JPWO2020145106A1 - Steam supply and drying system - Google Patents

Steam supply and drying system Download PDF

Info

Publication number
JPWO2020145106A1
JPWO2020145106A1 JP2020565680A JP2020565680A JPWO2020145106A1 JP WO2020145106 A1 JPWO2020145106 A1 JP WO2020145106A1 JP 2020565680 A JP2020565680 A JP 2020565680A JP 2020565680 A JP2020565680 A JP 2020565680A JP WO2020145106 A1 JPWO2020145106 A1 JP WO2020145106A1
Authority
JP
Japan
Prior art keywords
heat storage
storage agent
heat
steam
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020565680A
Other languages
Japanese (ja)
Inventor
石井 徹
徹 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Publication of JPWO2020145106A1 publication Critical patent/JPWO2020145106A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B3/00Other methods of steam generation; Steam boilers not provided for in other groups of this subclass
    • F22B3/02Other methods of steam generation; Steam boilers not provided for in other groups of this subclass involving the use of working media other than water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/74Arrangements for concentrating solar-rays for solar heat collectors with reflectors with trough-shaped or cylindro-parabolic reflective surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/79Arrangements for concentrating solar-rays for solar heat collectors with reflectors with spaced and opposed interacting reflective surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/45Arrangements for moving or orienting solar heat collector modules for rotary movement with two rotation axes
    • F24S30/452Vertical primary axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S60/00Arrangements for storing heat collected by solar heat collectors
    • F24S60/10Arrangements for storing heat collected by solar heat collectors using latent heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S90/00Solar heat systems not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B23/00Heating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/02Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air
    • F26B3/06Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour flowing through the materials or objects to be dried
    • F26B3/08Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour flowing through the materials or objects to be dried so as to loosen them, e.g. to form a fluidised bed
    • F26B3/084Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour flowing through the materials or objects to be dried so as to loosen them, e.g. to form a fluidised bed with heat exchange taking place in the fluidised bed, e.g. combined direct and indirect heat exchange
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Thermal Sciences (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Microbiology (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

本開示の蒸気供給装置(1)は、太陽光を集光して収熱し、蓄熱剤(X1)を直接加熱する太陽光集光収熱部(2)と、加熱された蓄熱剤により供給媒体(Z1)を加熱する媒体加熱部(3)と、加熱された供給媒体より蒸気を分離し、供給する蒸気供給部(4)と、を備える。The steam supply device (1) of the present disclosure is a supply medium using a solar concentrating heat collecting unit (2) that collects and collects sunlight and directly heats a heat storage agent (X1), and a heated heat storage agent. A medium heating unit (3) for heating (Z1) and a steam supply unit (4) for separating and supplying steam from the heated supply medium are provided.

Description

本開示は、蒸気供給装置及び乾燥システムに関する。
本願は、2019年1月7日に日本に出願された特願2019−000689号に基づき優先権を主張し、その内容をここに援用する。
The present disclosure relates to steam supply equipment and drying systems.
The present application claims priority based on Japanese Patent Application No. 2019-000689 filed in Japan on January 7, 2019, the contents of which are incorporated herein by reference.

近年では、二酸化炭素や窒素酸化物等の排出を抑制するために、再生可能エネルギの利用拡大が進められており、熱源としての太陽光の利用もそのひとつとして注目されている。例えば特許文献1には、太陽光を集光することにより得られる熱エネルギを熱源として蒸気を発生させ、発生した蒸気により高湿の固体燃料を乾燥させる乾燥システムが開示されている。 In recent years, the use of renewable energy has been expanded in order to suppress the emission of carbon dioxide and nitrogen oxides, and the use of sunlight as a heat source is also attracting attention as one of them. For example, Patent Document 1 discloses a drying system in which steam is generated using the heat energy obtained by condensing sunlight as a heat source, and the high-humidity solid fuel is dried by the generated steam.

日本国特開2016−099099号公報Japanese Patent Application Laid-Open No. 2016-099099

特許文献1に記載されている蒸気供給システムでは、太陽光を集光して得られる熱エネルギにより直接蒸気を発生させている。しかしながら、太陽光から蒸気発生に必要な十分な熱量を得られる時間は限定的であり、さらに天候によっては、1日中、熱量が不足する可能性がある。したがって、上述した蒸気供給システムでは、蒸気を安定的に供給することが難しい。 In the steam supply system described in Patent Document 1, steam is directly generated by the thermal energy obtained by condensing sunlight. However, the time required to obtain sufficient heat for steam generation from sunlight is limited, and depending on the weather, the amount of heat may be insufficient throughout the day. Therefore, in the steam supply system described above, it is difficult to stably supply steam.

本開示は、上述する問題点に鑑みてなされたもので、太陽光を集光して熱源とする蒸気供給装置において、蒸気を安定的に供給することを目的とする。 The present disclosure has been made in view of the above-mentioned problems, and an object of the present disclosure is to stably supply steam in a steam supply device that collects sunlight and uses it as a heat source.

本開示の一態様の蒸気供給装置は、太陽光を集光して収熱し、蓄熱剤を直接加熱する太陽光集光収熱部と、加熱された前記蓄熱剤により供給媒体を加熱する媒体加熱部と、加熱された前記供給媒体より蒸気を分離し、供給する蒸気供給部と、を備える。 The steam supply device of one aspect of the present disclosure includes a sunlight condensing heat collecting unit that collects heat by condensing sunlight and directly heats a heat storage agent, and medium heating that heats a supply medium by the heated heat storage agent. A unit and a steam supply unit that separates and supplies steam from the heated supply medium are provided.

上記一態様の蒸気供給装置において、蒸気供給装置は、前記媒体加熱部の前段に設けられ、太陽光集光収熱部で加熱された蓄熱剤を貯留する供給蓄熱剤貯留部と、前記媒体加熱部の後段に設けられ、前記供給媒体の加熱に用いられた前記蓄熱剤を貯留する回収蓄熱剤貯留部とを更に備えていてもよい。 In the steam supply device of the above aspect, the steam supply device is provided in front of the medium heating unit, and stores the heat storage agent heated by the solar concentrating heat collecting unit, and the medium heating unit. A recovery heat storage agent storage unit which is provided after the unit and stores the heat storage agent used for heating the supply medium may be further provided.

上記一態様の蒸気供給装置において、蒸気供給装置は、日照が得られない時間帯において、前記太陽光集光収熱部への前記蓄熱剤の供給を停止すると共に、前記太陽光集光収熱部に滞留する前記蓄熱剤を、前記供給蓄熱剤貯留部又は前記回収蓄熱剤貯留部へ退避させる蓄熱剤退避機構を更に備えていてもよい。 In the steam supply device of the above aspect, the steam supply device stops the supply of the heat storage agent to the solar concentrating heat storage unit and the solar condensing heat collection unit during the time when sunshine cannot be obtained. A heat storage agent evacuation mechanism for retracting the heat storage agent staying in the unit to the supply heat storage agent storage unit or the recovery heat storage agent storage unit may be further provided.

上記一態様の蒸気供給装置において、蒸気供給装置は、太陽光を集光して収熱し、第2の蓄熱剤を直接加熱する第2の太陽光集光収熱部と、加熱された前記第2の蓄熱剤により前記蒸気供給部から供給された蒸気をさらに加熱する蒸気加熱部と、を更に備えていてもよい。 In the steam supply device of the above aspect, the steam supply device has a second solar concentrating heat collecting unit that collects and collects sunlight and directly heats a second heat storage agent, and the heated first. A steam heating unit that further heats the steam supplied from the steam supply unit by the heat storage agent of 2 may be further provided.

上記一態様の蒸気供給装置において、前記蒸気加熱部により供給される蒸気は、過熱蒸気であってもよい。 In the steam supply device of the above aspect, the steam supplied by the steam heating unit may be superheated steam.

上記一態様の蒸気供給装置において、前記第2の蓄熱剤の作動温度は、前記供給媒体の加熱に用いる前記蓄熱剤の作動温度よりも高くてもよい。 In the steam supply device of the above aspect, the operating temperature of the second heat storage agent may be higher than the operating temperature of the heat storage agent used for heating the supply medium.

上記一態様の蒸気供給装置において、前記蒸気加熱部において、前記蒸気供給部から供給された蒸気の加熱に用いた前記第2の蓄熱剤を、前記供給媒体の加熱に用いてもよい。 In the steam supply device of the above aspect, the second heat storage agent used for heating the steam supplied from the steam supply unit in the steam heating unit may be used for heating the supply medium.

上記一態様の蒸気供給装置において、蒸気供給装置は、供給媒体を加熱する補助ボイラを更に備えていてもよい。 In the steam supply device of the above aspect, the steam supply device may further include an auxiliary boiler for heating the supply medium.

上記一態様の蒸気供給装置において、蒸気供給装置は、前記蒸気供給部から供給された蒸気を加熱する補助過熱器を更に備えていてもよい。 In the steam supply device of the above aspect, the steam supply device may further include an auxiliary superheater for heating the steam supplied from the steam supply unit.

上記一態様の蒸気供給装置において、前記蓄熱剤を貯留する蓄熱剤貯留槽に、前記蓄熱剤を攪拌する攪拌装置が設けられてもよい。 In the steam supply device of the above aspect, the heat storage agent storage tank for storing the heat storage agent may be provided with a stirring device for stirring the heat storage agent.

本開示の一態様の乾燥システムは、前記蒸気供給装置と、前記蒸気供給装置から供給される蒸気を熱源とし、高湿原料を流動させつつ乾燥させる流動層乾燥装置とを備える。 The drying system of one aspect of the present disclosure includes the steam supply device and a fluidized bed drying device that uses the steam supplied from the steam supply device as a heat source and dries the high-humidity raw material while flowing it.

本開示によれば、蒸気供給装置は、蓄熱剤に太陽光より得た熱エネルギを蓄熱しつつ、蓄熱剤を介して供給媒体を加熱して蒸気を発生させている。これにより、太陽光より得られる熱エネルギの供給が不足する夜間や天候不良時においても、蓄熱剤に蓄えた熱エネルギにより蒸気を発生させることが可能である。また、日照の時間的変化に伴う収熱量の変動が、一旦、蓄熱剤に蓄熱されることにより平準化され、供給媒体を一定条件で加熱でき、その結果蒸気を安定供給することが可能である。 According to the present disclosure, the steam supply device heats the supply medium through the heat storage agent to generate steam while storing the heat energy obtained from sunlight in the heat storage agent. As a result, it is possible to generate steam by the heat energy stored in the heat storage agent even at night when the supply of heat energy obtained from sunlight is insufficient or when the weather is bad. In addition, fluctuations in the amount of heat collection due to temporal changes in sunshine are once leveled by being stored in the heat storage agent, and the supply medium can be heated under certain conditions, and as a result, steam can be stably supplied. ..

本開示では、蓄熱剤を、太陽光を集光して得られる熱エネルギで直接加熱し、別の熱交換部に移動して供給媒体を加熱する。その結果、太陽光を集光して得られる熱エネルギを別の媒体を介して蓄熱剤に伝える場合と比較して、伝熱の際に生じる熱損失を低減することができる。また、太陽光を集光して得られる熱エネルギを別の媒体を介して蓄熱剤に伝える場合に別の媒体の物理的特性から生じる、熱伝達上の制約、例えば対応できる温度範囲等の制約をなくすことができる。したがって、蓄熱剤の性能や作動範囲を拡大することができる。 In the present disclosure, the heat storage agent is directly heated by the heat energy obtained by condensing sunlight, and moved to another heat exchange unit to heat the supply medium. As a result, the heat loss that occurs during heat transfer can be reduced as compared with the case where the heat energy obtained by condensing sunlight is transferred to the heat storage agent via another medium. Further, when the thermal energy obtained by condensing sunlight is transferred to the heat storage agent through another medium, there are restrictions on heat transfer, for example, restrictions on the temperature range that can be dealt with, which arise from the physical characteristics of the other medium. Can be eliminated. Therefore, the performance and operating range of the heat storage agent can be expanded.

本開示の第1実施形態に係る蒸気供給装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the steam supply apparatus which concerns on 1st Embodiment of this disclosure. 本開示で使用する集光収熱器の斜視図である。It is a perspective view of the condensing heat collector used in this disclosure. 本開示で使用する集光収熱器の断面図である。It is sectional drawing of the condensing heat collector used in this disclosure. 本開示の太陽光集光収熱部の配置例を示す図である。It is a figure which shows the arrangement example of the solar condensing heat collecting part of this disclosure. 本開示で使用する蓄熱剤の組成と温度に対する相変化特性図である。It is a phase change characteristic diagram with respect to the composition and temperature of the heat storage agent used in this disclosure. 本開示の第2実施形態に係る蒸気供給装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the steam supply apparatus which concerns on 2nd Embodiment of this disclosure. 本開示の第2実施形態に係る蒸気供給装置の日照時間帯における作動を示す模式図である。It is a schematic diagram which shows the operation of the steam supply device which concerns on 2nd Embodiment of this disclosure in the daylight hours. 本開示の第2実施形態に係る蒸気供給装置の日没時における作動を示す模式図である。It is a schematic diagram which shows the operation at the time of sunset of the steam supply device which concerns on 2nd Embodiment of this disclosure. 本開示の第2実施形態に係る蒸気供給装置の夜間における作動を示す模式図である。It is a schematic diagram which shows the operation of the steam supply device which concerns on 2nd Embodiment of this disclosure at night. 本開示の第3実施形態に係る蒸気供給装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the steam supply apparatus which concerns on 3rd Embodiment of this disclosure. 本開示の第4実施形態に係る蒸気供給装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the steam supply apparatus which concerns on 4th Embodiment of this disclosure. 本開示の第4実施形態において蓄熱剤の作動域の使い分けを解説する図である。It is a figure explaining the proper use of the working area of a heat storage agent in the 4th Embodiment of this disclosure. 本開示の第5実施形態に係る乾燥システムの構成を示す模式図である。It is a schematic diagram which shows the structure of the drying system which concerns on 5th Embodiment of this disclosure.

[第1実施形態]
以下、図面を参照して、本開示に係る蒸気供給装置の第1実施形態について説明する。
[First Embodiment]
Hereinafter, the first embodiment of the steam supply device according to the present disclosure will be described with reference to the drawings.

本実施形態に係る蒸気供給装置1は、用途先(供給先)に対して供給媒体Z1を加熱して供給する。供給媒体Z1は、例えば大気圧に対して加圧された流体とされ、加熱されることにより一部が蒸気となる。加熱された供給媒体Z1から蒸気が分離され、蒸気媒体Z1sとして用途先へ供給される。蒸気供給装置1は、図1に示すように、太陽光集光収熱部2と、媒体加熱部3と、蒸気供給部4と、媒体循環部5と、を備えている。 The steam supply device 1 according to the present embodiment heats and supplies the supply medium Z1 to the application destination (supply destination). The supply medium Z1 is, for example, a fluid pressurized with respect to atmospheric pressure, and when heated, a part of the supply medium Z1 becomes steam. The steam is separated from the heated supply medium Z1 and supplied to the application destination as the steam medium Z1s. As shown in FIG. 1, the steam supply device 1 includes a sunlight condensing heat collecting unit 2, a medium heating unit 3, a steam supply unit 4, and a medium circulation unit 5.

太陽光集光収熱部2は、太陽光を効率よく集光して熱エネルギを収集する集光収熱器2aと、集光収熱器2aに蓄熱剤X1を循環するための蓄熱剤循環ポンプ2bを含む、媒体加熱部3との間に蓄熱剤X1を循環させる配管系と、を備えている。集光収熱器2aの構成及び作動について、一例をあげて以下に説明する。 The solar concentrating heat collecting unit 2 is a condensing heat collecting device 2a that efficiently condenses sunlight and collects heat energy, and a heat storage agent circulation for circulating the heat storage agent X1 in the condensing heat collecting device 2a. A piping system for circulating the heat storage agent X1 with the medium heating unit 3 including the pump 2b is provided. The configuration and operation of the condensing heat collector 2a will be described below with an example.

レンズ等で太陽光を集光すると、集光した光の焦点付近に置いた物体の表面が高温となり、例えば紙であれば発火する。レンズの代わりに、凹面鏡を使っても同様であり、焦点付近では、大きな熱エネルギが得られる。太陽光を集光して被加熱物を加熱する装置は、前記現象を応用したもので、太陽光を反射し、反射光の焦点付近に被加熱物を置くことにより、被加熱物を、単に日光に当てるだけの加熱器に比べて、はるかに短時間で、かつ高温に加熱することが可能となる。 When sunlight is condensed by a lens or the like, the surface of an object placed near the focal point of the condensed light becomes hot, and for example, paper ignites. The same is true if a concave mirror is used instead of the lens, and a large amount of thermal energy can be obtained near the focal point. The device that condenses sunlight and heats the object to be heated is an application of the above phenomenon. By reflecting sunlight and placing the object to be heated near the focal point of the reflected light, the object to be heated is simply made. Compared to a heater that is only exposed to sunlight, it can be heated to a high temperature in a much shorter time.

太陽光を集光し、流体を集光した太陽光で加熱する装置は、種々提案されている。流体を集光した太陽光で連続的に加熱するのに適した形状として、被加熱物を直線状のパイプ(伝熱管)に導き、その伝熱管を、集光した太陽光で加熱する装置が提案されている。具体的には、反射鏡を半円筒状とし、太陽光を半円筒状の反射鏡の凹面側で反射させる。伝熱管付近において直線状に反射光が焦点を結ぶように、反射鏡と平行に伝熱管を配置する。実際の曲面形状は、楕円に近い形状で、反射光が、ほぼ一直線上に集まるような曲面形状とする。
被加熱物は、伝熱管内を通過する間に加熱される。加熱に要する時間を考慮し、伝熱管はある程度の長さが必要であり、反射鏡も、伝熱管と並行する横長の形状が一般的である。集光収熱器の一例を示して、具体的な構成や作動について、以下に説明するが、実際に製造される集光収熱器は、以下に示す例と限定されない。
Various devices have been proposed that condense sunlight and heat the fluid with the condensed sunlight. A device that guides the object to be heated to a straight pipe (heat transfer tube) and heats the heat transfer tube with the focused sunlight as a shape suitable for continuously heating the fluid with condensed sunlight. Proposed. Specifically, the reflector is made semi-cylindrical, and sunlight is reflected on the concave side of the semi-cylindrical reflector. The heat transfer tube is arranged parallel to the reflector so that the reflected light is focused in a straight line in the vicinity of the heat transfer tube. The actual curved surface shape is a shape close to an ellipse, and the curved surface shape is such that the reflected light gathers in a substantially straight line.
The object to be heated is heated while passing through the heat transfer tube. Considering the time required for heating, the heat transfer tube needs to have a certain length, and the reflector is generally in a horizontally long shape parallel to the heat transfer tube. An example of the condensing heat collector will be shown below, and the specific configuration and operation will be described below, but the condensing heat collector actually manufactured is not limited to the example shown below.

図2A及び2Bは、太陽光を集光し、配管内を流れる流体を加熱するために用いる装置を示す。以下の説明では、「集光収熱器」という名称を使用する。
集光収熱器200は、図2Bに示すように、大きく分けて、集光加熱部210と、支持装置220とを備える。集光加熱部210は、図2A及び2Bに示すように、主集光鏡211、副集光鏡212、及び接続金具213を有する太陽光を集光する部分と、集光した太陽光が集まる直線上に設けられる流体加熱管214と、を備える。支持装置220は、集光加熱部210を支える役割だけでなく、太陽光を最大限反射して集光できるよう、方位角(水平方向の角度)、及び仰角(上下角)を調整する機能を持つ。
2A and 2B show a device used to collect sunlight and heat a fluid flowing through a pipe. In the following description, the name "condensing heat collector" will be used.
As shown in FIG. 2B, the condensing heat collector 200 is roughly divided into a condensing heating unit 210 and a support device 220. As shown in FIGS. 2A and 2B, the condensing heating unit 210 collects the condensing portion of sunlight having the main condensing mirror 211, the sub condensing mirror 212, and the connection fitting 213, and the condensing sunlight. A fluid heating tube 214 provided on a straight line is provided. The support device 220 not only has a role of supporting the condensing and heating unit 210, but also has a function of adjusting an azimuth angle (horizontal angle) and an elevation angle (vertical angle) so that sunlight can be reflected and condensed as much as possible. Have.

集光加熱部210の構成及び機能について説明する。
主集光鏡211は、平板を湾曲させて、断面を半楕円形状とした反射鏡で、反射した光が、反射鏡に平行した直線状に集まるよう、凹面の曲面形状が作られている。主集光鏡211の材質として、太陽光の反射率や構造物としての耐久性を考慮し、金属が用いられることが多い。しかしながら、主集光鏡211の材質として金属を用いる場合、主集光鏡211が長時間太陽にさらされることで温度が上がり、熱膨張して凹面の形状に歪が出る可能性がある。このため、図には記載していないが、主集光鏡211に冷却機構を設けてもよい。
The configuration and function of the condensing heating unit 210 will be described.
The main condensing mirror 211 is a reflecting mirror having a semi-elliptical cross section by bending a flat plate, and has a concave curved surface shape so that the reflected light is collected in a straight line parallel to the reflecting mirror. As the material of the main condenser mirror 211, metal is often used in consideration of the reflectance of sunlight and the durability as a structure. However, when metal is used as the material of the main condensing mirror 211, the temperature of the main condensing mirror 211 rises due to exposure to the sun for a long time, and there is a possibility that the shape of the concave surface is distorted due to thermal expansion. Therefore, although not shown in the figure, a cooling mechanism may be provided in the main condenser mirror 211.

主集光鏡211の焦点となる直線上に流体加熱管214を配置することで、流体加熱管214に流れる流体を加熱する。流体の加熱の効率や安定性を考慮し、副集光鏡212を設けてもよい。本実施例では、副集光鏡212が流体加熱管214を挟んで、主集光鏡211と対向するよう配置される。 By arranging the fluid heating tube 214 on a straight line that is the focal point of the main condensing mirror 211, the fluid flowing through the fluid heating tube 214 is heated. The sub-condensing mirror 212 may be provided in consideration of the efficiency and stability of heating the fluid. In this embodiment, the sub-condensing mirror 212 is arranged so as to face the main condensing mirror 211 with the fluid heating tube 214 interposed therebetween.

主集光鏡211は、直線上に太陽光が集まるよう、凹面の形状が作られている。しかしながら、製作精度により、主集光鏡211の中心線付近と、両端に近い部分とでは、それぞれの反射光が集まる点が必ずしも一致せず、流体加熱管214の表面上に反射光が集中しない場合がある。また、集光された太陽光は、流体加熱管214の主集光鏡211側の面だけに当たり、流体加熱管214の反対側は、太陽の直接光が当たらないため、流体加熱管214の表面に到達する熱エネルギが主集光鏡211側とその反対側とで異なっており、温度差が生じる場合がある。 The main condensing mirror 211 has a concave shape so that sunlight collects on a straight line. However, due to the manufacturing accuracy, the points where the reflected light gathers do not always match between the vicinity of the center line of the main condensing mirror 211 and the portions near both ends, and the reflected light does not concentrate on the surface of the fluid heating tube 214. In some cases. Further, the condensed sunlight hits only the surface of the fluid heating tube 214 on the main condenser mirror 211 side, and the opposite side of the fluid heating tube 214 is not exposed to the direct light of the sun, so that the surface of the fluid heating tube 214 The heat energy that reaches is different between the main condenser mirror 211 side and the opposite side, and a temperature difference may occur.

副集光鏡212は、主集光鏡211と向い合せに設置され、反射面は主集光鏡211と同様に鏡面が凹面をなす、半円筒様の形状の反射鏡である。副集光鏡212は、主集光鏡211で集光され、流体加熱管214に当たらずに通過した太陽光を、流体加熱管214側へ再び反射し、流体加熱管214上で焦点を結ぶよう、配置される。このとき、流体加熱管214を、主集光鏡211の焦点よりもわずかに近い位置に配置することで、流体加熱管214の周囲を通過して、副集光鏡212に達する太陽光の量を増し、流体加熱管214の主集光鏡211側の面と、副集光鏡212側の面のそれぞれに到達する熱エネルギを等しくする。これにより、加熱の効率を向上させることができ、流体加熱管214自体の温度差による歪の発生を抑えることができる。 The sub-condensing mirror 212 is installed facing the main condensing mirror 211, and the reflecting surface is a semi-cylindrical-shaped reflecting mirror having a concave mirror surface like the main condensing mirror 211. The sub-condensing mirror 212 reflects the sunlight collected by the main condensing mirror 211 and passing through without hitting the fluid heating tube 214 to the fluid heating tube 214 side again, and focuses on the fluid heating tube 214. Will be placed. At this time, by arranging the fluid heating tube 214 at a position slightly closer to the focal point of the main condensing mirror 211, the amount of sunlight passing around the fluid heating tube 214 and reaching the sub condensing mirror 212. To make the heat energy reaching each of the surface of the fluid heating tube 214 on the main condensing mirror 211 side and the surface of the sub condensing mirror 212 side equal. As a result, the heating efficiency can be improved, and the occurrence of strain due to the temperature difference of the fluid heating pipe 214 itself can be suppressed.

副集光鏡212及び、流体加熱管214は、主集光鏡211と一定の間隔をあけて設置するため、接続金具213で、その間隔を保持するよう、接続され、主集光鏡211に固定される。 Since the sub-condensing mirror 212 and the fluid heating tube 214 are installed at a certain interval from the main condensing mirror 211, they are connected to the main condensing mirror 211 by a connecting metal fitting 213 so as to maintain the interval. It is fixed.

副集光鏡212は省略されてもよい。その場合は、流体加熱管214を主集光鏡211で集光された太陽光がちょうど集まる位置に配置し、また、流体加熱管214の表面の温度差の発生を防止する対応が必要となるが、ここでの説明は省略する。 The sub-condensing mirror 212 may be omitted. In that case, it is necessary to arrange the fluid heating tube 214 at a position where the sunlight focused by the main condensing mirror 211 just gathers, and to prevent the occurrence of a temperature difference on the surface of the fluid heating tube 214. However, the description here is omitted.

支持装置220は、集光収熱器200を地上に固定するもので、集光加熱部210を支える役割を持つ。支持装置220はまた、太陽光を効率よく集光するため、太陽光が主集光鏡211の中心線に対し、直角に入射するよう、集光加熱部210の向きを調整する役割も持っている。支持装置220は、集光加熱部210を地上から一定の高さで固定する主柱221と、太陽の方向に合わせて方位角(水平方向の角度)を調整する方位角調節装置222と、太陽高度に合わせて仰角(上下角)を調整する仰角調節装置223とを有する。方位角調節装置222と、仰角調節装置223は、季節、及び時刻に合わせて、太陽の方向に追従するようプログラム制御されるのが一般的である。 The support device 220 fixes the condensing heat collector 200 on the ground, and has a role of supporting the condensing heating unit 210. The support device 220 also has a role of adjusting the direction of the condensing heating unit 210 so that the sunlight is incident at right angles to the center line of the main condensing mirror 211 in order to efficiently condense the sunlight. There is. The support device 220 includes a main pillar 221 that fixes the condensing heating unit 210 at a constant height from the ground, an azimuth angle adjusting device 222 that adjusts an azimuth angle (horizontal angle) according to the direction of the sun, and the sun. It has an elevation angle adjusting device 223 that adjusts an elevation angle (vertical angle) according to an altitude. The azimuth adjusting device 222 and the elevation angle adjusting device 223 are generally program-controlled so as to follow the direction of the sun according to the season and the time of day.

集光収熱器200は、可動構造となっていることから、1基当たりの大きさには制約がある。したがって、太陽光を集光して得られる熱エネルギにも制約があるため、一般的には、複数基の集光収熱器200を配置することで、必要な熱エネルギを確保する。 Since the condensing heat collector 200 has a movable structure, there is a limit to the size of each unit. Therefore, since there are restrictions on the thermal energy obtained by condensing sunlight, generally, the required thermal energy is secured by arranging a plurality of condensing heat collectors 200.

