WO2016084488A1 - Dissimilar metal bonded structure, method for producing same and water-cooled power conversion element provided with same - Google Patents

Dissimilar metal bonded structure, method for producing same and water-cooled power conversion element provided with same Download PDF

Info

Publication number
WO2016084488A1
WO2016084488A1 PCT/JP2015/078433 JP2015078433W WO2016084488A1 WO 2016084488 A1 WO2016084488 A1 WO 2016084488A1 JP 2015078433 W JP2015078433 W JP 2015078433W WO 2016084488 A1 WO2016084488 A1 WO 2016084488A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
coating layer
mixed
dissimilar
layer
Prior art date
Application number
PCT/JP2015/078433
Other languages
French (fr)
Japanese (ja)
Inventor
青田 欣也
隆彦 加藤
山賀 賢史
正 藤枝
孝介 桑原
高橋 勇
佐竹 弘之
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2016084488A1 publication Critical patent/WO2016084488A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a dissimilar metal junction structure, a manufacturing method thereof, and a water-cooled power conversion element including the same.
  • Patent Document 1 describes providing a power module with high reliability of the joint.
  • the power module is configured by sequentially laminating an underlying conductive member formed by a thermal spraying method, a solder layer, and a semiconductor chip on a metal wiring made of a first material.
  • the underlying conductive member is formed by injecting a particle group of the first material and a particle group of the second material having a smaller thermal expansion coefficient than the first material.
  • an underlying conductive member having a smaller thermal expansion coefficient than the metal wiring is interposed between the metal wiring and the solder layer, thermal stress caused by the difference in thermal expansion coefficient between the upper and lower members applied to the solder layer Is relaxed and the generation of cracks in the solder layer is suppressed.
  • an insulating resin layer made of an epoxy resin is formed between a metal wiring made of copper or the like and a heat sink made of aluminum or the like.
  • the bonding strength between the metal and the resin tends to be weak. Therefore, it is preferable that the structure made of, for example, copper and the structure made of, for example, aluminum are directly joined without using an epoxy resin or the like.
  • the present invention has been made in view of such problems, and the problem to be solved by the present invention is to dissimilar metal joints capable of joining various dissimilar metals to each other while having sufficient joint strength.
  • the object is to provide a structure, a manufacturing method thereof, and a water-cooled power conversion element including the structure.
  • the dissimilar metal joining structure of the present invention includes a metal base composed of a first metal, a coating layer formed on the metal base and composed of a second metal, and the metal base. And an intermetallic compound layer formed by alloying the first metal and the second metal, and formed on the coating layer.
  • a mixed molten and solidified portion obtained by mixing and melting three metals is provided with a stacked structure in which a plurality of layers are stacked in a direction perpendicular to the metal substrate.
  • the mixed molten and solidified part is formed, and the second metal that constitutes the coating layer and the first metal that constitutes the metal base material are alloyed by heat generated by the irradiation of the laser beam to form an intermetallic
  • the mixed melting / alloy layer forming step of forming a compound layer and the mixed melting / alloy layer forming step a plurality of times a plurality of the mixed molten solidified portions are stacked in a direction perpendicular to the metal substrate.
  • a laminated structure A laminating step of forming, is intended to include.
  • the water-cooled power conversion element of the present invention includes a metal substrate composed of a first metal, a coating layer formed on the metal substrate and composed of a second metal, and the metal substrate.
  • a heterogeneous metal joining structure comprising: a laminated structure in which a plurality of mixed molten and solidified portions obtained by mixing and melting a plurality of metals are stacked in a direction perpendicular to the metal substrate; and the metal member A power conversion element that is in thermal contact, and the laminated structure is in contact with a refrigerant that cools the power conversion element.
  • a dissimilar metal joining structure capable of joining various dissimilar metals to each other while having sufficient joining strength, a manufacturing method thereof, and a water-cooled power conversion element including the same. it can.
  • FIG. 5 is a cross-sectional view showing a state where a desired position is irradiated with laser light in the state shown in FIG. 4.
  • FIG. 1 is a perspective view of a part of a water-cooled power conversion element 110 provided with a dissimilar metal joint structure 100 according to this embodiment. That is, FIG. 1 shows the dissimilar metal junction structure 100 and the power conversion element 10 joined thereto, which constitute the water-cooled power conversion element 110.
  • the dissimilar metal joining structure 100 includes a heat transfer plate 1 (metal substrate), a plating layer 2 (coating layer), and water-cooled fins 11 (corresponding to the laminated structure 6 shown in FIG. 3 and the like). Is done.
  • a power conversion element 10 (inverter) is joined to the heat transfer plate 1.
  • the current conversion element 10 is an element that converts a direct current into an alternating current or converts an alternating current into a direct current.
  • water 12 (see FIG. 2) is in contact with the water-cooled fins 11. Thereby, the heat generated by the current conversion by the power conversion element 10 is transferred to the heat transfer plate 1, the plating layer 2, and the water-cooled fins 11 to be dissipated to the water, thereby cooling the power conversion element 10. It is like that.
  • FIG. 2 is a cross-sectional view of the water-cooled power conversion element 110 including the dissimilar metal junction structure 100 of the present embodiment.
  • a dissimilar metal joint structure 100 including the radiator plate 1, the plating layer 2, and the water-cooled fin 11 (laminated structure 6) is surrounded by an aluminum case 15 and an aluminum lid 16. And between the plating layer 2 and the aluminum lid
  • a lap weld 13 is formed between the aluminum case 15 and the heat transfer plate 1 by laser welding in order to prevent leakage of water 12 to the current conversion element 10.
  • a butt weld 14 is also formed by laser welding at the joint between the aluminum case 15 and the aluminum lid 16 in order to prevent the water 12 from leaking to the outside. In any of the lap welds 13 and the butt welds 14, since the same metal (aluminum) is welded, sufficient joint strength is ensured.
  • the heat transfer plate 1 is made of aluminum (first metal), the plating layer 2 is made of nickel (second metal), and the water-cooled fins 11 are made of copper (third metal). ing.
  • the weight reduction is achieved by using a light metal such as aluminum.
  • the plating layer 2 is made of nickel, the manufacturing cost is reduced because the plating layer 2 is easily formed using a plating method.
  • the water-cooled fin 11 occupies a relatively small volume in the dissimilar metal joint structure 100, heat dissipation to water can be further improved by using copper having higher heat conductivity than aluminum. Yes.
  • the plating layer 2 it is possible to dispose the copper water-cooled fin on the aluminum heat transfer plate 1, which is difficult because the conventional technique has a problem in the bonding strength.
  • the heat dissipation of the power conversion element 10 can be enhanced as compared with the conventional case, and the durability of the power conversion element 10 is improved. Can be improved.
  • the water-cooled power conversion element 110 aluminum and copper, which are different metals, are joined through a plating layer made of metal without using a conventional resin or the like. Therefore, the thermal conductivity between aluminum and copper is remarkably excellent as compared with the case of using a resin. Therefore, also in this respect, the heat dissipation of the power conversion element 10 can be further enhanced as compared with the conventional case, and the durability of the power conversion element 10 can be further improved.
  • FIG. 3 is an enlarged view of a portion A in FIG. 2 and is an enlarged view of the vicinity of the laminated structure 6 in the dissimilar metal bonded structure 100 of the present embodiment.
  • the laminated structure 6 (corresponding to the cooling fin 11 in FIG. 1) has a plurality of mixed molten and solidified portions 4 laminated in a direction perpendicular to the heat transfer plate 1 (hereinafter referred to as “vertical direction”). It will be.
  • the mixed molten and solidified portion 4 is formed by laminating eight layers in the vertical direction. Therefore, when the cross section of the laminated structure 6 is observed with an electron microscope, the metal structure is not a uniform cross section (no interface is observed) in the cross section of the laminated structure 6. It can be confirmed that eight layers of metal structure are laminated (deposited).
  • the plating layer 2 is made of nickel
  • the laminated structure 6 is made of copper.
  • the copper powder disposed on the surface of the plating layer 2 and the nickel in the plating layer 2 are mixed. It is melted. Therefore, in the laminated structure 6, the nickel content increases and the copper content decreases as the mixed molten and solidified portion 4 present in the vicinity of the plating layer 2.
  • the content of nickel decreases and the content of copper increases as the mixed molten and solidified portion 4 is separated from the plating layer 2.
  • the concentrations of nickel and copper contained in the plating layer 2 gradually change as the distance from the plating layer 2 increases. That is, the content of nickel and copper has a gradient composition. Thereby, the residual stress at the time of solidification of the laminated structure 6 is reduced, and the strength of the laminated structure 6 is improved.
  • the nickel constituting the plating layer 2 and the copper disposed on the surface of the plating layer 2 are a combination of dissimilar metals that are simply mixed without being alloyed. As described above, some alloys (intermetallic compounds) in which different metals are alloyed are brittle. Therefore, by forming the mixed molten and solidified portion 4 that is simply mixed without being alloyed, the bonding strength between different metals can be improved. However, it does not completely exclude that an alloy in which different kinds of metals are alloyed is included in the mixed melt-solidified portion 4, and if at least a part (preferably all) of the different kinds of metals are melt-mixed. Sufficient bonding strength is maintained.
  • the heat transfer plate 1 and the plating layer 2 there is an intermetallic between the aluminum contained in the heat transfer plate 1 and the nickel contained in the plating layer 2.
  • a compound layer 5 is formed.
  • the heat exchanger plate 1 and the plating layer 2 are directly joined.
  • the intermetallic compound layer 5 formed between the heat transfer plate 1 and the plating layer 2 is made of an aluminum-nickel alloy. This is because the heat given by the laser beam when forming the mixed molten and solidified portion 4 is transmitted through the inside of the plating layer 2 and reaches the heat transfer plate 1.
  • the intermetallic compound layer 5 is formed below the laminated structure 6.
  • the plating layer 2 which is a coating layer is formed by a plating method from the viewpoint of easy formation of a thin film having a uniform thickness, manufacturing cost, and the like. Whether or not the coating layer is formed by a plating method can be confirmed by observing a cross section of the coating layer with an electron micrograph. That is, when the coating layer is the plating layer 2 formed by the plating method, the cross section of the plating layer 2 is observed as a uniform state with no metal structure interface.
  • the bonding strength between the heat transfer plate 1 and the plating layer 2 is relatively low.
  • the joint strength between the heat transfer plate 1 and the plating layer 2 is increased by forming the intermetallic compound layer 5 in parallel with the formation of the mixed molten and solidified portion 4. That is, the nickel-aluminum alloying causes diffusion bonding of the nickel-aluminum alloy between the heat transfer plate 1 and the plating layer 2.
  • the heat exchanger plate 1 and the plating layer 2 will be joined metallically, and these joint strengths will improve. Therefore, sufficient bonding strength can be obtained even with the plating layer 2 formed by a plating method selected based on manufacturing cost and ease of formation.
  • nickel-aluminum alloys may become brittle compounds.
  • the intermetallic compound layer 5 is formed by the heat transferred during the formation of the mixed molten and solidified portion 4, the amount of the compound generated is not so large.
  • the intermetallic compound layer 5 to be formed is also extremely thin, a decrease in bonding strength due to a brittle compound is sufficiently suppressed.
  • the plating layer 2 is made of nickel (second metal), and the mixed molten solidified portion 4 and the laminated structure 6 (the plating layer 2 is disposed on the surface).
  • Metal powder is made of copper (third metal).
  • the second metal and the third metal are not limited to these. However, it is preferable that at least one of the second metal and the third metal is a complete solid solution. Moreover, it is more preferable that both of the second metal and the third metal are a solid solution. It is because a brittle intermetallic compound is not formed by using metals of all solid solutions. Specific examples of such a total solid solution include nickel and its alloys, copper and its alloys, iron and its alloys, and the like.
  • a combination of the second metal and the third metal a combination of a certain metal and an alloy containing the metal is also preferable.
  • the combination of aluminum and the alloy (aluminum alloy) containing aluminum, the combination of copper and the alloy (copper alloy) containing copper, etc. are mentioned.
  • the second metal is aluminum and the third metal is an aluminum alloy.
  • the metal (first metal) contained in the heat transfer plate 1 is not particularly limited. However, when the first metal reacts with the third metal to form a brittle alloy, the effect of the present invention is particularly greatly exerted. Specifically, for example, the first metal is aluminum and the third metal is copper. Therefore, the metal contained in the heat transfer plate 1 may be appropriately set according to the type of metal contained in the laminated structure 6.
  • the combinations shown in Table 1 below can be considered as combinations of metals used for the heat transfer plate 1, the plating layer 2, and the laminated structure 6.
  • the combinations shown in Table 1 are examples and are not limited to the combinations shown in Table 1.
  • the first combination is the combination used in the above embodiment.
  • the thickness of the heat transfer plate 1 can be about 3 mm.
  • the thickness of the plating layer 2 can be about 40 ⁇ m, for example.
  • the thickness of the intermetallic compound layer 5 can be set to, for example, 5 ⁇ m or less, more specifically, for example, about 0.8 ⁇ m from the viewpoint of obtaining sufficient bonding strength.
  • the manufacturing method of the laminated structure 6 is a so-called powder bed method.
  • FIG. 4 is a cross-sectional view after applying copper powder (third metal) to the heat transfer plate 1.
  • the spherical copper powder 3 manufactured by the atomizing method is arranged and fixed on the surface of the aluminum (first metal) heat transfer plate 1 on which the plating layer 2 of nickel (second metal) is formed. This is shown (third metal placement step).
  • the copper powder 3 does not necessarily need to be fixed to the surface of the plating layer 2 and may be disposed on the surface of the plating layer 2.
  • the plating layer 2 can be formed by, for example, an electroplating method.
  • confirmation of whether the plating layer 2 is formed by the plating method can be confirmed by observing the cross section of the plating layer 2 with an electron micrograph as described above.
  • the size of the copper powder 3 arranged and fixed on the surface of the plating layer 2 can be set to, for example, about 20 ⁇ m to 50 ⁇ m as a particle size.
  • the thickness of the layer in which the copper powder 3 is arranged and fixed can be about 100 ⁇ m.
  • FIG. 5 is a cross-sectional view showing a state where a desired position is irradiated with laser light in the state shown in FIG.
  • the laser light is emitted from the front side of the paper to the back side.
  • the copper powder 3 and nickel on the surface of the plating layer 2 are melted, and after these are mixed, a mixed melt solidified portion 4 is formed by heat dissipation (for example, cooling) (mixed melt / alloy).
  • Heat dissipation for example, cooling
  • Layer forming step in particular, during heat dissipation, although nickel and copper are sufficiently mixed, copper having a relatively high specific gravity tends to move downward, while nickel having a relatively low specific gravity tends to move upward. Therefore, in the mixed melt solidification part 4, nickel tends to exist on the upper side and copper on the lower side.
  • the plating layer 2 is a metal
  • a part of heat used for melting the copper powder 3 or the like reaches the bonding interface between the heat transfer plate 1 and the plating layer 2 through the plating layer 2.
  • dissimilar metals are joined at this joining interface, melting of both metals starts from that portion, and these metals are alloyed.
  • the intermetallic compound layer 5 is formed between the heat transfer plate 1 and the plating layer 2 and below the mixed melting and solidifying portion 4 (mixed melting / alloy layer forming step).
