WO2016084765A1 - Device for vaporizing liquefied gas - Google Patents

Device for vaporizing liquefied gas Download PDF

Info

Publication number
WO2016084765A1
WO2016084765A1 PCT/JP2015/082840 JP2015082840W WO2016084765A1 WO 2016084765 A1 WO2016084765 A1 WO 2016084765A1 JP 2015082840 W JP2015082840 W JP 2015082840W WO 2016084765 A1 WO2016084765 A1 WO 2016084765A1
Authority
WO
WIPO (PCT)
Prior art keywords
vaporizer
heat medium
liquefied gas
gas
intermediate heat
Prior art date
Application number
PCT/JP2015/082840
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤大樹
杉山修
中川政和
Original Assignee
大阪瓦斯株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大阪瓦斯株式会社 filed Critical 大阪瓦斯株式会社
Publication of WO2016084765A1 publication Critical patent/WO2016084765A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • F17C9/04Recovery of thermal energy

Definitions

  • the present invention relates to an intermediate heat medium vaporizer that vaporizes an intermediate heat medium by exchanging heat between the heat source fluid and an intermediate heat medium having a lower boiling point than the heat source fluid, and an intermediate heat medium vaporized by the intermediate heat medium vaporizer
  • the intermediate heat medium and the liquefied gas to be vaporized are heat-exchanged to condense the intermediate heat medium, and the liquefied gas vaporizer to vaporize the liquefied gas to be vaporized is provided from the liquefied gas vaporizer.
  • the present invention relates to a liquefied gas vaporizer configured to return an intermediate heat medium to an intermediate heat medium vaporizer.
  • Such a liquefied gas vaporizer is, for example, a liquefied natural gas as a liquefied gas to be vaporized, and the liquefied natural gas is vaporized to produce a natural gas as a product gas.
  • a liquefied natural gas as a liquefied gas to be vaporized
  • propane is used as an intermediate heat medium having a boiling point lower than that of the heat source fluid. That is, while the intermediate heat medium is circulated between the intermediate heat medium vaporizer and the liquefied gas vaporizer, the intermediate heat medium vaporizer exchanges heat between the intermediate heat medium condensed by the liquefied gas vaporizer and the heat source fluid.
  • the intermediate heat medium is vaporized, and in the liquefied gas vaporizer, the intermediate heat medium vaporized by the intermediate heat medium vaporizer and the liquefied gas to be vaporized are heat-exchanged to condense and vaporize the intermediate heat medium.
  • the target liquefied gas is vaporized to generate a predetermined product gas.
  • a product gas temperature riser that heat-exchanges the produced gas produced by the liquefied gas vaporizer and the heat source fluid to raise the temperature of the produced gas (see, for example, Patent Document 1).
  • the temperature of the heat source fluid is considerably low (when the heat source fluid is seawater, for example, 3 ° C. or less)
  • the temperature of the generated gas is raised above a predetermined temperature (the generated gas is heated by simply raising the temperature of the generated gas with a generated gas heater).
  • the temperature may not be raised to, for example, 0 ° C. or higher.
  • a heat source that heats a heat source fluid (seawater in the case of Patent Document 1) using the combustion gas of the burner as a heat source before being supplied to the product gas heater.
  • a fluid preheater was provided.
  • a liquefied gas vaporizer installed in an area where the temperature of the obtained heat source fluid can be considerably low.
  • seawater is used as a heat source fluid
  • a liquefied gas vaporizer installed in an area where seawater is taken as a heat source fluid from a low temperature sea area where the seawater temperature is considerably low can be mentioned.
  • the product gas is reliably generated at a predetermined temperature or higher (eg, 0 ° C. or higher when the generated gas is natural gas). Therefore, a so-called submerged vaporizer (SCV) has been proposed as a device having a configuration different from that of the liquefied gas vaporizer.
  • This submerged vaporizer uses a burner as a heat source to heat a heating medium (for example, water) and heats the liquefied gas to be vaporized by the heating medium heated by the burner-type heating medium heater.
  • a liquefied gas heater that vaporizes the liquefied gas to be vaporized is provided.
  • the liquefied gas heater is configured to input energy to the burner type heating medium heater so as to heat the heating medium in the burner type heating medium heater so that a product gas having a predetermined temperature or higher can be obtained. It was.
  • the intermediate heat medium is circulated through the intermediate heat medium vaporizer and the liquefied gas vaporizer.
  • the intermediate heat medium vaporizer the intermediate heat medium is vaporized by being given only the sensible heat of the heat source fluid, and in the liquefied gas vaporizer, the sensible heat and condensation latent heat of the intermediate heat medium are given to the liquefied gas.
  • the liquefied gas is vaporized. Therefore, in order to efficiently obtain heat for vaporizing the liquefied gas from the heat source fluid to the intermediate heat medium, the flow rate at which the heat source fluid is supplied to the intermediate heat medium vaporizer is the same as that of the intermediate heat medium vaporizer and the liquefied gas.
  • the product gas temperature riser raises the product gas by giving only the sensible heat of the heat source fluid to the product gas.
  • the flow rate supplied to the product gas temperature riser also needs to be considerably higher than the flow rate for circulating the intermediate heat medium through the intermediate heat medium vaporizer and the liquefied gas vaporizer.
  • the flow rate of the heat source fluid such as seawater supplied to the product gas temperature riser is considerably large. Since the heat exchange area for exchanging heat with the gas needs to be considerably widened, there is a problem that the product gas temperature riser is enlarged, and the vaporizer for liquefied gas is also enlarged. Furthermore, when a heat source fluid preheater used when the temperature of the heat source fluid is low is provided, the configuration of the vaporizer for the liquefied gas is further complicated, and energy is consumed in the heat source fluid preheater. Therefore, there is a problem that the amount of energy consumption increases in order to generate a product gas having a predetermined temperature or higher.
  • the submerged vaporizer in the submerged vaporizer, a large amount of energy is consumed in the burner heating medium heater in order to generate a product gas having a predetermined temperature or higher. Therefore, although the submerged vaporizer can surely generate a product gas having a predetermined temperature or higher, there is a problem that the amount of energy consumed for that purpose increases.
  • the present invention has been made in view of such circumstances, and the purpose thereof is to vaporize the liquefied gas to be vaporized and generate a product gas having a predetermined temperature or higher even when the temperature of the heat source fluid is low,
  • An object of the present invention is to provide a vaporizer for liquefied gas that can be reduced in size, simplified in configuration, and saved in energy.
  • a vaporizer for liquefied gas is an intermediate heat medium vaporizer that vaporizes an intermediate heat medium by exchanging heat between the heat source fluid and an intermediate heat medium having a boiling point lower than that of the heat source fluid.
  • the intermediate heat medium vaporized by the intermediate heat medium vaporizer is supplied, heat exchange is performed between the intermediate heat medium and the liquefied gas to be vaporized, the intermediate heat medium is condensed, and the liquefied gas to be vaporized is vaporized.
  • a liquefied gas vaporizer configured to return an intermediate heat medium from the liquefied gas vaporizer to the intermediate heat medium vaporizer, the characteristic configuration of which is A temperature raising means for raising the temperature of the intermediate heat medium that is vaporized by the intermediate heat medium vaporizer and supplied to the liquefied gas vaporizer is provided.
  • the liquefied gas to be vaporized in the liquefied gas vaporizer Since the temperature of the intermediate heat medium to be heat-exchanged can be increased, the temperature of the product gas generated by vaporizing the liquefied gas to be vaporized in the liquefied gas vaporizer can be increased.
  • the liquefied gas vaporizer can reliably A product gas having a predetermined temperature or higher can be generated.
  • the flow rate of circulating the intermediate heat medium between the liquefied gas vaporizer and the intermediate heat medium vaporizer is considerably higher than the flow rate of supplying a heat source fluid such as seawater to the product gas heater in the conventional liquefied gas vaporizer.
  • a liquefied gas vaporizer installed in an area where the temperature of the obtained heat source fluid can be considerably low, such as an area adjacent to a low-temperature sea area has been provided with a heat source fluid preheater. Since the fluid pre-heater can be dispensed with, the liquefied gas vaporizer can be downsized and the configuration can be simplified.
  • the temperature raising means is configured without a heat exchanger, it is possible to further promote downsizing and simplification of the configuration. Even if the temperature raising means is configured to include a heat exchanger, the heat exchanger is replaced with a heat exchanger that constitutes a product gas temperature raising device and a heat source fluid preheater in a conventional liquefied gas vaporizer. The size can be reduced compared to the above. In addition, when generating a product gas of a predetermined temperature or higher, the amount of energy consumed by the temperature raising means is used as a heat source fluid preheater in a conventional liquefied gas vaporizer or a burner type heating medium heater in a submerged vaporizer. The amount of energy consumed can be reduced.
  • the liquefied gas for liquefied gas can be generated by evaporating the liquefied gas to be vaporized to generate a product gas at a predetermined temperature or more, and can achieve downsizing, simplification of configuration, and energy saving.
  • An apparatus can be provided.
  • the temperature raising means includes a compressor that compresses the temperature of the intermediate heat medium vaporized by the intermediate heat medium vaporizer and raises the temperature.
  • the temperature raising means is constituted by the compressor that raises the temperature by compressing the intermediate heat medium
  • the temperature raising means can be configured without a heat exchanger. This eliminates the need for a heat transfer side fluid generating device in the heat exchanger as compared with the case where the temperature raising means is provided with a heat exchanger, and as control related to the temperature raising means, Control of the flow rate, temperature, pressure, and the like of the heat transfer side fluid is no longer necessary, and only control of the energy input to the compressor is achieved. Therefore, downsizing and simplification of the configuration can be further promoted.
  • the intermediate heat medium is compressed and pressurized by the compressor, the pressure energy can be used as energy for circulating the intermediate heat medium across the intermediate heat medium vaporizer and the liquefied gas vaporizer. Energy saving can be promoted by eliminating the need for a pump for circulating the medium over the intermediate heat medium vaporizer and the liquefied gas vaporizer.
  • the intermediate heat medium can be circulated appropriately, the product gas can be generated stably. Therefore, it is possible to further promote downsizing, simplification, and energy saving of the liquefied gas vaporizer.
  • a further characteristic configuration of the vaporizer for liquefied gas according to the present invention is as follows: A pressure reducing means for reducing the pressure of the intermediate heat medium returned from the liquefied gas vaporizer to the intermediate heat medium vaporizer is provided.
  • the intermediate heat medium returned from the liquefied gas vaporizer to the intermediate heat medium vaporizer is depressurized by the decompression means, the boiling point of the liquid intermediate heat medium returned to the intermediate heat medium vaporizer is intermediate Since it can be made sufficiently lower than the temperature of the heat source fluid supplied to the heat medium vaporizer, the intermediate heat medium can be stably vaporized by the heat source fluid in the intermediate heat medium vaporizer. Therefore, it is possible to further stabilize the process of generating a product gas having a predetermined temperature or higher.
  • a further characteristic configuration of the vaporizer for liquefied gas according to the present invention is as follows:
  • the decompression means is an expander, and a generator driven by the expander is provided.
  • the expander is driven by the pressure energy of the intermediate heat medium returned from the liquefied gas vaporizer to the intermediate heat medium vaporizer, and the generator is driven by the expander.
  • the electric power generated by the generator can be used as energy for raising the temperature of the intermediate heat medium in the temperature raising means. Therefore, energy saving of the liquefied gas vaporizer can be further promoted.
  • a further characteristic configuration of the vaporizer for liquefied gas according to the present invention is as follows:
  • the temperature raising means is configured to adjust the energy consumed so as to adjust the temperature of the product gas generated by vaporizing the liquefied gas to be vaporized in the liquefied gas vaporizer to the target temperature. is there.