図3に、集光収熱器200の配置例を示す。日当たりがよく、ほぼ平坦な土地を集光収熱ゾーン230として整備し、集光収熱ゾーン230に、複数基の集光収熱器200を、互いに太陽光を遮ることが無いよう配置する。集光収熱ゾーン230の面積は、収集する熱エネルギの総量により異なるが、工業的な用途では、少なくとも数百平方メートル、数千平方メートル、あるいはそれ以上の面積が必要になる。このような広大な土地で集光収熱器200により収集した熱エネルギを、熱利用施設231へ集めて使用するため、熱利用施設231と集光収熱ゾーン230に配置した各集光収熱器200との間に配管を張り巡らせ、配管を経由して熱を運搬するための流体を循環させて熱エネルギを収集する。 FIG. 3 shows an arrangement example of the condensing heat collector 200. A sunny and almost flat land is maintained as a condensing heat collecting zone 230, and a plurality of condensing heat collecting devices 200 are arranged in the condensing heat collecting zone 230 so as not to block sunlight from each other. The area of the condensing heat collecting zone 230 depends on the total amount of heat energy to be collected, but for industrial applications, an area of at least several hundred square meters, several thousand square meters, or more is required. In order to collect the heat energy collected by the condensing heat collector 200 in such a vast land and use it in the heat utilization facility 231, each condensing heat collection arranged in the heat utilization facility 231 and the condensing heat collection zone 230. A pipe is laid between the vessel 200 and a fluid for carrying heat is circulated through the pipe to collect heat energy.

なお、図3の集光収熱ゾーン230と熱利用施設231の配置は、基本的なもので、収集する熱エネルギの規模や、集光収熱ゾーン230の土地の形状等により、最適な配置を選択することができる。 The arrangement of the condensing heat collecting zone 230 and the heat utilization facility 231 in FIG. 3 is basic, and is optimally arranged depending on the scale of the heat energy to be collected, the shape of the land of the condensing heat collecting zone 230, and the like. Can be selected.

次に本実施形態で使用する蓄熱剤に関し、特性と熱エネルギを蓄熱する仕組みを説明する。蓄熱剤は、例えばアルカリ金属元素の硝酸塩、具体的には、硝酸ナトリウム(NaNO)などを含む混合物であり、150℃から、400℃までの範囲に固液の相変化が生じる温度域が存在する混合塩である。また、蓄熱剤が蓄熱する熱エネルギには、固体と液体の間の相変化に対応する潜熱に加え、蓄熱剤の温度変化に対応する顕熱が含まれる。Next, regarding the heat storage agent used in the present embodiment, the characteristics and the mechanism for storing heat energy will be described. The heat storage agent is, for example, a mixture containing nitrate of an alkali metal element, specifically sodium nitrate (NaNO 3 ), and has a temperature range in which a solid-liquid phase change occurs in the range of 150 ° C to 400 ° C. It is a mixed salt to be used. Further, the heat energy stored by the heat storage agent includes latent heat corresponding to the phase change between the solid and the liquid, and sensible heat corresponding to the temperature change of the heat storage agent.

蓄熱剤の温度特性の一例を図4に示すが、蓄熱剤がすべて液相で存在する領域と、液相と固相が共存する領域と、すべてが固相で存在する領域がある。実際に蓄熱に使用する蓄熱剤の組成及び温度範囲は、液相が存在し、ある程度の蓄熱剤の流動性を有するとともに、蓄熱できる熱量を、できるだけ多く確保できるように選定される。 An example of the temperature characteristics of the heat storage agent is shown in FIG. 4. There are a region in which all the heat storage agents are present in the liquid phase, a region in which the liquid phase and the solid phase coexist, and a region in which all the heat storage agents are present in the solid phase. The composition and temperature range of the heat storage agent actually used for heat storage are selected so that a liquid phase exists, the heat storage agent has a certain degree of fluidity, and the amount of heat that can be stored can be secured as much as possible.

図4の例は、蓄熱剤に硝酸ナトリウム(NaNO)と硝酸カリウム(KNO)の混合塩を用いた系であり、横軸に示す混合の比率に対して、図中の曲線のように、相変化が起こる温度が変化することを示す。蓄熱剤に適した条件を満たす範囲として、図4では、硝酸ナトリウム(NaNO)のモル分率が0.786である組成を選定し、この組成において蓄熱剤の温度を変化させたときの、相変化を考慮し、使用する温度範囲を選定している。蓄熱剤に熱エネルギを極力多く蓄熱し、かつ安定した蒸気供給を確保するため、使用温度の上限(Tmax)は、蓄熱剤がすべて液体となる領域でなければならず、使用温度の下限(Tmin)は、蓄熱剤が一部固相となるが、液相がある程度存在することでスラリ状となり、ある程度の流動性が確保できる領域でなければならない。蓄熱剤における固相の割合が増加することで、粘度が増加し、流動性が失われるので、熱エネルギの伝達に支障がない範囲で蓄熱剤の組成や使用する温度範囲を設定すべきである。The example of FIG. 4 is a system in which a mixed salt of sodium nitrate (NaNO 3 ) and potassium nitrate (KNO 3 ) is used as a heat storage agent, and the mixing ratio shown on the horizontal axis is as shown by the curve in the figure. Indicates that the temperature at which the phase change occurs changes. As a range that satisfies the conditions suitable for the heat storage agent, in FIG. 4, a composition having a molar fraction of sodium nitrate (NaNO 3 ) of 0.786 was selected, and the temperature of the heat storage agent was changed in this composition. The temperature range to be used is selected in consideration of the phase change. In order to store as much heat energy as possible in the heat storage agent and ensure a stable vapor supply, the upper limit of the operating temperature (Tmax) must be in the region where the heat storage agent is all liquid, and the lower limit of the operating temperature (Tmin). ), The heat storage agent partially becomes a solid phase, but it must be in a region where a certain amount of fluidity can be secured because it becomes a slurry due to the presence of a certain amount of liquid phase. As the proportion of the solid phase in the heat storage agent increases, the viscosity increases and the fluidity is lost. Therefore, the composition of the heat storage agent and the temperature range to be used should be set within a range that does not interfere with the transfer of heat energy. ..

具体的な作動について、混合塩の組成、使用する温度範囲を限定して説明する。図中の破線は硝酸ナトリウムのモル分率が0.786である混合塩を示し、Tmaxを400℃とし、Tminを250℃とした。400℃では、蓄熱剤はすべて液相で存在する範囲にある。蓄熱剤が被加熱物と接触し、蓄熱した熱を被加熱物に与えることで蓄熱剤は顕熱を放出し、徐々に温度が低下する。 The specific operation will be described by limiting the composition of the mixed salt and the temperature range used. The broken line in the figure indicates a mixed salt having a molar fraction of sodium nitrate of 0.786, and Tmax was 400 ° C. and Tmin was 250 ° C. At 400 ° C., all heat storage agents are in the range present in the liquid phase. When the heat storage agent comes into contact with the object to be heated and gives the stored heat to the object to be heated, the heat storage agent releases sensible heat and the temperature gradually decreases.

蓄熱剤の温度が徐々に低下し、274℃(この温度をTとする)に達すると、それまで全て液相であった蓄熱剤に変化が現れ、蓄熱剤の成分の一部が固相に変化し始める。全て液相であった蓄熱剤の一部が潜熱を放出して固相へと変化し、蓄熱剤において固相と液相が共存する状態となる。純物質の場合は、固化する温度になると、同じ温度を保ったまま、固化が進む。蓄熱剤が混合塩の場合は、一定の温度幅のなかで、蓄熱剤の温度低下にともない、蓄熱剤における固相の割合が増加するという変化が起こる。相変化にともなって潜熱を放出しながら、蓄熱剤の温度も274℃からゆっくりと低下する。その間、蓄熱剤中では液相から固相への変化が進み、蓄熱剤における固相の割合が増加するが、固相の粒子が液相中に分散した状態が保たれるため、蓄熱剤の流動性を維持したまま、熱エネルギの放出と蓄熱剤の温度の低下が進む。When the temperature of the heat storage agent gradually decreases and reaches 274 ° C (this temperature is TL ), the heat storage agent, which was all in the liquid phase until then, changes, and some of the components of the heat storage agent are solid phase. Begins to change to. A part of the heat storage agent, which was all in the liquid phase, releases latent heat and changes to the solid phase, so that the solid phase and the liquid phase coexist in the heat storage agent. In the case of a pure substance, when it reaches the solidification temperature, the solidification proceeds while maintaining the same temperature. When the heat storage agent is a mixed salt, the ratio of the solid phase in the heat storage agent increases as the temperature of the heat storage agent decreases within a certain temperature range. The temperature of the heat storage agent slowly drops from 274 ° C. while releasing latent heat with the phase change. During that time, the change from the liquid phase to the solid phase progresses in the heat storage agent, and the proportion of the solid phase in the heat storage agent increases. While maintaining the fluidity, the release of thermal energy and the decrease in the temperature of the heat storage agent proceed.

蓄熱剤の温度が274℃以下では、蓄熱剤の温度が400℃から274℃に至るまでの温度変化と比べ、非常にゆっくりとした変化に変わる。このとき、蓄熱剤の内部では固相の割合が増加していく。蓄熱剤の温度が234℃(以下、この温度をTとする)に達すると、蓄熱剤は完全に固相となる。蓄熱剤が完全に固相になると流動性が失われ、熱の伝達が困難になるため、好ましくない。蓄熱と放熱を円滑に行うためには、蓄熱剤の流動性が最低限確保できる温度に対してある程度余裕を見た温度をTminとすべきである。When the temperature of the heat storage agent is 274 ° C. or lower, the temperature of the heat storage agent changes very slowly as compared with the temperature change from 400 ° C. to 274 ° C. At this time, the proportion of the solid phase increases inside the heat storage agent. Temperature of the heat storage agent is 234 ° C. (hereinafter, this temperature is T S) when it reaches, the heat storage agent is completely turned solid. When the heat storage agent is completely in the solid phase, the fluidity is lost and heat transfer becomes difficult, which is not preferable. In order to smoothly store heat and dissipate heat, Tmin should be set to a temperature with a certain margin with respect to the temperature at which the fluidity of the heat storage agent can be secured at the minimum.

実際の運用においては、供給する蒸気の条件により、蓄熱剤の組成や作動温度範囲を設定すべきであり、具体的な作動として前述した混合塩の組成、上限温度、下限温度に限定されるものではない。 In actual operation, the composition of the heat storage agent and the operating temperature range should be set according to the conditions of the steam to be supplied, and the specific operation is limited to the composition of the mixed salt, the upper limit temperature, and the lower limit temperature described above. is not it.

また、図4の例で、Tmaxから相変化が始まる温度T(274℃)までについては、蓄熱剤に顕熱として蓄えられた熱のみが利用されるため、放熱が進むにつれて、温度が大きく低下する。一方、274℃からTminまでは、蓄熱剤の相変化に伴う潜熱が主に使われる。この領域は、放熱が進んでも温度変化が小さいのが特徴であり、被加熱物から見ると、温度がほとんど変化しない条件で熱を受け取るため、被加熱物の加熱条件を一定に保ちやすく、蒸気の供給も安定する。蒸気供給装置としては、蓄熱剤の相変化が進む温度領域で稼働するのが好ましい。TmaxとTminは、こういった蓄熱剤の特徴を考慮して設定するのが好ましい。TmaxとTminの温度領域を、以下「蓄熱剤の作動域」、あるいは単に「作動域」と記載する。Further, in the example of FIG. 4, from Tmax to the temperature TL (274 ° C.) at which the phase change starts, only the heat stored as sensible heat in the heat storage agent is used, so that the temperature increases as heat dissipation progresses. descend. On the other hand, from 274 ° C. to Tmin, latent heat associated with the phase change of the heat storage agent is mainly used. This region is characterized by a small temperature change even if heat dissipation progresses, and when viewed from the object to be heated, it receives heat under conditions where the temperature hardly changes, so it is easy to keep the heating conditions of the object to be heated constant and steam. Supply is also stable. The steam supply device preferably operates in a temperature range in which the phase change of the heat storage agent progresses. It is preferable to set Tmax and Tmin in consideration of the characteristics of such a heat storage agent. The temperature ranges of Tmax and Tmin are hereinafter referred to as "operating range of the heat storage agent" or simply "operating range".

ここからは、図1に戻り、本開示の第1実施形態について、図面を参照して、詳細に説明する。 From here, returning to FIG. 1, the first embodiment of the present disclosure will be described in detail with reference to the drawings.

太陽光集光収熱部2は、集光収熱器2aと蓄熱剤循環ポンプ2bとを備え、蓄熱剤X1が、集光収熱器2aの流体加熱管を通過して循環する。集光収熱器2aは、太陽光を集光し、流体加熱管に集め、流体加熱管の表面を加熱する。この熱が流体加熱管内を流れる蓄熱剤X1に伝達され、蓄熱剤X1が加熱される。 The solar concentrating heat collecting unit 2 includes a condensing heat collecting device 2a and a heat storage agent circulation pump 2b, and the heat storage agent X1 circulates through the fluid heating tube of the condensing heat collecting device 2a. The condensing heat collector 2a condenses sunlight, collects it in a fluid heating tube, and heats the surface of the fluid heating tube. This heat is transferred to the heat storage agent X1 flowing in the fluid heating tube, and the heat storage agent X1 is heated.

媒体加熱部3は、蓄熱剤X1が貯留される蓄熱剤貯留槽3aを備える。すなわち、蓄熱剤貯留槽3aには、加熱された蓄熱剤X1が貯留される。蓄熱剤貯留槽3a内には、供給媒体Z1を案内する熱交換器3bと、熱エネルギを放出して蓄熱剤貯留槽3aの底部に沈降した蓄熱剤X1を排出するための蓄熱剤排出器3cとが設けられる。蓄熱剤排出器3cは、一部が固体に変化し、スラリ状となって粘度が高まった蓄熱剤X1を排出するため、スクリューフィーダ様の排出翼と駆動装置とを有する。蓄熱剤排出器3cは、蓄熱剤貯留槽3a内の蓄熱剤X1を連続的に排出する。 The medium heating unit 3 includes a heat storage agent storage tank 3a in which the heat storage agent X1 is stored. That is, the heated heat storage agent X1 is stored in the heat storage agent storage tank 3a. In the heat storage agent storage tank 3a, there is a heat exchanger 3b that guides the supply medium Z1 and a heat storage agent discharger 3c for discharging heat energy and discharging the heat storage agent X1 that has settled on the bottom of the heat storage agent storage tank 3a. And are provided. The heat storage agent discharger 3c has a screw feeder-like discharge blade and a drive device in order to discharge the heat storage agent X1 which is partially changed to a solid and becomes a slurry and has an increased viscosity. The heat storage agent discharger 3c continuously discharges the heat storage agent X1 in the heat storage agent storage tank 3a.

熱交換器3bは、蓄熱剤貯留槽3a内で蓄熱剤X1に全体が浸かるよう配置され、内部を供給媒体Z1が通過する構造であればよい。熱交換器3bとして、1本の配管を折り曲げた形状が最も一般的であるが、プレート状でもよい。熱交換器3bは、十分な伝熱面を有し、かつ、外表面に付着する蓄熱剤X1の固形分の剥離を妨げない構造であれば、とくに限定されるものではない。 The heat exchanger 3b may have a structure in which the heat exchanger 3b is arranged so as to be completely immersed in the heat storage agent X1 in the heat storage agent storage tank 3a, and the supply medium Z1 passes through the inside. As the heat exchanger 3b, the shape in which one pipe is bent is the most common, but a plate shape may also be used. The heat exchanger 3b is not particularly limited as long as it has a sufficient heat transfer surface and has a structure that does not prevent the solid content of the heat storage agent X1 adhering to the outer surface from peeling off.

蒸気供給部4は、蒸気ドラム4aを備える。蒸気ドラム4a内には供給媒体Z1が貯留されている。蒸気ドラム4aは、媒体加熱部3に備えられた熱交換器3bと接続され、これにより供給媒体Z1が蒸気ドラム4aと熱交換器3bの間を循環する経路が作られている。蒸気ドラム4aの鉛直方向の上側には、供給媒体Z1の加熱により発生する蒸気(蒸気媒体Z1s)を取出して、用途先へ蒸気媒体Z1sを供給するための配管が接続されている。また、供給媒体Z1が蒸気となり、用途先へ供給されることで、蒸気ドラム4a内の供給媒体Z1の貯留量が減少する。供給媒体Z1の補充のため、媒体循環部5から液体の補給媒体Zが蒸気ドラム4aに供給され、蒸気ドラム4a内の供給媒体Z1の貯留量が保持される。 The steam supply unit 4 includes a steam drum 4a. The supply medium Z1 is stored in the steam drum 4a. The steam drum 4a is connected to a heat exchanger 3b provided in the medium heating unit 3, whereby a path for the supply medium Z1 to circulate between the steam drum 4a and the heat exchanger 3b is formed. A pipe for taking out the steam (steam medium Z1s) generated by heating the supply medium Z1 and supplying the steam medium Z1s to the intended use is connected to the upper side of the steam drum 4a in the vertical direction. Further, the supply medium Z1 becomes steam and is supplied to the intended use, so that the amount of storage of the supply medium Z1 in the steam drum 4a is reduced. To replenish the supply medium Z1, the liquid replenishment medium Z is supplied from the medium circulation unit 5 to the steam drum 4a, and the stored amount of the supply medium Z1 in the steam drum 4a is maintained.

媒体循環部5は、液体の補給媒体Zを貯留する媒体タンク5aと、補給媒体Zを加圧して蒸気供給部4へ送出するための媒体供給ポンプ5bと、媒体供給ポンプ5bで加圧された補給媒体Zを予熱する媒体予熱器5cとを備えている。用途先から回収した蒸気媒体Z1sは、媒体予熱器5cの一次側へ供給され、媒体予熱器5cにおいて、蒸気供給部4へ供給される補給媒体Zと熱交換される。その後、蒸気媒体Z1sは、媒体予熱器5cの一次側の出口に備えられた圧力調節弁5d、媒体凝縮器5eを通過する間に、大気圧程度の液体となり、補給媒体Zとして媒体タンク5aに貯留され、再利用される。 The medium circulation unit 5 is pressurized by the medium tank 5a for storing the liquid replenishment medium Z, the medium supply pump 5b for pressurizing the replenishment medium Z and sending it to the vapor supply unit 4, and the medium supply pump 5b. A medium preheater 5c for preheating the replenishment medium Z is provided. The steam medium Z1s recovered from the intended use is supplied to the primary side of the medium preheater 5c, and heat exchanges with the replenishment medium Z supplied to the steam supply unit 4 in the medium preheater 5c. After that, the steam medium Z1s becomes a liquid of about atmospheric pressure while passing through the pressure control valve 5d and the medium condenser 5e provided at the outlet on the primary side of the medium preheater 5c, and becomes a liquid of about atmospheric pressure in the medium tank 5a as the replenishment medium Z. It is stored and reused.

このような本実施形態の蒸気供給装置1の動作を説明する。
蒸気供給装置1はおいて、まず、太陽光を集光して得られる熱エネルギが蓄熱剤X1へ取り込まれる。蓄熱剤貯留槽3aに貯留されている蓄熱剤X1は、蓄熱剤排出器3cにより蓄熱剤貯留槽3aから排出される。その後、蓄熱剤X1は、蓄熱剤循環ポンプ2bにより集光収熱器2aへ供給され、太陽光を集光して得られる熱エネルギにより加熱される。複数の集光収熱器2aが、十分な日射が得られる適当な面積の土地(集光収熱ゾーン)に配置されている。複数の集光収熱器2aのそれぞれにできる限り均等に蓄熱剤X1が供給できるよう、配管を設けている。集光収熱器2aにより加熱された蓄熱剤X1は、配管により集合し、蓄熱剤貯留槽3aへと送られる。
The operation of the steam supply device 1 of the present embodiment will be described.
In the steam supply device 1, first, the heat energy obtained by condensing sunlight is taken into the heat storage agent X1. The heat storage agent X1 stored in the heat storage agent storage tank 3a is discharged from the heat storage agent storage tank 3a by the heat storage agent discharger 3c. After that, the heat storage agent X1 is supplied to the condensing heat collector 2a by the heat storage agent circulation pump 2b, and is heated by the heat energy obtained by condensing sunlight. A plurality of condensing heat collectors 2a are arranged on a land (condensing heat collecting zone) having an appropriate area where sufficient solar radiation can be obtained. Piping is provided so that the heat storage agent X1 can be supplied to each of the plurality of condensing heat collectors 2a as evenly as possible. The heat storage agent X1 heated by the condensing heat collector 2a is collected by a pipe and sent to the heat storage agent storage tank 3a.

蓄熱剤X1においては、図4を例として説明したとおり、媒体(供給媒体Z1)の加熱や、加熱による蒸気の発生に適した温度領域に固相と液相との相変化が起こる温度領域が存在する。この温度領域においては、蓄熱剤X1は、液相、もしくは液相と固相が混在するが、蓄熱剤X1の流動性があるため、流体として扱うことができる。これを利用し、蓄熱剤X1の流動性が維持できる温度の範囲に蓄熱剤X1の作動域を設定する。この作動域での蓄熱剤X1の温度に対応した顕熱の増減に加え、相変化に伴う潜熱の出入りにより、蓄熱剤X1の蓄熱・放熱を行う。 In the heat storage agent X1, as described with reference to FIG. 4 as an example, there is a temperature region in which a phase change between the solid phase and the liquid phase occurs in a temperature region suitable for heating the medium (supply medium Z1) and generating vapor by heating. exist. In this temperature range, the heat storage agent X1 has a liquid phase or a mixture of a liquid phase and a solid phase, but can be treated as a fluid because of the fluidity of the heat storage agent X1. Utilizing this, the operating range of the heat storage agent X1 is set in a temperature range in which the fluidity of the heat storage agent X1 can be maintained. In addition to the increase / decrease in sensible heat corresponding to the temperature of the heat storage agent X1 in this operating range, the heat storage / heat dissipation of the heat storage agent X1 is performed by the inflow and outflow of latent heat accompanying the phase change.

蓄熱剤X1は、集光収熱器2aを通過する間に、太陽光を集光して得られる熱エネルギを利用して加熱される。これにより、蓄熱剤X1における固相がすべて液相に変化し、さらに、蓄熱剤X1は加熱されて高温の液体となる。実際には、蓄熱剤X1の温度が予め設定されたTmaxに達するよう、太陽光集光収熱部2の仕様が決められる。集光収熱器2aの数や配置は、設置場所の条件により異なり、Tmaxの達成の度合いを考慮し、任意に設定するのが好ましい。 The heat storage agent X1 is heated by utilizing the heat energy obtained by condensing sunlight while passing through the condensing heat collector 2a. As a result, the solid phase of the heat storage agent X1 is completely changed to a liquid phase, and the heat storage agent X1 is further heated to become a high-temperature liquid. Actually, the specifications of the solar condensing heat collecting unit 2 are determined so that the temperature of the heat storage agent X1 reaches a preset Tmax. The number and arrangement of the condensing heat collectors 2a differ depending on the conditions of the installation location, and are preferably set arbitrarily in consideration of the degree of achievement of Tmax.

蓄熱剤貯留槽3aにおいては、蓄熱剤X1と、熱交換器3bを通過する供給媒体Z1との熱交換が行われる。これにより、供給媒体Z1は、加熱され、一部が蒸気となり、蒸気ドラム4aへ導かれる。この間に、蓄熱剤X1は熱エネルギを供給媒体Z1に与えることで徐々に顕熱を失い、温度が低下する。蓄熱剤X1の温度が、相変化が始まる温度Tに到達すると、蓄熱剤X1の液相から固相への変化が始まり、潜熱が放出される。潜熱の放出が進む間の蓄熱剤X1の温度の低下は遅く、供給媒体Z1は安定して加熱される。潜熱の放出とともに、蓄熱剤X1における固相の割合が徐々に増加し、熱交換器3bの表面上で蓄熱剤X1の固形分の析出が進む。In the heat storage agent storage tank 3a, heat exchange is performed between the heat storage agent X1 and the supply medium Z1 passing through the heat exchanger 3b. As a result, the supply medium Z1 is heated, and a part of the supply medium Z1 becomes steam, which is guided to the steam drum 4a. During this period, the heat storage agent X1 gradually loses sensible heat by giving heat energy to the supply medium Z1, and the temperature drops. When the temperature of the heat storage agent X1 reaches the temperature TL at which the phase change begins, the change from the liquid phase of the heat storage agent X1 to the solid phase begins, and latent heat is released. The temperature of the heat storage agent X1 drops slowly while the latent heat is released, and the supply medium Z1 is stably heated. With the release of latent heat, the proportion of the solid phase in the heat storage agent X1 gradually increases, and the solid content of the heat storage agent X1 is deposited on the surface of the heat exchanger 3b.

熱交換器3bの表面に付着する蓄熱剤X1の固形分は、強固な固体ではなく、液相を含んだ比較的崩れやすい固形分である。したがって、蓄熱剤X1の固形分の成長が進む過程でやがて剥離し、蓄熱剤貯留槽3aの底部へ落下する。蓄熱剤貯留槽3aの底部には、このようにして熱交換器3bから剥離した、蓄熱剤X1の固形分が堆積する。蓄熱剤貯留槽3aの底部に堆積した固形分についても、固化した蓄熱剤X1の結晶粒子の隙間に液相が存在するため、蓄熱剤貯留槽3aの底部の蓄熱剤X1も容易に流動化できる状態となっている。 The solid content of the heat storage agent X1 adhering to the surface of the heat exchanger 3b is not a strong solid but a relatively fragile solid content containing a liquid phase. Therefore, in the process of growing the solid content of the heat storage agent X1, the heat storage agent X1 eventually peels off and falls to the bottom of the heat storage agent storage tank 3a. On the bottom of the heat storage agent storage tank 3a, the solid content of the heat storage agent X1 thus separated from the heat exchanger 3b is deposited. As for the solid content deposited on the bottom of the heat storage agent storage tank 3a, the liquid phase exists in the gaps between the crystal particles of the solidified heat storage agent X1, so that the heat storage agent X1 on the bottom of the heat storage agent storage tank 3a can be easily fluidized. It is in a state.

熱交換器3bの表面に付着した蓄熱剤X1の固形分は、自身の重さで剥離する。しかしながら、長時間、蓄熱剤X1の固形分が熱交換器3bの表面を覆った状態では、伝熱が阻害される可能性がある。また、蓄熱剤X1の固形分が熱交換器3bの表面に付着した状態でさらに温度が低下することで、蓄熱剤X1が強固な固体になり、除去が困難になる可能性がある。そのため、できるだけ短時間で蓄熱剤X1の固形分を剥離して落下させる必要がある。蓄熱剤X1の固形分の剥離を促す目的で、蓄熱剤貯留槽3aに攪拌装置3dを設けてもよい。攪拌装置3dは、蓄熱剤貯留槽3a内に蓄熱剤X1の流れを作り、その流れにより、熱交換器3b表面に付着した蓄熱剤X1の固形分の剥離を促す。したがって、攪拌装置3dにより、蓄熱剤X1の強い流れを発生させる必要はなく、緩やかな流れを発生させればよい。 The solid content of the heat storage agent X1 adhering to the surface of the heat exchanger 3b is peeled off by its own weight. However, if the solid content of the heat storage agent X1 covers the surface of the heat exchanger 3b for a long time, heat transfer may be hindered. Further, when the temperature is further lowered in a state where the solid content of the heat storage agent X1 is attached to the surface of the heat exchanger 3b, the heat storage agent X1 becomes a strong solid, which may be difficult to remove. Therefore, it is necessary to peel off the solid content of the heat storage agent X1 and drop it in the shortest possible time. A stirring device 3d may be provided in the heat storage agent storage tank 3a for the purpose of promoting peeling of the solid content of the heat storage agent X1. The stirring device 3d creates a flow of the heat storage agent X1 in the heat storage agent storage tank 3a, and the flow promotes the peeling of the solid content of the heat storage agent X1 adhering to the surface of the heat exchanger 3b. Therefore, it is not necessary to generate a strong flow of the heat storage agent X1 by the stirring device 3d, and a gentle flow may be generated.

