함할 수 있다.
이러한 구조적 특징에 의해 U상 코어 본체와 V상 코어 본체 사이를 통과하는 자속은 제2 코어 본체의 외감부와 제1 코어 본체의 제1 연신부 사이에 형성되는 UV갭을 통과하고 V상 코어 본체와 W상 코어 본체 사이를 통과하는 자속은 제2 코어 본체의 외감부와 제3 코어 본체의 제2 연신부 사이에 형성되는 VW갭을 통과하며, U상 코어 본체와 W상 코어 본체 사이를 통과하는 자속은 제1 연신부의 선단면과 제2 연신부의 선단면 간에 형성되는 UW갭을 통과하게 된다.
따라서, 어느 갭을 통과하는 자속이라도 통과하는 갭은 1개가 되므로 자기저항은 동일하고 자속량이 균일하게 되어 모터의 진동이나 소음을 억제할 수 있다. 또 자속이 통과하는 갭을 1개로 했기 때문에 자속량의 감소를 최소한으로 줄일 수 있다.
또한 본 발명은 상기 외감부와 상기 제1연신부 및 상기 제2연신부가 중심 구멍을 가진 원통 형상으로 이루어져 있으며 상기 제1 연신부와 상기 제2 연신부가 상기 외감부의 중심 구멍에 삽입될 수 있다.
또한 본 발명은 상기 외감부에 의해 감싸지는 상기 제 1연신부의 길이와 상기 제 2연신부의 길이를 동일하게 할 수 있다.
이러한 경우 제1 연신부와 외감부 간에 형성되는 UV갭을 통과하는 자속밀도와 제2 연신부와 외감부 간에 형성되는 VW갭을 통과하는 자속밀도가 비슷해지므로 보다 모터의 진동이나 소음을 억제할 수 있다.
또한 본 발명의 효과가 잘 나타나는 일 실시형태로서, 클로 폴형 모터의 상기 제1 코어, 상기 제2 코어 및 상기 제3 코어가 분체상의 자성 재료를 상기 회전축 방향으로 프레스 가공하여 구성될 수 있다.
종래에는 회전축 방향으로 갭이 형성되어 있고 그 갭이 제조 오차에 의해 매우 커져 모터 특성의 열화가 초래되는 문제가 있었다. 그러나 본 발명은 일부가 지름 방향의 갭(UV갭, VW갭)으로 되어 있기 때문에 제조 오차를 줄일 수 있어 모터의 특성을 보다 향상시킬 수 있다.
본 발명의 다른 구체적인 실시예로는, 상기 제1코어는 상기 제1코어 본체에 축선 방향으로 연장되는 복수의 U상 조자극을 포함하는 U상 코어이고 상기 제2코어는 상기 제2코어 본체에 축선 방향으로 연장되는 복수의 V상 조자극을 포함하는 V상 코어이고 상기 제3코어는 상기 제3코어 본체에 축선 방향으로 연장되는 복수의 W상 조자극을 포함하는 W상 코어이고 상기 U상 코어, 상기 V상 코어 및 상기 W 코어는 상기 각 코어들을 자화시키는 U상 코일, V상 코일 및 W상 코일을 더 포함하고 상기 U상 코일은 상기 U상 코어 본체와 상기 V상 코어 본체 사이에 배치되어 있고, 상기 W상 코일은 상기 V상 코어 본체와 상기 W상 코어 본체 사이에 배치되어 있으며 상기 V상 코일은 상기 U상 코어 본체와 상기 V상 코어 본체 사이에 배치된 제1상 V상 코일 요소와 상기 V상 코어 본체와 상기 W상 코어 본체 사이에 배치되어 있는 제2상 V상 코일 요소가 직렬로 연결되어 있는 가전기기 일 수 있다.
이와 같이 함으로써 V상 코일 지름의 일부 또는 전부, 즉 제1 V상 코일 요소 및 제2 V상 코일 요소의 일부 또는 전부의 지름이 U상 코일 및 W상 코일에 비해 커지므로 제1 V상 코일 요소 및 제2 V상 코일 요소의 저항값을 작게 하여 V상 코일의 저항값을 U상 코일 및 W상 코일의 저항값에 근접하게 할 수 있다. 이처럼 U상 코일, V상 코일 및 W상 코일의 저항값이 균일하여 전압이 일정할 경우 각 상에 전류를 균등하게 흐르게 할 수 있어 토크 맥동의 발생을 줄이고 모터 회전 불안정에 의한 진동이나 소음을 방지할 수 있다.
또한 U상 코일, V상 코일 및 W상 코일의 권선을 바꾸지 않고 코일 지름만을 변경함으로써 V상 코일의 저항값을 작게 할 수 있다. 따라서, V상 코일 및 W상 코일의 수를 동일하게 하여 자속을 균일하게 통과시켜 모터 회전을 안정하게 할 수 있다.
본 발명의 다른 구체적인 실시예로는 상기 제1 V상 코일 요소가 상기 U상 코일의 외측에 배치되어 있고 상기 제2 V상 코일 요소가 상기 W상 코일의 외측에 배치될 수 있다.
2개 코일을 내외에 배치할 경우 내측의 코일의 길이는 외측의 코일의 길이에 비해 짧아진다. 따라서, 코일 저항값은 코일 길이에 비례하므로 내측에 배치되는 코일의 저항값은 외측에 배치되는 코일의 저항값에 비해 작아진다.
그러나 본 발명의 구성용소인 클로 폴형 모터는 외측에 배치되는 제1 V상 코일 요소 및 제2 V상 코일 요소의 지름을 크게 하였기 때문에 제1 V상 코일 요소 및 제2 V상 코일 요소의 저항값을 작게 하여 U상 코일 및 W상 코일의 저항값과 비슷하게 할 수 있다. 저항값이 비슷하다면 각 상에 전류가 균형 있게 흐르게 되어 모터의 회전을 안정화 할 수 있다.
상기 지름의 경우, 상기 U상 코일 또는 상기 W상 코일의 지름을 D1로 하고 상기 제1 V상 코일 요소 또는 상기 제2 V상 코일 요소의 지름을 D2로 하면 D1/D2는 1.0 이상 1.4 이하가 되는 것이 본 발명의 효율성을 극대화 할 수 있다.
본 발명의 다른 구체적인 일 양태로서는 상기 제1 V상 코일 요소 또는 상기 제2 V상 코일 요소의 권선의 수가 상기 U상 코일 또는 상기 W상 코일의 권수와 다른 것을 들 수 있다.
일반적으로 U상 코어, V상 코어, W상 코어는 분체 철심을 축방향으로 압압 가공하여 제조하고 이처럼 제조된 코어는 축방향 길이로 격차가 생기기 쉽다. 따라서 자로의 길이가 코어마다 다르거나 각 코어 간 접합 부분의 미소한 공극에 자기저항이 생겨 U상 코어, V상 코어 및 W상 코어에 제조 오차에 의한 자속 불균일이 발생할 수 있다.
이러한 자속의 불균일을 시정하기 위해서는 제1 V상 코일 요소, 제2 V상 코일 요소, U상 코일 또는 W상 코일의 권선의 수를 각각 다르게 하여 코일 저항값을 조정할 수 있다.
본 발명의 다른 구체적인 일 양태로서는 상기 제1 V상 코일 요소가 상기 U상 코일 내측에 배치되어 있고 상기 제2 V상 코일 요소가 상기 W상 코일 내측에 배치되어 있어 상기 U상 코일 및 상기 W상 코일 지름의 일부 또는 전부가 상기 V상 코일 지름에 비해 크게 설정되는 것을 들 수 있다.
상기와 같이 구성함으로써 내측에 배치되는 제1 V상 코일 요소 및 제2 V상 코일 요소의 저항값을 작게 할 수 있고 아울러 외측에 배치되는 U상 코일 및 W상 코일의 경우 코일 지름을 크게 하여 저항 값을 내릴 수 있다. 따라서 U상 코일, V상 코일, W상 코일의 저항값을 동일하게 만들어 전류를 균형 있게 흐르게 할 수 있어 모터의 회전을 안정화시킬 수 있다.
본 발명의 다른 구체적인 실시형태로서는 상기 U상 조자극, 상기 V상 조자극, 상기 W상 조자극은 이 순서대로 원주 방향으로 반복하여 나타나도록 배치되며 상기 U상 조자극, 상기 V상 조자극, 상기 W상 조자극에 대응하여 원주 방향으로 복수의 N극과 S극이 교대로 배치되어 있는 회전자를 더 포함하고 상기 U상 조자극, 상기 V상 조자극, 상기 W상 조자극을 합한 개수를 S. 상기 회전자의 자극 개수를 P라 할 경우, S와 P의 비율이 아래와 같은 식(1)이 성립하는 것을 들 수 있다.
[식 1]
S : P = 3 : 2(n+1)
(n+1) ≠ 3m 단, n, m은 정수
이것에 의해 고정자측의 U상 조자극, V상 조자극 및 W상 조자극에 대응하여 회전자측의 원주 방향으로 N극 및 S극이 배치되어 있는 2개의 자극으로 이루어진 유닛이 (n+1)개 배치될 수 있다.
1개 유닛의 원주 방향 각도는 360°이므로 U상 조자극, V상 조자극 및 W상 조자극을 합한 원주 방향 각도는 360×(n+1)이 된다. 따라서 U상 조자극, V상 조자극, W상 조자극 각각의 원주 방향 각도를 120°이상으로 할 수 있어서 코깅 토크나 쇄교자속의 왜곡을 줄여 모터의 진동이나 소음을 줄일 수 있다.
상기 기술한 비율의 바람직한 형태로서는 상기 식(1)에서 n이 1이 되는 것을 들 수 있다.
상기와 같은 구성이라면 S:P가 3:4가 되므로 U상 조자극, V상 조자극 및 W상 조자극에 대해 원주 방향으로 N극 및 S극에 착자된 2개의 자극으로 이루어진 유닛을 2개 배치할 수 있다. 따라서 U상 조자극, V상 조자극 및 W상 조자극을 합한 원주 방향 각도는 360°×2로 720°가 되고 각 조자극의 원주 방향 각도는 최대 240°가 될 수 있다. 따라서, 조자극의 원주 방향 각도를 120° 이상으로 할 수 있어 코깅 토크나 쇄교자속의 왜곡을 줄여 모터의 진동이나 소음을 줄일 수 있다.
또한, 상기 조자극의 원주 방향의 폭이 전기각으로 130°이상, 160°이하, 즉 각 조자극의 원주 방향 각도를 130°이상, 160°이하, 한층 더 바람직하게는 150°로 할 경우, 도 18에 나타낸 바와 같이 코깅 토크나 쇄교자속을 줄일 수 있어 모터의 진동이나 소음을 보다 효과적으로 줄일 수 있다.
본 발명의 일 실시예에 해당하는 클로 폴형 모터는 회전축 상에 배치되는 제1코어 본체와 상기 제 1코어 본체 중앙 부분에 상기 회전축 방향으로 연장되어 있는 제 1연신부와 상기 제 1코어 본체 외측 부분에 상기 회전축 방향으로 연장되어 있는 복수의 제 1조자극을 포함하는 제1코어와 상기 회전축 상에 배치되는 제 2코어 본체와 상기 제 2코어 본체 외측 부분에 상기 회전축 방향으로 연장되어 있는 복수의 제 2조자극을 포함하는 제 2코어와 상기 회전축 상에 배치되는 제3코어 본체와 상기 제 3코어 본체 중앙 부분에 상기 회전축 방향으로 연장되어 있는 제 2연신부와 상기 제3 코어 본체 외측 부분에 상기 회전축 방향으로 연장되어 있는 복수의 제 3조자극을 포함하는 제3코어를 포함하고 상기 제 2코어는 상기 제2코어 본체의 중앙 부분에 상기 제 1연신부와 상기 제 2연신부를 감싸는 외감부를 더 포함할 수 있다.
본 발명의 일 실시예에 해당하는 클로 폴형 모터의 제조 방법은 코어 본체와, 상기 코어 본체에 회전축 방향으로 연장하도록 결합되어 있는 복수의 조작극을 포함하는 코어를 복수 포함하는 폴형 모터의 제조 방법으로써, 상기 복수개의 조자극은 순서대로 원주 방향을 따라 반복적으로 나타나며 상기 조자극들 사이에는 금형이 배치되는 성형 공정을 포함하는 것을 특징으로 한다.
상기와 같이 구성된 클로 폴형 모터의 제조 방법에서는 인접하는 코어 본체를 회전축 선방향으로 압압한 상태에서 복수의 코어를 고정하므로 인접하는 코어가 압착되어 회전축 선방향으로 공극이 생기는 것을 방지할 수 있고 모터의 진동이나 소음을 줄일 수 있다.
또한, 인접하는 조자극의 원주 방향의 폭을 금형에 의해 복수의 코어를 일체로 성형하므로 조자극을 원주 방향으로 등간격으로 배치할 수 있어 모터 회전을 원활하게 하여 진동이나 소음을 줄일 수 있다.
본 발명의 클로 폴형 모터의 제조 방법의 다른 구체적인 일 형태로서는 상기 복수개의 코어는 상기 회전축 선상에 배치되는 U상 코어 본체와 상기 U상 코어 본체에 결합되어 있는 복수의 U상 조자극과 상기 U상 코어 본체 중앙 아래에 상기 회전축 선방향으로 결합되어 있는 제1연신부를 포함하는 U상 코어, 상기 U상 코어 본체 아래에 상기 회전축 선상에 배치되는 V상 코어 본체와 상기 V상 코어 본체에 결합되어 있는 복수의 V상 조자극을 포함하는 V상 코어, 상기 V상 코어 본체 아래에 상기 회전축 선상에 배치되는 W상 코어 본체와 상기 W상 코어 본체에 결합되어 있는 복수의 W상 조자극과 상기 W상 코어 본체 중앙 위에 상기 회전축 선방향으로 결합되어 있는 제2연신부를 포함하는 W상 코어로 이루어지며, 상기 V상 코어 본체는 상기 제1연신부와 상기 제2연신부를 감싸는 외감부를 포함하고 상기 성형 공정은 상기 제1 연신부, 상기 제2 연신부 및 상기 외감부를 수지로 고정하고 상기 제1연신부 및 상기 제2연신부의 내측의 일부 또는 전부를 수지층으로 덮는 것을 들 수 있다.
이처럼 구성할 경우 U상 코어 본체와 W상 코어 본체의 사이는 회전축 선방향으로 배치되어 U상 코어 본체와 V상 코어 본체 사이, 및 V상 코어 본체와 W상 코어 본체 사이는 원주 방향으로 배치하게 될 수 있다.
각 코어를 분체상의 자성 재료를 회전축 방향으로 프레스 가공하여 구성할 경우, 회전축 방향과는 수직 방향이 되는 원주 방향의 치수는 회전축 선방향의 치수 정도에 비해 현격히 뛰어나기 때문에 U상 코어 본체와 V상 코어 본체의 사이 및 V상 코어 본체와 W상 코어 본체 사이에는 거의 공극이 생기지 않는다. 또한U상 코어 본체와 W상 코어 본체의 사이는 코어 본체가 압착한 상태로 고정되기 때문에 그 사이에도 공극이 생기는 것을 방지할 수 있어 모터의 진동이나 소음을 줄일 수 있다.
