JP5596715B2 - Solar thermal combined power generation system and solar thermal combined power generation method - Google Patents

Solar thermal combined power generation system and solar thermal combined power generation method Download PDF

Info

Publication number
JP5596715B2
JP5596715B2 JP2012008734A JP2012008734A JP5596715B2 JP 5596715 B2 JP5596715 B2 JP 5596715B2 JP 2012008734 A JP2012008734 A JP 2012008734A JP 2012008734 A JP2012008734 A JP 2012008734A JP 5596715 B2 JP5596715 B2 JP 5596715B2
Authority
JP
Japan
Prior art keywords
solar
temperature
power generation
steam
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012008734A
Other languages
Japanese (ja)
Other versions
JP2013147996A (en
Inventor
信義 三島
尊 杉浦
季彦 坂倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2012008734A priority Critical patent/JP5596715B2/en
Publication of JP2013147996A publication Critical patent/JP2013147996A/en
Application granted granted Critical
Publication of JP5596715B2 publication Critical patent/JP5596715B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Air Supply (AREA)

Description

本発明は、太陽熱複合発電システム及び太陽熱複合発電方法に係り、特に、汽力発電のボイラ装置と太陽熱集熱装置を組み合わせて、ボイラ燃料用の化石燃料の使用量を減らすようにした太陽熱複合発電システム及び太陽熱複合発電方法に関する。   The present invention relates to a combined solar thermal power generation system and a combined solar thermal power generation method, and in particular, a combined solar thermal power generation system that reduces the amount of fossil fuel used for boiler fuel by combining a steam generator boiler device and a solar thermal collector. And a solar thermal combined power generation method.

太陽熱を利用した発電システムとしては、太陽熱により蒸気を発生させ、この蒸気を用いて蒸気タービンを回す太陽熱発電システムや、特許文献1に記載のように、太陽熱エネルギを利用して圧縮性作動流体を加熱昇温して太陽熱ガスタービンを回す太陽熱発電システムがある。   As a power generation system using solar heat, a steam is generated by solar heat, and a solar power generation system that rotates a steam turbine using this steam, or a compressive working fluid using solar heat energy as described in Patent Document 1, is used. There is a solar thermal power generation system that heats and heats and rotates a solar gas turbine.

また、太陽熱発電システムでは、夜明けから日没までの日中の天気の大きな変化を考慮する必要があり、例えば、特許文献2には、蒸気を発生させる熱交換器に太陽光によって加熱された熱媒体を供給する熱媒体供給通路の途中にバーナを用いた熱媒体加熱装置を設置し、太陽光によって加熱された熱媒体が温度変動している場合であっても、その温度が低下しているときの熱媒体を熱媒体加熱装置によって加熱して熱交換器に供給するようにし、蒸気タービンに供給される蒸気状態の変動を効果的に抑制することができるようにした太陽熱発電システムが提案されている。   Moreover, in the solar thermal power generation system, it is necessary to consider a large change in daytime weather from dawn to sunset. For example, Patent Document 2 discloses heat heated by sunlight in a heat exchanger that generates steam. Even if the heat medium heating device using a burner is installed in the middle of the heat medium supply passage for supplying the medium, and the temperature of the heat medium heated by sunlight is fluctuating, the temperature is lowered. A solar thermal power generation system is proposed in which a heat medium is heated by a heat medium heating device and supplied to a heat exchanger so that fluctuations in the state of steam supplied to the steam turbine can be effectively suppressed. ing.

また、特許文献3には、太陽熱エネルギと化石燃料の両方を用いた発電システムとして、太陽熱流体により圧縮空気を予熱してガスタービン燃焼器に供給する太陽熱予熱器と、ガスタービンの排ガスを用いて蒸気を生成する排熱回収蒸気発生器からの加熱作動流体を太陽熱流体により加熱して蒸気タービンに蒸気を供給する太陽熱蒸発器/過熱器とを設けた太陽熱複合発電システムが提案されている。   Further, in Patent Document 3, as a power generation system using both solar thermal energy and fossil fuel, a solar thermal preheater that preheats compressed air with a solar thermal fluid and supplies the compressed air to a gas turbine combustor, and an exhaust gas from the gas turbine are used. There has been proposed a combined solar thermal power generation system provided with a solar evaporator / superheater that heats a heated working fluid from an exhaust heat recovery steam generator that generates steam and supplies the steam to the steam turbine.

特開2010−275997号公報JP 2010-275997 A 特開2008−39367号公報JP 2008-39367 A 特開2011−117447号公報JP 2011-117447 A

太陽熱エネルギのみを用いた太陽熱発電システムでは、夜間や雨天等の太陽熱が得られない天候状態において、タービンを駆動するエネルギ源がなくなり、タービンを運転できない時間が増加し、稼働率の低下につながる。発電所は安定供給が第1の使命であり、太陽熱のみで発電所を建設することはリスクが高い。   In a solar thermal power generation system using only solar thermal energy, the energy source for driving the turbine is lost in the weather conditions such as nighttime or rainy weather where solar heat cannot be obtained, and the time during which the turbine cannot be operated increases, leading to a reduction in operating rate. A stable power supply is the primary mission of power plants, and building a power plant with solar heat alone is risky.

従って、天候状態に影響を受けないで安定的に発電するために、化石燃料を併用した太陽熱発電システムが有効と考えられる。   Therefore, in order to generate power stably without being affected by the weather conditions, a solar thermal power generation system using fossil fuel is considered effective.

化石燃料を併用した太陽熱発電システムとしては、特許文献2や3に記載の発電システムがあり、それぞれ、蒸気状態の変動抑制や、燃料や太陽熱エネルギの状況に応じた運転が可能などの効果がある。太陽熱利用としては、特許文献2では太陽熱で蒸気を発生するシステムであり、特許文献3ではガスタービン燃焼用の圧縮空気や蒸気タービンに供給する蒸気を太陽熱で加熱するシステムである。   As a solar thermal power generation system using fossil fuels in combination, there are power generation systems described in Patent Documents 2 and 3, each of which has an effect of suppressing fluctuations in the vapor state and capable of operation according to the state of fuel and solar thermal energy. . As solar heat utilization, Patent Document 2 is a system that generates steam by solar heat, and Patent Document 3 is a system that heats compressed air for gas turbine combustion and steam supplied to the steam turbine by solar heat.

本発明の目的は、化石燃料を併用した太陽熱発電システムであって、従来とは異なる太陽熱利用により、天候状態に影響を受けないで安定的に発電することが可能な太陽熱複合発電システム及び太陽熱複合発電方法を提供することにある。   An object of the present invention is a solar thermal power generation system using a fossil fuel in combination, and a solar thermal combined power generation system and a solar thermal composite capable of stably generating power without being affected by weather conditions by using solar heat different from the conventional one It is to provide a power generation method.

本発明は、太陽熱エネルギをボイラの燃焼用空気の加熱源として活用するようにしたものであり、ボイラを加圧ボイラとして、圧縮した燃焼用空気を太陽熱エネルギで過熱して加圧ボイラに導入し、圧縮・過熱した燃焼用空気によりボイラ燃料を燃焼して高温高圧ガスを発生させ、この高温高圧ガスにより蒸気を発生させて蒸気タービンに供給し蒸気タービン発電機を駆動するとともに、加圧ボイラからの高圧排ガスを膨張ガスタービンに導入し、膨張ガスタービンによりボイラの燃焼用空気を圧縮する圧縮機とガスタービン発電機を駆動するようにしたことを特徴とする。   The present invention utilizes solar thermal energy as a heating source for combustion air of a boiler. The boiler is a pressurized boiler, and the compressed combustion air is superheated with solar thermal energy and introduced into the pressurized boiler. The boiler fuel is combusted with compressed and overheated combustion air to generate high-temperature and high-pressure gas, and steam is generated by this high-temperature and high-pressure gas and supplied to the steam turbine to drive the steam turbine generator, and from the pressurized boiler The high-pressure exhaust gas is introduced into an expansion gas turbine, and the compressor for compressing the combustion air of the boiler and the gas turbine generator are driven by the expansion gas turbine.

また、本発明は、加圧ボイラの蒸発器と過熱器との間に減温器を設け、減温器により蒸気タービンに供給する蒸気温度を調節するようにしたことを特徴とする。   Further, the present invention is characterized in that a temperature reducer is provided between the evaporator and superheater of the pressurized boiler, and the steam temperature supplied to the steam turbine is adjusted by the temperature reducer.

また、本発明は、太陽熱蓄熱装置を備え、太陽熱蓄熱装置からの高温加熱媒体を用いて圧縮した燃焼用空気を過熱するようにしたことを特徴とする。   In addition, the present invention is characterized in that a solar heat storage device is provided, and the combustion air compressed using a high-temperature heating medium from the solar heat storage device is overheated.