  • the melting range of each metal expands in the upward direction in the plating layer 2 and in the downward direction in the heat transfer plate 1 while heat transfer by laser light irradiation continues. It will be. Therefore, in the intermetallic compound layer 5, the aluminum concentration and the nickel concentration are almost the same in the vicinity of the center because they are alloyed, but the nickel concentration increases and the aluminum concentration decreases as the distance from the center increases upward. become. On the other hand, the aluminum concentration increases and the nickel concentration decreases with increasing distance from the vicinity of the center. Therefore, in FIG. 5 etc., the interface between the intermetallic compound layer 5 and the heat transfer plate 1 and the plating layer 2 is clearly shown for the convenience of illustration, but in reality, these interfaces cannot often be determined. .
  • laser light irradiation is performed under the condition that only the surface of the plating layer 2 and the copper powder 3 are melted.
  • a strong mixed melt-solidified portion 4 formed by mixing nickel and copper is formed, and a dissimilar metal bonded structure 100 having excellent bonding strength is obtained.
  • part of the heat used during the generation of the mixed molten and solidified portion 4 is transmitted through the plating layer 2 to form the intermetallic compound layer 5.
  • the bonding strength between the heat transfer plate 1 and the plating layer 2 can be increased.
  • the intermetallic compound layer 5 is formed in addition to the mixed melt-solidified portion 4, thereby obtaining the dissimilar metal bonded structure 100 having sufficiently higher bonding strength than the conventional structure as a whole structure. Can do.
  • the laser beam irradiation is strong, the plating layer 2 may be penetrated and melted, and the intermetallic compound layer 5 may not be formed. In this case, the heat transfer plate 1 is also melted, and aluminum and the copper powder 3 may react to form a brittle alloy. Therefore, in this embodiment, the laser beam may be irradiated under such a weak condition that both the surface of the plating layer 2 and the copper powder 3 can be melted.
  • the thickness of the intermetallic compound layer 5 can be controlled by the temperature at the bonding interface between the heat transfer plate 1 and the plating layer 2 and the irradiation time of the laser beam. Specifically, if the irradiation time of the laser beam is long or the distance from the bonding interface between the heat transfer plate 1 and the plating layer 2 to the intermetallic compound layer 5 is short, a thick intermetallic compound layer 5 is generated. There is a tendency. Therefore, the structure of the intermetallic compound 5 can be controlled by the irradiation condition of the laser beam, the coating condition of the metal powder 3, the thickness of the plating layer 2, and the like.
  • the thickness of the layer composed of copper powder 3 is 100 ⁇ m and the thickness of the plating layer 2 composed of nickel is 40 ⁇ m
  • a continuous oscillation fiber laser device capable of irradiating laser light with a wavelength of 1070 nm is used.
  • the beam diameter ⁇ can be set to 100 ⁇ m
  • the scan speed can be set to 100 m / s
  • the laser output can be set to 400 W.
  • the laser beam irradiation is preferably performed in an inert gas (for example, argon gas) from the viewpoint of preventing the metal melted during the formation of the mixed molten and solidified portion 4 from being oxidized.
  • an inert gas for example, argon gas
  • the mixed melt solidification part 4 with few impurities for example, oxide
  • FIG. 6 is a cross-sectional view showing a state in which the laser beam is irradiated each time while the irradiation position of the laser beam is gradually shifted, and the fifth laser beam is irradiated.
  • the laser beam is irradiated from the near side to the far side of the paper surface.
  • the irradiation position is shifted to the right by a total of 5 times and the laser beam is irradiated. It is shown.
  • the laser beam is irradiated so that the formed mixed molten and solidified portions 4 are overlapped little by little.
  • the initially formed mixed molten and solidified portion 4 shown in FIG. 5 was a mixture of aluminum and nickel, but the mixed molten and solidified portion 4 formed by the second and subsequent irradiations (for example, FIG. 6).
  • the mixed molten and solidified portion 4 includes, in addition to aluminum and nickel, the components of the mixed molten and solidified portion 4 formed at the beginning shown in Fig. 5. Therefore, the mixing formed in the left-right direction is included. Since the melt-solidified part 4 is formed of the same component, a strong mixed melt-solidified part 4 without cracks is obtained.
  • a new intermetallic compound layer 5 is formed in accordance with the new formation of the mixed molten and solidified portion 4.
  • the alloy contained in the newly formed intermetallic compound layer 5 is alloyed together with the existing alloy. Therefore, the intermetallic compound layer 5 is integrally formed with no boundary, unlike the mixed molten and solidified portion 4 simply mixed.
  • the intermetallic compound layer 5 that improves the bonding strength between the heat transfer plate 1 and the plating layer 2 is formed in accordance with the formation of the mixed molten and solidified portion 4 constituting the laminated structure 6. Therefore, even if the size of the laminated structure 6 is increased, sufficient bonding strength can be obtained.
  • FIG. 7 is a cross-sectional view after applying the copper powder 3 for forming the second layer mixed molten and solidified portion 4.
  • FIG. 7 in the state shown in FIG. 6 (the state in which five mixed molten and solidified portions 4 are formed from the front side to the back side of the paper), another copper powder 3 is made in the same manner as in the state of FIG. The arrangement is fixed. That is, FIG. 7 shows a state in which the copper powder 3 is arranged and fixed on the mixed molten and solidified portion 4 formed in FIGS. 5 and 6 (third metal arranging step, laminating step).
  • FIG. 8 is a cross-sectional view showing a state in which laser light is radiated to a position serving as a starting point for forming the second layer mixed melt solidification portion 4 in the state shown in FIG.
  • This starting point is usually the same as the laser beam irradiation position (position shown in FIG. 5) of the mixed molten and solidified portion 4 formed at the beginning of the first layer (state shown in FIG. 6).
  • the laser light irradiation can be performed in the same manner as the conditions shown in FIG.
  • FIG. 9 is a cross-sectional view showing a state in which a laser beam for irradiating a final mixed molten solidified portion constituting the laminated structure is irradiated after a plurality of irradiations while shifting the irradiation position of the laser beam. It is. That is, the operation shown in FIGS. 5 to 7 is repeated 8 times to show a state in which eight layers of the mixed molten and solidified portion 4 are formed in the vertical direction.
  • the laminated structure 6 is obtained by laminating
  • the nickel concentration is highest in the vicinity of the plating layer 2, and the nickel concentration gradually decreases toward the tip (upward).
  • the copper powder 3 is applied and fixed as shown in FIG. Therefore, the copper concentration in the vicinity of the plating layer 2 is the lowest, and the copper concentration gradually increases toward the tip (upward).
  • the concentration of nickel decreases immediately toward the tip because the amount of nickel contained in the plating layer 2 does not change.
  • the copper powder 3 is newly arranged and fixed every time the laser beam is irradiated, the concentration of copper tends to rise relatively quickly toward the tip. Therefore, although it contains nickel, the laminated structure 6 in which most of the structure is made of copper is obtained.
  • the composition changes in a gradient as described above (gradient composition).
  • gradient composition The thermal expansion coefficient gradually changes due to the gradient composition. Therefore, the residual stress at the time of solidification is reduced, deformation is reduced, and a high-strength dissimilar metal bonded structure 100 without cracks is obtained.
  • a dissimilar metal bonded structure 100 having high bonding strength is obtained by interposing the dissimilar metals, which are difficult to bond because they form a brittle compound such as aluminum and copper, through the plating layer 2.
  • bonding can be performed only with metal without using a resin or the like, the bonding strength can be sufficiently increased.
  • the plating layer 2 used for joining can be appropriately selected according to each metal to be joined, dissimilar metals that were conventionally difficult to join from the viewpoint of joining strength should be joined with sufficient joining strength. Can do.
  • FIG. 10 is a cross-sectional view of a cooling mold 120 according to another embodiment to which the dissimilar metal bonding structure 100 of the present embodiment is applied.
  • the cooling mold 120 (dissimilar metal joint structure) is an internal flow through which a mold molding part 25 (laminated structure) for molding a molten resin and water for cooling the mold molding part 25 flows.
  • a path 22 and a base plate 21 (metal substrate) for transferring heat from the mold molding part 25 to water are provided.
  • the mold molding part 25 is formed by laminating the mixed melting and solidifying part 4 in the same manner as the laminated structure 6 described above. In FIG. In addition, the boundary between the mold molding part 25 and the mixed melting and solidifying part 4 is clearly shown.
  • the plating layer 2 is formed on the base plate 21.
  • An intermetallic compound 5 is formed between the base plate 21 and the plating layer 2.
  • a mold molding part 25 is formed on the plating layer 2.
  • a mixed molten and solidified portion 4 is formed between the plating layer 2 and the mold forming portion 25.
  • the metal (first metal) constituting the base plate 21 is copper having high thermal conductivity in order to promote heat removal by water cooling.
  • the metal (2nd metal) which comprises the plating layer 2 is nickel similarly to the said water cooling power conversion element 110.
  • die molded part 25 is maraging steel. Maraging steel is an iron-based alloy containing nickel, cobalt, and the like.
  • Nickel is industrially inexpensive and does not form a brittle compound even when melted with maraging steel. And since maraging steel is high intensity
  • maraging steel is high intensity
  • the melting point of copper and the melting point of maraging steel are very different. Therefore, if the copper base plate 21 is simply joined to the die-molded portion 25 made of maraging steel, a crack occurs at the joining interface, and the joining strength is reduced. Therefore, if it is a conventional method, the mold forming part 25 cannot be directly formed on the base plate 21. Therefore, a reliable cooling mold 120 can be obtained through the plating layer 2.
  • the cooling mold 120 can be manufactured basically in the same manner as the water-cooled power conversion element 110 described above. Therefore, in the following description, a method for manufacturing the cooling mold 120 will be described mainly with a point different from the method for manufacturing the water-cooled power conversion element 110 described above.
  • a nickel plating layer 2 (thickness of about 30 ⁇ m) is formed on a base plate 21 (thickness of about 20 mm) on which the water cooling channel 22 is formed.
  • a metal powder of maraging steel (having a particle size of about 20 ⁇ m to 40 ⁇ m and an average particle size of about 30 ⁇ m, not shown) is applied on the plating layer 2.
  • This metal powder can be manufactured by, for example, a gas atomizing method.
  • the mixed molten solidified portion 4 that is a mixture of nickel and maraging steel is formed.
  • an intermetallic compound layer 5 composed of an alloy made of copper and nickel is formed.
  • the laser light irradiation conditions can be as follows. That is, from the viewpoint of preventing metal oxidation during the melting and solidification process, the laser beam is irradiated in a nitrogen atmosphere.
  • the beam diameter of the laser beam is 100 ⁇ m
  • the laser output is 200 W
  • the laser scan speed can be 100 m / s.
  • a continuous wave fiber laser having a wavelength of 1070 nm can be used as the laser light.
  • the size (height in the vertical direction) of the mold forming portion 25 that is the laminated structure 6 is not uniform. That is, as shown in FIG. 10, it is thin near the center of the mold molding part 25 and thick near both ends. Therefore, when the cooling mold 120 is manufactured, the amount and number of maraging steel applied in the vicinity of the center and the number of times of laser light irradiation are small, while these are increased in the vicinity of both ends. That is, in the manufacture of the cooling mold 120, the molding part 25 having a thickness larger than that in the vicinity of the center can be formed by repeating the application of maraging steel and laser irradiation more frequently in the vicinity of both ends. By doing in this way, the metal mold
  • the cooling mold 120 manufactured in this way can be made into a mold having excellent strength by the mold forming part 25 made of maraging steel.
  • the copper base plate 21 since the copper base plate 21 is provided, the heat transfer performance by copper is excellent, and the cooling effect of the mold molding part 25 can be enhanced.
  • the base plate 21 and the mold molding part 25 are connected only by metal. Therefore, the good heat transfer performance of copper can be exhibited to the maximum, and the cooling mold 120 excellent in cooling performance can be manufactured.
  • the composition of nickel and maraging steel is a gradient composition, like the cooling power conversion element 110 described above. Therefore, since the thermal expansion coefficient also changes in accordance with the change in composition, the residual stress due to the thermal expansion difference between different metals is reduced. Thereby, the metal mold part 25 can be joined with high strength.
  • the plating layer 2 formed by a plating method is formed as the coating layer, but the coating layer may be a layer formed by a cold spray method.
  • a second metal such as nickel
  • the coating layer By forming the coating layer using the cold spray method, a coating layer thicker than the thickness of the plating layer 2 formed by the plating method can be formed.
  • the coating layer thickly By forming the coating layer thickly, the distance from the position where the laser light is irradiated (that is, the position where the mixed molten and solidified portion 4 is formed) to the position where the intermetallic compound layer 5 is formed can be increased. it can. Thereby, it becomes difficult to transmit the heat by irradiation of a laser beam, and the comparatively thin intermetallic compound layer 5 can be formed.
  • Whether the coating layer is formed by a cold spray method can be determined by observing a cross section of the coating layer with an electron microscope. That is, when the cross section is observed with an electron microscope, the second metals are deposited in a flat shape, that is, if the structure of the second metal is not uniform and the interface between the metal structures can be confirmed, It can be determined that the coating layer was formed by a cold spray method.
  • the coating layer can be formed by, for example, a thermal spraying method in addition to the plating method or the cold spray method.
  • a thermal spraying method the 2nd metal which comprises a coating layer will collide with a metal base material in the molten state. The second metals after colliding tend to join. Therefore, when the cross section is observed using an electron microscope, the second metal structure can be observed, but the interface between the metal structures is slightly blurred as compared with the case where the second metal structure is formed by the cold spray method. Therefore, whether the coating layer is formed by the cold spray method or the thermal spray method can be determined from the state of the interface between the metal structures.
  • the coating layer may be formed using, for example, a clad material.
  • the clad material is obtained by pressing the second metal, but the state of the metal structure in the cross section observed by an electron microscope is different from the cold spray method or the thermal spray method in which the second metal collides. Therefore, in this way, it can be determined whether or not the coating layer is formed using a clad material.
  • the laser beam is used to form the mixed molten and solidified portion 4, but an electron beam may be used instead of the laser beam.
  • any method may be used as long as it can form the mixed melt-solidified portion 4 and the intermetallic compound layer 5.
  • the third metal (copper or maraging steel) is arranged and fixed every time the laser beam is irradiated, but these may be arranged and fixed each time the laser beam is irradiated. Good. That is, for example, by adjusting the focus of a laser beam or the like using a three-dimensional printer or the like, for example, it is possible to form a laminated structure 6 having an arbitrary shape in the third metal arranged only once at the beginning. it can.
  • the third metal placement step is performed only once, and the mixed melting / alloy layer forming step is performed a plurality of times. Therefore, in this embodiment, the mixed melting / alloy layer forming step is repeatedly performed, while the third metal arranging step is performed once or a plurality of times (repeatedly).
  • Heat transfer plate metal substrate
  • Plating layer coating layer
  • Metal powder third metal
  • Mixed Melting and Solidifying Portion 5
  • Intermetallic Compound Layer 6
  • Laminated Structure 10
  • Current Conversion Element 11
  • Water-Cooled Fin 12
  • Water (refrigerant) 13
  • Lap welded portion 14
  • Butt welded portion 15
  • Aluminum case 16
  • Aluminum lid 21
  • Base plate (metal base) 22
  • Water-cooled channel 25
  • Molding part laminated structure
  • Dissimilar metal joint structure 110
  • Water-cooled power conversion element dissimilar metal joint structure
  • Cooling mold dissimilar metal joint structure