  • the energy consumed by the temperature raising means is adjusted so that the temperature of the product gas becomes the target temperature, the product gas having a predetermined temperature can be generated accurately, and Therefore, it is possible to prevent the temperature of the product gas from being raised unnecessarily, and to accurately save energy. Therefore, it is possible to accurately generate a product gas having a predetermined temperature while accurately saving energy.
  • the block diagram which shows the whole structure of the vaporization apparatus for liquefied gas which concerns on embodiment.
  • the figure which shows the relationship between the temperature of the seawater for producing the natural gas of 0 degreeC, and the power of the compressor
  • the block diagram which shows the whole structure of the vaporization apparatus for liquefied gas which concerns on another embodiment.
  • seawater an example of natural water
  • propane having a boiling point lower than that of seawater and an condensation point higher than that of liquefied natural gas
  • an intermediate heat medium an example of an intermediate heat medium.
  • the vaporized intermediate heat medium that is, the gaseous intermediate heat medium is propane gas
  • the propane gas is generated by vaporizing the liquefied petroleum gas. That is, liquefied petroleum gas is applied as the liquid intermediate heat medium.
  • the vaporizer for liquefied gas includes seawater SW (an example of a heat source fluid) and liquefied petroleum gas LPG (an intermediate heat medium (specifically, a liquid intermediate heat medium) having a lower boiling point than the seawater SW).
  • An intermediate heat medium vaporizer 10 that vaporizes the liquefied petroleum gas LPG, and propane gas PG (specifically a gaseous heat medium (specifically, gaseous gas) vaporized by the intermediate heat medium vaporizer 10).
  • propane gas PG and the liquefied natural gas LNG (an example of the liquefied gas) to be vaporized are subjected to heat exchange to condense the propane gas PG and vaporize the liquefied natural gas LNG.
  • a liquefied petroleum gas LPG (intermediate heat medium (specifically) from the liquefied gas vaporizer 20 to the intermediate heat medium vaporizer 10 and the control unit 1 for controlling the operation of the liquefied gas vaporizer.
  • An example of the intermediate heat medium liquid) is configured to be returned.
  • the temperature raising means 30 for raising the temperature of the propane gas PG vaporized by the intermediate heat medium vaporizer 10 and supplied to the liquefied gas vaporizer 20 is provided. Furthermore, in this embodiment, a decompression means 40 for decompressing the liquefied petroleum gas LPG returned from the liquefied gas vaporizer 20 to the intermediate heat medium vaporizer 10 is provided.
  • the intermediate heat medium vaporizer 10 is configured by a shell-and-tube (multi-tube) heat exchanger, and is contained in a shell 11 that can store liquefied petroleum gas LPG in a state of forming a gas phase portion that is filled with propane gas PG.
  • a large number of heat transfer tubes 12 through which the seawater SW flows are arranged side by side.
  • Each heat transfer tube 12 is linear, and is provided in the shell 11 in a state where both ends are supported on the side portions of the shell 11 with the tube axis aligned along the horizontal direction.
  • a seawater inflow chamber 13 is provided on the side portion of the shell 11 where one end of each heat transfer tube 12 is supported, in communication with one end of each heat transfer tube 12, and the other end of each heat transfer tube 12 in the shell 11.
  • the seawater inflow chamber 13 is connected to the seawater supply path 2 through which the seawater SW flows into each heat transfer tube 12 via the seawater inflow chamber 13, and the seawater outflow chamber 14 receives the seawater SW flowing out from each heat transfer tube 12.
  • a seawater discharge passage 3 for discharging to the outside through the seawater outflow chamber 14 is connected.
  • the seawater supply path 2 is provided with a seawater pump 4 that pumps the seawater SW to the intermediate heat medium vaporizer 10 (specifically, the heat transfer pipe 12).
  • the liquefied gas vaporizer 20 is also constituted by a shell-and-tube heat exchanger, and the liquefied natural gas LNG is stored in the shell 21 that can store the liquefied petroleum gas LPG in a state of forming a gas phase portion that is filled with the propane gas PG.
  • a large number of heat transfer tubes 22 to be passed are arranged in parallel.
  • Each heat transfer tube 22 is U-shaped, and each U-shaped heat transfer tube 22 has its both ends aligned in the vertical direction and both ends supported by one side of the shell 21. Is provided inside.
  • the liquefied natural gas inflow chamber 23 communicates with the lower end of each heat transfer tube 22 on the side of the shell 21 where both ends of each heat transfer tube 22 are supported, and the natural gas outflow The chambers 24 are respectively provided in communication with the upper end portions of the heat transfer tubes 22.
  • the liquefied natural gas inflow chamber 23 is connected to the liquefied natural gas supply path 5 through which the liquefied natural gas LNG flows into the heat transfer tubes 22 via the liquefied natural gas inflow chamber 23, and each of the natural gas outflow chambers 24 is connected to each liquefied natural gas inflow chamber 23.
  • a natural gas delivery path 6 is connected through which the natural gas NG (an example of the produced gas) produced by vaporizing the liquefied natural gas LNG flowing through the heat transfer pipe 22 is sent to the outside through the natural gas outflow chamber 24. .
  • the intermediate heat medium vaporizer 10 In order to circulate propane (propane gas PG, liquefied petroleum gas LPG) between the intermediate heat medium vaporizer 10 and the liquefied gas vaporizer 20, heat is exchanged with the shell 11 of the intermediate heat medium vaporizer 10 and liquefied.
  • the shell 21 of the gas vaporizer 20 is connected by the heat medium circulation path 7. Specifically, the gas phase portion above the shell 11 of the intermediate heat medium vaporizer 10 and the gas phase portion above the shell 21 of the liquefied gas vaporizer 20 are connected from the intermediate heat medium vaporizer 10 to the liquefied gas vaporizer.
  • the forward path 7f of the heat medium circulation path 7 is provided with a compressor 31 for compressing the propane gas PG flowing through the forward path 7f to increase the temperature and pressure.
  • a pressure reducing valve 41 is provided as a pressure reducing means 40 in the return path 7 r of the heat medium circulation path 7.
  • the natural gas delivery path 6 is provided with a natural gas temperature sensor 8 for detecting the temperature of the natural gas NG flowing therethrough.
  • the control part 1 is comprised so that the electric power which drives the compressor 31 may be adjusted so that the detection temperature of the natural gas temperature sensor 8 may become predetermined
  • the target temperature is set to 0 ° C., for example.
  • the temperature raising means 30 includes the compressor 31 and the control unit 1, and adjusts the temperature of the natural gas NG generated by vaporizing the liquefied natural gas LNG to be vaporized in the liquefied gas vaporizer 20 to the target temperature. Therefore, it is comprised so that the energy consumed may be adjusted.
  • Seawater SW is supplied to the intermediate heat medium vaporizer 10 through the seawater supply path 2 by the seawater pump 4, and the seawater SW flows into each heat transfer pipe 12 through the seawater inflow chamber 13 and flows through each heat transfer pipe 12.
  • the water is discharged to the outside through the seawater discharge passage 3 through the seawater outflow chamber 14.
  • the liquefied petroleum gas LPG accumulated in the shell 11 of the intermediate heat medium vaporizer 10 is heated by the seawater SW flowing through each heat transfer tube 12, and a part of the liquefied petroleum gas LPG is vaporized, and the propane gas PG Fills the shell 11.
  • the propane gas PG in the shell 11 of the intermediate heat medium vaporizer 10 flows out to the forward path 7 f of the heat medium circulation path 7, and is pressurized and heated by compression by the compressor 31, and then passes through the forward path 7 f of the heat medium circulation path 7. It flows into the shell 21 of the liquefied gas vaporizer 20.
  • the liquefied natural gas LNG is supplied to the liquefied gas vaporizer 20 through the liquefied natural gas supply path 5, and the liquefied natural gas LNG flows into the heat transfer tubes 22 via the liquefied natural gas inflow chambers 23, and each heat transfer tube. 22 flows.
  • the temperature is sufficiently lower than the temperature and returned to the shell 11 of the intermediate heat medium vaporizer 10.
  • control unit 1 adjusts the temperature of the propane gas PG supplied to the liquefied gas vaporizer 20 so that the detected temperature of the natural gas temperature sensor 8 becomes a target temperature (for example, 0 ° C.). Adjust the power to drive.
  • the conditions are a temperature of 3 ° C., a flow rate of 9300 t / h, and propane (propane
  • the flow rate of circulating the gas PG and the liquefied petroleum gas LPG) through the intermediate heat medium vaporizer 10 and the liquefied gas vaporizer 20 is 200 to 300 t / h.
  • the liquefied petroleum gas LPG is vaporized by the sensible heat of the seawater SW in the intermediate heat medium vaporizer 10 to obtain a saturated propane gas PG of ⁇ 7 ° C. and 0.28 MPaG.
  • the saturated propane gas PG is compressed by the compressor 31 and heated to 10 ° C. and 0.45 MPaG, the temperature is increased to about ⁇ 160 to ⁇ 150 ° C. and the flow rate is 150 t / h in the liquefied gas vaporizer 20.
  • the entire amount of the liquefied natural gas LNG supplied in the above was vaporized by the sensible heat and latent heat of condensation of the propane gas PG, and the natural gas NG at 0 ° C. could be stably generated.
  • the power supplied to the compressor 31 is adjusted to about 1,900 kW by the control unit 1, and the power of the seawater pump 4 is about 336 kW, considering power transmission loss, power generation efficiency of the power plant, and the like.
  • the amount of primary energy consumed by the compressor 31 and the seawater pump 4 is about 5,845 kW.
  • FIG. 2 shows the result of examining the power supplied to the compressor 31, that is, the power of the compressor 31, by varying the temperature of the SW. As shown in FIG. 2, as the temperature of the seawater SW increases, the power of the compressor 31 decreases, and when the temperature of the seawater SW reaches 15 ° C. or higher, it is not necessary to operate the compressor 31.
  • the consumption of natural gas is 3,000 m 3 (standard state) / h, and if the calorific value of natural gas is 41 MJ / m 3 (standard state), the amount of primary energy consumed is 34,083 kW (122,700 MJ / h).
  • the amount of primary energy required to vaporize the liquefied natural gas LNG supplied at a flow rate of 150 t / h at a temperature of about ⁇ 160 to ⁇ 150 ° C. to generate natural gas NG at 0 ° C. is
  • the liquefied gas vaporizer according to the present invention is about 5,845 kW
  • the conventional liquefied gas vaporizer is 32,110 kW
  • the submerged vaporizer is 34,083 kW. Energy saving of the vaporizer can be achieved.
  • the product gas temperature riser and the heat source fluid preheater in the conventional liquefied gas vaporizer are not required, so the liquefied gas vaporizer can be downsized and configured. Simplification can be achieved.
  • a specific example of the temperature raising means 30 is not limited to the compressor 31 exemplified in the above embodiment.
  • a heat exchanger or an electric heater can be used.
  • the heat exchanger include a heat exchanger that exchanges heat between the combustion gas of the gas burner and the gaseous intermediate heat medium using the gas burner as a heat source. Note that the flow rate for circulating propane across the intermediate heat medium vaporizer 10 and the liquefied gas vaporizer 20 is sufficiently smaller than the flow rate at which seawater is supplied to the product gas heater in the conventional liquefied gas vaporizer.
  • the heat exchange area of the heat exchanger is sufficiently smaller than the heat exchange area of the product gas temperature riser in the conventional liquefied gas vaporizer. Therefore, the liquefied gas vaporizer can be downsized and simplified in configuration.
  • the heat exchanger constituting the intermediate heat medium vaporizer 10 and the liquefied gas vaporizer 20 is not limited to the shell-and-tube heat exchanger exemplified in the above embodiment, but a plate type, Various types of heat exchangers can be used.
  • the liquefied gas vaporizer of the present invention is not limited to the liquefied natural gas LNG as the liquefied gas to be vaporized, as exemplified in the above embodiment, but various liquefied gases such as liquefied nitrogen, ethylene, liquefied oxygen, etc.
  • the present invention can be applied to a gas to be vaporized.
  • any one of natural waters such as river water, lake water, ground water and surface water can be used in addition to the seawater SW exemplified in the above embodiment.
  • what mixed any two or more of natural waters, such as seawater SW, river water, lake water, groundwater, and surface water, can be used.
  • the intermediate heat medium is not limited to propane exemplified in the above embodiment, and various boiling points such as chlorofluorocarbon and butane are lower than the temperature of the heat source fluid (seawater SW in the above embodiment). Things can be used.
  • the liquefied gas to be vaporized can be vaporized to generate a product gas at a predetermined temperature or more, and further, downsizing, simplification of the configuration, and energy saving can be achieved.
  • a vaporizer for liquefied gas can be provided.

