WO2016084509A1 - Drying system - Google Patents

Drying system Download PDF

Info

Publication number
WO2016084509A1
WO2016084509A1 PCT/JP2015/079169 JP2015079169W WO2016084509A1 WO 2016084509 A1 WO2016084509 A1 WO 2016084509A1 JP 2015079169 W JP2015079169 W JP 2015079169W WO 2016084509 A1 WO2016084509 A1 WO 2016084509A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat transfer
transfer medium
drying
dried
heat
Prior art date
Application number
PCT/JP2015/079169
Other languages
French (fr)
Japanese (ja)
Inventor
石井 徹
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to AU2015351701A priority Critical patent/AU2015351701B2/en
Publication of WO2016084509A1 publication Critical patent/WO2016084509A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/02Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air
    • F26B3/06Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour flowing through the materials or objects to be dried
    • F26B3/08Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour flowing through the materials or objects to be dried so as to loosen them, e.g. to form a fluidised bed
    • F26B3/084Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour flowing through the materials or objects to be dried so as to loosen them, e.g. to form a fluidised bed with heat exchange taking place in the fluidised bed, e.g. combined direct and indirect heat exchange
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B23/00Heating arrangements

Definitions

  • the fuel is directly heated to approximately 1000 ° C. because the condensed sunlight is directly irradiated to the fuel.
  • Such a temperature is not a problem at all in the case of a gasification facility that gasifies fuel, but becomes too high to dry the fuel.
  • the present disclosure has been made in view of the above-described problems, and in a drying system for drying a material to be dried, the consumption of fuel used for drying is suppressed by using solar heat, and the facility is enlarged.
  • An object of the present invention is to make it possible to control the temperature of a material to be dried to a temperature suitable for drying and suppressing.
  • the present disclosure adopts the following configuration as means for solving the above problems.
  • the first aspect of the drying system of the present disclosure heats a heat transfer medium with solar heat and exchanges heat between a plurality of solar collectors and a heat transfer medium heated by the solar collector and the material to be dried. And a drying oven for drying the material to be dried.
  • a configuration including a plurality of solar heat collectors that heat the heat transfer medium is employed. Therefore, by installing a number of solar collectors that can collect the energy required to dry the material to be dried, it is possible to dry the material to be dried, and a huge tower and reflection mirror are installed. Drying without using solar heat can be performed.
  • the amount of heat required for drying can be reduced as compared to the amount of heat required to gasify a solid fuel such as coal, in the present disclosure, a large number of heliostats are used as in the above-mentioned gasification facility. Not only does it not have to be installed, it also does not require a complex control system that focuses to a limited area from a widely installed heliostat.
  • the heat of the heat transfer medium is heated by the solar heat and the dry matter is heated by the heat transfer medium, instead of directly heating the material to be dried by the solar heat collected by the solar collector.
  • the configuration is adopted.
  • the temperature of the material to be dried can be easily adjusted by adjusting the physical properties (for example, saturated vapor temperature) of the heat transfer medium, the flow velocity of the heat transfer medium at the time of heat exchange, and the like. Therefore, according to the present disclosure, it is possible to adjust the temperature of the material to be dried to a temperature suitable for drying.
  • FIG. 1 is a flow diagram showing a schematic configuration of the drying system 1 of the present embodiment.
  • the drying system 1 of the present embodiment includes a plurality of solar collectors 2, a steam drum 3, an auxiliary boiler 4, a drying furnace 5, and a fluidizing gas supply device 6
  • a supply unit, an inert gas supply unit, a heat transfer medium circulation unit 7, and a control device 8 are provided.
  • FIG. 2A and 2B are schematic views showing a schematic configuration of the solar heat collector 2, FIG. 2A is a perspective view, and FIG. 2B is a cross-sectional view.
  • the solar heat collector 2 includes a first reflection plate 2a, a second reflection plate 2b, a heat transfer tube 2c, and a drive device 2d.
  • the first reflecting plate 2a is a substantially semi-cylindrical reflecting plate whose inner surface serving as a reflecting surface is directed to the upper sky, and reflects sunlight so as to condense on the second reflecting plate 2b.
  • the second reflection plate 2b is supported by the support portion 2e fixed to the first reflection plate 2a, and is a substantially semi-cylindrical reflection plate whose inner surface serving as a reflection surface is directed to the first reflection plate 2a.
  • the heat transfer tube 2c is a straight pipe disposed at the light collecting position of the second reflection plate 2b, and the heat transfer medium X flows inside.
  • the heat transfer tube 2c is fixed by a support mechanism provided outside so as to pass through a through hole provided in the support portion 2e.
  • the driving device 2d supports the first reflecting plate 2a and the second reflecting plate 2b so as to be movable around the heat transfer tube 2c.
  • the reflecting surface of the first reflecting plate 2a The first reflecting plate 2a and the second reflecting plate 2b are moved so as to face.
  • the second reflection plate 2b improves the light collection efficiency, and also heats the surface of the heat transfer tube 2c on the back side as viewed from the first reflection plate 2a to obtain an effect of improving the heat collection. It is also possible to omit it.
  • the sunlight reflected by the first reflection plate 2a and the second reflection plate 2b is collected at the heat transfer tube 2c, and the heat of the heat obtained by this condenses the heat transfer medium X inside the heat transfer tube 2c. It is heated.
  • water is used as the heat transfer medium X, and the heat transfer medium X heated in the solar collector 2 is heated to a degree that some or all of the heat transfer medium X is vaporized.
  • the heat transfer medium X is not limited to water, and, for example, an organic solvent, an inorganic salt, or a metal can also be used.
  • an organic solvent alcohols, fats and oils having a relatively high boiling point and being liquid at normal temperature can be used.
  • an inorganic salt or a metal what becomes a liquid at comparatively low temperature is selected in order to ensure fluidity.
  • a plurality of solar heat collectors 2 for heating the heat transfer medium X by such solar heat are provided, and each is connected to the steam drum 3 via a collecting pipe 2f.
  • the number of installed solar collectors 2 is determined based on the amount of steam required to dry the object Y in the drying furnace 5. For example, in the daytime in fine weather, the number of installed solar collectors 2 is determined such that the amount of steam generated by the operating solar collector 2 exceeds the amount of steam required by the drying furnace 5 .
  • the steam drum 3 is a container for temporarily storing the heat transfer medium X which is partially or totally vaporized by being heated by the solar collector 2, and the steam drum 3 is configured of the solar collector 2 and the drying furnace 5. It is arranged between.
  • the upper portion of the steam drum 3 is connected to the drying furnace 5, and the lower portion is connected to the heat transfer medium circulation portion 7.
  • the heat transfer medium X is supplied to such a steam drum 3, the heat transfer medium X in a steam state is accumulated in the upper part of the steam drum 3 and is sent out to the drying furnace 5. Further, the heat transfer medium X in a liquid state is collected at the bottom of the steam drum 3 and is sent out to the heat transfer medium circulating unit 7.
  • the auxiliary boiler 4 is a general-purpose boiler that can be easily started and stopped, for example, and is connected to the steam drum 3.
  • the auxiliary boiler 4 supplementarily heats the heat transfer medium X to generate steam when the amount of steam generation in the solar collector 2 decreases near sunrise time, sunset time, etc.
  • the steam drum 3 is supplied.
  • the auxiliary boiler 4 is connected to the control device 8 and generates steam under the control of the control device 8.
  • the drying furnace 5 includes a chamber 5a, a dividing wall 5b dividing the inside of the chamber 5a into a plurality of regions in the horizontal direction, and a heat transfer pipe 5c inserted into the inside of the chamber 5a.
  • the chamber 5a is a container in which the material to be dried Y is stored. In the chamber 5a, when the material to be dried Y is supplied from the outside, a part of the material to be dried Y previously stored is pushed out and discharged.
  • a plurality of dividing walls 5b are erected at the bottom of the chamber 5a, and a plurality of dividing walls 5b are provided such that the wall surfaces face each other.
  • dividing wall 5b there are provided a first dividing wall 5b1 having an opening at the lower part, and a second dividing wall 5b2 having no opening and having a height smaller than that of the first dividing wall 5b1. They are alternately arranged in the chamber 5a.
  • the heat transfer tube 5 c has an inlet end connected to the steam drum 3 and an outlet end connected to the heat transfer medium circulating unit 7.
  • a heat transfer medium X which exchanges heat with the material to be dried Y in the chamber 5a, flows through the heat transfer tube 5c.
  • the material to be dried Y is exchanged by heat exchange between the material to be dried Y flowing with the fluidizing gas Z supplied from the fluidizing gas supply device 6 and the heat transfer medium X flowing through the heat transfer tube 5c. dry.
  • the to-be-dried material Y dried by such a drying furnace 5 is a solid fuel used as fuels, such as a pulverized coal boiler not shown, and contains much moisture (for example, water content is 20% or more).
  • a solid fuel used as fuels such as a pulverized coal boiler not shown
  • it is powdered lignite and biomass, for example.
  • a fluid medium such as sand may be stored inside the chamber 5a in order to enhance the fluidity in the chamber 5a. The fluid medium is separated from the material to be dried Y after being discharged from the chamber 5a, and returned again into the chamber 5a.
  • the fluidizing gas supply device 6 includes a circulation pipe 6a, an inert gas generator 6b, a blower 6c, a heat exchanger 6d, and a cooler 6e.
  • the circulation pipe 6a is a pipe that is branched at one end to be connected to the bottom of the chamber 5a and connected at the other end to the ceiling of the chamber 5a and serves as a flow path for the fluidizing gas Z. Note that one end side of the circulation pipe 6a is connected to the bottom of the chamber 5a such that each branch end is connected to each region of the chamber 5a divided by the dividing wall 5b.
  • the inert gas generator 6 b generates nitrogen gas (inert gas) used as fluid gas from, for example, the atmosphere, and is connected to the circulation pipe 6 a.
  • the blower 6c is provided at an intermediate position of the circulation pipe 6a, and pumps the fluidizing gas Z.
  • the blower 6c pumps the fluidizing gas Z toward one end side (a side connected to the bottom of the chamber 5a) of the circulation pipe 6a so that the fluidizing gas Z is supplied upward from the bottom of the chamber 5a. Do.
  • the fluidizing gas Z is supplied from the one end side (the side connected to the bottom of the chamber 5a) of the circulation pipe 6a into the chamber 5a, and the other end side of the circulation pipe 6a (the ceiling portion of the chamber 5a)
  • the fluidization gas Z inside the chamber 5a is recovered from the side).
  • the heat exchanger 6d is disposed in the middle of the circulation pipe 6a and downstream of the blower 6c.
  • the heat exchanger 6 d exchanges heat between a heat transfer medium X flowing through a return flow pipe 7 a (described later) included in the heat transfer medium circulating unit 7 and the fluidizing gas Z flowing through the circulation pipe 6 a.
  • the heat transfer medium X and the fluidizing gas Z exchange heat, so that the fluidizing gas Z is heated before being supplied to the drying furnace 5, and the fluidizing gas Z causes the chamber 5a to be heated. It is possible to prevent the temperature inside from falling.
  • the cooler 6e is disposed in the middle of the circulation pipe 6a and on the upstream side of the blower 6c.
  • the cooler 6e cools the fluidizing gas Z in order to condense and separate the water contained in the fluidizing gas Z heated by passing through the inside of the chamber 5a.
  • the fluidizing gas Z that has been dried is supplied to the blower 6c and the like, and the occurrence of condensation in the blower 6c and the like can be prevented.
  • the material to be dried Y stored in the chamber 5a flows. Thereby, heat exchange between the material to be dried Y and the heat transfer medium X is promoted, and the material to be dried Y can be dried in a short time.
  • the heat transfer medium circulating unit 7 includes a return flow piping 7a, a condenser 7b, a water supply pump 7c, a water supply preheater 7d, and a steam drum connection piping 7e.
  • the return flow piping 7 a is a piping that connects the drying furnace 5 and the solar heat collector 2 and returns the heat transfer medium X discharged from the drying furnace 5 back to the solar heat collector 2 again. As shown in FIG. 1, the return flow pipe 7a passes through the heat exchanger 6d, whereby the heat transfer medium X flowing through the return flow pipe 7a and the fluidizing gas Z flowing through the circulation pipe 6a are thermal The amount of heat of the heat transfer medium X is transferred to the fluidizing gas Z.
  • the condenser 7b is disposed in the middle of the return pipe 7a and downstream of the heat exchanger 6d, and cools and liquefies the heat transfer medium X, which is a vapor, by heat exchange with the atmosphere, for example.
  • the feed water pump 7c is disposed further downstream of the condenser 7b, and pumps the heat transfer medium X liquefied by the condenser 7b toward the solar collector 2.
  • the feed water preheater 7d is disposed further downstream of the feed pump 7c, and exchanges heat between the heat transfer medium X discharged from the feed pump 7c and the heat transfer medium X on the upstream side of the condenser 7b. , Preheat the heat transfer medium X supplied to the solar collector 2.
  • the steam drum connection pipe 7 e is a pipe that connects the bottom of the steam drum 3 and the return flow pipe 7 a, and condenses the heat transfer medium X of the liquid accumulated at the bottom of the steam drum 3 without passing through the drying furnace 5. It guides to the upper stream side of vessel 7b.
  • a port (not shown) for additionally supplying the heat transfer medium X to the return flow pipe 7a is provided on the upstream side of the water supply pump 7c. For example, the port may be used to compensate for the decrease in the heat transfer medium X The heat transfer medium X is additionally supplied to the return flow pipe 7a.
  • the control device 8 controls the entire drying system 1 of the present embodiment, and controls, for example, the auxiliary boiler 4, the inert gas generator 6b, the blower 6c, and the water supply pump 7c.
  • the operation period of the auxiliary boiler 4 is defined under the control of the control device 8 as described above.
  • the auxiliary boiler 4 is operated only before and after sunrise time, is operated only before and after sunset time, and is operated before and after sunrise time and before and after sunset time.
  • a valve is provided at a suitable position. The flow rates of the heat transfer medium X and the fluidizing gas Z are adjusted by adjusting the opening degree of these valves by control of the control device 8 or the like.
  • drying system 1 of this embodiment constituted in this way is explained.
  • the material to be dried Y is continuously supplied in a constant amount to the chamber 5 a of the drying furnace 5.
  • the fluidizing gas Z (inert gas) is supplied from the inert gas generator 6b to the circulation piping 6a, and the blower 6c is driven to fluidize the circulation piping 6a.
  • the gas Z is pumped toward the drying furnace 5.
  • the fluidizing gas Z supplied to the drying furnace 5 is preheated in the heat exchanger 6d, and then supplied from the bottom of the chamber 5a to the inside of the chamber 5a.
  • the material to be dried Y in the chamber 5a is fluidized by supplying the fluidization gas Z from the bottom of the chamber 5a.
  • the fluidizing gas Z in the chamber 5a is recovered from the upper portion of the chamber 5a to the circulation pipe 6a, water is removed by the cooler 6e, and then pressure-fed again by the blower 6c.
  • the heat transfer medium X supplied to the heat transfer tube 5c inserted into the chamber 5a is supplied, the heat transfer medium X inside the heat transfer tube 5c and the material to be dried Y outside the heat transfer tube 5c
  • the object to be dried Y is heated by heat exchange.
  • the moisture contained in the material to be dried Y evaporates, and the material to be dried Y is dried.
  • the dried material to be dried Y is discharged to the outside of the chamber 5a by being pushed by the new material to be dried Y supplied to the chamber 5a continuously.
  • the water evaporated from the material to be dried Y is recovered along with the fluidizing gas Z in the circulation pipe 6a.
  • the heat transfer medium X flowing into the return flow pipe 7a passes through the heat exchanger 6d, passes through the feed water preheater 7d, and is returned to liquid by being cooled by the condenser 7b.
  • the heat transfer medium X that has become liquid is pumped toward the solar collector 2 by the water supply pump 7c.
  • the heat transfer medium X pumped by the feed water pump 7 c is preheated in the feed water preheater 7 d and then supplied to the solar collector 2 again.
  • the auxiliary boiler 4 is operated only before and after the sunrise time, only before and after the sunset time, or before and after the sunrise time and before and after the sunset time.
  • steam heat transfer medium X
  • the steam thus supplied from the auxiliary boiler 4 to the steam drum 3 is mixed with the steam (heat transfer medium X) supplied from the solar collector 2 to the steam drum 3 and used.
  • FIG. 3 is an explanatory view of the case where the auxiliary boiler 4 is operated only before and after the sunrise time in the drying system 1 of the present embodiment.
  • FIG. 4 is explanatory drawing in the case where the auxiliary
  • FIG. 5 is an explanatory view of the case where the auxiliary boiler 4 is operated before and after the sunrise time and before and after the sunset time in the drying system 1 of the present embodiment.
  • a graph showing the relationship between the time and the temperature of the heat transfer medium X in the steam drum 3 is shown at the top, but in this graph, the relationship between the time and energy obtained from the sun is shown for reference. The graph shown is superimposed and shown.
  • the operation of the auxiliary boiler 4 is started before the sunrise. Since the heat transfer medium X can not be heated by the solar collector 2 at the time before sunrise, even if steam is supplied to the steam drum 3 from the auxiliary boiler 4 supplementarily, the solar collector 2 side The temperature of the heat transfer medium X supplied to the steam drum 3 via the collecting pipe 2f is low, and the temperature of the heat transfer medium X in the entire steam drum 3 does not reach the boiling point.
  • the drying system 1 of the present embodiment performs the preheating operation until the temperature of the heat transfer medium X in the steam drum 3 reaches the boiling point.
  • This preheating operation is an operation performed in a state in which the material to be dried Y is not supplied to the drying furnace 5, and is an operation in which the temperature of the heat transfer medium X is gradually raised toward the boiling point.
  • the preheating operation is performed either in a state in which the material to be dried Y is not stored in the drying furnace 5 or in a state in which the material to be dried Y whose drying is not completed on the previous day is stored in the drying furnace 5.
  • the heat transfer medium X is gradually heated by the operation of the auxiliary boiler 4 (including heating by the solar collector 2 after sunrise).
  • the heat transfer medium X is heated by the solar collector 2 and the temperature of the heat transfer medium X in the steam drum 3 rises sharply to the boiling point .
  • the auxiliary boiler 4 is stopped, the material to be dried Y is put into the drying furnace 5, and the drying operation to dry the material to be dried Y is performed.
  • the temperature of the heat transfer medium X falls below the boiling point, so at this point the supply of the material to be dried Y to the drying furnace is stopped and the drying operation is stopped.
  • the cooling operation is performed until the sunset time.
  • this cooling operation for example, by directing the solar collector 2 in a direction different from that of the sun, the heat transfer medium X is not heated by the solar collector 2, and the drying furnace 5 by the fluidizing gas supply device 6 is Continue to supply the fluidization gas Z.
  • the to-be-dried material Y is stirred without being heated, and the temperature inside the drying furnace 5 is rapidly lowered.
  • the cooling operation is ended, and the drying system 1 of the present embodiment is stopped until the operation restarts the next day.
  • the heat transfer medium X is heated by the solar collector 2 after the sunrise, so as indicated by the dashed dotted line in FIG.
  • the time for the heat transfer medium X to reach the boiling point is delayed. Therefore, by operating the auxiliary boiler 4 before and after the sunrise time, it is possible to advance the start timing of the drying operable period, and it is possible to dry the object to be dried Y in a longer period.
  • the decrease in the temperature of the heat transfer medium X can be suppressed. Therefore, the temperature of the heat transfer medium X can be maintained at the boiling point for a while even after the sunset time, and the drying of the material to be dried Y can be continued. In this way, by operating the auxiliary boiler 4 before and after the sunset time, it is possible to extend the drying operable period to after the sunset time as shown in FIG. It is possible to dry the
  • the temperature of the heat transfer medium X can not be maintained at the boiling point by the solar collector 2 alone before and after sunset time, but the heat transfer medium X is warmed by the daytime operation There is. Therefore, the input energy for maintaining the temperature of the heat transfer medium X at the boiling point by using the auxiliary boiler 4 can be reduced compared to the case where the auxiliary boiler 4 is operated before and after sunrise. Therefore, when the auxiliary boiler 4 is operated before and after the sunset time, it is possible to extend the dry operation possible period with a smaller amount of fuel before and after sunrise, than when operating the auxiliary boiler 4.
  • the start timing of the drying operation possible period is advanced, and the drying operation possible period is sunset. It is possible to extend until after the time. In such a case, more fuel is required as compared to the case where the auxiliary boiler 4 is operated only before and after the sunrise time and the case where the auxiliary boiler 4 is operated only before and after the sunset time, but the longest The drying operable period can be secured. For this reason, for example, the operation time of the factory where the drying system 1 of the present embodiment is installed is long, and it is a useful operation pattern when it is desired to operate the drying system 1 for a long time according to the operation time.
  • a configuration including a plurality of solar heat collectors 2 for heating the heat transfer medium X is employed. Therefore, by installing a number of solar collectors capable of collecting the energy necessary to dry the material to be dried Y, it is possible to dry the material to be dried Y, and a huge tower or a reflection mirror is provided. It is possible to dry using solar heat without installing Further, compared to the amount of heat required to gasify a solid fuel such as coal, the amount of heat required for drying can be reduced, so in the drying system 1 of the present embodiment, a large number of gasification facilities are required.
  • the heat transfer medium X is heated by solar heat instead of directly heating the material to be dried Y by the solar heat collected by the solar collector 2, and this heat transfer medium A configuration is employed in which the object to be dried Y is heated by X. Therefore, the temperature of the object to be dried Y can be easily adjusted by adjusting the physical properties (for example, saturated vapor temperature) of the heat transfer medium X, the flow velocity of the heat transfer medium X at the time of heat exchange, and the like. For example, in the drying system 1 of the present embodiment, since water is used as the heat transfer medium X, the temperature of the material to be dried Y can be prevented from becoming higher than the saturation temperature of water.
  • the piping or the like through which the heat transfer medium X flows is a closed space, and the inside of the space is pressurized by vaporizing the heat transfer medium X. Therefore, in the drying system 1 of the present embodiment, the saturation temperature of the heat transfer medium X is, for example, about 160 ° C. to 170 ° C.
  • the consumption of fuel used for drying can be suppressed by using solar heat. Moreover, the enlargement of the equipment can be suppressed. Furthermore, it becomes possible to adjust the temperature of the material to be dried Y to a temperature suitable for drying.
  • the heat transfer medium X which is disposed between the solar collector 2 and the drying furnace 5 and is vaporized by being heated by the solar collector 2 is temporarily used.
  • the steam drum 3 stored in the Therefore even if there is a variation in the heating performance of each solar collector 2 due to, for example, the arrangement or individual differences and there is a difference in the ability to generate steam, all the steam is collected on the steam drum 3 once, Since the steam drum 3 is supplied to the drying furnace 5, the heat transfer medium X can be stably supplied to the drying furnace 5 at all times. Further, even if the sun is temporarily hidden in the cloud and the solar collector 2 can not sufficiently generate steam, for example, because a certain amount of steam is accumulated inside the steam drum 3, the drying furnace 5 is not The supply of steam can be continued.
  • the control apparatus 8 operates the auxiliary boiler 4 according to at least one of sunrise time and sunset time. Therefore, as described above with reference to FIGS. 4 to 6, it is possible to secure a longer drying operation possible period as compared to the case where the auxiliary boiler 4 is not used.
  • the low pressure turbine extraction unit 14 includes an extraction pipe 14 a and an on-off valve 12 b.
  • the bleed pipe 12 a is connected to the low pressure turbine 102 c and guides the steam extracted from the low pressure turbine 102 c toward the heat transfer pipe 5 c of the drying furnace 5.
  • the on-off valve 14b is disposed at an intermediate position of the bleed pipe 14a, and opens and closes the flow path formed by the bleed pipe 14a.
  • the on-off valve 14 b is controlled by, for example, the control device 8.
  • Such a low pressure turbine extraction unit 14 extracts steam from the low pressure turbine 102 c and supplies the steam to the heat transfer pipe 5 c of the drying furnace 5.