또한 상기 기술한 구성에서는 회전축 선방향으로 배치되는 것은 U상 코어 본체와 W상 코어 본체 사이의 1개소뿐이므로 확실하게 코어 본체를 압착시킬 수 있기 때문에 제조성을 안정시킬 수 있다.
본 발명의 클로 폴형 모터의 제조 방법의 다른 구체적인 일 형태로서는 상기 성형 공정이 상기 제1 연신부의 선단면과 상기 제2 연신부의 선단면을 압착한 상태로 상기 제1 연신부, 상기 제2 연신부 및 상기 외감부를 수지로 고정함과 아울러 상기 제1 연신부 및 상기 제2 연신부의 적어도 일부 내측을 덮도록 수지층을 형성하는 것을 들 수 있다.
이처럼 구성할 경우 U상 코어 본체, V상 코어 본체 및 W상 코어 본체와 조합되는 부재, 예를 들면, U상 코어 본체, V상 코어 본체 및 W상 코어 본체의 대략 중심부에 삽입되는 베어링 등의 부재 간에 수지층을 개재시킬 수 있으므로 U상 코어 본체, V상 코어 본체 및 W상 코어 본체에서 발생하는 열이 전달되는 것을 방지할 수 있다.
또, 상기와 같은 방법을 사용하여 제조된 클로 폴형 모터도 본 발명의 또 다른 실시예이다.
본 발명의 클로 폴형 모터의 제조 방법은 코어 본체와 상기 코어 본체 주위에 회전축 선방향으로 연장하도록 설치된 복수의 조자극을 구비하는 코어를 복수 구비하는 클로 폴형 모터의 제조 방법으로써 상기 각 코어 본체를 대략 환상 형상을 이루는 부재를 동심원 형상으로 분할한 복수의 파트를 조합하여 구성하고 가장 외측에 배치되는 상기 파트의 외주 단연부에 상기 복수의 조자극을 일체적으로 유지하는 것을 특징으로 한다.
이에 의해 코어 본체를 구성하는 복수의 파트가 동심원 형상으로 분할된 것이므로 복수의 파트를 조합할 경우, 각각의 파트의 중심축을 쉽게 일치시킬 수 있는 장점이 있다. 또한 이러한 구조적 특성상, 조자극의 진원도가 저하하여 모터 회전이 왜곡되는 것을 방지할 수 있고 모터의 진동이나 소음을 저감할 수 있다.
또한 가장 외측에 배치되는 파트의 외주 단연부에 조자극이 일체로 유지되어 있으므로 이 파트가 위치 결정되면 스스로 조자극이 위치 결정되어 파트와 조자극을 각각 설치할 경우와 비교하여 쉽게 조자극을 위치를 결정할 수 있다.
또한 본 발명의 효과가 각별히 나타나 있는 실시형태로서는 적어도 상기 조자극이 분말로 이루어진 연자성 재료를 회전축 선방향으로 프레스 가공하여 구성되는 것을 들 수 있다.
즉, 각 파트를 제조할 때 프레스 가공시의 압력을 높이면 각 파트의 질량 밀도를 높일 수 있으므로 고정자 전체적으로 질량 밀도를 높인 자기저항이 적은 성능 좋은 고정자를 제조할 수 있다.
본 발명의 클로 폴형 모터 제조 방법의 구체적인 일 형태로서는 상기 조자극을 구성하는 재료가 상기 파트를 구성하는 재료와는 다른 것을 들 수 있다.
이처럼 구성할 경우 고비용의 철계 절연 입자는 조자극에만 사용하고 각 파트에는 철계 절연 입자와는 다른 재료를 사용할 수 있어 비용을 삭감할 수 있다.
본 발명의 클로 폴형 모터의 제조 방법의 다른 구체적인 일 형태로서는 상기 조자극을 구성하는 재료가 상기 파트를 구성하는 재료보다 체적 저항율이 큰 것이 사용되는 것을 들 수 있다.
모터를 작동시키면 조자극 표면에 와전류가 발생하고 이 와전류에 의해서 코어가 발열하여 에너지 손실이 생기는 와전류 손실이 생겨 모터 효율이 악화된다. 그러나 본 발명에서는 조자극을 구성하는 재료를 파트를 구성하는 재료보다 체적 저항율의 높은 재료를 사용함으로써 조자극의 전기 저항을 크게 하여 조자극 표면에 생기는 와전류를 저감시킬 수 있다.
발명의 클로 폴형 모터의 제조 방법의 다른 구체적인 일 형태로서는, 상기 조자극을 자화시키는 코일을 한층 더 구비하고 상기 복수의 파트가 제1 파트 및 상기 제1 파트의 내측에 배치되는 제2 파트로 이루어지고 상기 제2 파트의 외경이 상기 코일의 외경보다 큰 것을 들 수 있다.
이처럼 구성할 경우 예를 들면 제1 파트를 조합한 것과 제2 파트 및 코일을 조합한 것을 제조하고 제1 파트를 조합한 것 중에 제2 파트 및 코일을 조합한 것을 이용하여 클로 폴형 모터를 제조할 수 있다.
이 제조 방법의 공정수는 제1 파트와 제2 파트를 조합하여 각 코어를 각각 제조하여 각 코어 간 틈새에 코일을 배치하고 나서 이들을 고정하는 제조 방법에 비해 조립성을 향상시켜 쉽게 클로 폴형 모터를 제조할 수 있다.
본 발명의 클로 폴형 모터의 제조 방법의 다른 구체적인 일 형태로서는 상기 제1 파트가 외주에 상기 조자극을 유지하는 것으로써 상기 제2 파트가 지름 방향으로 분할된 복수의 분할 요소로 구성되는 것을 들 수 있다.
이처럼 구성할 경우 제2 파트에 설치된 지름 방향으로 분할된 3개의 분할 요소 간에 각각 전기 저항이 생겨 이 전기 저항에 의해 원주 방향으로 흐르는 와전류를 저감할 수 있다. 또, 조자극을 유지하는 제1 파트는 지름 방향으로 분할되어 있지 않기 때문에 조자극의 진원도가 저하하는 것을 방지할 수 있다.
본 발명의 클로 폴형 모터의 제조 방법의 다른 구체적인 일 형태로서는 상기 제1 파트 및 상기 제2 파트가 압입하여 고정되는 것을 들 수 있다.
이처럼 구성할 경우 제1 파트와 제2 파트와의 틈새를 제거하여 모터 특성을 향상할 수 있다.
본 발명의 클로 폴형 모터의 제조 방법의 구체적인 예로서는 상기 복수의 코어가 U상 코어 본체를 구비하는 U상 코어, V상 코어 본체를 구비하는 V상 코어 및 W상 코어 본체를 구비하는 W상 코어로 이루어지고 상기 코일은 U상 코일, V상 코일 및 W상 코일로 이루어지고 상기 U상 코일은 상기 U상 코어 본체 및 V상 코어 본체 간에 배치되어 있고 상기 W상 코일은 상기 V상 코어 본체 및 W상 코어 본체 간에 배치되어 있고 상기 V상 코일은 직렬로 접속된 제1 V상 코일 요소 및 제2 V상 코일 요소로 이루어지고 상기 제1 V상 코일 요소가 상기 U상 코어 본체 및 상기 V상 코어 본체 간에 배치됨과 아울러 상기 제2 V상 코일 요소가 상기 V상 코어 본체 및 상기 W상 코어 본체 간에 배치되는 것을 들 수 있다.
이처럼 구성할 경우 U상 코어 본체와 V상 코어 본체 간에 형성되는 공간에 U상 코일 및 제1 V상 코일 요소를 배치됨과 아울러 V상 코어 본체와 W상 코어 본체 간에 형성되는 공간에 제2 V상 코일 요소 및 W상 코일을 배치하는 것에 의해 클로 폴형 모터를 제조할 수 있으므로 실질적으로 3개의 코어 본체와 2개의 코일로 클로 폴형 모터를 제조할 수 있어 제조의 효율성을 향상시킬 수 있다.
또, 상기와 같은 방법을 이용하여 제조된 클로 폴형 모터도 본 발명의 하나이다.
본 발명에 의하면 모터의 진동이나 소음을 저감할 수 있는 클로 폴형 모터 및 이를 포함하는 가전기기를 제공할 수 있다.
도 1은 본 발명의 일 실시형태에 따른 클로 폴형 모터의 사시도이다.
도 2는 본 발명의 일 실시형태에 따른 클로 폴형 모터 회전자와 고정자를 나타내는 사시도이다.
도 3은 본 발명의 일 실시형태에 따른 회전자의 사시도이다.
도 4는 본 발명의 일 실시형태에 따른 고정자의 사시도이다.
도 5는 본 발명의 일 실시형태에 따른 고정자의 전개도이다.
도 6은 본 발명의 일 실시형태에 따른 고정자의 AA단면도이다.
도 7은 본 발명의 일 실시형태에 따른 클로 폴형 모터의 원주 방향 각도를 나타내는 평면도이다.
도 8은 본 발명의 일 실시형태에 따른 클로 폴형 모터의 제조 방법을 나타내는 단면도이다.
도 9는 본 발명의 일 실시형태에 따른 U상 코어의 제조 방법을 나타내는 사시도이다.
도 10은 본 발명의 일 실시형태에 따른 V상 코어의 제조 방법을 나타내는 사시도이다.
도 11은 본 발명의 일 실시형태에 따른 W상 코어의 제조 방법을 나타내는 사시도이다.
도 12는 본 발명의 일 실시형태에 따른 고정자의 AA단면도이다.
도 13은 종래의 클로 폴형 모터의 원주 방향 각도를 나타내는 평면도이다.
도 14는 본 발명의 일 실시형태에 따라 클로 폴형 모터를 포함하고 있는 냉장고의 내부를 나타낸 도면이다.
도 15는 본 발명의 일 실시형태에 따라 클로 폴형 모터를 포함하고 있는 공지조화기의 외관을 나타낸 도면이다.
도 16는 본 발명의 일 실시형태에 따라 클로 폴형 모터를 포함하고 있는 공지조화기의 내면을 나타낸 도면이다.
도 17의 (a)는 종래의 클로 폴형 모터에서의 교류 전류의 파형을 나타내는 그래프이고 (b)는 본 실시형태의 클로 폴형 모터에서의 교류 전류의 파형을 나타내는 그래프이다.
도 18은 본 발명의 일 실시형태에 따른 클로 폴형 모터의 토크 및 회전자의 위치를 나타내는 그래프이다.
도 19는 종래의 클로 폴형 모터의 토크 맥동 및 회전자의 위치를 나타내는 그래프이다.
도 20은 본 발명의 일 실시형태에 따른 클로 폴형 모터의 토크 맥동 및 회전자의 위치를 나타내는 그래프이다.
도 21은 본 발명의 일 실시형태에 따른 클로 폴형 모터의 코깅 토크 및 조자극의 원주 방향 각도를 나타내는 그래프이다.
본 명세서에 기재된 실시예와 도면에 도시된 구성은 개시된 발명의 바람직한 일 예이며, 본 출원의 출원 시점에 있어서 본 명세서의 실시예와 도면을 대체할 수 있는 다양한 변형 예들이 있을 수 있다.
또한, 본 명세서의 각 도면에서 제시된 동일한 참조 번호 또는 부호는 실질적으로 동일한 기능을 수행하는 부품 또는 구성 요소를 나타낸다.
또한, 본 명세서에서 사용한 용어는 실시예를 설명하기 위해 사용된 것으로, 개시된 발명을 제한 및/또는 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는다.
또한, 본 명세서에서 사용한 "제1", "제2" 등과 같이 서수를 포함하는 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되지는 않으며, 상기 용어들은 하나의 구성 요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1구성 요소는 제2구성 요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1구성 요소로 명명될 수 있다. "및/또는" 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
이하에 본 발명과 관련되는 클로 폴형 모터에 대해 도면을 통하여 상세히 알아보기로 한다.
본 실시형태에서의 클로 폴형 모터(1)는 냉장고나 에어컨 및 자동차등 다양한 분야에서 사용되는 모터로서 효율성이 좋아 많이 분야에 사용되고 있다. 본 발명의 상세한 설명의 경우 우선 클로 폴형 모터(1)에 구성 및 제조 방법에 대해 알아보고 클로 폴형 모터(1) 포함하고 있는 냉장고(100) 및 공기조화기의 실외기(200)에 대해 알아본다. 비록 냉장고(100)와 공기조화기의 실외기(200)에 한정하여 이를 설명하였지만 클로 폴형 모터(1)는 단순히 냉장고(100)와 공기조화기의 실외기(200)에만 포함 될 수 있는 것은 아니고 클로 다양한 가전기기에 포함될 수 있다.
도 1은 본 발명의 일 실시형태에 따른 클로 폴형 모터의 사시도이며 도 2는 본 발명의 일 실시형태에 따른 클로 폴형 모터 회전자와 고정자를 나타내는 사시도이다.
그리고 도 3은 본 발명의 일 실시형태에 따른 회전자의 사시도이며 도 4는 본 발명의 일 실시형태에 따른 고정자의 사시도이고 도 5는 본 발명의 일 실시형태에 따른 고정자의 전개도이다.
도 1 및 도 2에 나타낸 바와 같이 클로 폴형 모터(1)는 복수의 영구자석(18)(청구항에 기재된 자극)이 내주 방향으로 배치된 회전자(2)와 축선방향으로 연장하는 복수의 조자극(5)(5a, 5b, 5c)가 외주 방향으로 배치된 고정자(3)를 포함하고 있고 회전자(2)의 내주면과 고정자(3)의 외주면이 대면하도록 배치되어 있다. 그리고, 회전자(2)의 영구자석(18)과 고정자(3)의 조자극(5) 간에 생기는 인력 및 척력에 의해 회전자(2)가 회전되며, 회전자(2)는 그 중심에 가상적으로 설치된 회전축선에 대해 원주 방향으로 회전할 수 있다.
회전자(2)는 도 1, 도 2 및 도 3에 나타낸 바와 같이 한쪽이 열려있고 다른 쪽은 닫힌 원통 형상으로 이루어져 있으며 닫힌 일단면 중심으로는 회전자(2)를 회전시키는 회전축(4)이 삽입되어 고정될 수 있다.