Abstract

Provided is a device for vaporizing a liquefied gas, with which, even if a heat source fluid has a low temperature, a liquefied gas intended to be vaporized can be vaporized to produce a produced gas of a predetermined temperature or higher, and it is possible to simplify the configuration and conserve energy. The device for vaporizing a liquefied gas is provided with: an intermediate heat medium vaporizer (10) for exchanging heat between a heat source fluid (SW) and an intermediate heat medium (LPG), and vaporizing the intermediate heat medium (LPG); and a liquefied gas vaporizer (20) to which an intermediate heat medium (PG) vaporized at the intermediate heat medium vaporizer (10) is supplied, and which exchanges heat between the intermediate heat medium (PG) and a liquefied gas (LNG) intended to be vaporized, condenses the intermediate heat medium (PG), and vaporizes the liquefied gas (LNG) intended to be vaporized. The device is configured such that the intermediate heat medium (LPG) is returned from the liquefied gas vaporizer (20) to the intermediate heat medium vaporizer (10), wherein the device is provided with a temperature-raising means (30) for raising the temperature of the intermediate heat medium (PG) that is vaporized at the intermediate heat medium vaporizer (10) and supplied to the liquefied gas vaporizer (20).

Description

液化ガス用気化装置Vaporizer for liquefied gas
 本発明は、熱源流体とその熱源流体よりも沸点の低い中間熱媒体とを熱交換させて、中間熱媒体を気化させる中間熱媒体気化器と、中間熱媒体気化器で気化された中間熱媒体が供給され、当該中間熱媒体と気化対象の液化ガスとを熱交換させて、中間熱媒体を凝縮させると共に、気化対象の液化ガスを気化させる液化ガス気化器とを備え、液化ガス気化器から中間熱媒体気化器に中間熱媒体が戻されるように構成された液化ガス用気化装置に関する。 The present invention relates to an intermediate heat medium vaporizer that vaporizes an intermediate heat medium by exchanging heat between the heat source fluid and an intermediate heat medium having a lower boiling point than the heat source fluid, and an intermediate heat medium vaporized by the intermediate heat medium vaporizer The intermediate heat medium and the liquefied gas to be vaporized are heat-exchanged to condense the intermediate heat medium, and the liquefied gas vaporizer to vaporize the liquefied gas to be vaporized is provided from the liquefied gas vaporizer. The present invention relates to a liquefied gas vaporizer configured to return an intermediate heat medium to an intermediate heat medium vaporizer.
 かかる液化ガス用気化装置は、例えば、液化天然ガスを気化対象の液化ガスとして、その液化天然ガスを気化させて天然ガスを生成ガスとして生成するものであり、熱源流体として、例えば、海水、河川水、湖沼水、地下水又は地表水等の自然水の他、工業用水や水道水等が用いられ、熱源流体よりも沸点の低い中間熱媒体として、例えば、プロパンが用いられる。
 即ち、中間熱媒体が中間熱媒体気化器と液化ガス気化器とにわたって循環されながら、中間熱媒体気化器においては、液化ガス気化器で凝縮された中間熱媒体と熱源流体とを熱交換させて、中間熱媒体を気化させ、液化ガス気化器においては、中間熱媒体気化器で気化された中間熱媒体と気化対象の液化ガスとを熱交換させることにより、中間熱媒体を凝縮させると共に、気化対象の液化ガスを気化させて、所定の生成ガスを生成するようになっている。
Such a liquefied gas vaporizer is, for example, a liquefied natural gas as a liquefied gas to be vaporized, and the liquefied natural gas is vaporized to produce a natural gas as a product gas. In addition to natural water such as water, lake water, ground water or surface water, industrial water or tap water is used, and propane is used as an intermediate heat medium having a boiling point lower than that of the heat source fluid.
That is, while the intermediate heat medium is circulated between the intermediate heat medium vaporizer and the liquefied gas vaporizer, the intermediate heat medium vaporizer exchanges heat between the intermediate heat medium condensed by the liquefied gas vaporizer and the heat source fluid. The intermediate heat medium is vaporized, and in the liquefied gas vaporizer, the intermediate heat medium vaporized by the intermediate heat medium vaporizer and the liquefied gas to be vaporized are heat-exchanged to condense and vaporize the intermediate heat medium. The target liquefied gas is vaporized to generate a predetermined product gas.
 ところで、このような液化ガス用気化装置において、熱源流体の温度が低い場合、気化対象の液化ガスを気化させて生成した生成ガスの温度が低くなるので、生成ガスの消費先において、生成ガスを消費する際に支障を来す虞がある。
 例えば、生成ガスとして天然ガスを生成する場合、生成された天然ガスの温度が0℃よりも低くなると、消費先で、配管等の表面が氷結する等の問題が生じる虞がある。
By the way, in such a liquefied gas vaporizer, when the temperature of the heat source fluid is low, the temperature of the product gas generated by vaporizing the liquefied gas to be vaporized is lowered, so the product gas is consumed at the consumption destination of the product gas. There is a risk of hindering consumption.
For example, when natural gas is produced as produced gas, if the temperature of the produced natural gas is lower than 0 ° C., there is a possibility that problems such as freezing of the surface of piping or the like may occur at the consumer.
 そこで、従来は、液化ガス気化器で生成された生成ガスと熱源流体とを熱交換させて、生成ガスを昇温する生成ガス昇温器が設けられていた(例えば、特許文献1参照。)。
 又、熱源流体の温度がかなり低くなると(熱源流体が海水の場合、例えば3℃以下)、生成ガス昇温器で生成ガスを昇温するだけでは、生成ガスを所定の温度以上(生成ガスが天然ガスの場合、例えば0℃以上)に昇温することができない場合がある。そこで、特許文献1には記載されていないが、熱源流体(特許文献1の場合は、海水)を、生成ガス昇温器に供給される前に、バーナの燃焼ガスを熱源にして加熱する熱源流体事前加熱器が設けられる場合もあった。
 このような熱源流体事前加熱器が設けられる例としては、得られる熱源流体の温度がかなり低くなり得る地域に設置される液化ガス用気化装置が挙げられる。例えば海水を熱源流体として用いる場合に、海水温がかなり低い低温海域から海水を熱源流体として取水する地域に設置される液化ガス用気化装置が挙げられる。
In view of this, conventionally, a product gas temperature riser is provided that heat-exchanges the produced gas produced by the liquefied gas vaporizer and the heat source fluid to raise the temperature of the produced gas (see, for example, Patent Document 1). .
Further, when the temperature of the heat source fluid is considerably low (when the heat source fluid is seawater, for example, 3 ° C. or less), the temperature of the generated gas is raised above a predetermined temperature (the generated gas is heated by simply raising the temperature of the generated gas with a generated gas heater). In the case of natural gas, the temperature may not be raised to, for example, 0 ° C. or higher. Therefore, although not described in Patent Document 1, a heat source that heats a heat source fluid (seawater in the case of Patent Document 1) using the combustion gas of the burner as a heat source before being supplied to the product gas heater. In some cases, a fluid preheater was provided.
As an example in which such a heat source fluid preheater is provided, there is a liquefied gas vaporizer installed in an area where the temperature of the obtained heat source fluid can be considerably low. For example, when seawater is used as a heat source fluid, a liquefied gas vaporizer installed in an area where seawater is taken as a heat source fluid from a low temperature sea area where the seawater temperature is considerably low can be mentioned.
 又、熱源流体の温度が低い(熱源流体が海水の場合は、例えば3℃以下)場合でも、確実に所定の温度以上(生成ガスが天然ガスの場合、例えば0℃以上)の生成ガスを生成するために、液化ガス用気化装置とは別の構成の装置として、所謂、サブマージド式気化装置(Submerged Combustion Vaporizer(SCV))が提案されている。
 このサブマージド式気化装置は、バーナを熱源として加熱媒体(例えば、水)を加熱するバーナ式加熱媒体加熱器と、そのバーナ式加熱媒体加熱器で加熱された加熱媒体により気化対象の液化ガスを加熱して、気化対象の液化ガスを気化させる液化ガス加熱器とを設けて構成される。そして、液化ガス加熱器において、所定の温度以上の生成ガスが得られるように、バーナ式加熱媒体加熱器において加熱媒体を加熱すべく、バーナ式加熱媒体加熱器にエネルギーを投入するように構成されていた。
In addition, even when the temperature of the heat source fluid is low (for example, 3 ° C. or lower when the heat source fluid is seawater), the product gas is reliably generated at a predetermined temperature or higher (eg, 0 ° C. or higher when the generated gas is natural gas). Therefore, a so-called submerged vaporizer (SCV) has been proposed as a device having a configuration different from that of the liquefied gas vaporizer.
This submerged vaporizer uses a burner as a heat source to heat a heating medium (for example, water) and heats the liquefied gas to be vaporized by the heating medium heated by the burner-type heating medium heater. A liquefied gas heater that vaporizes the liquefied gas to be vaporized is provided. The liquefied gas heater is configured to input energy to the burner type heating medium heater so as to heat the heating medium in the burner type heating medium heater so that a product gas having a predetermined temperature or higher can be obtained. It was.
特開昭53-5207号公報JP-A-53-5207
 ところで、中間熱媒体は、中間熱媒体気化器と液化ガス気化器とにわたって循環される。そして、中間熱媒体気化器においては、中間熱媒体は、熱源流体の顕熱のみが与えられて気化され、液化ガス気化器においては、中間熱媒体の顕熱および凝縮潜熱が液化ガスに与えられて、液化ガスが気化される。
 そこで、液化ガスを気化させるための熱を熱源流体から中間熱媒体に効率良く得るために、熱源流体を中間熱媒体気化器に供給する流量は、中間熱媒体を中間熱媒体気化器と液化ガス気化器とにわたって循環させる流量に比べて、かなり多くする(例えば、30~40倍程度)必要がある。
 又、生成ガス昇温器を設けた従来の液化ガス用気化装置においては、生成ガス昇温器では、熱源流体の顕熱のみを生成ガスに与えて生成ガスを昇温するので、熱源流体を生成ガス昇温器に供給する流量も、中間熱媒体を中間熱媒体気化器と液化ガス気化器とにわたって循環させる流量に比べて、かなり多くする必要がある。
By the way, the intermediate heat medium is circulated through the intermediate heat medium vaporizer and the liquefied gas vaporizer. In the intermediate heat medium vaporizer, the intermediate heat medium is vaporized by being given only the sensible heat of the heat source fluid, and in the liquefied gas vaporizer, the sensible heat and condensation latent heat of the intermediate heat medium are given to the liquefied gas. Thus, the liquefied gas is vaporized.
Therefore, in order to efficiently obtain heat for vaporizing the liquefied gas from the heat source fluid to the intermediate heat medium, the flow rate at which the heat source fluid is supplied to the intermediate heat medium vaporizer is the same as that of the intermediate heat medium vaporizer and the liquefied gas. It is necessary to considerably increase the flow rate (for example, about 30 to 40 times) compared with the flow rate circulated through the vaporizer.
Further, in a conventional liquefied gas vaporizer provided with a product gas temperature riser, the product gas temperature riser raises the product gas by giving only the sensible heat of the heat source fluid to the product gas. The flow rate supplied to the product gas temperature riser also needs to be considerably higher than the flow rate for circulating the intermediate heat medium through the intermediate heat medium vaporizer and the liquefied gas vaporizer.
 従って、生成ガス昇温器を設けた従来の液化ガス用気化装置では、生成ガス昇温器に供給される海水等の熱源流体の流量がかなり多いため、生成ガス昇温器において熱源流体と生成ガスとを熱交換させる熱交換面積をかなり広くする必要があるので、生成ガス昇温器が大型化し、延いては、液化ガス用気化装置が大型化するという問題があった。
 又、更に、熱源流体の温度が低い場合に使用される熱源流体事前加熱器を設ける場合は、液化ガス用気化装置の構成が一層複雑化し、しかも、その熱源流体事前加熱器においてエネルギーを消費するので、所定の温度以上の生成ガスを生成するには、消費エネルギー量が多くなるという問題も生じる。
Therefore, in the conventional liquefied gas vaporizer provided with the product gas temperature riser, the flow rate of the heat source fluid such as seawater supplied to the product gas temperature riser is considerably large. Since the heat exchange area for exchanging heat with the gas needs to be considerably widened, there is a problem that the product gas temperature riser is enlarged, and the vaporizer for liquefied gas is also enlarged.
Furthermore, when a heat source fluid preheater used when the temperature of the heat source fluid is low is provided, the configuration of the vaporizer for the liquefied gas is further complicated, and energy is consumed in the heat source fluid preheater. Therefore, there is a problem that the amount of energy consumption increases in order to generate a product gas having a predetermined temperature or higher.
 又、サブマージド式気化装置では、所定の温度以上の生成ガスを生成するために、バーナ式加熱媒体加熱器において多量のエネルギーを消費することになる。従って、サブマージド式気化装置では、所定の温度以上の生成ガスを確実に生成することができるものの、そのために消費するエネルギー量が多くなるという問題があった。 Further, in the submerged vaporizer, a large amount of energy is consumed in the burner heating medium heater in order to generate a product gas having a predetermined temperature or higher. Therefore, although the submerged vaporizer can surely generate a product gas having a predetermined temperature or higher, there is a problem that the amount of energy consumed for that purpose increases.
 本発明は、かかる実情に鑑みてなされたものであり、その目的は、熱源流体の温度が低い場合でも、気化対象の液化ガスを気化させて所定の温度以上の生成ガスを生成でき、しかも、小型化、構成の簡略化並びに省エネルギー化を図り得る液化ガス用気化装置を提供することにある。 The present invention has been made in view of such circumstances, and the purpose thereof is to vaporize the liquefied gas to be vaporized and generate a product gas having a predetermined temperature or higher even when the temperature of the heat source fluid is low, An object of the present invention is to provide a vaporizer for liquefied gas that can be reduced in size, simplified in configuration, and saved in energy.
 上記目的を達成するための本発明に係る液化ガス用気化装置は、熱源流体とその熱源流体よりも沸点の低い中間熱媒体とを熱交換させて、中間熱媒体を気化させる中間熱媒体気化器と、
 前記中間熱媒体気化器で気化された中間熱媒体が供給され、当該中間熱媒体と気化対象の液化ガスとを熱交換させて、中間熱媒体を凝縮させると共に、気化対象の液化ガスを気化させる液化ガス気化器とを備え、
