WO2016084260A1 - Motor control device and motor control method - Google Patents

Motor control device and motor control method Download PDF

Info

Publication number
WO2016084260A1
WO2016084260A1 PCT/JP2014/081652 JP2014081652W WO2016084260A1 WO 2016084260 A1 WO2016084260 A1 WO 2016084260A1 JP 2014081652 W JP2014081652 W JP 2014081652W WO 2016084260 A1 WO2016084260 A1 WO 2016084260A1
Authority
WO
WIPO (PCT)
Prior art keywords
field
command value
motor
value
correction
Prior art date
Application number
PCT/JP2014/081652
Other languages
French (fr)
Japanese (ja)
Inventor
高木 護
森本 進也
Original Assignee
株式会社安川電機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社安川電機 filed Critical 株式会社安川電機
Priority to PCT/JP2014/081652 priority Critical patent/WO2016084260A1/en
Publication of WO2016084260A1 publication Critical patent/WO2016084260A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage

Definitions

  • the disclosed embodiment relates to a motor control device and a motor control method.
  • Patent Document 1 discloses a synchronous motor control method that enables high-speed rotation by field-weakening control.
  • variable magnetic field motor that can expand the output range by having a variable field mechanism that varies the field magnetic flux has been proposed.
  • this variable magnetic field motor is to be controlled, the field magnetic flux is changed using the magnetic field as a control parameter.
  • the optimum value of this magnetic field is determined by the field state, power supply voltage, torque It is greatly influenced by etc. Even when the motor characteristics change due to a temperature change or the like, the optimum value of the magnetic field factor fluctuates, making it difficult to maintain the optimum control state.
  • the present invention has been made in view of such a problem, and can appropriately variably control the field magnetic flux of the variable field motor according to field weakening control or temperature change, and cannot drive the variable field motor. It is an object of the present invention to provide a motor control device and a motor control method capable of functionally expanding the output range without reducing the output range.
  • a motor control device that controls driving of a variable field motor having a variable field mechanism that varies a field magnetic flux, and calculates a voltage command value.
  • a voltage calculator configured to generate, a constant output controller configured to generate a field factor correction command value based on the voltage command value and an arbitrarily set reference voltage command value, and the field factor
  • a motor control device having a field factor calculation unit configured to calculate a field factor of the variable field motor based on a correction command value is applied.
  • a motor control method for controlling driving of a variable field motor having a variable field mechanism that varies a field magnetic flux, calculating a voltage command value, Generating a field factor correction command value based on a voltage command value and an arbitrarily set reference voltage command value; calculating a field factor of the variable field motor based on the field factor correction command value; A motor control method for executing is applied.
  • a motor control device that controls driving of a variable field motor having a variable field mechanism that varies a field magnetic flux, and a d-axis voltage command based on a torque command.
  • a means for generating a q-axis voltage command a means for calculating a voltage command value based on the d-axis voltage command and the q-axis voltage command; and based on the voltage command value and an arbitrarily set reference voltage command value.
  • a motor control device having means for generating a field factor correction command value and means for calculating a field factor of the variable field motor based on the field factor correction command value is applied.
  • a motor control device that controls driving of a variable field motor having a variable field mechanism that varies a field magnetic flux, and is configured to calculate a voltage command value.
  • a constant output control unit configured to generate a field factor correction command value based on the voltage command value and an arbitrarily set reference voltage command value, and the field factor correction command value
  • a field factor calculation unit configured to calculate a field factor of the variable field motor, and the constant output control unit determines a command value deviation between the voltage command value and the reference voltage command value.
  • the field factor correction command value is generated based on the field factor calculation unit, and the field factor calculation unit calculates the field factor by correcting the value calculated by table conversion based on the torque command and the motor speed with the field factor correction command value.
  • Motor control device is applied .
  • a motor control method for controlling driving of a variable field motor having a variable field mechanism that varies a field magnetic flux, the step of calculating a voltage command value, Generating a field factor correction command value based on a voltage command value and an arbitrarily set reference voltage command value; calculating a field factor of the variable field motor based on the field factor correction command value; A motor control method for executing is applied.
  • the field factor correction command value is generated based on a command value deviation between the voltage command value and the reference voltage command value.
  • a motor control method is applied.
  • a value obtained by limiting a maximum absolute value of the command value deviation by a field factor adjustment Id limiter is set to the field factor correction command value.
  • a value calculated by table conversion based on a torque command and a motor speed is corrected with the field factor correction command value, and the field factor is calculated.
  • a motor control method for calculating is applied.
  • a motor control method is used in which the field ratio is calculated by correcting the maximum field ratio with the field ratio correction command value.
  • a motor that generates a d-axis current command correction value for correcting a d-axis current command based on the command value deviation.
  • the control method is applied.
  • the positive value of the command value deviation is set to substantially zero and the minimum negative value is limited by the constant output control Id limiter.
  • a motor control method for generating a value as the d-axis current command correction value is applied.
  • a difference value between the command value deviation and the d-axis current command correction value is generated as the field factor correction command value.
  • a motor control method is applied.
  • the field flux of the variable field motor can be appropriately variably controlled according to field weakening control or temperature change, and the output range can be functionally expanded without disabling the variable field motor. it can.
  • FIG. 1 is a functional block diagram of a motor control device according to the present embodiment.
  • a high efficiency control unit 2 an Iq command generation unit 3, an ACR 4, a dq / 3 phase conversion unit 5, a PWM conversion unit 6, an inverter 7, a current detection unit 8, a motor M, , Encoder PG, field adjustment mechanism 9, three-phase / dq conversion unit 10, differentiator 11, voltage command value calculation unit 12, constant output control unit 13, field factor calculation unit 14, and adder 19 is shown.
  • the components excluding the motor M, the encoder PG, and the field adjustment mechanism 9 constitute the motor control device 1 of the present embodiment.
  • the motor control device 1 includes a CPU (not shown), and each component (except for the PWM conversion unit 6 and the inverter 7) of the motor control device 1 shown in FIG. It is realized by software executed by the CPU.
  • the high efficiency control unit 2 generates a d-axis current command Idref of a d-axis component that greatly affects the excitation of the motor M based on the torque command Tref input from the outside.
  • the d-axis current command Idref is generated so that the maximum torque can be obtained with the minimum current using the magnet torque and the reluctance torque.
  • the d-axis current command Idref is calculated by a calculation based on the calculation formula. Is generated.
  • the d-axis current command Idref is added to the output of the constant output control unit 13 described later and the adder 19 and then input to the Iq command generation unit 3 and the ACR 4 respectively.
  • the Iq command generation unit 3 generates a q-axis component q-axis current command Iqref that greatly affects the torque generation of the motor M based on the input d-axis current command Idref.
  • the q-axis current command Iqref is generated by calculation based on the calculation formula.
  • the q-axis current command Iqref is input to the ACR 4 as it is. Note that, depending on the type of motor M (for example, an IPM motor), the d-axis current command Idref may have some influence on the torque.
  • the ACR 4 receives the q-axis current command Iqref and the d-axis current command Idref, and also receives a detected q-axis current value Iq and a detected d-axis current value Id from a three-phase / dq converter 10 described later. Corresponding to the axis, it functions as a current control unit that outputs the q-axis voltage command Vqref and the d-axis voltage command Vdref based on the deviation between them. The ACR 4 generates a q-axis voltage command Vqref and a d-axis voltage command Vdref corresponding to the speed change of the motor M by calculation based on the motor speed ⁇ input from the differentiator 11 described later.
  • the dq / 3-phase conversion unit 5 converts the q-axis voltage command Vqref and the d-axis voltage command Vdref into the U-phase voltage command Vu and the V-phase based on the rotational position ⁇ of the motor M detected from an encoder PG described later. Coordinates are converted into a three-phase voltage command of a voltage command Vv and a W-phase voltage command Vw.
  • the PWM conversion unit 6 outputs a PWM drive signal corresponding to each phase by PWM conversion based on the comparison between the above three-phase voltage commands Vu, Vv, Vw and a carrier wave (triangular wave) generated internally.
  • the inverter 7 supplies power to the motor M by converting supply power from an external power source (not shown) into drive power of each phase by PWM control by a switching operation based on the PWM drive signal corresponding to each phase.
  • the current detector 8 detects the drive current values Iu, Iv, and Iw of the drive power of each phase fed from the inverter 7.
  • the motor M is a variable field motor provided with a variable field mechanism that varies the field magnetic flux therein, and is driven by the driving power of each phase fed from the inverter 7.
  • a configuration example of the variable field motor including the variable field mechanism will be described in detail later.
  • the encoder PG is composed of an optical rotary encoder, for example, and detects the rotational position ⁇ of the motor M (hereinafter referred to as motor position ⁇ ).
  • the field adjustment mechanism 9 controls the variable field mechanism in the variable field motor M based on the field factor input from the field factor calculation unit 14 described later, and adjusts the field flux of the variable field motor M. .
  • the field adjusting mechanism 9 is configured to adjust the field magnetic flux by a mechanical drive mechanism using a servo motor or the like.
  • a configuration in which the variable field mechanism is controlled by typical driving is also applicable.
  • the three-phase / dq conversion unit 10 detects the driving current values Iu, Iv, Iw of each phase detected from the current detection unit 8 based on the motor position ⁇ detected from the encoder PG, and detects the q-axis current value Iq. And coordinate conversion into a detected d-axis current value Id.
  • the ACR 4 includes the q-axis current command Iqref and the d-axis current command Idref based on the torque command Tref, the detected q-axis current value Iq and the detected d-axis current value Id actually input to the motor M.
  • Q-axis voltage command Vqref and d-axis voltage command Vdref are output based on the deviation between the two.
  • a feedback loop for current control (torque control) is configured by the ACR 4, the dq / 3-phase converter 5, the PWM converter 6, the inverter 7, the current detector 8, and the 3-phase / dq converter 10. Control is performed so that the current actually input to the motor M follows the value of the torque command Tref.
  • the torque command Tref may be directly input from the host control device, or may be further input by providing a feedback loop for speed control and a feedback loop for position control.
  • the voltage command value calculation unit 12 Based on the q-axis voltage command Vqref and the d-axis voltage command Vdref output from the ACR 4, the voltage command value calculation unit 12 converts the q-axis component and the d-axis component into a command value of the input voltage to the motor M. The corresponding voltage command value V1 is calculated.
  • the voltage command value calculation unit 12 corresponds to the voltage calculation unit described in each claim.
  • the differentiator 11 calculates the motor speed ⁇ by performing a first-order differential operation on the motor position ⁇ detected by the encoder PG.
  • the constant output controller 13 outputs a d-axis current command correction value ⁇ Idref and a field factor correction command value Idc based on a deviation between the reference voltage command value Vref and the voltage command value V1 input from the outside.
  • the d-axis current command correction value ⁇ Idref is adjusted according to the increase / decrease change of the input voltage when the motor M rotates at high speed. Constant output control that stabilizes the driving of M is possible.
  • a feedback loop for voltage control is configured by the Iq command generation unit 3, the ACR 4, the voltage command value calculation unit 12, and the constant output control unit 13, and the voltage input to the motor M is the value of the reference voltage command value Vref. It controls to follow corresponding to. Further, the field factor correction command value Idc output by the constant output calculator 13 is input to the field factor calculator 14. The internal configuration of the constant output control unit 13 will be described in detail later.
  • the field factor calculator 14 first calculates a field factor that can maximize the power conversion efficiency of the variable field motor M at that time based on the torque command Tref and the motor speed ⁇ , Using the field correction command value Idc input from the constant output control unit 13, the magnetic field is corrected in accordance with the change in the input voltage of the motor M. Note that a method for calculating the magnetic field in the magnetic field calculator 14 will be described in detail later.
  • the control configuration is compared by performing dq-axis vector control in which the current command corresponding to the torque command Tref is divided into the d-axis current command Idref and the q-axis current command Iqref.
  • the AC motor M can be functionally controlled in the same manner as a simple DC motor.
  • by performing constant output control based on the reference voltage command value Vref it is possible to stabilize the driving of the motor M in the high speed range.
  • the motor control device 1 of the present embodiment by adjusting the field of the variable field motor M by calculating the field ratio according to the torque command Tref, the motor speed ⁇ , and the field factor correction command value Idc, The power conversion efficiency of the variable field motor M can be optimized.
  • FIG. 4 shows an axial orthogonal cross section of the entire variable field motor M of this example.
  • the rotor 120 includes a magnetic pole portion 121 that generates a magnetic field and an iron core 122, and is configured as a field.
  • the magnetic pole part 121 is divided into three in the axial direction, and the magnetic pole part 121a at the center in the axial direction is rotatable relative to the load side magnetic pole part 121b and the anti-load side magnetic pole part 121c.
  • Each of the magnetic pole portions 121a, 121b, and 121c is configured by mounting a magnet 123 that generates a magnetic field in a substantially V-shaped mounting hole provided in the iron core 122 with the magnetization direction facing or back.
  • the configuration including the three magnetic pole portions 121a, 121b, and 121 that can be relatively rotated as described above corresponds to the variable field mechanism.
  • the field adjustment mechanism 9 is mechanically connected to the variable field mechanism provided in the variable field motor M (not shown), and the servo motor provided in the field adjustment mechanism 9 is driven.
  • the central magnetic pole part 121a By rotating the central magnetic pole part 121a in the circumferential direction relative to the load-side field pole part 121b and the anti-load-side magnetic pole part 121c integrally fastened by The interlinkage magnetic flux that links between the two is changed.
  • the relative angle of the central magnetic pole part 121a with respect to the load-side magnetic pole part 121b and the anti-load-side magnetic pole part 121c is increased by driving the field adjusting mechanism 9.
  • the central magnetic pole part 121a rotates relatively large with respect to the load-side magnetic pole part 121b and the anti-load-side magnetic pole part 121c, so that the magnetic poles cancel each other and the interlinkage magnetic flux is weakened.
  • the relative angle of the central magnetic pole part 121a with respect to the load-side magnetic pole part 121b and the anti-load-side magnetic pole part 121c is decreased by driving the field adjusting mechanism 9.
  • the magnetic pole portion 121a at the center is aligned with the load-side magnetic pole portion 121b and the anti-load-side magnetic pole portion 121c, and the interlinkage magnetic flux is the strongest.
  • the above-mentioned magnetic field ratio is the ratio of the interlinkage magnetic flux at that time with respect to the maximum interlinkage magnetic flux (rotor 120 side d-axis magnetic flux in FIG. 4) generated from the entire rotor 120 (as a range of values)
  • it corresponds to the generation rate of the interlinkage magnetic flux when the central magnetic pole portion 121a is rotated relative to the load-side magnetic pole portion 121b and the anti-load-side magnetic pole portion 121c.
  • the variable field mechanism included in the variable field motor M is configured to control the field magnetic flux by mechanical drive as described above.
  • the structure etc. which control a field magnetic flux by are applicable.
  • the flow path of the interlinkage magnetic flux of the rotor 120 controlled as described above is shown in the cross-sectional view perpendicular to the axis in FIG.
  • the iron core 122 at a position where the N poles face each other between adjacent pairs becomes an N-type magnetic pole portion 122N that directs the N pole magnetic poles radially outward.
  • the iron core 122 at a position where the S poles face each other is an S-type magnetic pole portion 122S that directs the S pole magnetic poles outward in the radial direction.
  • the d-axis magnetic flux on the rotor 120 side circulates across the respective circumferential center positions in the direction from the adjacent S-type magnetic pole part 122S to the N-type magnetic pole part 122N.
  • the axis extending in the direction shifted by 90 ° in electrical angle from the d-axis magnetic flux direction on the rotor 120 side is the q axis on the rotor 120 side. Then, by controlling the above-described field ratio, the rate of generation of magnetic flux on the rotor 120 side d-axis can be controlled.
  • stator 110 side which is an armature
  • two adjacent teeth 112 are wound around the coil wires in opposite directions.
  • Two adjacent teeth 112 form a set and correspond to the same current phase U, V, W. That is, in the mechanical stationary coordinates with the rotation axis of the output shaft 130 as the origin, the two pairs of adjacent teeth 112 whose mechanical arrangements are shifted by 30 ° from each other have an alternating magnetic field with a phase difference that is electrically shifted by 120 °. Will occur.
  • a magnetic field rotating around the axis is generated in the stator 110, and the magnetic flux on the rotor 120 side rotates by receiving attraction and repulsion from the rotating magnetic field on the stator 110 side.
  • the current component that circulates the magnetic flux around the teeth 112 arranged in the radial direction opposite to the d-axis on the rotor 120 side is the d-axis current Id, and as the rotor 120 rotates, the current component on the stator 110 side The d axis also rotates.
  • the motor control device 1 can variably control the d-axis interlinkage magnetic flux on the rotor 120 side of the variable field motor M by adjusting the magnetic field ratio, while the motor control.
  • the d-axis current command Idref By adjusting the d-axis current command Idref with the device 1, the d-axis magnetic flux on the stator 110 side can be electrically variably controlled.
  • variable field motor M it is possible to easily output a large torque to the variable field motor M by increasing both the d-axis magnetic flux on the rotor 120 side and the d-axis magnetic flux on the stator 110 side.
