WO2016084368A1 - Rotation control system for bi-fuel engine - Google Patents

Rotation control system for bi-fuel engine Download PDF

Info

Publication number
WO2016084368A1
WO2016084368A1 PCT/JP2015/005845 JP2015005845W WO2016084368A1 WO 2016084368 A1 WO2016084368 A1 WO 2016084368A1 JP 2015005845 W JP2015005845 W JP 2015005845W WO 2016084368 A1 WO2016084368 A1 WO 2016084368A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
water temperature
engine
temperature sensor
relay
Prior art date
Application number
PCT/JP2015/005845
Other languages
French (fr)
Japanese (ja)
Inventor
智 津坂
Original Assignee
株式会社ニッキ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニッキ filed Critical 株式会社ニッキ
Publication of WO2016084368A1 publication Critical patent/WO2016084368A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/16Introducing closed-loop corrections for idling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to a rotation control device that controls the rotational speed of a bi-fuel engine that switches between and uses different types of fuel such as liquid fuel such as gasoline and compressed natural gas (CNG).
  • liquid fuel such as gasoline and compressed natural gas (CNG).
  • CNG compressed natural gas
  • a bi-fuel engine has been able to operate using a different fuel such as liquid fuel and gaseous fuel such as gasoline and compressed natural gas (CNG) or gasoline and liquefied petroleum gas (LPG) for one engine, for example.
  • a different fuel such as liquid fuel and gaseous fuel such as gasoline and compressed natural gas (CNG) or gasoline and liquefied petroleum gas (LPG) for one engine, for example.
  • CNG compressed natural gas
  • LPG liquefied petroleum gas
  • the determination means for determining the use time of the gaseous fuel or the liquid fuel, and at least the solenoid valve provided in the bypass passage is opened to increase the intake amount, and the liquid fuel is used.
  • JP-A-62-96742 Patent Document 1 discloses a means for obtaining good combustibility even at the time of use of gaseous fuel at low rotation such as idle operation by increasing the intake amount as compared with the time of use. Is presented on.
  • Patent Document 1 when switching from liquid fuel to gaseous fuel, the invention described in Patent Document 1 opens the solenoid valve to increase the intake amount, so a bypass passage etc. is required, and a new design is required. It is still difficult to implement the system, for example, in the case of converting it to a bi-fuel engine based on a gasoline engine for the purpose of providing it at a low price.
  • the electronic control unit controls the amount of intake during idle operation provided in the intake passage of the by fuel engine by the electronic control unit (ECU)
  • the means for adjusting the amount of intake air is controlled by controlling the electronic throttle device based on the control value for correcting the amount of intake air calculated according to the fuel switched to control the idle rotational speed to the target idle rotational speed.
  • the present invention has been made to solve the problems of the conventional bifuel engine idle rotation control system, and it is a complicated program that does not require major modifications such as expansion of the intake passage. It is an object of the present invention to provide a device capable of performing idle rotation control of a bifuel engine with few inexpensive parts without control by the above.
  • the present invention which has been made to solve the above problems, includes water temperature data of engine cooling water whose rotational speed is detected by a water temperature sensor in a bifuel engine in which two types of fuel having different properties are switched and used by a fuel switching device.
  • a rotation control device of a bi-fuel engine that controls a target rotation speed calculated by an electronic control device using data detected from various detection devices in an engine, and is connected between the water temperature sensor and the electronic control device Connected to one of the relays having two output terminals switched by the switching signal from the fuel switching device to an input circuit for inputting the coolant temperature data of the engine coolant detected by the coolant temperature sensor to the electronic control unit Electrical resistances of the specified value are connected in series, The relay operates when the fuel is switched, and the water temperature data from the water temperature sensor is output to the electronic control device as a value to which the electric resistance is added or a value obtained by subtracting the electric resistance, and the target rotational speed is increased. Alternatively, it is characterized in that it is lowered and controlled to a stable rotational
  • the relay when the fuel changes and the speed of the vehicle equipped with the bi-fuel engine falls below a predetermined speed or the injection time of the fuel injection valve falls below a predetermined injection time, the relay operates and the water temperature
  • the water temperature data from the sensor By controlling the water temperature data from the sensor to increase the target rotation speed as a value to which the electric resistance is added, control can be performed when the engine rotation speed is large due to the fuel used, and the normal operation can be performed.
  • control can be performed when the engine rotation speed is large due to the fuel used, and the normal operation can be performed.
  • the electric resistance is a variable resistance
  • the resistance value can be changed according to the characteristics of the fuel or engine used but also it is necessary to prepare many kinds of electric resistance in the manufacturing process. It is also convenient in terms of parts management.
  • the problem of the bi-fuel engine can be reliably achieved with a small amount of inexpensive parts and a simple control circuit, without requiring extensive modification such as expanding the intake passage, and without controlling by a complicated program. It is possible to perform rotation control that eliminates instability in the low rotation range that occurs due to the nature of a certain fuel.
  • FIG. 2 is a block circuit diagram showing the main parts in the overall schematic configuration diagram shown in FIG. 1; The chart which shows target idle revolving speed and engine revolving speed about a comparative example to which the present invention is not applied.
  • FIG. 6 is a chart showing target idle rotation speed and engine rotation speed with respect to the movement of the relay in the embodiment shown in FIG. 1; The relationship figure of the temperature of a cooling water, and a target rotational speed. The chart which shows the characteristic of temperature and resistance value of the thermistor. The chart which shows the target revolving speed and engine revolving speed to the movement of the relay in a different embodiment. The chart which shows the target revolving speed and engine revolving speed to the movement of the relay in still another embodiment.
  • FIG. 1 shows a schematic view of a preferred embodiment of the present invention, and generally the two fuel tanks 1 and 2 consist of gasoline, for example liquid fuel, as in the previously known bifuel engine system.
  • a first fuel 11 and a second fuel 21 consisting of CNG, which is a gaseous fuel, are respectively stored, and a selected one of these fuels is selected via the first fuel supply pipe 12 or the second fuel supply pipe 22.
  • the fuel is injected from the dedicated first fuel injection valve 13 and the second fuel injection valve 23 installed in the intake passage 3 of the engine.
  • the electronic control unit (ECU) 5 calculates a predetermined fuel injection amount using a predetermined program using the water temperature detected by the oxygen concentration and the oxygen concentration in the exhaust gas detected by the oxygen sensor 105 installed in the exhaust passage 4.
  • the fuel injection control method is performed to perform the open / close control of the fuel injection valves 13 and 23, the ignition timing control of the spark plug 6, the rotation control including idle, etc.
  • Fuel switching is automatic or manual fuel switching
  • the first fuel 11 or gas which is liquid fuel (gasoline) stored in the fuel tanks 1 and 2 by the device 7 Is the same as the conventional ones using charge a second fuel 21 is (CNG) select.
  • the operation control is performed by one electronic control unit (ECU) 5, but the first fuel 11 and the second fuel 21 are used.
  • the fuel 21 may be controlled by an individual electronic control unit (ECU) (not shown).
  • the electronic control unit (ECU) 5 is connected between the water temperature sensor 104 and the electronic control unit (ECU) 5 and detects the water temperature data of the engine coolant detected by the water temperature sensor 104.
  • a relay 81 and an electrical resistor 82 are connected in series to an input circuit 8 to be input to the circuit.
  • the relay 81 connected to the input circuit 8 is connected to a water temperature sensor 104 of engine cooling water, and an input terminal for inputting a water temperature data signal from the water temperature sensor 104.
  • an electric resistance 82 is connected in series to one of the output terminals 84a and 84b. It is connected to the input terminal 51 of the electronic control unit (ECU) 5.
  • ECU electronice control unit
  • the relay 20 has at least one input terminal 83 and two output terminals 84a and 84b, and can be switched to the output terminal 84a or 84b by a fuel switching signal from the fuel switching device 7.
  • a fuel switching signal from the fuel switching device 7.
  • any type of electromagnetic relay using an electromagnet or an electronic relay using a thyristor or a triac may be used.
  • the fuel injection valve 13 or 23 is controlled to open or close based on the required fuel injection amount calculated by a predetermined operation program which is previously determined and recorded in an electronic control unit (ECU) 5 using detection data such as concentration.
  • the fuel injection control method including the air fuel ratio control such as the ignition timing control of the spark plug 6 and the engine rotation control is executed.
  • the present embodiment is an implementation of the present invention for idle rotation control, and, for example, the start of the bifuel engine and the liquid fuel (gasoline) in which the idle operation immediately after start is stored in the fuel tank 1
  • the fuel supply to the engine is switched to the second fuel 21 which is a gaseous fuel (CNG) stored in the fuel tank 2 by the fuel 11 and thereafter by the automatic or manual fuel switching device 7.
  • CNG gaseous fuel
  • the engine when the engine is started, it is used as a factor necessary for setting the amount of intake, the amount of fuel injection, etc. for controlling the operation of the engine.
  • the idle operation immediately after the start is performed by the first fuel 11 which is the liquid fuel (gasoline) stored in the fuel tank 1.
  • the relay 81 is connected to the output terminal 84a on the side where the electric resistance 82 is not connected.
  • the water temperature data of the actual measurement value is input to the electronic control unit (ECU) 5 as it is short-circuited and processed by the operation program set in advance, and the intake amount, fuel It is operated by controlling the electronic throttle device 9 as such morphism amount becomes the target idle rotational speed is calculated.
  • ECU electronice control unit
  • the fuel switching device 7 switches the operation to receive an instruction to that effect.
  • the electronic control unit (ECU) 5 stops the supply of the first fuel 11 to the first fuel injection valve 13 which was injecting the first fuel 11 which is the liquid fuel (gasoline), and the other second fuel
  • the second fuel 21 which is gaseous fuel (CNG) stored in the fuel tank 2 is supplied from the injection valve 23 and idle rotation is continued.
  • a command based on a fuel switching command from the fuel switching device 7 is sent from the electronic control unit (ECU) 5 to the relay 81, and the relay 81 is activated to operate the electric resistance 82.
  • a value obtained by adding the resistance value of the electric resistance 82 to the water temperature data of the measured value is input to the electronic control unit (ECU) 5 as the water temperature data and is used as the fuel.
  • the electronic throttle device 9 is processed by the operation program set in advance as in the case of using the first fuel 11 which is liquid fuel (gasoline) to calculate the intake amount, the fuel injection amount, etc., and achieve the target idle rotation speed. Control and drive.
  • the target idle rotation speed is increased by the resistance of the electric resistance 82, so the first fuel 11 which is liquid fuel (gasoline) Even if the fuel is switched to the second fuel 21 which is a gaseous fuel (CNG), stable idle rotation control can be performed without a decrease in engine rotation speed as in the prior art.
  • FIG. 3 is a chart showing target idle rotation speed and engine rotation speed for the conventional embodiment to which the present invention is not applied, and shows the first fuel which is liquid fuel (gasoline) to the second fuel which is gaseous fuel (CNG)
  • the engine rotational speed decreases, and when switching from the second fuel (CNG) to the first fuel (gasoline), the engine speed increases. In both cases, the stability of the rotational speed is impaired.
  • the fuel supplied to the engine is the first fuel which is liquid fuel (gasoline)
  • the relay is switched at the same time as switching to the second fuel which is gaseous fuel (CNG), and the resistance value of the electric resistance 21 is added to the water temperature data from the water temperature sensor 104 as described above to increase the target idle rotation speed.
  • CNG gaseous fuel
  • FIG. 5 is a diagram showing the relationship between the temperature of the cooling water and the target idle rotation speed, and shows that the target idle rotation speed is in a relationship of increasing when the temperature of the cooling water decreases.
  • FIG. 6 shows the relationship between the resistance value of the thermistor usable as the electric resistance 82 and the temperature, and based on the relationship between the temperature of the cooling water and the target idle rotation speed shown in FIG.
  • the resistance value necessary for lowering the coolant temperature data to that temperature is shown, for example, in FIG. 6 by determining the temperature of the apparent engine cooling water to be lowered by the reduction of the rotational speed when switching from 1 fuel 11 to the second fuel 21.
  • the electric resistance 82 having the value may be set in advance, which is obtained from the relationship between the temperature and the resistance value.
  • the relay 81 when the fuel to be used is switched, the relay 81 is activated and the water temperature data from the water temperature sensor 104 is output to the electronic control unit (ECU) 5 as a value obtained by adding the resistance value of the electric resistance 82.
  • the relay 81 is activated when the fuel to be used is switched, and the water temperature data from the water temperature sensor 104 indicates the resistance 82 It is also possible to output a value obtained by subtracting the value to the electronic control unit (ECU) 5 to lower the target rotational speed and control the rotational speed to be stable.
  • a fixed resistance having a predetermined resistance value is used in advance according to the type of fuel used as described above as the electric resistance 82.
  • the electric resistance 82 is used as a variable resistance. It is extremely convenient because it can be set to a desired resistance value depending on the fuel to be used.
  • FIGS. 7 and 8 are charts showing the target rotation speed and the engine rotation speed for different embodiments of the present invention and further different embodiments, and the configuration of the system is the same as that of the embodiment shown in FIG. It can be implemented.
  • the relay 81 when the fuel is switched from the first fuel 11 to the second fuel 21, the relay 81 is activated and the water temperature data from the water temperature sensor 104 adds the resistance value of the electric resistance 82.
  • the bifuel engine is mounted when the fuel is switched from the first fuel 11 to the second fuel 21 in the embodiment shown in FIG.
  • the relay 81 when the speed of the vehicle falls below the predetermined speed, when the fuel is switched from the first fuel 11 to the second fuel 21 and the injection time of the fuel injection valve falls below the predetermined injection time
  • the relay 81 is operated to control the water temperature data from the water temperature sensor 104 to increase the target rotational speed as a value obtained by adding the electric resistance 82.
  • stable rotation is obtained by performing engine rotation increase control when the engine rotation speed is low, which is likely to be affected by the nature of the second fuel 21 made of gaseous fuel (CNG) that is the used fuel.
  • CNG gaseous fuel
  • it has the advantage that appropriate operation control and wasteful consumption of fuel can be prevented by not operating during normal operation. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

The purpose of the present invention is to prevent a drop in engine rotation speed and loss of stable engine rotation in a bi-fuel engine when the fuel that the bi-fuel engine is running on is switched. A relay (81) that is switched by a changeover signal from a fuel switching device (7) and an electrical resistance (82) are series connected in an input circuit (8) that inputs water temperature data for engine cooling water detected by a water temperature sensor (104) to an electronic control unit (ECU) (5). When the fuel to be used is switched, the relay (81) is operated so that the electric resistance (82) is added to the water temperature data from the water temperature sensor (104) to produce a value that increases the target rotation speed such that the rotation speed is controlled to a stable rotation speed.

Description

バイフューエルエンジンの回転制御装置Bifuel engine rotation control device
 本発明は、例えばガソリン等のような液体燃料と圧縮天然ガス(CNG)等のように異なる種類の燃料を切替えて使用するバイフューエルエンジンの回転速度を制御する回転制御装置に関するものである。 The present invention relates to a rotation control device that controls the rotational speed of a bi-fuel engine that switches between and uses different types of fuel such as liquid fuel such as gasoline and compressed natural gas (CNG).
 従来、一つのエンジンについて、例えばガソリンと圧縮天然ガス(CNG)やガソリンと液化石油ガス(LPG)のような液体燃料と気体燃料のように異なる燃料を用いて運転を可能としたバイフューエルエンジンが知られている。 Conventionally, a bi-fuel engine has been able to operate using a different fuel such as liquid fuel and gaseous fuel such as gasoline and compressed natural gas (CNG) or gasoline and liquefied petroleum gas (LPG) for one engine, for example. Are known.
 そして、このバイフューエルエンジンを用いた車両は、走行環境の変化に応じて使用される燃料の最適な条件を引き出すことができるため、極めて経済的であるとともに、状況に応じて燃料を選択できるため環境にもやさしいとされ、世界的にも導入が進んでいる。 And since the vehicle using this bi-fuel engine can draw out the optimum condition of the fuel used according to the change of the traveling environment, it is extremely economical and can select the fuel according to the situation. It is considered to be environmentally friendly and has been introduced worldwide.
 ところで、前記バイフューエルエンジンにおいて、ガソリンのような液体燃料を使用したエンジンの運転状態において、圧縮天然ガス(CNG)のような気体燃料へ切り替えて運転した場合、切り替える前の液体燃料を使用する場合に比べて吸気量が少なくなり、エンジンの圧縮比との関係から気体燃料における燃焼性が低下し、特に、アイドル運転時のようなエンジン回転速度が低下している場合に回転の安定性が損なわれるという問題があった。 By the way, when the bifuel engine is operated by switching to a gaseous fuel such as compressed natural gas (CNG) in an operating condition of an engine using a liquid fuel such as gasoline, the liquid fuel before switching is used Compared to the engine, the combustibility of gaseous fuel is reduced due to the relationship with the compression ratio of the engine, and the stability of rotation is impaired particularly when the engine speed is reduced as during idle operation Problem of being
 このような問題を解決するため、気体燃料使用時または液体燃料使用時を判別する判別手段と、少なくともバイパス通路に設けられたソレノイドバルブを開いて吸気量を増大させることにより気体燃料使用時には液体燃料使用時に比べて吸気量を増大させることにより、アイドル運転のような低回転時でおける気体燃料使用時にも良好な燃焼性を得るようにした手段が特開昭62-96742号公報(特許文献1)に提示されている。 In order to solve such a problem, the determination means for determining the use time of the gaseous fuel or the liquid fuel, and at least the solenoid valve provided in the bypass passage is opened to increase the intake amount, and the liquid fuel is used. JP-A-62-96742 (Patent Document 1) discloses a means for obtaining good combustibility even at the time of use of gaseous fuel at low rotation such as idle operation by increasing the intake amount as compared with the time of use. Is presented on.
 しかしながら、特許文献1に記載の発明は、液体燃料から気体燃料へ切り替えた場合に、ソレノイドバルブを開いて吸気量を増大させるものであることからバイパス通路等が必要であり、新規に設計する場合はまだしも安価に提供する目的で例えばガソリンエンジンを基にしてバイフューエルエンジンに改造する場合などには実施が困難である。 However, when switching from liquid fuel to gaseous fuel, the invention described in Patent Document 1 opens the solenoid valve to increase the intake amount, so a bypass passage etc. is required, and a new design is required. It is still difficult to implement the system, for example, in the case of converting it to a bi-fuel engine based on a gasoline engine for the purpose of providing it at a low price.
 また、大掛かりな改造をしないで燃料を切り替えてもアイドリングが安定して行える手段として、バイフューエルエンジンの吸気通路に設けたアイドル運転時に吸気量を調節する電子スロットル装置を電子制御装置(ECU)によりアイドル回転速度を目標アイドル回転速度に制御する際に切り替えた燃料に合わせて算出された吸気量を補正するための制御値に基づき電子スロットル装置を制御することで、吸気量を調節する手段が特開2011-214543号公報(特許文献2)に提示されているが、使用する燃料に合わせてプログラムを作成する必要があり、時間と手間が必要であるとともに制御が複雑になるという問題がある。 In addition, as a means that can perform idling stably even if the fuel is switched without major modification, the electronic control unit (ECU) controls the amount of intake during idle operation provided in the intake passage of the by fuel engine by the electronic control unit (ECU) The means for adjusting the amount of intake air is controlled by controlling the electronic throttle device based on the control value for correcting the amount of intake air calculated according to the fuel switched to control the idle rotational speed to the target idle rotational speed. Although disclosed in Japanese Patent Application Laid-Open No. 2011-214543 (Patent Document 2), it is necessary to create a program in accordance with the fuel to be used, and there is a problem that time and labor are required and control becomes complicated.
特開昭62-96742号公報Japanese Patent Application Laid-Open No. 62-96742 特開2011-214543号公報JP, 2011-214543, A
 本発明は、前記従来のバイフューエルエンジンのアイドル回転制御装置が有する問題点を解決するためになされたものであって、吸気通路を拡張するような大がかりな改造を必要としないばかりか複雑なプログラムによる制御をせずに少ない安価な部品で確実にバイフューエルエンジンのアイドル回転制御を行える装置を提供することを課題とする。 The present invention has been made to solve the problems of the conventional bifuel engine idle rotation control system, and it is a complicated program that does not require major modifications such as expansion of the intake passage. It is an object of the present invention to provide a device capable of performing idle rotation control of a bifuel engine with few inexpensive parts without control by the above.
 前記課題を解決するためになされた本発明は、性質の異なる2種類の燃料を燃料切替装置により切り替えて使用するバイフューエルエンジンにおいて、回転速度を水温センサにより検知したエンジン冷却水の水温データを含むエンジンにおける各種の検知装置から検知したデータを用いて電子制御装置により算出した目標回転速度に制御するバイフューエルエンジンの回転制御装置であって、前記水温センサと前記電子制御装置との間に接続されて前記水温センサにより検知したエンジン冷却水の水温データを電子制御装置に入力する入力回路に前記燃料切替装置からの切り替え信号で切り替わる2つの出力端子を有するリレーおよび前記リレーにおける出力端子の一方に接続された所定値の電気抵抗が直列に接続されており、前記使用する燃料を切り替えたときに前記リレーが作動して前記水温センサからの水温データが前記電気抵抗を加えた値として、または電気抵抗を差し引いた値として前記電子制御装置に出力されて目標回転速度を上昇または下降させて安定した回転速度に制御することを特徴とする。 The present invention, which has been made to solve the above problems, includes water temperature data of engine cooling water whose rotational speed is detected by a water temperature sensor in a bifuel engine in which two types of fuel having different properties are switched and used by a fuel switching device. A rotation control device of a bi-fuel engine that controls a target rotation speed calculated by an electronic control device using data detected from various detection devices in an engine, and is connected between the water temperature sensor and the electronic control device Connected to one of the relays having two output terminals switched by the switching signal from the fuel switching device to an input circuit for inputting the coolant temperature data of the engine coolant detected by the coolant temperature sensor to the electronic control unit Electrical resistances of the specified value are connected in series, The relay operates when the fuel is switched, and the water temperature data from the water temperature sensor is output to the electronic control device as a value to which the electric resistance is added or a value obtained by subtracting the electric resistance, and the target rotational speed is increased. Alternatively, it is characterized in that it is lowered and controlled to a stable rotational speed.
 また、本発明において、燃料が切り替わり且つバイフューエルエンジンを搭載する車両の速度が所定速度を下回った場合或いは燃料噴射弁の噴射時間が所定噴射時間を下回った場合に前記リレーが作動して前記水温センサからの水温データが前記電気抵抗を加えた値として目標回転速度を上昇させるように制御することにより使用燃料による影響が大きいエンジン回転が低回転のときに制御を行うことができるとともに通常の運転時には作動させないことにより適切な運転制御を行うとともに燃料の無駄な消費を防ぐこともできる。 Further, in the present invention, when the fuel changes and the speed of the vehicle equipped with the bi-fuel engine falls below a predetermined speed or the injection time of the fuel injection valve falls below a predetermined injection time, the relay operates and the water temperature By controlling the water temperature data from the sensor to increase the target rotation speed as a value to which the electric resistance is added, control can be performed when the engine rotation speed is large due to the fuel used, and the normal operation can be performed. Sometimes, by not activating, it is possible to perform appropriate operation control and prevent wasteful consumption of fuel.
 更に、本発明において、前記電気抵抗が可変抵抗である場合には使用する燃料やエンジンの特性に合わせて抵抗値を変化させることができるばかりか製造過程で多数種類の電気抵抗を用意する必要もなく部品の管理などの点でも便利である。 Furthermore, in the present invention, when the electric resistance is a variable resistance, not only the resistance value can be changed according to the characteristics of the fuel or engine used but also it is necessary to prepare many kinds of electric resistance in the manufacturing process. It is also convenient in terms of parts management.
 本発明によれば、吸気通路を拡張するような大がかりな改造を必要としないばかりか複雑なプログラムによる制御をせずに少ない安価な部品と簡単な制御回路で確実にバイフューエルエンジンの問題点である燃料の性質により生じる低回転域での不安定さを解消した回転制御を行うことができる。 According to the present invention, the problem of the bi-fuel engine can be reliably achieved with a small amount of inexpensive parts and a simple control circuit, without requiring extensive modification such as expanding the intake passage, and without controlling by a complicated program. It is possible to perform rotation control that eliminates instability in the low rotation range that occurs due to the nature of a certain fuel.
本発明の好ましい実施の形態におけるバイフューエルエンジンシステムの 全体概略構成図。BRIEF DESCRIPTION OF THE DRAWINGS The whole schematic block diagram of the bi-fuel engine system in the preferable embodiment of this invention. 図1に示した全体概略構成図における要部を示すブロック回路図。FIG. 2 is a block circuit diagram showing the main parts in the overall schematic configuration diagram shown in FIG. 1; 本発明が適応されない比較例についての目標アイドル回転速度とエンジン回転速度を示すチャート。The chart which shows target idle revolving speed and engine revolving speed about a comparative example to which the present invention is not applied. 図1に示した実施の形態におけるリレーの動きに対する目標アイドル回転速度とエンジン回転速度を示すチャート。FIG. 6 is a chart showing target idle rotation speed and engine rotation speed with respect to the movement of the relay in the embodiment shown in FIG. 1; 冷却水の温度と目標回転速度との関係図。The relationship figure of the temperature of a cooling water, and a target rotational speed. サーミスタの温度と抵抗値の特性を示す図表。The chart which shows the characteristic of temperature and resistance value of the thermistor. 異なる実施の形態におけるリレーの動きに対する目標回転速度とエンジン回転速度を示すチャート。The chart which shows the target revolving speed and engine revolving speed to the movement of the relay in a different embodiment. 更に異なる実施の形態におけるリレーの動きに対する目標回転速度とエンジン回転速度を示すチャート。The chart which shows the target revolving speed and engine revolving speed to the movement of the relay in still another embodiment.
 以下に、本発明の好ましい実施の形態について図面を参照して詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
 図1は本発明の好ましい実施の形態についての概略図を示すものであり、全体としては従来周知のバイフューエルエンジンシステムと同様に、2つの燃料タンク1および2に例えば液体燃料であるガソリンからなる第1燃料11および気体燃料であるCNGからなる第2燃料21がそれぞれ貯留されているとともに、これらの燃料の内で選択されたものが第1燃料供給管12または第2燃料供給管22を介してエンジンの吸気通路3に設置した専用の第1燃料噴射弁13,第2燃料噴射弁23からそれぞれ噴射される。 FIG. 1 shows a schematic view of a preferred embodiment of the present invention, and generally the two fuel tanks 1 and 2 consist of gasoline, for example liquid fuel, as in the previously known bifuel engine system. A first fuel 11 and a second fuel 21 consisting of CNG, which is a gaseous fuel, are respectively stored, and a selected one of these fuels is selected via the first fuel supply pipe 12 or the second fuel supply pipe 22. The fuel is injected from the dedicated first fuel injection valve 13 and the second fuel injection valve 23 installed in the intake passage 3 of the engine.
 そして、例えば吸気通路3に設けられた吸気管圧力センサ101により検知した吸気管圧力、エンジン回転検出センサ102により検知したエンジン回転速度、スロットルセンサ103により検知したスロットル開度、冷却水の水温センサ104により検知した水温、排気通路4に設置した酸素センサ105より検知した排気ガス中の酸素濃度などを用いて電子制御装置(ECU)5において所定のプログラムを用いて所定の燃料噴射量を算出して前記燃料噴射弁13,23の開閉制御、点火プラグ6の点火時期制御、アイドルを含めた回転制御等を行う燃料噴射制御方法を実行するものであり、燃料の切替は自動または手動式の燃料切替装置7により燃料タンク1および2に貯留した液体燃料(ガソリン)である第1燃料11または気体燃料(CNG)である第2燃料21を選択して使用する従来のものと同様である。 Then, for example, the intake pipe pressure detected by the intake pipe pressure sensor 101 provided in the intake passage 3, the engine rotational speed detected by the engine rotation detection sensor 102, the throttle opening detected by the throttle sensor 103, the coolant temperature sensor 104 The electronic control unit (ECU) 5 calculates a predetermined fuel injection amount using a predetermined program using the water temperature detected by the oxygen concentration and the oxygen concentration in the exhaust gas detected by the oxygen sensor 105 installed in the exhaust passage 4. The fuel injection control method is performed to perform the open / close control of the fuel injection valves 13 and 23, the ignition timing control of the spark plug 6, the rotation control including idle, etc. Fuel switching is automatic or manual fuel switching The first fuel 11 or gas which is liquid fuel (gasoline) stored in the fuel tanks 1 and 2 by the device 7 Is the same as the conventional ones using charge a second fuel 21 is (CNG) select.
 尚、本実施の形態では第1燃料11および第2燃料21のいずれの燃料を用いる場合にも1つの電子制御装置(ECU)5により運転制御するものとしているが、第1燃料11および第2燃料21についてそれぞれ個別の電子制御装置(ECU)(図示せず)により制御するようにしても良い。 In the present embodiment, even when any of the first fuel 11 and the second fuel 21 is used, the operation control is performed by one electronic control unit (ECU) 5, but the first fuel 11 and the second fuel 21 are used. The fuel 21 may be controlled by an individual electronic control unit (ECU) (not shown).
 そして、特に本実施の形態では、前記水温センサ104と前記電子制御装置(ECU)5との間に接続されて前記水温センサ104により検知したエンジン冷却水の水温データを電子制御装置(ECU)5に入力する入力回路8にリレー81と電気抵抗82が直列に接続されている。 In particular, in the present embodiment, the electronic control unit (ECU) 5 is connected between the water temperature sensor 104 and the electronic control unit (ECU) 5 and detects the water temperature data of the engine coolant detected by the water temperature sensor 104. A relay 81 and an electrical resistor 82 are connected in series to an input circuit 8 to be input to the circuit.
 更に、詳述すると、前記入力回路8に接続されているリレー81は図2に示すように、エンジン冷却水の水温センサ104に接続されて前記水温センサ104からの水温データ信号を入力する入力端子83と、前記燃料切替装置7からの燃料切替信号により切り替わる2つの出力端子84a,84bを有しており、また、前記出力端子84a,84bの一方には電気抵抗82が直列に接続されて前記電子制御装置(ECU)5の入力端子51に接続されている。 More specifically, as shown in FIG. 2, the relay 81 connected to the input circuit 8 is connected to a water temperature sensor 104 of engine cooling water, and an input terminal for inputting a water temperature data signal from the water temperature sensor 104. 83 and two output terminals 84a and 84b switched by a fuel switching signal from the fuel switching device 7. Further, an electric resistance 82 is connected in series to one of the output terminals 84a and 84b. It is connected to the input terminal 51 of the electronic control unit (ECU) 5.
 尚、リレー20は、少なくとも1系統の入力端子83と2系統の出力端子84aおよび84bを有するとともに前記燃料切替装置7からの燃料切替信号により前記出力端子84aまたは84bに切替可能な周知のものを用いることが可能であり、例えば電磁石を用いた電磁式リレー、サイリスタやトライアックを用いた電子式リレーなど形式は問わない。 The relay 20 has at least one input terminal 83 and two output terminals 84a and 84b, and can be switched to the output terminal 84a or 84b by a fuel switching signal from the fuel switching device 7. For example, any type of electromagnetic relay using an electromagnet or an electronic relay using a thyristor or a triac may be used.
 以上の構成を有する本実施の形態は、従来周知のバイフューエルエンジンの制御システムと同様に、前記各センサにより検知された吸気管圧力、エンジン回転速度、スロットル開度、水温、排気ガス中の酸素濃度などの検知データを用いて電子制御装置(ECU)5において予め定めて記録してある所定の運転プログラムにより算出された必要な燃料噴射量に基づいて前記燃料噴射弁13または23を開閉制御するとともに点火プラグ6の点火
時期制御、エンジン回転制御などの空燃比制御を含む燃料噴射制御方法を実行するものである。
In the present embodiment having the above configuration, the intake pipe pressure, engine rotational speed, throttle opening degree, water temperature, oxygen in exhaust gas detected by each of the sensors, as in the control system of the conventionally known bifuel engine The fuel injection valve 13 or 23 is controlled to open or close based on the required fuel injection amount calculated by a predetermined operation program which is previously determined and recorded in an electronic control unit (ECU) 5 using detection data such as concentration. At the same time, the fuel injection control method including the air fuel ratio control such as the ignition timing control of the spark plug 6 and the engine rotation control is executed.
 次に、本実施の形態についてのエンジン回転制御について詳述する。 Next, engine rotation control according to the present embodiment will be described in detail.
 本実施の形態は、アイドル回転制御について本発明を実施したものであり、例えば、バイフューエルエンジンの始動と始動直後のアイドル運転を燃料タンク1に貯留してある液体燃料(ガソリン)である第1燃料11により行い、その後自動または手動式の燃料切替装置7によりエンジンへの燃料供給を燃料タンク2に貯留してある気体燃料(CNG)である第2燃料21に切り替えて運転するものである。 The present embodiment is an implementation of the present invention for idle rotation control, and, for example, the start of the bifuel engine and the liquid fuel (gasoline) in which the idle operation immediately after start is stored in the fuel tank 1 The fuel supply to the engine is switched to the second fuel 21 which is a gaseous fuel (CNG) stored in the fuel tank 2 by the fuel 11 and thereafter by the automatic or manual fuel switching device 7.
 本実施の形態では、エンジン始動時には図2に示すように、エンジンの運転、特に、始動時のアイドル回転を制御するための吸気量や燃料噴射量などを設定するために必要な因子として用いられるデータの1つである前記エンジンの冷却水の温度を検知する水温センサ104からの検知データが入力回路8を介して電子制御装置(ECU)5に入力されるが、本実施の形態では始動時および始動直後のアイドル運転を燃料タンク1に貯留してある液体燃料(ガソリン)である第1燃料11により行うが、このときにはリレー81は前記電気抵抗82が接続されていない側の出力端子84a側に短絡していて実測値の水温データがそのまま電子制御装置(ECU)5に入力されて予め設定された運転プログラムにより処理されて吸気量、燃料噴射量などが算出され目標アイドル回転速度になるように電子スロットル装置9を制御して運転される。 In the present embodiment, as shown in FIG. 2, when the engine is started, it is used as a factor necessary for setting the amount of intake, the amount of fuel injection, etc. for controlling the operation of the engine. The detection data from the water temperature sensor 104 for detecting the temperature of the cooling water of the engine, which is one of the data, is input to the electronic control unit (ECU) 5 through the input circuit 8, but in the present embodiment And the idle operation immediately after the start is performed by the first fuel 11 which is the liquid fuel (gasoline) stored in the fuel tank 1. At this time, the relay 81 is connected to the output terminal 84a on the side where the electric resistance 82 is not connected. The water temperature data of the actual measurement value is input to the electronic control unit (ECU) 5 as it is short-circuited and processed by the operation program set in advance, and the intake amount, fuel It is operated by controlling the electronic throttle device 9 as such morphism amount becomes the target idle rotational speed is calculated.
 次に本実施の形態では、前述のようにエンジンが液体燃料(ガソリン)である第1燃料11により始動してアイドル回転に移行すると、前記燃料切替装置7により切り替えることによりその旨の指令を受けた電子制御装置(ECU)5が前記液体燃料(ガソリン)である第1燃料11を噴射させていた第1燃料噴射弁13への第1燃料11の供給を停止してもう1つの第2燃料噴射弁23から燃料タンク2に貯留してある気体燃料(CNG)である第2燃料21を供給してアイドル回転を続けることになる。 Next, in the present embodiment, as described above, when the engine is started by the first fuel 11 which is liquid fuel (gasoline) and shifted to idle rotation, the fuel switching device 7 switches the operation to receive an instruction to that effect. The electronic control unit (ECU) 5 stops the supply of the first fuel 11 to the first fuel injection valve 13 which was injecting the first fuel 11 which is the liquid fuel (gasoline), and the other second fuel The second fuel 21 which is gaseous fuel (CNG) stored in the fuel tank 2 is supplied from the injection valve 23 and idle rotation is continued.
 ここで、本実施の形態では、前記燃料切替装置7からの燃料切り替え指令に基づく指令が前記電子制御装置(ECU)5からリレー81に送られてリレー81が作動することで前記電気抵抗82が接続されている側の出力端子84b側に短絡して実測値の水温データに前記電気抵抗82の抵抗値が合算された値が水温データとして電子制御装置(ECU)5に入力されて前記燃料として液体燃料(ガソリン)である第1燃料11を用いた場合と同様に予め設定された運転プログラムにより処理されて吸気量、燃料噴射量などが算出され目標アイドル回転速度になるように電子スロットル装置9を制御して運転される。 Here, in the present embodiment, a command based on a fuel switching command from the fuel switching device 7 is sent from the electronic control unit (ECU) 5 to the relay 81, and the relay 81 is activated to operate the electric resistance 82. A value obtained by adding the resistance value of the electric resistance 82 to the water temperature data of the measured value is input to the electronic control unit (ECU) 5 as the water temperature data and is used as the fuel. The electronic throttle device 9 is processed by the operation program set in advance as in the case of using the first fuel 11 which is liquid fuel (gasoline) to calculate the intake amount, the fuel injection amount, etc., and achieve the target idle rotation speed. Control and drive.
 従って、本実施の形態では、燃料として液体燃料(ガソリン)である第1燃料3を用いてエンジンを始動させて直後のアイドル運転状態から気体燃料(CNG)である第2燃料4に切り替えた後は、水温センサ104からの水温データが実測値よりも低い水温のデータとして認識されて、目標アイドル回転速度が前記電気抵抗82の抵抗分だけ上昇するので液体燃料(ガソリン)である第1燃料11から気体燃料(CNG)である第2燃料21に切り替えたとしても従来のようにエンジン回転速度が低下することなく安定したアイドル回転制御を行うことができる。 Therefore, in the present embodiment, after the engine is started using the first fuel 3 that is liquid fuel (gasoline) as the fuel and after switching from the idle operation state immediately after that to the second fuel 4 that is gaseous fuel (CNG) Since the water temperature data from the water temperature sensor 104 is recognized as data of the water temperature lower than the actual measurement value, the target idle rotation speed is increased by the resistance of the electric resistance 82, so the first fuel 11 which is liquid fuel (gasoline) Even if the fuel is switched to the second fuel 21 which is a gaseous fuel (CNG), stable idle rotation control can be performed without a decrease in engine rotation speed as in the prior art.
 図3は、本発明が適応されない従来の実施例についての目標アイドル回転速度とエンジン回転速度を示すチャートであり、液体燃料(ガソリン)である第1燃料から気体燃料(CNG)である第2燃料に切り替えた際に、エンジン回転速度の低下がみられ、気体燃料(CNG)である第2燃料から液体燃料(ガソリン)である第1燃料に切り替えた際にエンジン回転数の上昇がみられ、どちらの場合も回転数の安定性が損なわれている。 FIG. 3 is a chart showing target idle rotation speed and engine rotation speed for the conventional embodiment to which the present invention is not applied, and shows the first fuel which is liquid fuel (gasoline) to the second fuel which is gaseous fuel (CNG) When switching to the above, the engine rotational speed decreases, and when switching from the second fuel (CNG) to the first fuel (gasoline), the engine speed increases. In both cases, the stability of the rotational speed is impaired.
 これに対して、本実施の形態では、図4に示す目標アイドル回転速度とエンジン回転速度を示すチャートから明らかなように、エンジンに供給される燃料が液体燃料(ガソリン)である第1燃料から気体燃料(CNG)である第2燃料に切り替わると同時にリレーが切り替わり、前述のように水温センサ104からの水温データに電気抵抗21の抵抗値が合算されて目標アイドル回転速度を上昇させることにより図3に示す従来例のようにエンジン回転速度の低下が生じることなく安定した回転を維持することが実証された。 On the other hand, in the present embodiment, as is apparent from the chart showing the target idle rotation speed and the engine rotation speed shown in FIG. 4, the fuel supplied to the engine is the first fuel which is liquid fuel (gasoline) The relay is switched at the same time as switching to the second fuel which is gaseous fuel (CNG), and the resistance value of the electric resistance 21 is added to the water temperature data from the water temperature sensor 104 as described above to increase the target idle rotation speed. As in the prior art shown in 3, it has been demonstrated that stable rotation is maintained without a decrease in engine rotation speed.
 図5は冷却水の温度と目標アイドル回転速度との関係図であり、冷却水の温度が低下すると目標アイドル回転速度が上昇する関係にある事を示す。また、図6は前記電気抵抗82として使用可能なサーミスタの抵抗値と温度との関係を示すものであり、前記図5に示した冷却水の温度と目標アイドル回転速度の関係に基づいて前記第1燃料11から第2燃料21に切り替えたときの回転数の低下分だけ下降させる見かけのエンジン冷却水の温度を求め水温データをその温度に下降させるために必要な抵抗値を例えば図6に示す温度と抵抗値との関係から求めて、その値を有する電気抵抗82を予め設定しておけばよい。 FIG. 5 is a diagram showing the relationship between the temperature of the cooling water and the target idle rotation speed, and shows that the target idle rotation speed is in a relationship of increasing when the temperature of the cooling water decreases. Further, FIG. 6 shows the relationship between the resistance value of the thermistor usable as the electric resistance 82 and the temperature, and based on the relationship between the temperature of the cooling water and the target idle rotation speed shown in FIG. The resistance value necessary for lowering the coolant temperature data to that temperature is shown, for example, in FIG. 6 by determining the temperature of the apparent engine cooling water to be lowered by the reduction of the rotational speed when switching from 1 fuel 11 to the second fuel 21. The electric resistance 82 having the value may be set in advance, which is obtained from the relationship between the temperature and the resistance value.
 尚、本実施の形態では使用する燃料を切り替えたときに前記リレー81が作動して水温センサ104からの水温データが電気抵抗82の抵抗値を加えた値として電子制御装置(ECU)5に出力されて目標回転速度を上昇させて安定した回転速度に制御する場合を示したが、使用する燃料を切り替えたときに前記リレー81が作動して水温センサ104からの水温データが電気抵抗82の抵抗値を差し引いた値として電子制御装置(ECU)5に出力されて目標回転速度を下降させて安定した回転速度に制御することも可能である。 In the present embodiment, when the fuel to be used is switched, the relay 81 is activated and the water temperature data from the water temperature sensor 104 is output to the electronic control unit (ECU) 5 as a value obtained by adding the resistance value of the electric resistance 82. In the case where the target rotational speed is increased and controlled to a stable rotational speed, the relay 81 is activated when the fuel to be used is switched, and the water temperature data from the water temperature sensor 104 indicates the resistance 82 It is also possible to output a value obtained by subtracting the value to the electronic control unit (ECU) 5 to lower the target rotational speed and control the rotational speed to be stable.
 尚、本実施の形態では電気抵抗82として前述のように使用する燃料の種類に応じて予め所定の抵抗値を有する固定抵抗を用いているが、電気抵抗82を可変抵抗とすることにより、使用する燃料に応じて所望の抵抗値に設定することができるのできわめて便利である。 In the present embodiment, a fixed resistance having a predetermined resistance value is used in advance according to the type of fuel used as described above as the electric resistance 82. However, the electric resistance 82 is used as a variable resistance. It is extremely convenient because it can be set to a desired resistance value depending on the fuel to be used.
 図7および図8は本発明の異なる実施の形態および更に異なる実施の形態についての目標回転速度とエンジン回転速度を示すチャートであり、システムの構成は図1に示す実施の形態と同様なものとして実施することができる。 FIGS. 7 and 8 are charts showing the target rotation speed and the engine rotation speed for different embodiments of the present invention and further different embodiments, and the configuration of the system is the same as that of the embodiment shown in FIG. It can be implemented.
 そして、前記図4に示した実施の形態では燃料が第1燃料11から第2燃料21に切り替わったときにリレー81が作動して水温センサ104からの水温データが電気抵抗82の抵抗値を加えた値として目標アイドル回転速度を上昇させるように制御するものであるが、図7に示した実施の形態では燃料が第1燃料11から第2燃料21に切り替わったとき且つバイフューエルエンジンを搭載する車両の速度が所定速度を下回った場合に、図8に示した実施の形態では燃料が第1燃料11から第2燃料21に切り替わったとき且つ燃料噴射弁の噴射時間が所定噴射時間を下回った場合にリレー81が作動して水温センサ104からの水温データが電気抵抗82を加えた値として目標回転速度を上昇させるように制御するものである。 Then, in the embodiment shown in FIG. 4, when the fuel is switched from the first fuel 11 to the second fuel 21, the relay 81 is activated and the water temperature data from the water temperature sensor 104 adds the resistance value of the electric resistance 82. In the embodiment shown in FIG. 7, the bifuel engine is mounted when the fuel is switched from the first fuel 11 to the second fuel 21 in the embodiment shown in FIG. In the embodiment shown in FIG. 8 when the speed of the vehicle falls below the predetermined speed, when the fuel is switched from the first fuel 11 to the second fuel 21 and the injection time of the fuel injection valve falls below the predetermined injection time In this case, the relay 81 is operated to control the water temperature data from the water temperature sensor 104 to increase the target rotational speed as a value obtained by adding the electric resistance 82.
 これらの実施の形態で、使用燃料である気体燃料(CNG)からなる第2燃料21の性質による影響が出易いエンジン回転が低回転のときにエンジン回転上昇制御を行うことにより安定した回転を得ることができるとともに、気体燃料(CNG)からなる第2燃料21に切り替わっても通常の運転時には作動させないことにより適切な運転制御と燃料の無駄な消費を防ぐことができるという利点を有している。 In these embodiments, stable rotation is obtained by performing engine rotation increase control when the engine rotation speed is low, which is likely to be affected by the nature of the second fuel 21 made of gaseous fuel (CNG) that is the used fuel. In addition to being able to switch to the second fuel 21 made of gaseous fuel (CNG), it has the advantage that appropriate operation control and wasteful consumption of fuel can be prevented by not operating during normal operation. .
 1 燃料タンク、2 燃料タンク、3 吸気通路、4 排気通路、5 電子制御装置(ECU)、6 点火プラグ、7 燃料切替装置、8 入力回路、9 電子スロットル装置、11 第1燃料、12 第1燃料供給管、13 第1燃料噴射弁、21 第2燃料、22 第2燃料供給管、23 第2燃料噴射弁、51 入力端子、81 リレー、82 電気抵抗、83 入力端子、84a 出力端子、84b 出力端子、101 吸気管圧力センサ、102 エンジン回転検出センサ、103 スロットルセンサ、104 水温センサ、105 酸素センサ

                                                                           
DESCRIPTION OF SYMBOLS 1 fuel tank, 2 fuel tank, 3 intake passage, 4 exhaust passage, 5 electronic control unit (ECU), 6 spark plug, 7 fuel switching device, 8 input circuit, 9 electronic throttle device, 11 first fuel, 12 first Fuel supply pipe, 13 first fuel injection valve, 21 second fuel, 22 second fuel supply pipe, 23 second fuel injection valve, 51 input terminal, 81 relay, 82 electric resistance, 83 input terminal, 84a output terminal, 84b Output terminal, 101 intake pipe pressure sensor, 102 engine rotation detection sensor, 103 throttle sensor, 104 water temperature sensor, 105 oxygen sensor

Claims (4)

  1.  性質の異なる2種類の燃料を燃料切替装置により切り替えて使用するバイフューエルエンジンにおいて、回転速度を水温センサにより検知したエンジン冷却水の水温データを含むエンジンにおける各種の検知装置から検知したデータを用いて電子制御装置により算出した目標回転速度に制御するバイフューエルエンジンの回転制御装置であって、前記水温センサと前記電子制御装置との間に接続されて前記水温センサにより検知したエンジン冷却水の水温データを前記電子制御装置に入力する入力回路に前記燃料切替装置からの切り替え信号で切り替わる2つの出力端子を有するリレーおよび前記リレーにおける出力端子の一方に接続された所定値の電気抵抗が直列に接続されており、前記使用する燃料を切り替えたときに前記リレーが作動して前記水温センサからの水温データが前記電気抵抗を加えた値として、または電気抵抗を差し引いた値として前記電子制御装置に出力されて目標回転速度を上昇または下降させて安定した回転速度に制御することを特徴とするバイフューエルエンジンの回転制御装置。 In a bi-fuel engine in which two types of fuel having different properties are switched and used by a fuel switching device, data detected from various detection devices in the engine including water temperature data of engine cooling water whose rotation speed is detected by a water temperature sensor A rotation control device of a bifuel engine that controls to a target rotation speed calculated by an electronic control device, wherein water temperature data of engine cooling water which is connected between the water temperature sensor and the electronic control device and detected by the water temperature sensor A relay having two output terminals switched by the switching signal from the fuel switching device and an electric resistance of a predetermined value connected to one of the output terminals of the relay are connected in series to an input circuit for inputting And when the fuel to be used is switched, the relay The water temperature data from the water temperature sensor is output to the electronic control unit as a value to which the electrical resistance is added or as a value from which the electrical resistance is subtracted, and the target rotational speed is increased or decreased to control the stable rotational speed. A rotation control device for a bifuel engine characterized by:
  2.  燃料が切り替わり且つバイフューエルエンジンを搭載する車両の速度が所定速度を下回った場合に前記リレーが作動して前記水温センサからの水温データが前記電気抵抗を加えた値として目標回転速度を上昇させるように制御することを特徴とする請求項1記載のバイフューエルエンジンの回転制御装置。 When the fuel changes and the speed of the vehicle equipped with the bi-fuel engine falls below a predetermined speed, the relay operates to raise the target rotation speed as a value obtained by adding the electric resistance to the water temperature data from the water temperature sensor. The rotation control device for a bifuel engine according to claim 1, wherein the control is performed to
  3.  燃料が切り替わり且つ燃料噴射弁の噴射時間が所定噴射時間を下回った場合に前記リレーが作動して前記水温センサからの水温データが前記電気抵抗を加えた値として目標回転速度を上昇させるように制御することを特徴とする請求項1記載のバイフューエルエンジンの回転制御装置。 When the fuel changes and the injection time of the fuel injection valve falls below a predetermined injection time, the relay operates to control the water temperature data from the water temperature sensor to increase the target rotational speed as a value obtained by adding the electric resistance. The rotation control device for a bifuel engine according to claim 1, wherein:
  4.  前記電気抵抗が可変抵抗であることを特徴とする請求項1,2または3記載のバイフューエルエンジンの回転制御装置。
    The rotation control device for a bifuel engine according to claim 1, 2 or 3, wherein the electric resistance is a variable resistance.
PCT/JP2015/005845 2014-11-25 2015-11-24 Rotation control system for bi-fuel engine WO2016084368A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014238217A JP2018013039A (en) 2014-11-25 2014-11-25 Roll control device for bi-fuel engine
JP2014-238217 2014-11-25

Publications (1)

Publication Number Publication Date
WO2016084368A1 true WO2016084368A1 (en) 2016-06-02

Family

ID=56073956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005845 WO2016084368A1 (en) 2014-11-25 2015-11-24 Rotation control system for bi-fuel engine

Country Status (2)

Country Link
JP (1) JP2018013039A (en)
WO (1) WO2016084368A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62261635A (en) * 1986-05-08 1987-11-13 Nippon Denso Co Ltd Idle rotating speed adjusting device for internal combustion engine
JPH0845616A (en) * 1994-08-03 1996-02-16 Unisia Jecs Corp Detachable variable resistance adjusting device
JP2000291470A (en) * 1999-01-29 2000-10-17 Sanshin Ind Co Ltd Idle speed controller of engine
JP2005030333A (en) * 2003-07-08 2005-02-03 Toyota Motor Corp Control device of vehicular internal combustion engine
JP2011214543A (en) * 2010-04-01 2011-10-27 Aisan Industry Co Ltd Idle rotation speed control device for bifuel engine
JP2012193636A (en) * 2011-03-15 2012-10-11 Aisan Industry Co Ltd Idling speed control device for internal combustion engine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62261635A (en) * 1986-05-08 1987-11-13 Nippon Denso Co Ltd Idle rotating speed adjusting device for internal combustion engine
JPH0845616A (en) * 1994-08-03 1996-02-16 Unisia Jecs Corp Detachable variable resistance adjusting device
JP2000291470A (en) * 1999-01-29 2000-10-17 Sanshin Ind Co Ltd Idle speed controller of engine
JP2005030333A (en) * 2003-07-08 2005-02-03 Toyota Motor Corp Control device of vehicular internal combustion engine
JP2011214543A (en) * 2010-04-01 2011-10-27 Aisan Industry Co Ltd Idle rotation speed control device for bifuel engine
JP2012193636A (en) * 2011-03-15 2012-10-11 Aisan Industry Co Ltd Idling speed control device for internal combustion engine

Also Published As

Publication number Publication date
JP2018013039A (en) 2018-01-25

Similar Documents

Publication Publication Date Title
JP4747687B2 (en) Control device for bi-fuel engine
US8560212B2 (en) Method and device for operating a gas injection system of a gas fuel and a liquid fuel operated internal combustion engine
WO2014091691A1 (en) Fuel injection control device for internal combustion engine
JP5204042B2 (en) Switchable multi-fuel engine and fuel switching method in multi-fuel engine
JP4392319B2 (en) Apparatus and method for reducing fuel pump noise in LPI vehicles
JP6349608B2 (en) Engine control system
JP2004052638A (en) Air-fuel ratio control method of engine comprising venturi-type fuel supply device and fuel control device applying the same
WO2016084368A1 (en) Rotation control system for bi-fuel engine
CN104832297A (en) Double-fuel switching control device, system, method and vehicle
JP5874622B2 (en) Fuel injection control device for internal combustion engine
JP5003605B2 (en) Fuel supply device
JP2006017003A (en) Control device for hydrogen-added internal combustion engine
JP2001329875A (en) Fuel switching type engine
JP4883321B2 (en) Control device for internal combustion engine
WO2014091722A1 (en) Fuel injection control device for internal combustion engine
JP2013160138A (en) Fuel supply control device
WO2015104772A1 (en) Control device for internal combustion engine
JP2010133301A (en) Method of controlling fuel injection of bi-fuel internal combustion engine
WO2014091680A1 (en) Fuel injection control device for internal combustion engine, and vehicle fuel injection system
KR20090051655A (en) Fuel injection system of flexible feul vehicle
WO2016132708A1 (en) Fuel injection control device
KR20000045742A (en) Fuel shutoff apparatus and method for automobile
WO2014091723A1 (en) Fuel injection control device for internal combustion engine
JP6711703B2 (en) Fuel injection switching device for bi-fuel engine
JP4313359B2 (en) Leakage cutoff valve control method and system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15862513

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15862513

Country of ref document: EP

Kind code of ref document: A1