蓄熱剤貯留槽3aの底部には蓄熱剤排出器3cが備えられ、蓄熱剤貯留槽3aの底部に堆積した蓄熱剤X1の固形分を排出する。蓄熱剤X1の固形分は、液相を含んでおり、蓄熱剤排出器3cのスクリューフィーダ様の排出翼が回転することで、容易に流動化し、スラリ状となって、順次、排出される。蓄熱剤貯留槽3aより排出された蓄熱剤X1のスラリは、配管内を流動し、再び太陽光集光収熱部2へ供給され、繰返し利用される。 A heat storage agent discharger 3c is provided at the bottom of the heat storage agent storage tank 3a, and the solid content of the heat storage agent X1 deposited on the bottom of the heat storage agent storage tank 3a is discharged. The solid content of the heat storage agent X1 contains a liquid phase, and is easily fluidized by the rotation of the screw feeder-like discharge blade of the heat storage agent discharger 3c, becomes a slurry, and is sequentially discharged. The slurry of the heat storage agent X1 discharged from the heat storage agent storage tank 3a flows in the pipe, is supplied to the solar concentrating heat collecting unit 2 again, and is repeatedly used.

補給媒体Zは媒体循環部5より供給される。媒体循環部5には媒体タンク5aが備えられ、補給媒体Zが常温程度の温度、大気圧程度の圧力で貯留されている。補給媒体Zは、蒸気供給装置1より用途先へ供給する蒸気の圧力に対応するよう、媒体供給ポンプ5bにより加圧される。加圧された補給媒体Zは、媒体予熱器5cで予熱される。媒体予熱器5cの一次側には、用途先から回収された蒸気媒体Z1s(補給媒体Zを加圧、加熱して蒸気としたもの)を導き、蒸気媒体Z1sの排熱を利用して補給媒体Zを可能な範囲で加熱する。これにより、熱エネルギを有効利用する。 The supply medium Z is supplied from the medium circulation unit 5. The medium circulation unit 5 is provided with a medium tank 5a, and the replenishment medium Z is stored at a temperature of about room temperature and a pressure of about atmospheric pressure. The replenishment medium Z is pressurized by the medium supply pump 5b so as to correspond to the pressure of the steam supplied from the steam supply device 1 to the application destination. The pressurized replenishment medium Z is preheated by the medium preheater 5c. The steam medium Z1s (the replenishment medium Z is pressurized and heated to form steam) recovered from the intended use is guided to the primary side of the medium preheater 5c, and the replenishment medium is utilized by utilizing the exhaust heat of the steam medium Z1s. Heat Z to the extent possible. As a result, heat energy is effectively used.

媒体予熱器5cで予熱された補給媒体Zは、蒸気ドラム4aへ供給される。蒸気ドラム4aの形状として、両端が閉じた、横長の円筒状のものが一般的である。しかしながら、以下の機能を満たすものであれば、蒸気ドラム4aの形状は限定されない。蒸気ドラム4aには、供給媒体Z1(補給媒体Zが加圧、加熱されたもの)が貯留されている。蒸気ドラム4aは、供給媒体Z1が加熱されて、一部が蒸気となったときに、蒸気となった供給媒体Z1(液体と区別するため「蒸気媒体Z1s」と呼ぶ)と液体の供給媒体Z1とを分離する機能を持つ。蒸気ドラム4aには、蒸気ドラム4aの鉛直方向の下側に供給媒体Z1(液体)、蒸気ドラム4aの鉛直方向の上側に蒸気媒体Z1s、という形で分離されて貯留される。 The replenishment medium Z preheated by the medium preheater 5c is supplied to the steam drum 4a. The shape of the steam drum 4a is generally a horizontally long cylinder with both ends closed. However, the shape of the steam drum 4a is not limited as long as it satisfies the following functions. The steam drum 4a stores the supply medium Z1 (the supply medium Z is pressurized and heated). In the steam drum 4a, when the supply medium Z1 is heated and a part of the vapor becomes vapor, the vapor supply medium Z1 (referred to as "vapor medium Z1s" to distinguish it from the liquid) and the liquid supply medium Z1 Has a function to separate from. The steam drum 4a is separated and stored in the form of a supply medium Z1 (liquid) on the lower side in the vertical direction of the steam drum 4a and a vapor medium Z1s on the upper side in the vertical direction of the steam drum 4a.

蒸気ドラム4aの鉛直方向の下側は蓄熱剤貯留槽3a内に設置された熱交換器3bと配管で接続され、重力により供給媒体Z1が蒸気ドラム4aから熱交換器3bへ供給される。熱交換器3bで加熱された供給媒体Z1は、温度上昇により膨張し、また、一部が蒸発することで気泡を生じる。これらの膨張や一部の蒸発により供給媒体Z1の比重が軽くなり、上昇流が生じる。これにより、熱交換器3bから蒸気ドラム4aへ向かう供給媒体Z1の流れが生じる。すなわち、蒸気ドラム4aと熱交換器3bとの間に供給媒体Z1の循環流が形成される。供給媒体Z1の循環は、基本的には上記のような自然対流によるが、配管経路等、設置条件の関係で円滑な自然対流が得られない場合がある。この場合は、供給媒体Z1の強制循環のための循環ポンプを設けてもよい。 The lower side of the steam drum 4a in the vertical direction is connected to the heat exchanger 3b installed in the heat storage agent storage tank 3a by a pipe, and the supply medium Z1 is supplied from the steam drum 4a to the heat exchanger 3b by gravity. The supply medium Z1 heated by the heat exchanger 3b expands due to an increase in temperature, and a part of the supply medium Z1 evaporates to generate bubbles. Due to these expansions and partial evaporation, the specific gravity of the supply medium Z1 becomes lighter, and an upward flow is generated. As a result, the flow of the supply medium Z1 from the heat exchanger 3b to the steam drum 4a is generated. That is, a circulating flow of the supply medium Z1 is formed between the steam drum 4a and the heat exchanger 3b. The circulation of the supply medium Z1 is basically based on the natural convection as described above, but smooth natural convection may not be obtained due to the installation conditions such as the piping route. In this case, a circulation pump for forced circulation of the supply medium Z1 may be provided.

蒸気ドラム4aでは、内部に貯留された供給媒体Z1が、熱交換器3bとの間を循環しながら、一部が蒸気(蒸気媒体Z1s)となり、蒸気ドラム4a内で液体の供給媒体Z1と分離されて鉛直方向の上方に貯留される。蒸気媒体Z1sは、蒸気ドラム4aの鉛直方向の上方に接続された配管により外部へ導かれ、用途先へ供給される。液体の供給媒体Z1は蒸気ドラム4a内の鉛直方向の下側に貯留され、熱交換器3bとの間で循環しながら、継続的に加熱される。その結果、供給媒体Z1は加熱されて蒸気となり、蒸気媒体Z1sとして外部へ取出されるため減少していく。蒸発により減少する供給媒体Z1の相当量が、媒体循環部5より供給される補給媒体Zにより充当される。 In the steam drum 4a, the supply medium Z1 stored inside circulates between the heat exchanger 3b and becomes a part of steam (steam medium Z1s), and is separated from the liquid supply medium Z1 in the steam drum 4a. It is stored vertically above. The steam medium Z1s is guided to the outside by a pipe connected above the steam drum 4a in the vertical direction and supplied to the intended use. The liquid supply medium Z1 is stored in the lower side of the steam drum 4a in the vertical direction, and is continuously heated while circulating with the heat exchanger 3b. As a result, the supply medium Z1 is heated to become steam, which is taken out as the steam medium Z1s to the outside, and thus decreases. A considerable amount of the supply medium Z1 reduced by evaporation is applied by the supply medium Z supplied from the medium circulation unit 5.

蒸気供給装置1には、補助ボイラ4bを設けてもよい。補助ボイラ4bは、以下の場合に起動され、用途先への蒸気(蒸気媒体Z1s)の供給を補助する。補助ボイラ4bの作用及び作動について説明する。 The steam supply device 1 may be provided with an auxiliary boiler 4b. The auxiliary boiler 4b is activated in the following cases to assist the supply of steam (steam medium Z1s) to the intended use. The operation and operation of the auxiliary boiler 4b will be described.

まず、補助ボイラ4bは、蒸気供給装置1の始動や再起動時において、蒸気供給装置1が定常の運転状態に達するまでの時間を短縮する目的で使用される。蒸気供給装置1の起動時は、蓄熱剤X1の温度が低く、太陽光集光収熱部2で得られる熱エネルギも安定しないため、供給媒体Z1が十分に加熱できない可能性がある。その間、補助ボイラ4bを起動することにより、供給媒体Z1を加熱し、蒸気を発生させる。さらに、補助ボイラ4bを、蒸気供給装置1の全体の保温、あるいは暖機に用いることにより、蒸気供給装置1が定常運転状態に達するまでの所要時間を短縮できる。 First, the auxiliary boiler 4b is used for the purpose of shortening the time required for the steam supply device 1 to reach a steady operating state when the steam supply device 1 is started or restarted. When the steam supply device 1 is started, the temperature of the heat storage agent X1 is low and the heat energy obtained by the solar concentrating heat collecting unit 2 is not stable, so that the supply medium Z1 may not be sufficiently heated. During that time, the auxiliary boiler 4b is activated to heat the supply medium Z1 and generate steam. Further, by using the auxiliary boiler 4b for keeping the entire steam supply device 1 warm or warming up, the time required for the steam supply device 1 to reach the steady operation state can be shortened.

蒸気供給装置1の定常運転時においても、天候不良時等、太陽光集光収熱部2より十分な熱エネルギが得られない状況が長時間継続する場合は、供給媒体Z1の蒸気を供給するための熱エネルギが継続的に不足する可能性がある。したがって、供給媒体Z1の蒸気量の確保のため、蒸気量の不足分を補助ボイラ4bにより発生する蒸気で賄うことができる。さらに、蓄熱剤X1の温度が下がり、蓄熱剤X1中の固相の割合が増加して蓄熱剤X1の流動性が低下することで、蓄熱剤X1の循環が妨げられる可能性がある。この場合、蓄熱剤X1が通過する経路に蒸気トレースを設け、補助ボイラ4bを蒸気トレースの蒸気源としてもよい。補助ボイラ4bは、その役割上、蓄熱剤X1の作動域に一致する仕様とされるため、蓄熱剤X1の作動域内(Tmin以上)の温度を維持するのに適している。 Even during steady operation of the steam supply device 1, if a situation in which sufficient heat energy cannot be obtained from the solar condensing heat collecting unit 2 continues for a long time, such as when the weather is bad, the steam of the supply medium Z1 is supplied. There is a continuous shortage of heat energy for this. Therefore, in order to secure the steam amount of the supply medium Z1, the shortage of the steam amount can be covered by the steam generated by the auxiliary boiler 4b. Further, the temperature of the heat storage agent X1 decreases, the proportion of the solid phase in the heat storage agent X1 increases, and the fluidity of the heat storage agent X1 decreases, which may hinder the circulation of the heat storage agent X1. In this case, a steam trace may be provided in the path through which the heat storage agent X1 passes, and the auxiliary boiler 4b may be used as the steam source of the steam trace. Since the auxiliary boiler 4b has specifications that match the operating range of the heat storage agent X1 in its role, it is suitable for maintaining the temperature within the operating range (Tmin or more) of the heat storage agent X1.

蒸気ドラム4a内では、液体の供給媒体Z1と、供給媒体Z1の加熱により蒸気となり、供給媒体Z1から分離された蒸気媒体Z1sと、が共存する状態で貯蔵されている。したがって、蒸気ドラム4a内の蒸気媒体Z1sは飽和蒸気である。飽和蒸気の温度は、蒸気ドラム4a内の圧力に対応したものとなる。蒸気媒体Z1sの供給温度を一定に保つために、圧力調整が行われる。圧力調節は媒体循環部5で行うのが一般的であるが、用途先での使用条件によっては、用途先で圧力調節を行ってもよい。 In the steam drum 4a, the liquid supply medium Z1 and the vapor medium Z1s separated from the supply medium Z1 into vapor by heating the supply medium Z1 are stored in a coexisting state. Therefore, the steam medium Z1s in the steam drum 4a is saturated steam. The temperature of the saturated steam corresponds to the pressure in the steam drum 4a. Pressure adjustment is performed to keep the supply temperature of the vapor medium Z1s constant. The pressure is generally adjusted by the medium circulation unit 5, but the pressure may be adjusted at the application destination depending on the usage conditions at the application destination.

図1に示す本実施形態に係る蒸気供給装置1は、用途先より使用済みの蒸気媒体Z1sを回収して再利用するもので、媒体循環部5を備えている。媒体循環部5は、蒸気供給部4へ補給媒体Zを供給するとともに、用途先から回収した蒸気媒体Z1sを液体に戻し、再利用するための機構を備えている。媒体予熱器5cは、使用済みの蒸気媒体Z1sの排熱を可能な限り回収し、蒸気ドラム4aへ供給する補給媒体Zを回収された蒸気媒体Z1sの排熱により加熱する。 The steam supply device 1 according to the present embodiment shown in FIG. 1 recovers and reuses the used steam medium Z1s from the intended use, and includes a medium circulation unit 5. The medium circulation unit 5 is provided with a mechanism for supplying the replenishment medium Z to the vapor supply unit 4 and returning the vapor medium Z1s recovered from the intended use to a liquid for reuse. The medium preheater 5c recovers the exhaust heat of the used steam medium Z1s as much as possible, and heats the supply medium Z supplied to the steam drum 4a by the exhaust heat of the recovered steam medium Z1s.

媒体予熱器5cで排熱を回収された使用済み蒸気媒体Z1sは、続いて圧力調節弁5dに達する。圧力調節弁5dは、用途先へ供給する蒸気媒体Z1sの圧力を保持する役割をもち、これにより蒸気ドラム4aの圧力を一定値に保つ。蒸気ドラム4aの圧力に対応して蒸気媒体Z1sの温度が保持される。なお、用途先で圧力調節を行う場合は、圧力調節弁5dを設けない、あるいは圧力調節弁5dを用途先の背圧調整用として用いてもよい。 The used steam medium Z1s whose exhaust heat has been recovered by the medium preheater 5c subsequently reaches the pressure control valve 5d. The pressure control valve 5d has a role of holding the pressure of the steam medium Z1s supplied to the application destination, thereby keeping the pressure of the steam drum 4a at a constant value. The temperature of the steam medium Z1s is maintained corresponding to the pressure of the steam drum 4a. When the pressure is adjusted at the application destination, the pressure adjustment valve 5d may not be provided, or the pressure adjustment valve 5d may be used for back pressure adjustment at the application destination.

圧力調節弁5dを通過した使用済み蒸気媒体Z1sは、大気圧程度まで減圧され、続いて媒体凝縮器5eで冷却されることで液体として回収され、補給媒体Zとして媒体タンク5aに貯留される。
なお、ここまでは用途先からの使用済み蒸気媒体Z1sが回収される場合について述べた。しかしながら、用途先の構成によっては、蒸気媒体Z1sを全量消費し、蒸気媒体Z1sが回収されないこともあるので、媒体循環部5の構成は、用途先の構成により異なる。
The used vapor medium Z1s that has passed through the pressure control valve 5d is depressurized to about atmospheric pressure, and then cooled by the medium condenser 5e to be recovered as a liquid and stored in the medium tank 5a as a replenishment medium Z.
Up to this point, the case where the used vapor medium Z1s from the intended use is recovered has been described. However, depending on the configuration of the application destination, the entire amount of the vapor medium Z1s may be consumed and the vapor medium Z1s may not be recovered. Therefore, the configuration of the medium circulation unit 5 differs depending on the configuration of the application destination.

次に、夜間等の太陽光からの熱エネルギ取得ができない、あるいは不足する時間帯における蒸気供給装置1の作動を説明する。 Next, the operation of the steam supply device 1 will be described in a time zone in which heat energy cannot be acquired from sunlight such as at night or when it is insufficient.

本実施形態において、蓄熱剤X1は、連続して太陽光集光収熱部2と蓄熱剤貯留槽3aの間を循環する。蓄熱剤X1の循環を停止した場合、とくに配管のような熱が放散しやすい場所では、蓄熱剤X1が急激に冷却され、蓄熱剤X1内の固相の増加により蓄熱剤X1の流動性が失われる可能性がある。そのため、太陽光からの熱エネルギ取得ができない、あるいは不足する時間帯においても、基本的に蓄熱剤X1の循環は停止せず、蓄熱剤X1が通過する経路を保温及びトレースにより、蓄熱剤X1の流動性が保たれる温度(作動域の下限温度Tmin)以上を保つ。 In the present embodiment, the heat storage agent X1 continuously circulates between the solar condensing heat collecting unit 2 and the heat storage agent storage tank 3a. When the circulation of the heat storage agent X1 is stopped, the heat storage agent X1 is rapidly cooled, especially in a place where heat is easily dissipated, such as a pipe, and the fluidity of the heat storage agent X1 is lost due to an increase in the solid phase in the heat storage agent X1. There is a possibility of being damaged. Therefore, the circulation of the heat storage agent X1 is basically not stopped even in the time zone when the heat energy cannot be acquired from the sunlight or is insufficient, and the heat storage agent X1 can be subjected to heat retention and tracing along the path through which the heat storage agent X1 passes. Keep above the temperature at which fluidity is maintained (lower limit temperature Tmin in the operating range).

一方、蒸気供給については、蓄熱剤X1が十分な熱エネルギを蓄熱している間、熱交換器3bにおいて供給媒体Z1の加熱が継続して行われ、蒸気ドラム4aで分離された蒸気媒体Z1sが継続して用途先へ供給される。この間、蓄熱剤X1の温度は少しずつ低下するとともに、蓄熱剤X1内における液相から固相への相変化が進むため、蓄熱剤貯留槽3aの底部に堆積する蓄熱剤X1の固形分の量も徐々に増加する。 On the other hand, regarding steam supply, while the heat storage agent X1 stores sufficient heat energy, the supply medium Z1 is continuously heated in the heat exchanger 3b, and the steam medium Z1s separated by the steam drum 4a is used. It will continue to be supplied to the intended use. During this period, the temperature of the heat storage agent X1 gradually decreases, and the phase change from the liquid phase to the solid phase in the heat storage agent X1 progresses, so that the amount of solid content of the heat storage agent X1 deposited at the bottom of the heat storage agent storage tank 3a. Also gradually increases.

太陽光からの熱エネルギが十分得られない間も、蒸気供給装置1より、安定した蒸気供給が継続される。その後太陽光からの熱エネルギ取得が回復することにより、蓄熱剤X1が加熱され、蓄熱剤X1の固相から液相への相変化と、さらに液相での蓄熱により蓄熱剤X1の温度が上昇する。この結果、蓄熱剤貯留槽3aの底部に堆積した蓄熱剤X1の固形分も減少する。
上記のとおり、日中と夜間の繰り返しに対応して、蓄熱剤X1が蓄熱と放熱を繰り返し、供給媒体Z1を継続して加熱できるため、蒸気の連続供給が可能となる。
Stable steam supply is continued from the steam supply device 1 even while sufficient heat energy from sunlight is not obtained. After that, when the acquisition of heat energy from sunlight is restored, the heat storage agent X1 is heated, the phase change of the heat storage agent X1 from the solid phase to the liquid phase, and the temperature of the heat storage agent X1 rises due to the heat storage in the liquid phase. do. As a result, the solid content of the heat storage agent X1 deposited on the bottom of the heat storage agent storage tank 3a is also reduced.
As described above, the heat storage agent X1 repeats heat storage and heat dissipation in response to the repetition of daytime and nighttime, and the supply medium Z1 can be continuously heated, so that steam can be continuously supplied.

以上が、本開示に係る第1実施形態の基本的な作動となるが、さらに安定した蒸気供給を実現するため、以下を追加することで、より好ましい作動が実現できる。 The above is the basic operation of the first embodiment according to the present disclosure, but in order to realize a more stable steam supply, a more preferable operation can be realized by adding the following.

1つは蓄熱剤貯留槽3aに設置する攪拌装置3dである。
熱交換器3bの表面に付着した蓄熱剤X1の固形分は、伝熱を妨げる可能性があるため、蓄熱剤X1の固形分が熱交換器3bの表面に長時間付着し続けるのは好ましくない。さらに、熱交換器3bの表面に付着する蓄熱剤X1の固形分の温度が低下し、強固な固体になることで、蓄熱剤X1の固形分の除去が困難になる可能性がある。そのため、できるだけ短時間で蓄熱剤X1の固形分を剥離して落下させる必要がある。蓄熱剤X1の固形分の剥離を促すために、蓄熱剤貯留槽3aに攪拌装置3dを設けてもよい。攪拌装置3dは、蓄熱剤貯留槽3a内の蓄熱剤X1に緩やかな流れをもたらし、熱交換器3bの表面に付着した蓄熱剤X1の固形分の剥離を促進させる。
One is a stirring device 3d installed in the heat storage agent storage tank 3a.
Since the solid content of the heat storage agent X1 adhering to the surface of the heat exchanger 3b may hinder heat transfer, it is not preferable that the solid content of the heat storage agent X1 continues to adhere to the surface of the heat exchanger 3b for a long time. .. Further, the temperature of the solid content of the heat storage agent X1 adhering to the surface of the heat exchanger 3b is lowered to become a strong solid, which may make it difficult to remove the solid content of the heat storage agent X1. Therefore, it is necessary to peel off the solid content of the heat storage agent X1 and drop it in the shortest possible time. In order to promote the peeling of the solid content of the heat storage agent X1, a stirring device 3d may be provided in the heat storage agent storage tank 3a. The stirring device 3d brings a gentle flow to the heat storage agent X1 in the heat storage agent storage tank 3a, and promotes the peeling of the solid content of the heat storage agent X1 adhering to the surface of the heat exchanger 3b.

次に、蓄熱剤貯留槽3aの底部に設けられる補助加熱器3eである。
蓄熱剤貯留槽3aの底部に堆積した蓄熱剤X1の固形分は、熱の放散により、さらに温度低下が進み、固相の割合が増加することで流動性が完全に失われる可能性がある。このような状況を鑑み、蓄熱剤貯留槽3aの底部に、補助加熱器3eを設けてもよい。補助加熱器3eは、蓄熱剤X1の流動性が最低限保たれる程度の温度まで蓄熱剤X1を加熱できればよい。また、補助加熱器3eによる加熱方法は、電熱式を採用してもよく、あるいは蒸気供給部4より供給される蒸気媒体Z1sの一部を補助加熱器3eに導いて蓄熱剤X1の加熱に用いてもよい。
Next, there is an auxiliary heater 3e provided at the bottom of the heat storage agent storage tank 3a.
The solid content of the heat storage agent X1 deposited on the bottom of the heat storage agent storage tank 3a may further lose its fluidity due to the heat dissipation, which further lowers the temperature and increases the proportion of the solid phase. In view of such a situation, an auxiliary heater 3e may be provided at the bottom of the heat storage agent storage tank 3a. The auxiliary heater 3e may heat the heat storage agent X1 to a temperature at which the fluidity of the heat storage agent X1 is kept to a minimum. Further, as the heating method by the auxiliary heater 3e, an electric heating type may be adopted, or a part of the steam medium Z1s supplied from the steam supply unit 4 is guided to the auxiliary heater 3e and used for heating the heat storage agent X1. You may.

以上のとおり、本実施形態の蒸気供給装置1により、太陽光を集光して得られる熱エネルギを、日中、蓄熱剤X1を用いて蓄熱するとともに、蓄熱剤X1を蓄熱された熱エネルギを用い、供給媒体Z1を加熱し、発生した供給媒体Z1の蒸気(蒸気媒体Z1s)を用途先へ、昼夜連続して安定供給することができる。 As described above, the heat energy obtained by condensing sunlight by the steam supply device 1 of the present embodiment is stored by using the heat storage agent X1 during the daytime, and the heat energy stored by the heat storage agent X1 is stored. It can be used to heat the supply medium Z1 and stably supply the generated steam of the supply medium Z1 (steam medium Z1s) to the application destination day and night continuously.

[第2実施形態]
上記第1実施形態の蒸気供給装置1の変形例を第2実施形態として説明する。なお、同一の構成については符号を同一とし、説明を省略する。
[Second Embodiment]
A modification of the steam supply device 1 of the first embodiment will be described as the second embodiment. For the same configuration, the reference numerals are the same, and the description thereof will be omitted.

本実施形態に係る蒸気供給装置1Aは、図5に示すように、太陽光集光収熱部2と、媒体加熱部3と、蒸気供給部4と、媒体循環部5とに加えて、供給蓄熱剤貯留部6と、回収蓄熱剤貯留部7と、をさらに備えている。 As shown in FIG. 5, the steam supply device 1A according to the present embodiment supplies the solar light condensing heat collection unit 2, the medium heating unit 3, the steam supply unit 4, and the medium circulation unit 5. A heat storage agent storage unit 6 and a recovery heat storage agent storage unit 7 are further provided.

太陽光集光収熱部2は、集光収熱器2aと、蓄熱剤循環ポンプ2bとに加え、パージガス供給装置2cと、経路切替弁2d(2d〜2d)をさらに備えている。なお、パージガス供給装置2c、及び経路切替弁2dは、本開示の蓄熱剤退避機構として機能する。蓄熱剤X1は、蓄熱剤循環ポンプ2bにより送出され、集光収熱器2aで加熱された後、供給蓄熱剤貯留部6へ供給される。この間に経路の切替のため複数の経路切替弁2dが設けられ、集光収熱器2aでの収熱の状態に応じて、蓄熱剤X1の経路の変更を行う。また、蓄熱剤X1の経路変更に際し、集光収熱器2aと前後の配管内の蓄熱剤X1を、供給蓄熱剤貯留部6と回収蓄熱剤貯留部7へ圧送するため、パージガス供給装置2cよりパージガスGを供給する。パージガスGの使用は、蓄熱剤X1の経路切替の時に限定されるので、パージガスGの使用量は限定される。しかしながら、パージガスGは、蓄熱剤X1に直接接触するため、蓄熱剤X1の変質の恐れがない成分から選定される。 The solar concentrating heat collecting unit 2 further includes a purging gas supply device 2c and a path switching valve 2d (2d 1 to 2d 4 ) in addition to the condensing heat collecting device 2a and the heat storage agent circulation pump 2b. The purge gas supply device 2c and the path switching valve 2d function as the heat storage agent evacuation mechanism of the present disclosure. The heat storage agent X1 is sent out by the heat storage agent circulation pump 2b, heated by the condensing heat collector 2a, and then supplied to the supply heat storage agent storage unit 6. During this period, a plurality of path switching valves 2d are provided for path switching, and the path of the heat storage agent X1 is changed according to the state of heat collection in the condensing heat collector 2a. Further, when the route of the heat storage agent X1 is changed, the heat storage agent X1 in the condensing heat collector 2a and the front and rear pipes is pumped to the supply heat storage agent storage unit 6 and the recovery heat storage agent storage unit 7, so that the purge gas supply device 2c Supply the purge gas G. Since the use of the purge gas G is limited at the time of switching the route of the heat storage agent X1, the amount of the purge gas G used is limited. However, since the purge gas G comes into direct contact with the heat storage agent X1, it is selected from components that do not have a risk of deterioration of the heat storage agent X1.