 前記液化ガス気化器から前記中間熱媒体気化器に中間熱媒体が戻されるように構成された液化ガス用気化装置であって、その特徴構成は、
 前記中間熱媒体気化器で気化されて前記液化ガス気化器に供給される中間熱媒体を昇温する昇温手段が設けられている点にある。
In order to achieve the above object, a vaporizer for liquefied gas according to the present invention is an intermediate heat medium vaporizer that vaporizes an intermediate heat medium by exchanging heat between the heat source fluid and an intermediate heat medium having a boiling point lower than that of the heat source fluid. When,
The intermediate heat medium vaporized by the intermediate heat medium vaporizer is supplied, heat exchange is performed between the intermediate heat medium and the liquefied gas to be vaporized, the intermediate heat medium is condensed, and the liquefied gas to be vaporized is vaporized. A liquefied gas vaporizer,
A liquefied gas vaporizer configured to return an intermediate heat medium from the liquefied gas vaporizer to the intermediate heat medium vaporizer, the characteristic configuration of which is
A temperature raising means for raising the temperature of the intermediate heat medium that is vaporized by the intermediate heat medium vaporizer and supplied to the liquefied gas vaporizer is provided.
 上記特徴構成によれば、中間熱媒体気化器で気化されて液化ガス気化器に供給される中間熱媒体が、昇温手段により昇温されるため、液化ガス気化器において気化対象の液化ガスと熱交換させる中間熱媒体の温度を高くすることができるので、液化ガス気化器において気化対象の液化ガスが気化されて生成される生成ガスの温度を高くすることができる。
 そして、生成ガスの温度を所定の温度以上にすることができるように、昇温手段により中間熱媒体を昇温することにより、熱源流体の温度がかなり低い場合でも、液化ガス気化器において、確実に所定の温度以上の生成ガスを生成することができる。
According to the above characteristic configuration, since the intermediate heat medium that is vaporized by the intermediate heat medium vaporizer and supplied to the liquefied gas vaporizer is heated by the temperature raising means, the liquefied gas to be vaporized in the liquefied gas vaporizer Since the temperature of the intermediate heat medium to be heat-exchanged can be increased, the temperature of the product gas generated by vaporizing the liquefied gas to be vaporized in the liquefied gas vaporizer can be increased.
Then, by raising the temperature of the intermediate heat medium by the temperature raising means so that the temperature of the product gas can be raised to a predetermined temperature or more, even if the temperature of the heat source fluid is considerably low, the liquefied gas vaporizer can reliably A product gas having a predetermined temperature or higher can be generated.
 又、中間熱媒体を液化ガス気化器と中間熱媒体気化器とにわたって循環させる流量は、海水等の熱源流体を従来の液化ガス用気化装置における生成ガス昇温器に供給する流量に比べてかなり少ない。従来、低温海域に隣接する地域等、得られる熱源流体の温度がかなり低くなり得る地域に設置される液化ガス用気化装置には、熱源流体事前加熱器が設けられていたが、このような熱源流体事前加熱器を不要にすることができるので、液化ガス用気化装置の小型化、構成の簡略化を図ることができる。更に、昇温手段を熱交換器を備えることなく構成すると、小型化、構成の簡略化を一層促進することができる。尚、昇温手段を熱交換器を備えた構成にしたとしても、その熱交換器を、従来の液化ガス用気化装置における生成ガス昇温器と熱源流体事前加熱器を構成する熱交換器に比べて小型化することができる。
 又、所定の温度以上の生成ガスを生成するにあたって、昇温手段で消費するエネルギー量を、従来の液化ガス用気化装置における熱源流体事前加熱器や、サブマージド式気化装置におけるバーナ式加熱媒体加熱器で消費するエネルギー量よりも少なくすることができる。
 従って、熱源流体の温度が低い場合でも、気化対象の液化ガスを気化させて所定の温度以上の生成ガスを生成でき、しかも、小型化、構成の簡略化並びに省エネルギー化を図り得る液化ガス用気化装置を提供することができる。
In addition, the flow rate of circulating the intermediate heat medium between the liquefied gas vaporizer and the intermediate heat medium vaporizer is considerably higher than the flow rate of supplying a heat source fluid such as seawater to the product gas heater in the conventional liquefied gas vaporizer. Few. Conventionally, a liquefied gas vaporizer installed in an area where the temperature of the obtained heat source fluid can be considerably low, such as an area adjacent to a low-temperature sea area, has been provided with a heat source fluid preheater. Since the fluid pre-heater can be dispensed with, the liquefied gas vaporizer can be downsized and the configuration can be simplified. Furthermore, if the temperature raising means is configured without a heat exchanger, it is possible to further promote downsizing and simplification of the configuration. Even if the temperature raising means is configured to include a heat exchanger, the heat exchanger is replaced with a heat exchanger that constitutes a product gas temperature raising device and a heat source fluid preheater in a conventional liquefied gas vaporizer. The size can be reduced compared to the above.
In addition, when generating a product gas of a predetermined temperature or higher, the amount of energy consumed by the temperature raising means is used as a heat source fluid preheater in a conventional liquefied gas vaporizer or a burner type heating medium heater in a submerged vaporizer. The amount of energy consumed can be reduced.
Therefore, even when the temperature of the heat source fluid is low, the liquefied gas for liquefied gas can be generated by evaporating the liquefied gas to be vaporized to generate a product gas at a predetermined temperature or more, and can achieve downsizing, simplification of configuration, and energy saving. An apparatus can be provided.
 本発明に係る液化ガス用気化装置の更なる特徴構成は、
 前記昇温手段が、前記中間熱媒体気化器で気化された中間熱媒体を圧縮して昇温するコンプレッサを備えて構成されている点にある。
A further characteristic configuration of the vaporizer for liquefied gas according to the present invention is as follows:
The temperature raising means includes a compressor that compresses the temperature of the intermediate heat medium vaporized by the intermediate heat medium vaporizer and raises the temperature.
 上記特徴構成によれば、昇温手段が、中間熱媒体を圧縮することにより昇温するコンプレッサにて構成されているため、昇温手段として、熱交換器を備えることなく構成することができる。このことにより、昇温手段を熱交換器を備えて構成する場合に比べて、当該熱交換器における授熱側流体の生成装置が不要になり、又、昇温手段に関連する制御としては、授熱側流体の流量、温度、圧力の制御等が不要となって、コンプレッサへの投入エネルギーの制御のみとなるので、小型化及び構成の簡略化を一層促進することができる。しかも、中間熱媒体がコンプレッサにより圧縮されて昇圧されるため、その圧力エネルギーを中間熱媒体気化器と液化ガス気化器とにわたって中間熱媒体を循環させるためのエネルギーに用いることができるので、中間熱媒体を中間熱媒体気化器と液化ガス気化器とにわたって循環させるためのポンプが不要となる等により、省エネルギー化を促進することができる。また、中間熱媒体の循環を適切に行うことができるので、生成ガスの生成を安定して行うことができる。
 従って、液化ガス用気化装置の小型化、構成の簡略化並びに省エネルギー化を更に促進することができる。
According to the above characteristic configuration, since the temperature raising means is constituted by the compressor that raises the temperature by compressing the intermediate heat medium, the temperature raising means can be configured without a heat exchanger. This eliminates the need for a heat transfer side fluid generating device in the heat exchanger as compared with the case where the temperature raising means is provided with a heat exchanger, and as control related to the temperature raising means, Control of the flow rate, temperature, pressure, and the like of the heat transfer side fluid is no longer necessary, and only control of the energy input to the compressor is achieved. Therefore, downsizing and simplification of the configuration can be further promoted. Moreover, since the intermediate heat medium is compressed and pressurized by the compressor, the pressure energy can be used as energy for circulating the intermediate heat medium across the intermediate heat medium vaporizer and the liquefied gas vaporizer. Energy saving can be promoted by eliminating the need for a pump for circulating the medium over the intermediate heat medium vaporizer and the liquefied gas vaporizer. In addition, since the intermediate heat medium can be circulated appropriately, the product gas can be generated stably.
Therefore, it is possible to further promote downsizing, simplification, and energy saving of the liquefied gas vaporizer.
 本発明に係る液化ガス用気化装置の更なる特徴構成は、
 前記液化ガス気化器から前記中間熱媒体気化器に戻される中間熱媒体を減圧する減圧手段が設けられている点にある。
A further characteristic configuration of the vaporizer for liquefied gas according to the present invention is as follows:
A pressure reducing means for reducing the pressure of the intermediate heat medium returned from the liquefied gas vaporizer to the intermediate heat medium vaporizer is provided.
 上記特徴構成によれば、減圧手段により、液化ガス気化器から中間熱媒体気化器に戻される中間熱媒体が減圧されるため、中間熱媒体気化器に戻される液状の中間熱媒体の沸点を中間熱媒体気化器に供給される熱源流体の温度よりも十分に低くすることができるので、中間熱媒体気化器において、中間熱媒体を熱源流体により安定して気化させることができる。
 従って、所定の温度以上の生成ガスを生成する工程を一層安定化することができる。
According to the above characteristic configuration, since the intermediate heat medium returned from the liquefied gas vaporizer to the intermediate heat medium vaporizer is depressurized by the decompression means, the boiling point of the liquid intermediate heat medium returned to the intermediate heat medium vaporizer is intermediate Since it can be made sufficiently lower than the temperature of the heat source fluid supplied to the heat medium vaporizer, the intermediate heat medium can be stably vaporized by the heat source fluid in the intermediate heat medium vaporizer.
Therefore, it is possible to further stabilize the process of generating a product gas having a predetermined temperature or higher.
 本発明に係る液化ガス用気化装置の更なる特徴構成は、
 前記減圧手段が、エキスパンダーであり、そのエキスパンダーにて駆動される発電機が設けられている点にある。
A further characteristic configuration of the vaporizer for liquefied gas according to the present invention is as follows:
The decompression means is an expander, and a generator driven by the expander is provided.
 上記特徴構成によれば、液化ガス気化器から中間熱媒体気化器に戻される中間熱媒体の圧力エネルギーによりエキスパンダーが駆動され、そのエキスパンダーにより発電機が駆動される。そして、発電機にて発電される電力を昇温手段において中間熱媒体を昇温するためのエネルギーに用いることができる。
 従って、液化ガス用気化装置の省エネルギー化を更に促進することができる。
According to the above characteristic configuration, the expander is driven by the pressure energy of the intermediate heat medium returned from the liquefied gas vaporizer to the intermediate heat medium vaporizer, and the generator is driven by the expander. The electric power generated by the generator can be used as energy for raising the temperature of the intermediate heat medium in the temperature raising means.
Therefore, energy saving of the liquefied gas vaporizer can be further promoted.
 本発明に係る液化ガス用気化装置の更なる特徴構成は、
 前記昇温手段が、前記液化ガス気化器で気化対象の液化ガスが気化されて生成される生成ガスの温度を目標温度に調整すべく、消費するエネルギーを調整するように構成されている点にある。
A further characteristic configuration of the vaporizer for liquefied gas according to the present invention is as follows:
The temperature raising means is configured to adjust the energy consumed so as to adjust the temperature of the product gas generated by vaporizing the liquefied gas to be vaporized in the liquefied gas vaporizer to the target temperature. is there.
 上記特徴構成によれば、生成ガスの温度が目標温度になるように、昇温手段にて消費されるエネルギーが調整されるので、的確に所定の温度の生成ガスを生成することができ、しかも、生成ガスの温度を不必要に高くするのを防止して、省エネルギー化を的確に図ることができる。
 従って、省エネルギー化を的確に図りながら、的確に所定の温度の生成ガスを生成することができる。
According to the above characteristic configuration, since the energy consumed by the temperature raising means is adjusted so that the temperature of the product gas becomes the target temperature, the product gas having a predetermined temperature can be generated accurately, and Therefore, it is possible to prevent the temperature of the product gas from being raised unnecessarily, and to accurately save energy.
Therefore, it is possible to accurately generate a product gas having a predetermined temperature while accurately saving energy.
実施形態に係る液化ガス用気化装置の全体構成を示すブロック図The block diagram which shows the whole structure of the vaporization apparatus for liquefied gas which concerns on embodiment. 0℃の天然ガスを生成するための海水の温度とコンプレッサの動力との関係を示す図The figure which shows the relationship between the temperature of the seawater for producing the natural gas of 0 degreeC, and the power of the compressor 別実施形態に係る液化ガス用気化装置の全体構成を示すブロック図The block diagram which shows the whole structure of the vaporization apparatus for liquefied gas which concerns on another embodiment.
 以下、図面に基づいて、本発明を気化対象の液化ガスの一例としての液化天然ガスを気化させる液化ガス用気化装置に適用した場合の実施形態を説明する。この実施形態では、熱源流体の一例として海水(自然水の一例)を用い、中間熱媒体の一例として、沸点が海水の温度よりも低く、且つ、凝縮点が液化天然ガスの温度よりも高いプロパンを用いる。つまり、この実施形態では、気化された中間熱媒体、即ち、気体状の中間熱媒体は、プロパンガスであり、プロパンガスは液化石油ガスを気化させて生成されるので、凝縮された中間熱媒体、即ち、液状の中間熱媒体としては、液化石油ガスが適用される。 Hereinafter, an embodiment in which the present invention is applied to a liquefied gas vaporizer that vaporizes liquefied natural gas as an example of a liquefied gas to be vaporized will be described with reference to the drawings. In this embodiment, seawater (an example of natural water) is used as an example of a heat source fluid, and a propane having a boiling point lower than that of seawater and an condensation point higher than that of liquefied natural gas as an example of an intermediate heat medium. Is used. That is, in this embodiment, the vaporized intermediate heat medium, that is, the gaseous intermediate heat medium is propane gas, and the propane gas is generated by vaporizing the liquefied petroleum gas. That is, liquefied petroleum gas is applied as the liquid intermediate heat medium.