Abstract

Provided are: a dissimilar metal bonded structure wherein dissimilar metals of a wider variety than ever before can be bonded, while having sufficient bonding strength; a method for producing this dissimilar metal bonded structure; and a water-cooled power conversion element which is provided with this dissimilar metal bonded structure. A dissimilar metal bonded structure 100 which is provided with: a heat transfer plate 1 which is configured of aluminum; a plating layer 2 which is formed on the heat transfer plate 1 and is configured of nickel; an intermetallic compound layer 5 which is formed between the heat transfer plate 1 and the plating layer 2, and which is obtained by alloying between aluminum and nickel; and a laminated structure 6 which is formed on the plating layer 2 and is obtained by laminating a plurality of mixed molten coagulation parts 4, each of which is obtained by mixing and melting nickel and copper, in a direction that is perpendicular to the heat transfer plate 1.

Description

異種金属接合構造物、並びにその製造方法及びそれを備える水冷電力変換素子Dissimilar metal joint structure, manufacturing method thereof, and water-cooled power conversion element including the same
 本発明は、異種金属接合構造物、並びにその製造方法及びそれを備える水冷電力変換素子に関する。 The present invention relates to a dissimilar metal junction structure, a manufacturing method thereof, and a water-cooled power conversion element including the same.
 異種金属同士を接合する場合、それらの接合界面(接合部)には、異種金属同士が結合してなる金属間化合物(合金)が形成することがある。そして、この金属間化合物が脆い場合には、伸びが少ないため、疲労強度の低下、割れによる強度低下が生じ得る。そこで、異種金属同士の接合界面の信頼性を高める技術として、特許文献1に記載の技術が知られている。 When different metals are bonded, an intermetallic compound (alloy) formed by bonding different metals may be formed at the bonding interface (bonding portion) between them. And when this intermetallic compound is brittle, since there is little elongation, the fall of fatigue strength and the strength fall by a crack may arise. Therefore, a technique described in Patent Document 1 is known as a technique for improving the reliability of the bonding interface between different metals.
 特許文献1には、接合部の信頼性が高いパワーモジュールを提供することが記載されている。具体的には、パワーモジュールは、第1の材料からなる金属配線の上に、溶射法によって形成された下敷き導電部材と、はんだ層と、半導体チップとを順次積層して構成されている。これらのうち、下敷き導電部材は、第1の材料の粒子群と、第1の材料よりも熱膨張係数が小さい第2の材料の粒子群とを噴射して形成されている。そして、金属配線とはんだ層との間に、金属配線よりも熱膨張係数の小さい下敷き導電部材が介在しているので、はんだ層に印加される上下部材間の熱膨張係数差に起因する熱応力が緩和され、はんだ層のクラックの発生が抑制されると、記載されている。 Patent Document 1 describes providing a power module with high reliability of the joint. Specifically, the power module is configured by sequentially laminating an underlying conductive member formed by a thermal spraying method, a solder layer, and a semiconductor chip on a metal wiring made of a first material. Of these, the underlying conductive member is formed by injecting a particle group of the first material and a particle group of the second material having a smaller thermal expansion coefficient than the first material. In addition, since an underlying conductive member having a smaller thermal expansion coefficient than the metal wiring is interposed between the metal wiring and the solder layer, thermal stress caused by the difference in thermal expansion coefficient between the upper and lower members applied to the solder layer Is relaxed and the generation of cracks in the solder layer is suppressed.
特開2008-300455号公報JP 2008-300455 A
 特許文献1に記載の技術では、銅等からなる金属配線と、アルミニウム等からなるヒートシンクとの間には、エポキシ樹脂からなる絶縁樹脂層が形成されている。しかし、通常、金属と樹脂との接合強度は弱くなる傾向にある。従って、例えば銅からなる構造物と、例えばアルミニウムからなる構造物とは、エポキシ樹脂等を介さずに、直接接合されることが好ましい。 In the technique described in Patent Document 1, an insulating resin layer made of an epoxy resin is formed between a metal wiring made of copper or the like and a heat sink made of aluminum or the like. However, usually, the bonding strength between the metal and the resin tends to be weak. Therefore, it is preferable that the structure made of, for example, copper and the structure made of, for example, aluminum are directly joined without using an epoxy resin or the like.
 しかし、本発明者らが検討したところによると、アルミニウムと銅とを単に接合させると、接合界面において、アルミニウムと銅とからなる金属間化合物が形成することがわかった。そして、この金属間化合物は脆いため、その接合界面において、クラック等が容易に発生し易いことがわかった。即ち、特許文献1において、銅等からなる金属配線と、アルミニウム等からなるヒートシンクとを単に接合させようとすると、それらの接合界面に脆い金属間化合物が形成される結果、接合強度が不十分になることが分かった。従って、特許文献1に記載の技術では、異種金属同士を接合させるとき、接合させる金属の組み合わせによっては接合強度が不十分になることがある。 However, according to a study by the present inventors, it was found that when aluminum and copper are simply joined, an intermetallic compound composed of aluminum and copper is formed at the joining interface. And since this intermetallic compound was brittle, it turned out that a crack etc. are easy to generate | occur | produce easily in the joining interface. That is, in Patent Document 1, when a metal wiring made of copper or the like and a heat sink made of aluminum or the like are simply joined, a brittle intermetallic compound is formed at the joining interface, resulting in insufficient joining strength. I found out that Therefore, in the technique described in Patent Document 1, when different kinds of metals are joined together, the joining strength may be insufficient depending on the combination of metals to be joined.
 本発明はこのような課題に鑑みてなされたものであり、本発明が解決しようとする課題は、十分な接合強度を有しつつ、従来よりも様々な異種金属同士を接合可能な異種金属接合構造物、並びにその製造方法及びそれを備える水冷電力変換素子を提供することにある。 The present invention has been made in view of such problems, and the problem to be solved by the present invention is to dissimilar metal joints capable of joining various dissimilar metals to each other while having sufficient joint strength. The object is to provide a structure, a manufacturing method thereof, and a water-cooled power conversion element including the structure.
 本発明者らは前記課題を解決するため、鋭意検討を行った。その結果、以下の知見を見出した。即ち、本発明の異種金属接合構造物は、第一の金属により構成される金属基材と、前記金属基材上に形成され、第二の金属により構成されるコーティング層と、前記金属基材と前記コーティング層との間に形成された、前記第一の金属と前記第二の金属とが合金化してなる金属間化合物層と、前記コーティング層上に形成され、前記第二の金属と第三の金属とが混合溶融されてなる混合溶融凝固部が、前記金属基材に対して垂直な方向に複数積層されてなる積層構造物と、を備えるものである。 The present inventors have intensively studied to solve the above problems. As a result, the following findings were found. That is, the dissimilar metal joining structure of the present invention includes a metal base composed of a first metal, a coating layer formed on the metal base and composed of a second metal, and the metal base. And an intermetallic compound layer formed by alloying the first metal and the second metal, and formed on the coating layer. A mixed molten and solidified portion obtained by mixing and melting three metals is provided with a stacked structure in which a plurality of layers are stacked in a direction perpendicular to the metal substrate.
 また、本発明の異種金属接合構造物の製造方法は、第二の金属により構成されるコーティング層が形成された金属基材上に、第三の金属を配置する金属第一配置工程と、前記金属第一配置工程において配置された前記第三の金属の側から、前記第三の金属に対してレーザ光を照射することで前記第三の金属と前記第二の金属とを混合溶融させて混合溶融凝固部を形成するとともに、前記レーザ光の照射によって生じる熱によって、前記コーティング層を構成する前記第二の金属と前記金属基材を構成する第一の金属とを合金化させて金属間化合物層を形成する混合溶融・合金層形成工程と、前記混合溶融・合金層形成工程を複数回繰り返すことで、前記混合溶融凝固部が前記金属基材に対して垂直な方向に複数積層されてなる積層構造物を形成する積層工程と、を含むものである。 Further, in the method for producing a dissimilar metal bonded structure according to the present invention, the metal first disposing step of disposing a third metal on the metal substrate on which the coating layer composed of the second metal is formed, The third metal and the second metal are mixed and melted by irradiating the third metal with laser light from the side of the third metal arranged in the first metal arrangement step. The mixed molten and solidified part is formed, and the second metal that constitutes the coating layer and the first metal that constitutes the metal base material are alloyed by heat generated by the irradiation of the laser beam to form an intermetallic By repeating the mixed melting / alloy layer forming step of forming a compound layer and the mixed melting / alloy layer forming step a plurality of times, a plurality of the mixed molten solidified portions are stacked in a direction perpendicular to the metal substrate. A laminated structure A laminating step of forming, is intended to include.
 さらに、本発明の水冷電力変換素子は、第一の金属により構成される金属基材と、前記金属基材上に形成され、第二の金属により構成されるコーティング層と、前記金属基材と前記コーティング層との間に形成された、前記第一の金属と前記第二の金属とが合金化してなる金属間化合物層と、前記コーティング層上に形成され、前記第二の金属と第三の金属とが混合溶融されてなる混合溶融凝固部が、前記金属基材に対して垂直な方向に複数積層されてなる積層構造物と、を備える異種金属接合構造物と、前記金属部材に対して熱的に接触している電力変換素子と、を備え、前記積層構造物には、前記電力変換素子を冷却する冷媒が接触しているものである。 Furthermore, the water-cooled power conversion element of the present invention includes a metal substrate composed of a first metal, a coating layer formed on the metal substrate and composed of a second metal, and the metal substrate. An intermetallic compound layer formed by alloying the first metal and the second metal formed between the coating layer, and the second metal and the third metal layer formed on the coating layer. A heterogeneous metal joining structure comprising: a laminated structure in which a plurality of mixed molten and solidified portions obtained by mixing and melting a plurality of metals are stacked in a direction perpendicular to the metal substrate; and the metal member A power conversion element that is in thermal contact, and the laminated structure is in contact with a refrigerant that cools the power conversion element.
 本発明によれば、十分な接合強度を有しつつ、従来よりも様々な異種金属同士を接合可能な異種金属接合構造物、並びにその製造方法及びそれを備える水冷電力変換素子を提供することができる。 According to the present invention, it is possible to provide a dissimilar metal joining structure capable of joining various dissimilar metals to each other while having sufficient joining strength, a manufacturing method thereof, and a water-cooled power conversion element including the same. it can.
本実施形態の異種金属接合構造物を備える水冷電力変換素子の一部を抜き出した斜視図である。It is the perspective view which extracted a part of water-cooled power conversion element provided with the dissimilar metal junction structure of this embodiment. 本実施形態の異種金属接合構造物を備える水冷電力変換素子の断面図である。It is sectional drawing of a water-cooled power converter element provided with the dissimilar metal junction structure of this embodiment. 図2のA部拡大図であり、本実施形態の異種金属接合構造物における積層構造物の近傍を拡大して示した図である。It is the A section enlarged view of Drawing 2, and is the figure which expanded and showed the neighborhood of the layered structure in the dissimilar metal junction structure of this embodiment. 伝熱板に銅粉末を塗布した後の断面図である。It is sectional drawing after apply | coating copper powder to a heat exchanger plate. 図4に示す状態において、所望の位置にレーザ光を照射している状態を示す断面図である。FIG. 5 is a cross-sectional view showing a state where a desired position is irradiated with laser light in the state shown in FIG. 4. レーザ光の照射位置を少しずつずらしながら都度照射し、5回目のレーザ光を照射する様子を示した断面図である。It is sectional drawing which showed a mode that it irradiates each time shifting the irradiation position of a laser beam little by little, and irradiates the laser beam of the 5th time. 2層目の混合溶融凝固部を形成するための銅粉末を塗布した後の断面図である。It is sectional drawing after apply | coating the copper powder for forming the mixed melt solidification part of the 2nd layer. 図7に示す状態において、2層目の混合溶融凝固部を形成するための起点となる位置にレーザ光を照射している状態を示す断面図である。It is sectional drawing which shows the state which has irradiated the laser beam to the position used as the starting point for forming the mixed melt solidification part of the 2nd layer in the state shown in FIG. レーザ光の照射位置をずらしながら複数回照射した後、積層構造物を構成する最後の混合溶融凝固部を形成するためのレーザ光を照射している様子を示す断面図である。It is sectional drawing which shows a mode that the laser beam for forming the last mixed melt solidification part which comprises a laminated structure is irradiated after irradiating several times, shifting the irradiation position of a laser beam. 本実施形態の異種金属接合構造物を適用した別の実施形態である冷却金型の断面図である。It is sectional drawing of the cooling metal mold | die which is another embodiment to which the dissimilar metal joining structure of this embodiment is applied.
 以下、図面を適宜参照しながら、本発明を実施するための形態(本実施形態)を説明する。 Hereinafter, a form for carrying out the present invention (this embodiment) will be described with reference to the drawings as appropriate.
 図1は、本実施形態の異種金属接合構造物100を備える水冷電力変換素子110の一部を抜き出した斜視図である。即ち、図1は、水冷電力変換素子110を構成する、異種金属接合構造物100及びそれと接合した電力変換素子10を示すものである。異種金属接合構造物100は、伝熱板1(金属基材)と、めっき層2(コーティング層)と、水冷フィン11(図3等に示す積層構造物6に相当する)とを備えて構成される。そして、伝熱板1には、電力変換素子10(インバータ)が接合されている。電流変換素子10は直流電流を交流に変換、もしくは交流電流を直流電流に変換する素子である。 FIG. 1 is a perspective view of a part of a water-cooled power conversion element 110 provided with a dissimilar metal joint structure 100 according to this embodiment. That is, FIG. 1 shows the dissimilar metal junction structure 100 and the power conversion element 10 joined thereto, which constitute the water-cooled power conversion element 110. The dissimilar metal joining structure 100 includes a heat transfer plate 1 (metal substrate), a plating layer 2 (coating layer), and water-cooled fins 11 (corresponding to the laminated structure 6 shown in FIG. 3 and the like). Is done. A power conversion element 10 (inverter) is joined to the heat transfer plate 1. The current conversion element 10 is an element that converts a direct current into an alternating current or converts an alternating current into a direct current.
 詳細は図2を参照しながら後記するが、水冷フィン11には、水12(図2参照)が接触している。これにより、電力変換素子10による電流変換によって生じた熱は、伝熱板1、めっき層2及び水冷フィン11を伝熱して当該水に放熱され、これにより、電力変換素子10の冷却が行われるようになっている。 Details will be described later with reference to FIG. 2, but water 12 (see FIG. 2) is in contact with the water-cooled fins 11. Thereby, the heat generated by the current conversion by the power conversion element 10 is transferred to the heat transfer plate 1, the plating layer 2, and the water-cooled fins 11 to be dissipated to the water, thereby cooling the power conversion element 10. It is like that.
 図2は、本実施形態の異種金属接合構造物100を備える水冷電力変換素子110の断面図である。図2では、図示を簡略化するため、電流変換素子10の端子等、部材の一部を省略して記載している。水冷電力変換素子110において、放熱板1、めっき層2及び水冷フィン11(積層構造体6)からなる異種金属接合構造物100は、アルミケース15及びアルミ蓋16で囲まれている。そして、めっき層2とアルミ蓋16との間には、水12が紙面奥方向に流れるようになっている。 FIG. 2 is a cross-sectional view of the water-cooled power conversion element 110 including the dissimilar metal junction structure 100 of the present embodiment. In FIG. 2, in order to simplify the illustration, some of the members such as the terminals of the current conversion element 10 are omitted. In the water-cooled power conversion element 110, a dissimilar metal joint structure 100 including the radiator plate 1, the plating layer 2, and the water-cooled fin 11 (laminated structure 6) is surrounded by an aluminum case 15 and an aluminum lid 16. And between the plating layer 2 and the aluminum lid | cover 16, the water 12 flows in the paper surface back direction.
 また、アルミケース15と伝熱板1との間にも、電流変換素子10への水12の漏れを防止するため、レーザ溶接により重ね溶接部13が形成されている。さらに、アルミケース15とアルミ蓋16との接合部にも、同様に水12の外部への漏れを防止するため、レーザ溶接によって突合せ溶接部14が形成されている。重ね溶接部13及び突き合わせ溶接部14のいずれにおいても、同じ金属同士(アルミニウム同士)の溶接であるため、十分な接合強度が確保されている。 Also, a lap weld 13 is formed between the aluminum case 15 and the heat transfer plate 1 by laser welding in order to prevent leakage of water 12 to the current conversion element 10. Further, a butt weld 14 is also formed by laser welding at the joint between the aluminum case 15 and the aluminum lid 16 in order to prevent the water 12 from leaking to the outside. In any of the lap welds 13 and the butt welds 14, since the same metal (aluminum) is welded, sufficient joint strength is ensured.