供給蓄熱剤貯留部6は、供給蓄熱剤貯留槽6aと、供給蓄熱剤搬送ポンプ6bとを備えている。集光収熱器2aで加熱された蓄熱剤X1は、供給蓄熱剤貯留槽6aへ供給される。供給蓄熱剤貯留槽6aは、周囲を断熱材等で覆われた容器であり、保温状態で蓄熱剤X1を貯留する。供給蓄熱剤貯留槽6aの底部は供給蓄熱剤搬送ポンプ6bと接続され、供給蓄熱剤貯留槽6aの内部に貯留されている蓄熱剤X1(集光収熱器2aで加熱された蓄熱剤X1)が、供給蓄熱剤搬送ポンプ6bにより送出され、媒体加熱部3へ供給される。供給蓄熱剤搬送ポンプ6bとして、スラリの搬送に適した、スクリュー状のロータを有するポンプを用いてもよい。しかしながら、供給蓄熱剤搬送ポンプ6bを通過する蓄熱剤X1は、温度が高く、すべてが液相となって粘度が比較的小さいので、供給蓄熱剤搬送ポンプ6bとして、高温度への適応性のある、他の方式のポンプを用いてもよい。 The supply heat storage agent storage unit 6 includes a supply heat storage agent storage tank 6a and a supply heat storage agent transfer pump 6b. The heat storage agent X1 heated by the condensing heat collector 2a is supplied to the supply heat storage agent storage tank 6a. The supply heat storage agent storage tank 6a is a container whose periphery is covered with a heat insulating material or the like, and stores the heat storage agent X1 in a heat-retaining state. The bottom of the supply heat storage agent storage tank 6a is connected to the supply heat storage agent transfer pump 6b, and the heat storage agent X1 stored inside the supply heat storage agent storage tank 6a (heat storage agent X1 heated by the condensing heat collector 2a). Is sent out by the supply heat storage agent transfer pump 6b and supplied to the medium heating unit 3. As the supply heat storage agent transfer pump 6b, a pump having a screw-shaped rotor suitable for transferring the slurry may be used. However, the heat storage agent X1 passing through the supply heat storage agent transfer pump 6b has a high temperature, and all of them are in a liquid phase and have a relatively low viscosity. Therefore, the heat storage agent transfer pump 6b is adaptable to a high temperature. , Other types of pumps may be used.

供給蓄熱剤貯留槽6aに貯留されている蓄熱剤X1は、集光収熱器2aにより加熱され、成分がすべて液相で存在する温度範囲(T〜Tmax)にある。したがって、攪拌操作を行わなくても、蓄熱剤X1の流動性は保たれる。しかしながら、何らかの要因で蓄熱剤X1の温度が低下する可能性がある場合、蓄熱剤X1の流動化を促進するための装置として、必要に応じ攪拌装置6cを備えてもよい。攪拌装置6cは、攪拌翼と駆動装置とを有し、攪拌翼を回転させることにより、供給蓄熱剤貯留槽6aの内部の蓄熱剤X1を必要に応じて攪拌する。これにより、供給蓄熱剤貯留槽6aに貯留された蓄熱剤X1の一部が固化して沈殿することを防止し、蓄熱剤X1の流動性を保持することができる。The heat storage agent X1 stored in the supply heat storage agent storage tank 6a is heated by the condensing heat collector 2a and is in the temperature range ( TL to Tmax) in which all the components are present in the liquid phase. Therefore, the fluidity of the heat storage agent X1 is maintained even if the stirring operation is not performed. However, if there is a possibility that the temperature of the heat storage agent X1 may decrease for some reason, a stirring device 6c may be provided as a device for promoting the fluidization of the heat storage agent X1. The stirring device 6c has a stirring blade and a driving device, and by rotating the stirring blade, the heat storage agent X1 inside the supply heat storage agent storage tank 6a is stirred as needed. As a result, it is possible to prevent a part of the heat storage agent X1 stored in the supply heat storage agent storage tank 6a from solidifying and settling, and to maintain the fluidity of the heat storage agent X1.

媒体加熱部3は、蓄熱剤X1が貯留される蓄熱剤貯留槽3aと、蓄熱剤貯留槽3a内に設置され、供給媒体Z1を案内し、加熱するための熱交換器3bと、蓄熱剤貯留槽3aの底部に堆積した蓄熱剤X1の固形分を排出するための蓄熱剤排出器3cとに加え、蓄熱剤排出器3cにより排出される、スラリ状の蓄熱剤X1を、回収蓄熱剤貯留部7へ送出するための回収蓄熱剤輸送ポンプ3fと、を備える。第1実施形態と同様に、媒体加熱部3は、攪拌装置3dと補助加熱器3eとを備えてもよい。攪拌装置3dは、蓄熱剤X1に緩やかな流れを与えることで、熱交換器3bの表面に生成する蓄熱剤X1の固形分の剥離を促進する。補助加熱器3eは、蓄熱剤貯留槽3aの底部での蓄熱剤X1の固化を防止する。攪拌装置3d及び補助加熱器3eは、蓄熱剤X1の固化にともなうトラブルを予防するもので、これに代わる機能を持つ装置であれば、上記の各装置に限定されるものではない。 The medium heating unit 3 is installed in the heat storage agent storage tank 3a in which the heat storage agent X1 is stored, the heat storage agent storage tank 3a, the heat exchanger 3b for guiding and heating the supply medium Z1, and the heat storage agent storage. In addition to the heat storage agent discharger 3c for discharging the solid content of the heat storage agent X1 deposited on the bottom of the tank 3a, the slurry-like heat storage agent X1 discharged by the heat storage agent discharger 3c is collected as the heat storage agent storage unit. A recovery heat storage agent transport pump 3f for sending to No. 7 is provided. Similar to the first embodiment, the medium heating unit 3 may include a stirring device 3d and an auxiliary heater 3e. The stirring device 3d promotes the peeling of the solid content of the heat storage agent X1 generated on the surface of the heat exchanger 3b by giving a gentle flow to the heat storage agent X1. The auxiliary heater 3e prevents the heat storage agent X1 from solidifying at the bottom of the heat storage agent storage tank 3a. The stirring device 3d and the auxiliary heater 3e prevent troubles associated with the solidification of the heat storage agent X1, and are not limited to the above-mentioned devices as long as they have a function to replace them.

回収蓄熱剤貯留部7は、媒体加熱部3において熱交換された後の蓄熱剤X1を一時貯留するための回収蓄熱剤貯留槽7aと、回収蓄熱剤排出器7bと、回収蓄熱剤攪拌装置7cとを備える。回収蓄熱剤貯留槽7aには、媒体加熱部3での熱交換により温度が低下することにより、固相の割合が増加して粘度が高まった蓄熱剤X1が貯留されている。回収蓄熱剤貯留槽7aに貯留される蓄熱剤X1は、流動がきわめて緩慢な状態となっている。したがって、回収蓄熱剤攪拌装置7cは、回収蓄熱剤貯留槽7a内全体をゆっくりとかき混ぜることで、高粘度の蓄熱剤X1の流動を助ける。回収蓄熱剤攪拌装置7cとして、螺旋状、プロペラ状あるいはパドル状の攪拌翼を数枚上下方向に並べた形状等の回転翼を備え、比較的遅い回転速度の攪拌装置を用いることが好ましい。 The recovery heat storage agent storage unit 7 includes a recovery heat storage agent storage tank 7a for temporarily storing the heat storage agent X1 after heat exchange in the medium heating unit 3, a recovery heat storage agent discharger 7b, and a recovery heat storage agent stirring device 7c. And. In the recovery heat storage agent storage tank 7a, the heat storage agent X1 having an increased viscosity due to an increase in the proportion of the solid phase is stored because the temperature is lowered by heat exchange in the medium heating unit 3. The flow of the heat storage agent X1 stored in the recovery heat storage agent storage tank 7a is extremely slow. Therefore, the recovery heat storage agent stirring device 7c helps the flow of the high-viscosity heat storage agent X1 by slowly stirring the entire inside of the recovery heat storage agent storage tank 7a. As the recovery heat storage agent stirring device 7c, it is preferable to use a stirring device having a rotary blade having a shape in which several spiral, propeller-shaped or paddle-shaped stirring blades are arranged in the vertical direction and having a relatively slow rotation speed.

回収蓄熱剤貯留槽7aは、周囲を断熱材等で覆われた容器である。蓄熱剤X1の温度が低下して流動性を失うことを防止するため、回収蓄熱剤補助加熱器7dを設けてもよい。回収蓄熱剤補助加熱器7dは、蓄熱剤X1の温度がTminを下回らないよう加熱できればよい。回収蓄熱剤補助加熱器7dによる加熱方式については、蓄熱剤X1の温度制御できるものであれば、蒸気トレース、電気ヒータ、その他方式でも良い。また、回収蓄熱剤補助加熱器7dの形状は、蓄熱剤X1の温度がTminを下回らないよう加熱できる機能を満たすものであれば、配管状、板状等、何れの形状でも良い。回収蓄熱剤貯留槽7aの底部に備える回収蓄熱剤排出器7bの周囲の温度は、蓄熱剤X1の流動性の維持に可能な範囲である必要がある。回収蓄熱剤補助加熱器7dにより、回収蓄熱剤排出器7bの周囲の温度を効果的に管理できる。 The recovery heat storage agent storage tank 7a is a container whose periphery is covered with a heat insulating material or the like. In order to prevent the temperature of the heat storage agent X1 from dropping and losing its fluidity, a recovery heat storage agent auxiliary heater 7d may be provided. The recovery heat storage agent auxiliary heater 7d may be able to heat the heat storage agent X1 so that the temperature does not fall below Tmin. As for the heating method by the recovery heat storage agent auxiliary heater 7d, a steam trace, an electric heater, or any other method may be used as long as the temperature of the heat storage agent X1 can be controlled. Further, the shape of the recovery heat storage agent auxiliary heater 7d may be any shape such as a pipe shape or a plate shape as long as it satisfies the function of heating so that the temperature of the heat storage agent X1 does not fall below Tmin. The temperature around the recovery heat storage agent discharger 7b provided at the bottom of the recovery heat storage agent storage tank 7a needs to be within a range capable of maintaining the fluidity of the heat storage agent X1. The recovery heat storage agent auxiliary heater 7d can effectively control the ambient temperature of the recovery heat storage agent discharger 7b.

このような本実施形態の蒸気供給装置1Aの動作を説明する。
蒸気供給装置1Aにおいて、集光収熱器2aにおいて蓄熱剤X1は太陽光より熱エネルギを得て、作動域における温度Tより高く、好ましくはTmaxに達するまで加熱される。これにより、蓄熱剤X1は、すべてが液相となった状態で、供給蓄熱剤貯留槽6aへと送られる。蓄熱剤X1は、供給蓄熱剤貯留槽6aに一時貯留された後、媒体加熱部3での供給媒体Z1への伝熱の状況に合わせて、供給蓄熱剤搬送ポンプ6bにより、蓄熱剤貯留槽3aへと送られる。蓄熱剤貯留槽3aにおいては、蓄熱剤X1と、熱交換器3bを通過する供給媒体Z1との熱交換が行われる。加熱された供給媒体Z1は蒸気ドラム4aへ送られる。熱エネルギを放出して温度が低下した蓄熱剤X1は、熱交換器3bの表面で固形分となって付着する。
The operation of the steam supply device 1A of the present embodiment will be described.
In the steam supply device 1A, in the condensing heat collector 2a, the heat storage agent X1 obtains heat energy from sunlight and is heated until the temperature is higher than the temperature TL in the operating range, preferably Tmax. As a result, the heat storage agent X1 is sent to the supply heat storage agent storage tank 6a in a state where all of the heat storage agent X1 is in the liquid phase. After the heat storage agent X1 is temporarily stored in the supply heat storage agent storage tank 6a, the heat storage agent storage tank 3a is provided by the supply heat storage agent transfer pump 6b according to the state of heat transfer to the supply medium Z1 by the medium heating unit 3. Will be sent to. In the heat storage agent storage tank 3a, heat exchange is performed between the heat storage agent X1 and the supply medium Z1 passing through the heat exchanger 3b. The heated supply medium Z1 is sent to the steam drum 4a. The heat storage agent X1 whose temperature has dropped by releasing thermal energy becomes a solid content and adheres to the surface of the heat exchanger 3b.

熱交換器3bの表面に付着した蓄熱剤X1の固形分は、熱交換器3bの表面から剥離し、比重差により蓄熱剤貯留槽3aの底部へ沈降する。この間、蓄熱剤貯留槽3aに設けた攪拌装置3dによって蓄熱剤貯留槽3aに満たされた液状の蓄熱剤X1に緩やかな流れを発生されることにより、蓄熱剤X1の固形分の剥離を促す。その結果、熱交換器3bの表面が、液状の蓄熱剤X1に直接触れる状態に戻るため、供給媒体Z1への伝熱が促進される。また、蓄熱剤X1の固形分の剥離の促進により、蓄熱剤X1の固形分を速やかに蓄熱剤貯留槽3aの底部に移動させることができる。 The solid content of the heat storage agent X1 adhering to the surface of the heat exchanger 3b is peeled off from the surface of the heat exchanger 3b and settles to the bottom of the heat storage agent storage tank 3a due to the difference in specific gravity. During this time, the stirring device 3d provided in the heat storage agent storage tank 3a generates a gentle flow in the liquid heat storage agent X1 filled in the heat storage agent storage tank 3a, thereby promoting the peeling of the solid content of the heat storage agent X1. As a result, the surface of the heat exchanger 3b returns to a state in which it comes into direct contact with the liquid heat storage agent X1, so that heat transfer to the supply medium Z1 is promoted. Further, by promoting the peeling of the solid content of the heat storage agent X1, the solid content of the heat storage agent X1 can be quickly moved to the bottom of the heat storage agent storage tank 3a.

温度が低下して固形分となった蓄熱剤X1は、蓄熱剤貯留槽3aの底部に堆積する。蓄熱剤X1の温度が作動域の下限温度(Tmin)以上に保たれている間は、蓄熱剤X1は液相を含んでスラリ状となっているため、蓄熱剤排出器3cの稼働により、容易に蓄熱剤貯留槽3aから排出され、回収蓄熱剤輸送ポンプ3fにより、回収蓄熱剤貯留槽7aと送られる。回収蓄熱剤貯留槽7aにおいて、蓄熱剤X1は一時貯留され、その後、回収蓄熱剤貯留槽7aの底部より、回収蓄熱剤排出器7bを通じて蓄熱剤循環ポンプ2bへ送られ、再び太陽光集光収熱部2へと供給されて再利用される。 The heat storage agent X1 which has become a solid content due to a decrease in temperature is deposited on the bottom of the heat storage agent storage tank 3a. While the temperature of the heat storage agent X1 is kept above the lower limit temperature (Tmin) of the operating range, the heat storage agent X1 is in a slurry shape including the liquid phase, so that it is easy to operate the heat storage agent discharger 3c. It is discharged from the heat storage agent storage tank 3a and sent to the recovery heat storage agent storage tank 7a by the recovery heat storage agent transport pump 3f. In the recovery heat storage agent storage tank 7a, the heat storage agent X1 is temporarily stored, and then sent from the bottom of the recovery heat storage agent storage tank 7a to the heat storage agent circulation pump 2b through the recovery heat storage agent discharger 7b, and is collected again by sunlight. It is supplied to the heat unit 2 and reused.

次に、夜間等の太陽光からの熱エネルギの取得ができない、あるいは不足する時間帯における蒸気供給装置1Aの作動を説明する。 Next, the operation of the steam supply device 1A will be described in a time zone in which heat energy cannot be acquired or is insufficient from sunlight such as at night.

太陽光からの熱エネルギ不足の原因はいくつかあり、熱エネルギ不足の状態が継続する時間によって、対応は異なる。例えば、晴天の日中、太陽光が雲によって遮られることによる、一時的な熱エネルギ不足が考えられる。この場合、太陽光を遮る雲が移動することで、日照が戻り、再び熱エネルギが得られるようになるので、蓄熱剤X1が通過する経路の温度がTminを下回ってさらに低下する傾向がない限り、経路切替の操作を行う必要はない。 There are several causes of thermal energy deficiency from sunlight, and the response differs depending on the duration of the thermal energy deficiency state. For example, it is possible that there is a temporary shortage of thermal energy due to the sunlight being blocked by clouds during sunny days. In this case, the movement of the clouds that block the sunlight causes the sunshine to return and heat energy to be obtained again, so unless the temperature of the path through which the heat storage agent X1 passes falls below Tmin and tends to drop further. , There is no need to switch routes.

一方で、晴天の日中でありながら、日照が長時間、雲によりを遮られることで、蓄熱剤X1の温度がTminを下回る温度まで低下すると見込まれる場合、一時的な処置として、日照が回復するまで、蓄熱剤X1の流動性を維持するために、蓄熱剤X1が通過する経路すべてをTmin以上に保つ操作を行う。具体的には、蓄熱剤X1の温度を監視しつつ、補助加熱器により蓄熱剤X1を加熱してもよい。補助加熱器の熱源としては、電気ヒータや蒸気トレースが考えられ、蒸気トレースの蒸気源として、蒸気供給装置1Aから用途先へ供給される蒸気の一部を利用してもよい。 On the other hand, if it is expected that the temperature of the heat storage agent X1 will drop to a temperature below Tmin due to the long hours of sunshine being blocked by clouds even during sunny days, the sunshine will be restored as a temporary measure. In order to maintain the fluidity of the heat storage agent X1, the operation of keeping all the paths through which the heat storage agent X1 passes is performed at Tmin or more. Specifically, the heat storage agent X1 may be heated by the auxiliary heater while monitoring the temperature of the heat storage agent X1. An electric heater or a steam trace can be considered as the heat source of the auxiliary heater, and a part of the steam supplied from the steam supply device 1A to the application destination may be used as the steam source of the steam trace.

夜間及び天候により長時間日照が得られない場合、太陽光集光収熱部2を通過する蓄熱剤X1の流動性を保持するために補助加熱器による加熱を継続すると、エネルギ消費が増大するので好ましくない。そこで、長時間日照が得られない時間帯については、太陽光集光収熱部2の稼働を停止できるようにするため、蓄熱剤X1の経路に経路切替弁2d(第1〜第4弁2d〜2d)を備える。蓄熱剤循環ポンプ2bの出口に3台の経路切替弁2d(第1〜第3弁2d〜2d)が設置され、集光収熱器2aから供給蓄熱剤貯留槽6aへ至る経路の途中に1台の経路切替弁2d(第4弁2d)が設置される。これらの経路切替弁2dの開・閉の組合せにより、任意に蓄熱剤X1の経路切替が行われる。具体的な操作方法については、以下に説明する。When sunshine cannot be obtained for a long time due to nighttime and weather, if heating by the auxiliary heater is continued in order to maintain the fluidity of the heat storage agent X1 passing through the solar condensing heat collecting unit 2, energy consumption increases. Not preferable. Therefore, during the time when the sunlight cannot be obtained for a long time, the path switching valve 2d (1st to 4th valves 2d) is connected to the path of the heat storage agent X1 so that the operation of the solar condensing heat collecting unit 2 can be stopped. 1 to 2d 4 ) are provided. Three path switching valves 2d (1st to 3rd valves 2d 1 to 2d 3 ) are installed at the outlet of the heat storage agent circulation pump 2b, and are in the middle of the path from the condensing heat collector 2a to the supply heat storage agent storage tank 6a. One path switching valve 2d (fourth valve 2d 4 ) is installed in the vehicle. By combining the opening and closing of the path switching valve 2d, the path of the heat storage agent X1 is arbitrarily switched. The specific operation method will be described below.

Figure 2020145106
Figure 2020145106

表1は、蓄熱剤X1の経路切替弁2dの開・閉状態と太陽光集光収熱部2の稼働の関係を示す。表1において、日照時間帯など、太陽光集光収熱部2の稼働中においては、作動状態(1)の操作が行われる。作動状態(1)のときには、蓄熱剤循環ポンプ2bが稼働されており、また経路切替弁の第1、第2、及び第4弁2d、2d、2dが開状態とされ、第3弁2dが閉状態とされる。蓄熱剤循環ポンプ2bより送出された蓄熱剤X1が集光収熱器2aに供給され、集光収熱器2aで加熱された蓄熱剤X1が連続的に供給蓄熱剤貯留槽6aへ供給される。Table 1 shows the relationship between the open / closed state of the path switching valve 2d of the heat storage agent X1 and the operation of the solar concentrating heat collecting unit 2. In Table 1, the operation of the operating state (1) is performed while the solar condensing heat collecting unit 2 is operating, such as during the sunshine hours. In the operating state (1), the heat storage agent circulation pump 2b is in operation, and the first, second, and fourth valves 2d 1 , 2d 2 , and 2d 4 of the path switching valves are opened, and the third valve is in the open state. The valves 2d 3 are closed. The heat storage agent X1 delivered from the heat storage agent circulation pump 2b is supplied to the concentrating heat collector 2a, and the heat storage agent X1 heated by the concentrating heat collector 2a is continuously supplied to the heat storage agent storage tank 6a. ..

日没時など、太陽光集光収熱部2の駆動状態を切り替える時間帯においては、作動状態(2)、(3)の操作が行われる。日没時には、集光収熱器2aにおける蓄熱剤X1の加熱ができなくなるので、蓄熱剤X1の集光収熱器2aへの供給を停止する。そのとき、蓄熱剤循環ポンプ2bを停止する。蓄熱剤循環ポンプ2bから集光収熱器2aを経て、供給蓄熱剤貯留槽6aに至る経路に蓄熱剤X1が残っており、そのまま放置すると、温度低下により蓄熱剤X1が固相に変化して流動が困難になる可能性がある。そのため、蓄熱剤循環ポンプ2bから集光収熱器2aを経て、供給蓄熱剤貯留槽6aに至る経路に残った蓄熱剤X1をすべて、直近の貯留槽へ退避させる操作を行う。この操作は、表1における作動状態(2)と(3)である。経路切替弁2dを、表1に示すとおり開・閉して、パージガス供給装置2cより供給されるパージガスGにより、配管内に残る蓄熱剤X1を圧送する。 The operations of the operating states (2) and (3) are performed in the time zone for switching the driving state of the solar condensing heat collecting unit 2 such as at sunset. At sunset, the heat storage agent X1 cannot be heated in the concentrating heat collector 2a, so the supply of the heat storage agent X1 to the concentrating heat collector 2a is stopped. At that time, the heat storage agent circulation pump 2b is stopped. The heat storage agent X1 remains in the path from the heat storage agent circulation pump 2b through the condensing heat collector 2a to the supply heat storage agent storage tank 6a, and if left as it is, the heat storage agent X1 changes to a solid phase due to a temperature drop. Flow can be difficult. Therefore, an operation is performed to evacuate all the heat storage agent X1 remaining in the path from the heat storage agent circulation pump 2b through the condensing heat collector 2a to the supply heat storage agent storage tank 6a to the nearest storage tank. This operation is the operating states (2) and (3) in Table 1. The path switching valve 2d is opened and closed as shown in Table 1, and the heat storage agent X1 remaining in the pipe is pumped by the purge gas G supplied from the purge gas supply device 2c.

表1に示す作動状態(2)及び(3)について、具体的に説明する。
作動状態(2)は、蓄熱剤循環ポンプ2bより集光収熱器2aまでの配管内に残る蓄熱剤X1を、回収蓄熱剤貯留槽7aへ退避させる操作である。蓄熱剤循環ポンプ2bを停止し、経路切替弁の第1弁2dを閉じ、第2弁2dを開状態としたまま、第3弁2dを開状態とする。第3弁2dには、回収蓄熱剤貯留槽7aの鉛直方向の上部につながる配管が接続されている。更に、集光収熱器2aの下流に設置された第4弁2dを閉じ、この状態で、パージガスGを供給して、経路内に残った蓄熱剤X1を回収蓄熱剤貯留槽7aへ圧送する。なお、回収蓄熱剤貯留槽7aの鉛直方向の上部には、不図示のパージガスGを排出する配管が備えられ、供給されたパージガスGは、不図示の配管から大気へ放出される。
The operating states (2) and (3) shown in Table 1 will be specifically described.
The operating state (2) is an operation of retracting the heat storage agent X1 remaining in the pipe from the heat storage agent circulation pump 2b to the condensing heat collector 2a to the recovery heat storage agent storage tank 7a. The heat storage agent circulation pump 2b is stopped, the first valve 2d 1 of the path switching valve is closed, the second valve 2d 2 is left open, and the third valve 2d 3 is opened. A pipe connected to the upper part of the recovery heat storage agent storage tank 7a in the vertical direction is connected to the third valve 2d 3. Moreover, closing the fourth valve 2d 4 located downstream of the condensing heat absorption unit 2a, pumped in this state, by supplying a purge gas G, a heat storage agent X1 remaining in the path to the recovery heat storage agent reservoir 7a do. A pipe for discharging the purge gas G (not shown) is provided in the upper part of the recovery heat storage agent storage tank 7a in the vertical direction, and the supplied purge gas G is discharged to the atmosphere from the pipe (not shown).

作動状態(2)において、経路切替弁の第1弁2dから集光収熱器2aの間の蓄熱剤X1の退避が完了した後、パージガスGの供給を止め、作動状態(3)を行う。経路切替弁の第2弁2dを閉じ、第4弁2dを開いてパージガスGを供給することで、集光収熱器2aから供給蓄熱剤貯留槽6aの間に残る蓄熱剤X1を供給蓄熱剤貯留槽6aへ退避させる。作動状態(2)と同様に、供給蓄熱剤貯留槽6aの鉛直方向の上部には、不図示の大気放出用の配管が接続されていて、蓄熱剤X1の圧送に使われたパージガスGは、供給蓄熱剤貯留槽6aから大気へ放出される。In the operating state (2), after the evacuation of the heat storage agent X1 between the first valve 2d 1 of the path switching valve and the condensing heat collector 2a is completed, the supply of the purge gas G is stopped and the operating state (3) is performed. .. By closing the second valve 2d 2 of the path switching valve and opening the fourth valve 2d 4 to supply the purge gas G, the heat storage agent X1 remaining between the heat storage agent storage tank 6a is supplied from the concentrating heat collector 2a. It is retracted to the heat storage agent storage tank 6a. Similar to the operating state (2), a pipe for releasing to the atmosphere (not shown) is connected to the upper part of the supply heat storage agent storage tank 6a in the vertical direction, and the purge gas G used for pumping the heat storage agent X1 is It is released to the atmosphere from the supply heat storage agent storage tank 6a.

夜間など、太陽光集光収熱部2の停止中においては、作動状態(4)の操作が行われる。作動状態(2)及び(3)の操作の結果、経路切替弁の第2弁2dから、集光収熱器2aを経て経路切替弁の第4弁2dまでの間の配管内の蓄熱剤X1は退避され、パージガスGが満たされた状態となる。一方、蓄熱剤循環ポンプ2bとその前後の配管の蓄熱剤X1は退避できないので、作動状態(4)として流動状態を保持させる。具体的には、経路切替弁の第1弁2dを開き、蓄熱剤循環ポンプ2bを稼働させて、回収蓄熱剤貯留槽7aから回収蓄熱剤排出器7b、蓄熱剤循環ポンプ2b、経路切替弁の第1弁2d、第3弁2dを経て、回収蓄熱剤貯留槽7aへ戻る経路で循環させる。The operation of the operating state (4) is performed while the sunlight condensing and heat collecting unit 2 is stopped, such as at night. As a result of the operations of the operating states (2) and (3), heat is stored in the piping from the second valve 2d 2 of the path switching valve to the fourth valve 2d 4 of the path switching valve via the condensing heat collector 2a. The agent X1 is evacuated and is filled with the purge gas G. On the other hand, since the heat storage agent circulation pump 2b and the heat storage agent X1 in the pipes before and after the heat storage agent circulation pump 2b cannot be retracted, the flow state is maintained as the operating state (4). Specifically, the first valve 2d 1 of the path switching valve is opened, the heat storage agent circulation pump 2b is operated, and the recovery heat storage agent discharger 7b, the heat storage agent circulation pump 2b, and the path switching valve are operated from the recovery heat storage agent storage tank 7a. It circulates through the first valve 2d 1 and the third valve 2d 3 of the above, and returns to the recovery heat storage agent storage tank 7a.