 図1に示すように、液化ガス用気化装置は、海水SW(熱源流体の一例)とその海水SWよりも沸点の低い液化石油ガスLPG(中間熱媒体(具体的には液状の中間熱媒体)の一例)とを熱交換させて、液化石油ガスLPGを気化させる中間熱媒体気化器10と、中間熱媒体気化器10で気化されたプロパンガスPG(中間熱媒体(具体的には気体状の中間熱媒体)の一例)が供給され、当該プロパンガスPGと気化対象の液化天然ガスLNG(液化ガスの一例)とを熱交換させて、プロパンガスPGを凝縮させると共に、液化天然ガスLNGを気化させる液化ガス気化器20と、この液化ガス用気化装置の運転を制御する制御部1等とを備え、液化ガス気化器20から中間熱媒体気化器10に液化石油ガスLPG(中間熱媒体(具体的には液状の中間熱媒体の一例))が戻されるように構成されている。 As shown in FIG. 1, the vaporizer for liquefied gas includes seawater SW (an example of a heat source fluid) and liquefied petroleum gas LPG (an intermediate heat medium (specifically, a liquid intermediate heat medium) having a lower boiling point than the seawater SW). An intermediate heat medium vaporizer 10 that vaporizes the liquefied petroleum gas LPG, and propane gas PG (specifically a gaseous heat medium (specifically, gaseous gas) vaporized by the intermediate heat medium vaporizer 10). The intermediate propane gas PG and the liquefied natural gas LNG (an example of the liquefied gas) to be vaporized are subjected to heat exchange to condense the propane gas PG and vaporize the liquefied natural gas LNG. A liquefied petroleum gas LPG (intermediate heat medium (specifically) from the liquefied gas vaporizer 20 to the intermediate heat medium vaporizer 10 and the control unit 1 for controlling the operation of the liquefied gas vaporizer. In An example of the intermediate heat medium liquid)) is configured to be returned.
 そして、本発明では、中間熱媒体気化器10で気化されて液化ガス気化器20に供給されるプロパンガスPGを昇温する昇温手段30が設けられている。
 更に、この実施形態では、液化ガス気化器20から中間熱媒体気化器10に戻される液化石油ガスLPGを減圧する減圧手段40が設けられている。
In the present invention, the temperature raising means 30 for raising the temperature of the propane gas PG vaporized by the intermediate heat medium vaporizer 10 and supplied to the liquefied gas vaporizer 20 is provided.
Furthermore, in this embodiment, a decompression means 40 for decompressing the liquefied petroleum gas LPG returned from the liquefied gas vaporizer 20 to the intermediate heat medium vaporizer 10 is provided.
 次に、図1に基づいて、液化ガス用気化装置の各部について、詳細に説明する。
 中間熱媒体気化器10は、シェルアンドチューブ式(多管式)熱交換器にて構成され、プロパンガスPGを充満させる気相部を形成する状態で液化石油ガスLPGを貯留できるシェル11内に、海水SWを通流させる多数の伝熱管12を並設して構成されている。
 各伝熱管12は、直線状であり、管軸芯を水平方向に沿わせて、両端部夫々をシェル11の側部に支持した状態で、シェル11内に設けられている。
Next, each part of the liquefied gas vaporizer will be described in detail with reference to FIG.
The intermediate heat medium vaporizer 10 is configured by a shell-and-tube (multi-tube) heat exchanger, and is contained in a shell 11 that can store liquefied petroleum gas LPG in a state of forming a gas phase portion that is filled with propane gas PG. A large number of heat transfer tubes 12 through which the seawater SW flows are arranged side by side.
Each heat transfer tube 12 is linear, and is provided in the shell 11 in a state where both ends are supported on the side portions of the shell 11 with the tube axis aligned along the horizontal direction.
 更に、シェル11における各伝熱管12の一端が支持された側部には、各伝熱管12の一端に連通する状態で、海水流入室13が設けられ、シェル11における各伝熱管12の他端が支持された側部には、各伝熱管12の他端に連通する状態で、海水流出室14が設けられている。海水流入室13には、その海水流入室13を介して各伝熱管12に海水SWを流入させる海水供給路2が接続され、海水流出室14には、各伝熱管12から流出する海水SWを海水流出室14を介して外部に排出する海水排出路3が接続されている。
 海水供給路2には、中間熱媒体気化器10(具体的には、伝熱管12)に海水SWを圧送する海水ポンプ4が設けられている。
Further, a seawater inflow chamber 13 is provided on the side portion of the shell 11 where one end of each heat transfer tube 12 is supported, in communication with one end of each heat transfer tube 12, and the other end of each heat transfer tube 12 in the shell 11. Is provided with a seawater outflow chamber 14 in communication with the other end of each heat transfer tube 12. The seawater inflow chamber 13 is connected to the seawater supply path 2 through which the seawater SW flows into each heat transfer tube 12 via the seawater inflow chamber 13, and the seawater outflow chamber 14 receives the seawater SW flowing out from each heat transfer tube 12. A seawater discharge passage 3 for discharging to the outside through the seawater outflow chamber 14 is connected.
The seawater supply path 2 is provided with a seawater pump 4 that pumps the seawater SW to the intermediate heat medium vaporizer 10 (specifically, the heat transfer pipe 12).
 液化ガス気化器20も、シェルアンドチューブ式熱交換器にて構成され、プロパンガスPGを充満させる気相部を形成する状態で液化石油ガスLPGを貯留できるシェル21内に、液化天然ガスLNGを通流させる多数の伝熱管22を並設して構成されている。
 各伝熱管22はU字状であり、そのU字状の各伝熱管22が、両端部を鉛直方向に沿わせて、その両端部をシェル21の一側部に支持した状態で、シェル21内に設けられている。
The liquefied gas vaporizer 20 is also constituted by a shell-and-tube heat exchanger, and the liquefied natural gas LNG is stored in the shell 21 that can store the liquefied petroleum gas LPG in a state of forming a gas phase portion that is filled with the propane gas PG. A large number of heat transfer tubes 22 to be passed are arranged in parallel.
Each heat transfer tube 22 is U-shaped, and each U-shaped heat transfer tube 22 has its both ends aligned in the vertical direction and both ends supported by one side of the shell 21. Is provided inside.
 更に、シェル21における各伝熱管22の両端部が支持された側部には、液化天然ガス流入室23が、各伝熱管22の下方側の端部に連通する状態で、及び、天然ガス流出室24が、各伝熱管22の上方側の端部に連通する状態で、夫々設けられている。
 液化天然ガス流入室23には、その液化天然ガス流入室23を介して液化天然ガスLNGを各伝熱管22に流入させる液化天然ガス供給路5が接続され、天然ガス流出室24には、各伝熱管22を通流する液化天然ガスLNGが気化されて生成された天然ガスNG(生成ガスの一例)を天然ガス流出室24を介して外部に送出する天然ガス送出路6が接続されている。
Furthermore, the liquefied natural gas inflow chamber 23 communicates with the lower end of each heat transfer tube 22 on the side of the shell 21 where both ends of each heat transfer tube 22 are supported, and the natural gas outflow The chambers 24 are respectively provided in communication with the upper end portions of the heat transfer tubes 22.
The liquefied natural gas inflow chamber 23 is connected to the liquefied natural gas supply path 5 through which the liquefied natural gas LNG flows into the heat transfer tubes 22 via the liquefied natural gas inflow chamber 23, and each of the natural gas outflow chambers 24 is connected to each liquefied natural gas inflow chamber 23. A natural gas delivery path 6 is connected through which the natural gas NG (an example of the produced gas) produced by vaporizing the liquefied natural gas LNG flowing through the heat transfer pipe 22 is sent to the outside through the natural gas outflow chamber 24. .
 中間熱媒体気化器10と液化ガス気化器20との間でプロパン(プロパンガスPG、液化石油ガスLPG)を循環させて熱の授受を行わせるべく、中間熱媒体気化器10のシェル11と液化ガス気化器20のシェル21とが熱媒体循環路7で接続されている。
 具体的には、中間熱媒体気化器10のシェル11の上方の気相部と、液化ガス気化器20のシェル21の上方の気相部とが、中間熱媒体気化器10から液化ガス気化器20へプロパンガスPGを送る熱媒体循環路7の往路7fで接続され、液化ガス気化器20のシェル21の下方の液溜まり部と中間熱媒体気化器10のシェル11の上方の気相部とが、液化ガス気化器20から中間熱媒体気化器10へ液化石油ガスLPGを戻す熱媒体循環路7の復路7rで接続されている。
In order to circulate propane (propane gas PG, liquefied petroleum gas LPG) between the intermediate heat medium vaporizer 10 and the liquefied gas vaporizer 20, heat is exchanged with the shell 11 of the intermediate heat medium vaporizer 10 and liquefied. The shell 21 of the gas vaporizer 20 is connected by the heat medium circulation path 7.
Specifically, the gas phase portion above the shell 11 of the intermediate heat medium vaporizer 10 and the gas phase portion above the shell 21 of the liquefied gas vaporizer 20 are connected from the intermediate heat medium vaporizer 10 to the liquefied gas vaporizer. 20 is connected by a forward path 7f of the heat medium circulation path 7 for sending propane gas PG to 20, and a liquid reservoir part below the shell 21 of the liquefied gas vaporizer 20 and a gas phase part above the shell 11 of the intermediate heat medium vaporizer 10 Are connected via a return path 7r of the heat medium circulation path 7 for returning the liquefied petroleum gas LPG from the liquefied gas vaporizer 20 to the intermediate heat medium vaporizer 10.
 熱媒体循環路7の往路7fには、その往路7fを通流するプロパンガスPGを圧縮して昇温並びに昇圧すべく、コンプレッサ31が設けられている。
 又、熱媒体循環路7の復路7rには、減圧弁41が減圧手段40として設けられている。
 更に、天然ガス送出路6には、そこを通流する天然ガスNGの温度を検出する天然ガス温度センサ8が設けられている。
The forward path 7f of the heat medium circulation path 7 is provided with a compressor 31 for compressing the propane gas PG flowing through the forward path 7f to increase the temperature and pressure.
A pressure reducing valve 41 is provided as a pressure reducing means 40 in the return path 7 r of the heat medium circulation path 7.
Further, the natural gas delivery path 6 is provided with a natural gas temperature sensor 8 for detecting the temperature of the natural gas NG flowing therethrough.
 そして、制御部1は、天然ガス温度センサ8の検出温度が所定の目標温度になるように、コンプレッサ31を駆動する電力を調整するように構成されている。ちなみに、目標温度は、例えば、0℃に設定される。
 つまり、昇温手段30が、コンプレッサ31と制御部1とを備えて、液化ガス気化器20で気化対象の液化天然ガスLNGが気化されて生成される天然ガスNGの温度を目標温度に調整すべく、消費するエネルギーを調整するように構成されていることになる。
And the control part 1 is comprised so that the electric power which drives the compressor 31 may be adjusted so that the detection temperature of the natural gas temperature sensor 8 may become predetermined | prescribed target temperature. Incidentally, the target temperature is set to 0 ° C., for example.
That is, the temperature raising means 30 includes the compressor 31 and the control unit 1, and adjusts the temperature of the natural gas NG generated by vaporizing the liquefied natural gas LNG to be vaporized in the liquefied gas vaporizer 20 to the target temperature. Therefore, it is comprised so that the energy consumed may be adjusted.
 次に、上述のように構成された液化ガス用気化装置の作動形態について説明する。
 海水ポンプ4により、海水SWが海水供給路2を通して中間熱媒体気化器10に供給され、その海水SWは、海水流入室13を介して各伝熱管12に流入して各伝熱管12を通流し、海水流出室14を介して海水排出路3を通して外部に排出される。
 そして、中間熱媒体気化器10のシェル11内に溜まっている液化石油ガスLPGが各伝熱管12を通流する海水SWにより加熱されて、液化石油ガスLPGの一部が気化され、プロパンガスPGがシェル11内に充満する。
Next, the operation mode of the liquefied gas vaporizer configured as described above will be described.
Seawater SW is supplied to the intermediate heat medium vaporizer 10 through the seawater supply path 2 by the seawater pump 4, and the seawater SW flows into each heat transfer pipe 12 through the seawater inflow chamber 13 and flows through each heat transfer pipe 12. The water is discharged to the outside through the seawater discharge passage 3 through the seawater outflow chamber 14.
Then, the liquefied petroleum gas LPG accumulated in the shell 11 of the intermediate heat medium vaporizer 10 is heated by the seawater SW flowing through each heat transfer tube 12, and a part of the liquefied petroleum gas LPG is vaporized, and the propane gas PG Fills the shell 11.
 中間熱媒体気化器10のシェル11内のプロパンガスPGは、熱媒体循環路7の往路7fに流出し、コンプレッサ31による圧縮により昇圧並びに昇温された後、熱媒体循環路7の往路7fを通して液化ガス気化器20のシェル21内に流入する。
 液化天然ガスLNGは、液化天然ガス供給路5を通して液化ガス気化器20に供給され、その液化天然ガスLNGは、液化天然ガス流入室23を介して各伝熱管22に流入して、各伝熱管22を通流する。そして、各伝熱管22を通流する液化天然ガスLNGとシェル21内のプロパンガスPGとの間で熱交換が行われ、プロパンガスPGが凝縮すると共に、液化天然ガスLNGがプロパンガスPGの顕熱及び凝縮潜熱により加熱されて気化され、気化された天然ガスNGは天然ガス流出室24を介して天然ガス送出路6に送出され、凝縮した液化石油ガスLPGは、シェル21の液溜まり部に溜まる。
The propane gas PG in the shell 11 of the intermediate heat medium vaporizer 10 flows out to the forward path 7 f of the heat medium circulation path 7, and is pressurized and heated by compression by the compressor 31, and then passes through the forward path 7 f of the heat medium circulation path 7. It flows into the shell 21 of the liquefied gas vaporizer 20.
The liquefied natural gas LNG is supplied to the liquefied gas vaporizer 20 through the liquefied natural gas supply path 5, and the liquefied natural gas LNG flows into the heat transfer tubes 22 via the liquefied natural gas inflow chambers 23, and each heat transfer tube. 22 flows. Then, heat exchange is performed between the liquefied natural gas LNG flowing through each heat transfer tube 22 and the propane gas PG in the shell 21, the propane gas PG is condensed, and the liquefied natural gas LNG is exposed to the propane gas PG. The natural gas NG heated and vaporized by heat and condensation latent heat is sent to the natural gas delivery path 6 through the natural gas outflow chamber 24, and the condensed liquefied petroleum gas LPG is stored in the liquid reservoir of the shell 21. Accumulate.