Abstract

The present invention is provided with: a plurality of solar heat collectors (2) that heat a heat transfer medium (X) with solar heat; and a drying furnace (5) that dries an object to be dried (Y) by exchanging heat between the object to be dried (Y) and the heat transfer medium (X) that has been heated by the solar collectors (2).

Description

乾燥システムDrying system
 本開示は、乾燥システムに関する。
本願は、2014年11月26日に日本に出願された特願2014-238922号に基づき優先権を主張し、その内容をここに援用する。
The present disclosure relates to a drying system.
Priority is claimed on Japanese Patent Application No. 2014-238922, filed Nov. 26, 2014, the content of which is incorporated herein by reference.
 従来から、褐炭、バイオマス及びパームかす等の水分を多く含む固体の燃料は、そのまま使用すると含有する水分の影響により着火性や燃焼性が悪いため、天日干し等により乾燥させている。しかしながら、天日干しでは、燃料を載置する広いスペースが必要となると共に、乾燥中における燃料の温度を管理することが困難である。このため、日射による加熱に加えて、空気に触れることにより、酸化して変質するほか、日射の熱に、酸化による発熱が加わり、異常に温度が上昇して自然発火に至る可能性もある。 Conventionally, solid fuels containing a large amount of water such as lignite, biomass and palm scum are badly ignited and combustible due to the effect of the contained water if used as they are, and are dried by sun drying or the like. However, sun drying requires a large space for mounting the fuel, and it is difficult to control the temperature of the fuel during drying. For this reason, in addition to heating by solar radiation, in addition to oxidation and deterioration by exposure to air, heat generated by oxidation is added to the heat of solar radiation, and the temperature may rise abnormally to lead to spontaneous ignition.
 一方で、人工的に熱風を作り出し、この熱風を用いて燃料の乾燥を行うことが考えられる。しかしながら、このような熱風の生成には多くの燃料を消費する必要があり、また多くの二酸化炭素を排出する。このため、例えば、特許文献1に示すガス化設備を応用し、太陽光を集光することによって得られた熱で燃料を加熱することにより、燃料を消費することなく乾燥を行うことが考えられる。 On the other hand, it is conceivable to create hot air artificially and use this hot air to dry the fuel. However, the generation of such hot air needs to consume a large amount of fuel and also emits a large amount of carbon dioxide. For this reason, for example, it is conceivable to perform drying without consuming fuel by heating the fuel with heat obtained by condensing the sunlight by applying the gasification facility shown in Patent Document 1 .
日本国特開2001-123183号公報Japanese Patent Application Laid-Open No. 2001-123183
 ところが、特許文献1に開示されたガス化設備では、集光した太陽光を直接燃料に照射することから、燃料が1000℃近くまで加熱されてしまう。このような温度は、燃料のガス化を行うガス化設備であれば何ら問題はないが、燃料の乾燥を行うためには高温になり過ぎる。 However, in the gasification facility disclosed in Patent Document 1, the fuel is directly heated to approximately 1000 ° C. because the condensed sunlight is directly irradiated to the fuel. Such a temperature is not a problem at all in the case of a gasification facility that gasifies fuel, but becomes too high to dry the fuel.
 また、特許文献1に開示されたガス化設備では、燃料を1000℃近くまで加熱するため、複数のヘリオスタットで集光した太陽光を大型のタワーで上方に支持される反射ミラーに集光し、さらにガス化炉に導光している。このため、多数のヘリオスタットや大型のタワー等が必要となり、設備が大型化する。また、広範囲に設置された多数のヘリオスタットから集めた太陽光を、限られた範囲に集光するため、複雑な制御が必要となり、設備コストが嵩むという課題がある。燃料を乾燥させる乾燥システムでは、燃料の温度を1000℃近くまで加熱する必要がないことから、特許文献1に示すような大型の設備を設置する必要はなく、設備を小型化することが望ましい。 Further, in the gasification facility disclosed in Patent Document 1, in order to heat the fuel to about 1000 ° C., sunlight collected by a plurality of heliostats is collected on a reflection mirror supported upward by a large tower. Furthermore, it is guided to the gasification furnace. For this reason, many heliostats, a large tower, etc. are needed, and an installation enlarges. Moreover, in order to condense the sunlight collected from many heliostats installed in a wide area in a limited range, complicated control is needed, and the subject that equipment cost is increased occurs. In the drying system for drying the fuel, since it is not necessary to heat the temperature of the fuel to about 1000 ° C., it is not necessary to install a large facility as shown in Patent Document 1, and it is desirable to miniaturize the facility.
 本開示は、上述する問題点に鑑みてなされたもので、被乾燥物を乾燥する乾燥システムにおいて、太陽熱を利用することで乾燥に用いられる燃料の消費量を抑制し、また設備の大型化を抑制し、かつ、乾燥に適した温度に被乾燥物の温度を調整可能とすることを目的とする。 The present disclosure has been made in view of the above-described problems, and in a drying system for drying a material to be dried, the consumption of fuel used for drying is suppressed by using solar heat, and the facility is enlarged. An object of the present invention is to make it possible to control the temperature of a material to be dried to a temperature suitable for drying and suppressing.
 本開示は、上記課題を解決するための手段として、以下の構成を採用する。 The present disclosure adopts the following configuration as means for solving the above problems.
 本開示の乾燥システムの第1の態様は、太陽熱により熱伝達媒体を加熱すると共に複数設けられる太陽集熱器と、太陽集熱器により加熱された熱伝達媒体と被乾燥物とを熱交換することによって上記被乾燥物を乾燥させる乾燥炉とを備える。 The first aspect of the drying system of the present disclosure heats a heat transfer medium with solar heat and exchanges heat between a plurality of solar collectors and a heat transfer medium heated by the solar collector and the material to be dried. And a drying oven for drying the material to be dried.
 本開示によれば、熱伝達媒体を加熱する太陽集熱器を複数備える構成を採用している。
このため、被乾燥物を乾燥させるために必要なエネルギを集められるだけの数の太陽集熱器を設置することで、被乾燥物の乾燥を行うことができ、巨大なタワーや反射ミラーを設置することなく太陽熱を利用した乾燥を行うことができる。また、石炭等の固体の燃料をガス化させるために必要な熱量と比較すれば、乾燥に要する熱量が少なくて済むことから、本開示においては上述のガス化設備のように多数のヘリオスタットを設置する必要がないだけでなく、広範囲に設置されたヘリオスタットから、限られた範囲へ集光する複雑な制御システムも必要ない。したがって、本開示によれば、設備の大型化や、制御システムの複雑化を抑止することができる。さらに、本開示によれば、太陽集熱器で集められた太陽熱によって被乾燥物を直接加熱するのではなく、この太陽熱によって熱伝達媒体を加熱し、この熱伝達媒体によって被乾燥物を加熱する構成を採用している。このため、熱伝達媒体の物性(例えば飽和蒸気温度)や熱交換時の熱伝達媒体の流速等を調整することによって、被乾燥物の温度を容易に調整することができる。したがって、本開示によれば、乾燥に適した温度に被乾燥物の温度を調整することが可能となる。
According to the present disclosure, a configuration including a plurality of solar heat collectors that heat the heat transfer medium is employed.
Therefore, by installing a number of solar collectors that can collect the energy required to dry the material to be dried, it is possible to dry the material to be dried, and a huge tower and reflection mirror are installed. Drying without using solar heat can be performed. In addition, since the amount of heat required for drying can be reduced as compared to the amount of heat required to gasify a solid fuel such as coal, in the present disclosure, a large number of heliostats are used as in the above-mentioned gasification facility. Not only does it not have to be installed, it also does not require a complex control system that focuses to a limited area from a widely installed heliostat. Therefore, according to the present disclosure, it is possible to prevent an increase in size of equipment and a complication of control system. Furthermore, according to the present disclosure, the heat of the heat transfer medium is heated by the solar heat and the dry matter is heated by the heat transfer medium, instead of directly heating the material to be dried by the solar heat collected by the solar collector. The configuration is adopted. For this reason, the temperature of the material to be dried can be easily adjusted by adjusting the physical properties (for example, saturated vapor temperature) of the heat transfer medium, the flow velocity of the heat transfer medium at the time of heat exchange, and the like. Therefore, according to the present disclosure, it is possible to adjust the temperature of the material to be dried to a temperature suitable for drying.
本開示の第1実施形態における乾燥システムの概略構成を示すフロー図である。It is a flow figure showing a schematic structure of a drying system in a 1st embodiment of this indication. 本開示の第1実施形態における乾燥システムが備える太陽集熱器の概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of the solar collector with which the drying system in 1st Embodiment of this indication is provided. 本開示の第1実施形態における乾燥システムが備える太陽集熱器の概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of the solar collector with which the drying system in 1st Embodiment of this indication is provided. 本開示の第1実施形態における乾燥システムにおいて、補助ボイラを日の出時刻の前後のみ運転させる場合の説明図である。In the drying system in a 1st embodiment of the present disclosure, it is an explanatory view in the case of operating an auxiliary boiler only before and behind sunrise time. 本開示の第1実施形態における乾燥システムにおいて、補助ボイラを日没時刻の前後のみ運転させる場合の説明図である。In the drying system in a 1st embodiment of the present disclosure, it is an explanatory view in the case of operating an auxiliary boiler only before and behind sunset time. 本開示の第1実施形態における乾燥システムにおいて、補助ボイラを日の出時刻の前後と日没時刻の前後とで運転させる場合の説明図である。In the drying system in a 1st embodiment of the present disclosure, it is an explanatory view in the case of making an auxiliary boiler operate before and behind sunrise time and before and after sunset time. 本開示の第2実施形態における乾燥システムの概略構成を示すフロー図である。It is a flowchart which shows schematic structure of the drying system in 2nd Embodiment of this indication. 本開示の第2実施形態における乾燥システムにおいて、補助ボイラを日の出時刻の前後のみ運転させる場合の説明図である。The drying system in 2nd Embodiment of this indication WHEREIN: It is explanatory drawing in the case of operating an auxiliary boiler only before and behind sunrise time. 本開示の第2実施形態における乾燥システムにおいて、補助ボイラを日没時刻の前後のみ運転させる場合の説明図である。In the drying system in a 2nd embodiment of this indication, it is an explanatory view in the case of operating an auxiliary boiler only before and behind sunset time. 本開示の第2実施形態における乾燥システムにおいて、補助ボイラを日の出時刻の前後と日没時刻の前後とで運転させる場合の説明図である。In the drying system in a 2nd embodiment of the present disclosure, it is an explanatory view in the case of making an auxiliary boiler operate before and behind sunrise time and before and after sunset time. 本開示の第3実施形態における乾燥システムの概略構成を示すフロー図である。It is a flow figure showing a schematic structure of a drying system in a 3rd embodiment of this indication.
 以下、図面を参照して、本開示に係る乾燥システムの一実施形態について説明する。なお、以下の図面においては、各部材を認識可能な大きさとするために、各部材の縮尺を適宜変更している。 Hereinafter, an embodiment of a drying system according to the present disclosure will be described with reference to the drawings. In the following drawings, the scale of each member is appropriately changed in order to make each member have a recognizable size.
(第1実施形態)
 図1は、本実施形態の乾燥システム1の概略構成を示すフロー図である。この図に示すように、本実施形態の乾燥システム1は、複数の太陽集熱器2と、蒸気ドラム3と、補助ボイラ4と、乾燥炉5と、流動化ガス供給装置6(流動化ガス供給手段、不活性ガス供給部)と、熱伝達媒体循環部7と、制御装置8とを備えている。
First Embodiment
FIG. 1 is a flow diagram showing a schematic configuration of the drying system 1 of the present embodiment. As shown in this figure, the drying system 1 of the present embodiment includes a plurality of solar collectors 2, a steam drum 3, an auxiliary boiler 4, a drying furnace 5, and a fluidizing gas supply device 6 A supply unit, an inert gas supply unit, a heat transfer medium circulation unit 7, and a control device 8 are provided.
 図2A、図2Bは、太陽集熱器2の概略構成を示す模式図であり、図2Aが斜視図であり、図2Bが断面図である。これらの図に示すように、太陽集熱器2は、第1反射板2aと、第2反射板2bと、伝熱管2cと、駆動装置2dとを備えている。 2A and 2B are schematic views showing a schematic configuration of the solar heat collector 2, FIG. 2A is a perspective view, and FIG. 2B is a cross-sectional view. As shown in these drawings, the solar heat collector 2 includes a first reflection plate 2a, a second reflection plate 2b, a heat transfer tube 2c, and a drive device 2d.
 第1反射板2aは、反射面となる内面が上空に向けられた略半円筒形の反射板であり、第2反射板2bに集光するように太陽光を反射する。第2反射板2bは、第1反射板2aに固定された支持部2eに支持されており、反射面となる内面が第1反射板2aに向けられた略半円筒形の反射板である。伝熱管2cは、第2反射板2bの集光位置に配置された直線状の配管であり、内部に熱伝達媒体Xが流される。この伝熱管2cは、支持部2eに設けられた貫通孔を通過するように、外部に設けられた支持機構によって固定されている。駆動装置2dは、第1反射板2a及び第2反射板2bを伝熱管2c周りに移動可能に支持しており、例えば制御装置8の制御の下、第1反射板2aの反射面が太陽に向くように第1反射板2a及び第2反射板2bを移動させる。なお、第2反射板2bは、集光効率を向上させるとともに、伝熱管2cの外面のうち、第1反射板2aから見て裏側になる面も加熱して、集熱を向上する効果を得るためであり、省略することも可能である。 The first reflecting plate 2a is a substantially semi-cylindrical reflecting plate whose inner surface serving as a reflecting surface is directed to the upper sky, and reflects sunlight so as to condense on the second reflecting plate 2b. The second reflection plate 2b is supported by the support portion 2e fixed to the first reflection plate 2a, and is a substantially semi-cylindrical reflection plate whose inner surface serving as a reflection surface is directed to the first reflection plate 2a. The heat transfer tube 2c is a straight pipe disposed at the light collecting position of the second reflection plate 2b, and the heat transfer medium X flows inside. The heat transfer tube 2c is fixed by a support mechanism provided outside so as to pass through a through hole provided in the support portion 2e. The driving device 2d supports the first reflecting plate 2a and the second reflecting plate 2b so as to be movable around the heat transfer tube 2c. For example, under the control of the control device 8, the reflecting surface of the first reflecting plate 2a The first reflecting plate 2a and the second reflecting plate 2b are moved so as to face. The second reflection plate 2b improves the light collection efficiency, and also heats the surface of the heat transfer tube 2c on the back side as viewed from the first reflection plate 2a to obtain an effect of improving the heat collection. It is also possible to omit it.
 この太陽集熱器2では、第1反射板2a及び第2反射板2bによって反射された太陽光が伝熱管2cにおいて集光され、これによって得られる太陽熱によって伝熱管2c内部の熱伝達媒体Xが加熱される。本実施形態においては熱伝達媒体Xとして水を用いており、太陽集熱器2において加熱された熱伝達媒体Xは、一部あるいは全部が蒸気化する程度に加熱される。なお、熱伝達媒体Xとしては、水に限られず、例えば有機溶媒、無機塩類、あるいは金属を用いることも可能である。例えば、有機溶媒を用いる場合には、アルコール類や、沸点が比較的高くかつ常温で液体の油脂類等を用いることができる。また、無機塩類や金属を用いる場合には、流動性を確保するため比較的低温で液体となるものが選択される。 In this solar heat collector 2, the sunlight reflected by the first reflection plate 2a and the second reflection plate 2b is collected at the heat transfer tube 2c, and the heat of the heat obtained by this condenses the heat transfer medium X inside the heat transfer tube 2c. It is heated. In the present embodiment, water is used as the heat transfer medium X, and the heat transfer medium X heated in the solar collector 2 is heated to a degree that some or all of the heat transfer medium X is vaporized. The heat transfer medium X is not limited to water, and, for example, an organic solvent, an inorganic salt, or a metal can also be used. For example, in the case of using an organic solvent, alcohols, fats and oils having a relatively high boiling point and being liquid at normal temperature can be used. Moreover, when using an inorganic salt or a metal, what becomes a liquid at comparatively low temperature is selected in order to ensure fluidity.
 このような太陽熱により熱伝達媒体Xを加熱する太陽集熱器2は、図1に示すように、複数設けられており、集合管2fを介して各々が蒸気ドラム3と接続されている。この太陽集熱器2の設置数は、乾燥炉5において被乾燥物Yを乾燥させるのに必要とされる蒸気量に基づいて定められている。例えば、晴天時の日中において、稼働中の太陽集熱器2で生成される蒸気量が、乾燥炉5で必要とされる蒸気量を上回るように太陽集熱器2の設置数が定められる。 As shown in FIG. 1, a plurality of solar heat collectors 2 for heating the heat transfer medium X by such solar heat are provided, and each is connected to the steam drum 3 via a collecting pipe 2f. The number of installed solar collectors 2 is determined based on the amount of steam required to dry the object Y in the drying furnace 5. For example, in the daytime in fine weather, the number of installed solar collectors 2 is determined such that the amount of steam generated by the operating solar collector 2 exceeds the amount of steam required by the drying furnace 5 .