또한 그 내주면에는 회전축 방향으로 연장되는 장편 형상을 이루는 복수의 영구자석(18)이 원주 방향으로 등간격 배치되어 있다. 이 복수의 영구자석(18)은 원주 방향으로 N극과 S극으로 교대로 반복하여 배치되어 있다. 그리고, 본 실시형태의 경우 N극의 영구자석(18a)과 S극의 영구자석(18b)를 합하면 영구자석(18)의 개수는 24개가 된다. 단, 이하 설명에서는 설명의 편의를 위해 원주 방향에 인접하는 N극의 영구자석(18a) 및 S극의 영구자석(18b)를 유닛(23)이라 하고 이를 이용하여 설명한다.
고정자(3)는 도 4 및 도 5에 나타낸 바와 같이 조자극(5)(5a, 5b, 5c)을 자화시키기 위한 자기회로가 되는 U상 코어(8), V상 코어(9), W상 코어(10)와 상기 각 코어들을 각각 자화시키는 U상 코일(14), V상 코일(15), W상 코일(16)을 포함할 수 있다.
U상 코어(8)는 도 5에 나타낸 바와 같이 회전축 선상에 배치된 U상 코어 본체(19)와 U상 코어 본체(19)의 주위에 설치되어 축선방향으로 연장되는 복수의 U상 조자극(5a)을 포함할 수 있다. U상 코어 본체(19)는 서로 60°씩 어긋나게 등간격으로 배치된 U상 조자극(5a)을 일체로 유지시켜 주는 링상태 부재(11a)와 링상태 부재(11a)의 한면에 링상태 부재(11a)와 동일한 축에 일체로 장착된 중심 원통형 부재(12a)를 포함할 수 있다.
중심 원통형 부재(12a)는 청구항에 개재한 제1 연신부에 해당하며 U상 조자극(5a)이 연장하는 방향과 동일한 방향을 향해 돌출되어 있을 수 있다.
V상 코어(9)는 도 5에 나타낸 바와 같이 회전축 선상으로써 U상 코어 본체(19) 아래에 배치된 V상 코어 본체(20)와 V상 코어 본체(20)의 외주에 결합되 축선방향으로 연장되는 복수의 V상 조자극(5b)을 구비할 수 있다. 이 V상 코어 본체(20)는 중심구멍을 가진 중심 원통형 부재(12b)와 중심 원통형 부재(12b)와 동일한 축선방향의 높이를 가지며 이 중심 원통형 부재(12b)의 축선방향의 중앙으로부터 방사 형상으로 연장되는 복수의 암(17)을 구비한다.
중심 원통형 부재(12b)는 청구항에 개재한 외감부에 해당하며 그 내경이 U상 코어(8)의 중심 원통형 부재(12a)의 외경과 동일할 수 있다.
암(17)은 그 선단이 V상 조자극(5b)의 연장 방향 한가운데으로 일체적으로 결합되어 있고 V상 조자극(5b)은 암(17)에 대해 선대칭을 이루듯이 축선방향 양쪽으로 연장되어 있을 수 있다.
본 실시형태의 경우 6개의 암(17)이 60° 씩 어긋나게 등간격으로 연장되어 있기 때문에 그 선단에 설치된 6개의 V상 조자극(5b)도 서로 60°씩 어긋나게 등간격으로 배치되어 있을 수 있다.
W상 코어(10)는 도 5에 나타낸 바와 같이 V상 코어 본체(20)의 아래에 배치된 W상 코어 본체(21)와 W상 코어 본체(21)의 결합되어 축선방향으로 연장되는 복수의 W상 조자극(5c)을 구비할 수 있다.
이 W상 코어 본체(21)는 서로 60°씩 어긋나게 등간격으로 배치된 W상 조자극(5c)을 일체로 유지시켜 주는 링상태 부재(11c)와 링상태 부재(11c)의 한면에 해당 링상태 부재(11c)와 동일한 축에 일체로 장착된 중심 원통형 부재(12c)를 포함할 수 있다.
중심 원통형 부재(12c)는 청구항에 개재한 제2 연신부에 해당하며 U상 코어 본체(19)를 향해서 돌출되고 W상 조자극(5c)은 중심 원통형 부재(12c)가 돌출하는 방향과 동일한 방향을 향해 연장되어 있을 수 있다. 이 방향은 U상 조자극(5a)의 연장 방향과는 반대이며, U상 코어(8)의 제1 연신부(중심 원통형 부재(12a))는 W상 코어 본체(21)를 향해 연장되어 있을 수 있다. 또, 중심 원통형 부재(12c)의 내경 및 외경은 U상 코어(8)의 중심 원통형 부재(12a)의 내경 및 외경과 각각 동일할 수 있다.
U상 코어(8), V상 코어(9), W상 코어(10)는 도 6에 나타낸 바와 같이 U상 코어 본체(19)의 중심선 및 W상 코어 본체(21)의 중심선이 회전축선과 합치하도록 중심 원통형 부재(12a)의 선단면과 중심 원통형 부재(12c)의 선단면이 서로 마주 보고 있으며 이들은 근접해 있거나 서로 붙어 있을 수 있다.
또한 V상 코어 본체(20)의 중심선이 회전축선과 합치하도록 중심 원통형 부재(12a)와 중심 원통형 부재(12c)의 선단부가 중심 원통형 부재(12b)의 중심구멍에 간극이 존재하지 않도록 붙어 있을 수 있다. 그리고, 이 상태에서 U상 코어(8), V상 코어(9), W상 코어(10)가 수지등에 의해 고정되어 있을 수 있다.
이 상태에서 도 6에 나타낸 바와 같이 중심 원통형 부재(12a)의 선단면과 중심 원통형 부재(12c)의 선단면 간에 UW갭(G1)이 형성될 수 있다. 또한 중심 원통형 부재(12b)의 선단면과 중심 원통형 부재(12a)의 외주면 사이에는 UV갭(G2)이 형성됨과 아울러 중심 원통형 부재(12b)의 선단면과 중심 원통형 부재(12c)의 외주면 사이에는 VW갭(G3)이 형성될 수 있다.
이때 중심 원통형 부재(12a)의 선단부와 중심 원통형 부재(12c)는 중심 원통형 부재(12b)에 감싸질 수 있는데 이 때 감싸지는 중심 원통형 부재(12a)의 깊이와 중심 원통형 부재(12b)의 깊이는 동일하도록 구성될 수 있다. 이러한 구성을 이용하면, UV갭(G2)을 통과하는 자속밀도와 VW갭(G3)을 통과하는 자속밀도를 동일하게 할 수 있으므로 더욱 균일화한 자속량에 의해 모터의 진동이나 소음을 억제할 수 있다.
UV갭(G2), UW갭(G1), VW갭(G3)의 폭은 0인 것이 바람직하나 폭이 0이 아닌 경우, UV갭(G2) 및 VW갭(G3) 폭의 오차 범위는 UW갭(G1) 폭의 오차 범위에 비해 크게 작아질 수 있다.
이것은 U상 코어(8), V상 코어(9), W상 코어(10)가 분체상의 자성 재료를 회전축 방향으로 프레스 가공하여 구성되므로 회전축 방향의 치수 정도가 래디얼 방향에 비해 나쁘고 래디얼 방향의 UV갭(G2) 및 VW갭(G3)에 비해 회전축 방향의 UW갭(G1)의 제조 오차가 커지기 때문이다.
이처럼 조합된 U상 조자극(5a), V상 조자극(5b), W상 조자극(5c)이 상기 순서대로 서로 20° 어긋나게 원주 방향으로 반복하여 나타날 수 있다. 그리고, 본 실시형태에서는 U상 조자극(5a), V상 조자극(5b) 및 W상 조자극(5c)을 합한 조자극(5)의 개수는 18개가 된다.
상기와 같이 구성된 회전자(2), 고정자(3)에서는 회전자(2)의 영구자석(18)의 개수를 P, 고정자(3)의 U상 조자극(5a), V상 조자극(5b), W상 조자극(5c)을 합한 개수를 S로 할 경우, 이하의 식(1)이 성립할 수 있다.
[식 1]
S:P=3:2(n+1) … (1)
(n+1)3m n, m은 정수
더욱 구체적으로는 상기와 같이 S가 18, P가 24 이므로 S:P=3:4의 관계가 성립한다.
따라서 본 실시형태의 클로 폴형 모터(1)에서는 고정자(3)측의 U상 조자극(5a), V상 조자극(5b), W상 조자극(5c)에 대응하여 회전자(2)측의2개의 영구자석(18a, 18b)로 이루어진 유닛(23)이 2개 배치되어 있을 수 있다.
이 관계를 원주 방향의 원주 방향 각도로 나타내면 N극에 착자된 영구자석(18a) 및 S극에 착자된 영구자석(18b)의 원주 방향 각도는 각각 180°이므로 1 유닛(23)의 원주 방향 각도는 360°가 될 수 있다.
또한, 도 7에 나타낸 바와 같이 2개의 유닛(23)에 대응하는 U상 조자극(5a), V상 조자극(5b), W상 조자극(5c)을 합한 원주 방향 각도는 360×2로 720°가 될 수 있다. 따라서, 각 조자극(5)의 원주 방향 각도는 720°을 3으로 나눈 240°가 되고 각 조자극(5)의 원주 방향 각도는 최대 240°가 될 수 있다.
본 실시형태에서는 U상 조자극(5a), V상 조자극(5b), W상 조자극(5c)의 원주 방향 각도를 130°이상, 160°이하가 되는 것이 바람직하며 한층 더 바람직하게는 150°가 되는 것이 본 발명의 효율성이 좋아 진다.
U상 코일(14)은 절연체로 이루어진 제1 보빈(7a)에 소정 지름을 가진 선체를 권회하여 구성될 수 있다. 이 제1 보빈(7a)은 그 중심선과 회전축선이 일치하도록 U상 코어 본체(19) 및 V상 코어 본체(20) 간에 형성되는 공간(S1)에 배치되어 있을 수 있다. 단, 이 공간(S1)은 수지에 의해 봉지되어 있을 수 있다.
W상 코일(16)은 절연체로 이루어진 제2 보빈(7b)에 소정 지름을 가진 선체를 권회하여 구성될 수 있다. 이 제2 보빈(7b)은 그 중심선과 회전축선이 일치하도록 V상 코어 본체(20) 및 W상 코어 본체(21) 간에 형성되는 공간(S2)에 배치되어 있을 수 있다. 단, 이 공간(S2)은 수지에 의해 봉지되어 있을 수 있다.
V상 코일(15)은 도 6에 나타낸 바와 같이 직렬로 접속된 제1 V상 코일 요소(15a) 및 제2 V상 코일 요소(15b)로 이루어질 수 있다.
제1 V상 코일 요소(15a)는 절연체로 이루어진 제1 보빈(7a)에 소정 지름을 가진 선체를 권회하여 구성될 수 있으며, 이 제1 보빈(7a)은 상기와 같이 그 중심선과 회전축선이 일치하도록 공간(S1)에 배치되어 있을 수 있다.
제2 V상 코일 요소(15b)는 절연체로 이루어진 제2 보빈(7b)에 소정 지름을 가진 선체를 권회하여 구성될 수 있으며 이 제2 보빈(7b)은 상기와 같이 그 중심선과 회전축선이 일치하도록 공간(S2)에 배치되어 있을 수 있다.
이때 공간(S1)에는 외측에 제1 V상 코일 요소(15a), 내측에 U상 코일(14)가 배치됨과 아울러 공간(S2)에는 외측에 제2 V상 코일 요소(15b), 내측에 W상 코일(16)이 배치될 수 있다. 단, 본 발명의 실시형태에서는 U상 코일(14), 제1 V상 코일 요소(15a), 제2 V상 코일 요소(15b), W상 코일(16)의 권수는 동일한 것으로 가정한다..
또, U상 코일(14)의 권회방향을 정으로 하면 제1 V상 코일 요소(15a)의 권회방향은 정, 제2 V상 코일 요소(15b)의 권회방향은 부, W상 코일(16)의 권회방향은 부가 되도록 권회되어 있을 수 있고 이들 코일은 서로 미도시된 권선 마지막 단자에 접속되어 있을 수 있다.
그리고, 제1 V상 코일 요소(15a) 및 제2 V상 코일 요소(15b)의 지름은 도 6에 나타낸 바와 같이 U상 코일(14) 및 W상 코일(16)의 지름에 비해 커지도록 구성될 수 있다.
여기서, 코일 저항값을 R[Ω], 코일 지름을 D[mm], 코일 길이를 L[mm], 코일을 구성하는 금속의 저항율을 a로 하면 이하의 관계식(2)이 성립될 수 있다.
R=aL/D2 …(2)
즉, 상기 식(2)를 보면, 코일 지름이 커진 만큼 코일 저항값이 작아지고 또 코일 권수가 증가하거나 혹은 코일의 원둘레가 길어짐에 따라 코일 저항값이 커진다는 것을 알 수 있다.
지금까지 클로 폴형 모터(1)의 구성 요소에 대해 알아보았다. 이하 클로 폴형 모터의 제조 방법에 대해 알아본다.
도 8은 본 발명의 일 실시형태에 따른 클로 폴형 모터의 제조 방법을 나타내는 도면이며 도 9는 본 발명의 일 실시형태에 따른 U상 코어의 제조 방법을 나타내는 도면이다.
도 10은 본 발명의 일 실시형태에 따른 V상 코어의 제조 방법을 나타내는 도면이며 도 11은 본 발명의 일 실시형태에 따른 W상 코어의 제조 방법을 나타내는 도면이다.
U상 코어(8), V상 코어(9), W상 코어(10)을 각각 예를 들면 분체상의 연자성 재료를 회전축 방향으로 프레스 가공하여 제조하는 코어 제조 공정을 실시한다. 단, 프레스 가공 재료는 강판 등이 사용될 수 있다.
다음으로 U상 코어 본체(19) 및 W상 코어 본체(21)의 중심선이 회전축선과 합치하도록 중심 원통형 부재(12a)의 선단면과 중심 원통형 부재(12c)의 선단면을 서로 마주보도록 배치함과 아울러 중심 원통형 부재(12b)의 중심구멍에 중심 원통형 부재(12a) 및 중심 원통형 부재(12c)의 선단부를 거의 간극 없이 붙이고 U상 코어(8)와 W상 코어(10) 간에 V상 코어(9)를 배치한다.