  • the d-axis magnetic flux on both the rotor 120 side and the stator 110 side is increased in this way, the induced voltage constant of the entire variable field motor M also increases. For this reason, a large induced voltage (counterelectromotive voltage) is generated in the high-speed rotation region, and as a result, it cannot be rotated at a higher speed due to insufficient output voltage.
  • variable field motor M easily generates torque when the field ratio and d-axis current are large, and easily outputs the motor speed ⁇ while suppressing the output voltage when each is small (because the induced voltage is small). .
  • the power efficiency of the variable field motor M and the operation speed range can be increased.
  • the motor control device 1 of the present embodiment changes the field magnetic flux of the variable magnetic field motor M using the field ratio as a control parameter, and the optimum value of this field ratio is changed by the constant output control. It is also greatly affected by the power supply voltage of the battery and the torque command. Even when the motor characteristics change due to a temperature change or the like, the optimum value of the magnetic field factor fluctuates, making it difficult to maintain the optimum control state.
  • the constant output control unit 13 generates a field factor correction command value Idc based on the voltage command value V1 and the reference voltage command value Vref, and the field factor calculation unit 14 uses the field factor correction command. Based on the value Idc, by calculating a field rate suitable for driving the variable field motor M at that time, constant field control and variable field flux control suitable for temperature change are performed. .
  • the configuration and function of the constant output control unit 13 and the magnetic field factor calculation unit 14 will be described in order.
  • FIG. 5 schematically shows the internal configuration of the constant output control unit 13.
  • the constant output control unit 13 includes a subtractor 131, a PI control unit 132, a filter 133, a constant output control Id limiter 134, and a field factor adjustment Id limiter 135.
  • the subtractor 131 takes a difference obtained by subtracting the voltage command value V1 input from the voltage command value calculation unit 12 from the reference voltage command value Vref input from the outside, and calculates a difference between the reference voltage command values Vref (see A in the figure). Output as.
  • the reference voltage command value Vref is preferably set to be equal to the power supply voltage at that time (particularly, the DC bus voltage or battery voltage of a converter not shown), but is set to an arbitrary value other than that. Also good.
  • the PI control unit 132 includes, for example, an appropriate gain, an integrator, and the like, and performs so-called PI control so that the command value deviation is reduced in the voltage control system feedback loop (not particularly shown).
  • the filter 133 functions to remove a high frequency band component included in the command value deviation output from the PI control unit 132 and suppress vibration caused by the sampling frequency of the command value deviation.
  • the constant output control Id limiter 134 outputs, as the d-axis current command correction value ⁇ Idref, a value obtained by setting the positive value to substantially zero and the negative value to a predetermined minimum value with respect to the command value deviation input from the filter 133. To do.
  • the field-adjustment Id limiter 135 limits the maximum absolute value of the command value deviation input from the filter 133 to a predetermined value, and outputs a field factor correction command value Idc.
  • the predetermined minimum value in the constant output control Id limiter 134 and the predetermined maximum absolute value in the field-adjustment Id limiter 235 are set to be substantially equal to each other.
  • the constant output control unit 13 configured as described above outputs the d-axis current command correction value ⁇ Idref and adjusts the d-axis current command Idref, thereby generating the d-axis magnetic flux on the stator 110 side of the variable field motor M.
  • Weak so-called field weakening control is performed. In other words, this field weakening control is performed with respect to the d-axis current command Idref generated optimally in terms of power efficiency by the high-efficiency control unit 2 in order to expand the high-speed rotation range of the variable field motor M as described above. Only control is performed to decrease, and control to increase is not performed.
  • constant absolute output control Id limiter 134 and the field ratio adjustment Id limiter 135 each limit the maximum absolute output value to a predetermined value (set a negative lower limit and a positive upper limit). This is for suppressing excessive correction of the d-axis current command Iderf and the magnetic field even when the input voltage is greatly increased or decreased.
  • FIG. 18 shows a flow of a field factor calculation process executed in the field factor calculator 14 by a CPU (not shown) included in the motor control device 1 of the present embodiment.
  • step S ⁇ b> 5 the CPU of the motor control device 1 inputs a field factor correction command value Idc from the constant output control unit 13.
  • step S10 the CPU of the motor control device 1 sets the converted field ratio by table conversion (detailed later) based on the torque command and the motor speed.
  • step S15 the CPU of the motor control device 1 determines whether or not the field factor correction command value Idc input in step S5 is a negative value ( ⁇ 0). If the field factor correction command value Idc is a negative value, the determination is satisfied, and the routine goes to Step S20.
  • step S20 the CPU of the motor control device 1 adds a value obtained by multiplying the field factor correction command value Idc input in step S5 by the coefficient K to the converted field factor set in step S10.
  • the final magnetic field is calculated by correcting the magnetic field to decrease.
  • the coefficient K is a coefficient for changing the field factor correction command value Idc to a unit of field factor. Then, this flow ends.
  • step S15 if the field correction command value Idc is a positive value (> 0) in the determination in step S15, the determination is not satisfied and the process proceeds to step S25.
  • step S25 the CPU of the motor control device 1 adds a value obtained by multiplying the field factor correction command value Idc input in step S5 by the coefficient K to the converted field factor set in step S10. In other words, the final field ratio is calculated by correcting the field ratio to increase. Then, this flow ends.
  • the field factor calculation unit 14 included in the present embodiment has the field factor correction command value output by the constant output control unit 13 with respect to the converted field factor calculated by table conversion based on the torque command Tref and the motor speed ⁇ .
  • the final field susceptibility is calculated by correcting with Idc. At this time, if the field correction command value Idc is a positive value, the field factor is corrected to increase, and if the field factor correction command value Idc is a negative value, the field factor is corrected to decrease.
  • FIG. 7 shows an example of a field ratio table used for table conversion in step S10.
  • the power conversion efficiency can be actively changed by changing the field factor to expand the output range.
  • the power conversion efficiency itself is the motor as described above. It changes passively according to the output. The relationship between these is often a complex relationship that does not fit into a simple calculation formula.
  • the field factor calculation unit 14 includes a field factor table as shown in FIG. 7 and sets an appropriate converted field factor by table conversion with reference to this table.
  • parameters related to the motor output are used as key variables, and a correlation with a field factor capable of minimizing the input power corresponding to these parameters is stored.
  • a field table is composed of a binary table that stores field values that can be converted into values.
  • the constant output control unit 13 decreases with respect to the d-axis current command Idref generated by the high efficiency control unit 2 when the high-speed rotation range of the variable field motor M is expanded.
  • the field weakening control is performed to control. In this field weakening control, only control to decrease the d-axis current command Idref is performed, and control to increase is not performed. That is, the d-axis current command correction value ⁇ Idref is not output as a positive value.
  • Vq R ⁇ Iq + Lq ⁇ (d / dt) Iq + ⁇ Ld ⁇ Id + ⁇
  • R, Ld, and Lq are the winding resistance of the motor M, the winding inductance of the d-axis and the q-axis, respectively, and ⁇ is the magnetic flux density.
  • is the magnetic flux density.
  • the term of ⁇ corresponds to the induced voltage, and the induced voltage ⁇ can be canceled by setting Id to a negative value ( ⁇ 0) by field weakening control.
  • the constant output control Id limiter 134 limits the d-axis current command correction value ⁇ Idref to a negative value of 0 or less. Then, the Iq command generation unit 3 generates the q-axis current command Iqref based on the d-axis current command Idref that has been adjusted to decrease in this way.
  • the field factor correction command value Idc which can take both a positive value (> 0) and a negative value, is obtained via the field factor adjustment Id limiter 135 as described above. Output for correction.
  • the constant power control unit 13 outputs the field factor correction command value Idc for correcting the field factor as both a positive value and a negative value. You can do both.
  • the constant output control unit 13 when the constant output control unit 13 performs field weakening control to expand the high-speed rotation range, the d-axis magnetic flux is weakened on both the stator 110 side and the rotor 120 side, and the constant output control unit When 13 cancels the field weakening control and increases the torque, control is performed so as to increase the d-axis magnetic flux only on the rotor 120 side.
  • both the d-axis current command correction value ⁇ Idref and the field factor correction command value Idc are generated based on the command value deviation in the voltage control system feedback loop.
  • this command value deviation is a deviation between the voltage command value V1 actually input to the motor M and the reference voltage command value Vref, and the voltage control system feedback loop always reduces this command value deviation. Control to do.
  • the maximum voltage for example, a power supply voltage of a battery or the like
  • the voltage command value V1 actually input to the motor M is always referred to.
  • the saturation state of the motor output voltage can be maintained.
  • the motor output calculated by the motor speed ⁇ ⁇ torque can maintain a constant output state where the motor output is constant, and a desirable state in which the motor speed ⁇ and torque are in a substantially inversely proportional relationship is maintained. it can. This is the original function of the voltage control system feedback loop including the constant output control unit 13.
  • the constant output control unit 13 provided in the present embodiment outputs only the negative value of the command value deviation as the d-axis current command correction value ⁇ Idref, so that the d-axis is used for field weakening control. Even though the current command Idref is controlled to be decreased, the control to increase is not performed.
  • the constant output control unit 13 provided in the present embodiment outputs the field factor correction command value Idc by both the positive value and the negative value of the command value deviation to correct the field factor, thereby making the constant output described above. The state can be maintained.
  • the command value deviation of the voltage control system feedback loop becomes a negative value.
  • both the d-axis current command correction value ⁇ Idref and the field factor correction command value Idc become negative values, the field weakening control and the field factor decrease correction are performed simultaneously, and the induced voltage of the motor M is reduced.
  • the high-speed rotation range can be expanded (the motor speed ⁇ can be easily increased while suppressing the output voltage)
  • the voltage command value V1 also decreases accordingly, so that the voltage command value V1 approaches the reference voltage command value Vref and the command value deviation approaches zero.
  • the d-axis current command correction value ⁇ Idref and the field factor correction command value Idc can be finally converged to 0, the field weakening control is canceled, and the field factor (Decrease correction is canceled and the converted magnetic field factor is restored). That is, through such a process, even when the torque command Tref increases, the stator 110 side and the rotor are connected to each other while maintaining the constant output state by approximating the voltage command value V1 to the reference voltage command value Vref.
  • the induced voltage of the motor M can be reduced by adjusting the balance of the respective d-axis magnetic fluxes on the 120 side, the high speed rotation range can be expanded, and the motor speed ⁇ can be easily obtained.
  • the command value deviation of the voltage control system feedback loop becomes a positive value.
  • the d-axis current command correction value ⁇ Idref is limited to 0 and only the field factor correction command value Idc becomes a positive value, and only the increase in the field factor is performed. The torque output with efficiency can be maintained.
  • the voltage command value V1 also increases accordingly. Therefore, the voltage command value V1 approaches the reference voltage command value Vref and the command value deviation approaches zero.
  • the d-axis current command correction value ⁇ Idref and the field factor correction command value Idc can be finally converged to 0, and the field factor decreases (the increase correction is canceled).
  • the stator 110 side and the rotor are maintained while maintaining the constant output state by approximating the voltage command value V1 to the reference voltage command value Vref.
  • the induced voltage of the motor M can be increased by adjusting the balance of the respective d-axis magnetic fluxes on the 120 side, and the torque output with appropriate power efficiency can be maintained.
  • the constant output control unit 13 generates the field correction command value Idc based on the voltage command value V1 and the reference voltage command value Vref, and the field factor calculation unit 14 Based on the correction command value Idc, a field ratio appropriate for driving the variable field motor M at that time is calculated. That is, the field control on the rotor 120 side is controlled based on the voltage command value V and the reference voltage command value Vref, which are field control parameters on the stator 110 side, so that the field control on each of the stator 110 side and the rotor 120 side is performed. Can be performed in cooperation. As a result, the field magnetic flux of the variable field motor M can be appropriately variably controlled while maintaining constant output control, and the output range can be functionally expanded without disabling the variable field motor M.
  • the field correction command value Idc is not generated by table conversion, but is generated by a control system using a voltage control system feedback loop. For this reason, the above function can be realized with a simple configuration without using a temperature detection sensor or a complicated table corresponding to the temperature change even for a characteristic change due to a temperature change of the motor M, and the variable field motor M is also included. There is an advantage that it is not easily affected by aging of machines and individual differences.
  • the constant output controller 13 generates the field correction command value Idc based on the command value deviation between the voltage command value V1 and the reference voltage command value Vref.
  • the command value deviation between the voltage command value V1 and the reference voltage command value Vref corresponds to the voltage deviation in the voltage control system feedback loop described above.
  • the constant output control unit 13 generates a field factor correction command value Idc based on the command value deviation, so that the field factor calculation unit 14 corrects the field factor in accordance with the change in the input voltage of the motor M. Can be done appropriately.
  • the constant output control unit 13 generates a value in which the maximum absolute value of the command value deviation is limited by the field-adjustment Id limiter 135 as the field-correction command value Idc. Therefore, even when the input voltage of the motor M is greatly increased or decreased, the constant output control unit 13 can suppress excessive correction of the magnetic field factor and can maintain a suitable magnetic field factor for driving the motor M.
  • the field factor calculator 14 corrects the value calculated by table conversion based on the torque command Tref and the motor speed ⁇ with the field factor correction command value Idc to calculate the field factor.
  • the field ratio calculation unit 14 drives based on the torque command Tref serving as an input reference to the variable magnetic field motor M and the motor speed ⁇ corresponding to the detection output of the variable field motor M. Therefore, it is possible to functionally obtain an appropriate field ratio, and to appropriately correct the field ratio in accordance with the increase / decrease change of the input voltage of the motor M. As a result, it is possible to realize optimal field ratio control while maintaining a constant output state.
  • the relationship between the torque command Tref, the motor speed ⁇ , and the field rate is a characteristic unique to the variable field motor M to be controlled, a field rate table showing the correlation between them is created in advance and converted.
  • the magnetic field can be calculated quickly and functionally.
  • the constant output control unit 13 generates the d-axis current command correction value ⁇ Idref for correcting the d-axis current command Idref based on the command value deviation.
  • the command value deviation between the voltage command value V1 and the reference voltage command value Vref corresponds to the voltage deviation in the voltage control system feedback loop.
  • the constant output control unit 13 generates the d-axis current command correction value ⁇ Idref based on the command value deviation, so that the field factor calculation unit 14 causes the field weakening current to flow according to the increase / decrease change of the input voltage of the motor.
  • the constant output control unit 13 uses the constant output control Id limiter 134 to set a value obtained by setting the positive value of the command value deviation to approximately 0 and limiting the minimum negative value to the d-axis current command correction value ⁇ Idref.
  • the voltage control system feedback loop can only perform a correction for decreasing the d-axis current command Idref, that is, a field weakening that weakens the induced voltage without correcting the d-axis current so as to increase the induced voltage. Since the d-axis current is corrected so that only the current flows, the high-speed rotation range can be expanded. Further, even when the input voltage of the motor M greatly increases, the constant output control unit 13 can suppress excessive decrease correction with respect to the d-axis current command Idref, and can maintain a d-axis current appropriate for driving the motor M.
  • the field adjustment Id limiter 135 sets a value obtained by limiting the maximum absolute value of the command value deviation.
  • the present invention is not limited to this.
  • the input and output of the constant output control Id limiter 134 in the constant output control unit 13A that is, the difference value between the command value deviation and the d-axis current command correction value ⁇ Idref is calculated. It may be generated as a field factor correction command value Idc.
  • the field correction command value Idc is output only when the command value deviation is smaller than the positive value or the limited negative value (0 is output for a negative value greater than the limit value).
  • the constant output control unit 13 performs field weakening control and expands the high-speed rotation range, it is weakened on both the stator 110 side and the rotor 210 side in the above embodiment. Then, control is performed so as to weaken the d-axis magnetic flux only on the stator 110 side. Further, when the constant output control unit 13 cancels the field weakening control and increases the torque, this modified example also controls to increase the d-axis magnetic flux only on the rotor 120 side as in the above embodiment. Note that the field control correction command value Idc smaller than the limited negative value is not output by the voltage control system feedback loop restoration function as described above.
  • steps S20 and S25 for correcting the converted field rate with the field factor correction command value Idc
  • steps S20A and S25A for correcting the maximum field factor set in step S10A with the field factor correction command value Idc. Execute.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