 本実施形態では、伝熱板1はアルミニウム(第一の金属)により構成され、めっき層2はニッケル(第二の金属)により構成され、水冷フィン11は銅(第三の金属)により構成されている。これらのように、異種金属接合構造物100において比較的大きな体積を有する伝熱板1では、アルミニウムという軽量な金属を用いることで、軽量化の向上が図られている。また、めっき層2をニッケルにより構成することで、めっき法を利用しためっき層2の形成のし易さから、製造コスト削減を図っている。さらに、水冷フィン11は、異種金属接合構造物100において占める体積が比較的小さいため、アルミニウムよりも伝熱性の高い銅を用いることで、水への放熱性をより高めることができるようになっている。 In this embodiment, the heat transfer plate 1 is made of aluminum (first metal), the plating layer 2 is made of nickel (second metal), and the water-cooled fins 11 are made of copper (third metal). ing. As described above, in the heat transfer plate 1 having a relatively large volume in the dissimilar metal joint structure 100, the weight reduction is achieved by using a light metal such as aluminum. In addition, since the plating layer 2 is made of nickel, the manufacturing cost is reduced because the plating layer 2 is easily formed using a plating method. Furthermore, since the water-cooled fin 11 occupies a relatively small volume in the dissimilar metal joint structure 100, heat dissipation to water can be further improved by using copper having higher heat conductivity than aluminum. Yes.
 即ち、めっき層2を設けることで、従来の技術では接合強度に課題のあるためで困難であった、銅製の水冷フィンを、アルミニウム製の伝熱板1上に配置することができる。前記のように銅は熱伝導性に優れることから、水冷電力変換素子110をこのように構成することで、電力変換素子10の放熱性を従来よりも高めることができ、電力変換素子10の耐久性を向上させることができる。 That is, by providing the plating layer 2, it is possible to dispose the copper water-cooled fin on the aluminum heat transfer plate 1, which is difficult because the conventional technique has a problem in the bonding strength. As described above, since copper is excellent in thermal conductivity, by configuring the water-cooled power conversion element 110 in this manner, the heat dissipation of the power conversion element 10 can be enhanced as compared with the conventional case, and the durability of the power conversion element 10 is improved. Can be improved.
 また、水冷電力変換素子110では、従来の樹脂等を用いずに、金属により構成されるめっき層を介して、異種金属であるアルミニウムと銅とが接合されている。そのため、アルミニウムと銅との熱伝導性が、樹脂を介する場合と比較して格段に優れる。従って、この点においても、電力変換素子10の放熱性が従来よりもさらに高められ、電力変換素子10の耐久性をより向上させることができる。 Further, in the water-cooled power conversion element 110, aluminum and copper, which are different metals, are joined through a plating layer made of metal without using a conventional resin or the like. Therefore, the thermal conductivity between aluminum and copper is remarkably excellent as compared with the case of using a resin. Therefore, also in this respect, the heat dissipation of the power conversion element 10 can be further enhanced as compared with the conventional case, and the durability of the power conversion element 10 can be further improved.
 図3は、図2のA部拡大図であり、本実施形態の異種金属接合構造物100における積層構造物6の近傍を拡大して示した図である。図3に示すように、積層構造物6(図1における冷却フィン11に相当)は、混合溶融凝固部4が伝熱板1に垂直な方向(以下、「上下方向」という)に複数積層されてなるものである。本実施形態では、混合溶融凝固部4は、上下方向に8層積層されてなる。従って、電子顕微鏡により積層構造物6の断面を観察したときに、積層構造物6の断面では金属組織が一様な断面(界面が観察されない)とはなっておらず、混合溶融凝固部4の金属組織が8層積層(堆積)していることが確認可能である。 FIG. 3 is an enlarged view of a portion A in FIG. 2 and is an enlarged view of the vicinity of the laminated structure 6 in the dissimilar metal bonded structure 100 of the present embodiment. As shown in FIG. 3, the laminated structure 6 (corresponding to the cooling fin 11 in FIG. 1) has a plurality of mixed molten and solidified portions 4 laminated in a direction perpendicular to the heat transfer plate 1 (hereinafter referred to as “vertical direction”). It will be. In the present embodiment, the mixed molten and solidified portion 4 is formed by laminating eight layers in the vertical direction. Therefore, when the cross section of the laminated structure 6 is observed with an electron microscope, the metal structure is not a uniform cross section (no interface is observed) in the cross section of the laminated structure 6. It can be confirmed that eight layers of metal structure are laminated (deposited).
 前記のように、本実施形態では、めっき層2はニッケルにより構成され、積層構造物6は銅により構成される。ただし、詳細は、異種金属接合構造物100の製造方法を説明しながら後記するが、積層構造物6は、めっき層2の表面に配置された銅粉末と、めっき層2中のニッケルとが混合溶融してなる。そのため、積層構造物6においては、めっき層2の近傍に存在する混合溶融凝固部4ほど、ニッケルの含有量が多くなり、銅の含有量が少なくなる。一方で、めっき層2から離れた混合溶融凝固部4ほど、ニッケルの含有量が少なくなり、銅の含有量が多くなる。これらのように、積層混合物6では、めっき層2に含まれるニッケル及び銅の濃度が、めっき層2から遠ざかるにつれて、徐々に変化するようになっている。即ち、ニッケル及び銅の含有量が、傾斜組成になっている。これにより、積層構造物6の凝固の際の残留応力が低減され、積層構造物6の強度が向上する。 As described above, in the present embodiment, the plating layer 2 is made of nickel, and the laminated structure 6 is made of copper. However, details will be described later while explaining the manufacturing method of the dissimilar metal bonded structure 100, but in the laminated structure 6, the copper powder disposed on the surface of the plating layer 2 and the nickel in the plating layer 2 are mixed. It is melted. Therefore, in the laminated structure 6, the nickel content increases and the copper content decreases as the mixed molten and solidified portion 4 present in the vicinity of the plating layer 2. On the other hand, the content of nickel decreases and the content of copper increases as the mixed molten and solidified portion 4 is separated from the plating layer 2. As described above, in the laminated mixture 6, the concentrations of nickel and copper contained in the plating layer 2 gradually change as the distance from the plating layer 2 increases. That is, the content of nickel and copper has a gradient composition. Thereby, the residual stress at the time of solidification of the laminated structure 6 is reduced, and the strength of the laminated structure 6 is improved.
 めっき層2を構成するニッケルと、めっき層2の表面に配置された銅とは、合金化せずに単に混合されるような異種金属の組み合わせである。前記のように、異種金属同士が合金化した合金(金属間化合物)のなかには、脆いものもある。そこで、合金化せずに単に混合している状態の混合溶融凝固部4を形成することで、異種金属同士の接合強度の向上が図られる。ただし、異種金属同士が合金化した合金が混合溶融凝固部4に含まれることを完全に排除するものではなく、異種金属同士の少なくとも一部(好ましくは全部)が溶融混合された状態であれば十分な接合強度が維持される。 The nickel constituting the plating layer 2 and the copper disposed on the surface of the plating layer 2 are a combination of dissimilar metals that are simply mixed without being alloyed. As described above, some alloys (intermetallic compounds) in which different metals are alloyed are brittle. Therefore, by forming the mixed molten and solidified portion 4 that is simply mixed without being alloyed, the bonding strength between different metals can be improved. However, it does not completely exclude that an alloy in which different kinds of metals are alloyed is included in the mixed melt-solidified portion 4, and if at least a part (preferably all) of the different kinds of metals are melt-mixed. Sufficient bonding strength is maintained.
 また、伝熱板1とめっき層2との間であって、積層構造物6の下方には、伝熱板1に含まれるアルミニウムと、めっき層2に含まれるニッケルとが合金化した金属間化合物層5が形成されている。そして、積層構造物6の下方以外の部分では、伝熱板1とめっき層2とは直接接合している。伝熱板1とめっき層2との間に形成される金属間化合物層5は、アルミニウム-ニッケル合金により構成されている。これは、混合溶融凝固部4の形成時にレーザ光によって与えられる熱が、めっき層2の内部を伝わって伝熱板1に到達することによる。即ち、めっき層2の内部を伝わった熱によって、めっき層2中のニッケルと、伝熱板1中のアルミニウムとがこれらの接合界面において反応し、ニッケルとアルミニウムとが合金化するためである。そのため、金属間化合物層5は、積層構造物6の下方に形成されることになる。 Further, between the heat transfer plate 1 and the plating layer 2, and below the laminated structure 6, there is an intermetallic between the aluminum contained in the heat transfer plate 1 and the nickel contained in the plating layer 2. A compound layer 5 is formed. And in the part other than the downward direction of the laminated structure 6, the heat exchanger plate 1 and the plating layer 2 are directly joined. The intermetallic compound layer 5 formed between the heat transfer plate 1 and the plating layer 2 is made of an aluminum-nickel alloy. This is because the heat given by the laser beam when forming the mixed molten and solidified portion 4 is transmitted through the inside of the plating layer 2 and reaches the heat transfer plate 1. That is, this is because nickel in the plating layer 2 and aluminum in the heat transfer plate 1 react with each other at the bonding interface due to heat transmitted through the inside of the plating layer 2, and nickel and aluminum are alloyed. Therefore, the intermetallic compound layer 5 is formed below the laminated structure 6.
 本実施形態において、コーティング層であるめっき層2は、均一な厚さの薄膜の形成のし易さや、製造コスト等の観点から、めっき法により形成される。コーティング層がめっき法により形成されたものであるか否かは、コーティング層の断面を電子顕微鏡写真で観察することで確認可能である。即ち、コーティング層がめっき法で形成されためっき層2である場合には、めっき層2の断面においては、金属組織の界面が無く、一様な状態として観察される。 In the present embodiment, the plating layer 2 which is a coating layer is formed by a plating method from the viewpoint of easy formation of a thin film having a uniform thickness, manufacturing cost, and the like. Whether or not the coating layer is formed by a plating method can be confirmed by observing a cross section of the coating layer with an electron micrograph. That is, when the coating layer is the plating layer 2 formed by the plating method, the cross section of the plating layer 2 is observed as a uniform state with no metal structure interface.
 コーティング層がめっき層2である本実施形態では、伝熱板1とめっき層2との接合強度は比較的低くなっている。しかし、前記の混合溶融凝固部4の形成時に金属間化合物層5が並行して形成されることで、伝熱板1とめっき層2との接合強度が高められる。即ち、ニッケルとアルミニウムとの合金化により、伝熱板1とめっき層2との間で、ニッケル-アルミニウム合金の拡散接合が生じることになる。これにより、伝熱板1とめっき層2とは金属的に接合されることになり、これらの接合強度が向上する。従って、製造コストや形成の容易さに基づいて選択されためっき法により形成されためっき層2であっても、十分な接合強度が得られる。 In the present embodiment in which the coating layer is the plating layer 2, the bonding strength between the heat transfer plate 1 and the plating layer 2 is relatively low. However, the joint strength between the heat transfer plate 1 and the plating layer 2 is increased by forming the intermetallic compound layer 5 in parallel with the formation of the mixed molten and solidified portion 4. That is, the nickel-aluminum alloying causes diffusion bonding of the nickel-aluminum alloy between the heat transfer plate 1 and the plating layer 2. Thereby, the heat exchanger plate 1 and the plating layer 2 will be joined metallically, and these joint strengths will improve. Therefore, sufficient bonding strength can be obtained even with the plating layer 2 formed by a plating method selected based on manufacturing cost and ease of formation.
 なお、ニッケル-アルミニウム合金は脆い化合物になることがある。しかし、金属間化合物層5は、混合溶融凝固部4の形成時に伝わった熱によって形成されるため、その化合物の生成量はそれほど多くない。また、形成される金属間化合物層5も極めて薄くなるため、脆い化合物による接合強度の低下は十分に抑制される。 Note that nickel-aluminum alloys may become brittle compounds. However, since the intermetallic compound layer 5 is formed by the heat transferred during the formation of the mixed molten and solidified portion 4, the amount of the compound generated is not so large. Moreover, since the intermetallic compound layer 5 to be formed is also extremely thin, a decrease in bonding strength due to a brittle compound is sufficiently suppressed.
 前記のように、本実施形態では、めっき層2はニッケル(第二の金属)により構成され、混合溶融凝固部4及びそれが積層されてなる積層構造物6(めっき層2の表面に配置される金属粉)は銅(第三の金属)により構成される。しかし、第二の金属及び第三の金属は、これらに限定されるものではない。ただし、第二の金属及び第三の金属のうちの少なくとも一方は、全率固溶体であることが好ましい。また、第二の金属及び第三の金属のいずれもが全率固溶体であることがより好ましい。全率固溶体の金属同士を用いることで、脆い金属間化合物を形成しないからである。このような全率固溶体の具体例としては、ニッケル及びその合金、銅及びその合金、鉄及びその合金等が挙げられる。 As described above, in the present embodiment, the plating layer 2 is made of nickel (second metal), and the mixed molten solidified portion 4 and the laminated structure 6 (the plating layer 2 is disposed on the surface). Metal powder) is made of copper (third metal). However, the second metal and the third metal are not limited to these. However, it is preferable that at least one of the second metal and the third metal is a complete solid solution. Moreover, it is more preferable that both of the second metal and the third metal are a solid solution. It is because a brittle intermetallic compound is not formed by using metals of all solid solutions. Specific examples of such a total solid solution include nickel and its alloys, copper and its alloys, iron and its alloys, and the like.
 また、第二の金属と第三の金属との組み合わせとしては、ある金属と、その金属を含む合金との組み合わせも好ましい。例えば、アルミニウムと、アルミニウムを含む合金(アルミニウム合金)との組み合わせや、銅と、銅を含む合金(銅合金)との組み合わせ等が挙げられる。例えば前者の場合、第二の金属はアルミニウムであり、第三の金属はアルミニウム合金となる。 Also, as a combination of the second metal and the third metal, a combination of a certain metal and an alloy containing the metal is also preferable. For example, the combination of aluminum and the alloy (aluminum alloy) containing aluminum, the combination of copper and the alloy (copper alloy) containing copper, etc. are mentioned. For example, in the former case, the second metal is aluminum and the third metal is an aluminum alloy.
 また、伝熱板1に含まれる金属(第一の金属)は、特に制限されない。ただし、第一の金属が前記第三の金属と反応して脆い合金が生成するような場合に、本発明の効果が特に大きく発揮される。具体的には例えば、第一の金属がアルミニウムであり、第三の金属が銅であるような場合である。そこで、伝熱板1に含まれる金属は、前記積層構造物6に含まれる金属の種類に応じて適宜設定すればよい。 Further, the metal (first metal) contained in the heat transfer plate 1 is not particularly limited. However, when the first metal reacts with the third metal to form a brittle alloy, the effect of the present invention is particularly greatly exerted. Specifically, for example, the first metal is aluminum and the third metal is copper. Therefore, the metal contained in the heat transfer plate 1 may be appropriately set according to the type of metal contained in the laminated structure 6.
 これらの点に基づいて、伝熱板1、めっき層2及び積層構造物6のそれぞれに用いられる金属の組み合わせとして、以下の表1に記載の組み合わせが考えられる。ただし、表1に示す組み合わせは例であり、表1に記載の組み合わせになんら限定されない。なお、1番目の組み合わせは、前記の実施形態において用いた組み合わせである。 Based on these points, the combinations shown in Table 1 below can be considered as combinations of metals used for the heat transfer plate 1, the plating layer 2, and the laminated structure 6. However, the combinations shown in Table 1 are examples and are not limited to the combinations shown in Table 1. The first combination is the combination used in the above embodiment.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 伝熱板1、めっき層2及び金属間化合物層5の厚さや、混合溶融凝固部4の大きさ、積層構造物6の高さ等の各寸法に特に制限はない。例えば、伝熱板1の厚さは3mm程度とすることができる。また、めっき層2の厚さは例えば40μm程度とすることができる。さらに、金属間化合物層5の厚さは、十分な接合強度を得る観点から、例えば5μm以下とすることができ、より具体的には例えば0.8μm程度とすることができる。 There are no particular restrictions on the dimensions such as the thickness of the heat transfer plate 1, the plating layer 2, and the intermetallic compound layer 5, the size of the mixed molten and solidified portion 4, and the height of the laminated structure 6. For example, the thickness of the heat transfer plate 1 can be about 3 mm. Moreover, the thickness of the plating layer 2 can be about 40 μm, for example. Furthermore, the thickness of the intermetallic compound layer 5 can be set to, for example, 5 μm or less, more specifically, for example, about 0.8 μm from the viewpoint of obtaining sufficient bonding strength.
 次に、図4~図9を参照しながら、積層構造物6の製造方法(即ち、異種金属接合構造物の製造方法)を説明する。積層構造物6の製造方法は、所謂パウダーベット法ともいわれる方法である。 Next, a method for manufacturing the laminated structure 6 (that is, a method for manufacturing a dissimilar metal joint structure) will be described with reference to FIGS. The manufacturing method of the laminated structure 6 is a so-called powder bed method.
 図4は、伝熱板1に銅粉末(第三の金属)を塗布した後の断面図である。図4では、ニッケル(第二の金属)のめっき層2が形成されたアルミニウム(第一の金属)の伝熱板1の表面に対して、アトマイズ法により製造した球状の銅粉末3が配置固定された様子が示されている(第三金属配置工程)。ただし、銅粉末3は、めっき層2の表面に固定されている必要は必ずしもなく、めっき層2の表面に配置されていればよい。めっき層2の形成は、例えば電気めっき法により行うことができる。また、めっき層2がめっき法により形成されたものであるかどうかの確認は、前記のように、めっき層2の断面を電子顕微鏡写真により観察することで確認することができる。 FIG. 4 is a cross-sectional view after applying copper powder (third metal) to the heat transfer plate 1. In FIG. 4, the spherical copper powder 3 manufactured by the atomizing method is arranged and fixed on the surface of the aluminum (first metal) heat transfer plate 1 on which the plating layer 2 of nickel (second metal) is formed. This is shown (third metal placement step). However, the copper powder 3 does not necessarily need to be fixed to the surface of the plating layer 2 and may be disposed on the surface of the plating layer 2. The plating layer 2 can be formed by, for example, an electroplating method. Moreover, confirmation of whether the plating layer 2 is formed by the plating method can be confirmed by observing the cross section of the plating layer 2 with an electron micrograph as described above.
 めっき層2の表面に配置固定される銅粉末3の大きさは、粒径として例えば20μm~50μm程度とすることができる。また、銅粉末3が配置固定されてなる層(めっき層2のさらに外側に形成される層)の厚さは100μm程度とすることができる。 The size of the copper powder 3 arranged and fixed on the surface of the plating layer 2 can be set to, for example, about 20 μm to 50 μm as a particle size. In addition, the thickness of the layer in which the copper powder 3 is arranged and fixed (the layer formed on the outer side of the plating layer 2) can be about 100 μm.