이때 U상 코일(14) 및 제1 V상 코일 요소(15a)를 U상 코어 본체(19)와 V상 코어 본체(20) 사이에 형성된 공간(S1)에 배치하고 제2 V상 코일 요소(15b) 및 W상 코일(16)을 V상 코어 본체(20)와 W상 코어 본체(21) 사이에 형성된 공간(S2)에 배치할 수 있다. 이처럼 배치한 U상 코어(8), V상 코어(9), W상 코어(10), U상 코일(14), V상 코일(15) 및 W상 코일(16)을 합해서 고정자 형성 부재(30)라 부른다.
마지막으로 도 8에 나타낸 바와 같이 고정자 형성 부재(30)를 상부 금형(31) 및 하부 금형(32)에 의해 회전축 방향으로 끼우듯이 배치할 수 있다.
상부 금형(31) 및 하부 금형(32)에는 내부에 고정자 형성 부재(30)를 수용하는 오목부가 설치될 수 있다.
상부 금형(31)은 오목부가 설치된 개구단이 하부 금형(32)의 오목부가 설치된 개구단과 접하는 것으로써 그 상면에는 도 8에 나타낸 바와 같이 수지를 주입하기 위한 주입용 홀부(37)가 복수개 설치될 수 있고 아울러 삽입 핀(38)을 삽입하는 삽입 핀용 홀(40)이 설치되어 있을 수 있다.
하부 금형(32)은 도 8에 나타낸 바와 같이 고정자 형성 부재(30)를 위치 결정하기 위한 위치 결정 볼록부(39)가 설치되어 있을 수 있고 이 위치 결정 볼록부(39)는 기계각으로 20°씩 어긋나게 원주 방향으로 배치될 수 있다.
그리고, 하부 금형(32)의 오목부에 고정자 형성 부재(30)를 감합한 상태로 하부 금형(32)의 오목부가 설치된 개구단과 상부 금형(31)의 오목부가 설치된 개구단을 일치시키고 상부 금형(31) 및 하부 금형(32)의 내부에 고정자 형성 부재(30)를 수용할 수 있다.
이때 하부 금형(32)에 설치된 위치 결정 볼록부(39)와 고정자 형성 부재(30)의 U상 조자극(5a), V상 조자극(5b), W상 조자극(5c)이 각각 접할 수 있다.
그리고, 상부 금형(31)에 설치된 삽입 핀용 홀(40)에 삽입 핀(38)을 삽입하고 이 삽입 핀(38)에 의해 고정자 형성 부재(30)를 하부 금형(32)에 눌러 삽입하면서 상부 금형(31)에 설치된 주입용 홀부(37)로부터 수지를 주입하여 고정자 형성 부재(30)를 고정하는 성형 공정을 실시할 수 있다.
이때 삽입 핀(38)은 U상 코어(8)의 중심 원통형 부재(12a)를 압력을 가한다. 상기 과정에 의해 회전축 방향의 하중에 대해 제일 강도가 강한 U상 코어(8)의 중심 원통형 부재(12a)의 선단면과 W상 코어(10)의 중심 원통형 부재(12c)의 선단면이 서로 맞물려 이들이 간극 없이 접촉할 수 있다.
따라서, 중심 원통형 부재(12a)의 선단면과 중심 원통형 부재(12c)의 선단면이 압착된 상태로 수지에 의해 고정될 수 있다.
또, 하부 금형(32)에 설치된 위치 결정 볼록부(39)에 의해 U상 조자극(5a), V상 조자극(5b), W상 조자극(5c)이 상기 위치로 위치 결정되어 고정될 수 있다.
이 경우 중심 원통형 부재(12a) 내면의 적어도 일부 및 중심 원통형 부재(12c) 내면의 적어도 일부에 수지층이 형성되도록 구성할 수 있다. 그렇게 함으로써 중심 원통형 부재(12a) 및 중심 원통형 부재(12c) 내에 삽입되는 베어링 등의 부재가 수지층을 통해 접촉하게 되므로 고정자(3)에서 발생하는 열이 베어링 등의 부재에 전열되는 것을 방지할 수 있다.
또, 다음과 같이 하여 클로 폴형 모터를 제조할 수도 있다.
즉, U상 코어 본체(19)를 도 9에 나타낸 바와 같이 제1 U상파트(41) 및 제2 U상파트(42)로 구성한다. 이 제1 U상파트(41) 및 제2 U상파트(42)는 대략 원 형상을 이루는 부재를 동심원 형상 2개로 분할하여 구성할 수 있다.
제1 U상파트(41)는 도 9에 나타낸 바와 같이 제2 U상파트(42)의 외측에 배치되고 그 외측에는 원주 방향 등간격으로 배치된 복수의 U상 조자극(5a)을 포함할 수 있다.
제2 U상파트(42)는 도 9에 나타낸 바와 같이 제1 U상파트(41)의 내측에 거의 간극 없이 붙으며, 그 내면에는 원통형 부재가 설치될 수 있다.
또한 제2 U상파트(42)의 외경은 상기 기술한 U상 코일(14), V상 코일(15)(제1 V상 코일 요소(15a) 및 제2 V상 코일 요소(15b)), W상 코일(16)의 외경보다 클 수 있다. 그리고 제2 U상파트(42)는 120° 간격으로 지름 방향으로 분할된 3개의 분할 요소를 원주 방향으로 배치될 수 있다.
V상 코어 본체(20)를 도 10에 나타낸 바와 같이 제1 V상파트(43) 및 제1 V상파트(43)의 내측에 배치되는 제2 V상파트(44)로 구성될 수 있다. 제1 V상파트(43) 및 제2 V상파트(44)는 원판상을 이루는 부분을 동심원 형상으로 분할하여 구성될 수 있다.
제1 V상파트(43)는 도 10에 나타낸 바와 같이 제2 V상파트(44)의 외측에 배치되고 링 형상을 이루는 본체 부분과 이 본체 부분에서 방사 형상으로 연장되는 복수의 암(17)과 암(17)의 선단에 그 회전축 방향의 중앙 부분에 일체적으로 유지된 복수의 V상 조자극(5b)을 구비할 수 있다.
제2 V상파트(44)는 도 10에 나타낸 바와 같이 제1 V상파트(43)의 내측에 거의 간극 없이 붙어있는 링 형상을 이루는 본체 부분과 이 본체 부분의 내면에 회전축의 중앙 부분에 일체적으로 접속된 원통형 부재를 구비할 수 있다.
또한 제2 V상파트(44)의 외경은 상기 기술한 U상 코일(14), V상 코일(15)(제1 V상 코일 요소(15a) 및 제2 V상 코일 요소(15b)), W상 코일(16)의 외경보다 클 수 있다. 그리고 제2 V상파트(44)는 120°의 위치에서 지름 방향으로 분할된 3개의 분할 요소를 원주 방향으로 배치될 수 있다.
W상 코어 본체(21)를 도 11에 나타낸 바와 같이 제1 W상파트(45) 및 제2 W상파트(46)으로 구성될 수 있다. 이 제1 W상파트(45) 및 제2 W상파트(46)는 대략 원형상을 이루는 부재를 동심원 형상으로 2개로 분할되어 구성 될 수 있다.
제1 W상파트(45)는 도 11에 나타낸 바와 같이 제2 W상파트(46)의 외측에 배치되고 그 외측에는 원주 방향으로 등간격으로 배치된 복수의 W상 조자극(5c)을 구비할 수 있다.
제2 W상파트(46)는 도 11에 나타낸 바와 같이 제1 W상파트(45)의 내측에 거의 간극 없이 붙어 있는 것으로써 그 내면에 원통형 부재가 설치될 수 있다. 또한 제2 W상파트(46)의 외경은 상기 기술한 U상 코일(14), V상 코일(15)(제1 V상 코일 요소(15a) 및 제2 V상 코일 요소(15b)), W상 코일(16)의 외경보다 클 수 있다. 그리고 제2 W상파트(46)는 120° 위치에서 지름 방향으로 분할된 3개의 분할 요소를 원주 방향으로 배치되어 구성 될 수 있다.
상기 기술한 제1 U상파트(41) 및 제2 U상파트(42), 제1 V상파트(43) 및 제2 V상파트(44), 제1 W상파트(45) 및 제2 W상파트(46)는 분말상의 연자성 재료를 회전축 방향으로 프레스 가공하여 구성될 수 있다.
또한 제1 U상파트(41), 제1 V상파트(43), 제1 W상파트(45)에 각각 일체적으로 유지되는 U상 조자극(5a), V상 조자극(5b), W상 조자극(5c)은 제1 U상파트(41), 제1 V상파트(43), 제1 W상파트(45)를 프레스 가공할 때에 동시에 제조될 수 있다.
이때 제1 U상파트(41) 및 제2 U상파트(42)와 제1 V상파트(43) 및 제2 V상파트(44)와 제1 W상파트(45) 및 제2 W상파트(46)을 이루는 재료는 U상 조자극(5a), V상 조자극(5b), W상 조자극(5c)을 이루는 재료와는 다른 것이 사용될 수 있다.
더욱 구체적으로는 U상 조자극(5a), V상 조자극(5b), W상 조자극(5c)을 이루는 재료는 제2 U상파트(42), 제2 V상파트(44), 제2 W상파트(46)을 이루는 재료보다 체적 저항율이 큰 것을 사용할 수 있다.
상기와 같이 구성한 제1 U상파트(41), 제1 V상파트(43), 제1 W상파트(45)의 중심축 선을 회전축 선에 일치시킨 상태로 상기 기술한 순서로 이들 파트를 회전축 선방향으로 조합하여 이들을 수지로 고정한 제1 파트 집합체를 제조할 수 있다.
이때 제1 U상파트(41), 제1 V상파트(43), 제1 W상파트(45)는 각각 U상 조자극(5a), V상 조자극(5b), W상 조자극(5c)을 구비하고 있기 때문에 제1 U상파트(41), 제1 V상파트(43), 제1 W상파트(45)를 고정함으로써 U상 조자극(5a), V상 조자극(5b), W상 조자극(5c)의 위치도 결정될 수 있다.
그리고, 제1 파트 집합체의 외측에는 U상 조자극(5a), V상 조자극(5b), W상 조자극(5c)이 상기 순서로 등간격으로 원주 방향으로 반복하여 나타날 수 있다. 또한 제1 파트 집합체 내측에는 대략 원통 형상의 구멍이 형성되어 있을 수 있다.
다음으로 제2 U상파트(42)와 제2 V상파트(44) 간에 U상 코일(14) 및 제1 V상 코일 요소(15a)를 배치한 상태로 이들 중심축선이 일치하도록 회전축 선방향으로 조합하여 고정한 제1 내측 유닛을 제조할 수 있다.
제2 U상파트(42) 및 제2 V상파트(44)의 외경은 U상 코일(14), V상 코일(15)(제1 V상 코일 요소(15a) 및 제2 V상 코일 요소(15b)), W상 코일(16)의 외경보다 크고 U상 코일(14) 및 제1 V상 코일 요소(15a)는 제2 U상파트(42)와 제2 V상파트(44) 사이에서 이탈되지 않고 수용될 수 있다.
또, 제2 W상파트(46)의 회전축 방향 상측에 제2 V상 코일 요소(15b), W상 코일(16)을 배치한 상태로 이들 중심축선이 일치하도록 고정한 제2 내측 유닛을 제조할 수 있다. 이 경우에도 상기와 같이 제2 W상파트(46)의 외경은 U상 코일(14), V상 코일(15)(제1 V상 코일 요소(15a) 및 제2 V상 코일 요소(15b)), W상 코일(16)의 외경보다 커서 제2 V상 코일 요소(15b) 및 W상 코일(16)은 제2 W상파트(46)에서 이탈되지 않고 수용될 수 있다.
마지막으로 제1 파트 집합체의 내측에 형성된 대략 원통 형상의 구멍에 제2 내측 유닛 및, 제2 내측 유닛의 회전축 선방향의 상측에 제1 내측 유닛을 배치하여 이들을 수지로 고정할 수 있다.
지금까지 클로 폴형 모터(1)와 클로 폴형 모터(1)의 제조 방법에 대해 알아보았다. 이하 상기 클로 폴형 모터의 동작 순서에 대해 알아본다.
우선, W상 코일(16)에 전압이 인가되면 이 인가 전압과 W상 코일(16)에 생긴 전압의 차이와 W상 코일(16)의 저항에 의해 전류가 흐르고 이에 의해서 자속이 발생한다. 이 자속은 W상 코어 본체(21)로부터 W상 조자극(5c)을 향하고 W상 조자극(5c)을 N극으로 자화시킴과 동시에 V상 조자극(5b) 및 U상 조자극(5a)을 S극으로 자화시킬 수 있다.
다음으로 U상 코일(14)에 전압이 인가되면 이 인가 전압과 U상 코일(14)에 발생한 전압의 차이와 U상 코일(14)의 저항에 의해 전류가 흐르고 자속이 발생한다. 여기서 W상 코일(16)과 U상 코일(14)은 코일의 권회 방향이 반대로 되어 있어 이 자속은 U상 코어 본체(19)로부터 U상 조자극(5a)을 향하게 된다. 그리고 U상 조자극(5a)을 N극으로 자화시킴과 동시에 아울러 V상 조자극(5b) 및 W상 조자극(5c)을 S극으로 자화시킬 수 있다.
마지막으로 V상 코일(15), 즉 제1 V상 코일 요소(15a) 및 제2 V상 코일 요소(15b)에 전압이 인가되면 제1 V상 코일 요소(15a)에서는 이 인가 전압과 제1 V상 코일 요소(15a)에 발생한 전압의 차이와 제1 V상 코일 요소(15a)의 저항에 의해 전류가 흐를 수 있다. 아울러 제2 V상 코일 요소(15b)에서는 이 인가 전압과 제2 V상 코일 요소(15b)에 발생한 전압의 차이와 제2 V상 코일 요소(15b)의 저항에 의해 전류가 흐를 수 있다.
이때 제1 V상 코일 요소(15a)에 흐르는 전류에 의해 발생한 자속은 U상 코어 본체(19)로부터 V상 코어 본체(20) 또는 W상 코어 본체(21)를 향한다. 그리고 이러한 자속은 V상 조자극(5b)과 W상 조자극(5c)을 N극으로 자화시키고 동시에 U상 조자극(5a)을 S극으로 자화시킬 수 있다.
한편 제2 V상 코일 요소(15b)에 흐르는 전류에 의해 발생한 자속은 W상 코어 본체(21)로부터 V상 코어 본체(20) 또는 U상 코어 본체(19)를 향하고 V상 조자극(5b)과 U상 조자극(5a)을 N극으로 자화시킴과 동시에 W상 조자극(5c)을 S극으로 자화시킬 수 있다.