A motor control device (1) for controlling the drive of a variable field motor (M) having a variable field mechanism capable of changing field magnetic flux comprises: a voltage command value calculation unit (12) configured so as to calculate a voltage command value (V1); a constant output control unit (13) configured so as to generate a field ratio correction command value (Idc) on the basis of the voltage command value (V1) and an arbitrarily set reference voltage command value (Vref); and a field ratio calculation unit (14) configured so as to calculate a field ratio of the variable field motor (M) on the basis of the field ratio correction command value (Idc).

Description

モータ制御装置及びモータ制御方法Motor control device and motor control method
 開示の実施形態は、モータ制御装置及びモータ制御方法に関する。 The disclosed embodiment relates to a motor control device and a motor control method.
 特許文献1には、弱め界磁制御により高速域回転を可能にする同期モータの制御方法が開示されている。 Patent Document 1 discloses a synchronous motor control method that enables high-speed rotation by field-weakening control.
特開平8-9699号公報JP-A-8-9699
 一方、界磁磁束を可変させる可変界磁機構を有することで出力範囲を拡大できる可変磁界モータが提案されている。この可変磁界モータを制御対象とした場合には、界磁率を制御パラメータとして界磁磁束を変更するが、この界磁率の最適値は上記弱め界磁制御によって変化する界磁状態や、電源電圧、トルク指令等に大きく影響を受ける。また、温度変化等によってモータ特性が変化した場合でも、界磁率の最適値が変動して最適な制御状態の維持が困難となる。 On the other hand, a variable magnetic field motor that can expand the output range by having a variable field mechanism that varies the field magnetic flux has been proposed. When this variable magnetic field motor is to be controlled, the field magnetic flux is changed using the magnetic field as a control parameter. The optimum value of this magnetic field is determined by the field state, power supply voltage, torque It is greatly influenced by etc. Even when the motor characteristics change due to a temperature change or the like, the optimum value of the magnetic field factor fluctuates, making it difficult to maintain the optimum control state.
 本発明はこのような問題点に鑑みてなされたものであり、弱め界磁制御や温度変化に応じて可変界磁モータの界磁磁束を適切に可変制御することができ、可変界磁モータを駆動不能にすることなく出力範囲を機能的に拡大できるモータ制御装置及びモータ制御方法を提供することを目的とする。 The present invention has been made in view of such a problem, and can appropriately variably control the field magnetic flux of the variable field motor according to field weakening control or temperature change, and cannot drive the variable field motor. It is an object of the present invention to provide a motor control device and a motor control method capable of functionally expanding the output range without reducing the output range.
 上記課題を解決するため、本発明の一の観点によれば、界磁磁束を可変させる可変界磁機構を有する可変界磁モータの駆動を制御するモータ制御装置であって、電圧指令値を算出するように構成された電圧算出部と、前記電圧指令値と任意に設定された参照電圧指令値に基づいて界磁率補正指令値を生成するように構成された定出力制御部と、前記界磁率補正指令値に基づいて前記可変界磁モータの界磁率を算出するように構成された界磁率演算部と、を有するモータ制御装置が適用される。 In order to solve the above problems, according to one aspect of the present invention, a motor control device that controls driving of a variable field motor having a variable field mechanism that varies a field magnetic flux, and calculates a voltage command value. A voltage calculator configured to generate, a constant output controller configured to generate a field factor correction command value based on the voltage command value and an arbitrarily set reference voltage command value, and the field factor A motor control device having a field factor calculation unit configured to calculate a field factor of the variable field motor based on a correction command value is applied.
 また、本発明の別の観点によれば、界磁磁束を可変させる可変界磁機構を有する可変界磁モータの駆動を制御するモータ制御方法であって、電圧指令値を算出することと、前記電圧指令値と任意に設定された参照電圧指令値に基づいて界磁率補正指令値を生成することと、前記界磁率補正指令値に基づいて前記可変界磁モータの界磁率を算出することと、を実行するモータ制御方法が適用される。 According to another aspect of the present invention, there is provided a motor control method for controlling driving of a variable field motor having a variable field mechanism that varies a field magnetic flux, calculating a voltage command value, Generating a field factor correction command value based on a voltage command value and an arbitrarily set reference voltage command value; calculating a field factor of the variable field motor based on the field factor correction command value; A motor control method for executing is applied.
 また、本発明の別の観点によれば、界磁磁束を可変させる可変界磁機構を有する可変界磁モータの駆動を制御するモータ制御装置であって、トルク指令に基づいてd軸電圧指令とq軸電圧指令を生成する手段と、前記d軸電圧指令と前記q軸電圧指令に基づいて電圧指令値を算出する手段と、前記電圧指令値と任意に設定された参照電圧指令値に基づいて界磁率補正指令値を生成する手段と、前記界磁率補正指令値に基づいて前記可変界磁モータの界磁率を算出する手段と、を有するモータ制御装置が適用される。 According to another aspect of the present invention, there is provided a motor control device that controls driving of a variable field motor having a variable field mechanism that varies a field magnetic flux, and a d-axis voltage command based on a torque command. a means for generating a q-axis voltage command; a means for calculating a voltage command value based on the d-axis voltage command and the q-axis voltage command; and based on the voltage command value and an arbitrarily set reference voltage command value. A motor control device having means for generating a field factor correction command value and means for calculating a field factor of the variable field motor based on the field factor correction command value is applied.
 また、本発明の別の観点によれば、界磁磁束を可変させる可変界磁機構を有する可変界磁モータの駆動を制御するモータ制御装置であって、電圧指令値を算出するように構成された電圧算出部と、前記電圧指令値と任意に設定された参照電圧指令値に基づいて界磁率補正指令値を生成するように構成された定出力制御部と、前記界磁率補正指令値に基づいて前記可変界磁モータの界磁率を算出するように構成された界磁率演算部と、を有し、前記定出力制御部は、前記電圧指令値と前記参照電圧指令値との指令値偏差に基づいて前記界磁率補正指令値を生成し、前記界磁率演算部は、トルク指令とモータ速度に基づくテーブル換算により算出した値に対し、前記界磁率補正指令値で補正して前記界磁率を算出するモータ制御装置が適用される。 According to another aspect of the present invention, there is provided a motor control device that controls driving of a variable field motor having a variable field mechanism that varies a field magnetic flux, and is configured to calculate a voltage command value. Based on the voltage calculation unit, a constant output control unit configured to generate a field factor correction command value based on the voltage command value and an arbitrarily set reference voltage command value, and the field factor correction command value A field factor calculation unit configured to calculate a field factor of the variable field motor, and the constant output control unit determines a command value deviation between the voltage command value and the reference voltage command value. The field factor correction command value is generated based on the field factor calculation unit, and the field factor calculation unit calculates the field factor by correcting the value calculated by table conversion based on the torque command and the motor speed with the field factor correction command value. Motor control device is applied .
 また、本発明の別の観点によれば、界磁磁束を可変させる可変界磁機構を有する可変界磁モータの駆動を制御するモータ制御方法であって、電圧指令値を算出するステップと、前記電圧指令値と任意に設定された参照電圧指令値に基づいて界磁率補正指令値を生成するステップと、前記界磁率補正指令値に基づいて前記可変界磁モータの界磁率を算出するステップと、を実行するモータ制御方法が適用される。 According to another aspect of the present invention, there is provided a motor control method for controlling driving of a variable field motor having a variable field mechanism that varies a field magnetic flux, the step of calculating a voltage command value, Generating a field factor correction command value based on a voltage command value and an arbitrarily set reference voltage command value; calculating a field factor of the variable field motor based on the field factor correction command value; A motor control method for executing is applied.
 また、本発明の別の観点によれば、前記界磁率補正指令値を生成するステップでは、前記電圧指令値と前記参照電圧指令値との指令値偏差に基づいて前記界磁率補正指令値を生成するモータ制御方法が適用される。 According to another aspect of the present invention, in the step of generating the field factor correction command value, the field factor correction command value is generated based on a command value deviation between the voltage command value and the reference voltage command value. A motor control method is applied.
 また、本発明の別の観点によれば、前記界磁率補正指令値を生成するステップでは、界磁率調整用Idリミッタで前記指令値偏差の最大絶対値を制限した値を前記界磁率補正指令値として生成するモータ制御方法が適用される。 According to another aspect of the present invention, in the step of generating the field factor correction command value, a value obtained by limiting a maximum absolute value of the command value deviation by a field factor adjustment Id limiter is set to the field factor correction command value. The motor control method generated as follows is applied.
 また、本発明の別の観点によれば、前記界磁率を算出するステップでは、トルク指令とモータ速度に基づくテーブル換算により算出した値に対し、前記界磁率補正指令値で補正して前記界磁率を算出するモータ制御方法が適用される。 Further, according to another aspect of the present invention, in the step of calculating the field ratio, a value calculated by table conversion based on a torque command and a motor speed is corrected with the field factor correction command value, and the field factor is calculated. A motor control method for calculating is applied.
 また、本発明の別の観点によれば、前記界磁率を算出するステップでは、最大界磁率に対し、前記界磁率補正指令値で補正して前記界磁率を算出するモータ制御方法が適用される。 Further, according to another aspect of the present invention, in the step of calculating the magnetic field ratio, a motor control method is used in which the field ratio is calculated by correcting the maximum field ratio with the field ratio correction command value. .
 また、本発明の別の観点によれば、前記界磁率補正指令値を生成するステップでは、前記指令値偏差に基づいてd軸電流指令を補正するためのd軸電流指令補正値を生成するモータ制御方法が適用される。 According to another aspect of the present invention, in the step of generating the field correction command value, a motor that generates a d-axis current command correction value for correcting a d-axis current command based on the command value deviation. The control method is applied.
 また、本発明の別の観点によれば、前記界磁率補正指令値を生成するステップでは、定出力制御用Idリミッタで前記指令値偏差の正値を略0とし負値の最小値を制限した値を前記d軸電流指令補正値として生成するモータ制御方法が適用される。 Further, according to another aspect of the present invention, in the step of generating the magnetic field correction command value, the positive value of the command value deviation is set to substantially zero and the minimum negative value is limited by the constant output control Id limiter. A motor control method for generating a value as the d-axis current command correction value is applied.
 また、本発明の別の観点によれば、前記界磁率補正指令値を生成するステップでは、前記指令値偏差と前記d軸電流指令補正値との差分値を前記界磁率補正指令値として生成するモータ制御方法が適用される。 According to another aspect of the present invention, in the step of generating the field factor correction command value, a difference value between the command value deviation and the d-axis current command correction value is generated as the field factor correction command value. A motor control method is applied.
 本発明によれば、弱め界磁制御や温度変化に応じて可変界磁モータの界磁磁束を適切に可変制御することができ、可変界磁モータを駆動不能にすることなく出力範囲を機能的に拡大できる。 According to the present invention, the field flux of the variable field motor can be appropriately variably controlled according to field weakening control or temperature change, and the output range can be functionally expanded without disabling the variable field motor. it can.
実施形態に係るモータ制御装置の機能ブロック図である。It is a functional block diagram of the motor control device concerning an embodiment. 可変界磁モータの一例における鎖交磁束が弱まった状態の回転子の外観斜視図である。It is an external appearance perspective view of the rotor in the state in which the linkage flux in an example of the variable field motor was weakened. 可変界磁モータの一例における鎖交磁束が最も強くなった状態の回転子の外観斜視図である。It is an external appearance perspective view of the rotor in the state where the linkage flux in the example of the variable field motor became the strongest. 可変界磁モータの一例における全体軸直交断面図である。It is a whole axis orthogonal sectional view in an example of a variable field motor. 定出力制御部の内部構成を示すブロック図である。It is a block diagram which shows the internal structure of a constant output control part. 界磁率演算処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of a magnetic field factor calculation process. 界磁率テーブルの一例を示す図である。It is a figure which shows an example of a field factor table. 変形例に係る定出力制御部の内部構成を示すブロック図である。It is a block diagram which shows the internal structure of the constant output control part which concerns on a modification. 変形例に係る界磁率演算処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the field factor calculation process which concerns on a modification.
<実施形態の基本構成>
 以下、実施の形態について図面を参照しつつ説明する。図1は、本実施形態に係るモータ制御装置の機能ブロック図を示している。この図1において、高効率制御部2と、Iq指令生成部3と、ACR4と、dq/3相変換部5と、PWM変換部6と、インバータ7と、電流検出部8と、モータMと、エンコーダPGと、界磁調整機構9と、3相/dq変換部10と、微分器11と、電圧指令値演算部12と、定出力制御部13と、界磁率演算部14と、加算器19が示されている。このうちモータM、エンコーダPG、及び界磁調整機構9を除いた構成部が、本実施形態のモータ制御装置1を構成する。なお、本実施形態の例では、モータ制御装置1が特に図示しないCPUを備えており、図1中に示す当該モータ制御装置1の各構成部(PWM変換部6、インバータ7を除く)はそのCPUによって実行されるソフトウェアで実現される。
<Basic configuration of the embodiment>
Hereinafter, embodiments will be described with reference to the drawings. FIG. 1 is a functional block diagram of a motor control device according to the present embodiment. In FIG. 1, a high efficiency control unit 2, an Iq command generation unit 3, an ACR 4, a dq / 3 phase conversion unit 5, a PWM conversion unit 6, an inverter 7, a current detection unit 8, a motor M, , Encoder PG, field adjustment mechanism 9, three-phase / dq conversion unit 10, differentiator 11, voltage command value calculation unit 12, constant output control unit 13, field factor calculation unit 14, and adder 19 is shown. Among these components, the components excluding the motor M, the encoder PG, and the field adjustment mechanism 9 constitute the motor control device 1 of the present embodiment. In the example of the present embodiment, the motor control device 1 includes a CPU (not shown), and each component (except for the PWM conversion unit 6 and the inverter 7) of the motor control device 1 shown in FIG. It is realized by software executed by the CPU.
 高効率制御部2は、外部から入力されたトルク指令Trefに基づいて、モータMの励磁に大きく影響を与えるd軸成分のd軸電流指令Idrefを生成する。このd軸電流指令Idrefは、マグネットトルクとリラクタンストルクを利用して最小の電流で最大のトルクが得られるよう生成されるものであり、この例では算出式に基づく演算によってこのd軸電流指令Idrefを生成する。d軸電流指令Idrefは、後述の定出力制御部13の出力と加算器19で加算された後にIq指令生成部3とACR4にそれぞれ入力される。 The high efficiency control unit 2 generates a d-axis current command Idref of a d-axis component that greatly affects the excitation of the motor M based on the torque command Tref input from the outside. The d-axis current command Idref is generated so that the maximum torque can be obtained with the minimum current using the magnet torque and the reluctance torque. In this example, the d-axis current command Idref is calculated by a calculation based on the calculation formula. Is generated. The d-axis current command Idref is added to the output of the constant output control unit 13 described later and the adder 19 and then input to the Iq command generation unit 3 and the ACR 4 respectively.