本発明によれば、天候状態に影響を受けないで安定的に発電することが可能な化石燃料を併用した新たな太陽熱複合発電システムを実現できる。   ADVANTAGE OF THE INVENTION According to this invention, the new solar thermal combined power generation system which used the fossil fuel which can generate electric power stably without being influenced by a weather condition is realizable.

本発明の一実施例に係る太陽熱加圧複合発電システムを示す図である。It is a figure which shows the solar thermal pressure combined power generation system which concerns on one Example of this invention. 図1における空気過熱器装置の詳細構成を示す図である。It is a figure which shows the detailed structure of the air superheater apparatus in FIG.

本実施例の太陽熱複合発電システムは、汽力発電のボイラ装置と太陽熱集熱装置を組み合わせて、ボイラ燃料用の化石燃料の使用量を減らすようにしたものである。具体的には、ボイラ装置を、例えば、火力発電の一形態である加圧流動床複合発電所におけるボイラ装置のように、圧力容器の中にボイラを設置した加圧ボイラ装置とし、加圧ボイラ装置には、燃焼用空気供給系統に太陽熱利用の空気過熱装置を設けている。そして、太陽熱エネルギによりボイラ燃焼用の高圧空気を過熱して加圧ボイラに投入し、燃料を空気燃焼させ、高温高圧ガスと作動流体の熱交換で発生した蒸気により蒸気タービンを駆動し、加圧ボイラの高圧排ガスによりガスタービンを駆動するようにしている。言い換えれば、加圧ボイラで蒸気と高温高圧ガスを生み出し、蒸気タービンとガスタービンを同時に駆動するようにしている。そして、ガスタービンによりボイラ燃焼用空気を圧縮し、また、発電を行うようにしている。   The combined solar thermal power generation system of this embodiment is configured to reduce the amount of fossil fuel used for boiler fuel by combining a steam generator boiler device and a solar heat collector. Specifically, the boiler apparatus is a pressurized boiler apparatus in which a boiler is installed in a pressure vessel, such as a boiler apparatus in a pressurized fluidized bed combined power plant that is a form of thermal power generation. The apparatus is provided with an air superheater utilizing solar heat in the combustion air supply system. Then, high-pressure air for boiler combustion is heated by solar thermal energy and put into a pressurized boiler, fuel is burned in air, a steam turbine is driven by steam generated by heat exchange between high-temperature and high-pressure gas and working fluid, and pressurized The gas turbine is driven by high pressure exhaust gas from the boiler. In other words, steam and high-temperature high-pressure gas are produced by a pressurized boiler, and the steam turbine and the gas turbine are driven simultaneously. And the gas for boiler combustion is compressed with a gas turbine, and electric power generation is performed.

本実施例では、加圧ボイラに燃焼用空気を太陽熱利用で過熱して供給することから、以下、加圧ボイラを太陽熱加圧ボイラと称し、太陽熱複合発電システムを太陽熱加圧複合発電システムと称する。   In this embodiment, since combustion air is supplied to the pressurized boiler after being heated by using solar heat, the pressurized boiler is hereinafter referred to as a solar thermal pressurized boiler, and the solar thermal combined power generation system is referred to as a solar thermal pressurized combined power generation system. .

以下、図面を用いて本発明の一実施例を説明する。図1は、太陽熱加圧複合発電システムの系統図を示すもので、太陽熱集熱装置(太陽熱回収装置)100、空気過熱装置200、太陽熱加圧ボイラ装置300、ガスタービン発電・圧縮装置400、及び蒸気タービン発電装置500からなる太陽熱加圧複合発電システムの一例を示している。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a system diagram of a solar heat combined power generation system, which includes a solar heat collector (solar heat recovery device) 100, an air superheater 200, a solar pressure boiler device 300, a gas turbine power generation / compression device 400, and An example of a solar heat combined power generation system including a steam turbine power generation device 500 is shown.

本実施例の太陽熱集熱装置100は、太陽熱を集めると同時に蓄熱するもので、太陽光の集熱を行う太陽熱集熱部と太陽熱を蓄熱する太陽熱集熱装置から構成されている。本実施例では、太陽熱蓄熱装置を用いているが、太陽熱蓄熱装置を用いないで、太陽熱集熱部(太陽熱集熱器63)から空気過熱装置200に熱媒体を供給するようにしても良い。但し、本発明の太陽熱加圧複合発電システムからすれば、太陽熱蓄熱装置の利用は好適であり、また、天候の急変時や夜間の利用を考慮すると、太陽熱蓄熱装置を用いた方が良い。即ち、太陽熱蓄熱装置を用い、昼間に蓄熱しておいた太陽熱エネルギを利用して、化石燃料の燃焼用空気を夜間時に過熱して、夜間も太陽熱を活用した太陽熱加圧複合発電が行える。   The solar heat collecting apparatus 100 according to the present embodiment collects solar heat and stores it at the same time. The solar heat collecting apparatus 100 includes a solar heat collecting part that collects sunlight and a solar heat collecting apparatus that stores solar heat. In this embodiment, a solar heat storage device is used, but a heat medium may be supplied from the solar heat collector (solar heat collector 63) to the air superheater 200 without using the solar heat storage device. However, in the case of the solar heat combined power generation system of the present invention, the use of the solar heat storage device is suitable, and it is better to use the solar heat storage device in consideration of sudden change in weather or night use. That is, by using solar thermal energy storage device, solar thermal energy stored in the daytime is used to overheat the fossil fuel combustion air at night, and solar-heated combined power generation using solar heat at night can be performed.

太陽熱集熱部として、本実施例では、太陽光反射鏡(ヘリオスタット)5と太陽熱集熱器63にて太陽熱を集熱するタワー式が用いられている。太陽熱集熱部としては、タワー式に限定されず、曲面反射鏡を使うトラフ型または長い平面鏡を使うフレネル型でも適用可能である。即ち、太陽熱を集熱する考え方はこの3種類とも同様であり、特に限定されない。   In the present embodiment, a tower type that collects solar heat using a solar reflector (heliostat) 5 and a solar heat collector 63 is used as the solar heat collector. The solar heat collecting section is not limited to the tower type, but can be applied to a trough type using a curved reflecting mirror or a Fresnel type using a long plane mirror. That is, the idea of collecting solar heat is the same for all three types, and is not particularly limited.

太陽熱蓄熱装置は、高温熱媒体蓄熱槽6と低温熱媒体蓄熱槽7とから構成されている。集熱した太陽熱エネルギを蓄熱或いは放熱するための蓄熱用の熱媒体として、本実施例では溶融塩を用いている。溶融塩としては硝酸ナトリウムや硝酸カリウムの溶融塩が用いられる。また、太陽熱エネルギを蓄熱する場合、太陽熱集熱器を流れる熱媒体(水など)と太陽熱蓄熱装置を流れる熱媒体(溶融塩)を別にし、太陽熱集熱器で集熱した熱媒体と太陽熱蓄熱装置からの低温熱媒体とを熱交換させて太陽熱蓄熱装置に蓄熱するようにしても良い。   The solar heat storage device includes a high-temperature heat medium heat storage tank 6 and a low-temperature heat medium heat storage tank 7. In this embodiment, molten salt is used as a heat storage heat storage medium for storing or radiating the collected solar thermal energy. As the molten salt, a molten salt of sodium nitrate or potassium nitrate is used. Also, when storing solar heat energy, separate the heat medium (water, etc.) flowing through the solar heat collector and the heat medium (molten salt) flowing through the solar heat storage device, and the heat medium and solar heat storage collected by the solar heat collector Heat may be stored in the solar heat storage device by exchanging heat with the low-temperature heat medium from the device.

太陽60から発せられた太陽光61は多数の太陽光反射鏡5で反射され太陽光反射光線62となって太陽熱集熱器63に集められる。太陽熱集熱器63は太陽熱集熱塔4の頂上の高い位置に設置されている。   Sunlight 61 emitted from the sun 60 is reflected by a large number of sunlight reflecting mirrors 5 and becomes a sunlight reflected light beam 62 and is collected in a solar heat collector 63. The solar heat collector 63 is installed at a high position on the top of the solar heat collection tower 4.

太陽熱集熱器63で加熱された高温熱媒体は太陽熱集熱塔内高温熱媒体配管8内を流れ高温熱媒体蓄熱槽6に貯められる。高温熱媒体蓄熱槽6を出た高温熱媒体は高温熱媒体空気過熱器入口配管9と高温熱媒体空気過熱器入口弁50を通過して、空気過熱器66に導入され、空気圧縮機15から送られてきた高圧空気をさらに過熱する(詳細は後述)。空気過熱器66を出た低温熱媒体は、低温熱媒体空気過熱器出口配管10と低温熱媒体空気過熱器出口弁50を通過して低温熱媒体蓄熱槽7に貯められる。   The high-temperature heat medium heated by the solar heat collector 63 flows through the high-temperature heat medium pipe 8 in the solar heat collector tower and is stored in the high-temperature heat medium heat storage tank 6. The high-temperature heat medium exiting the high-temperature heat medium storage tank 6 passes through the high-temperature heat medium air superheater inlet pipe 9 and the high-temperature heat medium air superheater inlet valve 50 and is introduced into the air superheater 66, from the air compressor 15. The high-pressure air that has been sent is further heated (details will be described later). The low-temperature heat medium exiting the air superheater 66 passes through the low-temperature heat medium air superheater outlet pipe 10 and the low-temperature heat medium air superheater outlet valve 50 and is stored in the low-temperature heat medium heat storage tank 7.