 図5は、図4に示す状態において、所望の位置にレーザ光を照射している状態を示す断面図である。レーザ光は、図5では図示していないが、紙面の手前側から奥側に向かって照射されている。レーザ光の照射により、銅粉末3とめっき層2の表面のニッケルとが溶融し、これらが混合された後に放熱(例えば冷却)されてなる混合溶融凝固部4が形成される(混合溶融・合金層形成工程)。特に、放熱中、ニッケルと銅とは十分に混合されているものの、比較的比重の大きい銅が下側に向かう傾向にあり、一方で、比較的比重の小さいニッケルが上側に向かう傾向にある。従って、混合溶融凝固部4では、上側にニッケルが、下側に銅が存在する傾向にある。 FIG. 5 is a cross-sectional view showing a state where a desired position is irradiated with laser light in the state shown in FIG. Although not shown in FIG. 5, the laser light is emitted from the front side of the paper to the back side. By irradiation with laser light, the copper powder 3 and nickel on the surface of the plating layer 2 are melted, and after these are mixed, a mixed melt solidified portion 4 is formed by heat dissipation (for example, cooling) (mixed melt / alloy). Layer forming step). In particular, during heat dissipation, although nickel and copper are sufficiently mixed, copper having a relatively high specific gravity tends to move downward, while nickel having a relatively low specific gravity tends to move upward. Therefore, in the mixed melt solidification part 4, nickel tends to exist on the upper side and copper on the lower side.
 また、めっき層2は金属であるため、銅粉末3等が溶融するために用いられる熱の一部は、めっき層2を通じて、伝熱板1とめっき層2との接合界面に到達する。そうすると、この接合界面では、異種金属同士が接合しているため、その部分から双方の金属の溶融が開始され、これらの金属が合金化する。これにより、伝熱板1とめっき層2との間であって、混合溶融凝固部4の下方に、金属間化合物層5が形成することになる(混合溶融・合金層形成工程)。 Further, since the plating layer 2 is a metal, a part of heat used for melting the copper powder 3 or the like reaches the bonding interface between the heat transfer plate 1 and the plating layer 2 through the plating layer 2. Then, since dissimilar metals are joined at this joining interface, melting of both metals starts from that portion, and these metals are alloyed. As a result, the intermetallic compound layer 5 is formed between the heat transfer plate 1 and the plating layer 2 and below the mixed melting and solidifying portion 4 (mixed melting / alloy layer forming step).
 金属間化合物層5の形成開始後、レーザ光の照射による伝熱が続く間は、めっき層2においては上方向に、伝熱板1においては下方向に、それぞれの金属の溶融範囲が拡大することになる。従って、金属間化合物層5において、中央近傍ではアルミニウム濃度とニッケル濃度は合金化しているため略同じであるが、中央近傍から上方向に遠ざかるにつれて、ニッケル濃度は上昇し、アルミニウム濃度は低下することになる。一方で、中央近傍から下方向に遠ざかるにつれて、アルミニウム濃度は上昇し、ニッケル濃度は低下することになる。そのため、図5等では、図示の都合上、金属間化合物層5と、伝熱板1及びめっき層2との界面を明示しているが、実際には、これらの界面は判断できないことが多い。 After the start of the formation of the intermetallic compound layer 5, the melting range of each metal expands in the upward direction in the plating layer 2 and in the downward direction in the heat transfer plate 1 while heat transfer by laser light irradiation continues. It will be. Therefore, in the intermetallic compound layer 5, the aluminum concentration and the nickel concentration are almost the same in the vicinity of the center because they are alloyed, but the nickel concentration increases and the aluminum concentration decreases as the distance from the center increases upward. become. On the other hand, the aluminum concentration increases and the nickel concentration decreases with increasing distance from the vicinity of the center. Therefore, in FIG. 5 etc., the interface between the intermetallic compound layer 5 and the heat transfer plate 1 and the plating layer 2 is clearly shown for the convenience of illustration, but in reality, these interfaces cannot often be determined. .
 このように、本実施形態では、めっき層2の表面及び銅粉末3のみが溶融する条件で、レーザ光の照射が行われている。これにより、ニッケルと銅とが混合してなる強固な混合溶融凝固部4が形成され、優れた接合強度を有する異種金属接合構造物100が得られる。また、混合溶融凝固部4の生成中に用いられる熱の一部がめっき層2内を伝達し、金属間化合物層5が形成される。金属間化合物5が形成されることで、伝熱板1とめっき層2との間の接合強度を高めることができる。このように、前記の混合溶融凝固部4に加えて金属間化合物層5が形成されていることで、構造物全体として、従来よりも接合強度が十分優れた異種金属接合構造物100を得ることができる。 Thus, in this embodiment, laser light irradiation is performed under the condition that only the surface of the plating layer 2 and the copper powder 3 are melted. As a result, a strong mixed melt-solidified portion 4 formed by mixing nickel and copper is formed, and a dissimilar metal bonded structure 100 having excellent bonding strength is obtained. Further, part of the heat used during the generation of the mixed molten and solidified portion 4 is transmitted through the plating layer 2 to form the intermetallic compound layer 5. By forming the intermetallic compound 5, the bonding strength between the heat transfer plate 1 and the plating layer 2 can be increased. As described above, the intermetallic compound layer 5 is formed in addition to the mixed melt-solidified portion 4, thereby obtaining the dissimilar metal bonded structure 100 having sufficiently higher bonding strength than the conventional structure as a whole structure. Can do.
 一方で、レーザ光の照射が強力なものであると、めっき層2が貫通して溶融されてしまい、金属間化合物層5が形成されない可能性がある。また、この場合、伝熱板1も溶融してしまい、アルミニウムと銅粉末3とが反応して、脆い合金を形成してしまう可能性がある。そこで、本実施形態では、めっき層2の表面及び銅粉末3の双方を溶融可能な程度に弱い条件でレーザ光を照射すればよい。 On the other hand, if the laser beam irradiation is strong, the plating layer 2 may be penetrated and melted, and the intermetallic compound layer 5 may not be formed. In this case, the heat transfer plate 1 is also melted, and aluminum and the copper powder 3 may react to form a brittle alloy. Therefore, in this embodiment, the laser beam may be irradiated under such a weak condition that both the surface of the plating layer 2 and the copper powder 3 can be melted.
 そして、金属間化合物層5の厚さは、伝熱板1とめっき層2との接合界面における温度及びレーザ光の照射時間により制御できる。具体的には、レーザ光の照射時間が長いか、又は、伝熱板1とめっき層2との接合界面から金属間化合物層5までの距離が短いと、厚い金属間化合物層5が生成する傾向にある。従って、レーザ光の照射条件、金属粉末3の塗布条件、めっき層2の厚さ等により、金属間化合物5の構造を制御することができる。 Further, the thickness of the intermetallic compound layer 5 can be controlled by the temperature at the bonding interface between the heat transfer plate 1 and the plating layer 2 and the irradiation time of the laser beam. Specifically, if the irradiation time of the laser beam is long or the distance from the bonding interface between the heat transfer plate 1 and the plating layer 2 to the intermetallic compound layer 5 is short, a thick intermetallic compound layer 5 is generated. There is a tendency. Therefore, the structure of the intermetallic compound 5 can be controlled by the irradiation condition of the laser beam, the coating condition of the metal powder 3, the thickness of the plating layer 2, and the like.
 例えば、銅粉末3により構成される層の厚さが100μm、ニッケルにより構成されるめっき層2の厚さが40μmである場合、波長1070nmのレーザ光を照射可能な連続発振のファイバレーザ装置を用い、2枚の反射ミラーを動かして2次元平面をスキャンさせることで、混合溶融凝固部4及び金属間化合物層5を形成することができる。このときの照射条件としては、例えば、ビーム径Φを100μmとし、スキャン速度を100m/sとし、レーザ出力を400Wとすることができる。 For example, when the thickness of the layer composed of copper powder 3 is 100 μm and the thickness of the plating layer 2 composed of nickel is 40 μm, a continuous oscillation fiber laser device capable of irradiating laser light with a wavelength of 1070 nm is used. By moving the two reflecting mirrors to scan the two-dimensional plane, the mixed molten solidified portion 4 and the intermetallic compound layer 5 can be formed. As irradiation conditions at this time, for example, the beam diameter Φ can be set to 100 μm, the scan speed can be set to 100 m / s, and the laser output can be set to 400 W.
 また、レーザ光の照射は、混合溶融凝固部4の形成途中で溶融した金属の酸化を防止する観点から、不活性ガス(例えばアルゴンガス)中で行うことが好ましい。これにより、不純物(例えば酸化物)の少ない混合溶融凝固部4を形成することができる。 Further, the laser beam irradiation is preferably performed in an inert gas (for example, argon gas) from the viewpoint of preventing the metal melted during the formation of the mixed molten and solidified portion 4 from being oxidized. Thereby, the mixed melt solidification part 4 with few impurities (for example, oxide) can be formed.
 図6は、レーザ光の照射位置を少しずつずらしながら都度照射し、5回目のレーザ光を照射する様子を示した断面図である。前記の図5に示す状態では、紙面の手前側から奥側に向かってレーザ光が照射されたが、図6では、照射位置を合計で5回少しずつ右側にずらしてレーザ光を照射した状態が示されている。各回の照射の際には、形成される混合溶融凝固部4が少しずつ重なるようにして、レーザ光が照射されている。 FIG. 6 is a cross-sectional view showing a state in which the laser beam is irradiated each time while the irradiation position of the laser beam is gradually shifted, and the fifth laser beam is irradiated. In the state shown in FIG. 5, the laser beam is irradiated from the near side to the far side of the paper surface. In FIG. 6, the irradiation position is shifted to the right by a total of 5 times and the laser beam is irradiated. It is shown. At the time of each irradiation, the laser beam is irradiated so that the formed mixed molten and solidified portions 4 are overlapped little by little.
 また、前記の図5に示した、初めに形成された混合溶融凝固部4はアルミニウムとニッケルとの混合物であったが、2回目以降の照射により形成される混合溶融凝固部4(例えば図6の状態では、混合溶融凝固部4は、アルミニウム及びニッケルに加えて、図5に示した初めに形成された混合溶融凝固部4の成分も含まれている。従って、左右方向に形成される混合溶融凝固部4は同じ成分により形成されるため、割れの無い強固な混合溶融凝固部4が得られる。 In addition, the initially formed mixed molten and solidified portion 4 shown in FIG. 5 was a mixture of aluminum and nickel, but the mixed molten and solidified portion 4 formed by the second and subsequent irradiations (for example, FIG. 6). In this state, the mixed molten and solidified portion 4 includes, in addition to aluminum and nickel, the components of the mixed molten and solidified portion 4 formed at the beginning shown in Fig. 5. Therefore, the mixing formed in the left-right direction is included. Since the melt-solidified part 4 is formed of the same component, a strong mixed melt-solidified part 4 without cracks is obtained.
 混合溶融凝固部4の新たな形成にあわせて、新たな金属間化合物層5が形成される。新たに形成される金属間化合物層5に含まれる合金は、既存の合金とともに合金化される。そのため、金属間化合物層5では、単に混合されてなる混合溶融凝固部4とは異なり、境目なく一体に形成される。通常、積層構造物6(図3参照)の大きさ(左右方向の長さ)が大きくなると、伝熱板1からの剥離が生じやすくなる。しかし、本実施形態では、積層構造物6を構成する混合溶融凝固部4の形成にあわせて、伝熱板1とめっき層2との接合強度を向上させる金属間化合物層5が形成される。そのため、積層構造物6の大きさが大きくなっても、十分な接合強度が得られる。 A new intermetallic compound layer 5 is formed in accordance with the new formation of the mixed molten and solidified portion 4. The alloy contained in the newly formed intermetallic compound layer 5 is alloyed together with the existing alloy. Therefore, the intermetallic compound layer 5 is integrally formed with no boundary, unlike the mixed molten and solidified portion 4 simply mixed. Usually, when the size (length in the left-right direction) of the laminated structure 6 (see FIG. 3) is increased, peeling from the heat transfer plate 1 is likely to occur. However, in the present embodiment, the intermetallic compound layer 5 that improves the bonding strength between the heat transfer plate 1 and the plating layer 2 is formed in accordance with the formation of the mixed molten and solidified portion 4 constituting the laminated structure 6. Therefore, even if the size of the laminated structure 6 is increased, sufficient bonding strength can be obtained.
 図7は、2層目の混合溶融凝固部4を形成するための銅粉末3を塗布した後の断面図である。図7では、図6に示した状態(紙面手前側から奥側に向かう5本の混合溶融凝固部4が形成された状態)において、さらに別の銅粉末3を図1の状態と同様にして配置固定したものである。即ち、図7では、図5及び図6において形成された混合溶融凝固部4の上に、銅粉末3が配置固定された状態である(第三金属配置工程、積層工程)。 FIG. 7 is a cross-sectional view after applying the copper powder 3 for forming the second layer mixed molten and solidified portion 4. In FIG. 7, in the state shown in FIG. 6 (the state in which five mixed molten and solidified portions 4 are formed from the front side to the back side of the paper), another copper powder 3 is made in the same manner as in the state of FIG. The arrangement is fixed. That is, FIG. 7 shows a state in which the copper powder 3 is arranged and fixed on the mixed molten and solidified portion 4 formed in FIGS. 5 and 6 (third metal arranging step, laminating step).
 図8は、図7に示す状態において、2層目の混合溶融凝固部4を形成するための起点となる位置にレーザ光を照射している状態を示す断面図である。この起点は、通常は、一層目(図6に示した状態)のうちの初めに形成された混合溶融凝固部4のレーザ光照射位置(図5に示す位置)と同じになる。この位置でのレーザ光照射が開始されることで、2層目の混合溶融凝固部4の形成が開始される(積層工程)。レーザ光の照射は、図6に示した条件と同様にして行うことができる。 FIG. 8 is a cross-sectional view showing a state in which laser light is radiated to a position serving as a starting point for forming the second layer mixed melt solidification portion 4 in the state shown in FIG. This starting point is usually the same as the laser beam irradiation position (position shown in FIG. 5) of the mixed molten and solidified portion 4 formed at the beginning of the first layer (state shown in FIG. 6). By starting the laser beam irradiation at this position, the formation of the second layer of mixed molten and solidified portion 4 is started (lamination process). The laser light irradiation can be performed in the same manner as the conditions shown in FIG.
 図9は、レーザ光の照射位置をずらしながら複数回照射した後、積層構造物を構成する最後の混合溶融凝固部を形成するためのレーザ光を照射している様子を示す断面図である。である。即ち、図5~図7に示す操作を8回繰り返し、上下方向に8層の混合溶融凝固部4を形成した状態を示したものである。このように、上下方向に複数の混合溶融凝固部4が積層されることで、積層構造物6が得られる(積層工程)。そして、図9に示す状態から、めっき層2の表面に残存する未反応の銅粉末3を除去することで、前記の図3に示した異種金属接合構造物100が得られる。 FIG. 9 is a cross-sectional view showing a state in which a laser beam for irradiating a final mixed molten solidified portion constituting the laminated structure is irradiated after a plurality of irradiations while shifting the irradiation position of the laser beam. It is. That is, the operation shown in FIGS. 5 to 7 is repeated 8 times to show a state in which eight layers of the mixed molten and solidified portion 4 are formed in the vertical direction. Thus, the laminated structure 6 is obtained by laminating | stacking the some mixing melt solidification part 4 to an up-down direction (lamination process). Then, by removing the unreacted copper powder 3 remaining on the surface of the plating layer 2 from the state shown in FIG. 9, the dissimilar metal bonded structure 100 shown in FIG. 3 is obtained.
 混合溶融凝固部4が複数積層されてなる積層構造物6においては、前記のように、めっき層2近傍でニッケル濃度は最も高く、先端(上方)に向かうにつれてニッケル濃度は徐々に低下する。一方で、混合溶融凝固部4が上下方向に1層積層形成されるたびに、図7に示すように銅粉末3が塗布固定される。そのため、めっき層2の近傍での銅濃度が最も低く、先端(上方)に向かうにつれて銅濃度が徐々に上昇することになる。 As described above, in the laminated structure 6 in which a plurality of the mixed molten and solidified portions 4 are laminated, the nickel concentration is highest in the vicinity of the plating layer 2, and the nickel concentration gradually decreases toward the tip (upward). On the other hand, whenever one layer of the mixed molten and solidified portion 4 is formed in the vertical direction, the copper powder 3 is applied and fixed as shown in FIG. Therefore, the copper concentration in the vicinity of the plating layer 2 is the lowest, and the copper concentration gradually increases toward the tip (upward).
 これらのうち、特にニッケルの濃度は、めっき層2に含まれるニッケルの量が変化しないため、先端に向かうにつれてすぐに低下する。一方で、銅粉末3は、レーザ光照射の都度新たに配置固定するため、銅の濃度は、先端に向かうにつれて比較的すぐに上昇し易い。そのため、ニッケルを含みはするものの、その大部分が銅により構成された積層構造物6が得られる。 Among these, in particular, the concentration of nickel decreases immediately toward the tip because the amount of nickel contained in the plating layer 2 does not change. On the other hand, since the copper powder 3 is newly arranged and fixed every time the laser beam is irradiated, the concentration of copper tends to rise relatively quickly toward the tip. Therefore, although it contains nickel, the laminated structure 6 in which most of the structure is made of copper is obtained.
 また、積層構造物6では、前記のように組成が傾斜的に変化している(傾斜組成)。そして、この傾斜組成により、熱膨張係数も次第に変化する。そのため、凝固時の残留応力が低減され、変形が低減され、割れのない高強度の異種金属接合構造物100が得られる。 In the laminated structure 6, the composition changes in a gradient as described above (gradient composition). The thermal expansion coefficient gradually changes due to the gradient composition. Therefore, the residual stress at the time of solidification is reduced, deformation is reduced, and a high-strength dissimilar metal bonded structure 100 without cracks is obtained.