 Iq指令生成部3は、入力されたd軸電流指令Idrefに基づいて、モータMのトルクの発生に大きく影響を与えるq軸成分のq軸電流指令Iqrefを生成する。この例では、算出式に基づく演算によってこのq軸電流指令Iqrefを生成する。q軸電流指令IqrefはそのままACR4に入力される。なお、モータMの種類(例えばIPMモータなど)によっては、d軸電流指令Idrefもトルクに多少の影響を与える場合がある。 The Iq command generation unit 3 generates a q-axis component q-axis current command Iqref that greatly affects the torque generation of the motor M based on the input d-axis current command Idref. In this example, the q-axis current command Iqref is generated by calculation based on the calculation formula. The q-axis current command Iqref is input to the ACR 4 as it is. Note that, depending on the type of motor M (for example, an IPM motor), the d-axis current command Idref may have some influence on the torque.
 ACR4は、上記のq軸電流指令Iqrefとd軸電流指令Idrefが入力されるとともに、後述の3相/dq変換部10から検出q軸電流値Iqと検出d軸電流値Idが入力され、各軸に対応してそれらの間の偏差に基づいてq軸電圧指令Vqrefとd軸電圧指令Vdrefを出力する電流制御部としての機能を有する。またこのACR4は、後述の微分器11から入力されたモータ速度ωに基づく演算によって、モータMの速度変化に対応したq軸電圧指令Vqrefとd軸電圧指令Vdrefを生成する。 The ACR 4 receives the q-axis current command Iqref and the d-axis current command Idref, and also receives a detected q-axis current value Iq and a detected d-axis current value Id from a three-phase / dq converter 10 described later. Corresponding to the axis, it functions as a current control unit that outputs the q-axis voltage command Vqref and the d-axis voltage command Vdref based on the deviation between them. The ACR 4 generates a q-axis voltage command Vqref and a d-axis voltage command Vdref corresponding to the speed change of the motor M by calculation based on the motor speed ω input from the differentiator 11 described later.
 dq/3相変換部5は、後述のエンコーダPGから検出されたモータMの回転位置θに基づいて、上記のq軸電圧指令Vqrefとd軸電圧指令Vdrefを、U相電圧指令Vu、V相電圧指令Vv、及びW相電圧指令Vwの3相電圧指令に座標変換する。 The dq / 3-phase conversion unit 5 converts the q-axis voltage command Vqref and the d-axis voltage command Vdref into the U-phase voltage command Vu and the V-phase based on the rotational position θ of the motor M detected from an encoder PG described later. Coordinates are converted into a three-phase voltage command of a voltage command Vv and a W-phase voltage command Vw.
 PWM変換部6は、上記の3相電圧指令Vu,Vv,Vwと内部で生成した搬送波(三角波)との比較に基づくPWM変換により、各相に対応するPWMドライブ信号を出力する。 The PWM conversion unit 6 outputs a PWM drive signal corresponding to each phase by PWM conversion based on the comparison between the above three-phase voltage commands Vu, Vv, Vw and a carrier wave (triangular wave) generated internally.
 インバータ7は、上記の各相対応のPWMドライブ信号に基づくスイッチング動作により、特に図示しない外部電源からの供給電力をPWM制御で各相の駆動電力に変換してモータMに給電する。 The inverter 7 supplies power to the motor M by converting supply power from an external power source (not shown) into drive power of each phase by PWM control by a switching operation based on the PWM drive signal corresponding to each phase.
 電流検出部8は、インバータ7から給電された各相の駆動電力の駆動電流値Iu,Iv,Iwをそれぞれ検出する。 The current detector 8 detects the drive current values Iu, Iv, and Iw of the drive power of each phase fed from the inverter 7.
 モータMは、その内部の界磁磁束を可変させる可変界磁機構を備えた可変界磁モータであり、インバータ7から給電された各相の駆動電力により駆動する。なお、上記の可変界磁機構も含めた可変界磁モータの構成例については後に詳述する。 The motor M is a variable field motor provided with a variable field mechanism that varies the field magnetic flux therein, and is driven by the driving power of each phase fed from the inverter 7. A configuration example of the variable field motor including the variable field mechanism will be described in detail later.
 エンコーダPGは、例えば光学式のロータリエンコーダなどで構成され、モータMの回転位置θ(以下、モータ位置θという)を検出する。 The encoder PG is composed of an optical rotary encoder, for example, and detects the rotational position θ of the motor M (hereinafter referred to as motor position θ).
 界磁調整機構9は、後述の界磁率演算部14から入力される界磁率に基づいて可変界磁モータMにおける可変界磁機構を制御し、当該可変界磁モータMの界磁磁束を調整する。なお、本実施形態の例では、この界磁調整機構9はサーボモータ等を用いた機械的な駆動機構により界磁磁束を調整する構成を想定しているが、これに限られずに油圧による機械的な駆動で可変界磁機構を制御する構成等も適用可能である。 The field adjustment mechanism 9 controls the variable field mechanism in the variable field motor M based on the field factor input from the field factor calculation unit 14 described later, and adjusts the field flux of the variable field motor M. . In the example of the present embodiment, it is assumed that the field adjusting mechanism 9 is configured to adjust the field magnetic flux by a mechanical drive mechanism using a servo motor or the like. A configuration in which the variable field mechanism is controlled by typical driving is also applicable.
 3相/dq変換部10は、エンコーダPGから検出されたモータ位置θに基づいて、上記電流検出部8から検出された各相の駆動電流値Iu,Iv,Iwを、検出q軸電流値Iqと検出d軸電流値Idに座標変換する。また上述したように、上記のACR4は、トルク指令Trefに基づくq軸電流指令Iqref及びd軸電流指令Idrefと、実際にモータMに入力される検出q軸電流値Iq及び検出d軸電流値Idとの間の偏差に基づいてq軸電圧指令Vqref及びd軸電圧指令Vdrefを出力する。これにより、ACR4、dq/3相変換部5、PWM変換部6、インバータ7、電流検出部8、及び3相/dq変換部10で電流制御(トルク制御)のためのフィードバックループが構成され、モータMに実際に入力される電流をトルク指令Trefの値に対応して追従するよう制御する。なお、特に図示しないが、トルク指令Trefは上位制御装置から直接入力されてもよいし、またはさらに速度制御用のフィードバックループや、位置制御用のフィードバックループを設けてそれらから入力されてもよい。 The three-phase / dq conversion unit 10 detects the driving current values Iu, Iv, Iw of each phase detected from the current detection unit 8 based on the motor position θ detected from the encoder PG, and detects the q-axis current value Iq. And coordinate conversion into a detected d-axis current value Id. As described above, the ACR 4 includes the q-axis current command Iqref and the d-axis current command Idref based on the torque command Tref, the detected q-axis current value Iq and the detected d-axis current value Id actually input to the motor M. Q-axis voltage command Vqref and d-axis voltage command Vdref are output based on the deviation between the two. Thereby, a feedback loop for current control (torque control) is configured by the ACR 4, the dq / 3-phase converter 5, the PWM converter 6, the inverter 7, the current detector 8, and the 3-phase / dq converter 10. Control is performed so that the current actually input to the motor M follows the value of the torque command Tref. Although not particularly illustrated, the torque command Tref may be directly input from the host control device, or may be further input by providing a feedback loop for speed control and a feedback loop for position control.
 電圧指令値演算部12は、上記ACR4が出力したq軸電圧指令Vqrefとd軸電圧指令Vdrefに基づいて、それらのq軸成分とd軸成分を合成したモータMへの入力電圧の指令値に相当する電圧指令値V1を演算する。なお、この電圧指令値演算部12が各請求項記載の電圧算出部に相当する。 Based on the q-axis voltage command Vqref and the d-axis voltage command Vdref output from the ACR 4, the voltage command value calculation unit 12 converts the q-axis component and the d-axis component into a command value of the input voltage to the motor M. The corresponding voltage command value V1 is calculated. The voltage command value calculation unit 12 corresponds to the voltage calculation unit described in each claim.
 微分器11は、エンコーダPGで検出したモータ位置θを一階微分演算することでモータ速度ωを算出する。 The differentiator 11 calculates the motor speed ω by performing a first-order differential operation on the motor position θ detected by the encoder PG.
 定出力制御部13は、外部から入力された参照電圧指令値Vrefと電圧指令値V1との間の偏差に基づいてd軸電流指令補正値ΔIdrefと界磁率補正指令値Idcを出力する。d軸電流指令補正値ΔIdrefが加算器19でd軸電流指令Idrefだけに加算されることにより、モータMの高速回転時における入力電圧の増減変化に応じてd軸電流指令Idrefを調整し、モータMの駆動を安定させる定出力制御が可能となる。つまり、Iq指令生成部3、ACR4、電圧指令値演算部12、及び定出力制御部13で電圧制御のためのフィードバックループが構成され、モータMに入力される電圧を参照電圧指令値Vrefの値に対応して追従するよう制御する。また、当該定出力演算部13が出力した上記界磁率補正指令値Idcは、界磁率演算部14に入力される。なお、定出力制御部13内部構成については後に詳述する。 The constant output controller 13 outputs a d-axis current command correction value ΔIdref and a field factor correction command value Idc based on a deviation between the reference voltage command value Vref and the voltage command value V1 input from the outside. By adding the d-axis current command correction value ΔIdref to only the d-axis current command Idref by the adder 19, the d-axis current command Idref is adjusted according to the increase / decrease change of the input voltage when the motor M rotates at high speed. Constant output control that stabilizes the driving of M is possible. That is, a feedback loop for voltage control is configured by the Iq command generation unit 3, the ACR 4, the voltage command value calculation unit 12, and the constant output control unit 13, and the voltage input to the motor M is the value of the reference voltage command value Vref. It controls to follow corresponding to. Further, the field factor correction command value Idc output by the constant output calculator 13 is input to the field factor calculator 14. The internal configuration of the constant output control unit 13 will be described in detail later.
 界磁率演算部14は、本実施形態の例では、まずトルク指令Trefとモータ速度ωに基づいてその時点の可変界磁モータMの電力変換効率を最も高めることのできる界磁率を演算し、さらに上記定出力制御部13から入力された界磁率補正指令値Idcを用いてモータMの入力電圧の増減変化に応じた界磁率の補正を行う。なお、この界磁率演算部14における界磁率の算出手法については後に詳述する。 In the example of this embodiment, the field factor calculator 14 first calculates a field factor that can maximize the power conversion efficiency of the variable field motor M at that time based on the torque command Tref and the motor speed ω, Using the field correction command value Idc input from the constant output control unit 13, the magnetic field is corrected in accordance with the change in the input voltage of the motor M. Note that a method for calculating the magnetic field in the magnetic field calculator 14 will be described in detail later.
 以上のように本実施形態のモータ制御装置1では、トルク指令Trefに対応する電流指令をd軸電流指令Idrefとq軸電流指令Iqrefに分けたdq軸ベクトル制御を行うことにより、制御構成が比較的単純な直流モータと同等に交流モータMを機能的に制御できる。また本実施形態のモータ制御装置1では、参照電圧指令値Vrefに基づく定出力制御を行うことにより、高速域におけるモータMの駆動を安定させることができる。また本実施形態のモータ制御装置1では、トルク指令Tref、モータ速度ω、及び界磁率補正指令値Idcに応じた界磁率を算出して可変界磁モータMの界磁を調整することにより、当該可変界磁モータMの電力変換効率を最適化できる。 As described above, in the motor control device 1 of the present embodiment, the control configuration is compared by performing dq-axis vector control in which the current command corresponding to the torque command Tref is divided into the d-axis current command Idref and the q-axis current command Iqref. The AC motor M can be functionally controlled in the same manner as a simple DC motor. Further, in the motor control device 1 of the present embodiment, by performing constant output control based on the reference voltage command value Vref, it is possible to stabilize the driving of the motor M in the high speed range. Further, in the motor control device 1 of the present embodiment, by adjusting the field of the variable field motor M by calculating the field ratio according to the torque command Tref, the motor speed ω, and the field factor correction command value Idc, The power conversion efficiency of the variable field motor M can be optimized.
<可変界磁モータの概要>
 本実施形態のモータ制御装置1の制御対象となる可変界磁モータの一例についてその概要を説明する。図2、図3は、この例の可変界磁モータMにおける回転子のみを斜視で示している。なお、これら図2、図3においては、図示の煩雑を避けるため回転軸の記載を省略している。図4は、この例の可変界磁モータM全体の軸直交断面を示している。
<Outline of variable field motor>
An outline of an example of a variable field motor to be controlled by the motor control device 1 of the present embodiment will be described. 2 and 3 show only the rotor in the variable field motor M of this example in perspective. In FIGS. 2 and 3, the description of the rotating shaft is omitted to avoid the complexity of illustration. FIG. 4 shows an axial orthogonal cross section of the entire variable field motor M of this example.
 回転子120は、磁界を発生する磁極部121と、鉄心122とを備え、界磁として構成されている。 The rotor 120 includes a magnetic pole portion 121 that generates a magnetic field and an iron core 122, and is configured as a field.
 磁極部121は、軸方向に3分割されており、軸方向中央の磁極部121aが負荷側磁極部121b及び反負荷側磁極部121cに対して相対的に回動可能となっている。各磁極部121a,121b,121cは、鉄心122に設けられた略V字形状の装着孔に磁界を発生する磁石123が着磁方向を対面又は背面としつつ装着されることで構成されている。以上のように相対回転可能な3つの磁極部121a,121b,121を備えた構成が、上記可変界磁機構に相当する。 The magnetic pole part 121 is divided into three in the axial direction, and the magnetic pole part 121a at the center in the axial direction is rotatable relative to the load side magnetic pole part 121b and the anti-load side magnetic pole part 121c. Each of the magnetic pole portions 121a, 121b, and 121c is configured by mounting a magnet 123 that generates a magnetic field in a substantially V-shaped mounting hole provided in the iron core 122 with the magnetization direction facing or back. The configuration including the three magnetic pole portions 121a, 121b, and 121 that can be relatively rotated as described above corresponds to the variable field mechanism.
 このように可変界磁モータMが備える可変界磁機構に対して上記界磁調整機構9が機械的に連結されており(図示省略)、当該界磁調整機構9に設けられたサーボモータの駆動によって一体に締結された負荷側界極部121b及び反負荷側磁極部121cに対し中央の磁極部121aを円周方向に相対的に回動させることで、特に図示しない固定子と回転子120との間を鎖交する鎖交磁束を変化させる。 In this way, the field adjustment mechanism 9 is mechanically connected to the variable field mechanism provided in the variable field motor M (not shown), and the servo motor provided in the field adjustment mechanism 9 is driven. By rotating the central magnetic pole part 121a in the circumferential direction relative to the load-side field pole part 121b and the anti-load-side magnetic pole part 121c integrally fastened by The interlinkage magnetic flux that links between the two is changed.
 すなわち、鎖交磁束を弱めるときには、界磁調整機構9の駆動によって負荷側磁極部121b及び反負荷側磁極部121cに対する中央の磁極部121aの相対角度が増加される。図2に示す状態では、中央の磁極部121aは負荷側磁極部121b及び反負荷側磁極部121cに対し相対的に大きく回動し、磁極同士が相殺して鎖交磁束は弱くなっている。 That is, when the interlinkage magnetic flux is weakened, the relative angle of the central magnetic pole part 121a with respect to the load-side magnetic pole part 121b and the anti-load-side magnetic pole part 121c is increased by driving the field adjusting mechanism 9. In the state shown in FIG. 2, the central magnetic pole part 121a rotates relatively large with respect to the load-side magnetic pole part 121b and the anti-load-side magnetic pole part 121c, so that the magnetic poles cancel each other and the interlinkage magnetic flux is weakened.
 一方、鎖交磁束を強めるときには、界磁調整機構9の駆動によって負荷側磁極部121b及び反負荷側磁極部121cに対する中央の磁極部121aの相対角度が減少される。図3に示す状態では、中央の磁極部121aは負荷側磁極部121b及び反負荷側磁極部121cと磁極を並べ、鎖交磁束は最も強くなっている。 On the other hand, when the flux linkage is strengthened, the relative angle of the central magnetic pole part 121a with respect to the load-side magnetic pole part 121b and the anti-load-side magnetic pole part 121c is decreased by driving the field adjusting mechanism 9. In the state shown in FIG. 3, the magnetic pole portion 121a at the center is aligned with the load-side magnetic pole portion 121b and the anti-load-side magnetic pole portion 121c, and the interlinkage magnetic flux is the strongest.