以上説明したとおり、本開示における第2実施形態においては、蓄熱剤X1が温度低下により流動性を失って蓄熱剤X1の循環系統が閉塞する問題が生じないよう、集光収熱器2aによる収熱の状態に応じて、蓄熱剤X1の経路の変更を行う。また、蓄熱剤X1の経路変更に際し、集光収熱器2aと前後の配管内の蓄熱剤X1を、供給蓄熱剤貯留部6と回収蓄熱剤貯留部7へ圧送するため、パージガス供給装置2cよりパージガスGを供給できる。パージガスGの使用は、蓄熱剤X1の経路切替時に限定されるので、使用量も限定される。しかしながら、パージガスGは、蓄熱剤X1に直接接触するため、蓄熱剤X1の変質の恐れがない成分から選定される。また、パージガスGは、蓄熱剤X1が冷却されて固化するのを防ぐため、蓄熱剤X1の作動域の下限温度(Tmin)以上の温度にあらかじめ加熱して供給される。 As described above, in the second embodiment of the present disclosure, the heat storage agent X1 is collected by the condensing heat collector 2a so as not to cause a problem that the heat storage agent X1 loses fluidity due to a temperature drop and the circulation system of the heat storage agent X1 is blocked. The path of the heat storage agent X1 is changed according to the heat state. Further, when the route of the heat storage agent X1 is changed, the heat storage agent X1 in the condensing heat collector 2a and the front and rear pipes is pumped to the supply heat storage agent storage unit 6 and the recovery heat storage agent storage unit 7, so that the purge gas supply device 2c Purge gas G can be supplied. Since the use of the purge gas G is limited when the path of the heat storage agent X1 is switched, the amount of the purge gas G used is also limited. However, since the purge gas G comes into direct contact with the heat storage agent X1, it is selected from components that do not have a risk of deterioration of the heat storage agent X1. Further, the purge gas G is supplied by preheating to a temperature equal to or higher than the lower limit temperature (Tmin) of the operating range of the heat storage agent X1 in order to prevent the heat storage agent X1 from being cooled and solidified.

蓄熱剤X1の経路切替の操作について、表1及び図6A〜Cを参照して説明する。
太陽光集光収熱部2は、複数の集光収熱器2aを備えるが、蓄熱剤X1は、基本的に1台の蓄熱剤循環ポンプ2bから送出され、配管で分岐させて、複数の集光収熱器2aへ分配される。集光収熱器2aで加熱された蓄熱剤X1は、配管で1つに集約され、供給蓄熱剤貯留槽6aへ供給される。経路切替弁2dは、蓄熱剤X1の流れが1つにまとまっていて、かつ、蓄熱剤X1が退避する貯留槽に近い位置、すなわち、蓄熱剤循環ポンプ2bの出口と、供給蓄熱剤貯留槽6aの入口との2か所に設置されてもよい。パージガスGの供給位置は、多数配置された、集光収熱器2aの直近がよい。パージガスGは1個所から供給するのみでは蓄熱剤X1の退避が不十分となるので、できるだけ多くの個所からパージガスGを供給する。パージガスGの供給は、一度に多くの個所から行うのではなく、1個所から数個所を限度として段階的に行うことが好ましい。
The operation of switching the route of the heat storage agent X1 will be described with reference to Table 1 and FIGS. 6A to 6C.
The solar concentrating heat collecting unit 2 includes a plurality of condensing heat collecting devices 2a, and the heat storage agent X1 is basically sent from one heat storage agent circulation pump 2b and branched by a pipe to form a plurality of heat storage agents. It is distributed to the condensing heat collector 2a. The heat storage agent X1 heated by the condensing heat collector 2a is integrated into one by a pipe and supplied to the supply heat storage agent storage tank 6a. The path switching valve 2d is located at a position close to the storage tank in which the flow of the heat storage agent X1 is integrated and the heat storage agent X1 is retracted, that is, the outlet of the heat storage agent circulation pump 2b and the supply heat storage agent storage tank 6a. It may be installed in two places with the entrance of. The supply position of the purge gas G is preferably in the immediate vicinity of the condensing heat collector 2a, which is arranged in large numbers. Since the heat storage agent X1 is not sufficiently evacuated if the purge gas G is supplied from only one place, the purge gas G is supplied from as many places as possible. It is preferable that the purge gas G is not supplied from many locations at once, but is supplied in stages from one location to several locations.

なお、収集する熱エネルギの規模が非常に大きく、また、集光収熱器2aを配置する面積が非常に大きい場合など、1台のポンプ2bで、すべての集光収熱器2aに、均等に蓄熱剤X1を供給することが困難な場合がある。このような場合は、多数設置された集光収熱器2aを、いくつかのグループに分け、1グループに1台の蓄熱剤循環ポンプ2bを設けてもよい。回収蓄熱剤排出器7bより複数のグループへ蓄熱剤X1を分岐し、グループごとに集光収熱器2aへの蓄熱剤X1の供給と加熱を行った後、最終的に、1つの供給蓄熱剤貯留槽6aへ供給して貯留する。これにより、多数設置された集光収熱器2aへの蓄熱剤X1の供給を可能な限り均等化し、蓄熱剤X1の加熱を効率化することができる。このような場合は、蓄熱剤X1の経路切替弁2dの設置と、パージガスGの供給とを、グループ単位で行うのが好ましい。 When the scale of the heat energy to be collected is very large and the area where the condensing heat collector 2a is arranged is very large, one pump 2b is equal to all the condensing heat collectors 2a. It may be difficult to supply the heat storage agent X1 to the heat storage agent X1. In such a case, a large number of condensing heat collectors 2a may be divided into several groups, and one heat storage agent circulation pump 2b may be provided in each group. The heat storage agent X1 is branched from the recovery heat storage agent discharger 7b to a plurality of groups, and the heat storage agent X1 is supplied and heated to the condensing heat storage device 2a for each group, and finally one supply heat storage agent is finally supplied. It is supplied to the storage tank 6a and stored. As a result, the supply of the heat storage agent X1 to a large number of condensing heat collectors 2a can be equalized as much as possible, and the heating of the heat storage agent X1 can be made more efficient. In such a case, it is preferable to install the path switching valve 2d of the heat storage agent X1 and supply the purge gas G on a group basis.

上記のとおり、太陽光集光収熱部2が稼働する日照時間帯と、太陽光集光収熱部2の稼働を停止する時間帯とで、蓄熱剤X1が通過する経路を切替えて作動させる。それぞれの時間帯における作動を、図6A〜Cを参照して説明する。 As described above, the path through which the heat storage agent X1 passes is switched between the sunshine hours when the solar concentrating heat collecting unit 2 operates and the time when the solar condensing heat collecting unit 2 stops operating. .. The operation in each time zone will be described with reference to FIGS. 6A to 6C.

図6A〜Cは、太陽光集光収熱部2と、供給蓄熱剤貯留槽6aと、蓄熱剤貯留槽3aと、回収蓄熱剤貯留槽7aとからなる、蓄熱剤X1が循環する経路を模式的に表している。また、図6A〜Cには、蓄熱剤X1の循環経路の切替を行う弁が蓄熱剤X1の循環経路に記載されている。図6Aは、太陽光集光収熱部2が稼働中である日照時間帯(日の出から日没まで)における作動状態(1)を示す。図6Bは、太陽光の集光が停止する日没時(すなわち、経路切替の時間帯)における作動状態(2)、(3)を示す。図6Cは、太陽光の集光が停止する夜間等の日照が得られない時間帯における作動状態(4)を示す。また、図6A〜Cには、各貯槽の蓄熱剤X1の貯留量(タンクレベル)を表す図を併せて載せている。 FIGS. 6A to 6C schematically show a path through which the heat storage agent X1 circulates, which is composed of a solar concentrating heat collecting unit 2, a supply heat storage agent storage tank 6a, a heat storage agent storage tank 3a, and a recovery heat storage agent storage tank 7a. It is represented as. Further, in FIGS. 6A to 6C, a valve for switching the circulation path of the heat storage agent X1 is described in the circulation path of the heat storage agent X1. FIG. 6A shows the operating state (1) in the sunshine hours (from sunrise to sunset) when the solar condensing heat collecting unit 2 is operating. FIG. 6B shows the operating states (2) and (3) at sunset (that is, the time zone for switching the route) when the collection of sunlight is stopped. FIG. 6C shows an operating state (4) in a time zone when no sunshine is obtained, such as at night when the collection of sunlight is stopped. Further, FIGS. 6A to 6C also include figures showing the storage amount (tank level) of the heat storage agent X1 in each storage tank.

蓄熱剤貯留槽3aでは、供給媒体Z1の加熱の熱量に対応する熱エネルギが蓄熱剤X1から、連続的に放出されている。その結果、熱エネルギを放出して温度が低下した蓄熱剤X1は徐々に温度が低下して、一部が固相に変化する。この結果、熱交換器3bの表面に蓄熱剤X1の固形分が析出される。蓄熱剤X1の固形分はやがて剥離して蓄熱剤貯留槽3aの底部に沈降し、堆積する。これにより、蓄熱剤貯留槽3aの底部には、固形分となった蓄熱剤X1が、次々と堆積する。しかしながら、蓄熱剤貯留槽3aの底部に設置された蓄熱剤排出器3cを稼働することで、堆積した蓄熱剤X1を順次、排出する。熱交換器3bから剥離して蓄熱剤貯留槽3aの底部に沈降する蓄熱剤X1が、蓄熱剤排出器3cにより随時排出されることで、固形分となった蓄熱剤X1の堆積層はほぼ一定の厚みに保たれる。 In the heat storage agent storage tank 3a, heat energy corresponding to the amount of heat of heating of the supply medium Z1 is continuously released from the heat storage agent X1. As a result, the temperature of the heat storage agent X1 that has released heat energy and whose temperature has decreased gradually decreases, and a part of the heat storage agent X1 changes to a solid phase. As a result, the solid content of the heat storage agent X1 is deposited on the surface of the heat exchanger 3b. The solid content of the heat storage agent X1 eventually peels off and settles on the bottom of the heat storage agent storage tank 3a and accumulates. As a result, the heat storage agent X1 which has become a solid content is deposited one after another on the bottom of the heat storage agent storage tank 3a. However, by operating the heat storage agent discharger 3c installed at the bottom of the heat storage agent storage tank 3a, the accumulated heat storage agent X1 is sequentially discharged. The heat storage agent X1 that peels off from the heat exchanger 3b and settles at the bottom of the heat storage agent storage tank 3a is discharged at any time by the heat storage agent discharger 3c, so that the deposited layer of the heat storage agent X1 that has become a solid content is almost constant. It is kept at the thickness of.

蓄熱剤貯留槽3aには、供給媒体Z1を加熱するため、供給蓄熱剤貯留槽6aより、蓄熱剤排出器3cを介して加熱された蓄熱剤X1が供給される。蓄熱剤貯留槽3aにおいては、加熱された蓄熱剤X1が流量Qで供給され、底部より固形分となった蓄熱剤X1が流量Qで排出される。したがって、蓄熱剤貯留槽3aのタンクレベルは、全ての時間帯において一定値を示す。すなわち、蓄熱剤貯留槽3aの内部に貯留される蓄熱剤X1の総量は一定に保たれる。なお、図6A〜Cにおいて、各貯槽のタンクレベルを示す図は、ハッチングの部分と白抜きの部分で分けられているが、白抜きの部分が、説明の対象となる時間帯を表している。In order to heat the supply medium Z1, the heat storage agent storage tank 3a is supplied with the heat storage agent X1 heated from the supply heat storage agent storage tank 6a via the heat storage agent discharger 3c. In the heat storage agent reservoir 3a, the heated heat storage agent X1 is supplied at a flow rate Q 1, the heat storage agent X1 became solid from the bottom is discharged at a flow rate Q 1. Therefore, the tank level of the heat storage agent storage tank 3a shows a constant value at all time zones. That is, the total amount of the heat storage agent X1 stored inside the heat storage agent storage tank 3a is kept constant. In FIGS. 6A to 6C, the figure showing the tank level of each storage tank is divided into a hatched part and a white part, and the white part represents a time zone to be explained. ..

回収蓄熱剤貯留槽7aから太陽光集光収熱部2へ供給される蓄熱剤X1の流量は以下の要領で設定される。すなわち、本開示における蒸気供給装置1Aは、日照時間帯に太陽光より得られる熱エネルギの合計で、24時間連続で供給媒体Z1を加熱するのに必要な熱エネルギの合計を賄うよう設計される。具体的には、熱エネルギの供給側は1日あたりの稼働時間が日照時間帯(例えば8〜12時間)に制限され、熱エネルギの使用側は1日あたりの稼働時間が24時間連続となる。したがって太陽光集光収熱部2で収集する時間当たりの熱エネルギ量が、供給媒体Z1の加熱に必要な時間当たり熱エネルギ量の2〜3倍となる。さらに日照が一時的に遮られる分の熱エネルギの余裕を考慮し、太陽光集光収熱部2で収集する時間当たりの熱エネルギ量が、供給媒体Z1の加熱に必要な時間当たり熱エネルギ量の3〜4倍とされる必要がある。これが、図6A〜C中のQ(太陽光集光収熱部2を通過する蓄熱剤X1の流量)とQ(蓄熱剤貯留槽3aへの供給量)の大きさの比となる。The flow rate of the heat storage agent X1 supplied from the recovery heat storage agent storage tank 7a to the solar concentrating heat collection unit 2 is set as follows. That is, the steam supply device 1A in the present disclosure is designed to cover the total heat energy required to heat the supply medium Z1 continuously for 24 hours by the total heat energy obtained from sunlight during the daylight hours. .. Specifically, the thermal energy supply side is limited to the operating hours per day during the sunshine hours (for example, 8 to 12 hours), and the thermal energy user side has the operating hours per day for 24 hours continuously. .. Therefore, the amount of heat energy collected by the sunlight condensing heat collecting unit 2 per hour is 2 to 3 times the amount of heat energy required for heating the supply medium Z1. Further, considering the margin of heat energy for temporarily blocking the sunlight, the amount of heat energy collected by the solar condensing heat collecting unit 2 per hour is the amount of heat energy required for heating the supply medium Z1. It needs to be 3 to 4 times as much as. This is the ratio of the sizes of Q 2 (flow rate of the heat storage agent X1 passing through the solar condensing heat collecting unit 2) and Q 1 (supply amount to the heat storage agent storage tank 3a) in FIGS. 6A to 6C.

具体的には、太陽光集光収熱部2における蓄熱剤X1の作動域の下限温度Tminから、蓄熱剤X1の作動域の上限温度Tmaxまで加熱するのに必要な熱量の日照時間帯における積算量は、下記式(1)にて表される。なお、1kg(キログラム)の蓄熱剤X1をTminからTmaxまで加熱するのに必要な熱量をHX1とし、日照時間帯(例えば8時間)に太陽光から得られる熱量は一定と仮定する。Specifically, the total amount of heat required for heating from the lower limit temperature Tmin of the operating range of the heat storage agent X1 in the solar concentrating heat collecting unit 2 to the upper limit temperature Tmax of the operating range of the heat storage agent X1 in the sunshine time zone is integrated. The amount is represented by the following formula (1). It is assumed that the amount of heat required to heat 1 kg (kilogram) of the heat storage agent X1 from Tmin to Tmax is H X1, and the amount of heat obtained from sunlight during the sunshine hours (for example, 8 hours) is constant.

総熱量=HX1×Q×[日照時間(8時間)] (1)
これに対し、供給媒体Z1を加熱するのに必要な時間当たりの熱量をHZ1としたとき、供給媒体Z1の加熱に必要な1日の総熱量は式(2)のようになる。
総熱量=HZ1×24 (2)
Total calorific value = H X 1 x Q 2 x [sunshine hours (8 hours)] (1)
On the other hand, when the amount of heat per hour required to heat the supply medium Z1 is H Z1 , the total amount of heat required for heating the supply medium Z1 per day is as shown in the equation (2).
Total heat = H Z1 x 24 (2)

式1と式2の総熱量は等しいので、日照時間が8時間である場合は、QはQの3倍とする必要がある。さらに、日照時間帯に、雲が太陽光を遮る状況や、天候不順で日照が十分得られない場合のための余裕等を考慮すると、QはQに対し、更に大きな値とする必要がある。Since the total calories of Equation 1 and Equation 2 are equal, Q 2 needs to be three times Q 1 when the sunshine duration is 8 hours. Furthermore, the sunshine hours, or situation clouds block the sun, the sunshine in bad weather to consider an allowance or the like for the case of not sufficiently obtained, Q 2 whereas Q 1, needs to be further larger value be.

上述のように、図6Aに示される日照時間帯において、QはQよりも大きくなる。供給蓄熱剤貯留槽6aについて、太陽光集光収熱部2から供給蓄熱剤貯留槽6aに供給される蓄熱剤X1の流量がQであり、供給蓄熱剤貯留槽6aの底部より抜きだされ、蓄熱剤貯留槽3aへ供給される蓄熱剤X1の流量Qである。したがって、図6Aに示される日照時間帯において、供給蓄熱剤貯留槽6aにおいては蓄熱剤X1の供給過多となるため、供給蓄熱剤貯留槽6aのタンクレベルは大きく上昇する。一方、回収蓄熱剤貯留槽7aについて、蓄熱剤貯留槽3aの底部より抜き出されて、回収蓄熱剤輸送ポンプ3fから回収蓄熱剤貯留槽7aに供給される蓄熱剤X1の流量はQであり、回収蓄熱剤貯留槽7aの底部より抜き出されて太陽光集光収熱部2へ供給される蓄熱剤X1の流量はQである。したがって、図6Aに示される日照時間帯において、回収蓄熱剤貯留槽7aにおいては蓄熱剤X1の排出過多となるため、回収蓄熱剤貯留槽7aのタンクレベルは大きく減少する。 As mentioned above, Q 2 is larger than Q 1 in the daylight hours shown in FIG. 6A. For supplying heat storage agent reservoir 6a, a flow rate of the heat storage agent X1 from sunlight condensing heat absorption unit 2 is supplied to the supply heat storage agent reservoir 6a is Q 2, it is withdrawn from the bottom of the supply heat storage agent reservoir 6a a flow rate to Q 1 heat storage agent X1 supplied to the heat storage agent reservoir 3a. Therefore, during the sunshine hours shown in FIG. 6A, the heat storage agent storage tank 6a is oversupplied with the heat storage agent X1, and the tank level of the heat storage agent storage tank 6a rises significantly. On the other hand, the recovered heat storage agent reservoir 7a, is withdrawn from the bottom of the heat storage agent reservoir 3a, the flow rate of the heat storage agent X1 supplied to the recovery heat storage agent reservoir 7a from the recovered heat storage agent transport pump 3f is by Q 1 , the flow rate of the heat storage agent X1 supplied withdrawn from the bottom of the recovery heat storage agent reservoir 7a by the sunlight condensing heat absorption unit 2 is Q 2. Therefore, during the sunshine hours shown in FIG. 6A, the heat storage agent X1 is excessively discharged in the recovery heat storage agent storage tank 7a, so that the tank level of the recovery heat storage agent storage tank 7a is greatly reduced.

続いて、図6Bに示す蓄熱剤X1の経路切替の操作の時間帯(日没時)について説明する。
蓄熱剤X1の太陽光集光収熱部2へ供給は停止されるので、蓄熱剤X1の流量Qはゼロとなる。しかしながら、供給媒体Z1の加熱は継続するため、蓄熱剤貯留槽3aへの蓄熱剤X1の供給量と、蓄熱剤貯留槽3aからの排出量は、いずれもQで維持される。その結果、図6Bに示される日没時において、供給蓄熱剤貯留槽6aにおいては供給量ゼロに対して排出量Qとなる排出過多となるため、供給蓄熱剤貯留槽6aのタンクレベルは減少に転じる。また、図6Bに示される日没時において、回収蓄熱剤貯留槽7aにおいては供給量Qに対して排出量ゼロとなる供給過多となるため、回収蓄熱剤貯留槽7aのタンクレベルは増加に転じる。
Subsequently, the time zone (at sunset) of the route switching operation of the heat storage agent X1 shown in FIG. 6B will be described.
The supply is stopped to sunlight condensing heat absorption section 2 of the heat storage agent X1, the flow rate Q 2 of the heat storage agent X1 is zero. However, in order to continue the heating of the feed medium Z1, and the supply amount of the heat storage agent X1 to the heat storage agent reservoir 3a, emissions from the heat storage agent reservoir 3a are both maintained in Q 1. As a result, at the time of sunset shown in FIG. 6B, since the discharge excessive as the emissions Q 1 with respect to the supply amount zero in feed heat storage agent reservoir 6a, tank level of the supply heat storage agent reservoir 6a is reduced Turn to. Further, at the time of sunset shown in FIG. 6B, since the excess supply of the emissions zero for supply quantity Q 1 is in the recovery heat storage agent reservoir 7a, tank level of the recovered heat storage agent reservoir 7a to increase the Turn around.

その後、太陽光集光収熱部2の蓄熱剤循環ポンプ2bから集光収熱器2aを経て、供給蓄熱剤貯留槽6aに至る経路(配管)内に残留する蓄熱剤X1を供給蓄熱剤貯留槽6a又は回収蓄熱剤貯留槽7aへ向けてパージする操作が行われる。これは、蓄熱剤X1が固化して経路を塞ぐことを防止するためである。蓄熱剤X1が通過する経路における蓄熱剤X1を全て退避させ、この状態で、次の収熱開始(日照時間帯)まで待機する。配管内を流れる蓄熱剤X1は、パージガスGにより圧送される。上流側の配管内を流れる蓄熱剤X1は回収蓄熱剤貯留槽7aに退避され、下流側の配管内を流れる蓄熱剤X1は供給蓄熱剤貯留槽6aへ退避される。したがって、各貯留槽のタンクレベルは、パージ操作により若干上昇する。 After that, the heat storage agent X1 remaining in the path (pipe) from the heat storage agent circulation pump 2b of the solar concentrating heat storage unit 2 to the supply heat storage agent storage tank 6a via the concentrating heat storage device 2a is supplied and stored. An operation of purging toward the tank 6a or the recovery heat storage agent storage tank 7a is performed. This is to prevent the heat storage agent X1 from solidifying and blocking the path. All the heat storage agent X1 in the path through which the heat storage agent X1 passes is evacuated, and in this state, the process waits until the next heat collection start (sunshine hours). The heat storage agent X1 flowing in the pipe is pressure-fed by the purge gas G. The heat storage agent X1 flowing in the upstream pipe is retracted to the recovery heat storage agent storage tank 7a, and the heat storage agent X1 flowing in the downstream pipe is retracted to the supply heat storage agent storage tank 6a. Therefore, the tank level of each storage tank is slightly increased by the purge operation.

続いて、図6Cに示す蓄熱剤X1の経路切替の操作の時間帯(夜間等の日照が得られない時間帯)について説明する。
図6Cは、夜間(日照が得られない時間帯)の蓄熱剤X1の通過経路とタンクレベルの変化を示す。太陽光集光収熱部2には蓄熱剤X1を供給しないため、太陽光集光収熱部2へ供給する蓄熱剤X1の流量Qはゼロである。一方、媒体加熱部3では、供給媒体Z1の加熱が連続して行われるため、蓄熱剤貯留槽3aには、常に加熱された蓄熱剤X1が流量Qで供給される。また、供給される蓄熱剤X1と同量だけ、固形分となって沈降する蓄熱剤X1が蓄熱剤貯留槽3aの底部より抜き出される。すなわち、蓄熱剤貯留槽3aへの蓄熱剤X1の供給量と、蓄熱剤貯留槽3aからの排出量は、いずれもQで維持される。その結果、図6Cに示される夜間において、供給蓄熱剤貯留槽6aのタンクレベルは減少を続け、回収蓄熱剤貯留槽7aのタンクレベルは増加を続ける。
Subsequently, a time zone for the route switching operation of the heat storage agent X1 shown in FIG. 6C (a time zone in which sunshine cannot be obtained such as at night) will be described.
FIG. 6C shows changes in the passage path and tank level of the heat storage agent X1 at night (time zone when no sunshine is obtained). Since the heat storage agent X1 is not supplied to the solar concentrating heat collecting unit 2, the flow rate Q2 of the heat storage agent X1 supplied to the solar concentrating heat collecting unit 2 is zero. On the other hand, the medium heating unit 3, since the heating of the feed medium Z1 is continuously performed, the heat storage agent reservoir 3a, always heated heat storage agent X1 is supplied at a flow rate Q 1. Further, the same amount of the heat storage agent X1 as the supplied heat storage agent X1 is extracted from the bottom of the heat storage agent storage tank 3a as a solid content and settles. That is, the supply amount of the heat storage agent X1 to the heat storage agent reservoir 3a, emissions from the heat storage agent reservoir 3a are both maintained in Q 1. As a result, at night shown in FIG. 6C, the tank level of the supply heat storage agent storage tank 6a continues to decrease, and the tank level of the recovery heat storage agent storage tank 7a continues to increase.

蓄熱剤循環ポンプ2bを含む蓄熱剤X1の通過経路の一部は、蓄熱剤X1のパージができない。したがって、太陽光集光収熱部2が停止している時間帯については、蓄熱剤X1のパージができない経路においては循環を継続し、蓄熱剤X1が冷えて固化するのを防止する。具体的には、第1及び第3弁2d、2dを開状態とし、第2及び第4弁2d、2dを閉状態するよう経路切替弁2dを操作する。これにより、回収蓄熱剤貯留槽7aの底部から抜き出した蓄熱剤X1を、蓄熱剤循環ポンプ2bを介し、回収蓄熱剤貯留槽7aの上部へ戻す経路で、最小限の流量Qで循環を継続する。
このようにして、蓄熱剤貯留槽3aには、常に熱エネルギを十分蓄熱した蓄熱剤X1が供給され、夜間においても、熱交換器3bにおいて、蓄熱剤X1と供給媒体Z1との熱交換を行うことができる。
The heat storage agent X1 cannot be purged in a part of the passage path of the heat storage agent X1 including the heat storage agent circulation pump 2b. Therefore, during the time period when the solar concentrating heat collecting unit 2 is stopped, the circulation is continued in the path where the heat storage agent X1 cannot be purged, and the heat storage agent X1 is prevented from cooling and solidifying. Specifically, the path switching valve 2d is operated so that the first and third valves 2d 1 , 2d 3 are opened and the second and fourth valves 2d 2 , 2d 4 are closed. Thus, the heat storage agent X1 taken out from the bottom of the recovery heat storage agent reservoir 7a, via the heat storage agent circulating pump 2b, a path back to the top of the recovery heat storage agent reservoir 7a, continued circulation with minimal flow rate Q 3 do.
In this way, the heat storage agent X1 that has sufficiently stored heat energy is always supplied to the heat storage agent storage tank 3a, and heat exchange between the heat storage agent X1 and the supply medium Z1 is performed in the heat exchanger 3b even at night. be able to.

すなわち、太陽光集光収熱部2において熱エネルギが供給されない夜間においては、供給蓄熱剤貯留槽6a内に貯留された、熱エネルギを十分蓄えた蓄熱剤X1を、日照時間帯と変わらない流量で媒体加熱部3へ供給し、日照時間帯と同じ条件で供給媒体Z1を加熱して供給媒体Z1の蒸気を発生させることができる。更に、供給媒体Z1に熱を与えることで温度が低下し、固形分となった蓄熱剤X1は、蓄熱剤貯留槽3aの底部から抜き出され、蓄熱剤貯留槽3aのレベルが一定に保たれる。したがって、熱交換器3bでの伝熱条件が一定に保たれる。また、熱交換器3bでの伝熱に用いられた蓄熱剤X1は、回収蓄熱剤貯留槽7aに貯留され、流動性を維持したまま保存される。日照が得られる時間帯において、回収蓄熱剤貯留槽7a内に貯留された蓄熱剤X1を、供給媒体Z1の加熱で消費する蓄熱剤X1の量を大きく上回る流量で太陽光集光収熱部2へ供給し、加熱して熱エネルギを十分蓄えた蓄熱剤X1とし、供給蓄熱剤貯留槽6aへ供給する。これにより、供給蓄熱剤貯留槽6a内に貯留された蓄熱剤X1の在庫量を増やすことで、夜間の蓄熱剤X1の消費に備える。 That is, at night when the heat energy is not supplied by the solar concentrating heat collecting unit 2, the flow rate of the heat storage agent X1 stored in the heat storage agent storage tank 6a, which has sufficiently stored the heat energy, is the same as that in the sunshine time zone. Can be supplied to the medium heating unit 3 and heated in the supply medium Z1 under the same conditions as the sunshine time zone to generate steam in the supply medium Z1. Further, the temperature is lowered by applying heat to the supply medium Z1, and the heat storage agent X1 which has become a solid content is extracted from the bottom of the heat storage agent storage tank 3a, and the level of the heat storage agent storage tank 3a is kept constant. Is done. Therefore, the heat transfer conditions in the heat exchanger 3b are kept constant. Further, the heat storage agent X1 used for heat transfer in the heat exchanger 3b is stored in the recovery heat storage agent storage tank 7a, and is stored while maintaining the fluidity. During the time when sunshine is obtained, the heat storage agent X1 stored in the recovery heat storage agent storage tank 7a is consumed by heating the supply medium Z1 at a flow rate that greatly exceeds the amount of the heat storage agent X1. Is supplied to the heat storage agent X1 and heated to obtain a heat storage agent X1 that sufficiently stores heat energy, and is supplied to the supply heat storage agent storage tank 6a. As a result, the inventory amount of the heat storage agent X1 stored in the supply heat storage agent storage tank 6a is increased to prepare for the consumption of the heat storage agent X1 at night.