 液化ガス気化器20のシェル21の液溜まり部に溜まっている液化石油ガスLPGは、熱媒体循環路7の復路7rに流出し、減圧弁41により減圧されることにより、蒸発温度が海水SWの温度よりも十分に低くなって、中間熱媒体気化器10のシェル11内に戻される。 The liquefied petroleum gas LPG accumulated in the liquid reservoir of the shell 21 of the liquefied gas vaporizer 20 flows out to the return path 7r of the heat medium circulation path 7 and is depressurized by the pressure reducing valve 41, so that the evaporation temperature is the seawater SW. The temperature is sufficiently lower than the temperature and returned to the shell 11 of the intermediate heat medium vaporizer 10.
 そして、制御部1は、天然ガス温度センサ8の検出温度が目標温度(例えば、0℃)になるように、液化ガス気化器20に供給されるプロパンガスPGの温度を調整すべく、コンプレッサ31を駆動する電力を調整する。 Then, the control unit 1 adjusts the temperature of the propane gas PG supplied to the liquefied gas vaporizer 20 so that the detected temperature of the natural gas temperature sensor 8 becomes a target temperature (for example, 0 ° C.). Adjust the power to drive.
 次に、上述のように構成された液化ガス用気化装置の能力を検証した結果を説明する。
 例えば、温度が-160~-150℃程度の液化天然ガスLNGを150t/hの流量で液化ガス気化器20に供給して、温度が0℃の天然ガスNGを生成することを条件として、検証した結果を説明する。
 海水ポンプ4により中間熱媒体気化器10に供給される海水SWは、低温海域から取水する海水SWを想定して、その条件を、温度が3℃で、流量を9300t/hとし、プロパン(プロパンガスPG、液化石油ガスLPG)を中間熱媒体気化器10と液化ガス気化器20とにわたって循環させる流量は、200~300t/hとする。
Next, the result of verifying the capability of the liquefied gas vaporizer configured as described above will be described.
For example, verification is performed on condition that liquefied natural gas LNG having a temperature of about −160 to −150 ° C. is supplied to the liquefied gas vaporizer 20 at a flow rate of 150 t / h to generate natural gas NG having a temperature of 0 ° C. The results will be described.
The seawater SW supplied to the intermediate heat medium vaporizer 10 by the seawater pump 4 is assumed to be seawater SW taken from a low-temperature sea area. The conditions are a temperature of 3 ° C., a flow rate of 9300 t / h, and propane (propane The flow rate of circulating the gas PG and the liquefied petroleum gas LPG) through the intermediate heat medium vaporizer 10 and the liquefied gas vaporizer 20 is 200 to 300 t / h.
 上記の条件で運転すると、中間熱媒体気化器10において、海水SWの顕熱により、液化石油ガスLPGが気化されて、-7℃、0.28MPaGの飽和状態のプロパンガスPGが得られる。その飽和状態のプロパンガスPGをコンプレッサ31により圧縮して、10℃、0.45MPaGに昇温、昇圧すると、液化ガス気化器20において、温度が-160~-150℃程度、流量が150t/hで供給される液化天然ガスLNGの全量が、プロパンガスPGの顕熱および凝縮潜熱により気化されて、0℃の天然ガスNGを安定して生成することができた。 When operated under the above conditions, the liquefied petroleum gas LPG is vaporized by the sensible heat of the seawater SW in the intermediate heat medium vaporizer 10 to obtain a saturated propane gas PG of −7 ° C. and 0.28 MPaG. When the saturated propane gas PG is compressed by the compressor 31 and heated to 10 ° C. and 0.45 MPaG, the temperature is increased to about −160 to −150 ° C. and the flow rate is 150 t / h in the liquefied gas vaporizer 20. The entire amount of the liquefied natural gas LNG supplied in the above was vaporized by the sensible heat and latent heat of condensation of the propane gas PG, and the natural gas NG at 0 ° C. could be stably generated.
 この場合、制御部1により、コンプレッサ31に供給する電力が、1,900kW程度に調整され、又、海水ポンプ4の動力は、336kW程度であり、送電ロス、発電所の発電効率等を考慮すると、上記の条件で運転した場合にコンプレッサ31及び海水ポンプ4により消費される一次エネルギー量は、5,845kW程度となる。 In this case, the power supplied to the compressor 31 is adjusted to about 1,900 kW by the control unit 1, and the power of the seawater pump 4 is about 336 kW, considering power transmission loss, power generation efficiency of the power plant, and the like. When operating under the above conditions, the amount of primary energy consumed by the compressor 31 and the seawater pump 4 is about 5,845 kW.
 又、温度が-160~-150℃程度の液化天然ガスLNGを150t/hの流量で液化ガス気化器20に供給して、温度が0℃の天然ガスNGを生成することを条件として、海水SWの温度を異ならせて、コンプレッサ31に供給する電力、即ち、コンプレッサ31の動力を調べた結果を図2に示す。
 図2に示すように、海水SWの温度が高くなるほど、コンプレッサ31の動力が少なくなり、海水SWの温度が15℃以上になると、コンプレッサ31を作動させる必要がない。
Also, liquefied natural gas LNG having a temperature of about −160 to −150 ° C. is supplied to the liquefied gas vaporizer 20 at a flow rate of 150 t / h to generate natural gas NG having a temperature of 0 ° C. FIG. 2 shows the result of examining the power supplied to the compressor 31, that is, the power of the compressor 31, by varying the temperature of the SW.
As shown in FIG. 2, as the temperature of the seawater SW increases, the power of the compressor 31 decreases, and when the temperature of the seawater SW reaches 15 ° C. or higher, it is not necessary to operate the compressor 31.
 更に、上述のように構成された本実施形態に係る液化ガス用気化装置による省エネルギー化を検証するため、生成ガス昇温器及び熱源流体事前加熱器を備えた従来の液化ガス用気化装置、並びに、サブマージド式気化装置について、海水SWの温度が3℃の場合に、上記の条件と同様に、温度が-160~-150℃程度、流量が150t/hで供給される液化天然ガスLNGを気化させて、0℃の天然ガスNGを生成するために必要な一次エネルギー量を調べた。 Furthermore, in order to verify energy saving by the liquefied gas vaporizer according to the present embodiment configured as described above, a conventional liquefied gas vaporizer equipped with a product gas heater and a heat source fluid preheater, and As for the submerged vaporizer, when the temperature of the seawater SW is 3 ° C., the liquefied natural gas LNG supplied at a temperature of about −160 to −150 ° C. and a flow rate of 150 t / h is vaporized as in the above conditions. The amount of primary energy required to produce natural gas NG at 0 ° C. was investigated.
 サブマージド式気化装置では、天然ガスの消費量は3,000m(標準状態)/hであり、天然ガスの発熱量を41MJ/m(標準状態)とすると、消費される一次エネルギー量は、34,083kW(122,700MJ/h)であった。 In the submerged vaporizer, the consumption of natural gas is 3,000 m 3 (standard state) / h, and if the calorific value of natural gas is 41 MJ / m 3 (standard state), the amount of primary energy consumed is 34,083 kW (122,700 MJ / h).
 従来の液化ガス用気化装置では、0℃の天然ガスNGを生成するためには、海水を事前に加熱(3℃から6℃に)する必要があり、その海水を事前に加熱するための消費エネルギー量を含めると、詳細な説明を省略するが、0℃の天然ガスNGを生成するために消費される一次エネルギー量は、32,110kWであった。 In a conventional liquefied gas vaporizer, in order to produce natural gas NG at 0 ° C., it is necessary to heat seawater in advance (from 3 ° C. to 6 ° C.), and consumption for heating the seawater in advance. Although the detailed description is omitted when the energy amount is included, the primary energy amount consumed to generate the natural gas NG at 0 ° C. was 32,110 kW.
 つまり、-160~-150℃程度の温度で、150t/hの流量で供給される液化天然ガスLNGを気化させて、0℃の天然ガスNGを生成するために必要とされる一次エネルギー量は、本発明による液化ガス用気化装置では5,845kW程度であり、従来の液化ガス用気化装置では32,110kWであり、サブマージド式気化装置では34,083kWであるので、本発明により、液化ガス用気化装置の省エネルギー化を図ることができる。
 又、本実施形態に係る液化ガス用気化装置では、従来の液化ガス用気化装置における生成ガス昇温器及び熱源流体事前加熱器が不要となるので、液化ガス用気化装置の小型化並びに構成の簡略化を図ることができる。
In other words, the amount of primary energy required to vaporize the liquefied natural gas LNG supplied at a flow rate of 150 t / h at a temperature of about −160 to −150 ° C. to generate natural gas NG at 0 ° C. is The liquefied gas vaporizer according to the present invention is about 5,845 kW, the conventional liquefied gas vaporizer is 32,110 kW, and the submerged vaporizer is 34,083 kW. Energy saving of the vaporizer can be achieved.
Further, in the liquefied gas vaporizer according to the present embodiment, the product gas temperature riser and the heat source fluid preheater in the conventional liquefied gas vaporizer are not required, so the liquefied gas vaporizer can be downsized and configured. Simplification can be achieved.
  〔別実施形態〕
 次に別実施形態を説明する。
(A)図3に示すように、減圧手段40として、上記の実施形態で例示した減圧弁41に代えて、エキスパンダー42を設け、更に、そのエキスパンダー42にて駆動される発電機43を設けても良い。
[Another embodiment]
Next, another embodiment will be described.
(A) As shown in FIG. 3, as the pressure reducing means 40, an expander 42 is provided instead of the pressure reducing valve 41 exemplified in the above embodiment, and a generator 43 driven by the expander 42 is further provided. Also good.
(B)昇温手段30の具体例としては、上記の実施形態で例示したコンプレッサ31に限定されるものではない。例えば、熱交換器や電気ヒータを用いることができる。熱交換器としては、例えば、ガスバーナを熱源として、ガスバーナの燃焼ガスと気体状の中間熱媒体とを熱交換する熱交換器等が挙げられる。
 尚、プロパンを中間熱媒体気化器10と液化ガス気化器20とにわたって循環させる流量は、海水を従来の液化ガス用気化装置における生成ガス昇温器に供給する流量に比べて、十分に少ない。従って、昇温手段30を熱交換器を備えた構成としても、その熱交換器の熱交換面積を従来の液化ガス用気化装置における生成ガス昇温器の熱交換面積に比べて、十分に小さくすることができるので、液化ガス用気化装置の小型化及び構成の簡略化を図ることができる。
(B) A specific example of the temperature raising means 30 is not limited to the compressor 31 exemplified in the above embodiment. For example, a heat exchanger or an electric heater can be used. Examples of the heat exchanger include a heat exchanger that exchanges heat between the combustion gas of the gas burner and the gaseous intermediate heat medium using the gas burner as a heat source.
Note that the flow rate for circulating propane across the intermediate heat medium vaporizer 10 and the liquefied gas vaporizer 20 is sufficiently smaller than the flow rate at which seawater is supplied to the product gas heater in the conventional liquefied gas vaporizer. Therefore, even when the temperature raising means 30 is provided with a heat exchanger, the heat exchange area of the heat exchanger is sufficiently smaller than the heat exchange area of the product gas temperature riser in the conventional liquefied gas vaporizer. Therefore, the liquefied gas vaporizer can be downsized and simplified in configuration.
(C)中間熱媒体気化器10や液化ガス気化器20を構成する熱交換器としては、上記の実施形態で例示したシェルアンドチューブ式熱交換器に限定されるものではなく、プレート式等、種々の型式の熱交換器を用いることができる。 (C) The heat exchanger constituting the intermediate heat medium vaporizer 10 and the liquefied gas vaporizer 20 is not limited to the shell-and-tube heat exchanger exemplified in the above embodiment, but a plate type, Various types of heat exchangers can be used.
(D)本発明の液化ガス用気化装置は、上記の実施形態で例示した如き、液化天然ガスLNGを気化対象の液化ガスとするもの以外に、液化窒素、エチレン、液化酸素等、種々の液化ガスを気化対象とするものに適用することができる。
 又、熱源流体としては、上記の実施形態で例示した海水SW以外に、河川水、湖沼水、地下水及び地表水等の自然水のうちのいずれか一つを用いることができる。あるいは、海水SW、河川水、湖沼水、地下水及び地表水等の自然水のうちのいずれか二つ以上を混合したものを用いることができる。又、熱源流体としては、自然水の他に、工業用水や水道水等を用いることができる。
 又、中間熱媒体としては、上記の実施形態において例示したプロパンに限定されるものではなく、フロン、ブタン等、沸点が熱源流体(上記の実施形態では、海水SW)の温度よりも低い種々のものを用いることができる。
(D) The liquefied gas vaporizer of the present invention is not limited to the liquefied natural gas LNG as the liquefied gas to be vaporized, as exemplified in the above embodiment, but various liquefied gases such as liquefied nitrogen, ethylene, liquefied oxygen, etc. The present invention can be applied to a gas to be vaporized.
Further, as the heat source fluid, any one of natural waters such as river water, lake water, ground water and surface water can be used in addition to the seawater SW exemplified in the above embodiment. Or what mixed any two or more of natural waters, such as seawater SW, river water, lake water, groundwater, and surface water, can be used. In addition to natural water, industrial water or tap water can be used as the heat source fluid.
Further, the intermediate heat medium is not limited to propane exemplified in the above embodiment, and various boiling points such as chlorofluorocarbon and butane are lower than the temperature of the heat source fluid (seawater SW in the above embodiment). Things can be used.
 なお、上記実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。 Note that the configurations disclosed in the above-described embodiments (including other embodiments, the same applies hereinafter) can be applied in combination with the configurations disclosed in the other embodiments as long as no contradiction arises. The embodiment disclosed in this specification is an exemplification, and the embodiment of the present invention is not limited to this. The embodiment can be appropriately modified without departing from the object of the present invention.
 以上説明したように、熱源流体の温度が低い場合でも、気化対象の液化ガスを気化させて所定の温度以上の生成ガスを生成でき、しかも、小型化、構成の簡略化並びに省エネルギー化を図り得る液化ガス用気化装置を提供することができる。 As described above, even when the temperature of the heat source fluid is low, the liquefied gas to be vaporized can be vaporized to generate a product gas at a predetermined temperature or more, and further, downsizing, simplification of the configuration, and energy saving can be achieved. A vaporizer for liquefied gas can be provided.
10  中間熱媒体気化器
20  液化ガス気化器
30  昇温手段
31  コンプレッサ
40  減圧手段
42  エキスパンダー
43  発電機
LNG 液化天然ガス(気化対象の液化ガス)
LPG 液化石油ガス(中間熱媒体)
NG  天然ガス(生成ガス)
PG  プロパンガス(中間熱媒体)
SW  海水(熱源流体)
DESCRIPTION OF SYMBOLS 10 Intermediate heat medium vaporizer 20 Liquefied gas vaporizer 30 Temperature rising means 31 Compressor 40 Depressurizing means 42 Expander 43 Generator LNG Liquefied natural gas (liquefied gas to be vaporized)
LPG Liquefied petroleum gas (intermediate heating medium)
NG Natural gas (produced gas)
PG propane gas (intermediate heat medium)
SW Seawater (heat source fluid)