 そして上述した界磁率とは、回転子120においてその全体から生じる最大の鎖交磁束(図4中の回転子120側d軸磁束)に対するその時点の鎖交磁束の割合(値の範囲としては、0%~100%)であり、つまりこの例において負荷側磁極部121b及び反負荷側磁極部121cに対し中央の磁極部121aが相対的に回動した状態での鎖交磁束の発生割合に相当する。なお、本実施形態の例では、可変界磁モータMが備える可変界磁機構が上述したように機械的な駆動により界磁磁束を制御する構成としていたが、これに限られず、電気的な調整により界磁磁束を制御する構成等も適用可能である。 And the above-mentioned magnetic field ratio is the ratio of the interlinkage magnetic flux at that time with respect to the maximum interlinkage magnetic flux (rotor 120 side d-axis magnetic flux in FIG. 4) generated from the entire rotor 120 (as a range of values) In other words, in this example, it corresponds to the generation rate of the interlinkage magnetic flux when the central magnetic pole portion 121a is rotated relative to the load-side magnetic pole portion 121b and the anti-load-side magnetic pole portion 121c. To do. In the example of the present embodiment, the variable field mechanism included in the variable field motor M is configured to control the field magnetic flux by mechanical drive as described above. The structure etc. which control a field magnetic flux by are applicable.
 以上のように制御される回転子120の鎖交磁束の流通経路を、図4の軸直交断面図に示す。図示する例の可変界磁モータMは、固定子110全体に12個のティース112を備え、回転子120全体に10個の鉄心122を備えた、いわゆる10P12S(P:ポール=磁極部数、S:スロット=ティース数)のスロットコンビネーション構成となっている。  The flow path of the interlinkage magnetic flux of the rotor 120 controlled as described above is shown in the cross-sectional view perpendicular to the axis in FIG. The variable field motor M in the example shown in the figure is a so-called 10P12S (P: pole = number of magnetic pole portions, S: provided with 12 teeth 112 in the entire stator 110 and 10 iron cores 122 in the entire rotor 120). Slot = number of teeth). *
 回転子120側では、隣り合う鉄心122どうしの間に2つの永久磁石123が配置されており、それら1対の永久磁石123どうしは同じ方向に着磁され、隣り合う対どうしは互いに向かい合う方向に着磁されている。これにより、隣り合う対どうしでN極を向け合う位置の鉄心122は、半径方向外側にN極の磁極を向かわせるN型磁極部122Nとなる。また、S極どうしを向け合う位置の鉄心122は、半径方向外側にS極の磁極を向かわせるS型磁極部122Sとなる。これらN型磁極部122NとS型磁極部122Sは5個ずつ存在し、円周方向に沿って交互に配置される。 On the rotor 120 side, two permanent magnets 123 are arranged between adjacent iron cores 122, and the pair of permanent magnets 123 are magnetized in the same direction, and adjacent pairs are in a direction facing each other. Magnetized. As a result, the iron core 122 at a position where the N poles face each other between adjacent pairs becomes an N-type magnetic pole portion 122N that directs the N pole magnetic poles radially outward. Further, the iron core 122 at a position where the S poles face each other is an S-type magnetic pole portion 122S that directs the S pole magnetic poles outward in the radial direction. There are five N-type magnetic pole portions 122N and five S-type magnetic pole portions 122S, and they are alternately arranged along the circumferential direction.
 以上の磁極配置において、隣り合うS型磁極部122SからN型磁極部122Nへ向かう方向でそれぞれの円周方向中央位置を渡るように回転子120側のd軸の磁束が流通する。またその回転子120側のd軸の磁束方向と電気角で90°ずれた方向に延びる軸が回転子120側のq軸となる。そして上記界磁率を制御することで、この回転子120側d軸の磁束の発生割合を制御することができる。 In the above magnetic pole arrangement, the d-axis magnetic flux on the rotor 120 side circulates across the respective circumferential center positions in the direction from the adjacent S-type magnetic pole part 122S to the N-type magnetic pole part 122N. The axis extending in the direction shifted by 90 ° in electrical angle from the d-axis magnetic flux direction on the rotor 120 side is the q axis on the rotor 120 side. Then, by controlling the above-described field ratio, the rate of generation of magnetic flux on the rotor 120 side d-axis can be controlled.
 一方、電機子である固定子110側では、隣り合う2つのティース112どうしがコイル線をそれぞれ逆方向に巻回されている。そして、隣り合う2つのティース112が一つの組となって同一の電流相U,V,Wに対応する。つまり出力軸130の回転軸心を原点とした機械的な静止座標において、機械的配置が互いに30°ずれて隣り合う2組のティース112どうしは、電気的に120°ずれた位相差で交番磁界が発生する。これにより、固定子110において軸周りに回転する磁界が発生し、回転子120側の磁束が固定子110側の回転磁界から引力、斥力を受けて回転する。このとき、回転子120側のd軸に径方向に対向する配置のティース112周りに磁束を循環させる電流成分が上記d軸電流Idであり、回転子120の回転に伴って固定子110側のd軸も回転移動する。 On the other hand, on the stator 110 side, which is an armature, two adjacent teeth 112 are wound around the coil wires in opposite directions. Two adjacent teeth 112 form a set and correspond to the same current phase U, V, W. That is, in the mechanical stationary coordinates with the rotation axis of the output shaft 130 as the origin, the two pairs of adjacent teeth 112 whose mechanical arrangements are shifted by 30 ° from each other have an alternating magnetic field with a phase difference that is electrically shifted by 120 °. Will occur. As a result, a magnetic field rotating around the axis is generated in the stator 110, and the magnetic flux on the rotor 120 side rotates by receiving attraction and repulsion from the rotating magnetic field on the stator 110 side. At this time, the current component that circulates the magnetic flux around the teeth 112 arranged in the radial direction opposite to the d-axis on the rotor 120 side is the d-axis current Id, and as the rotor 120 rotates, the current component on the stator 110 side The d axis also rotates.
 以上のように本実施形態では、モータ制御装置1で界磁率を調整することにより可変界磁モータMの回転子120側におけるd軸の鎖交磁束を機械的に可変制御できる一方で、モータ制御装置1でd軸電流指令Idrefを調整することにより固定子110側のd軸の磁束を電気的に可変制御できる。 As described above, in the present embodiment, the motor control device 1 can variably control the d-axis interlinkage magnetic flux on the rotor 120 side of the variable field motor M by adjusting the magnetic field ratio, while the motor control. By adjusting the d-axis current command Idref with the device 1, the d-axis magnetic flux on the stator 110 side can be electrically variably controlled.
 このような構成では、回転子120側のd軸の磁束と固定子110側のd軸の磁束の両方を大きくすることで可変界磁モータMに大きなトルクを容易に出力させることができる。しかしながら、このように回転子120側と固定子110側の両方のd軸磁束を大きくした場合には、可変界磁モータM全体の誘起電圧定数も大きくなる。このため、高速回転域では誘起電圧(逆起電圧)を大きく発生させてしまい、その結果、出力電圧不足によりさらに高速に回転させることができなくなる。また、回転子120側と固定子110側の両方のd軸磁束を小さくした場合には、大きなトルクを出力させるために必要な電流(主にq軸電流)が大きくなり、電力効率が低下する。つまり可変界磁モータMは、界磁率及びd軸電流のそれぞれが大きい状態ではトルクを出しやすく、それぞれが小さい状態では(誘起電圧が小さくなるため)出力電圧を抑えつつモータ速度ωを出しやすくなる。このように、これら回転子120側d軸と固定子110側d軸のそれぞれの界磁制御を協調して行うことで、可変界磁モータMの電力効率向上と運転速度域拡大を実現できる。 In such a configuration, it is possible to easily output a large torque to the variable field motor M by increasing both the d-axis magnetic flux on the rotor 120 side and the d-axis magnetic flux on the stator 110 side. However, when the d-axis magnetic flux on both the rotor 120 side and the stator 110 side is increased in this way, the induced voltage constant of the entire variable field motor M also increases. For this reason, a large induced voltage (counterelectromotive voltage) is generated in the high-speed rotation region, and as a result, it cannot be rotated at a higher speed due to insufficient output voltage. In addition, when the d-axis magnetic fluxes on both the rotor 120 side and the stator 110 side are reduced, the current (mainly q-axis current) required to output a large torque increases and the power efficiency decreases. . In other words, the variable field motor M easily generates torque when the field ratio and d-axis current are large, and easily outputs the motor speed ω while suppressing the output voltage when each is small (because the induced voltage is small). . As described above, by performing field control of the rotor 120 side d-axis and the stator 110 side d-axis in a coordinated manner, the power efficiency of the variable field motor M and the operation speed range can be increased.
<本実施形態の特徴>
 上述したように本実施形態のモータ制御装置1は、界磁率を制御パラメータとして可変磁界モータMの界磁磁束を変更するが、この界磁率の最適値は上記定出力制御によって変化する界磁状態や、バッテリなどの電源電圧、トルク指令等に大きく影響を受ける。また、温度変化等によってモータ特性が変化した場合でも、界磁率の最適値が変動して最適な制御状態の維持が困難となる。
<Features of this embodiment>
As described above, the motor control device 1 of the present embodiment changes the field magnetic flux of the variable magnetic field motor M using the field ratio as a control parameter, and the optimum value of this field ratio is changed by the constant output control. It is also greatly affected by the power supply voltage of the battery and the torque command. Even when the motor characteristics change due to a temperature change or the like, the optimum value of the magnetic field factor fluctuates, making it difficult to maintain the optimum control state.
 これに対し本実施形態では、定出力制御部13が上記電圧指令値V1と上記参照電圧指令値Vrefに基づいて界磁率補正指令値Idcを生成し、界磁率演算部14がこの界磁率補正指令値Idcに基づいてその時点の可変界磁モータMの駆動に適切な界磁率を算出することにより、定出力制御や温度変化に応じた適切な界磁磁束の可変制御を行うことを特徴としている。以下、そのような定出力制御部13と界磁率演算部14の構成と機能について順に説明する。 On the other hand, in this embodiment, the constant output control unit 13 generates a field factor correction command value Idc based on the voltage command value V1 and the reference voltage command value Vref, and the field factor calculation unit 14 uses the field factor correction command. Based on the value Idc, by calculating a field rate suitable for driving the variable field motor M at that time, constant field control and variable field flux control suitable for temperature change are performed. . Hereinafter, the configuration and function of the constant output control unit 13 and the magnetic field factor calculation unit 14 will be described in order.
<定出力制御部の内部構成>
 図5は、定出力制御部13の内部構成を模式的に示している。この図5において、定出力制御部13は、減算器131と、PI制御部132と、フィルタ133と、定出力制御用Idリミッタ134と、界磁率調整用Idリミッタ135とを有している。
<Internal configuration of constant output controller>
FIG. 5 schematically shows the internal configuration of the constant output control unit 13. In FIG. 5, the constant output control unit 13 includes a subtractor 131, a PI control unit 132, a filter 133, a constant output control Id limiter 134, and a field factor adjustment Id limiter 135.
 減算器131は、外部より入力された参照電圧指令値Vrefから、電圧指令値演算部12より入力された電圧指令値V1を差し引いた差分を取り、これを指令値偏差(図中のA参照)として出力する。なお、参照電圧指令値Vrefは、その時点の電源電圧(特に図示しないコンバータの直流母線電圧やバッテリ電圧)と同等に設定されるのが望ましいが、それ以外にも適宜任意の値に設定されてもよい。 The subtractor 131 takes a difference obtained by subtracting the voltage command value V1 input from the voltage command value calculation unit 12 from the reference voltage command value Vref input from the outside, and calculates a difference between the reference voltage command values Vref (see A in the figure). Output as. The reference voltage command value Vref is preferably set to be equal to the power supply voltage at that time (particularly, the DC bus voltage or battery voltage of a converter not shown), but is set to an arbitrary value other than that. Also good.
 PI制御部132は、例えば適宜のゲインや積分器などを備えており、上記電圧制御系フィードバックループにおいて上記指令値偏差が小さくなるようにするいわゆるPI制御を行う(特に図示せず)。 The PI control unit 132 includes, for example, an appropriate gain, an integrator, and the like, and performs so-called PI control so that the command value deviation is reduced in the voltage control system feedback loop (not particularly shown).
 フィルタ133は、PI制御部132から出力された指令値偏差からそれに含まれる高周波帯域成分を除去し、指令値偏差のサンプリング周波数に起因する振動を抑制するよう機能する。 The filter 133 functions to remove a high frequency band component included in the command value deviation output from the PI control unit 132 and suppress vibration caused by the sampling frequency of the command value deviation.
 定出力制御用Idリミッタ134は、フィルタ133から入力された指令値偏差に対し、その正値を略0とし、負値を所定の最小値に制限した値をd軸電流指令補正値ΔIdrefとして出力する。 The constant output control Id limiter 134 outputs, as the d-axis current command correction value ΔIdref, a value obtained by setting the positive value to substantially zero and the negative value to a predetermined minimum value with respect to the command value deviation input from the filter 133. To do.
 界磁率調整用Idリミッタ135は、フィルタ133から入力された指令値偏差に対し、その最大絶対値を所定の値に制限して界磁率補正指令値Idcを出力する。なおこの例では、上記定出力制御用Idリミッタ134における所定の最小値と、当該界磁率調整用Idリミッタ235における所定の最大絶対値は、それぞれの絶対値が略等しく設定されている。 The field-adjustment Id limiter 135 limits the maximum absolute value of the command value deviation input from the filter 133 to a predetermined value, and outputs a field factor correction command value Idc. In this example, the predetermined minimum value in the constant output control Id limiter 134 and the predetermined maximum absolute value in the field-adjustment Id limiter 235 are set to be substantially equal to each other.
 以上のように構成された定出力制御部13は、d軸電流指令補正値ΔIdrefを出力してd軸電流指令Idrefを調整することで、可変界磁モータMの固定子110側d軸磁束を弱めるいわゆる界磁弱め制御を行う。つまりこの界磁弱め制御は、上述したように可変界磁モータMの高速回転域を拡大させるために、上記高効率制御部2で電力効率上最適に生成されたd軸電流指令Idrefに対して減少させるよう制御するだけであり、増加させる制御は行わない。 The constant output control unit 13 configured as described above outputs the d-axis current command correction value ΔIdref and adjusts the d-axis current command Idref, thereby generating the d-axis magnetic flux on the stator 110 side of the variable field motor M. Weak so-called field weakening control is performed. In other words, this field weakening control is performed with respect to the d-axis current command Idref generated optimally in terms of power efficiency by the high-efficiency control unit 2 in order to expand the high-speed rotation range of the variable field motor M as described above. Only control is performed to decrease, and control to increase is not performed.
 なお、定出力制御用Idリミッタ134と界磁率調整用Idリミッタ135のそれぞれで最大絶対出力値を所定値に制限(負値の下限、正値の上限を設定)しているのは、モータの入力電圧が大きく増減変化した場合でも、d軸電流指令Iderfと界磁率の過剰な補正を抑制するためである。 Note that the constant absolute output control Id limiter 134 and the field ratio adjustment Id limiter 135 each limit the maximum absolute output value to a predetermined value (set a negative lower limit and a positive upper limit). This is for suppressing excessive correction of the d-axis current command Iderf and the magnetic field even when the input voltage is greatly increased or decreased.
<界磁率演算部が行う界磁率演算処理>
 図18は、本実施形態のモータ制御装置1が備えるCPU(特に図示せず)が界磁率演算部14において実行する界磁率演算処理のフローを示している。
<Field factor calculation processing performed by the field factor calculator>
FIG. 18 shows a flow of a field factor calculation process executed in the field factor calculator 14 by a CPU (not shown) included in the motor control device 1 of the present embodiment.
 まずステップS5で、モータ制御装置1のCPUは、定出力制御部13から界磁率補正指令値Idcを入力する。 First, in step S <b> 5, the CPU of the motor control device 1 inputs a field factor correction command value Idc from the constant output control unit 13.
 次にステップS10へ移り、モータ制御装置1のCPUは、トルク指令とモータ速度に基づくテーブル換算(後に詳述)により、換算界磁率を設定する。 Next, the process proceeds to step S10, and the CPU of the motor control device 1 sets the converted field ratio by table conversion (detailed later) based on the torque command and the motor speed.
 次にステップS15へ移り、モータ制御装置1のCPUは、上記ステップS5で入力された界磁率補正指令値Idcが負値(<0)であるか否かを判定する。界磁率補正指令値Idcが負値である場合には、判定が満たされ、ステップS20へ移る。 Next, the process proceeds to step S15, and the CPU of the motor control device 1 determines whether or not the field factor correction command value Idc input in step S5 is a negative value (<0). If the field factor correction command value Idc is a negative value, the determination is satisfied, and the routine goes to Step S20.
 ステップS20では、モータ制御装置1のCPUは、上記ステップS10で設定した換算界磁率に対して、上記ステップS5で入力された界磁率補正指令値Idcに係数Kを乗算した値を加算する。言い換えると、界磁率を減少するよう補正して最終的な界磁率を算出する。なお、係数Kは、界磁率補正指令値Idcを界磁率の単位に変更するための係数である。そして、このフローを終了する。 In step S20, the CPU of the motor control device 1 adds a value obtained by multiplying the field factor correction command value Idc input in step S5 by the coefficient K to the converted field factor set in step S10. In other words, the final magnetic field is calculated by correcting the magnetic field to decrease. The coefficient K is a coefficient for changing the field factor correction command value Idc to a unit of field factor. Then, this flow ends.
 一方、上記ステップS15の判定において、界磁率補正指令値Idcが正値(>0)である場合には、判定は満たされず、ステップS25へ移る。 On the other hand, if the field correction command value Idc is a positive value (> 0) in the determination in step S15, the determination is not satisfied and the process proceeds to step S25.
 ステップS25では、モータ制御装置1のCPUは、上記ステップS10で設定した換算界磁率に対して、上記ステップS5で入力された界磁率補正指令値Idcに係数Kを乗算した値を加算する。言い換えると、界磁率を増加するよう補正して最終的な界磁率を算出する。そして、このフローを終了する。 In step S25, the CPU of the motor control device 1 adds a value obtained by multiplying the field factor correction command value Idc input in step S5 by the coefficient K to the converted field factor set in step S10. In other words, the final field ratio is calculated by correcting the field ratio to increase. Then, this flow ends.
 以上のようにして本実施形態が備える界磁率演算部14は、トルク指令Trefとモータ速度ωに基づくテーブル換算により算出した換算界磁率に対し、定出力制御部13が出力した界磁率補正指令値Idcで補正して最終的な界磁率を算出する。このとき、界磁率補正指令値Idcが正値である場合には界磁率を増加するよう補正し、界磁率補正指令値Idcが負値である場合には界磁率を減少するよう補正する。 As described above, the field factor calculation unit 14 included in the present embodiment has the field factor correction command value output by the constant output control unit 13 with respect to the converted field factor calculated by table conversion based on the torque command Tref and the motor speed ω. The final field susceptibility is calculated by correcting with Idc. At this time, if the field correction command value Idc is a positive value, the field factor is corrected to increase, and if the field factor correction command value Idc is a negative value, the field factor is corrected to decrease.
 図7は、上記ステップS10でのテーブル換算に用いる界磁率テーブルの一例を示している。一般的な可変界磁モータMでは、界磁率を変化させることによって電力変換効率を能動的に変動させて出力範囲を拡大させることができるが、それ以前に電力変換効率自体は上述したようにモータ出力に応じて受動的に変化する。そしてこれらの間の関係性は、単純な算出式に当てはまらない複雑な関係である場合が多い。このため本実施形態のモータ制御装置1では、界磁率演算部14がその内部に図7に示すような界磁率テーブルを備え、これを参照したテーブル換算により適切な換算界磁率を設定する。この界磁率テーブルは、モータ出力に関係するパラメータをキー変数とし、これらに対応して入力電力を極小値にできる界磁率との相関を記憶している。図7に示す例としては、モータMのトルク(トルク指令Trefで代用)とモータ回転数(=モータ速度ω)の2つのパラメータで直交座標を取り、それらの組み合わせに対応して入力電力を極小値にできる界磁率を記憶した2元テーブルで界磁率テーブルを構成する。 FIG. 7 shows an example of a field ratio table used for table conversion in step S10. In a general variable field motor M, the power conversion efficiency can be actively changed by changing the field factor to expand the output range. However, before that, the power conversion efficiency itself is the motor as described above. It changes passively according to the output. The relationship between these is often a complex relationship that does not fit into a simple calculation formula. For this reason, in the motor control device 1 of the present embodiment, the field factor calculation unit 14 includes a field factor table as shown in FIG. 7 and sets an appropriate converted field factor by table conversion with reference to this table. In this field factor table, parameters related to the motor output are used as key variables, and a correlation with a field factor capable of minimizing the input power corresponding to these parameters is stored. As an example shown in FIG. 7, the orthogonal coordinates are taken with two parameters of the torque of the motor M (substitute with the torque command Tref) and the motor rotation speed (= motor speed ω), and the input power is minimized corresponding to the combination thereof. A field table is composed of a binary table that stores field values that can be converted into values.
<定出力制御部と界磁率演算部によるd軸界磁の協調制御について>
 以上のように構成された定出力制御部13と界磁率演算部14によるd軸界磁の協調制御について、以下に詳細に説明する。まず上述したように本実施形態が備える定出力制御部13は、可変界磁モータMの高速回転域を拡大させる場合に上記高効率制御部2で生成されたd軸電流指令Idrefに対して減少させるよう制御する界磁弱め制御を行う。この界磁弱め制御では、d軸電流指令Idrefに対して減少させるよう制御するだけであり、増加させる制御は行わない。つまり、d軸電流指令補正値ΔIdrefを正値で出力することはない。
<Coordinated control of d-axis field by constant output controller and field factor calculator>
The coordinated control of the d-axis field by the constant output controller 13 and the field factor calculator 14 configured as described above will be described in detail below. First, as described above, the constant output control unit 13 provided in the present embodiment decreases with respect to the d-axis current command Idref generated by the high efficiency control unit 2 when the high-speed rotation range of the variable field motor M is expanded. The field weakening control is performed to control. In this field weakening control, only control to decrease the d-axis current command Idref is performed, and control to increase is not performed. That is, the d-axis current command correction value ΔIdref is not output as a positive value.
 例えば、電圧電流方程式より、
 Vq=R・Iq+Lq・(d/dt)Iq+ωLd・Id+φω
の関係が成り立つ。なお、R,Ld,LqはそれぞれモータMの巻線抵抗、d軸、q軸の巻線インダクタンスであり、φは磁束密度である。上記式のうちφωの項が誘起電圧に相当し、弱め界磁制御によってIdを負値(<0)にすることで誘起電圧φωを相殺できる。以上により、定出力制御部13が弱め界磁制御を行う場合には、定出力制御用Idリミッタ134によりd軸電流指令補正値ΔIdrefを0以下の負値にリミットさせている。そして、Iq指令生成部3は、このように減少調整されたd軸電流指令Idrefに基づいてq軸電流指令Iqrefを生成する。
For example, from the voltage-current equation:
Vq = R · Iq + Lq · (d / dt) Iq + ωLd · Id + φω
The relationship holds. R, Ld, and Lq are the winding resistance of the motor M, the winding inductance of the d-axis and the q-axis, respectively, and φ is the magnetic flux density. In the above equation, the term of φω corresponds to the induced voltage, and the induced voltage φω can be canceled by setting Id to a negative value (<0) by field weakening control. As described above, when the constant output control unit 13 performs field weakening control, the constant output control Id limiter 134 limits the d-axis current command correction value ΔIdref to a negative value of 0 or less. Then, the Iq command generation unit 3 generates the q-axis current command Iqref based on the d-axis current command Idref that has been adjusted to decrease in this way.
 一方、上記構成の定出力制御部13においては、上述したように界磁率調整用Idリミッタ135を介して正値(>0)と負値の両方取り得る界磁率補正指令値Idcを界磁率の補正用に出力する。本実施形態では、このように定出力制御部13が界磁率を補正するための界磁率補正指令値Idcを正値と負値の両方で出力することで、界磁率の増加調整と減少調整の両方を行うことができる。つまり本実施形態では、定出力制御部13が界磁弱め制御を行って高速回転域を拡大させる場合には固定子110側と回転子120側の両方でd軸磁束を弱め、定出力制御部13が界磁弱め制御を解除してトルクを増大させる場合には回転子120側だけでd軸磁束を強めるよう制御する。 On the other hand, in the constant output control unit 13 having the above-described configuration, the field factor correction command value Idc, which can take both a positive value (> 0) and a negative value, is obtained via the field factor adjustment Id limiter 135 as described above. Output for correction. In this embodiment, the constant power control unit 13 outputs the field factor correction command value Idc for correcting the field factor as both a positive value and a negative value. You can do both. That is, in this embodiment, when the constant output control unit 13 performs field weakening control to expand the high-speed rotation range, the d-axis magnetic flux is weakened on both the stator 110 side and the rotor 120 side, and the constant output control unit When 13 cancels the field weakening control and increases the torque, control is performed so as to increase the d-axis magnetic flux only on the rotor 120 side.
 ここで、d軸電流指令補正値ΔIdrefと界磁率補正指令値Idcのいずれも上記の電圧制御系フィードバックループにおける指令値偏差に基づいて生成されていることに着目する。上述したようにこの指令値偏差は、実際にモータMに入力される電圧指令値V1と、参照電圧指令値Vrefとの間の偏差であり、電圧制御系フィードバックループは常にこの指令値偏差を小さくするよう制御する。これにより、その時点でモータMに供給可能な最大電圧(例えばバッテリ等の電源電圧)を参照電圧指令値Vrefに設定した場合には、実際にモータMへ入力される電圧指令値V1を常に参照電圧指令値Vrefに近似させ、モータ出力電圧の飽和状態を維持できる。このモータ出力電力の飽和状態においては、モータ速度ω×トルクで算出されるモータ出力が一定な定出力状態を維持することができ、モータ速度ωとトルクが略反比例の関係となる望ましい状態を維持できる。これが定出力制御部13を含めた電圧制御系フィードバックループの本来の機能である。 Here, it is noted that both the d-axis current command correction value ΔIdref and the field factor correction command value Idc are generated based on the command value deviation in the voltage control system feedback loop. As described above, this command value deviation is a deviation between the voltage command value V1 actually input to the motor M and the reference voltage command value Vref, and the voltage control system feedback loop always reduces this command value deviation. Control to do. Thus, when the maximum voltage (for example, a power supply voltage of a battery or the like) that can be supplied to the motor M at that time is set to the reference voltage command value Vref, the voltage command value V1 actually input to the motor M is always referred to. By approximating the voltage command value Vref, the saturation state of the motor output voltage can be maintained. In this motor output power saturation state, the motor output calculated by the motor speed ω × torque can maintain a constant output state where the motor output is constant, and a desirable state in which the motor speed ω and torque are in a substantially inversely proportional relationship is maintained. it can. This is the original function of the voltage control system feedback loop including the constant output control unit 13.
 しかし、上述したように本実施形態が備える定出力制御部13では、指令値偏差の負値だけをd軸電流指令補正値ΔIdrefとして出力していることで、界磁弱め制御のためにd軸電流指令Idrefに対して減少させるよう制御することはあっても増加させる制御は行わない。これに対し、本実施形態が備える定出力制御部13では、指令値偏差の正値と負値の両方で界磁率補正指令値Idcを出力して界磁率を補正させることで、上記の定出力状態を維持できる。 However, as described above, the constant output control unit 13 provided in the present embodiment outputs only the negative value of the command value deviation as the d-axis current command correction value ΔIdref, so that the d-axis is used for field weakening control. Even though the current command Idref is controlled to be decreased, the control to increase is not performed. On the other hand, the constant output control unit 13 provided in the present embodiment outputs the field factor correction command value Idc by both the positive value and the negative value of the command value deviation to correct the field factor, thereby making the constant output described above. The state can be maintained.
 例えば、トルク指令Trefの増大に伴い電圧指令値V1が参照電圧指令値Vrefを超えて増大した場合には、電圧制御系フィードバックループの指令値偏差が負値となる。これにより、d軸電流指令補正値ΔIdrefと界磁率補正指令値Idcのいずれも負値となり界磁弱め制御と界磁率の減少補正が同時に行われてモータMの誘起電圧が減少し、その結果、高速回転域を拡大できる(出力電圧を抑えつつモータ速度ωを出しやすくなる)。またこのとき、誘起電圧が小さくなった際には電圧指令値V1もそれだけ低くなるため、当該電圧指令値V1が参照電圧指令値Vrefに近づいて指令値偏差が0に近づく。このような電圧制御系フィードバックループの復元機能により、最終的にd軸電流指令補正値ΔIdrefと界磁率補正指令値Idcを0に収束させることができ、界磁弱め制御が解除されるとともに界磁率が増加する(減少補正が解除されて上記換算界磁率に戻る)。つまりこのような過程を経ることで、トルク指令Trefが増大した場合でも、電圧指令値V1を参照電圧指令値Vrefに近似させて上記の定出力状態を維持しつつ、固定子110側と回転子120側のそれぞれのd軸磁束のバランスを調整してモータMの誘起電圧を減少させ、高速回転域を拡大しモータ速度ωを出しやすくできる。 For example, when the voltage command value V1 increases beyond the reference voltage command value Vref as the torque command Tref increases, the command value deviation of the voltage control system feedback loop becomes a negative value. As a result, both the d-axis current command correction value ΔIdref and the field factor correction command value Idc become negative values, the field weakening control and the field factor decrease correction are performed simultaneously, and the induced voltage of the motor M is reduced. The high-speed rotation range can be expanded (the motor speed ω can be easily increased while suppressing the output voltage) At this time, when the induced voltage decreases, the voltage command value V1 also decreases accordingly, so that the voltage command value V1 approaches the reference voltage command value Vref and the command value deviation approaches zero. By such a restoration function of the voltage control system feedback loop, the d-axis current command correction value ΔIdref and the field factor correction command value Idc can be finally converged to 0, the field weakening control is canceled, and the field factor (Decrease correction is canceled and the converted magnetic field factor is restored). That is, through such a process, even when the torque command Tref increases, the stator 110 side and the rotor are connected to each other while maintaining the constant output state by approximating the voltage command value V1 to the reference voltage command value Vref. The induced voltage of the motor M can be reduced by adjusting the balance of the respective d-axis magnetic fluxes on the 120 side, the high speed rotation range can be expanded, and the motor speed ω can be easily obtained.
 また逆にトルク指令Trefの減少に伴い電圧指令値V1が参照電圧指令値Vrefを下回って減少した場合には、電圧制御系フィードバックループの指令値偏差が正値となる。この場合、d軸電流指令補正値ΔIdrefは0に制限され、界磁率補正指令値Idcだけが正値となって界磁率の増加補正だけが行われるが、界磁率が増加するために適切な電力効率でのトルクの出力を維持できる。またこのとき、界磁率の増加によって誘起電圧も大きくなった際には電圧指令値V1もそれだけ高くなるため、当該電圧指令値V1が参照電圧指令値Vrefに近づいて指令値偏差が0に近づく。このような電圧制御系フィードバックループの復元機能により、最終的にd軸電流指令補正値ΔIdrefと界磁率補正指令値Idcを0に収束させることができ、界磁率が減少する(増加補正が解除されて上記換算界磁率に戻る)。つまりこのような過程を経ることで、トルク指令Trefが減少した場合でも、電圧指令値V1を参照電圧指令値Vrefに近似させて上記の定出力状態を維持しつつ、固定子110側と回転子120側のそれぞれのd軸磁束のバランスを調整してモータMの誘起電圧を増大させ、適切な電力効率でのトルクの出力を維持できる。 Conversely, when the voltage command value V1 decreases below the reference voltage command value Vref as the torque command Tref decreases, the command value deviation of the voltage control system feedback loop becomes a positive value. In this case, the d-axis current command correction value ΔIdref is limited to 0 and only the field factor correction command value Idc becomes a positive value, and only the increase in the field factor is performed. The torque output with efficiency can be maintained. At this time, when the induced voltage increases due to the increase of the magnetic field, the voltage command value V1 also increases accordingly. Therefore, the voltage command value V1 approaches the reference voltage command value Vref and the command value deviation approaches zero. By such a restoration function of the voltage control system feedback loop, the d-axis current command correction value ΔIdref and the field factor correction command value Idc can be finally converged to 0, and the field factor decreases (the increase correction is canceled). To return to the converted magnetic field). That is, through such a process, even when the torque command Tref is reduced, the stator 110 side and the rotor are maintained while maintaining the constant output state by approximating the voltage command value V1 to the reference voltage command value Vref. The induced voltage of the motor M can be increased by adjusting the balance of the respective d-axis magnetic fluxes on the 120 side, and the torque output with appropriate power efficiency can be maintained.
<本実施形態により得られる効果>
 以上説明した本実施形態によれば、次のような効果を得る。すなわち、本実施形態のモータ制御装置1では、定出力制御部13が電圧指令値V1と参照電圧指令値Vrefに基づいて界磁率補正指令値Idcを生成し、界磁率演算部14がこの界磁率補正指令値Idcに基づいてその時点の可変界磁モータMの駆動に適切な界磁率を算出する。つまり、固定子110側の界磁制御のパラメータである電圧指令値Vと参照電圧指令値Vrefに基づいて回転子120側の界磁率を制御するため、固定子110側と回転子120側のそれぞれの界磁制御を協調して行うことができる。この結果、定出力制御を維持しつつ可変界磁モータMの界磁磁束を適切に可変制御することができ、可変界磁モータMを駆動不能にすることなく出力範囲を機能的に拡大できる。
<Effect obtained by this embodiment>
According to this embodiment described above, the following effects are obtained. That is, in the motor control device 1 of the present embodiment, the constant output control unit 13 generates the field correction command value Idc based on the voltage command value V1 and the reference voltage command value Vref, and the field factor calculation unit 14 Based on the correction command value Idc, a field ratio appropriate for driving the variable field motor M at that time is calculated. That is, the field control on the rotor 120 side is controlled based on the voltage command value V and the reference voltage command value Vref, which are field control parameters on the stator 110 side, so that the field control on each of the stator 110 side and the rotor 120 side is performed. Can be performed in cooperation. As a result, the field magnetic flux of the variable field motor M can be appropriately variably controlled while maintaining constant output control, and the output range can be functionally expanded without disabling the variable field motor M.
 特に本実施形態では、テーブル換算によって界磁率補正指令値Idcを生成するのではなく、電圧制御系フィードバックループを用いた制御系によって界磁率補正指令値Idcを生成する構成となっている。このため、モータMの温度変化による特性変化に対しても温度検出センサや温度変化に対応した複雑なテーブルを用いずに簡易な構成で上記機能を実現でき、また可変界磁モータMも含めた機械の経年変化や個体差の影響を受けにくいという利点がある。 Particularly in this embodiment, the field correction command value Idc is not generated by table conversion, but is generated by a control system using a voltage control system feedback loop. For this reason, the above function can be realized with a simple configuration without using a temperature detection sensor or a complicated table corresponding to the temperature change even for a characteristic change due to a temperature change of the motor M, and the variable field motor M is also included. There is an advantage that it is not easily affected by aging of machines and individual differences.
 また、本実施形態では特に、定出力制御部13が、電圧指令値V1と参照電圧指令値Vrefとの指令値偏差に基づいて界磁率補正指令値Idcを生成する。電圧指令値V1と参照電圧指令値Vrefとの間の指令値偏差は、上述した電圧制御系フィードバックループにおける電圧偏差に相当する。このため、定出力制御部13がこの指令値偏差に基づいて界磁率補正指令値Idcを生成することで、界磁率演算部14はモータMの入力電圧の増減変化に応じた界磁率の補正を適切に行うことができる。 In the present embodiment, in particular, the constant output controller 13 generates the field correction command value Idc based on the command value deviation between the voltage command value V1 and the reference voltage command value Vref. The command value deviation between the voltage command value V1 and the reference voltage command value Vref corresponds to the voltage deviation in the voltage control system feedback loop described above. For this reason, the constant output control unit 13 generates a field factor correction command value Idc based on the command value deviation, so that the field factor calculation unit 14 corrects the field factor in accordance with the change in the input voltage of the motor M. Can be done appropriately.
 また、本実施形態では特に、定出力制御部13が、界磁率調整用Idリミッタ135で指令値偏差の最大絶対値を制限した値を界磁率補正指令値Idcとして生成する。これにより、モータMの入力電圧が大きく増減変化した場合でも、定出力制御部13は界磁率の過剰な補正を抑制でき、モータMの駆動に適切な界磁率を維持できる。 In the present embodiment, in particular, the constant output control unit 13 generates a value in which the maximum absolute value of the command value deviation is limited by the field-adjustment Id limiter 135 as the field-correction command value Idc. Thereby, even when the input voltage of the motor M is greatly increased or decreased, the constant output control unit 13 can suppress excessive correction of the magnetic field factor and can maintain a suitable magnetic field factor for driving the motor M.
 また、本実施形態では特に、界磁率演算部14が、トルク指令Trefとモータ速度ωに基づくテーブル換算により算出した値に対し、界磁率補正指令値Idcで補正して界磁率を算出する。これにより、界磁率演算部14は、可変磁界モータMへの入力基準となるトルク指令Trefと、当該可変界磁モータMの検出出力に相当するモータ速度ωに基づいて、それらに対応して駆動に適切な界磁率を機能的に求めることができ、さらにモータMの入力電圧の増減変化に応じた界磁率の補正を適切に行うことができる。この結果、定出力状態を維持しつつ最適界磁率制御を実現できる。また、これらトルク指令Tref、モータ速度ω、及び界磁率の関係性は制御対象となる可変界磁モータM固有の特性であるため、それらの相関を示す界磁率テーブルをあらかじめ作成して換算を行うことにより界磁率を迅速かつ機能的に算出できる。 In this embodiment, in particular, the field factor calculator 14 corrects the value calculated by table conversion based on the torque command Tref and the motor speed ω with the field factor correction command value Idc to calculate the field factor. As a result, the field ratio calculation unit 14 drives based on the torque command Tref serving as an input reference to the variable magnetic field motor M and the motor speed ω corresponding to the detection output of the variable field motor M. Therefore, it is possible to functionally obtain an appropriate field ratio, and to appropriately correct the field ratio in accordance with the increase / decrease change of the input voltage of the motor M. As a result, it is possible to realize optimal field ratio control while maintaining a constant output state. Further, since the relationship between the torque command Tref, the motor speed ω, and the field rate is a characteristic unique to the variable field motor M to be controlled, a field rate table showing the correlation between them is created in advance and converted. Thus, the magnetic field can be calculated quickly and functionally.
 また、本実施形態では特に、定出力制御部13が、指令値偏差に基づいてd軸電流指令Idrefを補正するためのd軸電流指令補正値ΔIdrefを生成する。電圧指令値V1と参照電圧指令値Vrefとの指令値偏差は、電圧制御系フィードバックループにおける電圧偏差に相当する。このため定出力制御部13がこの指令値偏差に基づいてd軸電流指令補正値ΔIdrefを生成することで、界磁率演算部14はモータの入力電圧の増減変化に応じて界磁弱め電流を流すようd軸電流指令Idrefの補正を適切に行うことができる。 In the present embodiment, in particular, the constant output control unit 13 generates the d-axis current command correction value ΔIdref for correcting the d-axis current command Idref based on the command value deviation. The command value deviation between the voltage command value V1 and the reference voltage command value Vref corresponds to the voltage deviation in the voltage control system feedback loop. For this reason, the constant output control unit 13 generates the d-axis current command correction value ΔIdref based on the command value deviation, so that the field factor calculation unit 14 causes the field weakening current to flow according to the increase / decrease change of the input voltage of the motor. Thus, it is possible to appropriately correct the d-axis current command Idref.
 また、本実施形態では特に、定出力制御部13は、定出力制御用Idリミッタ134で指令値偏差の正値を略0とし負値の最小値を制限した値をd軸電流指令補正値ΔIdrefとして生成する。これにより、電圧制御系フィードバックループは、d軸電流指令Idrefに対して減少させる補正だけを行うことができ、つまり誘起電圧を強めるようにd軸電流を補正することなく誘起電圧を弱める界磁弱め電流だけを流すようにd軸電流を補正するため高速回転域の拡大を実現できる。また、モータMの入力電圧が大きく増加した場合でも、定出力制御部13はd軸電流指令Idrefに対する過剰な減少補正を抑制でき、モータMの駆動に適切なd軸電流を維持できる。 In the present embodiment, in particular, the constant output control unit 13 uses the constant output control Id limiter 134 to set a value obtained by setting the positive value of the command value deviation to approximately 0 and limiting the minimum negative value to the d-axis current command correction value ΔIdref. Generate as As a result, the voltage control system feedback loop can only perform a correction for decreasing the d-axis current command Idref, that is, a field weakening that weakens the induced voltage without correcting the d-axis current so as to increase the induced voltage. Since the d-axis current is corrected so that only the current flows, the high-speed rotation range can be expanded. Further, even when the input voltage of the motor M greatly increases, the constant output control unit 13 can suppress excessive decrease correction with respect to the d-axis current command Idref, and can maintain a d-axis current appropriate for driving the motor M.
 <変形例>
 なお、開示の実施形態は、上記に限られるものではなく、その趣旨及び技術的思想を逸脱しない範囲内で種々の変形が可能である。以下、そのような変形例を説明する。
<Modification>
The disclosed embodiments are not limited to the above, and various modifications can be made without departing from the spirit and technical idea thereof. Hereinafter, such modifications will be described.
(1)定出力制御用Idリミッタの入力と出力の差分で界磁率補正指令値を生成する場合
 上記実施形態では、界磁率調整用Idリミッタ135が指令値偏差の最大絶対値を制限した値を界磁率補正指令値Idcとして生成していたが、これに限られない。例えば、上記図5に対応する図8に示すように、定出力制御部13Aにおける定出力制御用Idリミッタ134の入力と出力、つまり指令値偏差とd軸電流指令補正値ΔIdrefとの差分値を界磁率補正指令値Idcとして生成してもよい。この場合、指令値偏差が正値または制限された負値より小さい場合だけ界磁率補正指令値Idcが出力される(制限値より大きい負値では0を出力)。これにより、定出力制御部13が界磁弱め制御を行って高速回転域を拡大させる場合、上記実施形態では固定子110側と回転子210側の両方で弱めていたのに対し、本変形例では固定子110側だけでd軸磁束を弱めるよう制御する。また、定出力制御部13が界磁弱め制御を解除してトルクを増大させる場合には、本変形例も上記実施形態と同様に回転子120側だけでd軸磁束を強めるよう制御する。なお、上述したような電圧制御系フィードバックループの復元機能により、制限された負値より小さい界磁率補正指令値Idcが出力されることはない。
(1) When the field correction command value is generated by the difference between the input and output of the constant output control Id limiter In the above embodiment, the field adjustment Id limiter 135 sets a value obtained by limiting the maximum absolute value of the command value deviation. Although generated as the field correction command value Idc, the present invention is not limited to this. For example, as shown in FIG. 8 corresponding to FIG. 5, the input and output of the constant output control Id limiter 134 in the constant output control unit 13A, that is, the difference value between the command value deviation and the d-axis current command correction value ΔIdref is calculated. It may be generated as a field factor correction command value Idc. In this case, the field correction command value Idc is output only when the command value deviation is smaller than the positive value or the limited negative value (0 is output for a negative value greater than the limit value). As a result, when the constant output control unit 13 performs field weakening control and expands the high-speed rotation range, it is weakened on both the stator 110 side and the rotor 210 side in the above embodiment. Then, control is performed so as to weaken the d-axis magnetic flux only on the stator 110 side. Further, when the constant output control unit 13 cancels the field weakening control and increases the torque, this modified example also controls to increase the d-axis magnetic flux only on the rotor 120 side as in the above embodiment. Note that the field control correction command value Idc smaller than the limited negative value is not output by the voltage control system feedback loop restoration function as described above.
(2)最大界磁率に対して界磁率補正指令値で補正して界磁率を算出する場合
 上記実施形態では、トルク指令値Trefとモータ速度ωに基づくテーブル換算により得られた換算界磁率に対して、界磁率補正指令値Idcで補正した値を界磁率として算出したが、これに限られない。例えば、上記図6に対応する図9に示すように、テーブル換算により換算界磁率を設定するステップS10の代わりに、界磁率を初期的に最大界磁率(例えば99.9%)に設定するステップS10Aを実行する。そして、換算界磁率に対して界磁率補正指令値Idcで補正するステップS20、S25の代わりに、上記ステップS10Aで設定した最大界磁率に対して界磁率補正指令値Idcで補正するステップS20A、S25Aを実行する。
(2) When the field factor is calculated by correcting the maximum field factor with the field factor correction command value In the above embodiment, with respect to the converted field factor obtained by table conversion based on the torque command value Tref and the motor speed ω. Thus, the value corrected by the field factor correction command value Idc is calculated as the field factor, but the present invention is not limited to this. For example, as shown in FIG. 9 corresponding to FIG. 6 described above, instead of step S10 for setting the converted field rate by table conversion, the step of initially setting the field factor to the maximum field rate (for example, 99.9%) S10A is executed. Then, instead of steps S20 and S25 for correcting the converted field rate with the field factor correction command value Idc, steps S20A and S25A for correcting the maximum field factor set in step S10A with the field factor correction command value Idc. Execute.
 これにより、上記図7に示したような複雑な界磁率テーブルを用意することなく簡易な構成で、モータMの入力電圧の増減変化に応じた界磁率の補正を適切に行うことができる。この場合、初期的に設定した最大界磁率に対してそれを適正な界磁率に補正するまでに時間を要するものの、結果的にはトルク指令Trefに対応して固定子110側と回転子120側のそれぞれのd軸界磁のバランスが均衡して適切な値に収束する。この結果、上記実施形態と同様に定出力状態を維持しつつ最適界磁率での運転領域の拡大が可能となる。 This makes it possible to appropriately correct the magnetic field in accordance with the increase / decrease in the input voltage of the motor M with a simple configuration without preparing a complicated magnetic field table as shown in FIG. In this case, although it takes time to correct the initially set maximum field factor to an appropriate field factor, as a result, the stator 110 side and the rotor 120 side correspond to the torque command Tref. The balance of each of the d-axis fields is balanced and converges to an appropriate value. As a result, it is possible to expand the operation region at the optimum field ratio while maintaining the constant output state as in the above embodiment.
 また、以上既に述べた以外にも、上記実施形態や各変形例による手法を適宜組み合わせて利用しても良い。 In addition to those already described above, the methods according to the above-described embodiment and each modification may be used in appropriate combination.
 その他、一々例示はしないが、上記実施形態や各変形例は、その趣旨を逸脱しない範囲内において、種々の変更が加えられて実施されるものである。 In addition, although not illustrated one by one, the above-described embodiment and each modification are implemented with various modifications within a range not departing from the gist thereof.
 1      モータ制御装置
 2      高効率制御部
 3      Iq指令生成部
 4      ACR
 5      dq/3相変換部
 6      PWM変換部
 7      インバータ
 8      電流検出部
 9      界磁調整機構
 10     3相/dq変換部
 11     微分器
 12     電圧指令値演算部(電圧算出部)
 13,13A 定出力制御部
 14     界磁率演算部
 132    PI制御部
 133    フィルタ
 134    定出力制御用Idリミッタ
 135    界磁率調整用Idリミッタ
 
DESCRIPTION OF SYMBOLS 1 Motor controller 2 High efficiency control part 3 Iq command generation part 4 ACR
5 dq / 3 phase converter 6 PWM converter 7 inverter 8 current detector 9 field adjustment mechanism 10 3 phase / dq converter 11 differentiator 12 voltage command value calculator (voltage calculator)
13, 13A Constant output control unit 14 Field factor calculation unit 132 PI control unit 133 Filter 134 Id limiter for constant output control 135 Id limiter for field factor adjustment

Claims (9)

  1.  界磁磁束を可変させる可変界磁機構を有する可変界磁モータの駆動を制御するモータ制御装置であって、
     電圧指令値を算出するように構成された電圧算出部と、
     前記電圧指令値と任意に設定された参照電圧指令値に基づいて界磁率補正指令値を生成するように構成された定出力制御部と、
     前記界磁率補正指令値に基づいて前記可変界磁モータの界磁率を算出するように構成された界磁率演算部と、
    を有することを特徴とするモータ制御装置。
    A motor control device that controls driving of a variable field motor having a variable field mechanism that varies a field magnetic flux,
    A voltage calculator configured to calculate a voltage command value;
    A constant output control unit configured to generate a field correction command value based on the voltage command value and an arbitrarily set reference voltage command value;
    A field factor calculator configured to calculate a field factor of the variable field motor based on the field factor correction command value;
    A motor control device comprising:
  2.  前記定出力制御部は、
     前記電圧指令値と前記参照電圧指令値との指令値偏差に基づいて前記界磁率補正指令値を生成することを特徴とする請求項1記載のモータ制御装置。
    The constant output controller is
    The motor control device according to claim 1, wherein the field correction command value is generated based on a command value deviation between the voltage command value and the reference voltage command value.
  3.  前記定出力制御部は、
     界磁率調整用Idリミッタで前記指令値偏差の最大絶対値を制限した値を前記界磁率補正指令値として生成することを特徴とする請求項2記載のモータ制御装置。
    The constant output controller is
    3. The motor control device according to claim 2, wherein a value obtained by limiting a maximum absolute value of the command value deviation by a field factor adjustment Id limiter is generated as the field factor correction command value.
  4.  前記界磁率演算部は、
     トルク指令とモータ速度に基づくテーブル換算により算出した値に対し、前記界磁率補正指令値で補正して前記界磁率を算出することを特徴とする請求項3記載のモータ制御装置。
    The magnetic field factor calculator is
    4. The motor control device according to claim 3, wherein the field factor is calculated by correcting the value calculated by table conversion based on a torque command and a motor speed with the field correction command value.
  5.  前記界磁率演算部は、
     最大界磁率に対し、前記界磁率補正指令値で補正して前記界磁率を算出することを特徴とする請求項3記載のモータ制御装置。
    The magnetic field factor calculator is
    The motor control device according to claim 3, wherein the field factor is calculated by correcting the maximum field factor with the field factor correction command value.
  6.  前記定出力制御部は、
     前記指令値偏差に基づいてd軸電流指令を補正するためのd軸電流指令補正値を生成することを特徴とする請求項5記載のモータ制御装置。
    The constant output controller is
    6. The motor control device according to claim 5, wherein a d-axis current command correction value for correcting a d-axis current command is generated based on the command value deviation.
  7.  前記定出力制御部は、
     定出力制御用Idリミッタで前記指令値偏差の正値を略0とし負値の最小値を制限した値を前記d軸電流指令補正値として生成することを特徴とする請求項6記載のモータ制御装置。
    The constant output controller is
    7. The motor control according to claim 6, wherein a constant value control Id limiter generates a value obtained by limiting the positive value of the command value deviation to approximately 0 and limiting the minimum negative value as the d-axis current command correction value. apparatus.
  8.  前記定出力制御部は、
     前記指令値偏差と前記d軸電流指令補正値との差分値を前記界磁率補正指令値として生成することを特徴とする請求項7記載のモータ制御装置。
    The constant output controller is
    The motor control device according to claim 7, wherein a difference value between the command value deviation and the d-axis current command correction value is generated as the field correction command value.
  9.  界磁磁束を可変させる可変界磁機構を有する可変界磁モータの駆動を制御するモータ制御方法であって、
     電圧指令値を算出することと、
     前記電圧指令値と任意に設定された参照電圧指令値に基づいて界磁率補正指令値を生成することと、
     前記界磁率補正指令値に基づいて前記可変界磁モータの界磁率を算出することと、
    を実行することを特徴とするモータ制御方法。
     
    A motor control method for controlling the driving of a variable field motor having a variable field mechanism that varies a field magnetic flux,
    Calculating a voltage command value;
    Generating a field correction command value based on the voltage command value and an arbitrarily set reference voltage command value;
    Calculating a field factor of the variable field motor based on the field factor correction command value;
    The motor control method characterized by performing.
PCT/JP2014/081652 2014-11-28 2014-11-28 Motor control device and motor control method WO2016084260A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/081652 WO2016084260A1 (en) 2014-11-28 2014-11-28 Motor control device and motor control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/081652 WO2016084260A1 (en) 2014-11-28 2014-11-28 Motor control device and motor control method

Publications (1)

Publication Number Publication Date
WO2016084260A1 true WO2016084260A1 (en) 2016-06-02

Family

ID=56073861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081652 WO2016084260A1 (en) 2014-11-28 2014-11-28 Motor control device and motor control method

Country Status (1)

Country Link
WO (1) WO2016084260A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0720079U (en) * 1993-09-13 1995-04-07 株式会社安川電機 Permanent magnet type rotating electric machine
JP2012050192A (en) * 2010-08-25 2012-03-08 Daihatsu Motor Co Ltd Motor drive controller
JP2012191690A (en) * 2011-03-09 2012-10-04 Yaskawa Electric Corp Variable-field rotary electric machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0720079U (en) * 1993-09-13 1995-04-07 株式会社安川電機 Permanent magnet type rotating electric machine
JP2012050192A (en) * 2010-08-25 2012-03-08 Daihatsu Motor Co Ltd Motor drive controller
JP2012191690A (en) * 2011-03-09 2012-10-04 Yaskawa Electric Corp Variable-field rotary electric machine

Similar Documents

Publication Publication Date Title
JP5957704B2 (en) Electric motor control device
US8519648B2 (en) Temperature compensation for improved field weakening accuracy
Tuovinen et al. Adaptive full-order observer with high-frequency signal injection for synchronous reluctance motor drives
Jain et al. Modeling and field oriented control of salient pole wound field synchronous machine in stator flux coordinates
Lu et al. A review of flux-weakening control in permanent magnet synchronous machines
Stojan et al. Novel field-weakening control scheme for permanent-magnet synchronous machines based on voltage angle control
EP2963805B1 (en) Controlling an ac machine
JP5920671B2 (en) Motor control device
Zhang et al. A generalized open-circuit fault-tolerant control strategy for FOC and DTC of five-phase fault-tolerant permanent-magnet motor
JP2008005671A (en) Controller of permanent magnet rotary electric machine
Sue et al. A new MTPA control strategy for sensorless V/f controlled PMSM drives
JP5717808B2 (en) Current control device for synchronous motor
JP2001161099A (en) Control scheme for synchronous motor
WO2017014249A1 (en) Device for controlling dynamo-electric machine
JP6396869B2 (en) Motor control device
Foo et al. Robust constant switching frequency-based field-weakening algorithm for direct torque controlled reluctance synchronous motors
Lee et al. Decoupled current control with novel anti-windup for PMSM drives
JP6391096B2 (en) AC motor current control device
JP5385374B2 (en) Control device for rotating electrical machine
JP2019115114A (en) Motor control method and motor control device
WO2016084260A1 (en) Motor control device and motor control method
Ekanayake et al. Direct torque and flux control of a fractional-slot concentrated-winding IPMSM in deep flux-weakening region
JP2012055164A (en) Variable magnetic flux drive system
WO2016079791A1 (en) Motor control device and motor control method
Fujii et al. Influence of parameter variations on operating characteristics of MTPF control for DTC-based PMSM drive system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14907170

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14907170

Country of ref document: EP

Kind code of ref document: A1