 蒸気ドラム3は、太陽集熱器2によって加熱されることによって一部あるいは全部が蒸気化された熱伝達媒体Xを一時的に貯留する容器であり、太陽集熱器2と乾燥炉5との間に配置されている。また、この蒸気ドラム3は、上部が乾燥炉5と接続されており、底部が熱伝達媒体循環部7と接続されている。このような蒸気ドラム3に熱伝達媒体Xが供給されると、蒸気状態の熱伝達媒体Xは蒸気ドラム3の上部に溜り、乾燥炉5に向けて送り出される。また、液体状態の熱伝達媒体Xは蒸気ドラム3の底部に溜り、熱伝達媒体循環部7に送り出される。 The steam drum 3 is a container for temporarily storing the heat transfer medium X which is partially or totally vaporized by being heated by the solar collector 2, and the steam drum 3 is configured of the solar collector 2 and the drying furnace 5. It is arranged between. The upper portion of the steam drum 3 is connected to the drying furnace 5, and the lower portion is connected to the heat transfer medium circulation portion 7. When the heat transfer medium X is supplied to such a steam drum 3, the heat transfer medium X in a steam state is accumulated in the upper part of the steam drum 3 and is sent out to the drying furnace 5. Further, the heat transfer medium X in a liquid state is collected at the bottom of the steam drum 3 and is sent out to the heat transfer medium circulating unit 7.
 補助ボイラ4は、例えば起動や停止が容易な汎用ボイラであり、蒸気ドラム3と接続されている。この補助ボイラ4は、日の出時刻や日没時刻近く等において太陽集熱器2における蒸気の生成量が減少した場合に、補助的に熱伝達媒体Xを加熱して蒸気を生成し、この蒸気を蒸気ドラム3に供給する。本実施形態においては、補助ボイラ4は、制御装置8と接続されており、制御装置8の制御の下に、蒸気を生成する。 The auxiliary boiler 4 is a general-purpose boiler that can be easily started and stopped, for example, and is connected to the steam drum 3. The auxiliary boiler 4 supplementarily heats the heat transfer medium X to generate steam when the amount of steam generation in the solar collector 2 decreases near sunrise time, sunset time, etc. The steam drum 3 is supplied. In the present embodiment, the auxiliary boiler 4 is connected to the control device 8 and generates steam under the control of the control device 8.
 乾燥炉5は、チャンバ5aと、チャンバ5aの内部を水平方向に複数の領域に分割する分割壁5bと、チャンバ5aの内部に挿通される伝熱管5cとを備えている。チャンバ5aは、被乾燥物Yが内部に貯留される容器である。このチャンバ5aでは、外部から被乾燥物Yが供給されることにより先に貯留された被乾燥物Yの一部が押し出されて排出される。分割壁5bは、チャンバ5aの底部に立設されると共に、壁面同士が対向するように複数設けられている。この分割壁5bとして、下部に開口が設けられた第1分割壁5b1と、開口が設けられずかつ第1分割壁5b1よりも背丈の低い第2分割壁5b2とが設けられており、これらが交互にチャンバ5a内で配列されている。このような複数の分割壁5bによってチャンバ5aの内部が分割されることにより、被乾燥物Yは、図1の矢印に示すように、チャンバ5a内を上下に蛇行しながら進行する。伝熱管5cは、入口端が蒸気ドラム3と接続され、出口端が熱伝達媒体循環部7と接続されている。この伝熱管5cには、チャンバ5a内において被乾燥物Yと熱交換が行われる熱伝達媒体Xが流される。
この乾燥炉5では、流動化ガス供給装置6から供給される流動化ガスZによって流動する被乾燥物Yと、伝熱管5cを流れる熱伝達媒体Xとを熱交換することによって被乾燥物Yを乾燥させる。
The drying furnace 5 includes a chamber 5a, a dividing wall 5b dividing the inside of the chamber 5a into a plurality of regions in the horizontal direction, and a heat transfer pipe 5c inserted into the inside of the chamber 5a. The chamber 5a is a container in which the material to be dried Y is stored. In the chamber 5a, when the material to be dried Y is supplied from the outside, a part of the material to be dried Y previously stored is pushed out and discharged. A plurality of dividing walls 5b are erected at the bottom of the chamber 5a, and a plurality of dividing walls 5b are provided such that the wall surfaces face each other. As the dividing wall 5b, there are provided a first dividing wall 5b1 having an opening at the lower part, and a second dividing wall 5b2 having no opening and having a height smaller than that of the first dividing wall 5b1. They are alternately arranged in the chamber 5a. As the inside of the chamber 5a is divided by the plurality of dividing walls 5b, the object to be dried Y advances while meandering up and down in the chamber 5a as shown by the arrows in FIG. The heat transfer tube 5 c has an inlet end connected to the steam drum 3 and an outlet end connected to the heat transfer medium circulating unit 7. A heat transfer medium X, which exchanges heat with the material to be dried Y in the chamber 5a, flows through the heat transfer tube 5c.
In the drying furnace 5, the material to be dried Y is exchanged by heat exchange between the material to be dried Y flowing with the fluidizing gas Z supplied from the fluidizing gas supply device 6 and the heat transfer medium X flowing through the heat transfer tube 5c. dry.
 このような乾燥炉5によって乾燥される被乾燥物Yは、不図示の微粉炭ボイラ等の燃料として用いられる固体の燃料であり、水分を多く含んでいる(例えば含水率が20%以上)。このような被乾燥物Yとしては、例えば粉体化された褐炭やバイオマスである。なお、チャンバ5aにおける流動性を高めるため、チャンバ5aの内部には、このような被乾燥物Yの他に砂等の流動媒体を貯留しても良い。この流動媒体は、チャンバ5aから排出された後に被乾燥物Yから分離され、再びチャンバ5a内に戻される。 The to-be-dried material Y dried by such a drying furnace 5 is a solid fuel used as fuels, such as a pulverized coal boiler not shown, and contains much moisture (for example, water content is 20% or more). As such to-be-dried material Y, it is powdered lignite and biomass, for example. In addition to the material to be dried Y, a fluid medium such as sand may be stored inside the chamber 5a in order to enhance the fluidity in the chamber 5a. The fluid medium is separated from the material to be dried Y after being discharged from the chamber 5a, and returned again into the chamber 5a.
 流動化ガス供給装置6は、循環配管6aと、不活性ガス発生器6bと、ブロワ6cと、熱交換器6dと、冷却器6eとを備えている。循環配管6aは、一端側が多数に分岐されてチャンバ5aの底部と接続され、他端側がチャンバ5aの天井部に接続された配管であり、流動化ガスZの流路となる。なお、循環配管6aの一端側は、分割壁5bによって分割されたチャンバ5aの各領域に対して各分岐端が接続されるようにチャンバ5aの底部と接続されている。不活性ガス発生器6bは、例えば大気から、流動性ガスとして用いられる窒素ガス(不活性ガス)を生成するものであり、循環配管6aと接続されている。ブロワ6cは循環配管6aの途中部位に設けられており、流動化ガスZを圧送する。このブロワ6cは、チャンバ5aの底部から上方に向けて流動化ガスZが供給されるよう、循環配管6aの一端側(チャンバ5aの底部と接続される側)に向けて流動化ガスZを圧送する。これによって、循環配管6aの一端側(チャンバ5aの底部に接続された側)からチャンバ5a内に流動化ガスZが供給され、循環配管6aの他端側(チャンバ5aの天井部に接続された側)からチャンバ5aの内部の流動化ガスZが回収される。 The fluidizing gas supply device 6 includes a circulation pipe 6a, an inert gas generator 6b, a blower 6c, a heat exchanger 6d, and a cooler 6e. The circulation pipe 6a is a pipe that is branched at one end to be connected to the bottom of the chamber 5a and connected at the other end to the ceiling of the chamber 5a and serves as a flow path for the fluidizing gas Z. Note that one end side of the circulation pipe 6a is connected to the bottom of the chamber 5a such that each branch end is connected to each region of the chamber 5a divided by the dividing wall 5b. The inert gas generator 6 b generates nitrogen gas (inert gas) used as fluid gas from, for example, the atmosphere, and is connected to the circulation pipe 6 a. The blower 6c is provided at an intermediate position of the circulation pipe 6a, and pumps the fluidizing gas Z. The blower 6c pumps the fluidizing gas Z toward one end side (a side connected to the bottom of the chamber 5a) of the circulation pipe 6a so that the fluidizing gas Z is supplied upward from the bottom of the chamber 5a. Do. Thus, the fluidizing gas Z is supplied from the one end side (the side connected to the bottom of the chamber 5a) of the circulation pipe 6a into the chamber 5a, and the other end side of the circulation pipe 6a (the ceiling portion of the chamber 5a) The fluidization gas Z inside the chamber 5a is recovered from the side).
 熱交換器6dは、循環配管6aの途中部位であって、ブロワ6cの下流側に配置されている。この熱交換器6dは、熱伝達媒体循環部7が備える後述する返流配管7aを流れる熱伝達媒体Xと、循環配管6aを流れる流動化ガスZとを熱交換する。この熱交換器6dにおいて、熱伝達媒体Xと流動化ガスZとが熱交換されることによって、乾燥炉5に供給される前に流動化ガスZが加熱され、流動化ガスZによってチャンバ5aの内部の温度が低下することを防止することができる。 The heat exchanger 6d is disposed in the middle of the circulation pipe 6a and downstream of the blower 6c. The heat exchanger 6 d exchanges heat between a heat transfer medium X flowing through a return flow pipe 7 a (described later) included in the heat transfer medium circulating unit 7 and the fluidizing gas Z flowing through the circulation pipe 6 a. In the heat exchanger 6d, the heat transfer medium X and the fluidizing gas Z exchange heat, so that the fluidizing gas Z is heated before being supplied to the drying furnace 5, and the fluidizing gas Z causes the chamber 5a to be heated. It is possible to prevent the temperature inside from falling.
 冷却器6eは、循環配管6aの途中部位であって、ブロワ6cの上流側に配置されている。この冷却器6eは、チャンバ5aの内部を通過することにより加熱された流動化ガスZに含まれる水分を凝縮して分離するため、流動化ガスZを冷却する。これによって、ブロワ6c等に乾燥した流動化ガスZが供給され、ブロワ6c等において結露が発生することを防止することができる。 The cooler 6e is disposed in the middle of the circulation pipe 6a and on the upstream side of the blower 6c. The cooler 6e cools the fluidizing gas Z in order to condense and separate the water contained in the fluidizing gas Z heated by passing through the inside of the chamber 5a. As a result, the fluidizing gas Z that has been dried is supplied to the blower 6c and the like, and the occurrence of condensation in the blower 6c and the like can be prevented.
 このような流動化ガス供給装置6によって、チャンバ5aの底部から上方に向けて流動化ガスZが供給されることで、チャンバ5a内に貯留された被乾燥物Yが流動される。これによって、被乾燥物Yと熱伝達媒体Xとの熱交換が促進され、短時間で被乾燥物Yを乾燥することが可能となる。 As the fluidization gas Z is supplied upward from the bottom of the chamber 5a by the fluidization gas supply device 6 as described above, the material to be dried Y stored in the chamber 5a flows. Thereby, heat exchange between the material to be dried Y and the heat transfer medium X is promoted, and the material to be dried Y can be dried in a short time.
 熱伝達媒体循環部7は、返流配管7aと、復水器7bと、給水ポンプ7cと、給水予熱器7dと、蒸気ドラム接続配管7eとを備えている。返流配管7aは、乾燥炉5と太陽集熱器2とを接続し、乾燥炉5から排出された熱伝達媒体Xを再び太陽集熱器2に返流する配管である。この返流配管7aは、図1に示すように、熱交換器6dを通過しており、これによって返流配管7aを流れる熱伝達媒体Xと、循環配管6aを流れる流動化ガスZとが熱交換され、熱伝達媒体Xの熱量が流動化ガスZに伝達される。 The heat transfer medium circulating unit 7 includes a return flow piping 7a, a condenser 7b, a water supply pump 7c, a water supply preheater 7d, and a steam drum connection piping 7e. The return flow piping 7 a is a piping that connects the drying furnace 5 and the solar heat collector 2 and returns the heat transfer medium X discharged from the drying furnace 5 back to the solar heat collector 2 again. As shown in FIG. 1, the return flow pipe 7a passes through the heat exchanger 6d, whereby the heat transfer medium X flowing through the return flow pipe 7a and the fluidizing gas Z flowing through the circulation pipe 6a are thermal The amount of heat of the heat transfer medium X is transferred to the fluidizing gas Z.
 復水器7bは、返流配管7aの途中部位であって熱交換器6dの下流に配置されており、蒸気である熱伝達媒体Xを例えば大気との熱交換により冷却して液化する。給水ポンプ7cは、復水器7bのさらに下流に配置されており、復水器7bによって液化された熱伝達媒体Xを太陽集熱器2に向けて圧送する。給水予熱器7dは、給水ポンプ7cのさらに下流側に配置されており、給水ポンプ7cから吐出された熱伝達媒体Xと復水器7bの上流側における熱伝達媒体Xとを熱交換することにより、太陽集熱器2に供給される熱伝達媒体Xを予熱する。蒸気ドラム接続配管7eは、蒸気ドラム3の底部と返流配管7aとを接続する配管であり、乾燥炉5を通すことなく、蒸気ドラム3の底部に溜った液体の熱伝達媒体Xを復水器7bの上流側に案内する。なお、給水ポンプ7cの上流側には返流配管7aへ熱伝達媒体Xを追加供給する不図示のポートが設けられており、例えば熱伝達媒体Xの減少分を補う等の必要に応じてポートから返流配管7aに熱伝達媒体Xが追加供給される。 The condenser 7b is disposed in the middle of the return pipe 7a and downstream of the heat exchanger 6d, and cools and liquefies the heat transfer medium X, which is a vapor, by heat exchange with the atmosphere, for example. The feed water pump 7c is disposed further downstream of the condenser 7b, and pumps the heat transfer medium X liquefied by the condenser 7b toward the solar collector 2. The feed water preheater 7d is disposed further downstream of the feed pump 7c, and exchanges heat between the heat transfer medium X discharged from the feed pump 7c and the heat transfer medium X on the upstream side of the condenser 7b. , Preheat the heat transfer medium X supplied to the solar collector 2. The steam drum connection pipe 7 e is a pipe that connects the bottom of the steam drum 3 and the return flow pipe 7 a, and condenses the heat transfer medium X of the liquid accumulated at the bottom of the steam drum 3 without passing through the drying furnace 5. It guides to the upper stream side of vessel 7b. A port (not shown) for additionally supplying the heat transfer medium X to the return flow pipe 7a is provided on the upstream side of the water supply pump 7c. For example, the port may be used to compensate for the decrease in the heat transfer medium X The heat transfer medium X is additionally supplied to the return flow pipe 7a.
 制御装置8は、本実施形態の乾燥システム1の全体の制御を行い、例えば、補助ボイラ4、不活性ガス発生器6b、ブロワ6c及び給水ポンプ7cの制御を行う。本実施形態の乾燥システム1においては、このような制御装置8の制御の下に、補助ボイラ4の運転期間が定められている。例えば、制御装置8の制御の下、補助ボイラ4は、日の出時刻の前後のみ運転されたり、日没時刻の前後のみ運転されたり、日の出時刻の前後及び日没時刻の前後で運転されたりする。また、図1においては省略しているが、本実施形態の乾燥システム1においては、適所にバルブが設けられている。これらのバルブの開度が制御装置8の制御等により調整されることによって、熱伝達媒体Xや流動化ガスZの流量が調整される。 The control device 8 controls the entire drying system 1 of the present embodiment, and controls, for example, the auxiliary boiler 4, the inert gas generator 6b, the blower 6c, and the water supply pump 7c. In the drying system 1 of the present embodiment, the operation period of the auxiliary boiler 4 is defined under the control of the control device 8 as described above. For example, under the control of the control device 8, the auxiliary boiler 4 is operated only before and after sunrise time, is operated only before and after sunset time, and is operated before and after sunrise time and before and after sunset time. Moreover, although omitted in FIG. 1, in the drying system 1 of the present embodiment, a valve is provided at a suitable position. The flow rates of the heat transfer medium X and the fluidizing gas Z are adjusted by adjusting the opening degree of these valves by control of the control device 8 or the like.
 続いて、このように構成された本実施形態の乾燥システム1の動作について説明を行う。なお、以下の動作説明においては、乾燥炉5のチャンバ5aに対しては被乾燥物Yが連続的に一定量で供給されている。 Then, operation of drying system 1 of this embodiment constituted in this way is explained. In the following description of the operation, the material to be dried Y is continuously supplied in a constant amount to the chamber 5 a of the drying furnace 5.
 太陽集熱器2の第1反射板2a及び第2反射板2bによって太陽光が集められ、太陽熱によって伝熱管5cを流れる熱伝達媒体Xが加熱されると、熱伝達媒体Xの一部が蒸気化して気液混合状態の熱伝達媒体Xが生成される。複数の太陽集熱器2で生成された熱伝達媒体Xは、集合管2fによって集められ、蒸気ドラム3に供給される。熱伝達媒体Xは、蒸気ドラム3において気液分離され、蒸気の熱伝達媒体Xが乾燥炉5の伝熱管5cに供給される。一方、液体の熱伝達媒体Xは、蒸気ドラム接続配管7eから熱伝達媒体循環部7に供給され、再び太陽集熱器2に供給される。 When sunlight is collected by the first reflection plate 2a and the second reflection plate 2b of the solar collector 2 and the heat transfer medium X flowing through the heat transfer tube 5c is heated by solar heat, a part of the heat transfer medium X is steam To form the heat transfer medium X in the gas-liquid mixed state. The heat transfer medium X generated by the plurality of solar collectors 2 is collected by the collecting pipe 2 f and supplied to the steam drum 3. The heat transfer medium X is separated into gas and liquid in the steam drum 3, and the heat transfer medium X for steam is supplied to the heat transfer tube 5 c of the drying furnace 5. On the other hand, the liquid heat transfer medium X is supplied from the steam drum connection pipe 7 e to the heat transfer medium circulating unit 7 and is supplied again to the solar heat collector 2.
