WO2016084811A1 - Electromagnetic actuator - Google Patents

Electromagnetic actuator Download PDF

Info

Publication number
WO2016084811A1
WO2016084811A1 PCT/JP2015/082955 JP2015082955W WO2016084811A1 WO 2016084811 A1 WO2016084811 A1 WO 2016084811A1 JP 2015082955 W JP2015082955 W JP 2015082955W WO 2016084811 A1 WO2016084811 A1 WO 2016084811A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
mover
plating
film
weight
Prior art date
Application number
PCT/JP2015/082955
Other languages
French (fr)
Japanese (ja)
Inventor
笠原 貴
武彦 熊谷
朋和 朝倉
Original Assignee
日本電産コパル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産コパル株式会社 filed Critical 日本電産コパル株式会社
Priority to CN201590001124.XU priority Critical patent/CN206951531U/en
Publication of WO2016084811A1 publication Critical patent/WO2016084811A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/04Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with electromagnetism
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/12Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with armatures moving in alternate directions by alternate energisation of two coil systems

Definitions

  • the present invention relates to an electromagnetically driven actuator having a magnet joined with a metal body.
  • the electromagnetic drive actuator uses a Lorentz force generated between a magnet and a coil by passing a current through the coil as a driving force, and is known to operate a magnet as a mover by fixing the coil to a frame. .
  • the magnet which is a mover, operates integrally with various constituent members, thereby becoming an actuator having various functions.
  • a vibration motor (or vibration actuator) that can be cited as an example of an electromagnetically driven actuator generates vibrations when an incoming call is received from a communication device or an alarm is issued from various electronic devices, and the operator of the communication device or touches the various electronic devices.
  • the state of signal input by vibration is conveyed to various electronic devices such as portable information terminals including mobile phones.
  • Such a vibration motor includes a mover in which a magnet and a weight vibrate integrally (see Patent Document 1 below).
  • a lens drive device that drives the lens frame in the optical axis direction or in a direction intersecting the optical axis to adjust the focus of the lens and shake correction.
  • a lens driving device includes a mover in which a magnet and a lens frame operate integrally (see Patent Document 2 below).
  • a component that operates integrally with a magnet is joined integrally with the magnet through an adhesive in consideration of workability during assembly.
  • this component is a metal body
  • the plating treatment is performed on both the metal body and the magnet before joining in consideration of corrosion, so there is a variation in the finish of the plating film formed on the surface.
  • the adhesive strength easily varies due to the influence.
  • the present invention is an example of a problem to deal with such a problem. That is, in an electromagnetic drive actuator using a magnet as a mover, when joining a magnet and another metal body via an adhesive, an electromagnetic drive actuator capable of stable operation with no variation in adhesive strength is obtained with a high yield. It is an object of the present invention to be able to produce in
  • the present invention has the following configuration.
  • FIG. 3 is a perspective view showing the internal structure of a vibration motor that is an example of an electromagnetically driven actuator according to an embodiment of the present invention.
  • FIG. 2 is a plan view showing an internal structure of a vibration motor that is an example of an electromagnetically driven actuator according to an embodiment of the present invention.
  • 1 is an exploded perspective view showing an internal structure of a vibration motor that is an example of an electromagnetically driven actuator according to an embodiment of the present invention.
  • FIG. 3 is an explanatory view showing an electronic device (mobile information terminal) including a vibration motor that is an example of an electromagnetically driven actuator according to an embodiment of the present invention.
  • the electromagnetic drive actuator includes a mover including a magnet and a coil for applying a driving force to the magnet.
  • the mover includes a metal body that is joined to the magnet and operates integrally with the magnet.
  • the magnet and the metal body are both covered with a plating film, an organic film is formed on the plating film, and bonded to each other via an adhesive applied on the organic film.
  • the magnet used as the mover can be a neodymium magnet, an alnico magnet, a ferrite magnet, a samarium cobalt magnet, or the like.
  • the weight of the vibration motor is made of tungsten, iron, an alloy of tungsten and iron, an alloy of tungsten and other metals, or the like.
  • a powder sintered body or the like can be used.
  • the plating film covering the surface of the magnet and the metal body is electroplating or electroless plating that is coated before joining the two, and can be selected from electro nickel plating, electroless nickel plating, zinc plating, chrome plating, etc. it can.
  • the present invention is not limited to this, and may be copper plating, tin plating, gold plating, silver plating, palladium plating, cobalt plating, or the like, or may be alloy plating.
  • the organic film formed on the plating film for example, a film obtained by dissolving an organic acid or a mixed acid containing an organic acid in a solvent and the like can be used. It can be selected from acids, amino acids, hydroxy acids and the like.
  • the organic coating is not limited to the above-described example as long as the surface of the plating film can be modified to improve the adhesiveness with the adhesive.
  • an epoxy resin adhesive or a silicone resin adhesive can be used.
  • attaching metals such as an acrylic resin adhesive, a urethane resin adhesive, and a phenol resin adhesive, can be used.
  • an electromagnetically driven actuator capable of stable operation can be manufactured with a high yield.
  • the vibration motor 1 includes a mover 2, a coil 3, a frame 4, an elastic member 5, and a guide shaft 6, and the mover 2 is uniaxially (X-axis direction shown in the drawing). Vibration is generated by reciprocating linearly along the axis.
  • the mover 2 includes a magnetic pole portion 10 and a weight 20.
  • the weights 20 are provided on both sides of the mover 2 in the uniaxial direction (X-axis direction in the figure), but the present invention is not limited to this and may be provided on only one side.
  • the magnetic pole part 10 includes magnets 11, 12 and 13 and yokes 14 and 15. Here, the three magnets 11, 12, 13 and the two yokes 14, 15 are provided. However, the present invention is not limited to this.