また、日照時間帯から夜間(日照が得られない時間帯)へと移行するときには、集光収熱器2aの近傍(集光収熱器2a下流側の配管が好ましい)からパージガスGを供給する。パージガスGは、蓄熱剤X1に物理的、化学的に変化を与えない成分であればよく、例えば窒素等の不活性ガス、もしくはドライ空気(水分を除去した空気)である。パージガスGは、少なくとも蓄熱剤X1の作動域の下限温度Tmin以上に加熱される。パージガスGを供給することにより、太陽光集光収熱部2に滞留する蓄熱剤X1を、供給蓄熱剤貯留槽6a及び回収蓄熱剤貯留槽7aへと退避する。 Further, when shifting from the sunshine hours to the night (time when no sunshine can be obtained), the purge gas G is supplied from the vicinity of the concentrating heat collector 2a (preferably the piping on the downstream side of the condensing heat collector 2a). .. The purge gas G may be a component that does not physically or chemically change the heat storage agent X1, and is, for example, an inert gas such as nitrogen or dry air (air from which water has been removed). The purge gas G is heated to at least the lower limit temperature Tmin in the operating range of the heat storage agent X1. By supplying the purge gas G, the heat storage agent X1 staying in the solar concentrating heat collecting unit 2 is retracted to the supply heat storage agent storage tank 6a and the recovery heat storage agent storage tank 7a.

このような本実施形態によれば、蒸気供給装置1Aは、太陽光を集光して得られる熱エネルギにより加熱された蓄熱剤X1により、供給媒体Z1を加熱して一部を蒸気とし、供給媒体Z1から分離した供給媒体Z1の蒸気(蒸気媒体Z1s)を用途先へ供給する。これにより、太陽光から得られる熱エネルギが不足する夜間等、日照が得られない時間帯においても、蓄熱剤X1により供給媒体Z1の加熱を行い、供給媒体Z1の蒸気(蒸気媒体Z1s)を安定供給することが可能である。
また、太陽光を集光して得られる熱エネルギを、蓄熱剤X1を用いて蓄熱することにより、供給媒体Z1に伝えられる熱量が一定となり、安定した条件で蒸気媒体Z1sを供給することが可能である。
According to this embodiment, the steam supply device 1A heats the supply medium Z1 with the heat storage agent X1 heated by the heat energy obtained by condensing sunlight to partially convert it into steam and supply it. The steam (steam medium Z1s) of the supply medium Z1 separated from the medium Z1 is supplied to the application destination. As a result, the supply medium Z1 is heated by the heat storage agent X1 even at night when the heat energy obtained from sunlight is insufficient, such as at night, and the steam (steam medium Z1s) of the supply medium Z1 is stabilized. It is possible to supply.
Further, by storing the heat energy obtained by condensing sunlight with the heat storage agent X1, the amount of heat transferred to the supply medium Z1 becomes constant, and the vapor medium Z1s can be supplied under stable conditions. Is.

また、蓄熱剤貯留槽3aの前段に供給蓄熱剤貯留槽6aが設けられる。これにより、太陽光集光収熱部2で加熱され、十分な熱エネルギを蓄えた蓄熱剤X1を供給蓄熱剤貯留槽6aに貯留することができる。この結果、太陽光からの熱エネルギが得られない夜間等の時間帯においても、供給媒体Z1の加熱に必要な熱エネルギが供給できる。したがって、日照の有無にかかわらず、連続して用途先へ蒸気媒体Z1sを供給できる。 Further, a supply heat storage agent storage tank 6a is provided in front of the heat storage agent storage tank 3a. As a result, the heat storage agent X1 heated by the solar condensing heat collecting unit 2 and storing sufficient heat energy can be stored in the supply heat storage agent storage tank 6a. As a result, the heat energy required for heating the supply medium Z1 can be supplied even in a time zone such as nighttime when the heat energy from sunlight cannot be obtained. Therefore, the vapor medium Z1s can be continuously supplied to the intended use regardless of the presence or absence of sunshine.

また、蓄熱剤貯留槽3aの後段に回収蓄熱剤貯留槽7aが設けられる。これにより、媒体加熱部3において熱交換され、一部が固相となって固形化し、蓄熱剤貯留槽3aの底部に堆積した蓄熱剤X1を、日照が得られない時間帯においても、蓄熱剤貯留槽3a内に留めることなく、連続的に排出して、回収蓄熱剤貯留槽7aに供給することができる。回収蓄熱剤貯留槽7aに供給された蓄熱剤X1は、次の日照時間帯になるまで、スラリの状態で流動性を維持した状態のまま、回収蓄熱剤貯留槽7aに貯留することができる。これにより、蓄熱剤貯留槽3a内の蓄熱剤X1の状態(タンクレベル、蓄熱剤貯留槽3aの底部に堆積した固形分の割合等)を一定に保ったまま、供給媒体Z1の加熱が継続できる。したがって、日照の有無にかかわらず、連続して用途先へ蒸気媒体Z1sを供給できる。 Further, a recovery heat storage agent storage tank 7a is provided after the heat storage agent storage tank 3a. As a result, heat is exchanged in the medium heating unit 3, and a part of the heat storage agent X1 solidifies as a solid phase and is deposited on the bottom of the heat storage agent storage tank 3a. Instead of staying in the storage tank 3a, it can be continuously discharged and supplied to the recovery heat storage agent storage tank 7a. The heat storage agent X1 supplied to the recovery heat storage agent storage tank 7a can be stored in the recovery heat storage agent storage tank 7a while maintaining fluidity in a slurry state until the next sunshine hours. As a result, heating of the supply medium Z1 can be continued while keeping the state of the heat storage agent X1 in the heat storage agent storage tank 3a (tank level, ratio of solid content deposited on the bottom of the heat storage agent storage tank 3a, etc.) constant. .. Therefore, the vapor medium Z1s can be continuously supplied to the intended use regardless of the presence or absence of sunshine.

また、太陽光集光収熱部2に設けられたパージガス供給装置2cと経路切替弁2dとにより、太陽光から熱エネルギが得られなくなる前後に、集光収熱器2a及び集光収熱器2aに蓄熱剤X1を案内する配管に残留する蓄熱剤X1を除去することが可能である。これによって、太陽光集光収熱部2において蓄熱剤X1が通過する経路(配管)で、蓄熱剤X1が冷却されて完全に固化することによる、配管の閉塞を防止することができる。 Further, before and after the heat energy cannot be obtained from the sunlight by the purge gas supply device 2c and the path switching valve 2d provided in the sunlight concentrating heat storage unit 2, the condensing heat collector 2a and the condensing heat collector 2a and the condensing heat collector It is possible to remove the heat storage agent X1 remaining in the pipe that guides the heat storage agent X1 to 2a. As a result, it is possible to prevent the piping from being blocked due to the heat storage agent X1 being cooled and completely solidified in the path (piping) through which the heat storage agent X1 passes in the solar concentrating heat collecting unit 2.

なお、図6A〜Cにおいては、集光収熱器2aが架台の上に設置され、架台の下の部分に蓄熱剤貯留槽3a、供給蓄熱剤貯留槽6a、及び回収蓄熱剤貯留槽7aなどの蓄熱剤X1が貯留される部材を配置している。この配置により、集光収熱器2a及び集光収熱器2aの前後の配管に滞留する蓄熱剤X1を、パージ操作により貯留槽へ効果的に圧送できる。また、この配置は、土地の有効活用の面でも好ましい。 In FIGS. 6A to 6C, the condensing heat collector 2a is installed on the gantry, and the heat storage agent storage tank 3a, the supply heat storage agent storage tank 6a, the recovery heat storage agent storage tank 7a, etc. A member for storing the heat storage agent X1 of the above is arranged. With this arrangement, the heat storage agent X1 staying in the piping before and after the condensing heat collector 2a and the condensing heat collector 2a can be effectively pumped to the storage tank by a purge operation. In addition, this arrangement is also preferable in terms of effective use of land.

[第3実施形態]
第2実施形態の蒸気供給装置1Aの変形例を第3実施形態として説明する。なお、同一の構成については符号を同一とし、説明を省略する。
[Third Embodiment]
A modification of the steam supply device 1A of the second embodiment will be described as the third embodiment. For the same configuration, the reference numerals are the same, and the description thereof will be omitted.

本実施形態における蒸気供給装置1Bは、太陽光集光収熱部2と、媒体加熱部3と、蒸気供給部4と、媒体循環部5とに加えて、蒸気媒体過熱部8(蒸気加熱部)をさらに備えている。蒸気供給装置1Bの構成を図7に示す。図面では主要な部分のみ記載し、第2実施形態で説明した蓄熱剤X1の循環系統を省略している。本実施形態における媒体加熱部3は、第2実施形態と同様に、図示しない蓄熱剤X1の循環系統を備えている。また、蒸気媒体過熱部8についても、媒体加熱部3と同様に、過熱用蓄熱剤X2(第2の蓄熱剤)を循環する系統を備えている。過熱用蓄熱剤X2の循環系統については、蓄熱剤X2の作動域の設定を除き、蓄熱剤X1の循環系統と同じであるため、説明を省略するとともに、符号の記載も省略する。 In the steam supply device 1B of the present embodiment, in addition to the solar condensing heat collecting unit 2, the medium heating unit 3, the steam supply unit 4, and the medium circulation unit 5, the steam medium superheating unit 8 (steam heating unit) ) Is further provided. The configuration of the steam supply device 1B is shown in FIG. In the drawing, only the main part is described, and the circulation system of the heat storage agent X1 described in the second embodiment is omitted. Similar to the second embodiment, the medium heating unit 3 in the present embodiment includes a circulation system of the heat storage agent X1 (not shown). Further, the steam medium superheating unit 8 also has a system for circulating the superheating heat storage agent X2 (second heat storage agent), similarly to the medium heating unit 3. Since the circulation system of the heat storage agent X2 for superheat is the same as the circulation system of the heat storage agent X1 except for the setting of the operating range of the heat storage agent X2, the description thereof will be omitted and the description of the reference numerals will be omitted.

蒸気媒体過熱部8は、過熱用蓄熱剤貯留槽8aと、過熱用熱交換器8bと、過熱用蓄熱剤排出器8cとを備える。過熱用蓄熱剤貯留槽8aは、過熱用蓄熱剤X2(第2の蓄熱剤)が内部に貯留される。蒸気供給部4より供給される蒸気媒体Z1s(供給媒体Z1の加熱により得られる蒸気)が過熱用熱交換器8bに案内される。蓄熱剤貯留槽3aと同様に、過熱用蓄熱剤貯留槽8aの鉛直方向の上部には、作動域の上限温度Tmax程度まで加熱された過熱用蓄熱剤X2が供給される。過熱用蓄熱剤X2は、過熱用熱交換器8bに案内される蒸気媒体Z1sに熱エネルギを与える。過熱用蓄熱剤X2は、熱エネルギを放出して温度低下することにより一部が固相となり、過熱用熱交換器8bの表面に固形分となって付着する。固形分となった過熱用蓄熱剤X2は、やがて剥離して、過熱用蓄熱剤貯留槽8a底部へ沈降する。固形分となった過熱用蓄熱剤X2が、長時間剥離せずに過熱用熱交換器8bの表面にとどまることで、蒸気媒体Z1sの過熱を妨げることを防止するために、攪拌装置8dを更に備えてもよい。攪拌装置8dを用いて過熱用蓄熱剤X2に緩やかな流れを与えることにより、過熱用蓄熱剤X2の剥離を促す。 The steam medium superheating unit 8 includes a heat storage agent storage tank 8a for superheat, a heat exchanger 8b for superheat, and a heat storage agent discharger 8c for superheat. In the superheat heat storage agent storage tank 8a, the superheat heat storage agent X2 (second heat storage agent) is stored inside. The steam medium Z1s (steam obtained by heating the supply medium Z1) supplied from the steam supply unit 4 is guided to the superheat heat exchanger 8b. Similar to the heat storage agent storage tank 3a, the superheat heat storage agent X2 heated to the upper limit temperature Tmax of the operating range is supplied to the upper portion of the superheat heat storage agent storage tank 8a in the vertical direction. The superheat heat storage agent X2 gives heat energy to the steam medium Z1s guided to the superheat heat exchanger 8b. A part of the superheat heat storage agent X2 becomes a solid phase by releasing heat energy and lowering the temperature, and adheres to the surface of the superheat heat exchanger 8b as a solid content. The superheat heat storage agent X2, which has become a solid content, eventually peels off and settles on the bottom of the superheat heat storage agent storage tank 8a. In order to prevent the superheat heat storage agent X2, which has become a solid content, from staying on the surface of the superheat heat exchanger 8b without peeling for a long time, thereby hindering the superheat of the steam medium Z1s, the stirring device 8d is further added. You may prepare. By giving a gentle flow to the superheat heat storage agent X2 using the stirring device 8d, the peeling of the superheat heat storage agent X2 is promoted.

なお、蓄熱剤として用いる混合塩は、組成を任意に調整することで、作動域を変化させることができる。本実施形態に示す、蓄熱剤X1と過熱用蓄熱剤X2とについても、混合塩の組成を変えることで、稼働条件に適した作動域を得ることが可能である。ただし、過熱用蓄熱剤X2は、相変化を生じる温度域が蓄熱剤X1より、必ずしも高温である必要はない。蓄熱剤X1と過熱用蓄熱剤X2との作動域を使い分けることで、蓄熱剤X1と過熱用蓄熱剤X2とを、同じ組成の混合塩としても、蒸気供給装置1Bの条件を満たす稼働を行うことが可能である。すなわち、蓄熱剤がすべて液相で存在する温度域の下限(液相から固相への変化が始まる温度:T)からTmaxまで、図4の例では100℃を超える温度幅がある。媒体加熱部3での供給媒体Z1の加熱には、図4の例で示すTminからTmaxのうち、低温側の領域を利用し、供給媒体Z1から発生した蒸気媒体Z1s(供給媒体Z1の飽和蒸気)の過熱はTminからTmaxのうち、高温側の領域を利用する。これにより、蓄熱剤X1と過熱用蓄熱剤X2とで作動域を使い分けることができる。The operating range of the mixed salt used as the heat storage agent can be changed by arbitrarily adjusting the composition. With respect to the heat storage agent X1 and the heat storage agent X2 for superheat shown in the present embodiment, it is possible to obtain an operating range suitable for the operating conditions by changing the composition of the mixed salt. However, the heat storage agent X2 for superheat does not necessarily have to have a higher temperature range in which a phase change occurs than the heat storage agent X1. By properly using the operating range of the heat storage agent X1 and the superheat heat storage agent X2, even if the heat storage agent X1 and the superheat heat storage agent X2 are mixed salts having the same composition, the operation satisfying the conditions of the steam supply device 1B is performed. Is possible. That is, there is a temperature range exceeding 100 ° C. in the example of FIG. 4 from the lower limit of the temperature range in which all the heat storage agents are present in the liquid phase (the temperature at which the change from the liquid phase to the solid phase begins: T L) to Tmax. For heating the supply medium Z1 in the medium heating unit 3, the region on the low temperature side of Tmin to Tmax shown in the example of FIG. 4 is used, and the steam medium Z1s generated from the supply medium Z1 (saturated steam of the supply medium Z1) is used. ) Overheat uses the region on the high temperature side of Tmin to Tmax. As a result, the operating range can be properly used between the heat storage agent X1 and the superheat heat storage agent X2.

過熱用蓄熱剤X2は、蒸気媒体Z1sを過熱することで自身は熱エネルギを放出し、温度が低下して過熱用蓄熱剤貯留槽8aの底部に沈降する。したがって、過熱用蓄熱剤排出器8cにより、過熱用蓄熱剤貯留槽8aの外部へ過熱用蓄熱剤X2が案内される。図7において、蒸気媒体過熱部8の上流側(過熱用蓄熱剤X2の供給側)と下流側(過熱用蓄熱剤X2の排出側)は、図示していないが、供給蓄熱剤貯留部6と回収蓄熱剤貯留部7とにそれぞれ対応する2種類の過熱用蓄熱剤貯留部と、過熱用蓄熱剤X2を太陽光により加熱する太陽光集光収熱部2に対応する第2の太陽光集光収熱部を備える。これら装置の作動は、第2実施形態で説明した、蓄熱剤X1の循環する系統と、温度条件を除き、ほぼ同じである。 The superheat heat storage agent X2 releases heat energy by itself by heating the steam medium Z1s, and the temperature drops to settle at the bottom of the superheat heat storage agent storage tank 8a. Therefore, the superheat heat storage agent discharger 8c guides the superheat heat storage agent X2 to the outside of the superheat heat storage agent storage tank 8a. In FIG. 7, the upstream side (supply side of the heat storage agent X2 for overheating) and the downstream side (discharge side of the heat storage agent X2 for overheating) of the steam medium superheating unit 8 are not shown, but are with the supply heat storage agent storage unit 6. Two types of heat storage agent storage units for overheating corresponding to the recovery heat storage agent storage unit 7, and a second solar collection unit corresponding to the solar condensing heat storage unit 2 for heating the heat storage agent X2 for overheating with sunlight. It is equipped with a light heat storage unit. The operation of these devices is almost the same as that of the system in which the heat storage agent X1 circulates as described in the second embodiment, except for the temperature conditions.

なお、蓄熱剤X2に使用する混合塩の組成によっては、蓄熱剤X2が蒸気媒体Z1sの加熱に利用された後も、蓄熱剤X2の温度がTまで低下せず、したがって固相の蓄熱剤X2が発生しない場合がある。その場合は、温度が低下した液相の蓄熱剤X2を、過熱用蓄熱剤X2を加熱する太陽光集光収熱器(不図示)に供給し、蓄熱剤X2の温度をTmax付近まで加熱して再利用する。すなわち、この場合は、循環系統の全体が液相の蓄熱剤X2のみで満たされている状態で、蒸気供給装置1Bが稼働される。Depending on the composition of the mixed salt used for the heat storage agent X2, the temperature of the heat storage agent X2 does not drop to TL even after the heat storage agent X2 is used for heating the vapor medium Z1s, and therefore the solid-phase heat storage agent. X2 may not occur. In that case, the liquid phase heat storage agent X2 whose temperature has decreased is supplied to a solar concentrating heat collector (not shown) that heats the heating heat storage agent X2, and the temperature of the heat storage agent X2 is heated to near Tmax. And reuse it. That is, in this case, the vapor supply device 1B is operated in a state where the entire circulation system is filled with only the liquid phase heat storage agent X2.

媒体循環部5は、媒体タンク5aと、媒体供給ポンプ5bと、媒体予熱器5cと、圧力調節弁5dと、媒体凝縮器5eとを備えている。媒体予熱器5cの一次側には、用途先より回収した使用済の蒸気(蒸気媒体Z1s及び過熱蒸気媒体Z2s)が供給される。媒体予熱器5cの二次側には、液体状態の補給媒体Zが供給される。媒体凝縮器5eは、媒体凝縮器5eの一次側を通過した使用済の蒸気を、外気または冷水等により冷却する。媒体凝縮器5eにより凝縮された蒸気は、液体の補給媒体Zとして媒体タンク5aに貯留される。 The medium circulation unit 5 includes a medium tank 5a, a medium supply pump 5b, a medium preheater 5c, a pressure control valve 5d, and a medium condenser 5e. Used steam (steam medium Z1s and superheated steam medium Z2s) recovered from the intended use is supplied to the primary side of the medium preheater 5c. A liquid replenishment medium Z is supplied to the secondary side of the medium preheater 5c. The medium condenser 5e cools the used steam that has passed through the primary side of the medium condenser 5e with outside air, cold water, or the like. The vapor condensed by the medium condenser 5e is stored in the medium tank 5a as a liquid replenishment medium Z.

補助ボイラ4bは、太陽光からの熱エネルギが長時間供給されない場合の、補助加熱器である。すなわち、補助ボイラ4bは、必要が生じた場合のみ稼働する。補助ボイラ4bには、蒸気ドラム4aの鉛直方向の下側の供給媒体Z1の液体が供給される。補助ボイラ4bは、電力または化石燃料の燃焼により、液体の供給媒体Z1を加熱し、蒸気を含む供給媒体Z1として蒸気ドラム4aへ供給する。蒸気ドラム4aと補助ボイラ4bの間の供給媒体Z1の循環は、基本的には自然対流である。しかしながら、必要に応じ、供給媒体Z1を強制的に循環するためのポンプを備えてもよい。補助ボイラ4bは、蓄熱剤X1及び過熱用蓄熱剤X2が通過する経路の保温用の蒸気の供給に用いてもよい。 The auxiliary boiler 4b is an auxiliary heater when the heat energy from sunlight is not supplied for a long time. That is, the auxiliary boiler 4b operates only when the need arises. The liquid of the supply medium Z1 on the lower side in the vertical direction of the steam drum 4a is supplied to the auxiliary boiler 4b. The auxiliary boiler 4b heats the liquid supply medium Z1 by burning electric power or fossil fuel, and supplies the liquid supply medium Z1 to the steam drum 4a as a supply medium Z1 containing steam. The circulation of the supply medium Z1 between the steam drum 4a and the auxiliary boiler 4b is basically natural convection. However, if necessary, a pump for forcibly circulating the supply medium Z1 may be provided. The auxiliary boiler 4b may be used to supply steam for heat retention in the path through which the heat storage agent X1 and the superheat heat storage agent X2 pass.

このような蒸気供給装置1Bにおいては、蒸気ドラム4a内に貯留される供給媒体Z1が、蓄熱剤貯留槽3a内に設置された熱交換器3bとの間で循環する間に、蓄熱剤X1と熱交換され、一部が蒸気となる。その結果、蒸気ドラム4a内で、鉛直方向の下側における液体の供給媒体Z1と、鉛直方向の上側における蒸気の供給媒体Z1(蒸気媒体Z1s)とに分離される。そして、蒸気ドラム4a内の蒸気媒体Z1sは、蒸気ドラム4aの鉛直方向の上側から取り出され、過熱用蓄熱剤貯留槽8a内の過熱用熱交換器8bへと案内される。蒸気媒体Z1sは、過熱用熱交換器8bにおいて過熱用蓄熱剤X2によりさらに加熱され、過熱蒸気(過熱蒸気媒体Z2s)となり、過熱蒸気を要する用途先へと供給される。蒸気ドラム4aの鉛直方向の上部より取出された飽和蒸気(蒸気媒体Z1s)の一部は、飽和蒸気を要する用途先へと供給される。 In such a steam supply device 1B, while the supply medium Z1 stored in the steam drum 4a circulates with the heat exchanger 3b installed in the heat storage agent storage tank 3a, the heat storage agent X1 and the heat storage agent X1 are circulated. Heat is exchanged and part of it becomes steam. As a result, in the steam drum 4a, the liquid supply medium Z1 on the lower side in the vertical direction and the steam supply medium Z1 (steam medium Z1s) on the upper side in the vertical direction are separated. Then, the steam medium Z1s in the steam drum 4a is taken out from the upper side in the vertical direction of the steam drum 4a and guided to the superheat heat exchanger 8b in the superheat heat storage agent storage tank 8a. The steam medium Z1s is further heated by the superheat heat storage agent X2 in the superheat heat exchanger 8b to become superheated steam (superheated steam medium Z2s), which is supplied to the application destination requiring superheated steam. A part of the saturated steam (steam medium Z1s) taken out from the upper part of the steam drum 4a in the vertical direction is supplied to the application destination requiring the saturated steam.

また、各用途先から回収された使用済蒸気は、媒体予熱器5cにおいて、液体の補給媒体Zと熱交換された後、媒体凝縮器5eにおいて冷却され、液体の補給媒体Zへと戻される。媒体予熱器5cと媒体凝縮器5eの間に設けられた圧力調節弁5dは、蒸気媒体Z1sが蒸気ドラム4aから使用済蒸気として回収されるまでの間の圧力を保持する。飽和蒸気(蒸気媒体Z1s)の温度は、圧力調節弁5dの調整により影響される。液体となった補給媒体Zは、媒体タンク5aへ案内される。媒体タンク5aには、不足分の補給媒体Zが補填される。補給媒体Zは、媒体供給ポンプ5bにより加圧され、媒体予熱器5cにおいて予熱され、蒸気ドラム4aへと供給される。 Further, the used vapor recovered from each application destination is heat-exchanged with the liquid replenishment medium Z in the medium preheater 5c, then cooled in the medium condenser 5e and returned to the liquid replenishment medium Z. The pressure control valve 5d provided between the medium preheater 5c and the medium condenser 5e holds the pressure until the steam medium Z1s is recovered as used steam from the steam drum 4a. The temperature of the saturated steam (steam medium Z1s) is affected by the adjustment of the pressure control valve 5d. The liquid replenishment medium Z is guided to the medium tank 5a. The medium tank 5a is filled with the shortage of supply medium Z. The replenishment medium Z is pressurized by the medium supply pump 5b, preheated by the medium preheater 5c, and supplied to the steam drum 4a.

本実施形態によれば、供給媒体Z1を加熱して得られた蒸気媒体Z1s(供給媒体Z1の飽和蒸気)を過熱用蓄熱剤X2により再加熱することで、過熱状態とすることができる。したがって、蒸気媒体Z1s(飽和蒸気)よりも高温の過熱蒸気媒体Z2s(過熱蒸気)を用途先へ供給することが可能である。 According to the present embodiment, the steam medium Z1s (saturated steam of the supply medium Z1) obtained by heating the supply medium Z1 can be reheated by the superheat storage agent X2 to be in a superheated state. Therefore, it is possible to supply the superheated steam medium Z2s (superheated steam) having a temperature higher than that of the steam medium Z1s (saturated steam) to the intended use.

このような本実施形態の蒸気供給装置1Bによれば、複数の温度の蒸気を用途先へ供給することが可能である。 According to the steam supply device 1B of the present embodiment as described above, it is possible to supply steam of a plurality of temperatures to the application destination.

[第4施形態]
上記第3施形態の蒸気供給装置1Bの変形例を第4実施形態として説明する。なお、上記第3実施形態と同一の構成については符号を同一とし、説明を省略する。
[Fourth embodiment]
A modification of the steam supply device 1B of the third embodiment will be described as the fourth embodiment. The same components as those in the third embodiment have the same reference numerals, and the description thereof will be omitted.

本実施形態における蒸気供給装置1Cは、太陽光集光収熱部2と、供給蓄熱剤貯留部6と、媒体加熱部3と、蒸気供給部4と、媒体循環部5と、回収蓄熱剤貯留部7と、蒸気媒体過熱部8とを備えている。本実施形態において、蒸気媒体過熱部8は、独自の蓄熱剤の循環系統を持たず、供給蓄熱剤貯留部6より、加熱された蓄熱剤X1の供給を受ける。また、蓄熱剤X1は、蒸気媒体過熱部8において蒸気媒体Z1sと熱交換した後、媒体加熱部3へ供給される。蒸気供給装置1Cの構成を図8に示す。 The steam supply device 1C in the present embodiment includes a solar condensing heat collecting unit 2, a supply heat storage agent storage unit 6, a medium heating unit 3, a steam supply unit 4, a medium circulation unit 5, and a recovery heat storage agent storage. A unit 7 and a steam medium heating unit 8 are provided. In the present embodiment, the steam medium superheating unit 8 does not have its own circulation system of the heat storage agent, and receives the supply of the heated heat storage agent X1 from the supply heat storage agent storage unit 6. Further, the heat storage agent X1 is supplied to the medium heating unit 3 after heat exchange with the vapor medium Z1s in the vapor medium superheating unit 8. The configuration of the steam supply device 1C is shown in FIG.

本実施形態における蒸気供給装置1Cは、1種類の蓄熱剤X1を用いて、供給媒体Z1の加熱と、蒸気媒体Z1s(供給媒体Z1の加熱により生じる蒸気)の過熱の両方を行う。太陽光集光収熱部2で加熱された蓄熱剤X1は、供給蓄熱剤貯留槽6a、過熱用蓄熱剤貯留槽8a、蓄熱剤貯留槽3a、回収蓄熱剤貯留槽7aの順に、移動しながら、蒸気媒体Z1sの過熱及び供給媒体Z1の加熱の目的で熱エネルギを放出する。これにより、蓄熱剤X1は、固相を生じてスラリ状に変化して、回収蓄熱剤貯留槽7aに一時貯留される。日照時間帯においては、回収蓄熱剤貯留槽7aに貯留された蓄熱剤X1は、太陽光集光収熱部2へ案内され、加熱され、再利用される。 The steam supply device 1C in the present embodiment uses one type of heat storage agent X1 to both heat the supply medium Z1 and superheat the steam medium Z1s (steam generated by heating the supply medium Z1). The heat storage agent X1 heated by the solar condensing heat collecting unit 2 moves in the order of the supply heat storage agent storage tank 6a, the overheating heat storage agent storage tank 8a, the heat storage agent storage tank 3a, and the recovery heat storage agent storage tank 7a. , Dissipates thermal energy for the purpose of overheating the steam medium Z1s and heating the supply medium Z1. As a result, the heat storage agent X1 forms a solid phase, changes into a slurry, and is temporarily stored in the recovery heat storage agent storage tank 7a. During the sunshine hours, the heat storage agent X1 stored in the recovery heat storage agent storage tank 7a is guided to the solar concentrating heat collection unit 2, heated, and reused.

本実施形態における蒸気供給装置1Cの作動について、図8を参照して詳細に説明する。本実施形態においては、蓄熱剤は1種類のみ使用し(蓄熱剤X1)、供給媒体Z1の飽和蒸気と過熱蒸気の両方を用途先へ供給することができる。蓄熱剤X1は、蓄熱剤循環ポンプ2bにより、複数の集光収熱器2aへ案内され、太陽光を集光して得られる熱エネルギにより、蓄熱剤X1の作動域の上限温度Tmaxを目標に加熱される。代表的な組成の蓄熱剤を例に説明すると、図9の相変化特性図上で、蓄熱剤X1の作動域の下限温度Tminで供給された蓄熱剤X1が、集光収熱器2aで加熱されることにより、図9の「蓄熱」過程を経て、蓄熱剤X1の作動域の上限温度Tmaxで示す状態に変化する。 The operation of the steam supply device 1C in the present embodiment will be described in detail with reference to FIG. In the present embodiment, only one type of heat storage agent is used (heat storage agent X1), and both saturated steam and superheated steam of the supply medium Z1 can be supplied to the intended use. The heat storage agent X1 is guided to a plurality of condensing heat collectors 2a by the heat storage agent circulation pump 2b, and the heat energy obtained by condensing sunlight is used to target the upper limit temperature Tmax of the operating range of the heat storage agent X1. It is heated. Taking a heat storage agent having a typical composition as an example, the heat storage agent X1 supplied at the lower limit temperature Tmin of the operating range of the heat storage agent X1 is heated by the condensing heat collector 2a on the phase change characteristic diagram of FIG. By doing so, the state changes to the state indicated by the upper limit temperature Tmax of the operating range of the heat storage agent X1 through the "heat storage" process of FIG.

上限温度Tmaxとなった蓄熱剤X1は、供給蓄熱剤貯留槽6aに一時貯留される。供給蓄熱剤貯留槽6aは保温構造を有しており、蓄熱剤X1は上限温度Tmaxの状態を維持しつつ、供給蓄熱剤貯留槽6aに貯留される。供給蓄熱剤貯留槽6aの底部からは加熱され、すべて液相となった蓄熱剤X1が一定の流量で排出され、供給蓄熱剤搬送ポンプ6bにより過熱用蓄熱剤貯留槽8aへ案内される。
過熱用蓄熱剤貯留槽8aの内部に設置された過熱用熱交換器8bには、蒸気供給部4で発生した蒸気媒体Z1sが案内され、蓄熱剤X1と熱交換が行われる。図9は、その時の状態変化の一例であるが、蓄熱剤X1は、自身の持つ顕熱の一部を放出し(図9の「蒸気媒体Z1sの過熱」過程)、その熱エネルギにより蒸気媒体Z1sが過熱される。過熱用蓄熱剤貯留槽8aにおいて、蓄熱剤X1は鉛直方向の上部より供給され、鉛直方向の下部より排出される。過熱用蓄熱剤貯留槽8aにおいて、蒸気媒体Z1sは、管状の過熱用熱交換器8bの鉛直方向の下側から鉛直方向の上側へ向かって流れるよう、過熱用熱交換器8bの流路を配置する。これにより、蒸気媒体Z1sの過熱用熱交換器8bの出口での温度は、蓄熱剤X1の作動域の上限温度Tmaxに近い温度まで過熱できる。
The heat storage agent X1 having reached the upper limit temperature Tmax is temporarily stored in the supply heat storage agent storage tank 6a. The supply heat storage agent storage tank 6a has a heat retention structure, and the heat storage agent X1 is stored in the supply heat storage agent storage tank 6a while maintaining the state of the upper limit temperature Tmax. Heated from the bottom of the supply heat storage agent storage tank 6a, the heat storage agent X1 which has become a liquid phase is discharged at a constant flow rate, and is guided to the superheat heat storage agent storage tank 8a by the supply heat storage agent transfer pump 6b.
The steam medium Z1s generated in the steam supply unit 4 is guided to the superheat heat exchanger 8b installed inside the superheat heat storage agent storage tank 8a, and heat exchange is performed with the heat storage agent X1. FIG. 9 shows an example of a state change at that time. The heat storage agent X1 releases a part of its own sensible heat (“superheat of steam medium Z1s” process in FIG. 9), and the heat energy causes the steam medium. Z1s is overheated. In the heat storage agent storage tank 8a for superheat, the heat storage agent X1 is supplied from the upper part in the vertical direction and discharged from the lower part in the vertical direction. In the superheat heat storage agent storage tank 8a, the flow path of the superheat heat exchanger 8b is arranged so that the steam medium Z1s flows from the lower side in the vertical direction to the upper side in the vertical direction of the tubular heat exchanger 8b. do. As a result, the temperature at the outlet of the superheat heat exchanger 8b of the steam medium Z1s can be superheated to a temperature close to the upper limit temperature Tmax of the operating range of the heat storage agent X1.

本実施形態における過熱用蓄熱剤貯留槽8a内では、蓄熱剤X1は顕熱の放出にとどまるため、基本的に蓄熱剤X1の液相から固相への相変化は起こらない。図8において、過熱用蓄熱剤貯留槽8a内に攪拌装置8dが設けられている。しかしながら、通常の作動において、蓄熱剤X1の攪拌の必要はないため、攪拌装置8dは省略されてもよい。ただし、長時間の日照不足で、蓄熱剤X1が放熱し、固相を生じる可能性がある。このような状況から蒸気供給装置1Cを起動する際に、蓄熱剤X1を円滑に流動させるために、攪拌装置8dが設けられる。 In the heat storage agent storage tank 8a for superheat in the present embodiment, since the heat storage agent X1 only releases sensible heat, basically no phase change from the liquid phase to the solid phase of the heat storage agent X1 occurs. In FIG. 8, a stirring device 8d is provided in the heat storage agent storage tank 8a for superheat. However, since it is not necessary to stir the heat storage agent X1 in normal operation, the stirrer 8d may be omitted. However, due to lack of sunshine for a long time, the heat storage agent X1 may dissipate heat and form a solid phase. When the steam supply device 1C is started from such a situation, a stirring device 8d is provided in order to smoothly flow the heat storage agent X1.

顕熱の一部を放出した蓄熱剤X1は、過熱用蓄熱剤貯留槽8aの底部から過熱用蓄熱剤排出器8cにより排出され、更に蓄熱剤搬送ポンプ8fを介して、蓄熱剤貯留槽3aへ供給される。蓄熱剤貯留槽3aでは、第1〜第3実施形態に記載のとおり、蓄熱剤X1と供給媒体Z1との熱交換により、蓄熱剤X1は液相から固相へ変化が進み、下限温度Tminに近くまで温度が低下してスラリ状となり、蓄熱剤貯留槽3aの底部に沈降する。沈降したスラリ状の蓄熱剤X1は、蓄熱剤排出器3cにより排出され、回収蓄熱剤輸送ポンプ3fを介して回収蓄熱剤貯留槽7aへ供給される。 The heat storage agent X1 that has released a part of the sensible heat is discharged from the bottom of the heat storage agent storage tank 8a for superheat by the heat storage agent discharger 8c for superheat, and further to the heat storage agent storage tank 3a via the heat storage agent transfer pump 8f. Be supplied. In the heat storage agent storage tank 3a, as described in the first to third embodiments, the heat storage agent X1 changes from the liquid phase to the solid phase due to heat exchange between the heat storage agent X1 and the supply medium Z1, and reaches the lower limit temperature Tmin. The temperature drops to a close position, forming a slurry, and settling at the bottom of the heat storage agent storage tank 3a. The settled slurry-like heat storage agent X1 is discharged by the heat storage agent discharger 3c, and is supplied to the recovery heat storage agent storage tank 7a via the recovery heat storage agent transport pump 3f.

蓄熱剤貯留槽3aで蓄熱剤X1が放出する熱エネルギは、蓄熱剤貯留槽3a内に設置される熱交換器3b内を通過する供給媒体Z1の加熱に利用され、加熱により供給媒体Z1の一部が、蒸気(蒸気媒体Z1s)となる。この間の蓄熱剤X1の状態は、図9の「供給媒体Z1の加熱」過程に示されるように、作動域の下限温度Tminへと変化する。蓄熱剤X1の作動については、第1〜第3実施形態にて説明した内容と同じであるため、詳細な説明は省略する。 The heat energy released by the heat storage agent X1 in the heat storage agent storage tank 3a is used for heating the supply medium Z1 passing through the heat exchanger 3b installed in the heat storage agent storage tank 3a, and is one of the supply media Z1 by heating. The part becomes steam (steam medium Z1s). During this period, the state of the heat storage agent X1 changes to the lower limit temperature Tmin in the operating range, as shown in the process of “heating the supply medium Z1” in FIG. Since the operation of the heat storage agent X1 is the same as that described in the first to third embodiments, detailed description thereof will be omitted.

このような本実施形態の蒸気供給装置1Cによれば、1種類の蓄熱剤を使用して、複数の温度の蒸気を用途先へ供給することが可能である。なお、日照が得られない時間帯においては、第2実施形態において、表1及び図6A〜Cを参照して説明したとおり、日照の有無に応じ蓄熱剤X1の経路切替を行う。これにより、連続的に蒸気を用途先へ供給するとともに、蓄熱剤X1の流動性を失うことなく保存することができる。 According to the steam supply device 1C of the present embodiment as described above, it is possible to supply steam of a plurality of temperatures to an application destination by using one kind of heat storage agent. In the time zone when sunshine cannot be obtained, the route of the heat storage agent X1 is switched according to the presence or absence of sunshine as described with reference to Table 1 and FIGS. 6A to 6C in the second embodiment. As a result, steam can be continuously supplied to the intended use and can be stored without losing the fluidity of the heat storage agent X1.

本実施形態においては、図9に記載のとおり、加熱された蓄熱剤X1が保持する熱エネルギのうち、顕熱と潜熱を使い分けることにより、供給媒体Z1の加熱を効率的に行う。蒸気媒体Z1sの過熱においては、蓄熱剤X1の顕熱を用い、蒸気媒体Z1sの過熱、すなわち顕熱の増加に資する。供給媒体Z1の加熱においては、蓄熱剤X1が液相から固相に変化する際の潜熱を主に使用して供給媒体Z1の液体を蒸気に変化させるための潜熱を与える。熱量として比較的小さいが温度が比較的高い蓄熱剤X1の顕熱を用いて蒸気の過熱、すなわち顕熱の増加に資する。熱量として比較的大きいが温度が比較的低い蓄熱剤X1の潜熱を用いて供給媒体Z1が蒸発するのに必要な熱、すなわち蒸発潜熱に資する。これにより、効率的な蒸気供給が可能となる。 In the present embodiment, as shown in FIG. 9, the supply medium Z1 is efficiently heated by properly using sensible heat and latent heat among the heat energies held by the heated heat storage agent X1. In the overheating of the steam medium Z1s, the sensible heat of the heat storage agent X1 is used to contribute to the overheating of the steam medium Z1s, that is, the increase of the sensible heat. In the heating of the supply medium Z1, the latent heat when the heat storage agent X1 changes from the liquid phase to the solid phase is mainly used to provide the latent heat for changing the liquid of the supply medium Z1 into vapor. The sensible heat of the heat storage agent X1, which has a relatively small amount of heat but a relatively high temperature, contributes to overheating of steam, that is, an increase in sensible heat. The latent heat of the heat storage agent X1, which has a relatively large amount of heat but a relatively low temperature, contributes to the heat required for the supply medium Z1 to evaporate, that is, the latent heat of vaporization. This enables efficient steam supply.

[第5実施形態]
本開示の第3実施例に用いる蒸気供給装置1Bを備える乾燥システムSについて第5実施形態として説明する。なお、同一の構成については符号を同一とし、説明を省略する。
[Fifth Embodiment]
The drying system S including the steam supply device 1B used in the third embodiment of the present disclosure will be described as the fifth embodiment. For the same configuration, the reference numerals are the same, and the description thereof will be omitted.

本実施形態の乾燥システムSは、図10に示すように蒸気供給装置1Bと、蒸気供給装置1Cとのいずれか一方と、乾燥装置100とを備える。乾燥システムSは、高湿原料Mw(バイオマス、パーム滓、褐炭に代表される高水分の石炭等の固体燃料)を乾燥させる。 As shown in FIG. 10, the drying system S of the present embodiment includes one of the steam supply device 1B, the steam supply device 1C, and the drying device 100. The drying system S dries the high-humidity raw material Mw (solid fuel such as high-moisture coal typified by biomass, palm slag, and lignite).

乾燥装置100は、流動化ガス風箱103と、乾燥室104と、乾燥室隔壁105と、加熱用蒸気管110と、過熱蒸気減圧弁111と、流動化ガス加熱器120と、流動化ガスブロワ130とを備える。複数の加熱用蒸気管110が、乾燥室104の内部において流動層を形成する高湿原料Mwの層内に、流動化ガスの流れに対して直交するように設けられている。加熱用蒸気管110の内部には、蒸気媒体Z1s(飽和蒸気)と、過熱蒸気媒体Z2sのいずれか一方が通される。流動化ガス加熱器120の一次側には、加熱用蒸気管110を通過した使用済蒸気が通され、流動化ガス加熱器120の二次側には、高湿原料Mwの流動化に用いられたガスの一部が循環ガスRとして流動化ガスブロワ130を介して導かれる。高湿原料Mwの流動化に用いられたガスは、使用済蒸気との熱交換により加熱され、流動化ガスNとして流動化ガス風箱103へ供給される。流動化ガスブロワ130の入口側には、不活性ガスPが供給される。不活性ガスPは、乾燥装置100の起動時等を中心に、必要に応じて流動化ガスブロワ130に供給される。また、流動化ガス風箱103には、過熱蒸気媒体Z2sの一部が、過熱蒸気減圧弁111を介して供給される。 The drying device 100 includes a fluidized gas air box 103, a drying chamber 104, a drying chamber partition wall 105, a steam pipe 110 for heating, a superheated steam pressure reducing valve 111, a fluidized gas heater 120, and a fluidized gas blower 130. And. A plurality of heating steam pipes 110 are provided in the layer of the high-humidity raw material Mw forming the fluidized bed inside the drying chamber 104 so as to be orthogonal to the flow of the fluidized gas. Either the steam medium Z1s (saturated steam) or the superheated steam medium Z2s is passed through the inside of the heating steam pipe 110. Used steam that has passed through the heating steam pipe 110 is passed through the primary side of the fluidized gas heater 120, and is used for fluidizing the high-humidity raw material Mw on the secondary side of the fluidized gas heater 120. A part of the generated gas is guided as the circulating gas R via the fluidized gas blower 130. The gas used for fluidizing the high-humidity raw material Mw is heated by heat exchange with used steam and supplied to the fluidized gas air box 103 as fluidized gas N. The inert gas P is supplied to the inlet side of the fluidized gas blower 130. The inert gas P is supplied to the fluidized gas blower 130 as needed, mainly when the drying device 100 is started. Further, a part of the superheated steam medium Z2s is supplied to the fluidized gas air box 103 via the superheated steam pressure reducing valve 111.

蒸気供給装置1Bにおいては、蒸気供給部4において供給媒体Z1を加熱、分離して得られる飽和蒸気である蒸気媒体Z1sを、過熱用熱交換器8bに導き、過熱用蓄熱剤X2によりさらに加熱して過熱蒸気媒体Z2sとする。過熱蒸気媒体Z2sは、乾燥装置100へと供給される。なお、蒸気供給装置1Bからは、飽和蒸気(蒸気媒体Z1s)も乾燥装置100へ供給できる。加熱用蒸気管110には、乾燥システムSの稼働条件に応じ、蒸気媒体Z1sと過熱蒸気媒体Z2sのいずれかを供給する。流動化ガス風箱103には、過熱蒸気媒体Z2sのみが供給される。 In the steam supply device 1B, the steam medium Z1s, which is saturated steam obtained by heating and separating the supply medium Z1 in the steam supply unit 4, is guided to the overheating heat exchanger 8b and further heated by the overheating heat storage agent X2. The superheated steam medium Z2s is used. The superheated steam medium Z2s is supplied to the drying device 100. The steam supply device 1B can also supply saturated steam (steam medium Z1s) to the drying device 100. Either the steam medium Z1s or the superheated steam medium Z2s is supplied to the heating steam pipe 110 according to the operating conditions of the drying system S. Only the superheated steam medium Z2s is supplied to the fluidized gas air box 103.

本実施形態における乾燥システムSの作動について、図10を参照して説明する。
乾燥装置100においては、高湿原料Mwが流動層を形成しながら乾燥される。高湿原料Mwの流動化には、系内を循環する循環ガスRが使用される。流動化ガスブロワ130を起動して乾燥室104より排出されるガスの一部を循環ガスRとして流動化ガスブロワ130に供給する。流動化ガスブロワ130より送出されたガスは、流動化ガスNとして、流動化ガス加熱器120で加熱された後、流動化ガス風箱103へ供給される。流動化ガス風箱103の鉛直方向の上方に設けた乾燥室104と、流動化ガス風箱103とは、不図示の分散機構により分割されている。流動化ガス風箱103へ供給されたガスは、分散機構により分散されて、乾燥室104内に噴射される。また、分散機構により、乾燥室104内に供給される高湿原料Mwが流動化ガス風箱103へ落下する。乾燥室104内で高湿原料Mwの流動化に利用された流動化ガスNは、乾燥室104の上部より排出される。
The operation of the drying system S in this embodiment will be described with reference to FIG.
In the drying apparatus 100, the high-humidity raw material Mw is dried while forming a fluidized bed. Circulating gas R circulating in the system is used for fluidization of the high-humidity raw material Mw. The fluidized gas blower 130 is activated and a part of the gas discharged from the drying chamber 104 is supplied to the fluidized gas blower 130 as circulating gas R. The gas delivered from the fluidized gas blower 130 is heated by the fluidized gas heater 120 as fluidized gas N and then supplied to the fluidized gas air box 103. The drying chamber 104 provided above the fluidized gas air box 103 in the vertical direction and the fluidized gas air box 103 are separated by a dispersion mechanism (not shown). The gas supplied to the fluidized gas air box 103 is dispersed by the dispersion mechanism and injected into the drying chamber 104. Further, the high-humidity raw material Mw supplied into the drying chamber 104 falls into the fluidized gas air box 103 by the dispersion mechanism. The fluidized gas N used for fluidizing the high-humidity raw material Mw in the drying chamber 104 is discharged from the upper part of the drying chamber 104.

乾燥室104から排出される流動化ガスNには、高湿原料Mwより蒸発した水分が大量に含まれる。乾燥室104と流動化ガスブロワ130とを接続する配管に大気放出弁112を設け、流動化ガスNの一部を系外(大気中)へ排出することで、系内を循環する流動化ガスNの水分量を調整する。乾燥室104の出口より一部を大気放出した残りの流動化ガスNを循環ガスRとして流動化ガスブロワ130へ導き、再利用する。また、大気放出弁112には圧力調節機能を持たせることで、乾燥装置100内の圧力を一定に保つ。更に、高湿原料Mwが流動層を形成して乾燥される間に、高湿原料Mwの一部が粉砕され、微粉が生じる可能性がある。この微粉が、流動化ガスNに同伴して乾燥室104より排出されると、この微粉が大気放出弁112や流動化ガスブロワ130に影響を与える可能性がある。したがって、乾燥室104の出口には、微粉を除去するための除塵機113を設けてもよい。 The fluidized gas N discharged from the drying chamber 104 contains a large amount of water evaporated from the high-humidity raw material Mw. An atmospheric release valve 112 is provided in the pipe connecting the drying chamber 104 and the fluidized gas blower 130, and a part of the fluidized gas N is discharged to the outside of the system (in the atmosphere), so that the fluidized gas N circulates in the system. Adjust the amount of water in the. The remaining fluidized gas N partially released to the atmosphere from the outlet of the drying chamber 104 is guided to the fluidized gas blower 130 as circulating gas R and reused. Further, the atmospheric release valve 112 is provided with a pressure adjusting function to keep the pressure in the drying device 100 constant. Further, while the high-humidity raw material Mw forms a fluidized bed and is dried, a part of the high-humidity raw material Mw may be crushed to generate fine powder. When this fine powder is discharged from the drying chamber 104 together with the fluidized gas N, the fine powder may affect the atmospheric release valve 112 and the fluidized gas blower 130. Therefore, a dust remover 113 for removing fine powder may be provided at the outlet of the drying chamber 104.

高湿原料Mwを乾燥させるための熱源は、加熱用蒸気管110に供給する蒸気(蒸気媒体Z1sまたは過熱蒸気媒体Z2s)と、流動化ガスNである。加熱用蒸気管110には、乾燥操作に要求される温度により、蒸気媒体Z1s、過熱蒸気媒体Z2sのいずれかを選択し、供給する。加熱用蒸気管110へ供給する蒸気は、乾燥室104に供給される高湿原料Mwと熱交換することで、高湿原料Mwを加熱し、高湿原料Mwの水分の蒸発を促進する。流動化ガスNは、高湿原料Mwを流動化させるとともに、高湿原料Mwから蒸発した水分を持ち去ることにより乾燥を促進する。さらに、流動化ガスN(循環ガスR)をあらかじめ加熱して乾燥室104へ供給することにより、流動化ガスNの乾きの度合いが増し、流動化ガスNにより高湿原料Mwから蒸発した水分をより多く持ち去ることができ、乾燥がより促進される。加熱用蒸気管110に供給された蒸気は、高湿原料Mwの加熱に利用された後、流動化ガス加熱器120の一次側に供給され、熱交換により流動化ガスNを加熱する。 The heat source for drying the high-humidity raw material Mw is steam (steam medium Z1s or superheated steam medium Z2s) supplied to the heating steam pipe 110 and fluidized gas N. Either the steam medium Z1s or the superheated steam medium Z2s is selected and supplied to the heating steam pipe 110 according to the temperature required for the drying operation. The steam supplied to the heating steam pipe 110 heats the high-humidity raw material Mw by exchanging heat with the high-humidity raw material Mw supplied to the drying chamber 104, and promotes the evaporation of the water content of the high-humidity raw material Mw. The fluidized gas N fluidizes the high-humidity raw material Mw and promotes drying by removing the evaporated water from the high-humidity raw material Mw. Further, by preheating the fluidized gas N (circulating gas R) and supplying it to the drying chamber 104, the degree of drying of the fluidized gas N is increased, and the moisture evaporated from the high humidity raw material Mw by the fluidized gas N is increased. More can be taken away and drying is promoted more. The steam supplied to the heating steam pipe 110 is used for heating the high-humidity raw material Mw, and then is supplied to the primary side of the fluidized gas heater 120 to heat the fluidized gas N by heat exchange.

乾燥室104は、基本的には直方体形状とされる。乾燥室104の水平の長辺を横切るように乾燥室隔壁105が配置される。直方体の乾燥室104の長辺方向の一端に高湿原料Mwを供給する、原料供給部101が設けられている。乾燥室104の原料供給部101とは長辺方向の反対側の端に、乾燥原料Mdを排出するための原料排出部102が設けられる。原料供給部101より供給された高湿原料Mwが、乾燥室104内で流動層を形成しながら移動し、原料排出部102に到達したところで、流動層の上部から溢流により乾燥室104の外部へ排出される。原料排出部102は、乾燥室104の鉛直方向の上部に設けられる。乾燥室104内の高湿原料Mwの流動層の高さは、原料排出部102の位置で決まる。 The drying chamber 104 basically has a rectangular parallelepiped shape. The drying chamber partition wall 105 is arranged so as to cross the horizontal long side of the drying chamber 104. A raw material supply unit 101 for supplying a high-humidity raw material Mw is provided at one end in the long side direction of the rectangular parallelepiped drying chamber 104. A raw material discharge unit 102 for discharging the dried raw material Md is provided at an end of the drying chamber 104 opposite to the raw material supply unit 101 in the long side direction. When the high-humidity raw material Mw supplied from the raw material supply unit 101 moves in the drying chamber 104 while forming a fluidized bed and reaches the raw material discharge unit 102, it overflows from the upper part of the fluidized bed to the outside of the drying chamber 104. Is discharged to. The raw material discharge unit 102 is provided in the upper part of the drying chamber 104 in the vertical direction. The height of the fluidized bed of the high-humidity raw material Mw in the drying chamber 104 is determined by the position of the raw material discharge unit 102.

高湿原料Mwは、乾燥室104内で流動層を形成させるため、流動化に適した大きさに、あらかじめ粉砕して供給される。粉砕された高湿原料Mwは原料供給部101より、一定の流量で連続供給される。乾燥室104内に供給された高湿原料Mwは、乾燥室104内で流動層を形成する。乾燥室104は、乾燥室隔壁105により複数の区画に分割されていて、それぞれの区画には底部より流動化ガスNが供給されている。乾燥室隔壁105の下部または上部には、高湿原料Mwが隣接する区画へ順次移動できるように、開口部が設けられている。 The high-humidity raw material Mw is supplied after being crushed in advance to a size suitable for fluidization in order to form a fluidized bed in the drying chamber 104. The crushed high-humidity raw material Mw is continuously supplied from the raw material supply unit 101 at a constant flow rate. The high-humidity raw material Mw supplied into the drying chamber 104 forms a fluidized bed in the drying chamber 104. The drying chamber 104 is divided into a plurality of compartments by the drying chamber partition wall 105, and fluidized gas N is supplied to each compartment from the bottom. An opening is provided in the lower part or the upper part of the drying chamber partition wall 105 so that the high-humidity raw material Mw can be sequentially moved to the adjacent section.