 また、流動化ガス供給装置6においては、不活性ガス発生器6bから循環配管6aに流動化ガスZ(不活性ガス)が供給され、ブロワ6cが駆動されることによって循環配管6a内の流動化ガスZが乾燥炉5に向けて圧送される。乾燥炉5に供給される流動化ガスZは、予め熱交換器6dにおいて温められた上で、チャンバ5aの底部からチャンバ5aの内部に供給される。このようなチャンバ5aの底部から流動化ガスZが供給されることにより、チャンバ5a内の被乾燥物Yが流動化される。なお、チャンバ5a内の流動化ガスZは、チャンバ5aの上部から循環配管6aに回収され、冷却器6eにおいて水分が除去された後、再びブロワ6cによって圧送される。 Further, in the fluidizing gas supply device 6, the fluidizing gas Z (inert gas) is supplied from the inert gas generator 6b to the circulation piping 6a, and the blower 6c is driven to fluidize the circulation piping 6a. The gas Z is pumped toward the drying furnace 5. The fluidizing gas Z supplied to the drying furnace 5 is preheated in the heat exchanger 6d, and then supplied from the bottom of the chamber 5a to the inside of the chamber 5a. The material to be dried Y in the chamber 5a is fluidized by supplying the fluidization gas Z from the bottom of the chamber 5a. The fluidizing gas Z in the chamber 5a is recovered from the upper portion of the chamber 5a to the circulation pipe 6a, water is removed by the cooler 6e, and then pressure-fed again by the blower 6c.
 上述のようにチャンバ5a内に挿通された伝熱管5cに供給された熱伝達媒体Xが供給されると、伝熱管5cの内部の熱伝達媒体Xと伝熱管5cの外部の被乾燥物Yとが熱交換されることによって、被乾燥物Yが加熱される。この結果、被乾燥物Yに含まれる水分が蒸発し、被乾燥物Yが乾燥される。乾燥された被乾燥物Yは、連続的にチャンバ5aに供給される新たな被乾燥物Yに押されることによってチャンバ5aの外部に排出される。なお、被乾燥物Yから蒸発した水分は、流動化ガスZと共に循環配管6aに回収される。 As described above, when the heat transfer medium X supplied to the heat transfer tube 5c inserted into the chamber 5a is supplied, the heat transfer medium X inside the heat transfer tube 5c and the material to be dried Y outside the heat transfer tube 5c The object to be dried Y is heated by heat exchange. As a result, the moisture contained in the material to be dried Y evaporates, and the material to be dried Y is dried. The dried material to be dried Y is discharged to the outside of the chamber 5a by being pushed by the new material to be dried Y supplied to the chamber 5a continuously. The water evaporated from the material to be dried Y is recovered along with the fluidizing gas Z in the circulation pipe 6a.
 伝熱管5cを通過してチャンバ5aの外部に排出された熱伝達媒体Xは、熱伝達媒体循環部7の返流配管7aに流れ込む。返流配管7aに流れ込んだ熱伝達媒体Xは、熱交換器6dを通り、給水予熱器7dを通り、復水器7bで冷却されることによって液体に戻される。液体となった熱伝達媒体Xは、給水ポンプ7cによって太陽集熱器2に向けて圧送される。給水ポンプ7cによって圧送される熱伝達媒体Xは、給水予熱器7dにおいて予熱された後、再び太陽集熱器2に供給される。 The heat transfer medium X discharged to the outside of the chamber 5 a through the heat transfer tube 5 c flows into the return flow pipe 7 a of the heat transfer medium circulating unit 7. The heat transfer medium X flowing into the return flow pipe 7a passes through the heat exchanger 6d, passes through the feed water preheater 7d, and is returned to liquid by being cooled by the condenser 7b. The heat transfer medium X that has become liquid is pumped toward the solar collector 2 by the water supply pump 7c. The heat transfer medium X pumped by the feed water pump 7 c is preheated in the feed water preheater 7 d and then supplied to the solar collector 2 again.
 また、補助ボイラ4は、日の出時刻の前後のみ、日没時刻の前後のみ、あるいは日の出時刻の前後及び日没時刻の前後で運転される。補助ボイラ4が運転されると、蒸気(熱伝達媒体X)が生成されて蒸気ドラム3に供給される。このように補助ボイラ4から蒸気ドラム3に供給された蒸気は、太陽集熱器2から蒸気ドラム3に供給された蒸気(熱伝達媒体X)と混合されて使用される。 Further, the auxiliary boiler 4 is operated only before and after the sunrise time, only before and after the sunset time, or before and after the sunrise time and before and after the sunset time. When the auxiliary boiler 4 is operated, steam (heat transfer medium X) is generated and supplied to the steam drum 3. The steam thus supplied from the auxiliary boiler 4 to the steam drum 3 is mixed with the steam (heat transfer medium X) supplied from the solar collector 2 to the steam drum 3 and used.
 続いて、本実施形態の乾燥システム1の補助ボイラ4を使用する運転パターンの例について、図3~図5を参照して説明する。 Subsequently, an example of an operation pattern using the auxiliary boiler 4 of the drying system 1 of the present embodiment will be described with reference to FIGS. 3 to 5.
 図3は、本実施形態の乾燥システム1において補助ボイラ4を日の出時刻の前後のみ運転させる場合の説明図である。また、図4は、本実施形態の乾燥システム1において補助ボイラ4を日没時刻の前後のみ運転させる場合の説明図である。図5は、本実施形態の乾燥システム1において補助ボイラ4を日の出時刻の前後と日没時刻の前後とで運転させる場合の説明図である。これらの図においては、上部に時刻と蒸気ドラム3における熱伝達媒体Xの温度との関係を示すグラフが示されているが、このグラフには参考として時刻と太陽から得られるエネルギとの関係を示すグラフを重ねて示している。 FIG. 3 is an explanatory view of the case where the auxiliary boiler 4 is operated only before and after the sunrise time in the drying system 1 of the present embodiment. Moreover, FIG. 4 is explanatory drawing in the case where the auxiliary | assistant boiler 4 is operated only before and behind sunset time in the drying system 1 of this embodiment. FIG. 5 is an explanatory view of the case where the auxiliary boiler 4 is operated before and after the sunrise time and before and after the sunset time in the drying system 1 of the present embodiment. In these figures, a graph showing the relationship between the time and the temperature of the heat transfer medium X in the steam drum 3 is shown at the top, but in this graph, the relationship between the time and energy obtained from the sun is shown for reference. The graph shown is superimposed and shown.
 図3に示すように、補助ボイラ4を日の出時刻の前後に運転させる場合には、日の出前から補助ボイラ4の運転を開始する。日の出前の時刻では太陽集熱器2によって熱伝達媒体Xを加熱することができないため、補助ボイラ4から補助的に蒸気を蒸気ドラム3に供給した場合であっても、太陽集熱器2側から集合管2fを介して蒸気ドラム3に供給される熱伝達媒体Xの温度が低く、蒸気ドラム3の全体における熱伝達媒体Xの温度は沸点に到達しない。 As shown in FIG. 3, when the auxiliary boiler 4 is operated before and after the sunrise time, the operation of the auxiliary boiler 4 is started before the sunrise. Since the heat transfer medium X can not be heated by the solar collector 2 at the time before sunrise, even if steam is supplied to the steam drum 3 from the auxiliary boiler 4 supplementarily, the solar collector 2 side The temperature of the heat transfer medium X supplied to the steam drum 3 via the collecting pipe 2f is low, and the temperature of the heat transfer medium X in the entire steam drum 3 does not reach the boiling point.
 なお、蒸気ドラム3における熱伝達媒体Xの温度が沸点に到達するまでは、本実施形態の乾燥システム1は予熱運転を行う。この予熱運転は、乾燥炉5への被乾燥物Yを供給しない状態で行う運転であり、熱伝達媒体Xの温度を沸点に向けて徐々に昇温させる運転である。なお、予熱運転は、乾燥炉5に被乾燥物Yが貯留されていない状態と乾燥炉5に前日において乾燥が完了していない被乾燥物Yが貯留されたいずれかの状態で行われる。このような予熱運転では、補助ボイラ4の運転(日の出後は太陽集熱器2による加熱を含む)により熱伝達媒体Xが徐々に昇温する。また、予熱運転では、流動化ガス供給装置6によって流動化ガスZを乾燥炉5に供給する。これによって、熱伝達媒体Xの昇温に伴って流動化ガスZも昇温し、乾燥運転の開始後に流動化ガスZによって被乾燥物Yが冷却されてしまうことを防止することができる。 The drying system 1 of the present embodiment performs the preheating operation until the temperature of the heat transfer medium X in the steam drum 3 reaches the boiling point. This preheating operation is an operation performed in a state in which the material to be dried Y is not supplied to the drying furnace 5, and is an operation in which the temperature of the heat transfer medium X is gradually raised toward the boiling point. The preheating operation is performed either in a state in which the material to be dried Y is not stored in the drying furnace 5 or in a state in which the material to be dried Y whose drying is not completed on the previous day is stored in the drying furnace 5. In such a preheating operation, the heat transfer medium X is gradually heated by the operation of the auxiliary boiler 4 (including heating by the solar collector 2 after sunrise). Further, in the preheating operation, the fluidizing gas Z is supplied to the drying furnace 5 by the fluidizing gas supply device 6. Accordingly, the fluidizing gas Z is also heated as the heat transfer medium X is heated, and it is possible to prevent the material to be dried Y from being cooled by the fluidizing gas Z after the start of the drying operation.
 日の出時刻となると、太陽から得られるエネルギは正午前後と比較すると低いものの、太陽集熱器2によって熱伝達媒体Xが加熱され、蒸気ドラム3における熱伝達媒体Xの温度が沸点まで急激に上昇する。蒸気ドラム3における熱伝達媒体Xの温度が沸点に到達すると、補助ボイラ4を停止し、乾燥炉5に被乾燥物Yを投入し、被乾燥物Yを乾燥する乾燥運転を行う。そして、日没時刻が近づき、太陽から得られるエネルギが小さくなると、熱伝達媒体Xの温度が沸点を下回るため、この時点で被乾燥物Yの乾燥炉への供給を停止し、乾燥運転を停止する。 At sunrise time, although the energy obtained from the sun is lower compared to after noon, the heat transfer medium X is heated by the solar collector 2 and the temperature of the heat transfer medium X in the steam drum 3 rises sharply to the boiling point . When the temperature of the heat transfer medium X in the steam drum 3 reaches the boiling point, the auxiliary boiler 4 is stopped, the material to be dried Y is put into the drying furnace 5, and the drying operation to dry the material to be dried Y is performed. Then, when the sunset time approaches and the energy obtained from the sun decreases, the temperature of the heat transfer medium X falls below the boiling point, so at this point the supply of the material to be dried Y to the drying furnace is stopped and the drying operation is stopped. Do.
 その後、日没時刻まで冷却運転を行う。この冷却運転では、例えば太陽集熱器2を太陽と異なる方向に向けることで太陽集熱器2によって熱伝達媒体Xが加熱されない状態とすると共に、流動化ガス供給装置6による乾燥炉5への流動化ガスZの供給を継続する。これによって、被乾燥物Yが加熱されることなく撹拌され、乾燥炉5内部の温度が急速に下げられる。そして、乾燥炉5の内部の温度が自然発火等のおそれがない温度まで冷却された後、冷却運転が終了し、本実施形態の乾燥システム1が翌日の運転再開まで停止される。 After that, the cooling operation is performed until the sunset time. In this cooling operation, for example, by directing the solar collector 2 in a direction different from that of the sun, the heat transfer medium X is not heated by the solar collector 2, and the drying furnace 5 by the fluidizing gas supply device 6 is Continue to supply the fluidization gas Z. By this, the to-be-dried material Y is stirred without being heated, and the temperature inside the drying furnace 5 is rapidly lowered. Then, after the temperature inside the drying furnace 5 is cooled to a temperature at which there is no risk of spontaneous ignition or the like, the cooling operation is ended, and the drying system 1 of the present embodiment is stopped until the operation restarts the next day.
 なお、補助ボイラ4を日の出時刻の前後に運転させない場合には、日の出以降に太陽集熱器2によって熱伝達媒体Xが加熱されるため、図3の一点鎖線で示すように、蒸気ドラム3において熱伝達媒体Xが沸点に到達する時刻が遅くなる。したがって、補助ボイラ4を日の出時刻の前後に運転させることによって、乾燥運転可能期間の開始タイミングを早めることが可能となり、より長い期間において被乾燥物Yを乾燥させることが可能となる。 In the case where the auxiliary boiler 4 is not operated before and after the sunrise time, the heat transfer medium X is heated by the solar collector 2 after the sunrise, so as indicated by the dashed dotted line in FIG. The time for the heat transfer medium X to reach the boiling point is delayed. Therefore, by operating the auxiliary boiler 4 before and after the sunrise time, it is possible to advance the start timing of the drying operable period, and it is possible to dry the object to be dried Y in a longer period.
 また、図4に示すように、補助ボイラ4を日没時刻の前後に運転させる場合には、日没前から補助ボイラ4の運転を開始する。日没が近づくと太陽から得られるエネルギが減少するため、太陽集熱器2において熱伝達媒体Xを加熱するエネルギが減少し、太陽集熱器2のみで熱伝達媒体Xの温度を沸点で維持することができなくなる。ただし、熱伝達媒体Xの温度は、日没が近づき、さらに日没時刻を過ぎても直ぐに常温に低下するものではなく、徐々に低下する(図3参照)。ここで、図4に示すように、日没時刻の前後に補助ボイラ4が運転されていると、補助ボイラ4から蒸気ドラム3に新たな蒸気が供給されることによって、日没時刻の前後において、熱伝達媒体Xの温度の低下を抑制することができる。このため、日没時刻が過ぎても暫くの間、熱伝達媒体Xの温度を沸点に維持することができ、被乾燥物Yの乾燥を継続することができる。このように、補助ボイラ4を日没時刻の前後に運転させることによって、図4に示すように乾燥運転可能期間を日没時刻後まで延長することが可能となり、より長い期間において被乾燥物Yを乾燥させることが可能となる。 Further, as shown in FIG. 4, when the auxiliary boiler 4 is operated before and after the sunset time, the operation of the auxiliary boiler 4 is started before the sunset. As sunset approaches, the energy obtained from the sun decreases, so the energy for heating the heat transfer medium X in the solar collector 2 decreases, and the temperature of the heat transfer medium X is maintained at the boiling point only with the solar collector 2 It can not be done. However, the temperature of the heat transfer medium X does not immediately decrease to normal temperature as sunset approaches and further passes after sunset time, but gradually decreases (see FIG. 3). Here, as shown in FIG. 4, when the auxiliary boiler 4 is operated before and after the sunset time, new steam is supplied from the auxiliary boiler 4 to the steam drum 3 so that it is before and after the sunset time. The decrease in the temperature of the heat transfer medium X can be suppressed. Therefore, the temperature of the heat transfer medium X can be maintained at the boiling point for a while even after the sunset time, and the drying of the material to be dried Y can be continued. In this way, by operating the auxiliary boiler 4 before and after the sunset time, it is possible to extend the drying operable period to after the sunset time as shown in FIG. It is possible to dry the
 また、上述のように、日没時刻の前後においては太陽集熱器2のみでは熱伝達媒体Xの温度を沸点に維持することはできないが、日中の運転によって熱伝達媒体Xが温められている。このため、補助ボイラ4を用いて熱伝達媒体Xの温度を沸点に維持する投入エネルギは、日の出前後において補助ボイラ4を運転させる場合と比較して少なく済む。
したがって、補助ボイラ4を日没時刻の前後に運転させる場合には、日の出前後において補助ボイラ4を運転させる場合よりも少ない燃料で乾燥運転可能期間を延長することが可能となる。
Also, as described above, the temperature of the heat transfer medium X can not be maintained at the boiling point by the solar collector 2 alone before and after sunset time, but the heat transfer medium X is warmed by the daytime operation There is. Therefore, the input energy for maintaining the temperature of the heat transfer medium X at the boiling point by using the auxiliary boiler 4 can be reduced compared to the case where the auxiliary boiler 4 is operated before and after sunrise.
Therefore, when the auxiliary boiler 4 is operated before and after the sunset time, it is possible to extend the dry operation possible period with a smaller amount of fuel before and after sunrise, than when operating the auxiliary boiler 4.
 また、図5に示すように、補助ボイラ4を日の出時刻の前後と日没時刻の前後とで運転させる場合には、乾燥運転可能期間の開始タイミングを早め、さらには乾燥運転可能期間を日没時刻後まで延長することが可能となる。このような場合には、補助ボイラ4を日の出時刻の前後のみ運転させる場合と、補助ボイラ4を日没時刻の前後のみ運転させる場合と比較して、多くの燃料が必要になるが、最も長い乾燥運転可能期間を確保することができる。このため、例えば、本実施形態の乾燥システム1が設置される工場の操業時間が長く、この操業時間に合わせて乾燥システム1を長時間運転させたいような場合に有用な運転パターンである。 Further, as shown in FIG. 5, when the auxiliary boiler 4 is operated before and after the sunrise time and before and after the sunset time, the start timing of the drying operation possible period is advanced, and the drying operation possible period is sunset. It is possible to extend until after the time. In such a case, more fuel is required as compared to the case where the auxiliary boiler 4 is operated only before and after the sunrise time and the case where the auxiliary boiler 4 is operated only before and after the sunset time, but the longest The drying operable period can be secured. For this reason, for example, the operation time of the factory where the drying system 1 of the present embodiment is installed is long, and it is a useful operation pattern when it is desired to operate the drying system 1 for a long time according to the operation time.