  • the magnetic pole portion 10 can be constituted by two magnets and one yoke.
  • the magnets 11, 12, and 13 have magnetic pole directions along one axial direction (X-axis direction in the drawing).
  • the yoke 14 is sandwiched between the same poles of the pair of magnets 11 and 12, and the yoke 15 is sandwiched between the same poles of the pair of magnets 12 and 13.
  • the magnetic pole portion 10 can reinforce the connection between the magnets 11, 12, 13 and the yokes 14, 15 by fixing the reinforcing plate 16 to the side surface thereof.
  • the coil 3 (3A, 3B) is disposed so as to surround the yokes 14, 15 of the magnetic pole part 10.
  • two coils 3A and 3B having opposite winding directions are arranged so as to correspond to the two yokes 14 and 15, but when one yoke is provided, one coil is arranged.
  • the frame body 4 includes a magnetic pole frame portion 30 that holds the coil 3.
  • the magnetic pole frame part 30 constitutes a magnetic circuit that forms a magnetic flux across the coil 3 together with the magnetic pole part 10 of the mover 2.
  • a driving force is applied along the uniaxial direction (X-axis direction in the drawing) to the magnetic pole part 10 of the mover 2 by causing a current to flow through the coil 3 fixed to the magnetic pole frame part 30.
  • the frame 4 is provided with an input terminal 18 for inputting a drive signal to the coil 3.
  • the magnetic pole frame portion 30 includes an upper surface portion 31, a lower surface portion 32, and a side surface portion 33 so as to surround the coil 3.
  • the upper surface portion 31 and the lower surface portion 32 have a plane portion along the X axis and the Y axis
  • the side surface portion 33 has a plane portion along the X axis and the Z axis.
  • the frame 4 is formed by connecting the upper frame 40 and the lower frame 41 to form a frame that accommodates the mover 2 therein.
  • the upper frame body 40 includes the upper surface portion 31 and the side surface portion 33 described above
  • the lower frame body 41 includes the lower surface portion 32 described above, the front wall portion 41A, and the side wall portion 41B.
  • the guide shaft 6 is a shaft member that guides the vibration of the mover 2 along the uniaxial direction (the X-axis direction in the drawing) within the frame body 4.
  • the guide shaft 6 is disposed along the center of gravity axis of the mover 2 such that one end is fixed to the weight 20 and the other end protrudes outside the weight 20. 6A and 6B are attached.
  • the other end side of the guide shaft 6 (6A, 6B) is slidably supported by a bearing 17 provided on the frame body 4.
  • the guide shaft 6 fixed to the weight 20 is shown, but the guide shaft 6 can also be constituted by a single shaft that penetrates the mover 2 along the X-axis direction, for example. In this case, both ends of the guide shaft 6 are fixed to the front wall portion 41 ⁇ / b> A of the frame body 4.
  • the illustrated guide shafts 6A and 6B are fixed in a recess 20A formed in the weight 20 along the X-axis direction.
  • the recess 20A has a width in the Y-axis direction that allows the bearing 17 to enter, and has a depth in the X-axis direction that allows the amplitude of the mover 2.
  • the weight 20 includes an engagement recess 20B on the opposite side to the recess 20A, and the magnets 11 and 13 of the magnetic pole portion 10 are engaged and fixed to the engagement recess 20B.
  • the elastic member 5 is disposed in the frame body 4 and applies an elastic force to the mover 2 that repels the driving force applied to the magnetic pole portion 10 by the current flowing through the coil 3.
  • the illustrated elastic member 5 is disposed between one end of the weight 20 in the axial direction (X-axis direction) and the front wall portion 41A of the frame body 4, and is compressed against vibration in the axial direction of the mover 2. It is composed of springs, and four are arranged on both the left and right sides with the guide shafts 6A and 6B interposed therebetween.
  • the movable element 2 has a thickness (Z in the figure) in which the width (width in the Y axis direction in the figure) orthogonal to the uniaxial direction (X axis direction in the figure) is orthogonal to the uniaxial direction (X axis direction in the figure). It has a flat shape larger than the thickness in the axial direction. That is, each of the magnetic pole part 10 and the weight 20 has a flat shape in which the width in the Y direction in the drawing is larger than the thickness in the Z direction in the drawing.
  • the outer shape of the frame body 4 also has a flat shape in which the width in the Y direction in the drawing is larger than the thickness in the Z direction in the drawing.
  • the surfaces of the magnets 11, 12, 13 and the yokes 14, 15 are covered with a plating film (for example, nickel plating).
  • a plating film for example, nickel plating
  • the surface of the weight 20 is covered with a plating film (for example, nickel plating).
  • the magnets 11 and 12 and the yoke 14, the magnets 12 and 13 and the yoke 15, the magnet 11 and one weight 20, and the magnet 13 and the other weight 20 are joined via an adhesive, respectively.
  • An organic film is formed on the plating films.
  • the organic coating is formed by coating or dipping a solution obtained by dissolving an organic acid or a mixed acid containing an organic acid in a solvent on the plating films of the magnets 11, 12, 13, the yokes 14, 15 and the weight 20. Form by wearing.
  • FIG. 4 shows a portable information terminal 100 as an example of an electronic apparatus provided with the vibration motor 1 according to the embodiment of the present invention.
  • the portable information terminal 100 including the vibration motor 1 that can obtain a stable vibration and can be thinned and compact in the width direction is less likely to generate abnormal noise at the start and end of an incoming call or alarm function in a communication function.
  • the vibration can be transmitted to the user.
  • the portable information terminal 100 pursuing high portability or design can be obtained by making the vibration motor 1 thin and compact in the width direction.
  • the vibration motor 1 has a compact shape in which each part is housed in a rectangular parallelepiped frame 4 with a reduced thickness, the vibration motor 1 can be efficiently installed inside the thinned portable information terminal 100.
  • the magnetic pole portion 10 includes the magnets 11, 12, and 13 magnetized in the uniaxial direction (the X-axis direction in the drawing), and the coil 3 is disposed so as to surround the magnetic pole portion 10.
  • the magnetic pole portion may be disposed so as to surround the coil, and the magnetic pole portion has a magnet magnetized in a direction orthogonal to the uniaxial direction (for example, the Z-axis direction in the drawing), and the coil You may arrange