低温熱媒体は、低温熱媒体蓄熱槽7内に設置された熱媒体循環ポンプ(図示省略)にて低温熱媒体蓄熱槽出口配管11内を通過して太陽熱集熱器63に移送され再加熱されて、高温熱媒体となり、再び、高温熱媒体蓄熱槽6を介して空気過熱器66に送りこまれる。   The low-temperature heat medium passes through the low-temperature heat medium heat storage tank outlet pipe 11 by a heat medium circulation pump (not shown) installed in the low-temperature heat medium heat storage tank 7 and is transferred to the solar heat collector 63 and reheated. Then, it becomes a high-temperature heat medium, and is sent again to the air superheater 66 through the high-temperature heat medium heat storage tank 6.

このようにして集熱した太陽熱エネルギを、次のように汽力発電のボイラ装置に利用して、ボイラ燃料用の化石燃料の使用量を減らすようにしている。   The solar thermal energy collected in this way is used in a boiler apparatus for steam power generation as follows to reduce the amount of fossil fuel used for boiler fuel.

即ち、本実施例では、回収した太陽熱エネルギを、特許文献3のようなガスタービンの燃焼用空気でなく、ボイラの燃焼用空気として活用するようにしている。そして、ボイラの燃焼用空気を圧縮空気としており、圧縮空気を太陽熱により過熱してボイラに投入し、燃料を燃焼させ高温高圧ガスを発生させるようにしている。言い換えれば、太陽熱エネルギと化石燃料燃焼エネルギを同時に活用するために、空気圧縮機から供給されるボイラ燃焼用空気をさらに太陽熱エネルギを使って過熱して、高温高圧空気に変えて太陽熱加圧ボイラに投入するようにしている。ボイラの排ガスは高圧排ガスとなることから、ガスタービンの作動流体として利用することができる。高圧排ガスで駆動されるガスタービンは、発電機の他に、ボイラの燃焼用空気の圧縮機の駆動源として利用するようにしている。   In other words, in the present embodiment, the recovered solar thermal energy is utilized not as combustion air for a gas turbine as in Patent Document 3 but as combustion air for a boiler. The combustion air of the boiler is compressed air, and the compressed air is heated by solar heat and charged into the boiler to burn the fuel and generate high-temperature and high-pressure gas. In other words, in order to utilize solar thermal energy and fossil fuel combustion energy at the same time, the boiler combustion air supplied from the air compressor is further heated using solar thermal energy and converted into high-temperature and high-pressure air into a solar-heated pressure boiler. I am trying to throw it in. Since the exhaust gas from the boiler becomes high-pressure exhaust gas, it can be used as a working fluid for the gas turbine. A gas turbine driven by high-pressure exhaust gas is used as a drive source for a compressor for combustion air of a boiler in addition to a generator.

ガスタービン入り口ガス温度は太陽熱加圧ボイラ内の燃焼温度により確保されており、燃焼用空気温度が高ければ高いほど太陽熱加圧ボイラで燃焼させる燃料使用量は減少し、経済的である(高効率な太陽熱加圧複合発電システムとなる。)。同時に太陽熱加圧ボイラの燃焼ガス量の減少により有害な窒素酸化物や硫黄酸化物と二酸化炭素の排出量の大幅低減効果を同時にもたらす。   The gas temperature at the gas turbine inlet is secured by the combustion temperature in the solar pressure boiler, and the higher the combustion air temperature, the less fuel is consumed in the solar pressure boiler and the more economical (high efficiency A solar combined power generation system). At the same time, by reducing the amount of combustion gas in the solar pressure boiler, the emission of harmful nitrogen oxides, sulfur oxides and carbon dioxide is greatly reduced.

先ず、空気過熱装置200について説明する。空気過熱装置200は、燃焼用空気を過熱して太陽熱加圧ボイラ1に投入するために、空気圧縮機15で加圧された高圧高温空気を太陽熱エネルギで加熱した高温熱媒体によりさらに昇温過熱するものである。空気過熱装置200の空気過熱器66には加熱媒体として太陽熱エネルギで加熱された高温熱媒体が導入され、被加熱媒体として圧縮空気が導入されている。   First, the air superheater 200 will be described. The air superheater 200 further heats and raises the temperature of the combustion air by a high-temperature heat medium heated by solar heat energy in the high-pressure high-temperature air pressurized by the air compressor 15 in order to superheat the combustion air and put it into the solar heat pressurizing boiler 1. To do. In the air superheater 66 of the air superheater 200, a high-temperature heat medium heated by solar thermal energy is introduced as a heating medium, and compressed air is introduced as a medium to be heated.

図2を用いて構造を詳細に説明する。図2は、図1の太陽熱加圧複合発電システムの中で、太陽熱集熱装置100と空気過熱装置200内の空気過熱器66回りの系統を摘出して示すもので、同等の構成要素には図1と同一の符号を付してある。   The structure will be described in detail with reference to FIG. FIG. 2 shows an extracted system around the solar heat collector 100 and the air superheater 66 in the air superheater 200 in the solar heat combined power generation system of FIG. The same reference numerals as those in FIG.

空気過熱器66にはその中に空気過熱器伝熱管71が設けられている。高温熱媒体空気過熱器入口配管9を通じて送られる高温熱媒体蓄熱槽6からの高温熱媒体が空気過熱器66の中に設けられた空気過熱器内伝熱管入口ヘッダーを介して空気過熱器伝熱管71に供給される。一方、空気過熱器66内に空気圧縮機15からの圧縮空気が空気過熱器入口配管16を通じて導入される。高温熱媒体は空気過熱器伝熱管71中を順じ流れ、導入された圧縮空気をさらに過熱して自身は冷却され、空気過熱器66出口の空気過熱器内伝熱管出口ヘッダーに集められる。また、空気過熱器伝熱管71は、空気過熱器66の圧縮空気入口側で温度が最も高い状態の高温熱媒体により圧縮空気を加熱し、空気過熱器66の圧縮空気出口側で次に温度が高い状態の高温熱媒体により圧縮空気を過熱するように配置されている。過熱されて高温となった圧縮空気(高温高圧空気)は空気過熱器出口配管17を通じて太陽熱加圧ボイラウインドボックス69に送られ、ここで太陽熱加圧ボイラ1の燃焼用空気として利用される。空気過熱器66内で熱交換を行なった高温熱媒体は低温熱媒体と変化して空気過熱器内伝熱管出口ヘッダーを介して空気加熱器66から出て低温熱媒体空気過熱器出口配管10を通じて低温熱媒体蓄熱槽7へ送られる。   The air superheater 66 is provided with an air superheater heat transfer pipe 71 therein. The high temperature heat medium from the high temperature heat medium heat storage tank 6 sent through the high temperature heat medium air superheater inlet pipe 9 passes through the air superheater heat transfer pipe inlet header provided in the air superheater 66, and the air superheater heat transfer pipe. 71. On the other hand, compressed air from the air compressor 15 is introduced into the air superheater 66 through the air superheater inlet pipe 16. The high-temperature heat medium sequentially flows through the air superheater heat transfer pipe 71, further superheats the introduced compressed air, cools itself, and is collected in the air superheater heat exchanger pipe outlet header at the outlet of the air superheater 66. In addition, the air superheater heat transfer pipe 71 heats the compressed air with a high-temperature heat medium having the highest temperature on the compressed air inlet side of the air superheater 66, and the temperature is next on the compressed air outlet side of the air superheater 66. It arrange | positions so that compressed air may be overheated by the high temperature heat medium of a high state. The compressed air that has been heated to a high temperature (high-temperature high-pressure air) is sent to the solar pressure boiler window box 69 through the air superheater outlet pipe 17 and is used here as combustion air for the solar pressure boiler 1. The high-temperature heat medium that has exchanged heat in the air superheater 66 changes to a low-temperature heat medium, exits from the air heater 66 via the heat transfer pipe outlet header in the air superheater, and passes through the low-temperature heat medium air superheater outlet pipe 10. It is sent to the low-temperature heat medium heat storage tank 7.