따라서, 이러한 자속을 더하면 V상 코어(9)의 조자극(5)이 N극으로 자화시킴과 동시에 U상 코어(8)의 조자극(5) 및 W상 코어(10)의 조자극(5)이 S극으로 자화시킬 수 있다.
상기와 같은 W상 코일(16), U상 코일(14), V상 코일(15)에 순차적으로 전압이 인가됨으로써 조자극(5)을 자화시키는 자극이 변화하고 고정자(3)측의 조자극(5)과 회전자(2)측의 영구자석(18) 간에 발생하는 인력 및 척력에 의해 회전자(2)가 회전할 수 있다.
이때 U상 코어 본체(19)와 V상 코어 본체(20) 간을 통과하는 자속은 UV갭(G2)을 통과하고 V상 코어 본체(20)와 W상 코어 본체(21) 간을 통과하는 자속은 VW갭(G3)을 통과하고 U상 코어 본체(19)와 W상 코어 본체(21) 간을 통과하는 자속은 UW갭(G1)을 통과할 수 있다. 즉, 어느 코어 본체 사이를 통과하는 자속이라도 자속이 통과하는 갭은 1개가 될 수 있다..
또, W상 코일(16)의 인가 전압, U상 코일(14)의 인가 전압, V상 코일(15)의 인가 전압은 모두 동일하고 W상 코일(16), U상 코일(14), V상 코일(15)에 발생한 야기 전압은 거의 동일하므로 W상 코일(16), U상 코일(14), V상 코일(15)에서 인가 전압으로부터 야기 전압을 받은 전압은 거의 일정하게 될 수 있다.
그리고, V상 코일(15)의 지름, 즉 제1 V상 코일 요소(15a) 및 제2 V상 코일 요소(15b)의 지름을 W상 코일(16)의 지름 및 U상 코일(14)의 지름보다 굵기 때문에 U상 코일(14)의 저항값, V상 코일(15)의 저항값, W상 코일(16)의 저항값은 거의 균일하게 될 수 있다.
따라서 W상 코일(16)에 의해 흐르는 전류와, U상 코일(14)에 의해 흐르는 전류 및 V상 코일(15)에 의해 흐름 전류의 양이 거의 동일해져 각 코어에 전류가 균형 있게 흐를 수 있다.
또한 고정자(3)측의 U상 조자극(5a), V상 조자극(5b), W상 조자극(5c)에 대해, 회전자(2)측의 영구자석(18)의 유닛(23) 2개가 대응되므로 U상 조자극(5a), V상 조자극(5b), W상 조자극(5c)의 원주 방향 각도를 최대 240°까지 크게 할 수 있다. 본 실시형태에서는 이 원주 방향 각도를 150°로 하므로 도 8에 나타낸 바와 같이 코깅 토크 및 쇄교자속의 왜곡이 저감할 수 있다.
이처럼 구성한 본 실시형태의 클로 폴형 모터는 다음과 같은 각별한 효과를 갖는다.
즉, 상기와 같이 어느 코어 본체 간을 통과하는 자속이라도 통과하는 갭은 1개가 되므로 자기 저항이 동일해지고 자속량이 균일하게 되어 모터의 진동이나 소음을 억제할 수 있다. 또 자속이 통과하는 갭을 1개로 했으므로 자속량의 감소를 최소한으로 억제할 수 있다.
각 코어에 전류를 균형 있게 흘릴 수 있어 토크 맥동의 발생을 저감하고 모터 회전을 불안정하게 하는 진동이나 소음을 방지할 수 있다.
또한 U상 코일(14), V상 코일(15) 및 W상 코일(16)의 권수를 변경함이 없이 코일지름을 바꾸는 것만으로 V상 코일(15)의 저항값을 작게 할 수 있으므로 U상 코일(14), V상 코일(15) 및 W상 코일(16)의 권수를 동일하게 하여 자속을 균일화하고 모터 회전을 안정화할 수 있다.
또, 본 실시형태에서는 U상 코일(14), 제1 V상 코일 요소(15a), 제2 V상 코일 요소(15b), W상 코일(16)의 권수를 동일하게 하였으나 이 권수를 다르게 할 수도 있다. 이처럼 구성할 경우 U상 코어(8), V상 코어(9), W상 코어(10)에 축방향의 제조 오차가 생기는 경우라도 코일마다 권수를 바꾸어 코일의 저항값을 조정할 수 있으므로 제조 오차에 의해 U상 코어(8), V상 코어(9) 및 W상 코어(10)에 발생하는 자속의 불균일을 해소할 수 있다.
고정자(3)측의 U상 조자극(5a), V상 조자극(5b), W상 조자극(5c)를 합한 개수(P)와 회전자(2)측의 N극에 착자된 영구자석(18a) 및 S극에 착자된 영구자석(18b)를 합한 개수(S)란 S:P가 3:2(n+1)가 된다. 따라서, 고정자(3)측의 U상 조자극(5a), V상 조자극(5b) 및 W상 조자극(5c) 즉, 3개의 조자극(5)은 회전자(2)측의 원주 방향으로 N극 및 S극에 착자된 2개의 영구자석(18a, 18b)으로 이루어진 유닛(23)이 (n+1)에 대응되도록 배친된다.
1 유닛(23)의 원주 방향 각도는 360°이므로 U상 조자극(5a), V상 조자극(5b) 및 W상 조자극(5c)를 합한 원주 방향 각도는 360×(n+1)이 된다. 따라서 각 조자극(5)의 원주 방향 각도를 120° 이상으로 할 수 있으므로 코깅 토크나 쇄교자속의 왜곡을 줄이고 모터의 진동이나 소음을 줄일 수 있다.
이때 본 실시형태에서는 식(1)에서 n를 1으로 한 값, 즉, S:P를 3:4로 함으로써 상기와 같이 U상 조자극(5a), V상 조자극(5b), W상 조자극(5c)의 원주 방향 각도를 최대 240°까지 크게 할 수 있다. 여기서 U상 조자극(5a), V상 조자극(5b), W상 조자극(5c)의 원주 방향 각도를 150°로 하여 도 18에 나타낸 바와 같이 코깅 토크 및 쇄교자속의 왜곡을 줄일 수 있다.
상기 기술한 클로 폴형 모터의 제조 방법에서 회전축선방향으로 인접하게 배치되는 U상 코어 본체(19)와 W상 코어 본체(21)의 중심 원통형 부재(12a)의 선단면과 중심 원통형 부재(12c)의 선단면이 서로 압압한 상태로 고정되므로 중심 원통형 부재(12a)의 선단면과 중심 원통형 부재(12c)의 선단면이 압착되어 그 사이에 공극이 발생하는 것을 방지할 수 있다. 따라서 그만큼 모터의 진동이나 소음을 줄일 수 있다.
또, 하부 금형(32)에 설치된 위치 결정 볼록부(39)에 의해 인접하는 조자극(5) 간의 원주 방향의 폭이 고정도 위치 결정되므로 조자극(5)을 원주 방향 등간격으로 배치하여 모터 회전을 원활하게 하여 진동이나 소음을 줄일 수 있다.
각 코어가 분체상의 자성 재료를 회전축 선방향으로 프레스 가공하여 구성된 경우, 회전축 선방향과는 수직인 방향이 되는 원주 방향의 치수 정도는 회전축 선방향의 치수 정도에 비해 매우 양호하기 때문에 U상 코어 본체(19)와 V상 코어 본체(20)의 사이, 및 V상 코어 본체(20)와 W상 코어 본체(21)의 사이에는 거의 공극이 발생하지 않는다. 또한 U상 코어 본체(19)와 W상 코어 본체(21)의 사이에는 코어 본체가 압착한 상태로 고정되어 있어 그 사이에도 공극이 발생하는 것을 방지할 수 있다. 따라서 모터의 진동이나 소음을 줄여 모터의 효율을 향상할 수 있다.
또, 클로 폴형 모터의 제조함에 있어서, 각 코어 본체를 구성하는 복수의 파트가 동심원 형상으로 분할되어 있으므로 이들 복수의 파트를 조합하여 고정자(3)를 제조할 경우에 각각 파트의 중심축을 쉽게 일치시킬 수 있다.
따라서, 조자극(5)의 진원도가 저하하여 모터 회전이 왜곡되는 것을 방지할 수 있어 모터의 진동이나 소음을 저감할 수 있다. 또, 가장 외측에 배치된 제1 파트의 외주 단연부에 조자극(5)이 일체로 유지되어 있으므로 이 제1 파트가 위치 결정되면 스스로 조자극(5)의 위치가 결정되고 파트와 조자극(5)을 각각 설치할 때와 비교하여 쉽게 조자극(5)의 위치를 결정할 수 있다.
조자극(5)을 구성하는 재료는 파트(41, 42, 43, 44, 45, 46)를 구성하는 재료와 상이하므로 비용이 드는 철계 절연 입자를 조자극(5)에만 사용하고 파트(41, 42, 43, 44, 45, 46)에는 철계 절연 입자와는 다른 재료를 사용하기 때문에 비용을 삭감할 수 있다.
또한 조자극(5)을 구성하는 재료는 제2 파트(42, 44, 46)를 구성하는 재료보다 체적 저항율이 높은 것을 이용하므로 조자극(5)의 전기 저항을 크게 하여 조자극(5) 표면에 발생하는 와전류를 저감시킬 수 있다.
또한 제2 파트(42, 44, 46)는 지름 방향으로 분할된 3개의 분할 요소를 원주 방향으로 배치되어 구성되어 있으므로 이들 분할 요소 간에 각각 전기 저항이 발생하고 이 전기 저항에 의해 원주 방향으로 흐르는 와전류를 저감할 수 있는 효과도 있다.
추가로 제2 파트(42, 44, 46) 외경은 U상 코일(14), V상 코일(15)(제1 V상 코일 요소(15a) 및 제2 V상 코일 요소(15b)), W상 코일(16)의 외경보다 커서 제1 파트 집합체를 제조한 후에 제1 내측 유닛, 제2 내측 유닛을 수용하여 고정자(3)를 제조할 수 있다. 이처럼 구성함으로써 조립성을 향상시킬 수 있다.
지금까지 특정 실시 형태를 기준으로 본 발명을 설명하였으나 본 발명은 상기 실시형태에 의해 한정되지 않고 이와 동등하거나 유사한 실시형태에 의해서도 제조 될 수 있다.
상기 실시형태에서는 고정자를 U상 코어, V상 코어, W상 코어, U상 코일, V상 코일 및 W상 코일을 이용해 구성하였으나 이 구성에 한정되지 않으며 3개 코어를 사용하여 구성된 고정자라면 어떤 것이라도 상관없다.
또, 상기 실시형태에서는 청구항에 기재한 제1 코어가 U상 코어, 청구항에 기재한 제2 코어가 V상 코어, 청구항에 기재한 제3 코어가 W상 코어에 해당하나 이에 한정되지 않으며 제1 코어, 제2 코어, 제3 코어가 U상 코어, V상 코어, W상 코어의 어느 것에 해당할 수도 있다.
상기 실시형태에서는 청구항에 기재된 외감부가 중심 원통형 부재이었으나, 이 형상에 한정되지 않는다. 예를 들면 암의 일단면을 외감부로 할 수도 있다. 이 경우 방사 형상에 수속하여 배치되는 암의 일단면이 U상 코어 및 W상 코어의 중심 원통형 부재의 외주면과 근접 또는 당접하여 배치되는 구성일 수도 있다.
상기와 같은 실시형태에서는 U상 코어 본체의 중심 원통형 부재의 선단부가 V상 코어 본체의 중심 원통형 부재에 끼워 있는 회전축 선방향의 깊이와 W상 코어 본체의 중심 원통형 부재의 선단부가 V상 코어 본체의 중심 원통형 부재에 끼워 있는 회전축 선방향의 깊이가 동일하도록 구성되어 있으나 이에 한정되는 것은 아니다.
예를 들면 U상 코어 본체의 중심 원통형 부재의 선단부가 V상 코어 본체의 중심 원통형 부재에 끼워 있는 회전축 선방향의 깊이가 W상 코어 본체의 중심 원통형 부재의 선단부가 V상 코어 본체의 중심 원통형 부재에 끼워 있는 회전축 선방향의 깊이보다 깊어지도록 구성되어 있을 수 있고 그 반대일 수도 있다.
또, 예를 들면 도 12에 나타낸 바와 같이 U상 코어 본체(51) 및 W상 코어 본체(53)의 중심 원통형 부재의 선단부 외경을 작게 한 오목부를 마련해 두어 U상 코어 본체(51) 및 W상 코어 본체(53)의 오목부에 V상 코어 본체(52)의 중심 원통형 부재를 감합하여 제2 접합면을 형성할 수도 있다.
상기 실시형태에서 제1 V상 코일 요소 및 제2 V상 코일 요소의 모든 지름을 U상 코일(14) 및 W상 코일(16)보다 크게 구성하였으나 제1 V상 코일 요소 및 제2 V상 코일 요소의 일부 지름을 크게 구성할 수도 있다.
또 상기 실시형태에서 고정자 조자극의 상기 각도는 120°로 설정되어 있었으나 이 각도는 적절하게 변경할 수 있다. 이 변경을 수행하려면 U상 코어, V상 코어, W상 코어가 구비하는 조자극 개수나 그 배치하는 각도를 적절하게 변경하면 된다.
상기 실시형태에서는 제1 V상 코일 요소와 U상 코일은 제1 보빈에 개별 선체를 권회하여 구성되었으나 동일한 선체를 권회하여 구성될 수 도 있다. 마찬가지로 제2 V상 코일 요소와 W상 코일은 제2 보빈에 개별 선체를 권회하여 구성되었으나 동일 선체를 권회하여 구성될 수도 있다.
상기 실시형태에서는 S:P가 3:4이지만 이에 한정되지 않고 식(1)을 만족하다면 다른 값을 사용할 수도 있다. 또한 조자극의 원주 방향 각도는 150°에 한정되지 않고 130°이상, 160°이하의 범위이면 어떠한 값이라도 상관없다.
상기 기술한 실시형태에서는 중심 원통형 부재(12a)의 내면 및 중심 원통형 부재(12c)의 내면에 수지층이 형성되도록 구성된 것으로 기재되어 있었으나 이러한 수지층이 없이 구성될 수 있다.
고정자의 제조 방법은 상기 기술한 공정에 한정되지 않으며 예를 들면 U상 코어 본체, V상 코어 본체, W상 코어 본체를 각각 제조한 후에 U상 코어 본체와 V상 코어 본체 간에 U상 코일 및 제1 V상 코일 요소를 배치함과 아울러 V상 코어 본체와 W상 코어 본체 간에 제2 V상 코일 요소 및 W상 코일을 배치하고 이들을 고정하는 방식으로 제조 될 수도 있다.
또한 상기 기술한 실시형태에서는 조자극과 파트가 다른 재료로 구성하였으나 조자극 및 파트를 동일한 재료로 구성할 수도 있다.
또한 상기 실시형태에서는 회전자의 자극을 가지는 것으로서 영구자석이 이용되었으나 이에 한정되지 않는다. 예를 들어 전자석 등이라도 좋고 자극을 가진 것이라면 어떠한 것이라도 상관없다.
지금까지 도면을 통하여 본 발명이 가지고 있는 효과를 실시예를 통하여 상세하게 설명하지만 본 발명은 이 실시예로 한정되는 것은 아니고 유사한 실시예에도 본 발명이 적용될 수 있다.
이하 본 발명의 일 실시예에 해당하는 클로 폴형 모터(1)가 포함된 가전기기에 대해 설명한다. 이하 도면의 경우 냉장고과 공기 조화기에 한정하여 설명하지만 전술한 바와 같이 클로 폴형 모터(1)는 단순히 냉장고와 공기 조화기에 한정되어 적용되는 것은 아니고 여러 다른 가전기기에도 적용될 수 있다.
도 14는 본 발명의 일 실시형태에 따라 클로 폴형 모터를 포함하고 있는 냉장고의 내부를 나타낸 도면이다.
도 14를 참조하면, 본 발명의 일 실시예에 의한 클로 폴형 모터(1)를 포함하고 있는 냉장고는 냉장고의 외관을 형성하는 본체(110), 저장물을 저장하는 저장실(121, 122), 저장실(121, 122)을 냉각시키는 냉각장치(161, 171, 181, 182, 191, 192), 저장실(121, 122)의 온도를 감지하는 온도감지부(141, 142, 143)를 포함한다.
본체(110)의 외부는 저장물을 보관하는 저장실(121, 122)과 후술한 증발기(191, 192)가 마련되는 덕트(미도시)가 마련되고, 저장실(121, 122)이 마련된 본체(110)의 벽면에는 증발기(191, 192)에 의하여 냉각된 공기가 덕트(미도시)와 저장실(121, 122) 사이를 유동하기 위한 홀(미도시)이 포함될 수 있다.
저장실(121, 122)은 중간 격벽을 사이에 두고 좌우로 구획되어 저장물을 냉동 저장하는 냉동실(121)과 저장물을 냉장 저장하는 냉장실(122)로 구분되며, 냉동실(121)과 냉장실(122)은 전면이 개구되어 있다.
냉동실(121)과 냉장실(122)은 각각 도어(131, 132)에 의하여 차폐된다. 냉장고(100)의 도어(131, 132)에는 후술할 입력부(111)와 표시부(112)가 마련될 수 있다.
저장실(121, 122)에는 저장실(121, 122)의 온도를 감지하는 온도감지부(141, 142, 143)가 마련되며, 냉동실(121)의 온도를 감지하는 제1온도감지부(141), 냉장실(122)의 온도를 감지하는 제2온도감지부(142)를 포함한다. 또한 온도감지부(141, 142, 143)는 냉장고(100)의 외부에 마련되어 냉장고(100) 외부의 온도를 감지하는 외부온도감지부(143)를 더 포함할 수 있다.
온도감지부(141, 142, 143)는 온도에 따라 전지적 저항값이 변화하는 써미스터(thermistor)를 채용할 수 있다.
냉각팬(151, 152)은 덕트(미도시)에 마련된 증발기(191, 192)에 의하여 냉각된 공기를 저장실(121, 122)로 유입시킨다.
냉각장치(161, 171, 181, 182, 191, 192)는 기상 냉매를 응축시키는 응축기(171), 응축된 액상 냉매를 감압시키는 팽창밸브(181, 182), 감압된 액상 냉매를 증발시키는 증발기(191, 192) 및 증발된 기상 냉매를 압축하는 압축기(161)를 포함한다. 증발기(191, 192)에서 냉매는 액상에서 기상으로 그 상이 변화하고, 이 과정에서 냉매는 잠열을 흡수하여 증발기(191, 192) 및 증발기(191, 192) 주의의 공기를 냉각시킨다.
응축기(171)는 본체(110)의 하부에 마련된 기계실(미도시)에 설치되거나 본체(110)의 외부 즉 냉장고(100)의 후면에 설치될 수 있다. 기상 냉매는 응축기(171)를 통과하며 응축되어 액상 냉매가 된다. 응축되는 과정에서 냉매는 잠열을 방출한다.
응축기(171)가 본체(110) 하부에 마련된 기계실에 설치되는 경우에는 냉매로부터 방출되는 잠열로 인하여 응축기(171)가 가열되므로 응축기(171)를 냉각시키기 위한 방열팬(미도시)이 마련될 수 있다.
응축기(171)에 의하여 응축된 액상 냉매는 팽창밸브(181, 182)에 의하여 그 압력이 낮아진다. 즉 팽창밸브(181, 182)는 고압의 액상 냉매를 교축 작용에 의하여 냉매가 증발할 수 있는 압력까지 감압시킨다. 교축 작용이란 유체가 노즐이나 오리피스와 같이 좁은 유로를 통과하면 외부와의 열교환이 없이도 압력이 감소하는 현상을 의미한다.
또한 팽창밸브(181, 182)는 냉매가 증발기(191, 192)에서 충분한 열에너지를 흡수할 수 있도록 냉매의 양을 조절한다. 특히 전자식 팽창밸브를 이용하는 경우에는 후술할 제어부(210)의 제어에 따라 구동부(220)에 의하여 팽창밸브(181, 182)의 개폐 및 개방 정도가 조절된다.
증발기(191, 192)는 상술한 바와 같이 본체(110)의 내부 공간에 마련된 덕트(미도시)에 마련되어 팽창밸브(181, 182)에 의하여 감압된 저압의 액상 냉매를 증발시킨다.
냉매는 증발되는 과정에서 증발기(191, 192)로부터 잠열을 흡수하며, 냉매에게 열에너지를 빼앗긴 증발기(191, 192)는 증발기(191, 192) 주위의 공기를 냉각시킨다.
증발기(191, 192)에 의하여 증발된 저압의 기상 냉매는 다시 압축기(161)로 제공되어 냉각사이클이 반복된다.
압축기(150)는 본체(110)의 하부에 마련된 기계실(미도시)에 설치되고 모터의 회전력을 이용하여 증발기(191, 192)에 의하여 증발된 저압의 기상 냉매를 압축하고 응축기(171)로 압송한다. 압축기(150)에서 발생한 압력으로 인하여 냉매는 응축기(171), 팽창밸브(181, 182) 및 증발기(191, 192)를 순환하게 된다.
본 발명의 일 실시예에 의한 냉장고(100)의 압축기(150)는 모터를 구비하고 있는데 여러 가지 종류가 모터가 구비될 수 있다. 본 발명에 해당하는 클로 폴형 모터(1) 또한 압축기(150) 안에 구비되어 모터 역할을 할 수 있다. 클로 폴형 모터(1)의 경우 크기가 크지 않고 효율성이 좋아 냉장고에 점점 더 많이 사용되고 있는 추세이다.
도 15는 본 발명의 일 실시형태에 따라 클로 폴형 모터를 포함하고 있는 공지조화기의 외관을 나타낸 도면이고 도 16은 본 발명의 일 실시형태에 따라 클로 폴형 모터를 포함하고 있는 공기조화기의 내면을 나타낸 도면이다.
도 15를 참고하면, 공기조화기는 실외 공간에 마련되어 실외 공기와 냉매 사이의 열교환을 수행하는 실외기(200), 실내 공간에 마련되어 실내 공기와 냉매 사이에 열교환을 수행하는 실내기(300)를 포함한다.
실외기(200)는 실외기(200)의 외관을 형성하는 실외기 본체(210), 실외기 본체(210)의 일측에 마련되어 열교환된 공기를 토출하는 실외기 토출구(211)를 포함한다.
실내기(300)는 실내기(300)의 외관을 형성하는 실내기 본체(310), 실내기 본체(310)의 정면에 마련되어 열교환된 공기를 토출하는 실내기 토출구(311), 사용자로부터 공기조화기에 대한 동작 명령을 입력받는 조작 패널(312), 공기조화기의 동작 정보를 표시하는 표시 패널(313)을 포함한다.
도 16을 참조하면, 공기조화기는 실외기(200), 실내기(300)와 함께 실외기(200)와 실내기(300) 사이를 연결하며 기상 냉매가 유동하는 통로가 되는 가스관(P1)과 액상 냉매가 유동하는 통로가 되는 액관(P2)을 포함하며, 가스관(P1)과 액관(P2)은 실내기(200) 및 실외기(300) 내부로 연장된다.
실외기(200)는 냉매를 압축하는 압축기(400), 실외 공기와 냉매 사이의 열교환을 수행하는 실외 열교환기(222), 난방 또는 냉방 모드에 따라 압축기(210)에서 압축된 냉매를 실외 열교환기(222)와 실내기(300) 가운데 어느 하나로 선택적으로 안내하는 사방밸브(223), 난방 모드 시에 실외 열교환기(222)로 안내되는 냉매를 감압하는 실외 팽창밸브(224), 미처 증발되지 못한 액상 냉매가 압축기(400)로 유입되는 것을 방지하는 어큐뮬레이터(225)를 포함한다.
압축기(400)는 외부 전원으로부터 전기에너지를 공급받아서 회전하는 압축기 모터(1)의 회전력을 이용하여 저압의 기상 냉매를 고압으로 압축한다. 압축기에 사용되는 모터는 여러 가지의 모터가 사용될 수 있으며 본 발명에 해당하는 클로 폴형 모터(1) 또한 모터로서 사용될 수 있다. 클로 폴형 모터(1)의 경우 크기가 크지 않고 효율성이 좋아 냉장고에 점점 더 많이 사용되고 있는 추세이다.
지금까지 클로 폴형 모터(1)을 구비하고 있는 냉장고와 공기조화기에 대해 알아보았다.
이하 도면을 통해 본 실시형태의 클로 폴형 모터와 종래의 클로 폴형 모터의 효과에 대해 비교해본다.
도 17은 코일에 통전했을 때 발생하는 교류 전류의 파형을 서로 비교한 도면이다.
도 17(a)에 나타낸 바와 같이 종래의 클로 폴형 모터는 코어간의 접합면을 1회 통과하는 V상 코어와 U상 코어 또는 W상 코어 간의 자속이 코어간의 접합면을 2회 통과하는 U상 코어와 W상 코어 간의 자속에 비해 커지므로 V상 코일에 의해 발생하는 교류 전류의 파형 진폭치가 약 25% 정도 커진다. 또한 U상 코일 및 W상 코일에 의해 발생하는 교류 전류의 파형 위상이 8°왜곡된다.
이에 대해 도 17(b)를 보듯이 본 실시형태의 클로 폴형 모터는 어느 코어 간을 통과하는 자속이라도 통과하는 접합면은 1회가 되므로 자속량이 균일하게 되고 V상 코어에 의해 발생하는 교류 전류의 파형 진폭치의 증가를 약 5%로 저감할 수 있음과 아울러 U상 코어 및 W상 코어에 의해 발생하는 교류 전류의 파형 위상 차를 2%으로 억제할 수 있다.
또, 본 실시형태의 클로 폴형 모터와 종래의 클로 폴형 모터에서 코일에 통전을 실시하지 않고 회전자를 회전시켰을 때에 발생하는 코깅 토크를 측정한 것을 도 18에 나타낸다.
도 18에 나타낸 바와 같이 종래의 클로 폴형 모터에서는 -0.0009 Nm에서 0.0009 Nm의 범위에서 코깅 토크가 발생하는데 반해 본 실시형태의 클로 폴형 모터에서는 -0.0002 Nm에서 0.0002 Nm의 범위에서 코깅 토크가 발생하고 있고 본 실시형태의 클로 폴형 모터는 종래의 클로 폴형 모터에 비해 코깅 토크를 약 1/4 정도로 저감할 수 있었다.
이는 본 실시형태의 클로 폴형 모터에서는 종래의 클로 폴형 모터에 비해 자속량이 균일하기 때문에 코깅 토크가 감소시킬 수 효과가 발생한다.
마지막으로 코일 지름의 변화와 클로 폴형 모터의 진동과의 관계를 나타낸 결과로서 도 19는 종래의 클로 폴형 모터의 토크 맥동 및 회전자의 위치를 나타내는 그래프이고 도 20은 본 발명의 일 실시형태에 따른 클로 폴형 모터의 토크 맥동 및 회전자의 위치를 나타내는 그래프이며 도 21은 본 발명의 일 실시형태에 따른 클로 폴형 모터의 코깅 토크 및 조자극의 원주 방향 각도를 나타내는 그래프이다.
구체적으로는 제1 V상 코일 요소 및 제2 V상 코일 요소의 지름을 U상 코일, W상 코일에 비해 크게 한 것을 사용한 본 실시형태의 클로 폴형 모터와 제1 V상 코일 요소 및 제2 V상 코일 요소의 지름을 U상 코일, W상 코일과 동일하게 한 종래의 클로 폴형 모터를 사용하여 토크 맥동을 측정했다.
이 시험 결과를 이하의 도 19 및 도 20의 그래프에 나타낸다. 단, 이 그래프에서 세로 축은 토크를 나타내고 가로 축은 모터 회전 위상 위치를 나타낸 것이다.
도 19에 나타낸 바와 같이 종래의 클로 폴형 모터에서는 토크 최대치가 6.2 mNm이고 토크 최소치가 4.6 mNm이므로 상기 차이인 토크 맥동은 약 1.6 mNm이었다.
이에 대해 도 20에 나타낸 바와 같이 본 실시형태의 클로 폴형 모터에서는 토크 최대치가 7.8 mNm이고 토크 최소치가 7.4 mNm이므로 상기 차이인 토크 맥동은 약 0.4 mNm이었다.
따라서, 본 실시형태에서의 클로 폴형 모터에서는 종래형의 클로 폴형 모터에 비해 토크 맥동을 약 27%정도 저감할 수 있다. 이것은 U상 코어, V상 코어, W상 코어의 코일의 저항값의 차이를 작게 하여 각 코어에 흐르는 전류를 균형있게 흐르게 할 수 있기 때문이다.

Claims (15)

  1. 클로 폴형 모터를 포함하고 있는 가전기기에서,
    상기 클로 폴형 모터는,
    회전축 상에 배치되는 제1코어 본체와 상기 제 1코어 본체 중앙 부분에 상기 회전축 방향으로 연장되어 있는 제 1연신부와 상기 제 1코어 본체 외측 부분에 상기 회전축 방향으로 연장되어 있는 복수의 제 1조자극을 포함하는 제1코어와,
    상기 회전축 상에 배치되는 제 2코어 본체와 상기 제 2코어 본체 외측 부분에 상기 회전축 방향으로 연장되어 있는 복수의 제 2조자극을 포함하는 제 2코어와
    상기 회전축 상에 배치되는 제3코어 본체와 상기 제 3코어 본체 중앙 부분에 상기 회전축 방향으로 연장되어 있는 제 2연신부와 상기 제3 코어 본체 외측 부분에 상기 회전축 방향으로 연장되어 있는 복수의 제 3조자극을 포함하는 제3코어를 포함하고
    상기 제 2코어는
    상기 제2코어 본체의 중앙 부분에 상기 제 1연신부와 상기 제 2연신부를 감싸는 외감부를 더 포함하는 가전기기
  2. 제 1항에 있어서,
    상기 외감부에 의해 감싸지는 상기 제 1연신부의 길이와 상기 제 2연신부의 길이가 동일한 가전 기기
  3. 제 1항에 있어서,
    상기 외감부, 상기 제 1연신부 및 상기 제 2연신부는 중심 구멍을 갖는 원통 형상인 가전 기기
  4. 제 3항에 있어서,
    상기 제 1연신부와 상기 제2연신부의 내경 및 외경은 동일하고 상기 제 1연신부와 상기 제 2연신부는 상기 외감부의 중심 구멍에 삽입되는 가전 기기
  5. 제1항에 있어서,
    상기 제1코어, 상기 제2코어, 상기 제3코어는 분체상의 자성 재료를 상기 회전축 방향으로 프레스 가공하여 구성된 가전 기기
  6. 제 1항에 있어서,
    상기 제1코어는 상기 제1코어 본체에 축선 방향으로 연장되는 복수의 U상 조자극을 포함하는 U상 코어이고
    상기 제2코어는 상기 제2코어 본체에 축선 방향으로 연장되는 복수의 V상 조자극을 포함하는 V상 코어이고
    상기 제3코어는 상기 제3코어 본체에 축선 방향으로 연장되는 복수의 W상 조자극을 포함하는 W상 코어인 가전 기기
  7. 제 6항에 있어서,
    상기 U상 코어, 상기 V상 코어 및 상기 W 코어는 상기 각 코어들을 자화시키는 U상 코일, V상 코일 및 W상 코일을 더 포함하고
    상기 U상 코일은 상기 U상 코어 본체와 상기 V상 코어 본체 사이에 배치되어 있고, 상기 W상 코일은 상기 V상 코어 본체와 상기 W상 코어 본체 사이에 배치되어 있으며,
    상기 V상 코일은 상기 U상 코어 본체와 상기 V상 코어 본체 사이에 배치된 제1상 V상 코일 요소와 상기 V상 코어 본체와 상기 W상 코어 본체 사이에 배치되어 있는 제2상 V상 코일 요소가 직렬로 연결되어 있는 가전 기기
  8. 제 7항에 있어서,
    상기 제1 V상 코일 요소는 상기 U상 코일의 외측에 배치되어 있고
    상기 제2 V상 코일 요소는 상기 W상 코일의 외측에 배치되어 있으며
    상기 제1 V상 코일 요소의 지름 및 상기 제2 V상 코일 요소의 지름은 상기 U상 코일의 지름 및 상기 W상 코일의 지름보다 큰 가전 기기
  9. 제 7항에 있어서,
    상기 제1 V상 코일 요소는 상기 U상 코일의 내측에 배치되어 있고
    상기 제2 V상 코일 요소는 상기 W상 코일의 내측에 배치되어 있으며
    상기 제1 V상 코일 요소 및 상기 제2 V상 코일 요소의 지름은 상기 U상 코일 및 상기 W상 코일의 지름보다 작은 가전 기기
  10. 제 7항에 있어서,
    상기 U상 코일 또는 상기 W상 코일의 지름과 상기 제1 V상 코일 요소 또는 상기 제2 V상 코일 요소의 지름의 비율은 1.0에서 1.4이하가 되는 가전 기기
  11. 제 7항에 있어서
    상기 제1 V상 코일 요소와 상기 제2 V상 코일 요소의 권선의 수와 상기 U상 코일과 상기 W상 코일의 권선의 수가 서로 다른 가전 기기
  12. 제 7항에 있어서,
    상기 U상 조자극, 상기 V상 조자극, 상기 W상 조자극은 이 순서대로 원주 방향으로 반복하여 나타나도록 배치되며
    상기 U상 조자극, 상기 V상 조자극, 상기 W상 조자극에 대응하여 원주 방향으로 복수의 N극과 S극이 교대로 배치되어 있는 회전자를 더 포함하는 가전 기기
  13. 제 7항에 있어서,
    상기 U상 조자극, 상기 V상 조자극, 상기 W상 조자극을 합한 개수를 S. 상기 회전자의 자극 개수를 P라 할 경우, S와 P의 비율이 아래와 같은 식(1)이 성립되는 가전 기기
    [식 1]
    S : P = 3 : 2(n+1)
    (n+1) ≠ 3m 단, n, m은 정수
  14. 제7항에 있어서,
    상기 조자극 들의 원주 방향의 폭이 전기각으로 130˚이상 160˚이하인 가전 기기
  15. 회전축 상에 배치되는 제1코어 본체와 상기 제 1코어 본체 중앙 부분에 상기 회전축 방향으로 연장되어 있는 제 1연신부와 상기 제 1코어 본체 외측 부분에 상기 회전축 방향으로 연장되어 있는 복수의 제 1조자극을 포함하는 제1코어와,
    상기 회전축 상에 배치되는 제 2코어 본체와 상기 제 2코어 본체 외측 부분에 상기 회전축 방향으로 연장되어 있는 복수의 제 2조자극을 포함하는 제 2코어와
    상기 회전축 상에 배치되는 제3코어 본체와 상기 제 3코어 본체 중앙 부분에 상기 회전축 방향으로 연장되어 있는 제 2연신부와 상기 제3 코어 본체 외측 부분에 상기 회전축 방향으로 연장되어 있는 복수의 제 3조자극을 포함하는 제3코어를 포함하고
    상기 제 2코어는
    상기 제2코어 본체의 중앙 부분에 상기 제 1연신부와 상기 제 2연신부를 감싸는 외감부를 더 포함하는 클로 폴형 모터
PCT/KR2015/012778 2014-11-26 2015-11-26 클로 폴형 모터 및 이를 포함하고 있는 가전기기 WO2016085268A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580064490.4A CN107210626B (zh) 2014-11-26 2015-11-26 爪极式电动机和包括爪极式电动机的家用电器
US15/527,615 US10714989B2 (en) 2014-11-26 2015-11-26 Claw pole type motor and home appliance including same

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2014-238675 2014-11-26
JP2014238675 2014-11-26
JP2014241449 2014-11-28
JP2014-241449 2014-11-28
JP2014248723 2014-12-09
JP2014-248723 2014-12-09
JP2014250575 2014-12-11
JP2014-250575 2014-12-11
JP2015037471A JP6545480B2 (ja) 2014-11-26 2015-02-26 クローポール型モータ、クローポール型モータの製造方法
JP2015-037471 2015-02-26
KR1020150166073A KR102516257B1 (ko) 2014-11-26 2015-11-26 클로 폴형 모터 및 이를 포함하고 있는 가전기기
KR10-2015-0166073 2015-11-26

Publications (1)

Publication Number Publication Date
WO2016085268A1 true WO2016085268A1 (ko) 2016-06-02

Family

ID=56074706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/012778 WO2016085268A1 (ko) 2014-11-26 2015-11-26 클로 폴형 모터 및 이를 포함하고 있는 가전기기

Country Status (1)

Country Link
WO (1) WO2016085268A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004008605A1 (en) * 2002-07-10 2004-01-22 Quebec Metal Powders Limited Polyphase claw pole structures for an electrical machine
US20080074009A1 (en) * 2006-09-25 2008-03-27 Yuji Enomoto Fan system, electric motor, and claw-pole motor
JP2008167615A (ja) * 2007-01-04 2008-07-17 Hitachi Industrial Equipment Systems Co Ltd 単相クローポール型永久磁石モータ
JP4575490B2 (ja) * 2008-11-29 2010-11-04 日本電産コパル株式会社 クローポール永久磁石型ステッピングモータ
JP2011259532A (ja) * 2010-06-04 2011-12-22 Asmo Co Ltd クローポール型モータ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004008605A1 (en) * 2002-07-10 2004-01-22 Quebec Metal Powders Limited Polyphase claw pole structures for an electrical machine
US20080074009A1 (en) * 2006-09-25 2008-03-27 Yuji Enomoto Fan system, electric motor, and claw-pole motor
JP2008167615A (ja) * 2007-01-04 2008-07-17 Hitachi Industrial Equipment Systems Co Ltd 単相クローポール型永久磁石モータ
JP4575490B2 (ja) * 2008-11-29 2010-11-04 日本電産コパル株式会社 クローポール永久磁石型ステッピングモータ
JP2011259532A (ja) * 2010-06-04 2011-12-22 Asmo Co Ltd クローポール型モータ

Similar Documents

Publication Publication Date Title
WO2019235825A1 (en) Interior permanent magnet motor
WO2015002455A1 (en) Magnetic cooling apparatus
WO2019031887A1 (en) LAUNDRY PROCESSING APPARATUS AND METHOD OF CONTROLLING THE SAME
WO2015167124A1 (ko) 모터 및 모터의 제조방법
WO2015069062A1 (ko) 모터와 그 제조 방법 및 세탁기
WO2018147574A1 (ko) 리니어 압축기
WO2019031885A1 (en) LAUNDRY PROCESSING APPARATUS AND METHOD FOR CONTROLLING SUCH A LAUNDRY TREATMENT APPARATUS
WO2017018578A1 (en) Electric motor and manufacturing method thereof
WO2019066487A1 (ko) 회전 전기기기
WO2019199129A1 (ko) 렌즈 어셈블리
WO2021172793A1 (ko) 액시얼 갭 타입 전동기 및 이를 이용한 워터 펌프
WO2019031886A1 (en) LAUNDRY PROCESSING APPARATUS AND METHOD OF CONTROLLING THE SAME
WO2017043865A1 (ko) 로터 및 이를 포함하는 모터
KR102516257B1 (ko) 클로 폴형 모터 및 이를 포함하고 있는 가전기기
WO2016085268A1 (ko) 클로 폴형 모터 및 이를 포함하고 있는 가전기기
WO2014208959A1 (en) Power generating device and apparatus having the same
WO2019045305A1 (ko) 스테이터 및 이를 포함하는 모터
WO2013035989A2 (ko) 발전시 회전력이 발생하는 발전동기
WO2018135746A1 (ko) 리니어 압축기의 제어 장치 및 제어 방법
EP3711141A1 (en) Motor
WO2018131810A1 (en) Movable core-type reciprocating motor and reciprocating compressor having the same
WO2019054637A1 (ko) 전동 펌프 및 모터
WO2019164303A1 (ko) 리니어 모터 및 이를 구비한 리니어 압축기
WO2020204270A1 (ko) 모터부 및 이를 포함하는 전동식 압축기
WO2022139569A1 (ko) 모터

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15862305

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15527615

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15862305

Country of ref document: EP

Kind code of ref document: A1