Claims (5)

  1.  熱源流体とその熱源流体よりも沸点の低い中間熱媒体とを熱交換させて、中間熱媒体を気化させる中間熱媒体気化器と、
     前記中間熱媒体気化器で気化された中間熱媒体が供給され、当該中間熱媒体と気化対象の液化ガスとを熱交換させて、中間熱媒体を凝縮させると共に、気化対象の液化ガスを気化させる液化ガス気化器とを備え、
     前記液化ガス気化器から前記中間熱媒体気化器に中間熱媒体が戻されるように構成された液化ガス用気化装置であって、
     前記中間熱媒体気化器で気化されて前記液化ガス気化器に供給される中間熱媒体を昇温する昇温手段が設けられている液化ガス用気化装置。
    An intermediate heat medium vaporizer that exchanges heat between the heat source fluid and an intermediate heat medium having a lower boiling point than the heat source fluid to vaporize the intermediate heat medium;
    The intermediate heat medium vaporized by the intermediate heat medium vaporizer is supplied, heat exchange is performed between the intermediate heat medium and the liquefied gas to be vaporized, the intermediate heat medium is condensed, and the liquefied gas to be vaporized is vaporized. A liquefied gas vaporizer,
    A liquefied gas vaporizer configured to return an intermediate heat medium from the liquefied gas vaporizer to the intermediate heat medium vaporizer,
    A liquefied gas vaporizer provided with a temperature raising means for raising the temperature of an intermediate heat medium vaporized by the intermediate heat medium vaporizer and supplied to the liquefied gas vaporizer.
  2.  前記昇温手段が、前記中間熱媒体気化器で気化された中間熱媒体を圧縮して昇温するコンプレッサを備えて構成されている請求項1に記載の液化ガス用気化装置。 2. The vaporizer for liquefied gas according to claim 1, wherein the temperature raising means comprises a compressor for compressing and raising the temperature of the intermediate heat medium vaporized by the intermediate heat medium vaporizer.
  3.  前記液化ガス気化器から前記中間熱媒体気化器に戻される中間熱媒体を減圧する減圧手段が設けられている請求項2に記載の液化ガス用気化装置。 3. The vaporizer for liquefied gas according to claim 2, further comprising a pressure reducing means for depressurizing the intermediate heat medium returned from the liquefied gas vaporizer to the intermediate heat medium vaporizer.
  4.  前記減圧手段が、エキスパンダーであり、そのエキスパンダーにて駆動される発電機が設けられている請求項3に記載の液化ガス用気化装置。 The liquefied gas vaporizer according to claim 3, wherein the decompression means is an expander, and a generator driven by the expander is provided.
  5.  前記昇温手段が、前記液化ガス気化器で気化対象の液化ガスが気化されて生成される生成ガスの温度を目標温度に調整すべく、消費するエネルギーを調整するように構成されている請求項1~4のいずれか1項に記載の液化ガス用気化装置。 The temperature raising means is configured to adjust energy consumption so as to adjust a temperature of a product gas generated by vaporizing a liquefied gas to be vaporized in the liquefied gas vaporizer to a target temperature. The vaporizer for liquefied gas according to any one of 1 to 4.
PCT/JP2015/082840 2014-11-28 2015-11-24 Device for vaporizing liquefied gas WO2016084765A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014241292A JP2016102554A (en) 2014-11-28 2014-11-28 Vaporizaion device for liquid gas
JP2014-241292 2014-11-28