 以上のような本実施形態の乾燥システム1によれば、熱伝達媒体Xを加熱する太陽集熱器2を複数備える構成を採用している。このため、被乾燥物Yを乾燥させるために必要なエネルギを集められるだけの数の太陽集熱器を設置することで、被乾燥物Yの乾燥を行うことができ、巨大なタワーや反射ミラーを設置することなく太陽熱を利用した乾燥を行うことができる。また、石炭等の固体の燃料をガス化させるために必要な熱量と比較すれば、乾燥に要する熱量が少なくて済むことから、本実施形態の乾燥システム1においてはガス化設備のように多数のヘリオスタットを設置する必要がないだけでなく、広範囲に設置されたヘリオスタットから、限られた範囲へ集光する複雑な制御システムも必要ない。したがって、本実施形態の乾燥システム1によれば、設備の大型化や、制御システムの複雑化を抑止することができる。 According to the drying system 1 of the present embodiment as described above, a configuration including a plurality of solar heat collectors 2 for heating the heat transfer medium X is employed. Therefore, by installing a number of solar collectors capable of collecting the energy necessary to dry the material to be dried Y, it is possible to dry the material to be dried Y, and a huge tower or a reflection mirror is provided. It is possible to dry using solar heat without installing Further, compared to the amount of heat required to gasify a solid fuel such as coal, the amount of heat required for drying can be reduced, so in the drying system 1 of the present embodiment, a large number of gasification facilities are required. Not only does it not need to install a heliostat, there is no need for a complex control system that focuses from a widely installed heliostat to a limited range. Therefore, according to the drying system 1 of this embodiment, the enlargement of an installation and the complication of a control system can be suppressed.
 さらに、本実施形態の乾燥システム1によれば、太陽集熱器2で集められた太陽熱によって被乾燥物Yを直接加熱するのではなく、太陽熱によって熱伝達媒体Xを加熱し、この熱伝達媒体Xによって被乾燥物Yを加熱する構成を採用している。このため、熱伝達媒体Xの物性(例えば飽和蒸気温度)や熱交換時の熱伝達媒体Xの流速等を調整することによって、被乾燥物Yの温度を容易に調整することができる。例えば、本実施形態の乾燥システム1においては、熱伝達媒体Xとして水を用いているため、被乾燥物Yの温度が水の飽和温度以上になることを防止することができる。なお、熱伝達媒体Xが流れる配管等は閉空間とされており、熱伝達媒体Xが蒸気化することにより、この空間内が昇圧される。このため、本実施形態の乾燥システム1では、熱伝達媒体Xの飽和温度は例えば160℃~170℃程度となる。 Furthermore, according to the drying system 1 of the present embodiment, the heat transfer medium X is heated by solar heat instead of directly heating the material to be dried Y by the solar heat collected by the solar collector 2, and this heat transfer medium A configuration is employed in which the object to be dried Y is heated by X. Therefore, the temperature of the object to be dried Y can be easily adjusted by adjusting the physical properties (for example, saturated vapor temperature) of the heat transfer medium X, the flow velocity of the heat transfer medium X at the time of heat exchange, and the like. For example, in the drying system 1 of the present embodiment, since water is used as the heat transfer medium X, the temperature of the material to be dried Y can be prevented from becoming higher than the saturation temperature of water. The piping or the like through which the heat transfer medium X flows is a closed space, and the inside of the space is pressurized by vaporizing the heat transfer medium X. Therefore, in the drying system 1 of the present embodiment, the saturation temperature of the heat transfer medium X is, for example, about 160 ° C. to 170 ° C.
 したがって、以上のような本実施形態の乾燥システム1によれば、太陽熱を利用することで乾燥に用いられる燃料の消費量を抑制することができる。また、設備の大型化を抑制することができる。さらには、乾燥に適した温度に被乾燥物Yの温度を調整することが可能となる。 Therefore, according to the drying system 1 of the present embodiment as described above, the consumption of fuel used for drying can be suppressed by using solar heat. Moreover, the enlargement of the equipment can be suppressed. Furthermore, it becomes possible to adjust the temperature of the material to be dried Y to a temperature suitable for drying.
 また、本実施形態の乾燥システム1においては、太陽集熱器2と乾燥炉5との間に配置され、太陽集熱器2によって加熱されることにより蒸気化された熱伝達媒体Xを一時的に貯留する蒸気ドラム3を備える。このため、例えば配置や個体差によって各太陽集熱器2における加熱性能にばらつきがあり蒸気の生成能力に差があるような場合であっても、全ての蒸気が蒸気ドラム3に一度集められ、この蒸気ドラム3から乾燥炉5に供給されるため、乾燥炉5に対して常に安定的に熱伝達媒体Xを供給することができる。また、蒸気ドラム3の内部に一定量の蒸気が溜まることによって、例えば太陽が雲に一時的に隠れて太陽集熱器2にて蒸気が十分に生成できない場合であっても、乾燥炉5に対する蒸気の供給を継続することができる。 Further, in the drying system 1 of the present embodiment, the heat transfer medium X which is disposed between the solar collector 2 and the drying furnace 5 and is vaporized by being heated by the solar collector 2 is temporarily used. The steam drum 3 stored in the Therefore, even if there is a variation in the heating performance of each solar collector 2 due to, for example, the arrangement or individual differences and there is a difference in the ability to generate steam, all the steam is collected on the steam drum 3 once, Since the steam drum 3 is supplied to the drying furnace 5, the heat transfer medium X can be stably supplied to the drying furnace 5 at all times. Further, even if the sun is temporarily hidden in the cloud and the solar collector 2 can not sufficiently generate steam, for example, because a certain amount of steam is accumulated inside the steam drum 3, the drying furnace 5 is not The supply of steam can be continued.
 また、本実施形態の乾燥システム1においては、また、流動化ガス供給装置6から流動化ガスZがチャンバ5a内に供給されることにより、チャンバ5a内において被乾燥物Yが流動する。このため、被乾燥物Yと熱伝達媒体Xとの熱交換が促進され、より短時間で被乾燥物Yの乾燥を行うことが可能となる。また、流動化ガス供給装置6が、不活性ガスを流動化ガスZとして乾燥炉5に供給する。このため、乾燥炉5のチャンバ5a内に酸素が入り込まず、被乾燥物Yが万が一にも乾燥炉5内で燃焼することを防止することができる。 Further, in the drying system 1 of the present embodiment, the material to be dried Y flows in the chamber 5a by supplying the fluidization gas Z from the fluidization gas supply device 6 into the chamber 5a. For this reason, the heat exchange between the material to be dried Y and the heat transfer medium X is promoted, and the material to be dried Y can be dried in a shorter time. Further, the fluidizing gas supply device 6 supplies the inert gas as the fluidizing gas Z to the drying furnace 5. Therefore, oxygen does not enter the chamber 5 a of the drying furnace 5, and it is possible to prevent the material Y to be dried from burning in the drying furnace 5 in any case.
 また、本実施形態の乾燥システム1においては、太陽集熱器2とは別に熱伝達媒体Xを加熱する補助ボイラ4を備える。このため、太陽集熱器2において乾燥炉5が必要とする蒸気が生成できない場合に、補助ボイラ4によって蒸気を生成することによって、被乾燥物Yの乾燥を行うことができる。例えば、日の出時刻の前後や日没時刻の前後において補助ボイラ4を運転することによって、上述のように乾燥運転可能期間(被乾燥物Yの乾燥を行うことができる期間)を延長することが可能となる。 Moreover, in the drying system 1 of this embodiment, the auxiliary | assistant boiler 4 which heats the heat transfer medium X separately from the solar heat collector 2 is provided. For this reason, when the steam required by the drying furnace 5 can not be generated in the solar heat collector 2, the material to be dried Y can be dried by generating the steam by the auxiliary boiler 4. For example, by operating the auxiliary boiler 4 before and after the sunrise time and before and after the sunset time, it is possible to extend the drying operable period (period in which the material to be dried Y can be dried) as described above. It becomes.
 また、本実施形態の乾燥システム1においては、制御装置8が日の出時刻及日没時刻の少なくともいずれかに合わせて補助ボイラ4を稼働させる。このため、図4~図6を用いた上記説明のように、補助ボイラ4を用いない場合と比較して乾燥運転可能期間を長く確保することが可能となる。 Moreover, in the drying system 1 of this embodiment, the control apparatus 8 operates the auxiliary boiler 4 according to at least one of sunrise time and sunset time. Therefore, as described above with reference to FIGS. 4 to 6, it is possible to secure a longer drying operation possible period as compared to the case where the auxiliary boiler 4 is not used.
(第2実施形態)
 次に、本開示の第2実施形態について、図6~図9を参照して説明する。なお、本実施形態の説明において、上記第1実施形態と同様の部分については、その説明を省略あるいは簡略化する。
Second Embodiment
Next, a second embodiment of the present disclosure will be described with reference to FIGS. In the description of the present embodiment, the description of the same parts as those in the first embodiment will be omitted or simplified.
 図6は、本実施形態の乾燥システム1Aの概略構成を示すフロー図である。この図に示すように、本実施形態の乾燥システム1Aは、上記第1実施形態の乾燥システム1に対して、太陽過熱器10(過熱器)と、流動化蒸気供給部11(流動化ガス供給手段、過熱蒸気供給部)とを備える構成を有している。 FIG. 6 is a flow diagram showing a schematic configuration of the drying system 1A of the present embodiment. As shown to this figure, drying system 1A of this embodiment is the solar superheater 10 (superheater) with respect to the drying system 1 of the said 1st Embodiment, Fluidization vapor | steam supply part 11 (fluidization gas supply) Means, a superheated steam supply unit).
 太陽過熱器10は、蒸気ドラム3と乾燥炉5との間に配置されている。この太陽過熱器10は、太陽集熱器2と同様の構成を有しており、蒸気ドラム3から乾燥炉5の伝熱管5cに供給される熱伝達媒体Xを太陽熱によって飽和温度以上(例えば200℃程度)に昇温する。なお、本実施形態の乾燥システム1Aでは、太陽過熱器10が1つのみ設けられている構成を採用しているが、さらに複数の太陽過熱器10を備える構成を採用することも可能である。 The solar heater 10 is disposed between the steam drum 3 and the drying furnace 5. The solar superheater 10 has a configuration similar to that of the solar heat collector 2, and the heat transfer medium X supplied from the steam drum 3 to the heat transfer tube 5c of the drying furnace 5 has a saturation temperature (for example 200). Temperature rise to approx. In addition, although 1 A of solar superheaters 10 are provided in the drying system 1A of this embodiment, it is also possible to employ a structure provided with a plurality of solar superheaters 10.
 流動化蒸気供給部11は、過熱蒸気供給配管11aと、開閉バルブ11bとを備えている。過熱蒸気供給配管11aは、太陽過熱器10とチャンバ5aの底部とを繋ぐ配管であり、太陽過熱器10によって過熱された熱伝達媒体Xを流動化ガスとしてチャンバ5a内に供給する。開閉バルブ11bは、過熱蒸気供給配管11aの途中部位に配置されており、過熱蒸気供給配管11aによって形成される流路の開閉を行う。この開閉バルブ11bは、例えば制御装置8によって制御される。 The fluidized steam supply unit 11 includes a superheated steam supply pipe 11 a and an on-off valve 11 b. The superheated steam supply pipe 11a is a pipe that connects the solar superheater 10 and the bottom of the chamber 5a, and supplies the heat transfer medium X heated by the solar superheater 10 into the chamber 5a as a fluidizing gas. The on-off valve 11b is disposed in the middle of the superheated steam supply pipe 11a, and opens and closes the flow path formed by the superheated steam supply pipe 11a. The on-off valve 11 b is controlled by, for example, the control device 8.
 このような構成の本実施形態の乾燥システム1Aにおいては、蒸気ドラム3から排出された蒸気の熱伝達媒体Xが太陽過熱器10によって飽和温度以上の温度まで過熱されてから、乾燥炉5の伝熱管5cに供給される。したがって、上記第1実施形態の乾燥システム1と比較して高温の熱伝達媒体Xが乾燥炉5の伝熱管5cに供給される。よって、乾燥炉5における乾燥温度をより高めることができ、短時間で被乾燥物Yの乾燥を行うことが可能となる。 In the drying system 1A of this embodiment having such a configuration, the heat transfer medium X of the steam discharged from the steam drum 3 is heated by the solar superheater 10 to a temperature higher than or equal to the saturation temperature. It is supplied to the heat pipe 5c. Therefore, the heat transfer medium X having a high temperature is supplied to the heat transfer pipe 5 c of the drying furnace 5 as compared with the drying system 1 of the first embodiment. Therefore, the drying temperature in the drying oven 5 can be further raised, and the material to be dried Y can be dried in a short time.
 また、本実施形態の乾燥システム1Aにおいて制御装置8は、太陽過熱器10で熱伝達媒体Xが過熱されている期間中、必要に応じて開閉バルブ11bを開ける。このように開閉バルブ11bが開けられることによって、過熱蒸気供給配管11aを通じて熱伝達媒体Xが流動化ガスとしてチャンバ5a内に供給される。なお、例えば乾燥システム1Aの運転開始時等のチャンバ5a内の温度が低い場合に熱伝達媒体Xを被乾燥物Yに直接触れさせると、熱伝達媒体Xが凝縮して被乾燥物Yの表面が濡れ、被乾燥物Yの流動を阻害する。このため、チャンバ5a内の温度が低い場合には、上記第1実施形態の乾燥システム1と同様に、流動化ガス供給装置6によって不活性ガスからなる流動化ガスZをチャンバ5aに供給する。 Further, in the drying system 1A of the present embodiment, the control device 8 opens the on-off valve 11b as needed while the heat transfer medium X is overheated by the solar superheater 10. By opening the on-off valve 11b as described above, the heat transfer medium X is supplied as fluidizing gas into the chamber 5a through the superheated steam supply pipe 11a. When the heat transfer medium X is brought into direct contact with the material to be dried Y when the temperature in the chamber 5a is low, for example, at the start of operation of the drying system 1A, the heat transfer medium X condenses and the surface of the material to be dry Y But the flow of the substance to be dried Y is inhibited. For this reason, when the temperature in the chamber 5a is low, the fluidizing gas supply device 6 supplies the fluidizing gas Z consisting of an inert gas to the chamber 5a as in the drying system 1 of the first embodiment.
 続いて、本実施形態の乾燥システム1Aにおける運転パターンの例について、図7~図9を参照して説明する。 Subsequently, an example of the operation pattern in the drying system 1A of the present embodiment will be described with reference to FIGS. 7 to 9.
 図7は、本実施形態の乾燥システム1Aにおいて補助ボイラ4を日の出時刻の前後のみ運転させる場合の説明図である。また、図8は、本実施形態の乾燥システム1Aにおいて補助ボイラ4を日没時刻の前後のみ運転させる場合の説明図である。図9は、本実施形態の乾燥システム1Aにおいて補助ボイラ4を日の出時刻の前後と日没時刻の前後とで運転させる場合の説明図である。 FIG. 7 is an explanatory view of the case where the auxiliary boiler 4 is operated only before and after the sunrise time in the drying system 1A of the present embodiment. Moreover, FIG. 8 is explanatory drawing in the case where the auxiliary | assistant boiler 4 is operated only before and behind sunset time in the drying system 1A of this embodiment. FIG. 9 is an explanatory diagram of the case where the auxiliary boiler 4 is operated before and after the sunrise time and before and after the sunset time in the drying system 1A of the present embodiment.
 図7に示すように、補助ボイラ4を日の出時刻の前後に運転させる場合には、日の出前から補助ボイラ4の運転を開始する。運転開始時には、上記第1実施形態の乾燥システム1と同様に予熱運転が行われる。ただし、この間は熱伝達媒体Xの温度が沸点にも達しておらず、太陽過熱器10において過熱された熱伝達媒体X(過熱蒸気)が生成されないため、流動化ガス供給装置6によって不活性ガスからなる流動化ガスZをチャンバ5aに供給し、前日の運転においてチャンバ5a内に残った被乾燥物Yを流動させる。 As shown in FIG. 7, when the auxiliary boiler 4 is operated before and after the sunrise time, the operation of the auxiliary boiler 4 is started before the sunrise. At the start of operation, the preheating operation is performed as in the drying system 1 of the first embodiment. However, during this time, the temperature of the heat transfer medium X does not reach the boiling point, and the heat transfer medium X (superheated steam) overheated in the solar superheater 10 is not generated. The fluidization gas Z comprising the above is supplied to the chamber 5a, and the material to be dried Y remaining in the chamber 5a in the operation of the previous day is made to flow.
 日の出時刻が過ぎて熱伝達媒体Xの温度が沸点に達すると、新たな被乾燥物Yがチャンバ5aに供給されて乾燥運転が開始される。さらに、太陽過熱器10によって過熱された熱伝達媒体Xが生成されると、流動化ガス供給装置6による不活性ガスのチャンバ5aの供給を停止し、太陽過熱器10で過熱された熱伝達媒体Xを流動化ガスとしてチャンバ5a供給する。不活性ガスは循環させる場合であっても一定量が漏れて補充が必要となることから、不活性ガスの供給を停止して過熱された熱伝達媒体Xを流動化ガスとして供給することによって不活性ガスの使用量を削減することができ、運転コストが削減される。 When the sunrise time passes and the temperature of the heat transfer medium X reaches the boiling point, a new material to be dried Y is supplied to the chamber 5a and the drying operation is started. Furthermore, when the heat transfer medium X heated by the solar superheater 10 is generated, the supply of the inert gas chamber 5a by the fluidizing gas supply device 6 is stopped, and the heat transfer medium heated by the solar superheater 10 The chamber 5a is supplied as X as a fluidizing gas. Even when the inert gas is circulated, a constant amount leaks and it becomes necessary to replenish it. Therefore, the supply of the inert gas is stopped and the overheated heat transfer medium X is supplied as the fluidizing gas. The amount of active gas used can be reduced, and operating costs are reduced.
 日没時刻が近づき、太陽過熱器10による過熱のエネルギが得られなくなると、流動化蒸気供給部11からチャンバ5aへの熱伝達媒体Xの供給を停止し、流動化ガス供給装置6からチャンバ5aへの不活性ガスの供給を再開する。そして、さらに日没時刻に近付き、熱伝達媒体Xの温度が飽和温度を下回ったタイミングで冷却運転に切り替え、その後運転を停止する。 When the sunset time approaches and energy for superheating by the solar superheater 10 can not be obtained, the supply of the heat transfer medium X from the fluidizing steam supply unit 11 to the chamber 5a is stopped, and the fluidizing gas supply device 6 to the chamber 5a Resume the supply of inert gas to the Then, when the temperature approaches the sunset time, the temperature is switched to the cooling operation at the timing when the temperature of the heat transfer medium X falls below the saturation temperature, and then the operation is stopped.