 以上のように、例えば、アルミニウムと銅と等、脆い化合物を形成してしまうため接合が困難であった異種金属同士を、めっき層2を介することで、接合強度が高い異種金属接合構造物100を製造することができる。特に、樹脂等を介さず、金属のみにより接合することができるため、接合強度を十分に高めることができる。そして、接合に用いられるめっき層2は、接合する各金属に応じて適宜に選択可能であるため、接合強度の観点から従来は接合が難しかった異種金属同士を、十分な接合強度で接合することができる。 As described above, for example, a dissimilar metal bonded structure 100 having high bonding strength is obtained by interposing the dissimilar metals, which are difficult to bond because they form a brittle compound such as aluminum and copper, through the plating layer 2. Can be manufactured. In particular, since bonding can be performed only with metal without using a resin or the like, the bonding strength can be sufficiently increased. And since the plating layer 2 used for joining can be appropriately selected according to each metal to be joined, dissimilar metals that were conventionally difficult to join from the viewpoint of joining strength should be joined with sufficient joining strength. Can do.
 図10は、本実施形態の異種金属接合構造物100を適用した別の実施形態である冷却金型120の断面図である。冷却金型120(異種金属接合構造物)は、溶融樹脂等を成型するための金型成型部25(積層構造物)と、金型成型部25を冷却するための水が通流する内部流路22と、金型成型部25からの熱を水に伝熱するためのベース板21(金属基材)とを備えている。
 なお、金型成型部25は、前記の積層構造物6と同様に混合溶融凝固部4が積層されてなるが、図10では図示の都合上、金型成型部25は一様なものとして示し、また、金型成型部25と混合溶融凝固部4との境界を明示している。
FIG. 10 is a cross-sectional view of a cooling mold 120 according to another embodiment to which the dissimilar metal bonding structure 100 of the present embodiment is applied. The cooling mold 120 (dissimilar metal joint structure) is an internal flow through which a mold molding part 25 (laminated structure) for molding a molten resin and water for cooling the mold molding part 25 flows. A path 22 and a base plate 21 (metal substrate) for transferring heat from the mold molding part 25 to water are provided.
The mold molding part 25 is formed by laminating the mixed melting and solidifying part 4 in the same manner as the laminated structure 6 described above. In FIG. In addition, the boundary between the mold molding part 25 and the mixed melting and solidifying part 4 is clearly shown.
 ベース板21の上には、めっき層2が形成されている。そして、ベース板21とめっき層2との間には、金属間化合物5が形成されている。また、めっき層2の上には、金型成型部25が形成されている。そして、めっき層2と金型成型部25との間には、混合溶融凝固部4が形成されている。 The plating layer 2 is formed on the base plate 21. An intermetallic compound 5 is formed between the base plate 21 and the plating layer 2. In addition, a mold molding part 25 is formed on the plating layer 2. A mixed molten and solidified portion 4 is formed between the plating layer 2 and the mold forming portion 25.
 冷却金型120においては、ベース板21を構成する金属(第一の金属)は、水冷による抜熱を促進させるため、熱伝導率の高い銅である。また、めっき層2を構成する金属(第二の金属)は、前記の水冷電力変換素子110と同様に、ニッケルである。そして、金型成型部25を構成する金属(第三の金属)は、マルエージング鋼である。マルエージング鋼は、ニッケルやコバルト等を含む鉄系の合金である。なお、これらの組み合わせは、前記の表1における6番目の組み合わせである。 In the cooling mold 120, the metal (first metal) constituting the base plate 21 is copper having high thermal conductivity in order to promote heat removal by water cooling. Moreover, the metal (2nd metal) which comprises the plating layer 2 is nickel similarly to the said water cooling power conversion element 110. FIG. And the metal (3rd metal) which comprises the metal mold | die molded part 25 is maraging steel. Maraging steel is an iron-based alloy containing nickel, cobalt, and the like. These combinations are the sixth combination in Table 1 above.
 ニッケルは工業的に安価であり、かつ、マルエージング鋼と溶融させても脆い化合物を形成しないものである。そして、マルエージング鋼は高強度であるため、樹脂成型金型として寿命が長いので金型成型部25の材質に選定した。 Nickel is industrially inexpensive and does not form a brittle compound even when melted with maraging steel. And since maraging steel is high intensity | strength, since the lifetime is long as a resin molding metal mold | die, it selected as the material of the metal mold | die molding part 25. FIG.
 ここで、銅の融点と、マルエージング鋼の融点とは、大きく異なる。そこで、銅製のベース板21を単にマルエージング鋼製の金型成型部25に接合しようとすると、接合界面において割れが発生して、接合強度が低下する。そのため、従来の方法であれば、ベース板21の上に直接金型成型部25を造形することはできない。そこで、めっき層2を介することで、信頼性のある冷却金型120が得られる。 Here, the melting point of copper and the melting point of maraging steel are very different. Therefore, if the copper base plate 21 is simply joined to the die-molded portion 25 made of maraging steel, a crack occurs at the joining interface, and the joining strength is reduced. Therefore, if it is a conventional method, the mold forming part 25 cannot be directly formed on the base plate 21. Therefore, a reliable cooling mold 120 can be obtained through the plating layer 2.
 冷却金型120は、基本的には前記の水冷電力変換素子110と同様にして製造することができる。そこで、以下の説明では、前記の水冷電力変換素子110の製造方法とは異なる点を主に挙げて、冷却金型120の製造方法を説明する。 The cooling mold 120 can be manufactured basically in the same manner as the water-cooled power conversion element 110 described above. Therefore, in the following description, a method for manufacturing the cooling mold 120 will be described mainly with a point different from the method for manufacturing the water-cooled power conversion element 110 described above.
 まず、水冷流路22を形成したベース板21(厚さ20mm程度)上に、ニッケルのめっき層2(厚さ30μm程度)が形成される。そして、めっき層2の上に、マルエージング鋼の金属粉(粒径として20μm~40μm程度、平均粒径は30μm程度。図示しない)が塗布される。この金属粉は、例えばガスアトマイズ法により製造可能である。その後、マルエージング鋼の側からレーザ光を照射することにより、ニッケルとマルエージング鋼との混合物である混合溶融凝固部4が形成される。また、これに伴い、銅とニッケルとからなる合金により構成される金属間化合物層5が形成される。 First, a nickel plating layer 2 (thickness of about 30 μm) is formed on a base plate 21 (thickness of about 20 mm) on which the water cooling channel 22 is formed. Then, a metal powder of maraging steel (having a particle size of about 20 μm to 40 μm and an average particle size of about 30 μm, not shown) is applied on the plating layer 2. This metal powder can be manufactured by, for example, a gas atomizing method. Thereafter, by irradiating laser light from the side of the maraging steel, the mixed molten solidified portion 4 that is a mixture of nickel and maraging steel is formed. Along with this, an intermetallic compound layer 5 composed of an alloy made of copper and nickel is formed.
 レーザ光の照射条件としては、以下のようにすることができる。即ち、溶融凝固過程での金属酸化を防止する観点から、レーザ光は窒素雰囲気で照射される。そして、レーザ光のビーム径は直径100μmであり、レーザ出力は200W、レーザスキャン速度は100m/sで照射することができる。さらに、レーザ光は、波長1070nmの連続発振のファイバレーザを用いることができる。 The laser light irradiation conditions can be as follows. That is, from the viewpoint of preventing metal oxidation during the melting and solidification process, the laser beam is irradiated in a nitrogen atmosphere. The beam diameter of the laser beam is 100 μm, the laser output is 200 W, and the laser scan speed can be 100 m / s. Further, a continuous wave fiber laser having a wavelength of 1070 nm can be used as the laser light.
 ただし、冷却金型120では、前記の冷却電力変換素子110とは異なり、積層構造物6である金型成型部25の大きさ(上下方向の高さ)が一様ではない。即ち、図10に示すように、金型成型部25の中央近傍では薄く、両端近傍では厚くなっている。そこで、冷却金型120の製造の際、中央近傍でのマルエージング鋼の塗布量及び回数、並びにレーザ光の照射回数が少なく、一方で、両端近傍では、これらが多くなっている。即ち、冷却金型120の製造においては、両端近傍でマルエージング鋼の塗布及びレーザ照射をより多く繰り返して、中央近傍と比べて厚みのある金型成型部25を形成することができる。このようにすることで、所望の形状となる金型成型部25(積層構造物6)を形成することができる。また、その上方では殆どニッケルを含まないマルエージング鋼の金型成型部25を製造することができる。 However, in the cooling mold 120, unlike the cooling power conversion element 110 described above, the size (height in the vertical direction) of the mold forming portion 25 that is the laminated structure 6 is not uniform. That is, as shown in FIG. 10, it is thin near the center of the mold molding part 25 and thick near both ends. Therefore, when the cooling mold 120 is manufactured, the amount and number of maraging steel applied in the vicinity of the center and the number of times of laser light irradiation are small, while these are increased in the vicinity of both ends. That is, in the manufacture of the cooling mold 120, the molding part 25 having a thickness larger than that in the vicinity of the center can be formed by repeating the application of maraging steel and laser irradiation more frequently in the vicinity of both ends. By doing in this way, the metal mold | die molded part 25 (laminated structure 6) used as a desired shape can be formed. Moreover, the die-molding part 25 of the maraging steel which hardly contains nickel can be manufactured in the upper part.
 このようにして製造した冷却金型120は、マルエージング鋼製の金型成型部25によって、優れた強度を有する金型とすることができる。一方で、銅製のベース板21を備えるため、銅による伝熱性能に優れ、金型成型部25の冷却効果を高いものにすることができる。特に、ベース板21と金型成型部25とは、金属のみによって接続されている。そのため、銅の伝熱性能の良好さを最大限発揮することができ、冷却性能に優れた冷却金型120を製造することができる。さらに、混合溶融凝固部4及び金型成型部25では、前記の冷却電力変換素子110と同様に、ニッケル及びマルエージング鋼の組成は傾斜組成になっている。そのため、組成の変化に対応して熱膨張係数も変化するため、異種金属の熱膨張差による残留応力が低減される。これにより、高い強度で金型成型部25を接合することができる。 The cooling mold 120 manufactured in this way can be made into a mold having excellent strength by the mold forming part 25 made of maraging steel. On the other hand, since the copper base plate 21 is provided, the heat transfer performance by copper is excellent, and the cooling effect of the mold molding part 25 can be enhanced. In particular, the base plate 21 and the mold molding part 25 are connected only by metal. Therefore, the good heat transfer performance of copper can be exhibited to the maximum, and the cooling mold 120 excellent in cooling performance can be manufactured. Further, in the mixed melt solidification part 4 and the mold molding part 25, the composition of nickel and maraging steel is a gradient composition, like the cooling power conversion element 110 described above. Therefore, since the thermal expansion coefficient also changes in accordance with the change in composition, the residual stress due to the thermal expansion difference between different metals is reduced. Thereby, the metal mold part 25 can be joined with high strength.
 以上、本発明を実施する形態を、2つの具体例を挙げながら説明したが、本実施形態は前記の例になんら限定されるものではない。 As mentioned above, although the form which implements this invention was demonstrated giving two specific examples, this embodiment is not limited to the said example at all.
 例えば、前記の各実施形態では、コーティング層として、めっき法により形成しためっき層2が形成されているが、コーティング層としては、コールドスプレー法により形成した層であってもよい。この場合のコールドスプレー法では、第二の金属(ニッケル等)が溶融温度以下で金属基材に衝突させられて、第二の金属により構成される層が形成されることになる。コールドスプレー法を用いてコーティング層を形成することで、めっき法により形成しためっき層2の厚さよりも、厚いコーティング層を形成することができる。コーティング層を厚く形成することで、レーザ光が照射される位置(即ち、混合溶融凝固部4が形成される位置)から、金属間化合物層5が形成される位置までの距離を長くすることができる。これにより、レーザ光の照射による熱が伝わりにくくなり、比較的薄い金属間化合物層5を形成することができる。 For example, in each of the above embodiments, the plating layer 2 formed by a plating method is formed as the coating layer, but the coating layer may be a layer formed by a cold spray method. In the cold spray method in this case, a second metal (such as nickel) is caused to collide with the metal substrate at a melting temperature or lower to form a layer composed of the second metal. By forming the coating layer using the cold spray method, a coating layer thicker than the thickness of the plating layer 2 formed by the plating method can be formed. By forming the coating layer thickly, the distance from the position where the laser light is irradiated (that is, the position where the mixed molten and solidified portion 4 is formed) to the position where the intermetallic compound layer 5 is formed can be increased. it can. Thereby, it becomes difficult to transmit the heat by irradiation of a laser beam, and the comparatively thin intermetallic compound layer 5 can be formed.
 コーティング層がコールドスプレー法により形成されたものであるか否かの判断は、コーティング層の断面を電子顕微鏡により観察することで行うことができる。即ち、電子顕微鏡により断面を観察したときに、第二の金属同士が扁平形状に堆積している状態、即ち、第二の金属の組織が一様ではなく、金属組織同士の界面を確認できれば、コーティング層はコールドスプレー法により形成されたと判断することができる。 Whether the coating layer is formed by a cold spray method can be determined by observing a cross section of the coating layer with an electron microscope. That is, when the cross section is observed with an electron microscope, the second metals are deposited in a flat shape, that is, if the structure of the second metal is not uniform and the interface between the metal structures can be confirmed, It can be determined that the coating layer was formed by a cold spray method.
 また、コーティング層は、めっき法やコールドスプレー法以外にも、例えば溶射法により形成することもできる。溶射法によりコーティング層を形成する場合、コーティング層を構成する第二の金属は、溶融した状態で金属基材に衝突することになる。衝突した後の第二の金属同士は接合する傾向にある。従って、電子顕微鏡を用いて断面を観察すると、第二の金属の組織は観察可能なものの、コールドスプレー法によって形成した場合と比べて、金属組織同士の界面はすこしぼやけることになる。従って、金属組織同士の界面の様子により、コーティング層は、コールドスプレー法により形成されたものであるのか、又は溶射法により形成されたものであるのかを判断することができる。 Further, the coating layer can be formed by, for example, a thermal spraying method in addition to the plating method or the cold spray method. When forming a coating layer by a thermal spraying method, the 2nd metal which comprises a coating layer will collide with a metal base material in the molten state. The second metals after colliding tend to join. Therefore, when the cross section is observed using an electron microscope, the second metal structure can be observed, but the interface between the metal structures is slightly blurred as compared with the case where the second metal structure is formed by the cold spray method. Therefore, whether the coating layer is formed by the cold spray method or the thermal spray method can be determined from the state of the interface between the metal structures.
 さらに、コーティング層は、例えばクラッド材を用いて形成してもよい。クラッド材は第二の金属を押圧することで得られるが、第二の金属を衝突させるコールドスプレー法や溶射法等とは、電子顕微鏡により観察される断面における金属組織の様子が異なる。従って、このようして、コーティング層がクラッド材を用いて形成されたものであるか否かを判断することができる。 Furthermore, the coating layer may be formed using, for example, a clad material. The clad material is obtained by pressing the second metal, but the state of the metal structure in the cross section observed by an electron microscope is different from the cold spray method or the thermal spray method in which the second metal collides. Therefore, in this way, it can be determined whether or not the coating layer is formed using a clad material.
 また、前記の各実施形態では、混合溶融凝固部4を形成するためにレーザ光を用いたが、レーザ光に代えて電子ビームを用いてもよい。さらに、これらの他にも、混合溶融凝固部4及び金属間化合物層5を形成可能な方法であれば、どのような方法を用いてもよい。 In each of the embodiments described above, the laser beam is used to form the mixed molten and solidified portion 4, but an electron beam may be used instead of the laser beam. In addition to these, any method may be used as long as it can form the mixed melt-solidified portion 4 and the intermetallic compound layer 5.
 さらに、前記の各実施形態では、レーザ光の照射の都度、第三の金属(銅やマルエージング鋼)を配置固定したが、これらは、レーザ光の照射の都度、配置固定されてなくてもよい。即ち、例えば3次元プリンタ等を用いてレーザ光等の焦点を調整することで、例えば、初めに一度のみ配置された第三の金属中に、任意の形状の積層構造物6を形成することもできる。この場合、第三金属配置工程は一度のみ行われ、混合溶融・合金層形成工程は複数回行われることになる。従って、本実施形態では、混合溶融・合金層形成工程は繰り返し行われ、一方で、第三金属配置工程は一度又は複数回(繰り返し)行われることになる。 Further, in each of the above-described embodiments, the third metal (copper or maraging steel) is arranged and fixed every time the laser beam is irradiated, but these may be arranged and fixed each time the laser beam is irradiated. Good. That is, for example, by adjusting the focus of a laser beam or the like using a three-dimensional printer or the like, for example, it is possible to form a laminated structure 6 having an arbitrary shape in the third metal arranged only once at the beginning. it can. In this case, the third metal placement step is performed only once, and the mixed melting / alloy layer forming step is performed a plurality of times. Therefore, in this embodiment, the mixed melting / alloy layer forming step is repeatedly performed, while the third metal arranging step is performed once or a plurality of times (repeatedly).
1 伝熱板(金属基材)
2 めっき層(コーティング層)
3 金属粉末(第三の金属)
4 混合溶融凝固部
5 金属間化合物層
6 積層構造物
10 電流変換素子
11 水冷フィン(積層構造物)
12 水(冷媒)
13 重ね溶接部
14 突合せ溶接部
15 アルミケース
16 アルミ蓋
21 ベース板(金属基材)
22 水冷流路
25 金型成型部(積層構造物)
100 異種金属接合構造物
110 水冷電力変換素子(異種金属接合構造物)
120 冷却金型(異種金属接合構造物)
1 Heat transfer plate (metal substrate)
2 Plating layer (coating layer)
3 Metal powder (third metal)
4 Mixed Melting and Solidifying Portion 5 Intermetallic Compound Layer 6 Laminated Structure 10 Current Conversion Element 11 Water-Cooled Fin (Laminated Structure)
12 Water (refrigerant)
13 Lap welded portion 14 Butt welded portion 15 Aluminum case 16 Aluminum lid 21 Base plate (metal base)
22 Water-cooled channel 25 Molding part (laminated structure)
100 Dissimilar metal joint structure 110 Water-cooled power conversion element (dissimilar metal joint structure)
120 Cooling mold (dissimilar metal joint structure)