乾燥室隔壁105は、乾燥室104を仕切る平板である。流動化ガスNが通過するため、乾燥室104内の鉛直方向の上部は、乾燥室隔壁105によって仕切られていない。乾燥室隔壁105は、乾燥室隔壁105の鉛直方向の下側が、流動化ガス風箱103と、乾燥室104とを仕切っている流動化ガスNの分散機構まで達するよう設置される。高湿原料Mwが移動するための通路が必要となるので、乾燥室隔壁105の上部または下部に開口部が設けられる。隣り合う乾燥室隔壁105において、開口部は上部と下部で交互に配置されるのが望ましい。しかしながら、開口部の配置はこれに限られず、高湿原料Mwの流動の条件により、開口部の配置は任意に決定される。開口部の位置が下側の場合、乾燥室隔壁105の分散機構と接する部分が切欠かれることにより開口部が形成される。開口部の位置が上側の場合は、乾燥室隔壁105の分散機構と接する部分は完全に塞がれ、乾燥室隔壁105の上側に切欠きが設けられ、乾燥室隔壁105の上端が流動層の上面付近になる。開口部の形状は、高湿原料Mwの移動を妨げない形(乾燥室104の全体に高湿原料Mwの流動層が形成可能な形)であればとくに限定されない。。 The drying chamber partition wall 105 is a flat plate that partitions the drying chamber 104. Since the fluidized gas N passes through, the upper part of the drying chamber 104 in the vertical direction is not partitioned by the drying chamber partition wall 105. The drying chamber partition wall 105 is installed so that the lower side of the drying chamber partition wall 105 in the vertical direction reaches the dispersion mechanism of the fluidized gas N that separates the fluidized gas air box 103 and the drying chamber 104. Since a passage for the high humidity raw material Mw to move is required, an opening is provided in the upper part or the lower part of the drying chamber partition wall 105. In the adjacent drying chamber partition walls 105, it is desirable that the openings are alternately arranged at the upper part and the lower part. However, the arrangement of the openings is not limited to this, and the arrangement of the openings is arbitrarily determined depending on the flow conditions of the high-humidity raw material Mw. When the position of the opening is on the lower side, the opening is formed by notching the portion of the drying chamber partition wall 105 in contact with the dispersion mechanism. When the position of the opening is on the upper side, the portion of the drying chamber partition wall 105 in contact with the dispersion mechanism is completely closed, a notch is provided on the upper side of the drying chamber partition wall 105, and the upper end of the drying chamber partition wall 105 is a fluidized bed. It will be near the top surface. The shape of the opening is not particularly limited as long as it does not hinder the movement of the high-humidity raw material Mw (a shape in which a fluidized bed of the high-humidity raw material Mw can be formed in the entire drying chamber 104). ..

原料供給部101から供給された高湿原料Mwは、乾燥室104内に設けられた複数の区画において、流動層を形成しながら徐々に乾燥され、原料排出部102が設けられた区画に到達する間に、所定の水分含有率まで乾燥が進む。その後、所定の水分含有率まで乾燥された高湿原料Mwは、乾燥原料Mdとして原料排出部102より、溢流により乾燥室104の外部へ排出される。 The high-humidity raw material Mw supplied from the raw material supply section 101 is gradually dried while forming a fluidized bed in a plurality of sections provided in the drying chamber 104, and reaches the section provided with the raw material discharge section 102. In the meantime, drying proceeds to a predetermined water content. After that, the high-humidity raw material Mw dried to a predetermined water content is discharged from the raw material discharge unit 102 as a dry raw material Md to the outside of the drying chamber 104 by overflow.

乾燥室104内はほぼ大気圧とされる。高湿原料Mwからの水分蒸発を促進するため、乾燥室104内の温度は100℃を十分超えるように制御される。高湿原料Mwは、バイオマスや褐炭など、乾燥が進むことにより自然発火しやすくなる性質を持つ原料が多いため、流動化ガスNに支燃性をもつ酸素などが含まれるのは好ましくない。したがって、流動化ガスNとして空気を用いるのは避けるべきであり、例えば、流動化ガスNとして不活性ガスが用いられる。不活性ガスの代表的なものとしては窒素があるが、継続的に使用するには、ガスの製造コストが課題となる。本実施形態では、流動化ガスNとして過熱水蒸気(乾燥蒸気)を用いる。ただし、乾燥システムSの起動時には、乾燥室104内の温度が100℃以下となることがあり、水蒸気が凝縮する可能性がある。したがって、乾燥室104内の温度が十分高くなるまで、流動化ガスNとして窒素ガス等の不活性ガスを用いる。 The pressure inside the drying chamber 104 is approximately atmospheric pressure. In order to promote the evaporation of water from the high humidity raw material Mw, the temperature in the drying chamber 104 is controlled so as to sufficiently exceed 100 ° C. Since many of the high-humidity raw materials Mw have the property of easily spontaneously igniting as the drying progresses, such as biomass and lignite, it is not preferable that the fluidized gas N contains oxygen or the like having flammability. Therefore, the use of air as the fluidized gas N should be avoided, for example, the use of an inert gas as the fluidized gas N. Nitrogen is a typical example of an inert gas, but the cost of producing the gas becomes an issue for continuous use. In this embodiment, superheated steam (dry steam) is used as the fluidized gas N. However, when the drying system S is started, the temperature inside the drying chamber 104 may be 100 ° C. or lower, and water vapor may condense. Therefore, an inert gas such as nitrogen gas is used as the fluidized gas N until the temperature in the drying chamber 104 becomes sufficiently high.

なお、蒸気供給装置1Bは、補助過熱器9をさらに備えている。補助過熱器9は、蒸気媒体過熱部8において、蓄熱剤X2による熱エネルギ供給が不足し、蒸気媒体Z1sの過熱が不十分となる場合に起動され、蒸気媒体過熱部8に代わって過熱蒸気を供給する。 The steam supply device 1B further includes an auxiliary superheater 9. The auxiliary superheater 9 is activated when the heat energy supply by the heat storage agent X2 is insufficient in the steam medium superheater section 8 and the superheat of the steam medium Z1s is insufficient, and superheated steam is generated in place of the steam medium superheater section 8. Supply.

なお、本実施形態では、乾燥室104内が4つの区画に分割され、高湿原料Mwが1番目の区画に供給された後、乾燥室隔壁105を、上側、下側、上側の順に移動し、最も下流の区画(4番目の区画)の上部より排出される構成となっている。しかしながら、区画の数や、高湿原料Mwが乾燥室隔壁105を通過する位置(上側、下側)等については任意に設定され、図10に限定されるものではない。 In the present embodiment, the inside of the drying chamber 104 is divided into four sections, and after the high-humidity raw material Mw is supplied to the first section, the drying chamber partition wall 105 is moved in the order of upper side, lower side, and upper side. , It is configured to be discharged from the upper part of the most downstream section (fourth section). However, the number of compartments, the position where the high-humidity raw material Mw passes through the drying chamber partition wall 105 (upper side, lower side), and the like are arbitrarily set and are not limited to FIG.

本実施形態によれば、太陽光を集光して得られる熱エネルギにより供給媒体Z1を加熱して得られる飽和蒸気である蒸気媒体Z1s及び、蒸気媒体Z1sをさらに加熱して得られる過熱蒸気である過熱蒸気媒体Z2sを乾燥装置100に供給する。これにより、夜間においても継続的かつ安定的に高湿原料Mwを乾燥させることができる。なお、過熱蒸気媒体Z2sを、高湿原料Mwによって形成される流動層に直接供給して乾燥を行う場合は、補給媒体Zは水とされ、過熱蒸気媒体Z2sは過熱水蒸気(乾燥蒸気)として供給されてもよい。これにより、高湿原料Mwの乾燥が乾燥蒸気の雰囲気で進行するため、自然発火が防止され、安全に高湿原料Mwの乾燥を行うことができる。 According to the present embodiment, the steam medium Z1s, which is saturated steam obtained by heating the supply medium Z1 with the thermal energy obtained by condensing sunlight, and the superheated steam obtained by further heating the steam medium Z1s. A certain superheated steam medium Z2s is supplied to the drying device 100. As a result, the high-humidity raw material Mw can be continuously and stably dried even at night. When the superheated steam medium Z2s is directly supplied to the fluidized bed formed by the high-humidity raw material Mw for drying, the replenishment medium Z is used as water and the superheated steam medium Z2s is supplied as superheated steam (dry steam). May be done. As a result, the drying of the high-humidity raw material Mw proceeds in the atmosphere of dry steam, so that spontaneous combustion is prevented and the high-humidity raw material Mw can be safely dried.

以上、図面を参照しながら本開示の好適な実施形態について説明したが、本開示は上記実施形態に限定されるものではない。上述した実施形態において示した各構成部材の諸形状や組み合わせ等は一例であって、本開示の趣旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。 Although the preferred embodiments of the present disclosure have been described above with reference to the drawings, the present disclosure is not limited to the above embodiments. The various shapes and combinations of the constituent members shown in the above-described embodiment are examples, and can be variously changed based on design requirements and the like without departing from the spirit of the present disclosure.

乾燥装置100の高湿原料Mwの流動層内に、供給媒体Z1(補給媒体Z)の過熱蒸気である過熱蒸気媒体Z2sを直接供給する場合においては、補給媒体Zとして水を使用するのが好ましい。しかし、過熱蒸気媒体Z2sを高湿原料Mwの流動層内に直接供給しない場合は、水以外の流体を供給媒体Z1(補給媒体Z)として加熱して供給してもよい。 When the superheated steam medium Z2s, which is the superheated steam of the supply medium Z1 (replenishment medium Z), is directly supplied into the fluidized bed of the high humidity raw material Mw of the drying apparatus 100, it is preferable to use water as the replenishment medium Z. .. However, when the superheated steam medium Z2s is not directly supplied into the fluidized bed of the high humidity raw material Mw, a fluid other than water may be heated and supplied as the supply medium Z1 (replenishment medium Z).

また、集光収熱器2aの形状については図2A及び2Bに、集光収熱器2aの配置については図3に実施例を挙げた。しかしながら、太陽光を集光して熱エネルギが得られ、蓄熱剤X1及び蓄熱剤X2を所定温度まで加熱できるものであれば、上記実施形態に限定されず、集光収熱器2aの形状や配置を任意に設定してもよい。 Further, the shape of the condensing heat collector 2a is shown in FIGS. 2A and 2B, and the arrangement of the condensing heat collector 2a is shown in FIG. However, the shape of the condensing heat collector 2a is not limited to the above embodiment as long as it can condense sunlight to obtain heat energy and heat the heat storage agent X1 and the heat storage agent X2 to a predetermined temperature. The arrangement may be set arbitrarily.

上記第5実施形態の乾燥システムSにおいては、第3実施形態に記載の蒸気供給装置1Bより飽和蒸気及び過熱蒸気を供給したが、システムの簡素化のため、1つの蓄熱剤の循環系統で、飽和蒸気と過熱蒸気の両方を供給可能とした、第4実施形態に記載の蒸気供給装置1Cを乾燥システムSに用いてもよい。 In the drying system S of the fifth embodiment, saturated steam and superheated steam were supplied from the steam supply device 1B according to the third embodiment, but for simplification of the system, one heat storage agent circulation system was used. The steam supply device 1C according to the fourth embodiment capable of supplying both saturated steam and superheated steam may be used for the drying system S.

また、乾燥システムSにおいて加熱用蒸気管110に供給する媒体を、主として過熱蒸気である過熱蒸気媒体Z2sとしたが、加熱用蒸気管110に供給する媒体については、飽和蒸気である蒸気媒体Z1sとしてもよい。 Further, in the drying system S, the medium supplied to the heating steam pipe 110 is mainly the superheated steam medium Z2s which is superheated steam, but the medium supplied to the heating steam pipe 110 is the steam medium Z1s which is saturated steam. May be good.

また、蒸気供給装置は、供給媒体Z1(補給媒体Z)を加熱し、1種類の飽和蒸気(蒸気媒体Z1s)を供給、もしくは、1種類の飽和蒸気(蒸気媒体Z1s)と、飽和蒸気をさらに加熱して得られる1種類の過熱蒸気(過熱蒸気媒体Z2s)とを供給する構成に限定されない。たとえば、媒体加熱部3とは別に、第2媒体加熱部を備え、蓄熱剤X1とは作動域の異なる蓄熱剤を、太陽光集光収熱部2とは別の、独立した第2太陽光集光収熱部により加熱して供給することにより、異なる条件で供給媒体Z1(補給媒体Z)を加熱してもよい。この場合、蒸気媒体Z1sと異なる温度、圧力条件の第2の飽和蒸気、更に、過熱蒸気媒体Z2sと異なる温度、圧力条件の第2の過熱蒸気媒体を用途先へと供給することが可能である。 Further, the steam supply device heats the supply medium Z1 (replenishment medium Z) and supplies one kind of saturated steam (steam medium Z1s), or further adds one kind of saturated steam (steam medium Z1s) and saturated steam. The configuration is not limited to supplying one type of superheated steam (superheated steam medium Z2s) obtained by heating. For example, a second medium heating unit is provided separately from the medium heating unit 3, and a heat storage agent having a different operating range from the heat storage agent X1 is used as an independent second sunlight separate from the solar concentrating heat collection unit 2. The supply medium Z1 (replenishment medium Z) may be heated under different conditions by heating and supplying the heat by the condensing heat collecting unit. In this case, it is possible to supply the second saturated steam having a temperature and pressure condition different from that of the steam medium Z1s, and further to the application destination a second superheated steam medium having a temperature and pressure condition different from that of the superheated steam medium Z2s. ..

本開示は、太陽光を集光して熱源とする蒸気供給装置に適用することができる。 The present disclosure can be applied to a steam supply device that collects sunlight and uses it as a heat source.

1 蒸気供給装置
1A 蒸気供給装置
1B 蒸気供給装置
1C 蒸気供給装置
2 太陽光集光収熱部
2a 集光収熱器
2b 蓄熱剤循環ポンプ
2c パージガス供給装置
2d 経路切替弁
3 媒体加熱部
3a 蓄熱剤貯留槽
3b 熱交換器
3c 蓄熱剤排出器
3d 攪拌装置
3e 補助加熱器
3f 回収蓄熱剤輸送ポンプ
4 蒸気供給部
4a 蒸気ドラム
4b 補助ボイラ
5 媒体循環部
5a 媒体タンク
5b 媒体供給ポンプ
5c 媒体予熱器
5d 圧力調節弁
5e 媒体凝縮器
6 供給蓄熱剤貯留部
6a 供給蓄熱剤貯留槽
6b 供給蓄熱剤搬送ポンプ
6c 攪拌装置
7 回収蓄熱剤貯留部
7a 回収蓄熱剤貯留槽
7b 回収蓄熱剤排出器
7c 回収蓄熱剤攪拌装置
7d 回収蓄熱剤補助加熱器
8 蒸気媒体過熱部(蒸気加熱部)
8a 過熱用蓄熱剤貯留槽
8b 過熱用熱交換器
8c 過熱用蓄熱剤排出器
8d 攪拌装置
9 補助過熱器
100 乾燥装置
101 原料供給部
102 原料排出部
103 流動化ガス風箱
104 乾燥室
105 乾燥室隔壁
110 加熱用蒸気管
111 過熱蒸気減圧弁
112 大気放出弁
113 除塵機
120 流動化ガス加熱器
130 流動化ガスブロワ
200 集光収熱器
210 集光加熱部
211 主集光鏡
212 副集光鏡
213 接続金具
214 流体加熱管
220 支持装置
221 主柱
222 方位角調節装置
223 仰角調節装置
230 集光収熱ゾーン
Md 乾燥原料
Mw 高湿原料
N 流動化ガス
P 不活性ガス
R 循環ガス
S 乾燥システム
X1 蓄熱剤
X2 過熱用蓄熱剤(第2の蓄熱剤)
Z 補給媒体
Z1 供給媒体
Z1s 蒸気媒体
Z2s 過熱蒸気媒体
1 Steam supply device 1A Steam supply device 1B Steam supply device 1C Steam supply device 2 Solar concentrating heat collector 2a Concentrating heat collector 2b Heat storage agent circulation pump 2c Purge gas supply device 2d Path switching valve 3 Medium heating unit 3a Heat storage agent Storage tank 3b Heat exchanger 3c Heat storage agent discharger 3d Stirrer 3e Auxiliary heater 3f Recovery heat storage agent transport pump 4 Steam supply unit 4a Steam drum 4b Auxiliary boiler 5 Medium circulation unit 5a Medium tank 5b Medium supply pump 5c Medium preheater 5d Pressure control valve 5e Medium condenser 6 Supply heat storage agent storage 6a Supply heat storage agent storage tank 6b Supply heat storage agent transfer pump 6c Stirrer 7 Recovery heat storage agent storage 7a Recovery heat storage agent storage tank 7b Recovery heat storage agent discharger 7c Recovery heat storage agent Stirrer 7d Recovery heat storage agent Auxiliary heater 8 Steam medium overheating part (steam heating part)
8a Heat storage agent storage tank for overheating 8b Heat exchanger for overheating 8c Heat storage agent for overheating discharger 8d Stirrer 9 Auxiliary heater 100 Drying device 101 Raw material supply part 102 Raw material discharge part 103 Fluidized gas air box 104 Drying room 105 Drying room Partition 110 Heating steam tube 111 Superheated steam pressure reducing valve 112 Atmospheric release valve 113 Dust remover 120 Fluidized gas heater 130 Fluidized gas blower 200 Condensing heat collector 210 Condensing heating unit 211 Main condensing mirror 212 Sub condensing mirror 213 Connection bracket 214 Fluid heating tube 220 Support device 221 Main pillar 222 Direction angle adjustment device 223 Elevation angle adjustment device 230 Condensing heat collection zone Md Drying raw material Mw High humidity raw material N Fluidized gas P Inactive gas R Circulating gas S Drying system X1 Heat storage Agent X2 Heat storage agent for overheating (second heat storage agent)
Z Replenishment medium Z1 Supply medium Z1s Steam medium Z2s Superheated steam medium

Claims (11)

太陽光を集光して収熱し、蓄熱剤を直接加熱する太陽光集光収熱部と、
加熱された前記蓄熱剤により供給媒体を加熱する媒体加熱部と、
加熱された前記供給媒体より蒸気を分離し、供給する蒸気供給部と、
を備える蒸気供給装置。
A solar concentrating heat collecting unit that collects and collects sunlight and directly heats the heat storage agent,
A medium heating unit that heats the supply medium with the heated heat storage agent, and
A steam supply unit that separates and supplies steam from the heated supply medium,
A steam supply device equipped with.
前記媒体加熱部の前段に設けられ、前記太陽光集光収熱部で加熱された前記蓄熱剤を貯留する供給蓄熱剤貯留部と、
前記媒体加熱部の後段に設けられ、前記供給媒体の加熱に用いた前記蓄熱剤を貯留する回収蓄熱剤貯留部と、
を更に備える請求項1記載の蒸気供給装置。
A supply heat storage agent storage unit provided in front of the medium heating unit and storing the heat storage agent heated by the solar condensing heat collection unit, and a heat storage agent storage unit.
A recovery heat storage agent storage unit provided after the medium heating unit and storing the heat storage agent used for heating the supply medium, and a recovery heat storage agent storage unit.
The steam supply device according to claim 1, further comprising.
日照が得られない時間帯において、前記太陽光集光収熱部への前記蓄熱剤の供給を停止すると共に、前記太陽光集光収熱部に滞留する前記蓄熱剤を、前記供給蓄熱剤貯留部又は前記回収蓄熱剤貯留部へ退避させる蓄熱剤退避機構を備える請求項2記載の蒸気供給装置。 During the time when sunlight cannot be obtained, the supply of the heat storage agent to the solar concentrating heat storage unit is stopped, and the heat storage agent staying in the solar concentrating heat storage unit is stored in the supply heat storage agent. The steam supply device according to claim 2, further comprising a heat storage agent evacuation mechanism for retracting the heat storage agent to the unit or the recovery heat storage agent storage unit. 太陽光を集光して収熱し、第2の蓄熱剤を直接加熱する第2の太陽光集光収熱部と、
加熱された前記第2の蓄熱剤により前記蒸気供給部から供給された蒸気をさらに加熱する蒸気加熱部と、
を更に備える請求項1〜3のいずれか一項に記載の蒸気供給装置。
A second solar concentrating heat collecting unit that condenses and collects sunlight and directly heats the second heat storage agent,
A steam heating unit that further heats the steam supplied from the steam supply unit by the heated second heat storage agent, and a steam heating unit.
The steam supply device according to any one of claims 1 to 3.
前記蒸気加熱部により供給される蒸気は、過熱蒸気である請求項4記載の蒸気供給装置。 The steam supply device according to claim 4, wherein the steam supplied by the steam heating unit is superheated steam. 前記第2の蓄熱剤の作動温度は、前記供給媒体の加熱に用いる前記蓄熱剤の作動温度よりも高い請求項4または5に記載の蒸気供給装置。 The steam supply device according to claim 4 or 5, wherein the operating temperature of the second heat storage agent is higher than the operating temperature of the heat storage agent used for heating the supply medium. 前記蒸気加熱部において、前記蒸気供給部から供給された蒸気の加熱に用いた前記第2の蓄熱剤を、前記供給媒体の加熱に用いる請求項4または5に記載の蒸気供給装置。 The steam supply device according to claim 4 or 5, wherein in the steam heating unit, the second heat storage agent used for heating the steam supplied from the steam supply unit is used for heating the supply medium. 前記供給媒体を加熱する補助ボイラを更に備える請求項1〜7のいずれか一項に記載の蒸気供給装置。 The steam supply device according to any one of claims 1 to 7, further comprising an auxiliary boiler for heating the supply medium. 前記蒸気供給部から供給された蒸気を加熱する補助過熱器を更に備える請求項1〜8のいずれか一項に記載の蒸気供給装置。 The steam supply device according to any one of claims 1 to 8, further comprising an auxiliary superheater for heating the steam supplied from the steam supply unit. 前記蓄熱剤を貯留する蓄熱剤貯留槽に、前記蓄熱剤を攪拌する攪拌装置が設けられる請求項1〜9のいずれか一項に記載の蒸気供給装置。 The steam supply device according to any one of claims 1 to 9, wherein a stirring device for stirring the heat storage agent is provided in the heat storage agent storage tank for storing the heat storage agent. 請求項1〜10のいずれか一項に記載の蒸気供給装置と、
前記蒸気供給装置から供給される蒸気を熱源とし、高湿原料を流動させつつ乾燥させる流動層乾燥装置と、
を備える乾燥システム。
The steam supply device according to any one of claims 1 to 10.
A fluidized bed drying device that uses the steam supplied from the steam supply device as a heat source to dry the high-humidity raw material while flowing it.
A drying system equipped with.
JP2020565680A 2019-01-07 2019-12-23 Steam supply and drying system Pending JPWO2020145106A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019000689 2019-01-07
JP2019000689 2019-01-07
PCT/JP2019/050268 WO2020145106A1 (en) 2019-01-07 2019-12-23 Vapor supply device and drying system

Publications (1)

Publication Number Publication Date
JPWO2020145106A1 true JPWO2020145106A1 (en) 2021-09-09

Family

ID=71520360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020565680A Pending JPWO2020145106A1 (en) 2019-01-07 2019-12-23 Steam supply and drying system

Country Status (2)

Country Link
JP (1) JPWO2020145106A1 (en)
WO (1) WO2020145106A1 (en)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01234753A (en) * 1988-03-15 1989-09-20 Kawasaki Heavy Ind Ltd Delivery device for stored energy
CN102242699A (en) * 2010-05-12 2011-11-16 中国科学院工程热物理研究所 Double-stage heat storage trough type solar thermal power generation system
JP2012127574A (en) * 2010-12-15 2012-07-05 Hitachi Plant Technologies Ltd Solar heat utilization system and its control method
JP2013164196A (en) * 2012-02-10 2013-08-22 Takasago Thermal Eng Co Ltd Heat storing tank and solar heat power generation system using heat storing tank
JP2013224343A (en) * 2012-04-19 2013-10-31 Ihi Corp Heat storage material, and heat storage system
JP2014001641A (en) * 2012-06-15 2014-01-09 Tokyo Institute Of Technology Solar heat gas turbine power generation system
JP2014190283A (en) * 2013-03-28 2014-10-06 Hitachi Ltd Solar heat utilization gas turbine system
WO2014185179A1 (en) * 2013-05-17 2014-11-20 株式会社Ihi Heat storage system
JP2015102254A (en) * 2013-11-22 2015-06-04 株式会社Ihi Hydrate solid drying device
JP2016031177A (en) * 2014-07-28 2016-03-07 富士ソーラー株式会社 Sunlight heat transfer apparatus
JP2016085030A (en) * 2014-10-17 2016-05-19 エナテックス株式会社 Direct water heat collective type solar heat utilization system
JP2016099099A (en) * 2014-11-26 2016-05-30 株式会社Ihi Drying system
WO2017073040A1 (en) * 2015-10-28 2017-05-04 千代田化工建設株式会社 Solar thermal power generation system and method for controlling same
JP2017523284A (en) * 2014-07-16 2017-08-17 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Salt mixture

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6923667B2 (en) * 2017-10-31 2021-08-25 三菱パワー株式会社 Solar thermal power generation system

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01234753A (en) * 1988-03-15 1989-09-20 Kawasaki Heavy Ind Ltd Delivery device for stored energy
CN102242699A (en) * 2010-05-12 2011-11-16 中国科学院工程热物理研究所 Double-stage heat storage trough type solar thermal power generation system
JP2012127574A (en) * 2010-12-15 2012-07-05 Hitachi Plant Technologies Ltd Solar heat utilization system and its control method
JP2013164196A (en) * 2012-02-10 2013-08-22 Takasago Thermal Eng Co Ltd Heat storing tank and solar heat power generation system using heat storing tank
JP2013224343A (en) * 2012-04-19 2013-10-31 Ihi Corp Heat storage material, and heat storage system
JP2014001641A (en) * 2012-06-15 2014-01-09 Tokyo Institute Of Technology Solar heat gas turbine power generation system
JP2014190283A (en) * 2013-03-28 2014-10-06 Hitachi Ltd Solar heat utilization gas turbine system
WO2014185179A1 (en) * 2013-05-17 2014-11-20 株式会社Ihi Heat storage system
JP2015102254A (en) * 2013-11-22 2015-06-04 株式会社Ihi Hydrate solid drying device
JP2017523284A (en) * 2014-07-16 2017-08-17 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Salt mixture
JP2016031177A (en) * 2014-07-28 2016-03-07 富士ソーラー株式会社 Sunlight heat transfer apparatus
JP2016085030A (en) * 2014-10-17 2016-05-19 エナテックス株式会社 Direct water heat collective type solar heat utilization system
JP2016099099A (en) * 2014-11-26 2016-05-30 株式会社Ihi Drying system
WO2017073040A1 (en) * 2015-10-28 2017-05-04 千代田化工建設株式会社 Solar thermal power generation system and method for controlling same

Also Published As

Publication number Publication date
WO2020145106A1 (en) 2020-07-16

Similar Documents

Publication Publication Date Title
US10012113B2 (en) Combined cycle plant with thermal energy storage
US8960182B2 (en) Device and method for storage and transfer of thermal energy originated from solar radiation based on fluidization of a bed of particles
CA2893160C (en) Extraction from large thermal storage systems using phase change materials and latent heat exchangers
US7051529B2 (en) Solar dish concentrator with a molten salt receiver incorporating thermal energy storage
US9476402B2 (en) Pressurized solar power system
US9683788B2 (en) Steam heat storage system
JP6151768B2 (en) Apparatus, system and method for storing and using solar derived thermal energy with high level of energy efficiency
CN101984761A (en) Combined cycle power plant
WO2011035213A2 (en) Systems and methods of thermal transfer and/or storage
WO2011035232A2 (en) Concentrated solar power system
JP2014092086A (en) Solar heat power plant, and solar heat storage and radiation apparatus
JP5812955B2 (en) Power generator / heater
US20140202155A1 (en) Solar thermal electric power generation system
US20150144304A1 (en) High-temperature thermal storage device with induction heating and molten metal, and thermal storage-composite system
JP6309702B2 (en) Thermal storage tank and solar power generation system using thermal storage tank
US6776154B2 (en) Solar energy system with direct absorption of solar radiation
JPWO2020145106A1 (en) Steam supply and drying system
WO2000079202A1 (en) Safety system for storage of high temperature heat
WO2020166526A1 (en) Vapor supply device and drying system
ES2431245B2 (en) Procedure of accumulation of solar thermal energy by means of a condensable fluid, with loading and unloading at sliding pressure, and device for its implementation
WO2019011309A1 (en) Heat-transfer and heat-storage separation method and system for solar photothermal utilization
JP6784699B2 (en) Improving power plant efficiency
JPS60500380A (en) Thermal energy storage and recovery device and method for fossil fuel-fired steam generators
JP6520076B2 (en) Drying system
GB2493387A (en) Thermal buffer unit comprising a heat pipe having a thermal store contained therein

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220412