 このように補助ボイラ4を日の出時刻の前後に運転させることによって、乾燥運転可能期間の開始タイミングを早めることが可能となり、より長い期間において被乾燥物Yを乾燥させることが可能となる。 As described above, by operating the auxiliary boiler 4 before and after the sunrise time, it is possible to advance the start timing of the drying operable period, and it is possible to dry the object to be dried Y in a longer period.
 図8に示すように、補助ボイラ4を日没時刻の前後に運転させる場合には、日没前から補助ボイラ4の運転を開始する。これによって日没時刻の前後において、熱伝達媒体Xの温度の低下を抑制することができる。このため、日没時刻が過ぎても暫くの間、熱伝達媒体Xの温度を沸点に維持することができ、被乾燥物Yの乾燥を継続することができる。ただし、補助ボイラ4を運転させている間は、太陽から得られるエネルギが少ない期間であるため、太陽過熱器10によって熱伝達媒体Xを過熱することはできない。したがって、この間は、流動化蒸気供給部11からチャンバ5aへの熱伝達媒体Xの供給を停止し、流動化ガス供給装置6からチャンバ5aへ不活性ガスからなる流動化ガスZを供給する。このように、補助ボイラ4を日没時刻の前後に運転させることによって、図8に示すように乾燥運転可能期間を日没時刻後まで延長することが可能となり、より長い期間において被乾燥物Yを乾燥させることが可能となる。 As shown in FIG. 8, when the auxiliary boiler 4 is operated before and after the sunset time, the operation of the auxiliary boiler 4 is started before the sunset. As a result, it is possible to suppress the decrease in the temperature of the heat transfer medium X before and after the sunset time. Therefore, the temperature of the heat transfer medium X can be maintained at the boiling point for a while even after the sunset time, and the drying of the material to be dried Y can be continued. However, while the auxiliary boiler 4 is in operation, the heat transfer medium X can not be overheated by the solar superheater 10 because the energy obtained from the sun is small. Therefore, during this period, the supply of the heat transfer medium X from the fluidizing vapor supply unit 11 to the chamber 5a is stopped, and the fluidizing gas Z comprising the inert gas is supplied from the fluidizing gas supply device 6 to the chamber 5a. In this manner, by operating the auxiliary boiler 4 before and after the sunset time, it is possible to extend the drying operable period to after the sunset time as shown in FIG. It is possible to dry the
 また、図9に示すように、補助ボイラ4を日の出時刻の前後と日没時刻の前後とで運転させる場合には、乾燥運転可能期間の開始タイミングを早め、さらには乾燥運転可能期間を日没時刻後まで延長することが可能となる。 Further, as shown in FIG. 9, when the auxiliary boiler 4 is operated before and after the sunrise time and before and after the sunset time, the start timing of the drying operation possible period is advanced, and furthermore, the drying operation possible period is sunset. It is possible to extend until after the time.
 以上のような本実施形態の乾燥システム1Aによれば、太陽集熱器2によって加熱された熱伝達媒体Xをさらに昇温する太陽過熱器10を備える。このため、乾燥炉5における乾燥温度をより高めることができ、短時間で被乾燥物Yの乾燥を行うことが可能となる。さらには、飽和温度以上に過熱された熱伝達媒体Xによれば、十分に温度が高いことから、乾燥中の被乾燥物Yに接触した場合であっても凝集しない。このため、熱伝達媒体Xを流動化ガスとして使用することが可能となり、不活性ガスの使用量を削減することが可能となる。 According to the drying system 1A of the present embodiment as described above, the solar superheater 10 that further raises the temperature of the heat transfer medium X heated by the solar heat collector 2 is provided. For this reason, the drying temperature in the drying furnace 5 can be further raised, and the material to be dried Y can be dried in a short time. Furthermore, according to the heat transfer medium X heated to the saturation temperature or higher, the temperature is sufficiently high, and therefore, even when contacting the material to be dried Y during the drying, the aggregation does not occur. Therefore, the heat transfer medium X can be used as a fluidizing gas, and the amount of inert gas used can be reduced.
(第3実施形態)
 次に、本開示の第3実施形態について図10を参照して説明する。なお、本実施形態の説明において、上記第1実施形態あるいは第2実施形態と同様の部分については、その説明を省略あるいは簡略化する。
Third Embodiment
Next, a third embodiment of the present disclosure will be described with reference to FIG. In the description of the present embodiment, the description of the same parts as those in the first embodiment or the second embodiment will be omitted or simplified.
 図10は、本実施形態の乾燥システム1Bの概略構成を示すフロー図である。この図に示すように、本実施形態の乾燥システム1Bは、本実施形態の乾燥システム1Bで乾燥した被乾燥物Y(褐炭)を燃料とするボイラ発電システム100に併設されており、上記第2実施形態の乾燥システム1Aに対して、中圧タービン抽気部12と、乾燥用蒸気過熱器13(過熱器)と、低圧タービン抽気部14とを備える構成を採用している。 FIG. 10 is a flowchart showing a schematic configuration of the drying system 1B of the present embodiment. As shown in this figure, the drying system 1B of the present embodiment is juxtaposed to a boiler power generation system 100 that uses the to-be-dried material Y (brown coal) dried by the drying system 1B of the present embodiment as fuel. With respect to the drying system 1A of the embodiment, a configuration including an intermediate pressure turbine extraction unit 12, a drying steam superheater 13 (superheater), and a low pressure turbine extraction unit 14 is employed.
 ボイラ発電システム100は、構成が特に限定されないが、被乾燥物Yを燃焼して蒸気を生成するボイラ101と、ボイラ101で得られた蒸気を用いて回転動力を生成するタービン102とを備えている。また、図10では省略しているが、ボイラ発電システム100は、タービン102で生成された回転動力を用いて発電を行う発電機等を備えている。なお、本実施形態においては、タービン102は、高圧タービン102aと、中圧タービン102bと、低圧タービン102cとを備える三段式のタービンである。
また、ボイラ101は、高圧タービン102aから排出された蒸気を再加熱して中圧タービン102bに供給する再熱器101aを備えている。
The configuration is not particularly limited, but the boiler power generation system 100 includes a boiler 101 that burns the material to be dried Y to generate steam, and a turbine 102 that generates rotational power using the steam obtained by the boiler 101. There is. Although not shown in FIG. 10, the boiler power generation system 100 includes a generator or the like that generates electric power using the rotational power generated by the turbine 102. In the present embodiment, the turbine 102 is a three-stage turbine including a high pressure turbine 102a, an intermediate pressure turbine 102b, and a low pressure turbine 102c.
The boiler 101 also includes a reheater 101a that reheats the steam discharged from the high pressure turbine 102a and supplies the reheated steam to the intermediate pressure turbine 102b.
 中圧タービン抽気部12は、抽気配管12aと、開閉バルブ12bとを備えている。抽気配管12aは、乾燥用蒸気過熱器13を通過して中圧タービン102bと低圧タービン102cとを接続する配管である。開閉バルブ12bは、抽気配管12aの途中部位に配置されており、抽気配管12aによって形成される流路の開閉を行う。この開閉バルブ12bは、例えば制御装置8によって制御される。このような中圧タービン抽気部12は、中圧タービン102bから蒸気を抽気し、抽気した蒸気が乾燥用蒸気過熱器13を通過するように案内して低圧タービン102cに供給する。 The intermediate pressure turbine extraction unit 12 includes an extraction pipe 12 a and an on-off valve 12 b. The bleed pipe 12a is a pipe that passes the drying steam superheater 13 and connects the intermediate pressure turbine 102b and the low pressure turbine 102c. The on-off valve 12b is disposed at an intermediate position of the bleed pipe 12a, and opens and closes a flow path formed by the bleed pipe 12a. The on-off valve 12 b is controlled by, for example, the control device 8. Such an intermediate pressure turbine extraction unit 12 extracts steam from the intermediate pressure turbine 102b, guides the extracted steam so as to pass through the drying steam superheater 13, and supplies it to the low pressure turbine 102c.
 乾燥用蒸気過熱器13は、蒸気ドラム3と乾燥と5との間において、太陽過熱器10と並列して設けられている。この乾燥用蒸気過熱器13は、中圧タービン抽気部12によって中圧タービン102bから抽気された蒸気と、蒸気ドラム3から配置された熱伝達媒体Xとを熱交換することによって、熱伝達媒体Xをさらに昇温させる。 The drying steam heater 13 is provided in parallel to the solar heater 10 between the steam drum 3 and the drying 5. The drying steam superheater 13 exchanges heat between the steam extracted from the intermediate pressure turbine 102 b by the intermediate pressure turbine extraction unit 12 and the heat transfer medium X disposed from the steam drum 3 to obtain a heat transfer medium X Further raise the temperature.
 低圧タービン抽気部14は、抽気配管14aと、開閉バルブ12bとを備えている。抽気配管12aは、低圧タービン102cと接続され、低圧タービン102cから抽気した蒸気を乾燥炉5の伝熱管5cに向けて案内する。開閉バルブ14bは、抽気配管14aの途中部位に配置されており、抽気配管14aによって形成される流路の開閉を行う。この開閉バルブ14bは、例えば制御装置8によって制御される。このような低圧タービン抽気部14は、低圧タービン102cから蒸気を抽気し、乾燥炉5の伝熱管5cに供給する。 The low pressure turbine extraction unit 14 includes an extraction pipe 14 a and an on-off valve 12 b. The bleed pipe 12 a is connected to the low pressure turbine 102 c and guides the steam extracted from the low pressure turbine 102 c toward the heat transfer pipe 5 c of the drying furnace 5. The on-off valve 14b is disposed at an intermediate position of the bleed pipe 14a, and opens and closes the flow path formed by the bleed pipe 14a. The on-off valve 14 b is controlled by, for example, the control device 8. Such a low pressure turbine extraction unit 14 extracts steam from the low pressure turbine 102 c and supplies the steam to the heat transfer pipe 5 c of the drying furnace 5.
 以上のような本実施形態の乾燥システム1Bによれば、太陽集熱器2によって加熱された熱伝達媒体Xをさらに昇温する乾燥用蒸気過熱器13を備える。このため、乾燥炉5における乾燥温度をより高めることができ、短時間で被乾燥物Yの乾燥を行うことが可能となる。さらには、飽和温度以上に過熱された熱伝達媒体Xによれば、十分に温度が高いことから、乾燥中の被乾燥物Yに接触した場合であっても凝集しない。このため、熱伝達媒体Xを流動化ガスとして使用することが可能となり、不活性ガスの使用量を削減することが可能となる。 According to the drying system 1B of the present embodiment as described above, the drying steam superheater 13 that further raises the temperature of the heat transfer medium X heated by the solar collector 2 is provided. For this reason, the drying temperature in the drying furnace 5 can be further raised, and the material to be dried Y can be dried in a short time. Furthermore, according to the heat transfer medium X heated to the saturation temperature or higher, the temperature is sufficiently high, and therefore, even when contacting the material to be dried Y during the drying, the aggregation does not occur. Therefore, the heat transfer medium X can be used as a fluidizing gas, and the amount of inert gas used can be reduced.
 また、本実施形態の乾燥システム1Bにおいては、低圧タービン102cから抽気された蒸気の一部を乾燥炉5の伝熱管5cに供給可能とされている。このため、蒸気ドラム3から排出される熱伝達媒体Xの流量が少ない場合には、低圧タービン102cからの蒸気で補うことができる。このため、乾燥運転可能期間を延長することができ、例えば24時間、乾燥システム1Bを運転することも可能となる。 Further, in the drying system 1B of the present embodiment, a part of the steam extracted from the low pressure turbine 102c can be supplied to the heat transfer tube 5c of the drying furnace 5. Therefore, when the flow rate of the heat transfer medium X discharged from the steam drum 3 is small, it can be compensated by the steam from the low pressure turbine 102c. Therefore, the drying operable period can be extended, and it is also possible to operate the drying system 1B, for example, for 24 hours.
 以上、図面を参照しながら本開示の好適な実施形態について説明したが、本開示は上記実施形態に限定されない。上述した実施形態において示した各構成部材の諸形状や組み合わせ等は一例であって、本開示の趣旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。 Although the preferred embodiments of the present disclosure have been described above with reference to the drawings, the present disclosure is not limited to the above-described embodiments. The shapes, combinations, and the like of the constituent members shown in the above-described embodiment are merely examples, and various changes can be made based on design requirements and the like without departing from the spirit of the present disclosure.
 例えば、上記実施形態においては、乾燥炉5として、被乾燥物Yを流動化しながら乾燥を行ういわゆる流動層式のものを用いる構成について説明した。しかしながら、本開示はこれに限定されず、他の乾燥炉を使用することも可能である。例えば、傾斜面に被乾燥物Yを供給し、被乾燥物Yを重量により移動させながら乾燥を行う移動層式の乾燥炉を用いる構成を採用することも可能である。ただし、上記実施形態で説明した流動層式の乾燥炉5は、分割壁5bの配置間隔等によって容易に被乾燥物Yの移動距離を変更することができ、被乾燥物Yの乾燥時間を任意に調整できる点において有利である。 For example, in the said embodiment, the structure using what is called a fluid bed type which dries while fluidizing the to-be-dried material Y as the drying furnace 5 was demonstrated. However, the present disclosure is not limited thereto, and it is also possible to use other drying ovens. For example, it is also possible to adopt a configuration using a moving bed type drying furnace in which the material to be dried Y is supplied to the inclined surface and drying is performed while moving the material to be dried Y by weight. However, in the fluidized bed type drying oven 5 described in the above embodiment, the moving distance of the material to be dried Y can be easily changed by the arrangement interval of the dividing wall 5b, etc. It is advantageous in that it can be adjusted to
 また、上記実施形態においては、日の出時刻及び日没時刻のいずれかあるいは両方において補助ボイラ4を運転する構成について説明した。しかしながら、本開示はこれに限定されず、曇天や雨天のときに補助ボイラ4を運転しても良い。このような場合には、例えば、制御装置8は、気象を検知するセンサや外部から入力される気象情報に基づいて補助ボイラ4を運転するか否かを判断する。 Moreover, in the said embodiment, the structure which drive | operates the auxiliary | assistant boiler 4 in the sunrise time and / or the sunset time was demonstrated. However, the present disclosure is not limited thereto, and the auxiliary boiler 4 may be operated in cloudy or rainy weather. In such a case, for example, the control device 8 determines whether or not to operate the auxiliary boiler 4 based on a sensor that detects weather or weather information input from the outside.
本開示によれば、水分を多く含む燃料等を乾燥する乾燥システムにおいて、太陽熱を利用することで乾燥に用いられる燃料の消費量を抑制し、設備の大型化を抑制し、かつ、乾燥に適した温度に被乾燥物の温度を調整可能とすることができる。 According to the present disclosure, in a drying system for drying a fuel or the like containing a large amount of water, consumption of fuel used for drying is suppressed by using solar heat, and enlargement of facilities is suppressed, and drying is suitable. The temperature of the material to be dried can be made adjustable.
 1 乾燥システム
1A 乾燥システム
1B 乾燥システム
2 太陽集熱器
2a 第1反射板
2b 第2反射板
2c 伝熱管
2d 駆動装置
2e 支持部
2f 集合管
3 蒸気ドラム
4 補助ボイラ
5 乾燥炉
5a チャンバ
5b 分割壁
5b1 第1分割壁
5b2 第2分割壁
5c 伝熱管
6 流動化ガス供給装置(流動化ガス供給手段、不活性ガス供給部)
6a 循環配管
6b 不活性ガス発生器
6c ブロワ
6d 熱交換器
6e 冷却器
7 熱伝達媒体循環部
7a 返流配管
7b 復水器
7c 給水ポンプ
7d 給水予熱器
7e 蒸気ドラム接続配管
8 制御装置
10 太陽過熱器
11 流動化蒸気供給部(流動化ガス供給手段、過熱蒸気供給部)
11a 過熱蒸気供給配管
11b 開閉バルブ
12 中圧タービン抽気部
12a 抽気配管
12b 開閉バルブ
13 乾燥用蒸気過熱器(過熱器)
14 低圧タービン抽気部
14a 抽気配管
14b 開閉バルブ
100 ボイラ発電システム
101 ボイラ
101a 再熱器
102 タービン
102a 高圧タービン
102b 中圧タービン
102c 低圧タービン
X 熱伝達媒体
Y 被乾燥物
Z 流動化ガス
DESCRIPTION OF SYMBOLS 1 drying system 1A drying system 1B drying system 2 solar heat collector 2a 1st reflective plate 2b 2nd reflective plate 2c heat transfer tube 2d drive device 2e support part 2f collecting pipe 3 steam drum 4 auxiliary boiler 5 drying furnace 5a chamber 5b divided wall 5b1 first divided wall 5b2 second divided wall 5c heat transfer pipe 6 fluidizing gas supply device (fluidizing gas supply means, inert gas supply unit)
6a circulation pipe 6b inert gas generator 6c blower 6d heat exchanger 6e cooler 7 heat transfer medium circulation unit 7a return pipe 7b condenser 7c feed water pump 7d feed water preheater 7e steam drum connection pipe 8 control device 10 solar heating 11 Fluidizing steam supply unit (fluidizing gas supply means, superheated steam supply unit)
11a Superheated steam supply piping 11b opening and closing valve 12 medium pressure turbine extraction part 12a extraction piping 12b opening and closing valve 13 steam heater for drying (superheater)
14 low pressure turbine extraction part 14a extraction pipe 14b on-off valve 100 boiler power generation system 101 boiler 101a reheater 102 turbine 102a high pressure turbine 102b medium pressure turbine 102c low pressure turbine X heat transfer medium Y to-be-dried matter Z fluidization gas

Claims (8)

  1.  太陽熱により熱伝達媒体を加熱すると共に複数設けられる太陽集熱器と、
     前記太陽集熱器により加熱された前記熱伝達媒体と被乾燥物とを熱交換することによって前記被乾燥物を乾燥させる乾燥炉と
     を備える乾燥システム。
    A plurality of solar collectors that heat the heat transfer medium with solar heat and are provided in plural;
    A drying furnace for drying the material to be dried by heat exchange between the heat transfer medium heated by the solar collector and the material to be dried.
  2.  前記太陽集熱器と前記乾燥炉との間に配置され、前記太陽集熱器によって加熱されることにより蒸気化された前記熱伝達媒体を一時的に貯留する蒸気ドラムを備える請求項1記載の乾燥システム。 The steam drum according to claim 1, further comprising a steam drum disposed between the solar collector and the drying furnace and temporarily storing the heat transfer medium vaporized by being heated by the solar collector. Drying system.
  3.  前記太陽集熱器によって加熱された前記熱伝達媒体をさらに昇温する過熱器を備える請求項1または2記載の乾燥システム。 The drying system according to claim 1, further comprising a superheater that further raises the temperature of the heat transfer medium heated by the solar collector.
  4.  前記乾燥炉に流動化ガスを供給することにより前記乾燥炉において前記被乾燥物を流動化させる流動化ガス供給手段を備える請求項1~3いずれか一項に記載の乾燥システム。 The drying system according to any one of claims 1 to 3, further comprising: fluidizing gas supply means for fluidizing the material to be dried in the drying oven by supplying the fluidization gas to the drying oven.
  5.  前記流動化ガス供給手段として、過熱された蒸気を前記流動化ガスとして前記乾燥炉に供給する過熱蒸気供給部を備える請求項4記載の乾燥システム。 The drying system according to claim 4, further comprising: a superheated steam supply unit configured to supply the superheated steam as the fluidizing gas to the drying furnace as the fluidizing gas supply means.
  6.  前記流動化ガス供給手段として、不活性ガスを前記流動化ガスとして前記乾燥炉に供給する不活性ガス供給部を備える請求項4または5記載の乾燥システム。 The drying system according to claim 4 or 5, further comprising an inert gas supply unit configured to supply an inert gas as the fluidization gas to the drying furnace as the fluidization gas supply unit.
  7.  前記太陽集熱器とは別に前記熱伝達媒体を加熱する補助ボイラを備える請求項1~6いずれか一項に記載の乾燥システム。 The drying system according to any one of claims 1 to 6, further comprising an auxiliary boiler that heats the heat transfer medium separately from the solar collector.
  8.  日の出時刻及日没時刻の少なくともいずれかに合わせて前記補助ボイラを稼働させる制御装置を備える請求項7記載の乾燥システム。 The drying system according to claim 7, further comprising a control device that operates the auxiliary boiler in accordance with at least one of sunrise time and sunset time.
PCT/JP2015/079169 2014-11-26 2015-10-15 Drying system WO2016084509A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2015351701A AU2015351701B2 (en) 2014-11-26 2015-10-15 Drying system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014238922A JP6520076B2 (en) 2014-11-26 2014-11-26 Drying system
JP2014-238922 2014-11-26

Publications (1)

Publication Number Publication Date
WO2016084509A1 true WO2016084509A1 (en) 2016-06-02

Family

ID=56074087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079169 WO2016084509A1 (en) 2014-11-26 2015-10-15 Drying system

Country Status (3)

Country Link
JP (1) JP6520076B2 (en)
AU (1) AU2015351701B2 (en)
WO (1) WO2016084509A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6972570B2 (en) * 2017-02-15 2021-11-24 株式会社Ihi Drying equipment and boiler system
JPWO2020145106A1 (en) * 2019-01-07 2021-09-09 株式会社Ihi Steam supply and drying system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3179469U (en) * 2012-08-23 2012-11-01 健司 福宮 Drying system
JP2013103201A (en) * 2011-11-16 2013-05-30 Ers Supply Kk Integrated treatment system of organic waste and waste water
JP2013190144A (en) * 2012-03-13 2013-09-26 Tsukishima Kikai Co Ltd Heating processing facility and method
JP2013210179A (en) * 2012-02-28 2013-10-10 Mitsubishi Heavy Ind Ltd Device for decompressing and drying wet fuel
JP2013217588A (en) * 2012-04-10 2013-10-24 Hitachi Ltd Method of drying low grade coal and thermal power plant using low grade coal as fuel
JP2014070847A (en) * 2012-10-01 2014-04-21 Masatoshi Kudome Power generating facility
JP2014149092A (en) * 2013-01-30 2014-08-21 Mitsubishi Heavy Ind Ltd Heat transfer pipe, heat transfer pipe unit, fluid bed dryer with heat transfer pipe, and fluid bed dryer with heat transfer pipe unit

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5912281A (en) * 1982-07-12 1984-01-21 中部クリエ−ト工業株式会社 Drier for agricultural product by solar heat
JP5800490B2 (en) * 2010-11-02 2015-10-28 パーパス株式会社 Heat source device, heat source control method, and heat source control program

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013103201A (en) * 2011-11-16 2013-05-30 Ers Supply Kk Integrated treatment system of organic waste and waste water
JP2013210179A (en) * 2012-02-28 2013-10-10 Mitsubishi Heavy Ind Ltd Device for decompressing and drying wet fuel
JP2013190144A (en) * 2012-03-13 2013-09-26 Tsukishima Kikai Co Ltd Heating processing facility and method
JP2013217588A (en) * 2012-04-10 2013-10-24 Hitachi Ltd Method of drying low grade coal and thermal power plant using low grade coal as fuel
JP3179469U (en) * 2012-08-23 2012-11-01 健司 福宮 Drying system
JP2014070847A (en) * 2012-10-01 2014-04-21 Masatoshi Kudome Power generating facility
JP2014149092A (en) * 2013-01-30 2014-08-21 Mitsubishi Heavy Ind Ltd Heat transfer pipe, heat transfer pipe unit, fluid bed dryer with heat transfer pipe, and fluid bed dryer with heat transfer pipe unit

Also Published As

Publication number Publication date
JP6520076B2 (en) 2019-05-29
AU2015351701B2 (en) 2018-08-02
AU2015351701A1 (en) 2017-02-02
JP2016099099A (en) 2016-05-30

Similar Documents

Publication Publication Date Title
JP5596715B2 (en) Solar thermal combined power generation system and solar thermal combined power generation method
US10072530B2 (en) Hybrid power generation system using solar energy and bioenergy
JP5399565B2 (en) Combined cycle power plant using solar heat
Rashid et al. Dynamic simulation, control, and performance evaluation of a synergistic solar and natural gas hybrid power plant
Wu et al. Performance improvement of coal-fired power generation system integrating solar to preheat feedwater and reheated steam
US20090260359A1 (en) Solar thermal power plant
EP2561226A2 (en) Solar thermal power plant
JP5707546B2 (en) Solar thermal boiler system
Li et al. Coupling performance analysis of a solar aided coal-fired power plant
WO2013098945A1 (en) Solar thermal power generation apparatus
JP2014514525A (en) Method and apparatus for producing steam for use in industrial processes
CN104896764A (en) Solar thermal power generation method and device
JP6520076B2 (en) Drying system
JP5534427B2 (en) Solar thermal power generation system
EP2871359A1 (en) Auxiliary steam supply system in solar power plants
CN102966495A (en) Tower type solar energy-steam combustion gas combined cycle power generation system
CN103423110A (en) Steam Rankine cycle solar plant and method for operating the same
US20140026571A1 (en) Hermetically sealed solar water heater system and operation method for generation of electricity from thermal power plant
CN105247208B (en) Solar thermal collector factory with storage heater
CN102003696B (en) Hierarchical cavity type solar heat absorber and heat exchange system
CN105154138A (en) Solar energy gasification and power generation hybrid system
CN102168661B (en) Composite energy source solar energy high-temperature heat power generating system
US20110162361A1 (en) Method of superheating team
EP3055562B1 (en) Controlled heating method of a process fluid through concentrating solar thermal plant and heat carrier system and apparatus thereof
WO2013038563A1 (en) Solar thermal power generation facility, solar thermal power generation method, heat medium supply device, and heat medium heating device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15863455

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015351701

Country of ref document: AU

Date of ref document: 20151015

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15863455

Country of ref document: EP

Kind code of ref document: A1