Claims (11)

  1.  第一の金属により構成される金属基材と、
     前記金属基材上に形成され、第二の金属により構成されるコーティング層と、
     前記金属基材と前記コーティング層との間に形成され、前記第一の金属と前記第二の金属とが合金化してなる金属間化合物層と、
     前記コーティング層上に形成され、前記第二の金属と前記第三の金属とが混合溶融されてなる混合溶融凝固部が、前記金属基材に対して垂直な方向に複数積層されてなる積層構造物と、を備えることを特徴とする、異種金属接合構造物。
    A metal substrate composed of a first metal;
    A coating layer formed on the metal substrate and composed of a second metal;
    An intermetallic compound layer formed between the metal substrate and the coating layer, wherein the first metal and the second metal are alloyed;
    A laminated structure in which a plurality of mixed molten and solidified portions formed on the coating layer and mixed and melted with the second metal and the third metal are stacked in a direction perpendicular to the metal substrate. A dissimilar metal joint structure characterized by comprising:
  2.  前記混合溶融凝固部において、前記混合溶融凝固部に含まれる前記第二の金属の濃度が、前記金属基材から遠ざかるにつれて、徐々に低くなっていることを特徴とする、請求項1に記載の異種金属接合構造物。 The concentration of the second metal contained in the mixed melt-solidified portion is gradually decreased as the distance from the metal substrate is increased in the mixed melt-solidified portion. Dissimilar metal joint structure.
  3.  前記コーティング層はめっき法により形成されてなることを特徴とする、請求項1又は2に記載の異種金属接合構造物。 The dissimilar metal joint structure according to claim 1 or 2, wherein the coating layer is formed by a plating method.
  4.  前記コーティング層はコールドスプレー法により形成されてなることを特徴とする、請求項1又は2に記載の異種金属接合構造物。 The dissimilar metal joint structure according to claim 1 or 2, wherein the coating layer is formed by a cold spray method.
  5.  前記金属間化合物層は、前記積層構造物の下方において前記金属基材と前記コーティング層との間に形成され、
     前記積層構造物の下方以外の部分においては、前記金属基材と前記コーティング層とは直接接触していることを特徴とする、請求項1又は2に記載に異種金属接合構造物。
    The intermetallic compound layer is formed between the metal substrate and the coating layer below the laminated structure,
    3. The dissimilar metal bonded structure according to claim 1, wherein the metal substrate and the coating layer are in direct contact with each other at a portion other than the lower side of the laminated structure.
  6.  前記第二の金属及び前記第三の金属はいずれも全率固溶体であることを特徴とする、請求項1又は2に記載の異種金属接合構造物。 3. The dissimilar metal joint structure according to claim 1, wherein the second metal and the third metal are all solid solutions.
  7.  前記第一の金属はアルミニウムであり、
     前記第二の金属はニッケルであり、
     前記第三の金属は銅であることを特徴とする、請求項1又は2に記載の異種金属接合構造物。
    The first metal is aluminum;
    The second metal is nickel;
    The dissimilar metal bonding structure according to claim 1 or 2, wherein the third metal is copper.
  8.  第二の金属により構成されるコーティング層が形成された金属基材上に、第三の金属を配置する第三金属配置工程と、
     前記第三金属配置工程において配置された前記第三の金属の側から、前記第三の金属に対してレーザ光を照射することで前記第三の金属と前記第二の金属とを混合溶融させて混合溶融凝固部を形成するとともに、前記レーザ光の照射によって生じる熱によって、前記コーティング層を構成する前記第二の金属と前記金属基材を構成する第一の金属とを合金化させて金属間化合物層を形成する混合溶融・合金層形成工程と、
     第三金属配置工程及び前記混合溶融・合金層形成工程をそれぞれ行うことで、前記混合溶融凝固部が前記金属基材に対して垂直な方向に複数積層されてなる積層構造物を形成する積層工程と、を含むことを特徴とする、異種金属接合構造物の製造方法。
    A third metal disposing step of disposing a third metal on the metal substrate on which the coating layer composed of the second metal is formed;
    The third metal and the second metal are mixed and melted by irradiating the third metal with laser light from the third metal side arranged in the third metal arranging step. Forming a mixed melt solidified portion and alloying the second metal constituting the coating layer and the first metal constituting the metal substrate by heat generated by the irradiation of the laser beam. A mixed melting / alloy layer forming step of forming an intermetallic compound layer;
    A lamination step of forming a laminated structure in which a plurality of the mixed molten and solidified portions are laminated in a direction perpendicular to the metal base by performing a third metal arranging step and the mixed melting / alloy layer forming step, respectively. The manufacturing method of the dissimilar metal joining structure characterized by including these.
  9.  前記混合溶融・合金層形成工程において、
     前記金属間化合物層は、前記混合溶融凝固部の下方において前記金属基材と前記コーティング層との間に形成され、
     前記混合溶融凝固部の下方以外の部分においては、前記金属基材と前記コーティング層とは直接接触するようになっていることを特徴とする、請求項8に記載に異種金属接合構造物の製造方法。
    In the mixed melting / alloy layer forming step,
    The intermetallic compound layer is formed between the metal substrate and the coating layer below the mixed melt-solidified part,
    The manufacturing method for a dissimilar metal joint structure according to claim 8, wherein the metal base and the coating layer are in direct contact with each other at a portion other than the lower portion of the mixed molten and solidified portion. Method.
  10.  前記第二の金属及び前記第三の金属はいずれも全率固溶体であることを特徴とする、請求項8又は9に記載の異種金属接合構造物の製造方法。 The method for producing a dissimilar metal joint structure according to claim 8 or 9, wherein the second metal and the third metal are all solid solutions.
  11.  第一の金属により構成される金属基材と、
     前記金属基材上に形成され、第二の金属により構成されるコーティング層と、
     前記金属基材と前記コーティング層との間に形成され、前記第一の金属と前記第二の金属とが合金化してなる金属間化合物層と、
     前記コーティング層上に形成され、前記第二の金属と前記第三の金属とが混合溶融されてなる混合溶融凝固部が、前記金属基材に対して垂直な方向に複数積層されてなる積層構造物と、を備える異種金属接合構造物と、
     前記金属部材に対して熱的に接触している電力変換素子と、を備え、
     前記積層構造物には、前記電力変換素子を冷却する冷媒が接触していることを特徴とする、水冷電力変換素子。
    A metal substrate composed of a first metal;
    A coating layer formed on the metal substrate and composed of a second metal;
    An intermetallic compound layer formed between the metal substrate and the coating layer, wherein the first metal and the second metal are alloyed;
    A laminated structure in which a plurality of mixed molten and solidified portions formed on the coating layer and mixed and melted with the second metal and the third metal are stacked in a direction perpendicular to the metal substrate. A dissimilar metal joint structure comprising:
    A power conversion element in thermal contact with the metal member,
    A water-cooled power conversion element, wherein the laminated structure is in contact with a refrigerant that cools the power conversion element.
PCT/JP2015/078433 2014-11-26 2015-10-07 Dissimilar metal bonded structure, method for producing same and water-cooled power conversion element provided with same WO2016084488A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014238432A JP2018029090A (en) 2014-11-26 2014-11-26 Junction structure of different types of metals, method for forming the structure, and water-cooling power conversion element having the structure
JP2014-238432 2014-11-26