Abstract

Provided is an electromagnetic actuator which uses magnets as a movable element, wherein a variance in adhesive strength is eliminated when the magnets and another metal body are joined via an adhesive, and an electromagnetic actuator which is capable of stable operation is produced at high yield. The present invention includes a movable element 2 provided with magnets 11, 12, 13 and a coil 3 for applying a drive force to the magnets 11, 12, 13. The movable element 2 is provided with a metal body (weight 20) that is joined to the magnets 11, 12, 13 and operates integrally with the magnets 11, 12, 13. The magnets 11, 12, 13 and the metal body (weight 20) are all covered with a plating film, with an organic coating being formed on the plating film, and are joined to one another via an adhesive applied over the organic coating.

Description

電磁駆動アクチュエータElectromagnetic actuator
 本発明は、金属体が接合されたマグネットを備えた電磁駆動アクチュエータに関するものである。 The present invention relates to an electromagnetically driven actuator having a magnet joined with a metal body.
 電磁駆動アクチュエータは、コイルに電流を流すことでマグネットとコイル間に生じるローレンツ力を駆動力とするものであり、コイルを枠体に固定してマグネットを可動子として動作させるものが知られている。この際、可動子であるマグネットが様々な構成部材と一体に動作することで、各種機能のアクチュエータになる。 The electromagnetic drive actuator uses a Lorentz force generated between a magnet and a coil by passing a current through the coil as a driving force, and is known to operate a magnet as a mover by fixing the coil to a frame. . At this time, the magnet, which is a mover, operates integrally with various constituent members, thereby becoming an actuator having various functions.
 電磁駆動アクチュエータの一例として挙げることができる振動モータ(或いは振動アクチュエータ)は、通信機器の着信や各種電子機器のアラーム発信などによって振動を発生させ、通信機器の携帯者や各種電子機器に触れる操作者に対して振動によって信号入力の状況を伝えるものであり、携帯電話を含む携帯情報端末などの各種電子機器に装備されている。このような振動モータは、マグネットと分銅が一体に振動する可動子を備えている(下記特許文献1参照)。 A vibration motor (or vibration actuator) that can be cited as an example of an electromagnetically driven actuator generates vibrations when an incoming call is received from a communication device or an alarm is issued from various electronic devices, and the operator of the communication device or touches the various electronic devices. The state of signal input by vibration is conveyed to various electronic devices such as portable information terminals including mobile phones. Such a vibration motor includes a mover in which a magnet and a weight vibrate integrally (see Patent Document 1 below).
 また、電磁駆動アクチュエータの他の例としては、レンズ枠を光軸方向または光軸と交差する方向に駆動して、レンズの焦点調整や振れ補正を行うレンズ駆動装置がある。このようなレンズ駆動装置では、マグネットとレンズ枠が一体に動作する可動子を備えている(下記特許文献2参照)。 Further, as another example of the electromagnetic drive actuator, there is a lens drive device that drives the lens frame in the optical axis direction or in a direction intersecting the optical axis to adjust the focus of the lens and shake correction. Such a lens driving device includes a mover in which a magnet and a lens frame operate integrally (see Patent Document 2 below).
特開2014-176841号公報JP 2014-176841 A 特開2012-113236号公報JP 2012-113236 A
 従来、電磁駆動アクチュエータにおいて、マグネットと一体に動作する構成部材は、組み立て時の作業性を考慮して、接着剤を介してマグネットと一体に接合されている。この際、この構成部材が金属体の場合には、腐食を考慮して接合前に金属体とマグネットの両方にメッキ処理がなされるので、表面に形成されたメッキ被膜の仕上がりにばらつきなどがあると、その影響で接着強度にばらつきが生じ易くなる問題があった。 Conventionally, in an electromagnetic drive actuator, a component that operates integrally with a magnet is joined integrally with the magnet through an adhesive in consideration of workability during assembly. In this case, if this component is a metal body, the plating treatment is performed on both the metal body and the magnet before joining in consideration of corrosion, so there is a variation in the finish of the plating film formed on the surface. As a result, there is a problem that the adhesive strength easily varies due to the influence.
 本発明は、このような問題に対処することを課題の一例とするものである。すなわち、マグネットを可動子とする電磁駆動アクチュエータにおいて、マグネットと他の金属体とを接着剤を介して接合するに際して、接着強度のばらつきを無くして、安定した動作が可能な電磁駆動アクチュエータを高い歩留まりで生産することができること、などが本発明の目的である。 The present invention is an example of a problem to deal with such a problem. That is, in an electromagnetic drive actuator using a magnet as a mover, when joining a magnet and another metal body via an adhesive, an electromagnetic drive actuator capable of stable operation with no variation in adhesive strength is obtained with a high yield. It is an object of the present invention to be able to produce in
 このような目的を達成するために、本発明は、以下の構成を具備するものである。
 マグネットを備える可動子と前記マグネットに駆動力を付与するコイルとを備え、前記可動子は、前記マグネットに接合されて当該マグネットと一体に動作する金属体を備え、前記マグネットと前記金属体は、双方がメッキ膜で被われると共に該メッキ膜上に有機被膜が形成され、該有機被膜上に塗布された接着剤を介して互いに接合されていることを特徴とする電磁駆動アクチュエータ。
In order to achieve such an object, the present invention has the following configuration.
A mover including a magnet and a coil that applies a driving force to the magnet; the mover includes a metal body that is joined to the magnet and operates integrally with the magnet; and the magnet and the metal body are: An electromagnetically driven actuator characterized in that both are covered with a plating film, an organic film is formed on the plating film, and they are bonded to each other via an adhesive applied on the organic film.
 このような特徴を有する本発明によると、マグネットを可動子とする電磁駆動アクチュエータにおいて、マグネットと他の金属体とを接着剤を介して接合するに際して、接着強度のばらつきを無くして、安定した動作が可能な電磁駆動アクチュエータを高い歩留まりで生産することができる。 According to the present invention having such a feature, in an electromagnetically driven actuator using a magnet as a mover, when bonding a magnet and another metal body via an adhesive, there is no variation in adhesive strength and stable operation is achieved. Can be produced with a high yield.
本発明の実施形態に係る電磁駆動アクチュエータの一例である振動モータの  内部構造を示した斜視図である。FIG. 3 is a perspective view showing the internal structure of a vibration motor that is an example of an electromagnetically driven actuator according to an embodiment of the present invention. 本発明の実施形態に係る電磁駆動アクチュエータの一例である振動モータの  内部構造を示した平面図である。FIG. 2 is a plan view showing an internal structure of a vibration motor that is an example of an electromagnetically driven actuator according to an embodiment of the present invention. 本発明の実施形態に係る電磁駆動アクチュエータの一例である振動モータの  内部構造を示した分解斜視図である。1 is an exploded perspective view showing an internal structure of a vibration motor that is an example of an electromagnetically driven actuator according to an embodiment of the present invention. 本発明の実施形態に係る電磁駆動アクチュエータの一例である振動モータを  備えた電子機器(携帯情報端末)を示した説明図である。FIG. 3 is an explanatory view showing an electronic device (mobile information terminal) including a vibration motor that is an example of an electromagnetically driven actuator according to an embodiment of the present invention.
 本発明の実施形態に係る電磁駆動アクチュエータは、マグネットを備える可動子とマグネットに駆動力を付与するコイルとを備える。また、可動子は、マグネットに接合されてマグネットと一体に動作する金属体を備える。そして、マグネットと金属体は、双方がメッキ膜で被われると共にメッキ膜上に有機被膜が形成され、有機被膜上に塗布された接着剤を介して互いに接合されている。 The electromagnetic drive actuator according to the embodiment of the present invention includes a mover including a magnet and a coil for applying a driving force to the magnet. The mover includes a metal body that is joined to the magnet and operates integrally with the magnet. The magnet and the metal body are both covered with a plating film, an organic film is formed on the plating film, and bonded to each other via an adhesive applied on the organic film.
 可動子となるマグネットは、ネオジウム磁石、アルニコ磁石、フェライト磁石、サマリウムコバルト磁石などを用いることができる。磁石に接合される金属体は、電磁駆動アクチュエータの用途に応じて様々であり、振動モータの分銅としては、タングステン、鉄、タングステンと鉄の合金、タングステンと他の金属の合金などを材料とした粉末焼結体などを用いることができる。 The magnet used as the mover can be a neodymium magnet, an alnico magnet, a ferrite magnet, a samarium cobalt magnet, or the like. There are various metal bodies to be joined to the magnet depending on the application of the electromagnetic drive actuator. The weight of the vibration motor is made of tungsten, iron, an alloy of tungsten and iron, an alloy of tungsten and other metals, or the like. A powder sintered body or the like can be used.
 マグネットと金属体の表面を被うメッキ膜は、両者の接合前に被膜される電気メッキや無電解メッキであり、電気ニッケルメッキ、無電解ニッケルメッキ、亜鉛メッキ、クロムメッキなどから選択することができる。またこれに限らず、銅メッキ、スズメッキ、金メッキ、銀メッキ、パラジウムメッキ、コバルトメッキなどであってもよく、また、合金メッキであってもよい。 The plating film covering the surface of the magnet and the metal body is electroplating or electroless plating that is coated before joining the two, and can be selected from electro nickel plating, electroless nickel plating, zinc plating, chrome plating, etc. it can. In addition, the present invention is not limited to this, and may be copper plating, tin plating, gold plating, silver plating, palladium plating, cobalt plating, or the like, or may be alloy plating.
 メッキ膜上に形成される有機被膜は、例えば、有機酸、または有機酸を含む混合酸を溶媒に溶解させて被着した膜などを用いることができ、この際の有機酸は、脂肪酸、糖酸、アミノ酸、ヒドロキシ酸などから選択することができる。なお、有機被膜は、メッキ膜の表面を改質して接着剤による接着性を高めることができるものであれば前述した例に限らない。有機被膜上に塗布される接着剤としては、エポキシ樹脂系接着剤またはシリコーン樹脂系接着剤を用いることができる。また、これに限らず、アクリル樹脂系接着剤、ウレタン樹脂系接着剤、フェノール樹脂系接着剤など、金属相互を接着するのに適する全ての接着剤を用いることができる。 As the organic film formed on the plating film, for example, a film obtained by dissolving an organic acid or a mixed acid containing an organic acid in a solvent and the like can be used. It can be selected from acids, amino acids, hydroxy acids and the like. The organic coating is not limited to the above-described example as long as the surface of the plating film can be modified to improve the adhesiveness with the adhesive. As the adhesive applied on the organic film, an epoxy resin adhesive or a silicone resin adhesive can be used. Moreover, not only this but all the adhesives suitable for adhere | attaching metals, such as an acrylic resin adhesive, a urethane resin adhesive, and a phenol resin adhesive, can be used.
 このような特徴を備えた電磁駆動アクチュエータによると、マグネットと一体に動作する金属体を、ばらつきの無い接着強度でマグネットと接合することができる。これによって、安定した動作が可能な電磁駆動アクチュエータを高い歩留まりで製造することが可能になる。 According to the electromagnetic drive actuator having such a feature, a metal body that operates integrally with the magnet can be joined to the magnet with a uniform adhesive strength. As a result, an electromagnetically driven actuator capable of stable operation can be manufactured with a high yield.
 以下、図面を参照して、本発明の実施形態に係る電磁駆動アクチュエータの一例である振動モータを説明する。図1~図3に示すように、振動モータ1は、可動子2、コイル3、枠体4、弾性部材5、ガイドシャフト6を備えており、可動子2を一軸方向(図示X軸方向)に沿って直線的に往復振動させて振動を発生する。 Hereinafter, a vibration motor which is an example of an electromagnetic drive actuator according to an embodiment of the present invention will be described with reference to the drawings. As shown in FIGS. 1 to 3, the vibration motor 1 includes a mover 2, a coil 3, a frame 4, an elastic member 5, and a guide shaft 6, and the mover 2 is uniaxially (X-axis direction shown in the drawing). Vibration is generated by reciprocating linearly along the axis.
 可動子2は、磁極部10と分銅20を備えている。図示の例では分銅20を可動子2の一軸方向(図示X軸方向)両側に設けているが、これに限らず片側のみであってもよい。磁極部10は、マグネット11,12,13とヨーク14,15を備えている。ここでは、3つのマグネット11,12,13と2つのヨーク14,15を備えているが、これに限らず、例えば2つのマグネットと1つのヨークによって磁極部10を構成することもできる。 The mover 2 includes a magnetic pole portion 10 and a weight 20. In the illustrated example, the weights 20 are provided on both sides of the mover 2 in the uniaxial direction (X-axis direction in the figure), but the present invention is not limited to this and may be provided on only one side. The magnetic pole part 10 includes magnets 11, 12 and 13 and yokes 14 and 15. Here, the three magnets 11, 12, 13 and the two yokes 14, 15 are provided. However, the present invention is not limited to this. For example, the magnetic pole portion 10 can be constituted by two magnets and one yoke.
 マグネット11,12,13は、一軸方向(図示X軸方向)に沿った磁極の向きを有している。また、ヨーク14は、一対のマグネット11,12の同極間に挟まれており、ヨーク15は、一対のマグネット12,13の同極間に挟まれている。この磁極部10は、その側面に補強板16を固着することで、マグネット11,12,13とヨーク14,15の連結を強化することができる。 The magnets 11, 12, and 13 have magnetic pole directions along one axial direction (X-axis direction in the drawing). The yoke 14 is sandwiched between the same poles of the pair of magnets 11 and 12, and the yoke 15 is sandwiched between the same poles of the pair of magnets 12 and 13. The magnetic pole portion 10 can reinforce the connection between the magnets 11, 12, 13 and the yokes 14, 15 by fixing the reinforcing plate 16 to the side surface thereof.
 コイル3(3A,3B)は、磁極部10のヨーク14,15を囲んで配置されている。ここでは2つのヨーク14,15に対応するように巻き方向が逆の2つのコイル3A,3Bを配置しているが、ヨークが1つの場合には1つのコイルが配置される。 The coil 3 (3A, 3B) is disposed so as to surround the yokes 14, 15 of the magnetic pole part 10. Here, two coils 3A and 3B having opposite winding directions are arranged so as to correspond to the two yokes 14 and 15, but when one yoke is provided, one coil is arranged.
 枠体4は、コイル3を保持する磁極枠部30を備えている。磁極枠部30は、可動子2の磁極部10と共に、コイル3を横切る磁束を形成する磁気回路を構成している。これによって、磁極枠部30に固定されたコイル3に電流を流すことで、可動子2の磁極部10に一軸方向(図示X軸方向)に沿った駆動力が付与される。枠体4には、コイル3に駆動信号を入力する入力端子18が設けられている。 The frame body 4 includes a magnetic pole frame portion 30 that holds the coil 3. The magnetic pole frame part 30 constitutes a magnetic circuit that forms a magnetic flux across the coil 3 together with the magnetic pole part 10 of the mover 2. As a result, a driving force is applied along the uniaxial direction (X-axis direction in the drawing) to the magnetic pole part 10 of the mover 2 by causing a current to flow through the coil 3 fixed to the magnetic pole frame part 30. The frame 4 is provided with an input terminal 18 for inputting a drive signal to the coil 3.
 磁極枠部30は、コイル3を囲むように、上面部31,下面部32,側面部33を備えている。図示の例では、上面部31と下面部32はX軸とY軸に沿った平面部を有しており、側面部33は、X軸とZ軸に沿った平面部を有している。 The magnetic pole frame portion 30 includes an upper surface portion 31, a lower surface portion 32, and a side surface portion 33 so as to surround the coil 3. In the illustrated example, the upper surface portion 31 and the lower surface portion 32 have a plane portion along the X axis and the Y axis, and the side surface portion 33 has a plane portion along the X axis and the Z axis.
 また、図示の例では、枠体4は、上枠体40と下枠体41を結合することで、内部に可動子2を収容する枠を形成している。上枠体40は、前述した上面部31と側面部33を備えており、下枠体41は、前述した下面部32と、正面壁部41A,側壁部41Bを備えている。 Further, in the illustrated example, the frame 4 is formed by connecting the upper frame 40 and the lower frame 41 to form a frame that accommodates the mover 2 therein. The upper frame body 40 includes the upper surface portion 31 and the side surface portion 33 described above, and the lower frame body 41 includes the lower surface portion 32 described above, the front wall portion 41A, and the side wall portion 41B.
 ガイドシャフト6は、枠体4内で一軸方向(図示X軸方向)に沿った可動子2の振動をガイドする軸部材である。図示の例では、ガイドシャフト6は、可動子2の重心軸に沿って、一端が分銅20に固着され他端が分銅20の外側に突出するように配置され、一対の分銅20にそれぞれガイドシャフト6A,6Bが装着されている。ガイドシャフト6(6A,6B)の他端側は枠体4に設けられる軸受17に摺動自在に支持されている。ここでは分銅20に固着されるガイドシャフト6の例を示しているが、ガイドシャフト6は、例えば、可動子2をX軸方向に沿って貫通する一本の軸で構成することもできる。この場合は、ガイドシャフト6の両端が枠体4の正面壁部41Aに固定される。 The guide shaft 6 is a shaft member that guides the vibration of the mover 2 along the uniaxial direction (the X-axis direction in the drawing) within the frame body 4. In the illustrated example, the guide shaft 6 is disposed along the center of gravity axis of the mover 2 such that one end is fixed to the weight 20 and the other end protrudes outside the weight 20. 6A and 6B are attached. The other end side of the guide shaft 6 (6A, 6B) is slidably supported by a bearing 17 provided on the frame body 4. Here, an example of the guide shaft 6 fixed to the weight 20 is shown, but the guide shaft 6 can also be constituted by a single shaft that penetrates the mover 2 along the X-axis direction, for example. In this case, both ends of the guide shaft 6 are fixed to the front wall portion 41 </ b> A of the frame body 4.
 図示のガイドシャフト6A,6Bは、分銅20にX軸方向に沿って形成される凹部20A内に固着されている。凹部20Aは、軸受17が入り込むだけのY軸方向の幅を有しており、可動子2の振幅を許容するだけのX軸方向の深さを有している。また、分銅20は、凹部20Aとは逆側に係合凹部20Bを備えており、この係合凹部20Bには、磁極部10のマグネット11,13が係合されて固定されている。 The illustrated guide shafts 6A and 6B are fixed in a recess 20A formed in the weight 20 along the X-axis direction. The recess 20A has a width in the Y-axis direction that allows the bearing 17 to enter, and has a depth in the X-axis direction that allows the amplitude of the mover 2. Further, the weight 20 includes an engagement recess 20B on the opposite side to the recess 20A, and the magnets 11 and 13 of the magnetic pole portion 10 are engaged and fixed to the engagement recess 20B.
 弾性部材5は、枠体4内に配置されて、コイル3を流れる電流によって磁極部10に付与される駆動力に反発する弾性力を可動子2に付与する。図示の弾性部材5は、分銅20の一軸方向(X軸方向)端部と枠体4の正面壁部41Aとの間に配置され、可動子2の一軸方向の振動に対して圧縮される圧縮バネで構成されており、ガイドシャフト6A,6Bを挟んで左右両側に4個配置されている。 The elastic member 5 is disposed in the frame body 4 and applies an elastic force to the mover 2 that repels the driving force applied to the magnetic pole portion 10 by the current flowing through the coil 3. The illustrated elastic member 5 is disposed between one end of the weight 20 in the axial direction (X-axis direction) and the front wall portion 41A of the frame body 4, and is compressed against vibration in the axial direction of the mover 2. It is composed of springs, and four are arranged on both the left and right sides with the guide shafts 6A and 6B interposed therebetween.
 このような振動モータ1において、可動子2は、一軸方向(図示X軸方向)に直交する幅(図示Y軸方向の幅)が一軸方向(図示X軸方向)に直交する厚さ(図示Z軸方向の厚さ)より大きい偏平形状を有している。すなわち、磁極部10と分銅20がそれぞれ、図示Y方向の幅が図示Z方向の厚さより大きい偏平形状を有している。また、この可動子2の偏平形状に対応して、枠体4の外形も図示Y方向の幅が図示Z方向の厚さより大きい偏平形状を有している。このように、可動子2及び枠体4を偏平形状にすることで、Z軸方向の厚さを小さくした薄厚の振動モータ1を得ることができる。 In such a vibration motor 1, the movable element 2 has a thickness (Z in the figure) in which the width (width in the Y axis direction in the figure) orthogonal to the uniaxial direction (X axis direction in the figure) is orthogonal to the uniaxial direction (X axis direction in the figure). It has a flat shape larger than the thickness in the axial direction. That is, each of the magnetic pole part 10 and the weight 20 has a flat shape in which the width in the Y direction in the drawing is larger than the thickness in the Z direction in the drawing. Corresponding to the flat shape of the mover 2, the outer shape of the frame body 4 also has a flat shape in which the width in the Y direction in the drawing is larger than the thickness in the Z direction in the drawing. Thus, by making the mover 2 and the frame 4 flat, it is possible to obtain a thin vibration motor 1 with a reduced thickness in the Z-axis direction.
 マグネット11,12,13とヨーク14,15は、その表面がメッキ膜(例えば、ニッケルメッキ)で被われている。また、分銅20の表面も同様にメッキ膜(例えば、ニッケルメッキ)で被われている。 The surfaces of the magnets 11, 12, 13 and the yokes 14, 15 are covered with a plating film (for example, nickel plating). Similarly, the surface of the weight 20 is covered with a plating film (for example, nickel plating).
 マグネット11,12とヨーク14、マグネット12,13とヨーク15、マグネット11と一方の分銅20、マグネット13と他方の分銅20は、それぞれ接着剤を介して接合されるが、その接合の前処理として、それらのメッキ膜の上に有機被膜が形成される。有機被膜は、例えば、有機酸または有機酸を含む混合酸を溶媒に溶解させた溶液を、マグネット11,12,13とヨーク14,15と分銅20のメッキ膜上に、塗布,浸漬などで被着させて形成する。 The magnets 11 and 12 and the yoke 14, the magnets 12 and 13 and the yoke 15, the magnet 11 and one weight 20, and the magnet 13 and the other weight 20 are joined via an adhesive, respectively. An organic film is formed on the plating films. For example, the organic coating is formed by coating or dipping a solution obtained by dissolving an organic acid or a mixed acid containing an organic acid in a solvent on the plating films of the magnets 11, 12, 13, the yokes 14, 15 and the weight 20. Form by wearing.
 このように、マグネット11,12,13とヨーク14,15と分銅20のメッキ膜の上に有機被膜を形成した後に、接着剤を介して、これらの接合を行うことで、メッキ膜の表面を均一に改質することができ、接着強度のばらつきが少ない接合を行うことができる。これによって、可動子2の安定した振動が得られる振動モータ1を得ることができる。 Thus, after forming an organic film on the plating films of the magnets 11, 12, 13, the yokes 14, 15, and the weights 20, these are bonded via an adhesive so that the surface of the plating film is formed. It can be uniformly modified, and bonding with little variation in adhesive strength can be performed. Thus, the vibration motor 1 that can obtain stable vibration of the mover 2 can be obtained.
 図4は、本発明の実施形態に係る振動モータ1を備えた電子機器の一例として、携帯情報端末100を示している。安定した振動が得られ薄型化や幅方向のコンパクト化が可能な振動モータ1を備える携帯情報端末100は、通信機能における着信やアラーム機能などの動作開始・終了時を異音が発生しにくい安定した振動で使用者に伝えることができる。また、振動モータ1の薄型化・幅方向のコンパクト化によって高い携帯性或いはデザイン性を追求した携帯情報端末100を得ることができる。更に、振動モータ1は、厚さを抑えた直方体形状の枠体4内に各部を収容したコンパクト形状であるから、薄型化された携帯情報端末100の内部にスペース効率よく装備することができる。 FIG. 4 shows a portable information terminal 100 as an example of an electronic apparatus provided with the vibration motor 1 according to the embodiment of the present invention. The portable information terminal 100 including the vibration motor 1 that can obtain a stable vibration and can be thinned and compact in the width direction is less likely to generate abnormal noise at the start and end of an incoming call or alarm function in a communication function. The vibration can be transmitted to the user. Further, the portable information terminal 100 pursuing high portability or design can be obtained by making the vibration motor 1 thin and compact in the width direction. Furthermore, since the vibration motor 1 has a compact shape in which each part is housed in a rectangular parallelepiped frame 4 with a reduced thickness, the vibration motor 1 can be efficiently installed inside the thinned portable information terminal 100.
 なお、前述した実施形態では、磁極部10が一軸方向(図示X軸方向)に着磁されたマグネット11,12,13を有し、コイル3が磁極部10を囲んで配置されているが、磁極部がコイルを囲んで配置されていてもよく、また、磁極部が一軸方向に直交する方向(例えば、図示Z軸方向)に着磁されたマグネットを有し、着磁方向でコイルが磁極部に対向するように配置されていてもよい。 In the above-described embodiment, the magnetic pole portion 10 includes the magnets 11, 12, and 13 magnetized in the uniaxial direction (the X-axis direction in the drawing), and the coil 3 is disposed so as to surround the magnetic pole portion 10. The magnetic pole portion may be disposed so as to surround the coil, and the magnetic pole portion has a magnet magnetized in a direction orthogonal to the uniaxial direction (for example, the Z-axis direction in the drawing), and the coil You may arrange | position so that a part may be opposed.
 以上、本発明の実施の形態について図面を参照して詳述してきたが、具体的な構成はこれらの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。 As described above, the embodiments of the present invention have been described in detail with reference to the drawings. However, the specific configuration is not limited to these embodiments, and the design can be changed without departing from the scope of the present invention. Is included in the present invention.
1:振動モータ,2:可動子,3(3A,3B):コイル,4:枠体,
5:弾性部材,6(6A,6B):ガイドシャフト,
10:磁極部,
11,12,13:マグネット,
14,15:ヨーク,
16:補強板,17:軸受,18:入力端子,
20:分銅,20A:凹部,20B:係合凹部,
30:磁極枠部,31:上面部,32:下面部,33:側面部,
40:上枠体,41:下枠体,41A:正面壁部,41B:側壁部
100:携帯情報端末
1: vibration motor, 2: mover, 3 (3A, 3B): coil, 4: frame,
5: Elastic member, 6 (6A, 6B): Guide shaft,
10: magnetic pole part,
11, 12, 13: Magnet,
14, 15: York,
16: reinforcing plate, 17: bearing, 18: input terminal,
20: Weight, 20A: recess, 20B: engagement recess,
30: magnetic pole frame part, 31: upper surface part, 32: lower surface part, 33: side part,
40: upper frame, 41: lower frame, 41A: front wall, 41B: side wall 100: portable information terminal

Claims (8)

  1.  マグネットを備える可動子と前記マグネットに駆動力を付与するコイルとを備え、
     前記可動子は、前記マグネットに接合されて当該マグネットと一体に動作する金属体を備え、
     前記マグネットと前記金属体は、双方がメッキ膜で被われると共に該メッキ膜上に有機被膜が形成され、該有機被膜上に塗布された接着剤を介して互いに接合されていることを特徴とする電磁駆動アクチュエータ。
    A mover including a magnet and a coil for applying a driving force to the magnet;
    The mover includes a metal body that is joined to the magnet and operates integrally with the magnet.
    The magnet and the metal body are both covered with a plating film, an organic film is formed on the plating film, and the magnet and the metal body are bonded to each other via an adhesive applied on the organic film. Electromagnetic drive actuator.
  2.  前記メッキ膜は、電気ニッケルメッキ、無電気ニッケルメッキ、亜鉛メッキ、クロムメッキから選択されることを特徴とする請求項1記載の電磁駆動アクチュエータ。 2. The electromagnetically driven actuator according to claim 1, wherein the plating film is selected from electric nickel plating, electroless nickel plating, zinc plating, and chromium plating.
  3.  前記有機被膜は、有機酸、または有機酸を含む混合酸を溶媒に溶解させて被着した膜であることを特徴とする請求項1または2記載の電磁駆動アクチュエータ。 3. The electromagnetically driven actuator according to claim 1, wherein the organic film is a film deposited by dissolving an organic acid or a mixed acid containing an organic acid in a solvent.
  4.  前記有機酸は、脂肪酸、糖酸、アミノ酸、ヒドロキシ酸から選択されることを特徴とする請求項3記載の電磁駆動アクチュエータ。 The electromagnetic drive actuator according to claim 3, wherein the organic acid is selected from fatty acids, sugar acids, amino acids, and hydroxy acids.
  5.  前記接着剤は、エポキシ樹脂系接着剤またはシリコーン樹脂系接着剤であることを特徴とする請求項1~4のいずれか1項に記載の電磁駆動アクチュエータ。 The electromagnetically driven actuator according to any one of claims 1 to 4, wherein the adhesive is an epoxy resin adhesive or a silicone resin adhesive.
  6.  前記金属体は分銅であり、前記可動子は振動する振動子であることを特徴とする請求項1~5のいずれか1項に記載の電磁駆動アクチュエータ。 6. The electromagnetically driven actuator according to claim 1, wherein the metal body is a weight, and the mover is a vibrator that vibrates.
  7.  マグネットを備えた磁極部と分銅を具備した可動子と、
     前記磁極部を囲んで前記可動子に一軸方向に沿った駆動力を付与するコイルと、
     前記コイルを保持する枠体と、
     前記枠体内に配置されて前記駆動力に反発する弾性力を前記可動子に付与する弾性部材と、
     前記枠体内で前記一軸方向に沿った前記可動子の振動をガイドするガイドシャフトとを備え、
     前記マグネットと前記分銅は、双方がメッキ膜で被われると共に該メッキ膜上に有機被膜が形成され、該有機被膜上に塗布された接着剤を介して互いに接合されていることを特徴とする電磁駆動アクチュエータ。
    A magnetic part having a magnet and a mover having a weight;
    A coil that encloses the magnetic pole portion and applies a driving force along a uniaxial direction to the mover;
    A frame for holding the coil;
    An elastic member that is arranged in the frame and imparts an elastic force repelling the driving force to the mover;
    A guide shaft that guides the vibration of the mover along the uniaxial direction in the frame body,
    The magnet and the weight are both covered with a plating film, an organic film is formed on the plating film, and the magnet and the weight are bonded to each other via an adhesive applied on the organic film. Drive actuator.
  8.  請求項1~7のいずれか1項に記載された電磁駆動アクチュエータを振動モータとして備えた携帯情報端末。 A portable information terminal comprising the electromagnetically driven actuator according to any one of claims 1 to 7 as a vibration motor.
PCT/JP2015/082955 2014-11-25 2015-11-24 Electromagnetic actuator WO2016084811A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201590001124.XU CN206951531U (en) 2014-11-25 2015-11-24 Electromagnetic drive actuator and personal digital assistant device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-238219 2014-11-25
JP2014238219A JP2016097382A (en) 2014-11-25 2014-11-25 Electromagnetic drive actuator