空気過熱器66の被過熱側に供給される圧縮空気は、ガスタービン発電・圧縮装置の空気圧縮機15により作られる。空気入り口ダクト12から取り入れられた空気は空気圧縮機入口弁13を通過して空気圧縮機入口ダクト14を流れ空気圧縮機15に導入され圧縮される。空気圧縮機入口弁13は、起動時、空気圧縮機15のサージング事故を防ぐために絞り運用を行い、圧縮機吸い込み圧力を下げて空気流量を絞り、空気圧縮機15の圧力比を規定値に保ち、空気圧縮機15を安全に運用する。圧縮空気は、空気過熱器入口止弁64を通過して空気過熱器入口配管16内を流れて空気過熱器66に導入される。ここで、空気圧縮機15出口の圧縮空気は中温空気であり、空気過熱器66においてさらに過熱されて昇温され高温空気となる。高温高圧空気は空気過熱器出口止弁65を通過して空気過熱器出口配管17内を流れ太陽熱加圧ボイラウインドボックス69に投入されて、化石燃料の燃焼用の高温高圧空気として使用される。   The compressed air supplied to the overheated side of the air superheater 66 is produced by the air compressor 15 of the gas turbine power generation / compression device. The air taken in from the air inlet duct 12 passes through the air compressor inlet valve 13, flows through the air compressor inlet duct 14, is introduced into the air compressor 15, and is compressed. The air compressor inlet valve 13 is throttled to prevent a surging accident of the air compressor 15 at the time of start-up, the compressor suction pressure is reduced to reduce the air flow rate, and the pressure ratio of the air compressor 15 is maintained at a specified value. The air compressor 15 is operated safely. The compressed air passes through the air superheater inlet stop valve 64, flows through the air superheater inlet pipe 16, and is introduced into the air superheater 66. Here, the compressed air at the outlet of the air compressor 15 is medium temperature air, and further heated by the air superheater 66 to be heated to become high temperature air. The high-temperature and high-pressure air passes through the air superheater outlet stop valve 65, flows through the air superheater outlet pipe 17 and is injected into the solar heat pressurized boiler window box 69, and is used as high-temperature and high-pressure air for burning fossil fuel.

次に、太陽熱加圧ボイラ装置300について説明する。本実施例の太陽熱加圧ボイラ装置300は、加圧流動床複合発電所におけるボイラ装置のように圧力容器(図示省略)の中にボイラを設置、若しくは、ボイラ自体を圧力容器としたもので、燃焼用空気が太陽熱エネルギで過熱された高温高圧空気であることに特徴がある。   Next, the solar thermal pressure boiler apparatus 300 will be described. The solar pressure boiler apparatus 300 of the present embodiment is a boiler installed in a pressure vessel (not shown) like a boiler device in a pressurized fluidized bed combined power plant, or the boiler itself is a pressure vessel. The combustion air is characterized by being high-temperature and high-pressure air superheated by solar thermal energy.

太陽熱加圧ボイラ装置300には太陽熱加圧ボイラウインドボックス69が設けられており、太陽熱加圧ボイラウインドボックス69には燃料ノズル70が設置されている。   The solar heat pressurization boiler apparatus 300 is provided with a solar heat pressurization boiler window box 69, and a fuel nozzle 70 is installed in the solar heat pressurization boiler window box 69.

ボイラ燃料は化石燃料供給配管68を流下して燃料ノズル70内で高温空気と混ざり、太陽熱加圧ボイラ1内に噴射され、太陽熱加圧ボイラ1内で高温高圧空気を使って燃焼する。ボイラ燃料としては液化天然ガスまたは石油や石炭等の燃料が用いられる。   The boiler fuel flows down the fossil fuel supply pipe 68, mixes with the high temperature air in the fuel nozzle 70, is injected into the solar heat pressurization boiler 1, and burns in the solar heat pressurization boiler 1 using the high temperature high pressure air. As the boiler fuel, liquefied natural gas or fuel such as oil or coal is used.

この燃焼により、高温高圧の燃焼ガスを生み出し、太陽熱加圧ボイラ1内に設けられた太陽熱加圧ボイラ蒸発器39及び太陽熱加圧ボイラ過熱器41で作動流体を加熱/過熱して主蒸気を作り出し、また、太陽熱加圧ボイラ再熱器24で作動流体を過熱して再熱蒸気を作り出す。   By this combustion, high-temperature and high-pressure combustion gas is produced, and the working fluid is heated / superheated by the solar-heated boiler evaporator 39 and the solar-heated boiler superheater 41 provided in the solar-heated boiler 1 to produce main steam. In addition, the working fluid is superheated by the solar pressure boiler reheater 24 to generate reheat steam.

熱交換した後の高圧燃焼ガスは膨張ガスタービン2に導入される。太陽熱加圧ボイラ過熱器41からの主蒸気は主蒸気配管42を通過して高圧蒸気タービン3に導入される。太陽熱加圧ボイラ再熱器24からの再熱蒸気は高温再熱配管44を通過して中低圧蒸気タービン25に導入される。   The high-pressure combustion gas after the heat exchange is introduced into the expansion gas turbine 2. The main steam from the solar pressure boiler superheater 41 passes through the main steam pipe 42 and is introduced into the high-pressure steam turbine 3. The reheat steam from the solar pressure boiler reheater 24 passes through the high temperature reheat pipe 44 and is introduced into the intermediate / low pressure steam turbine 25.

本実施例の太陽熱加圧ボイラ装置300には、太陽熱加圧ボイラ蒸発器39と太陽熱加圧ボイラ過熱器41との間に過熱器減温器が設けられ、過熱器減温器により蒸気タービンに供給する蒸気温度を調節するようにしており、また、太陽熱加圧ボイラ再熱器24の途中に再熱器減温器30が設けられ、過熱器減温器により蒸気タービンに供給する再熱蒸気温度を調節するようにしている。これらの蒸気温度調整システムは、天候急変等(例えば、太陽光遮断時)で空気過熱器66での過熱が変動(低下)して燃焼ガス温度が変動(低下)し、主蒸気温度や再熱蒸気温度が変動(低下)するのを抑制するのに有効であり、特に太陽熱蓄熱装置を持たない太陽熱発電システムの場合に有効である。   In the solar pressure boiler apparatus 300 of the present embodiment, a superheater warmer is provided between the solar pressure boiler evaporator 39 and the solar pressure boiler superheater 41, and the superheater warmer is used as a steam turbine. The steam temperature to be supplied is adjusted, and a reheater warmer 30 is provided in the middle of the solar pressure boiler reheater 24, and the reheat steam supplied to the steam turbine by the superheater warmer. The temperature is adjusted. These steam temperature control systems change (decrease) the superheat in the air superheater 66 due to sudden changes in weather (for example, when the sunlight is interrupted), and fluctuate (decrease) the combustion gas temperature. This is effective for suppressing fluctuation (decrease) in the steam temperature, and particularly effective for a solar thermal power generation system that does not have a solar thermal storage device.

主蒸気温度の調整システムは、次のように構成されている。太陽熱加圧ボイラ蒸発器39から加圧太陽熱ボイラ連絡配管40を介して出た蒸気は過熱器減温器28内で常時(太陽熱集熱装置が通常動作時)減温制御するようにしている。太陽熱加圧ボイラ過熱器41を出る蒸気(主蒸気)の温度(主蒸気温度)は過熱器減温器スプレー調整弁29から過熱器減温器28内に供給されるスプレー水で常時制御されている。スプレー水はボイラ給水ポンプ36出口の過熱器減温器スプレー配管54を通過して過熱器減温器スプレー調整弁29に供給される。   The main steam temperature adjustment system is configured as follows. Steam discharged from the solar pressure boiler evaporator 39 through the pressurized solar boiler communication pipe 40 is controlled to be constantly reduced in the superheater desuperheater 28 (when the solar heat collector is in normal operation). The temperature (main steam temperature) of the steam (main steam) leaving the solar pressure boiler superheater 41 is constantly controlled by the spray water supplied from the superheater desuperheater spray adjustment valve 29 into the superheater desuperheater 28. Yes. The spray water passes through the superheater desuperheater spray pipe 54 at the outlet of the boiler feed pump 36 and is supplied to the superheater desuperheater spray adjustment valve 29.

太陽熱エネルギ回収量が天候の急変により急に変動した場合、過熱器減温器スプレー調整弁29のスプレー制御により対応することができる。即ち、太陽熱エネルギ回収量が変動することにより主蒸気温度が急低下する場合には、減温を急停止又は減温割合を急低下させるように、過熱器減温器スプレー調整弁29にてスプレー水の量を急減する制御を行い、主蒸気が定格温度となるようにする。また、太陽熱エネルギの変動に対しては、急変動が落ち着いた後に、必要に応じてボイラ投入燃料量の増減操作を行い、発電出力の調整を行うようにする。   When the solar heat energy recovery amount fluctuates suddenly due to a sudden change in weather, it can be dealt with by spray control of the superheater desuperheater spray adjustment valve 29. That is, when the main steam temperature rapidly decreases due to fluctuations in the amount of recovered solar thermal energy, the superheater desuperheater spray adjustment valve 29 sprays so that the temperature decrease is stopped suddenly or the temperature decrease rate is rapidly decreased. Control the amount of water to decrease rapidly so that the main steam reaches the rated temperature. Further, with respect to fluctuations in solar thermal energy, after sudden fluctuations have settled, an operation for increasing / decreasing the amount of fuel input to the boiler is performed as necessary to adjust the power generation output.