Publications (1)

Publication Number Publication Date
WO2016084765A1 true WO2016084765A1 (en) 2016-06-02

Family

ID=56074325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/082840 WO2016084765A1 (en) 2014-11-28 2015-11-24 Device for vaporizing liquefied gas

Country Status (2)

Country Link
JP (1) JP2016102554A (en)
WO (1) WO2016084765A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110382347A (en) * 2017-03-06 2019-10-25 株式会社神户制钢所 Marine floating type facility

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021235337A1 (en) * 2020-05-22 2021-11-25 株式会社神戸製鋼所 Intermediate-medium heat exchanger

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2975607A (en) * 1958-06-11 1961-03-21 Conch Int Methane Ltd Revaporization of liquefied gases
JP2005521849A (en) * 2002-03-29 2005-07-21 エクセルレイト・エナジー・リミテッド・パートナーシップ Method and apparatus for regasification of LNG on LNG carrier
US20090249799A1 (en) * 2008-04-07 2009-10-08 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Apparatus and method for increasing efficiency of a gas turbine and a marine structure having the same
US20100313578A1 (en) * 2008-05-16 2010-12-16 Gea Batignolles Technologies Thermiques co2-based method and system for vaporizing a cryogenic fluid, in particular liquefied natural gas
US20130160486A1 (en) * 2011-12-22 2013-06-27 Ormat Technologies Inc. Power and regasification system for lng

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2975607A (en) * 1958-06-11 1961-03-21 Conch Int Methane Ltd Revaporization of liquefied gases
JP2005521849A (en) * 2002-03-29 2005-07-21 エクセルレイト・エナジー・リミテッド・パートナーシップ Method and apparatus for regasification of LNG on LNG carrier
US20090249799A1 (en) * 2008-04-07 2009-10-08 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Apparatus and method for increasing efficiency of a gas turbine and a marine structure having the same
US20100313578A1 (en) * 2008-05-16 2010-12-16 Gea Batignolles Technologies Thermiques co2-based method and system for vaporizing a cryogenic fluid, in particular liquefied natural gas
US20130160486A1 (en) * 2011-12-22 2013-06-27 Ormat Technologies Inc. Power and regasification system for lng

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110382347A (en) * 2017-03-06 2019-10-25 株式会社神户制钢所 Marine floating type facility

Also Published As

Publication number Publication date
JP2016102554A (en) 2016-06-02

Similar Documents

Publication Publication Date Title
KR101342733B1 (en) A Treatment System and Method of Liquefied Gas
JP5026588B2 (en) LNG regasification and power generation
JP5875253B2 (en) Combined power generation system
KR101557571B1 (en) A Treatment System Of Liquefied Gas
KR101945597B1 (en) A Regasification System Of Gas and Vessel having same
WO2016084765A1 (en) Device for vaporizing liquefied gas
KR102025939B1 (en) A Treatment System Of Boil-Off Gas
KR101945596B1 (en) A Regasification System Of Gas and Vessel having same
KR102086641B1 (en) Medium Carburetor
KR101486497B1 (en) Method for regulating a closed intermediate medium circuit when heat exchanging a primary medium
KR101516913B1 (en) Liquefied natural gas vaporizer
CN102980023A (en) Liquid ammonia vaporization method
KR101686912B1 (en) Devivce for liquefied gas supply
JP6092065B2 (en) Liquefied gas vaporization system and liquefied gas vaporization method
KR20120101489A (en) Gas supply device
KR101647465B1 (en) Integrated Cooling and Vaporizing System for a Ship and a Marine Structure
JP4738256B2 (en) Hot water heat supply system by pump pressurization method
KR101549745B1 (en) A Treatment System of Liquefied Gas
JP2019178738A (en) Liquefied natural gas vaporizer
KR102505858B1 (en) Liquefied gas regasification system
KR101193613B1 (en) A low Heat Capacity Vaporization Equipment for Continuously Pressurizing Low temperature Liquid in Fuel Gas Supply System and Operating Method
JP4578437B2 (en) Hot water heat supply system by steam pressurization method
JP5740122B2 (en) LNG vaporization equipment
KR20180075331A (en) treatment system of liquefied gas and ship having the same
KR101616329B1 (en) Liquefied fuel gas gasification device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15863478

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15863478

Country of ref document: EP

Kind code of ref document: A1