Publications (1)

Publication Number Publication Date
WO2016084811A1 true WO2016084811A1 (en) 2016-06-02

Family

ID=56074364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/082955 WO2016084811A1 (en) 2014-11-25 2015-11-24 Electromagnetic actuator

Country Status (3)

Country Link
JP (1) JP2016097382A (en)
CN (1) CN206951531U (en)
WO (1) WO2016084811A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102100358B1 (en) * 2016-09-28 2020-04-20 자화전자(주) Vibration actuator
JP2018061942A (en) * 2016-10-13 2018-04-19 日本電産コパル株式会社 Linear vibration motor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01286406A (en) * 1988-05-13 1989-11-17 Tdk Corp Rare earth alloy magnet having protecting coating
JPH07107714A (en) * 1993-10-05 1995-04-21 Shinichi Nishimura Structure and method for aligning
JP2000150216A (en) * 1998-09-10 2000-05-30 Sumitomo Special Metals Co Ltd Anticorrosion permanent magnet and its manufacture
JP2012138461A (en) * 2010-12-27 2012-07-19 Hitachi Metals Ltd Manufacturing method of corrosion-resistant magnet
JP2012217236A (en) * 2011-03-31 2012-11-08 Nidec Copal Corp Vibration actuator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01286406A (en) * 1988-05-13 1989-11-17 Tdk Corp Rare earth alloy magnet having protecting coating
JPH07107714A (en) * 1993-10-05 1995-04-21 Shinichi Nishimura Structure and method for aligning
JP2000150216A (en) * 1998-09-10 2000-05-30 Sumitomo Special Metals Co Ltd Anticorrosion permanent magnet and its manufacture
JP2012138461A (en) * 2010-12-27 2012-07-19 Hitachi Metals Ltd Manufacturing method of corrosion-resistant magnet
JP2012217236A (en) * 2011-03-31 2012-11-08 Nidec Copal Corp Vibration actuator

Also Published As

Publication number Publication date
CN206951531U (en) 2018-02-02
JP2016097382A (en) 2016-05-30

Similar Documents

Publication Publication Date Title
US10610893B2 (en) Vibration actuator and portable device
JP6396129B2 (en) Manufacturing method of linear vibration motor
US10610894B2 (en) Vibration actuator and portable device
US10610892B2 (en) Vibration actuator and portable device
US20190207496A1 (en) Vibration actuator and portable device
US10424999B2 (en) Linear vibration motor
WO2016114384A1 (en) Vibrating actuator
WO2016114383A1 (en) Linear vibration motor
WO2019102704A1 (en) Linear vibration motor and electronic apparatus
CN107710572B (en) Linear vibration motor
JP2020025414A (en) Method of manufacturing magnet unit, magnet unit, vibration motor, and tactile device
WO2016084811A1 (en) Electromagnetic actuator
JP6297478B2 (en) Linear vibration motor
JP2017221905A (en) Linear vibration motor
KR20110029348A (en) Voice coil motor
JP6333186B2 (en) Linear vibration motor
WO2016084807A1 (en) Linear vibration motor
WO2017002949A1 (en) Linear vibration motor
KR20110029345A (en) Voice coil motor and manufacturing method of the same
JP6333187B2 (en) Linear vibration motor
KR101744460B1 (en) Voice coil motor and manufacturing method of the same
JP6453182B2 (en) Linear vibration motor and portable electronic device including the linear vibration motor
JP2017122823A (en) Magnetic driving unit and method for manufacturing magnetic driving unit
JP2017017875A (en) Linear vibration motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15862652

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15862652

Country of ref document: EP

Kind code of ref document: A1