天候の急変により、太陽熱回収エネルギの回収量が急変し、主蒸気温度が急変した場合には、蒸気タービンの損傷事故発生が懸念されるが、本実施例では、スプレー水量を急減することにより蒸気温度を調整しているので、蒸気温度応答の遅れが生じない。そして、蒸気温度を一定に保つために新たな化石燃料の燃焼も不要である。   If the recovered amount of solar heat recovery energy changes suddenly due to sudden changes in the weather and the main steam temperature changes suddenly, there is a concern that a steam turbine damage accident may occur, but in this embodiment steam is reduced by rapidly decreasing the amount of spray water. Since the temperature is adjusted, there is no delay in the steam temperature response. Further, it is not necessary to burn new fossil fuel in order to keep the steam temperature constant.

再熱蒸気温度の調整システムも同様に構成されている。即ち、太陽熱加圧ボイラ再熱器24を出た蒸気は再熱器減温器30を通過するときに、再熱器減温器スプレー調整弁49により常時減温制御されており、太陽熱エネルギ回収量が天候の急変により変動した場合、再熱器減温器スプレー調整弁49のスプレー制御により対応することができる。スプレー水はボイラ給水ポンプ36のボイラ給水ポンプ中間段スプレー配管52を通過して再熱器減温器スプレー調整弁49に供給される。   The reheat steam temperature adjustment system is similarly configured. That is, when the steam exiting from the solar pressure boiler reheater 24 passes through the reheater desuperheater 30, the temperature is always controlled by the reheater desuperheater spray adjustment valve 49 to recover the solar heat energy. When the amount fluctuates due to a sudden change in weather, it can be dealt with by spray control of the reheater desuperheater spray adjustment valve 49. The spray water passes through the boiler feed water pump intermediate stage spray pipe 52 of the boiler feed water pump 36 and is supplied to the reheater desuperheater spray adjustment valve 49.

次に、ガスタービン発電・圧縮装置400について説明する。ガスタービン発電・圧縮装置は、膨張ガスタービン2と空気圧縮機15とガスタービン発電機23とで構成されている。   Next, the gas turbine power generation / compression device 400 will be described. The gas turbine power generation / compression device includes an expansion gas turbine 2, an air compressor 15, and a gas turbine generator 23.

太陽熱加圧ボイラ1で生み出された高温高圧ガスは、太陽熱加圧ボイラ過熱器41や加圧太陽熱ボイラ蒸発器39等を流れる作動流体と熱交換して冷却され、高圧中温ガスとなり、太陽熱加圧ボイラ出口ガス配管18内を流れて膨張ガスタービン入口弁67を通過して膨張ガスタービン2に導入される。   The high-temperature high-pressure gas produced in the solar pressure boiler 1 is cooled by exchanging heat with the working fluid flowing in the solar pressure boiler superheater 41, the pressurized solar boiler evaporator 39, etc., and becomes high-pressure intermediate-temperature gas, and solar pressure The gas flows through the boiler outlet gas pipe 18, passes through the expansion gas turbine inlet valve 67, and is introduced into the expansion gas turbine 2.

膨張ガスタービン2を駆動して温度が下がったガスは、脱硝装置26を通過して窒素酸化物が除去され、さらに、ガスタービン排熱回収器20に導入される。ガスタービン排熱回収器20内で、低圧給水加熱器34を出た復水により熱回収されガス温度を下げた後に、脱硫装置27に導入される。化石燃料成分として石油や石炭のごとく硫黄分を含む燃料を燃焼する場合この脱硫装置27が必要となる。化石燃料成分として液化天然ガスのごとく硫黄分を含まない燃料を燃焼する場合この脱硫装置27は必要とならない。脱硫装置出口ダクト21を通過したガスは煙突22を抜けて大気に排出される。   The gas whose temperature has decreased by driving the expansion gas turbine 2 passes through the denitration device 26 to remove nitrogen oxides, and is further introduced into the gas turbine exhaust heat recovery unit 20. In the gas turbine exhaust heat recovery unit 20, heat is recovered by the condensate discharged from the low-pressure feed water heater 34 to lower the gas temperature, and then introduced into the desulfurization device 27. This desulfurization device 27 is required when burning fuel containing sulfur as a fossil fuel component such as petroleum or coal. This desulfurization device 27 is not necessary when burning a fuel that does not contain a sulfur component such as liquefied natural gas as a fossil fuel component. The gas that has passed through the desulfurizer outlet duct 21 passes through the chimney 22 and is discharged to the atmosphere.

膨張ガスタービン2により空気圧縮機15とガスタービン発電機23が駆動される。空気圧縮機15は上述したように構成されている。   The air compressor 15 and the gas turbine generator 23 are driven by the expansion gas turbine 2. The air compressor 15 is configured as described above.

次に、蒸気タービン発電装置500について説明する。蒸気タービン発電装置500は蒸気タービン(高圧蒸気タービン3と中低圧蒸気タービン25)と蒸気タービン発電機31により構成されている。高圧蒸気タービン3と中低圧蒸気タービン25は同軸で構成されており、蒸気タービン発電機31を駆動して発電する。   Next, the steam turbine power generator 500 will be described. The steam turbine power generator 500 includes a steam turbine (the high-pressure steam turbine 3 and the medium / low-pressure steam turbine 25) and the steam turbine generator 31. The high-pressure steam turbine 3 and the medium / low-pressure steam turbine 25 are configured coaxially, and drive the steam turbine generator 31 to generate electric power.

太陽熱加圧ボイラ1で発生した蒸気は主蒸気配管42内を流れ高圧蒸気タービン3に導入される。高圧蒸気タービン3の排気蒸気は低温再熱配管43内を流れ太陽熱加圧ボイラ再熱器24にて蒸気が再熱され高温再熱配管44を流下して中低圧蒸気タービン25に導入される。   Steam generated in the solar pressure boiler 1 flows through the main steam pipe 42 and is introduced into the high-pressure steam turbine 3. The exhaust steam from the high-pressure steam turbine 3 flows through the low-temperature reheat pipe 43, and the steam is reheated by the solar pressure boiler reheater 24, flows down through the high-temperature reheat pipe 44, and is introduced into the medium-low pressure steam turbine 25.

中低圧蒸気タービン25の排気蒸気は復水器32に排出され冷却され復水に戻る。この復水は復水ポンプ33により昇圧され低圧給水加熱器34とガスタービン排熱回収器20にて加熱され脱気器35に入る。脱気器35を出た給水はボイラ給水ポンプ36にて昇圧され、高圧給水加熱器入口給水管53を通じて高圧給水加熱器37に送られる。高圧給水加熱器37にて昇温された給水は太陽熱ボイラ給水配管38にて太陽熱加圧ボイラ蒸発器39に導かれる。   The exhaust steam from the intermediate / low pressure steam turbine 25 is discharged to the condenser 32 and cooled to return to the condensate. This condensate is pressurized by a condensate pump 33 and heated by a low-pressure feed water heater 34 and a gas turbine exhaust heat recovery unit 20 and enters a deaerator 35. The feed water leaving the deaerator 35 is boosted by the boiler feed pump 36 and sent to the high pressure feed water heater 37 through the high pressure feed water heater inlet feed pipe 53. The feed water heated by the high-pressure feed water heater 37 is led to the solar heat pressurized boiler evaporator 39 through the solar boiler feed water pipe 38.

中低圧蒸気タービン25から抽気した抽気蒸気は低圧給水加熱器加熱配管55内を流れ低圧給水加熱器34に導かれ復水ポンプ33出口の復水を加熱した後、ドレンとなり低圧給水加熱器ドレン配管48を通過して復水器32に流れる。また、中低圧蒸気タービン25から抽気した抽気蒸気は脱気器加熱配管45内を流れ脱気器35に流下して、復水と合流して復水を加温脱気してボイラ給水ポンプ36に流れる。   The extracted steam extracted from the intermediate / low pressure steam turbine 25 flows through the low pressure feed water heater heating pipe 55 and is led to the low pressure feed water heater 34 to heat the condensate at the outlet of the condensate pump 33, and then becomes a drain and the low pressure feed water heater drain pipe. It passes through 48 and flows into the condenser 32. Further, the extracted steam extracted from the intermediate / low pressure steam turbine 25 flows through the deaerator heating pipe 45 and flows down to the deaerator 35, joins the condensate, warms and degass the condensate, and the boiler feed pump 36. Flowing into.

高圧蒸気タービン3から抽気した抽気蒸気は高圧給水加熱器加熱配管46内を流れ高圧給水加熱器37に導かれ給水ポンプ36出口の給水を加熱した後、ドレンとなり高圧給水加熱器ドレン配管47を通過して復水器32に流れる。   The extraction steam extracted from the high-pressure steam turbine 3 flows through the high-pressure feed water heater heating pipe 46, is led to the high-pressure feed water heater 37, heats the feed water at the outlet of the feed water pump 36, and then becomes drain and passes through the high-pressure feed water heater drain pipe 47. And flows to the condenser 32.

本実施例によれば、コストがかからない太陽熱エネルギを、太陽熱加圧ボイラの燃焼用空気の過熱エネルギとして回収利用して、太陽熱加圧ボイラの高圧排ガスをガスタービンの作動流体と利用しているので、化石燃料の使用量を大幅に減少させて発電を行うことができる。さらに、液化天然ガスのような化石燃料を燃焼する場合、硫黄酸化物の発生がなく、かつ燃費の向上により窒素酸化物の発生量が減らせることができ、脱硝装置の負担を軽減できる。また、石油や石炭のような化石燃料を燃焼する場合は、脱硫装置の負担を軽減できる。これらにより発電コストを大幅に低減することが可能な太陽熱複合発電システムを提供することができる。   According to the present embodiment, solar thermal energy that does not cost is recovered and used as superheated energy for combustion air of the solar heat pressurization boiler, and the high pressure exhaust gas of the solar heat pressurization boiler is used as the working fluid of the gas turbine. Therefore, it is possible to generate electricity by greatly reducing the amount of fossil fuel used. Furthermore, when fossil fuels such as liquefied natural gas are burned, sulfur oxides are not generated, and the amount of nitrogen oxides generated can be reduced by improving fuel consumption, thereby reducing the burden on the denitration device. Moreover, when burning fossil fuels, such as oil and coal, the burden of a desulfurization apparatus can be reduced. As a result, it is possible to provide a combined solar thermal power generation system capable of significantly reducing power generation costs.

また、太陽熱発電の弱点である、天候の変動による、太陽熱エネルギの変動が生じても、太陽熱エネルギと化石燃料エネルギを併用しているので、安定した太陽熱発電が可能となる。また、本実施例では、太陽熱蓄熱装置及び/又は減温器スプレーによる主蒸気温度/再熱蒸気温度の調整システムを備えているので、さらに、天候の急変による、太陽熱エネルギの急変が生じても、安定した太陽熱発電が可能となる。また、本実施例では、太陽熱蓄熱装置を備え(好ましくは減温器スプレーによる主蒸気温度/再熱蒸気温度の調整システムも備え)、太陽熱エネルギと化石燃料の燃焼エネルギとの組み合わせでボイラを運転しているので、夜間太陽熱エネルギが回収できない場合でも、太陽熱を一部活用しながら発電を継続することができ、経済的な太陽熱発電が可能である。   In addition, even if solar thermal energy fluctuates due to weather fluctuations, which is a weak point of solar thermal power generation, since solar thermal energy and fossil fuel energy are used in combination, stable solar thermal power generation is possible. In addition, since the present embodiment includes a system for adjusting the main steam temperature / reheat steam temperature by means of a solar heat storage device and / or a temperature reducer spray, even if a sudden change in solar thermal energy occurs due to a sudden change in weather. Stable solar power generation becomes possible. Further, in this embodiment, a solar heat storage device is provided (preferably also equipped with a main steam temperature / reheat steam temperature adjustment system by a temperature reducer spray), and the boiler is operated by a combination of solar heat energy and fossil fuel combustion energy. Therefore, even when the solar thermal energy cannot be recovered at night, the power generation can be continued while partially utilizing the solar heat, and the economical solar thermal power generation is possible.

また、太陽熱エネルギの供給先を一箇所に絞っていることから、特許文献3のように、回収した太陽熱エネルギをガスタービン燃焼器側とガスタービン排熱回収ボイラの発生蒸気側に分割制御する場合と比べて制御システムが複雑化することがない。   Moreover, since the supply destination of solar thermal energy is narrowed down to one place, as in Patent Document 3, the recovered solar thermal energy is divided and controlled to the gas turbine combustor side and the generated steam side of the gas turbine exhaust heat recovery boiler. Compared to the control system, there is no complication.

1 太陽熱加圧ボイラ
2 膨張ガスタービン
3 高圧蒸気タービン
4 太陽熱集熱塔
5 太陽光反射鏡(ヘリオスタット)
6 高温熱媒体蓄熱槽
7 低温熱媒体蓄熱槽
8 太陽熱集熱塔内高温熱媒体配管
9 高温熱媒体空気過熱器入口配管
10 低温熱媒体空気過熱器出口配管
11 低温熱媒体蓄熱槽出口配管
12 空気入り口ダクト
13 空気圧縮機入口弁
14 空気圧縮機入口ダクト
15 空気圧縮機
16 空気過熱器入口配管
17 空気過熱器出口配管
18 太陽熱加圧ボイラ出口ガス配管
19 膨張タービン出口ダクト
20 ガスタービン排熱回収器
21 脱硫装置出口ダクト
22 煙突
23 ガスタービン発電機
24 太陽熱加圧ボイラ再熱器
25 中低圧蒸気タービン
26 脱硝装置
27 脱硫装置
28 過熱器減温器
29 過熱器減温器スプレー調整弁
30 再熱器減温器
31 蒸気タービン発電機
32 復水器
33 復水ポンプ
34 低圧給水加熱器
35 脱気器
36 ボイラ給水ポンプ
37 高圧給水加熱器
38 太陽熱加圧ボイラ給水管
39 太陽熱加圧ボイラ蒸発器
40 太陽熱加圧ボイラ連絡配管
41 太陽熱加圧ボイラ過熱器
42 主蒸気配管
43 低温再熱配管
44 高温再熱配管
45 脱気器加熱配管
46 高圧給水加熱器加熱配管
47 高圧給水加熱器ドレン配管
48 低圧給水加熱器ドレン配管
49 再熱器減温器スプレー調整弁
50 高温熱媒体空気過熱器入口弁
51 低温熱媒体空気過熱器出口弁
52 ボイラ給水ポンプ中間段スプレー配管
53 高圧給水加熱器入口給水管
54 過熱器減温器スプレー配管
55 低圧給水加熱器加熱配管
60 太陽
61 太陽光
62 太陽光反射光線
63 太陽熱集熱器
64 空気過熱器入口止弁
65 空気過熱器出口止弁
66 空気過熱器
67 膨張ガスタービン入口弁
68 化石燃料供給配管
69 太陽熱加圧ボイラウインドボックス
70 燃料ノズル
71 空気過熱器伝熱管
100 太陽熱集熱装置
200 空気過熱装置
300 太陽熱加圧ボイラ装置
400 ガスタービン発電・圧縮装置
500 蒸気タービン発電装置
DESCRIPTION OF SYMBOLS 1 Solar pressure boiler 2 Expansion gas turbine 3 High pressure steam turbine 4 Solar heat collecting tower 5 Solar reflector (heliostat)
6 High-temperature heat medium heat storage tank 7 Low-temperature heat medium heat storage tank 8 High-temperature heat medium pipe 9 in the solar heat collecting tower 9 High-temperature heat medium air superheater inlet pipe 10 Low-temperature heat medium air superheater outlet pipe 11 Low-temperature heat medium heat tank outlet pipe 12 Air Inlet duct 13 Air compressor inlet valve 14 Air compressor inlet duct 15 Air compressor 16 Air superheater inlet pipe 17 Air superheater outlet pipe 18 Solar pressure boiler outlet gas pipe 19 Expansion turbine outlet duct 20 Gas turbine exhaust heat recovery unit 21 Desulfurizer outlet duct 22 Chimney 23 Gas turbine generator 24 Solar pressure boiler reheater 25 Medium / low pressure steam turbine 26 Denitration device 27 Desulfurization device 28 Superheater warmer 29 Superheater warmer spray adjustment valve 30 Reheater Desuperheater 31 Steam turbine generator 32 Condenser 33 Condensate pump 34 Low pressure feed water heater 35 Deaerator 36 Boiler feed pump 37 High pressure feed water heater 38 Solar pressure boiler feed pipe 39 Solar pressure boiler evaporator 40 Solar pressure boiler connection pipe 41 Solar pressure boiler superheater 42 Main steam pipe 43 Low temperature reheat pipe 44 High temperature reheat pipe 45 Deaerator Heating pipe 46 High pressure feed water heater heating pipe 47 High pressure feed water heater drain pipe 48 Low pressure feed water heater drain pipe 49 Reheater desuperheater spray adjustment valve 50 High temperature heat medium air superheater inlet valve 51 Low temperature heat medium air superheater outlet Valve 52 Boiler feed pump intermediate stage spray pipe 53 High pressure feed water heater inlet feed pipe 54 Superheater desuperheater spray pipe 55 Low pressure feed water heater heating pipe 60 Sun 61 Sunlight 62 Sunlight reflected light 63 Solar heat collector 64 Air superheat Inlet stop valve 65 air superheater outlet stop valve 66 air superheater 67 expansion gas turbine inlet valve 68 fossil fuel supply piping 69 solar pressure Ira windbox 70 fuel nozzle 71 air superheater heat transfer pipe 100 solar heat collector 200 air superheater 300 solar pressure boiler apparatus 400 gas turbine power generation and compression apparatus 500 steam turbine power generation system

Claims (11)

太陽熱集熱装置と、前記太陽熱集熱装置で集熱した熱媒体を加熱媒体とする空気過熱器と、前記空気過熱器に被加熱媒体として圧縮空気を供給する空気圧縮機と、前記空気圧縮機を駆動するガスタービンと、前記ガスタービンにより駆動されるガスタービン発電機と、前記空気過熱器で過熱された圧縮空気を燃焼用空気として導入して化石燃料を燃焼させ、燃焼ガスにより蒸気を発生させると共に燃焼排ガスを前記ガスタービンに供給する加圧ボイラと、前記加圧ボイラで発生した蒸気を導入する蒸気タービンと、前記蒸気タービンにより駆動される発電機を備えることを特徴とする太陽熱複合発電システム。   A solar heat collector, an air superheater using a heat medium collected by the solar heat collector as a heating medium, an air compressor supplying compressed air as a heated medium to the air superheater, and the air compressor A gas turbine that drives the gas turbine, a gas turbine generator driven by the gas turbine, and compressed air heated by the air superheater is introduced as combustion air to burn fossil fuel, and steam is generated by the combustion gas And a pressurized boiler for supplying combustion exhaust gas to the gas turbine, a steam turbine for introducing steam generated in the pressurized boiler, and a generator driven by the steam turbine. system. 請求項1に記載の太陽熱複合発電システムにおいて、
前記加圧ボイラの蒸発器と過熱器との間に減温器を設け、前記減温器により蒸気タービンに供給する蒸気温度を調節するようにしたことを特徴とする太陽熱複合発電システム。
In the solar thermal combined power generation system according to claim 1,
A solar combined power generation system, wherein a temperature reducer is provided between an evaporator and a superheater of the pressurized boiler, and the steam temperature supplied to the steam turbine is adjusted by the temperature reducer.
請求項1に記載の太陽熱複合発電システムにおいて、
前記蒸気タービンとして高圧蒸気タービンと中低圧蒸気タービンとを有し、
前記加圧ボイラの蒸発器と過熱器との間に高圧蒸気タービンに供給する主蒸気の減温器を設け、前記主蒸気の減温器により前記高圧蒸気タービンに供給する蒸気温度を調節し、
前記加圧ボイラの再熱器の途中に前記中低圧蒸気タービンに供給する再熱蒸気の減温器を設け、前記再熱蒸気の減温器により前記中低圧蒸気タービンに供給する蒸気温度を調節するようにしたことを特徴とする太陽熱複合発電システム。
In the solar thermal combined power generation system according to claim 1,
A high-pressure steam turbine and a medium-low pressure steam turbine as the steam turbine;
A main steam temperature reducer to be supplied to the high pressure steam turbine is provided between the evaporator and superheater of the pressurized boiler, and the steam temperature to be supplied to the high pressure steam turbine is adjusted by the main steam temperature reducer,
A reheat steam cooler to be supplied to the intermediate / low pressure steam turbine is provided in the middle of the reheater of the pressurized boiler, and the steam temperature supplied to the intermediate / low pressure steam turbine is adjusted by the reheat steam cooler. A combined solar thermal power generation system characterized by that.
請求項1に記載の太陽熱複合発電システムにおいて、
前記太陽熱集熱装置は、太陽熱集熱器と、前記太陽熱集熱器で集熱した太陽熱を蓄熱する蓄熱装置とを有することを特徴とする太陽熱複合発電システム。
In the solar thermal combined power generation system according to claim 1,
The solar heat collector has a solar heat collector and a heat storage device that stores solar heat collected by the solar heat collector.
請求項1に記載の太陽熱複合発電システムにおいて、
前記加圧ボイラの蒸発器と過熱器との間に減温器を設け、前記減温器により蒸気タービンに供給する蒸気温度を調節するようにし、
前記太陽熱集熱装置は、太陽熱集熱器と、前記太陽熱集熱器で集熱した太陽熱を蓄熱する蓄熱装置とを有することを特徴とする太陽熱複合発電システム。
In the solar thermal combined power generation system according to claim 1,
A temperature reducer is provided between the evaporator and the superheater of the pressurized boiler, and the steam temperature supplied to the steam turbine is adjusted by the temperature reducer,
The solar heat collector has a solar heat collector and a heat storage device that stores solar heat collected by the solar heat collector.
請求項1に記載の太陽熱複合発電システムにおいて、
前記空気圧縮機の入口に空気吸い込み量絞り機能を持つ圧縮機入口弁を設けたことを特徴とする太陽熱複合発電システム。
In the solar thermal combined power generation system according to claim 1,
A combined solar heat power generation system characterized in that a compressor inlet valve having a function of restricting the amount of air suction is provided at the inlet of the air compressor.
請求項1に記載の太陽熱複合発電システムにおいて、
前記空気過熱器は、前記太陽熱集熱装置からの熱媒体を管内にながし、管外に流れる前記空気圧縮機からの圧縮空気を過熱する伝熱管を備えることを特徴とする太陽熱複合発電システム。
In the solar thermal combined power generation system according to claim 1,
The air superheater includes a heat transfer tube that heats a heat medium from the solar heat collecting device into a tube and superheats compressed air from the air compressor that flows out of the tube.
圧縮した燃焼用空気を太陽熱エネルギで過熱して加圧ボイラに導入し、圧縮・過熱した燃焼用空気によりボイラ燃料を燃焼して高温高圧ガスを発生させ、この高温高圧ガスにより蒸気を発生させて蒸気タービンに供給し蒸気タービン発電機を駆動するとともに、前記加圧ボイラで熱交換して冷却された中温高圧ガスをガスタービンに導入し、ガスタービンにより前記ボイラの燃焼用空気を圧縮する圧縮機とガスタービン発電機を駆動するようにしたことを特徴とする太陽熱複合発電方法   The compressed combustion air is superheated with solar heat energy and introduced into the pressurized boiler, and the boiler fuel is burned with the compressed and superheated combustion air to generate high-temperature and high-pressure gas, and steam is generated with this high-temperature and high-pressure gas. A compressor that supplies a steam turbine to drive a steam turbine generator, introduces a medium-temperature high-pressure gas cooled by heat exchange with the pressurized boiler into the gas turbine, and compresses the combustion air of the boiler by the gas turbine And a solar turbine combined power generation method characterized by driving a gas turbine generator 請求項8に記載の太陽熱複合発電方法において、
通常運転時、前記加圧ボイラの蒸発器と過熱器との間で、前記蒸発器で発生した蒸気を常に減温し、天候急変により太陽熱エネルギが急減した場合、前記減温を停止若しくは前記減温の割合を小さくして、前記過熱器から前記蒸気タービンに供給される蒸気温度の変動を抑制するようにしたことを特徴とする太陽熱複合発電方法。
In the solar thermal combined power generation method according to claim 8,
During normal operation, the steam generated in the evaporator is always reduced in temperature between the evaporator and superheater of the pressurized boiler, and when the solar thermal energy is suddenly reduced due to sudden weather change, the temperature reduction is stopped or reduced. A solar combined power generation method, wherein a temperature ratio is reduced to suppress fluctuations in the temperature of steam supplied from the superheater to the steam turbine.
請求項8に記載の太陽熱複合発電方法において、
前記太陽熱エネルギを蓄熱装置に蓄熱し、
太陽熱エネルギを活用できない時間帯は、前記蓄熱装置内の太陽熱エネルギを取り出し、前記燃焼用空気を過熱することを特徴とする太陽熱複合発電方法。
In the solar thermal combined power generation method according to claim 8,
Storing the solar thermal energy in a heat storage device;
In a time zone in which solar thermal energy cannot be utilized, the solar thermal combined power generation method is characterized in that solar thermal energy in the heat storage device is taken out and the combustion air is overheated.
請求項10に記載の太陽熱複合発電方法において、
通常運転時、前記加圧ボイラの蒸発器と過熱器との間で、前記蒸発器で発生した蒸気を常に減温し、前記太陽熱エネルギを活用できない時間帯は、前記減温を停止若しくは前記減温の割合を小さくして太陽熱複合発電を継続するようにしたことを特徴とする太陽熱複合発電方法。
In the solar thermal combined power generation method according to claim 10,
During normal operation, the steam generated in the evaporator is always reduced in temperature between the evaporator and superheater of the pressurized boiler, and the temperature reduction is stopped or reduced in a time period during which the solar thermal energy cannot be utilized. A solar combined power generation method characterized in that the solar combined power generation is continued by decreasing the temperature ratio.
JP2012008734A 2012-01-19 2012-01-19 Solar thermal combined power generation system and solar thermal combined power generation method Active JP5596715B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012008734A JP5596715B2 (en) 2012-01-19 2012-01-19 Solar thermal combined power generation system and solar thermal combined power generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012008734A JP5596715B2 (en) 2012-01-19 2012-01-19 Solar thermal combined power generation system and solar thermal combined power generation method

Publications (2)

Publication Number Publication Date
JP2013147996A JP2013147996A (en) 2013-08-01
JP5596715B2 true JP5596715B2 (en) 2014-09-24

Family

ID=49045740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012008734A Active JP5596715B2 (en) 2012-01-19 2012-01-19 Solar thermal combined power generation system and solar thermal combined power generation method

Country Status (1)

Country Link
JP (1) JP5596715B2 (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9976478B2 (en) 2013-10-10 2018-05-22 Mitsubishi Heavy Industries, Ltd. Solar heat turbine system, and device and method for controlling said system
CN103672830B (en) * 2013-12-24 2015-01-28 程礼华 Remote anti-explosion solar steam generator and technology thereof
JP6223955B2 (en) 2014-12-11 2017-11-01 三菱日立パワーシステムズ株式会社 Solar power generation system
KR101784553B1 (en) * 2015-04-16 2017-11-06 두산중공업 주식회사 Hybrid power generation system using a supercritical CO2 cycle
CN105091356A (en) * 2015-07-14 2015-11-25 中国能源建设集团广东省电力设计研究院有限公司 Solar concentrating heat collection and conventional energy source coupling power generation system
CN104976616B (en) * 2015-08-05 2018-05-18 中国东方电气集团有限公司 Low heat value burnt gas high-temperature air combustion furnace with water-cooling wall
CN105333644B (en) * 2015-11-12 2017-07-25 中国科学院工程热物理研究所 A kind of heating, and cold supplying system
JP6600605B2 (en) * 2016-07-04 2019-10-30 三菱日立パワーシステムズ株式会社 Solar thermal power generation system and solar thermal power generation method
CN106968903B (en) * 2017-04-27 2023-03-10 天津大学 Hybrid solar thermal power generation system and method thereof
CN109595074B (en) * 2017-09-30 2020-01-14 浙江大学 Gas turbine system and heat storage and release method thereof
CN107587984B (en) * 2017-10-16 2024-04-16 河北工程大学 Combined cooling heating and power system based on renewable energy sources
CN207568779U (en) * 2017-10-24 2018-07-03 深圳市爱能森科技有限公司 Solar energy optical-thermal-biomass power generation system
CN108167076B (en) * 2018-02-11 2023-08-29 南京信息工程大学 Comprehensive distributed energy system for steam optimal utilization
JP6895024B2 (en) * 2018-03-29 2021-06-30 エックスワイゼット エナジー グループ、エルエルシー Systems and methods for generating heat and power using multiple closed loops with primary heat transfer loops, power generation cycle loops, and intermediate heat transfer loops.
CN109826681B (en) * 2019-02-02 2023-09-08 华电电力科学研究院有限公司 Industrial heating system for gas-steam combined cycle unit steam extraction integration and operation method thereof
CN109763869B (en) * 2019-02-02 2023-09-08 华电电力科学研究院有限公司 Heat accumulation coupling steam extraction integrated system for cascade utilization of combined cycle energy and operation method thereof
CN110030169A (en) * 2019-04-16 2019-07-19 东方电气集团东方锅炉股份有限公司 A kind of tower type solar photo-thermal power generation combined cycle system and its operation method
CN110285517A (en) * 2019-07-15 2019-09-27 南京江山能源实业有限公司 Distributed a variety of new energy comprehensive application systems
CN110318961B (en) * 2019-08-05 2023-10-17 上海发电设备成套设计研究院有限责任公司 Steam turbine set of power station and power generation method thereof
WO2022125454A1 (en) 2020-12-07 2022-06-16 XYZ Energy Group, LLC Multiple loop power generation using super critical cycle fluid with split recuperator
CN112653197B (en) * 2020-12-16 2022-05-31 山西大学 Coal-electricity internal heat circulation system and method for improving wind power consumption level thereof
CN113153473B (en) * 2021-04-19 2022-12-09 西安交通大学 Peak regulation system integrating compressed air and fuel gas steam circulation and operation method thereof
CN113188149B (en) * 2021-04-28 2022-08-30 西安热工研究院有限公司 System and method for improving inlet air temperature and fuel calorific value of garbage power station by groove type solar energy
CN114234264B (en) * 2021-12-15 2023-01-06 北京航空航天大学宁波创新研究院 Thermoelectric cooperative system coupled with steam ejector and operation method
CN114570198A (en) * 2022-03-28 2022-06-03 西安热工研究院有限公司 System and method for realizing wide-load denitration of boiler by utilizing solar energy
CN114646045B (en) * 2022-03-29 2024-05-10 深圳中广核工程设计有限公司 Steam stable supply system and steam stable supply method
CN114592935B (en) * 2022-03-30 2024-05-14 西安热工研究院有限公司 Gas turbine-double-pressure Kalina combined cycle power generation system and method
CN115288954A (en) * 2022-08-17 2022-11-04 西安热工研究院有限公司 Light coal complementary steam turbine system and power generation system with energy gradient utilization function
CN116026057B (en) * 2022-12-19 2023-08-08 中国石油大学(华东) Thermochemical combined heat and power generation system based on composite solar reactor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0539702A (en) * 1991-08-01 1993-02-19 Ishikawajima Harima Heavy Ind Co Ltd Pressurized fluidized bed compound power generating facility
US6237337B1 (en) * 1998-09-10 2001-05-29 Ormat Industries Ltd. Retrofit equipment for reducing the consumption of fossil fuel by a power plant using solar insolation
JP2010285965A (en) * 2009-06-15 2010-12-24 Mitsubishi Heavy Ind Ltd Solar thermal gas turbine power plant
US8327641B2 (en) * 2009-12-01 2012-12-11 General Electric Company System for generation of power using solar energy

Also Published As

Publication number Publication date
JP2013147996A (en) 2013-08-01

Similar Documents

Publication Publication Date Title
JP5596715B2 (en) Solar thermal combined power generation system and solar thermal combined power generation method
JP6038448B2 (en) Solar thermal combined power generation system and solar thermal combined power generation method
JP6340473B2 (en) Solar and biomass energy integrated power generation optimization combined system
US8312703B2 (en) Solar-thermal gas turbine generator
US20080127647A1 (en) Solar-Generated Steam Retrofit for Supplementing Natural-Gas Combustion at Combined Cycle Power Plants
EP2511610B1 (en) Solar boiler system
RU2009333C1 (en) Combined steam-gas power plant and method of its operation
WO2012042639A1 (en) Combined cycle power generation plant utilzing solar heat
JP2011117447A (en) Power generation system using solar energy
US6244033B1 (en) Process for generating electric power
JP2016211551A (en) Method for enhanced cold steam turbine start in supplementary fired multi gas turbine combined cycle plant
US8584465B2 (en) Method for increasing the efficiency of a power plant which is equipped with a gas turbine, and power plant for carrying out the method
WO2013065492A1 (en) Solar heat turbine electricity generation device and control method therefor
RU2584745C2 (en) High-temperature steam power plant for subcritical pressure and high-temperature flow boiler for subcritical pressure operating at variable pressure
ES2387724B1 (en) PARTIAL REGENERATION SYSTEM IN GAS CYCLES TURBINES COMBINED WITH ONE OR SEVERAL SOURCES OF HEAT.
JP7351793B2 (en) Coal-fired power generation system
AU2014233871B2 (en) Solar collector plant with thermal storage
US20150007567A1 (en) Plant and method for increasing the efficiency of electric energy production
ES2604935T3 (en) Method of operation of a power plant with Solar Energy System
JP7183130B2 (en) HOT WATER STORAGE GENERATION SYSTEM AND HOT WATER STORAGE GENERATION SYSTEM OPERATION METHOD
Talukder et al. Integration of parabolic trough collectors with natural gas Combined Cycle power plants in United Arab Emirates
JPH102205A (en) Hydrogen combustion turbine plant
RU2467179C1 (en) Combined-cycle plant with afterburner
JP2021008963A (en) Boiler, electric power generation plant including the same and control method for boiler
CN108533468A (en) A kind of solar heat complementation combined cycle integrated system of cold and hot combination

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140722

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140807

R150 Certificate of patent or registration of utility model

Ref document number: 5596715

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20140827

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250