Publications (1)

Publication Number Publication Date
WO2016084488A1 true WO2016084488A1 (en) 2016-06-02

Family

ID=56074066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078433 WO2016084488A1 (en) 2014-11-26 2015-10-07 Dissimilar metal bonded structure, method for producing same and water-cooled power conversion element provided with same

Country Status (2)

Country Link
JP (1) JP2018029090A (en)
WO (1) WO2016084488A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3526044A4 (en) * 2016-10-11 2020-06-24 Effusiontech Pty Ltd A method of forming 3d objects
CN111628135A (en) * 2019-02-28 2020-09-04 丰田自动车株式会社 Sealed battery and battery pack
CN113445088A (en) * 2021-06-28 2021-09-28 沈伟 Vapor chamber with high heat absorption and preparation method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4203017A4 (en) * 2020-08-19 2024-02-14 Panasonic Ip Man Co Ltd Laser module
WO2022224627A1 (en) * 2021-04-19 2022-10-27 トーカロ株式会社 Manufacturing method for member having laser build-up layer
JP7459163B2 (en) 2022-04-19 2024-04-01 三菱電機株式会社 Semiconductor device and its manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6216894A (en) * 1985-07-17 1987-01-26 Toyota Motor Corp Padding method for aluminum base metal
JPH03291183A (en) * 1990-04-06 1991-12-20 Toyota Motor Corp Method for forming pure cu build-up layer on iron alloy base material
WO2007112226A1 (en) * 2006-03-28 2007-10-04 Intel Corporation Heat sink design using clad metal
JP2008036652A (en) * 2006-08-02 2008-02-21 Toshiba Corp Method for preventing erosion, and member having erosion preventing portion
JP2013089799A (en) * 2011-10-19 2013-05-13 Ngk Spark Plug Co Ltd Manufacturing method of circuit board with heat dissipation fin

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6216894A (en) * 1985-07-17 1987-01-26 Toyota Motor Corp Padding method for aluminum base metal
JPH03291183A (en) * 1990-04-06 1991-12-20 Toyota Motor Corp Method for forming pure cu build-up layer on iron alloy base material
WO2007112226A1 (en) * 2006-03-28 2007-10-04 Intel Corporation Heat sink design using clad metal
JP2008036652A (en) * 2006-08-02 2008-02-21 Toshiba Corp Method for preventing erosion, and member having erosion preventing portion
JP2013089799A (en) * 2011-10-19 2013-05-13 Ngk Spark Plug Co Ltd Manufacturing method of circuit board with heat dissipation fin

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3526044A4 (en) * 2016-10-11 2020-06-24 Effusiontech Pty Ltd A method of forming 3d objects
CN111628135A (en) * 2019-02-28 2020-09-04 丰田自动车株式会社 Sealed battery and battery pack
US11908991B2 (en) 2019-02-28 2024-02-20 Toyota Jidosha Kabushiki Kaisha Sealed battery and assembled battery
CN113445088A (en) * 2021-06-28 2021-09-28 沈伟 Vapor chamber with high heat absorption and preparation method thereof
CN113445088B (en) * 2021-06-28 2021-12-14 沈伟 Vapor chamber with high heat absorption and preparation method thereof

Also Published As

Publication number Publication date
JP2018029090A (en) 2018-02-22

Similar Documents

Publication Publication Date Title
WO2016084488A1 (en) Dissimilar metal bonded structure, method for producing same and water-cooled power conversion element provided with same
JP5124056B1 (en) Laser bonding parts
US8865584B2 (en) Semiconductor device and manufacturing method thereof
JP5527635B2 (en) Aluminum metal joining method
JP6003108B2 (en) Joining method and joining part manufacturing method
WO2006016479A1 (en) Heat sink member and method for manufacture thereof
JP2013222930A (en) Heat radiator and method of manufacturing heat radiator
JP2007522942A (en) Method for manufacturing a cooler or cooler element comprising a plate stack, in particular a plate stack
JP6016095B2 (en) Joining method and joining parts
JP2009113050A (en) Zn-al eutectoid-base alloy joining material, method for manufacturing zn-al eutectoid-base alloy joining material, joining method using zn-al eutectpoid-base alloy joining material, and semiconductor device using zn-al eutectpoid-base alloy joining material
JP2016188426A (en) Component and method for manufacturing the component part
JP2011005499A (en) Method for laser butt-welding aluminum member and copper member
JP2009038162A (en) Heat radiation component and manufacturing method thereof, and power module
JP2017157600A (en) Manufacturing method of bonded body, manufacturing method of board for power module with heat sink, bonded body and board for power module with heat sink
JP5424005B2 (en) Dissimilar metal joining method
WO2017094728A1 (en) Piston for internal combustion engine and method for manufacturing same
JP5892306B2 (en) Joining method and joining parts
JP6512382B1 (en) Metal-bonded structure and method of manufacturing metal-bonded structure
JP2006341304A (en) Method for joining different kinds of metals
WO2016009710A1 (en) Power semiconductor module and power module using same
JP2009226420A (en) Laser welding method
JP2019160852A (en) Manufacturing method of heat sink
JP2008264820A (en) Structure and method for joining different kind metals
JP6459427B2 (en) Manufacturing method of power module substrate with heat sink, and joined body, power module substrate with heat sink, heat sink
CN102856273A (en) Semiconductor assembly structure with radiating fin and assembling method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15862831

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15862831

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP