WO2016084144A1 - Led driver circuit and led lighting device - Google Patents

Led driver circuit and led lighting device Download PDF

Info

Publication number
WO2016084144A1
WO2016084144A1 PCT/JP2014/081171 JP2014081171W WO2016084144A1 WO 2016084144 A1 WO2016084144 A1 WO 2016084144A1 JP 2014081171 W JP2014081171 W JP 2014081171W WO 2016084144 A1 WO2016084144 A1 WO 2016084144A1
Authority
WO
WIPO (PCT)
Prior art keywords
inductor
capacitor
switching element
led
current
Prior art date
Application number
PCT/JP2014/081171
Other languages
French (fr)
Japanese (ja)
Inventor
林 正明
久保田 健一
Original Assignee
新電元工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新電元工業株式会社 filed Critical 新電元工業株式会社
Priority to PCT/JP2014/081171 priority Critical patent/WO2016084144A1/en
Priority to JP2016561125A priority patent/JP6231224B2/en
Publication of WO2016084144A1 publication Critical patent/WO2016084144A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/20Responsive to malfunctions or to light source life; for protection
    • H05B47/25Circuit arrangements for protecting against overcurrent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/20Responsive to malfunctions or to light source life; for protection
    • H05B47/24Circuit arrangements for protecting against overvoltage

Definitions

  • the present invention relates to an LED driver circuit and an LED lighting device.
  • a battery that is a DC power supply, a step-up / step-down LED driver circuit (converter, switching power supply) that converts the battery power and outputs a predetermined output current, and is connected in series and supplied with an output current
  • an LED lighting device including an LED lamp having a plurality of LED elements to be lit (see, for example, JP 2006-340432 A, Chinese Utility Model 202005034, JP 2013-099072 A, JP 2013-098297 A).
  • This conventional LED lighting device is used for a headlight of a vehicle such as a two-wheeled vehicle, for example.
  • an output capacitor is connected between the output terminals of the LED driver circuit of the LED lighting device.
  • the brightness of one LED element does not change when the number of LED elements in the LED lamp in series (the number of lighting) changes by switching between high beam and low beam during operation.
  • the output voltage cannot be changed at high speed.
  • the LED driver circuit is configured such that no output capacitor is connected between the output terminals so that the output voltage can be changed at high speed when such a load suddenly changes. It is possible.
  • the LED driver circuits of the LED lighting devices 100A and 100B (FIGS. 16 and 17) of the first and second comparative examples include coils L101 and L102, a switching element M101, a diode D101, and a capacitor C101. In a state where the LED lighting device 100A of the first comparative example is operating stably, the capacitor C101 is charged to a voltage close to the voltage Vo between the output terminals T101 and T102.
  • the capacitor C101 has a voltage close to the sum of the voltage Vi between the input terminals T103 and T104 and the voltage Vo between the output terminals T101 and T102. Charged.
  • an object of the present invention is to provide an LED driver circuit and an LED lighting device that can prevent an overcurrent from flowing to the load when the load is suddenly reduced.
  • An LED driver circuit includes: A first battery terminal connected to the positive electrode of the battery; A second battery terminal connected to the negative electrode of the battery and connected to the cathode side of the LED lamp; An output terminal connected to the anode side of the LED lamp; A switching element having one end connected to the first battery terminal; A first inductor having one end connected to the second battery terminal; A capacitor having one end connected to the other end of the switching element; A second inductor having one end connected to the other end of the capacitor and the other end connected to the output terminal; A first rectifying element having one end connected to the second battery terminal and the other end connected to the other end of the capacitor, the direction from the second battery terminal toward the other end of the capacitor being a forward direction; , One end is connected to the other end of the switching element and the other end is connected to the other end of the first inductor, and a direction from the other end of the switching element toward the other end of the first inductor is a forward direction.
  • a second rectifying element One end is connected to the other end of the first inductor and the other end is connected to the other end of the capacitor or one end of the switching element, and the other end of the capacitor is connected to the other end of the capacitor or the switching element.
  • a third rectifying element in which the direction toward one end of the A control unit for controlling on / off of the switching element based on a current flowing through the second inductor; It is characterized by providing.
  • the control unit may turn off the switching element when a current flowing through the second inductor exceeds a predetermined current value.
  • a capacitor is not provided between the other end of the second inductor and the ground.
  • the second rectifying element is a diode having an anode connected to the other end of the switching element and a cathode connected to the other end of the first inductor.
  • the third rectifying element is a diode having an anode connected to the other end of the first inductor and a cathode connected to the other end of the capacitor or one end of the switching element.
  • the first rectifying element is a diode having an anode connected to the second battery terminal and a cathode connected to the other end of the capacitor.
  • An LED lighting device is provided.
  • An LED driver circuit includes: A first battery terminal connected to the positive electrode of the battery; A second battery terminal connected to the negative electrode of the battery and connected to the anode side of the LED lamp; An output terminal connected to the cathode side of the LED lamp; A first inductor having one end connected to the first battery terminal; A switching element having one end connected to the second battery terminal; One end is connected to the other end of the first inductor and the other end is connected to the other end of the switching element, and a direction from the other end of the first inductor toward the other end of the switching element is a forward direction.
  • a first rectifying element A capacitor having one end connected to the other end of the first rectifying element; One end is connected to the other end of the second battery terminal or the capacitor and the other end is connected to the other end of the first inductor, and the first end is connected to the second battery terminal or the other end of the capacitor.
  • a second rectifying element whose forward direction is toward the other end of the inductor;
  • a second inductor having one end connected to the other end of the capacitor and the other end connected to the output terminal;
  • a third rectifying element having one end connected to the second battery terminal and the other end connected to the other end of the capacitor, the direction from the other end of the capacitor toward the second battery terminal being a forward direction;
  • the control unit may turn off the switching element when a current flowing through the second inductor exceeds a predetermined current value.
  • a capacitor is not provided between the other end of the second inductor and the ground.
  • the first rectifying element is a diode having an anode connected to the other end of the first inductor and a cathode connected to one end of the capacitor.
  • the second rectifying element is a diode having an anode connected to the second battery terminal or the other end of the capacitor and a cathode connected to the other end of the first inductor.
  • the third rectifying element is a diode having an anode connected to the other end of the capacitor and a cathode connected to the second battery terminal.
  • An LED lighting device is provided.
  • the control unit of the LED driver circuit turns off the switching element M1 when the current flowing through the second inductor exceeds a specified current value due to a sudden decrease in the load.
  • the second rectifying element prevents (blocks) the output current from returning to the capacitor through the first inductor L1.
  • the current flowing through the first inductor is released to the input side or the output side by the third rectifier element. Thereby, it is possible to prevent an overvoltage (surge voltage) from being generated in the first inductor.
  • FIG. 1 is a diagram illustrating an example of the configuration of the LED lighting device 100 according to the first embodiment.
  • FIG. 2 is a diagram illustrating an example of a current path when the switching element M1 of the LED driver circuit 102 illustrated in FIG. 1 is turned on.
  • FIG. 3 is a diagram illustrating an example of a current path when the switching element M1 of the LED driver circuit 102 illustrated in FIG. 1 is turned off.
  • FIG. 4 is a diagram illustrating an example of a current waveform flowing in the LED driver circuit 102.
  • FIG. 5 is a diagram illustrating an example of a current path when the load is suddenly decreased in the LED lighting device 100 illustrated in FIG. 1.
  • FIG. 1 is a diagram illustrating an example of the configuration of the LED lighting device 100 according to the first embodiment.
  • FIG. 2 is a diagram illustrating an example of a current path when the switching element M1 of the LED driver circuit 102 illustrated in FIG. 1 is turned on.
  • FIG. 3 is a diagram illustrating an example of a current
  • FIG. 6 is a diagram illustrating an example of a waveform of a current flowing through the LED element 101a before and after the series number of the LED elements 101a rapidly decreases.
  • FIG. 7 is a diagram illustrating an example of the configuration of the LED lighting device 100b according to the second embodiment.
  • FIG. 8 is a diagram illustrating an example of a current path when the load suddenly decreases in the LED lighting device 100b illustrated in FIG.
  • FIG. 9 is a diagram illustrating an example of the configuration of the LED lighting device 100c according to the third embodiment.
  • FIG. 10 is a diagram illustrating an example of a current path when the switching element M1 of the LED driver circuit 102c illustrated in FIG. 9 is turned on.
  • FIG. 10 is a diagram illustrating an example of a current path when the switching element M1 of the LED driver circuit 102c illustrated in FIG. 9 is turned on.
  • FIG. 11 is a diagram illustrating an example of a current path when the switching element M1 of the LED driver circuit 102c illustrated in FIG. 9 is off.
  • FIG. 12 is a diagram illustrating an example of a current waveform flowing through the LED driver circuit 102c.
  • FIG. 13 is a diagram illustrating an example of a current path when the load suddenly decreases in the LED lighting device 100c illustrated in FIG.
  • FIG. 14 is a diagram illustrating an example of a configuration of an LED illumination device 100d according to the fourth embodiment.
  • FIG. 15 is a diagram illustrating an example of a current path when the load suddenly decreases in the LED lighting device 100d illustrated in FIG.
  • FIG. 16 is a diagram illustrating an example of the configuration of the LED lighting apparatus 100A of the first comparative example.
  • FIG. 17 is a diagram illustrating an example of the configuration of the LED lighting device 100B of the second comparative example.
  • the LED lighting device 100 includes an LED lamp 101 having a plurality of LED elements 101a connected in series, an LED driver circuit 102 for driving the LED lamp 101, Is provided.
  • a battery (DC power supply) BAT which will be described later, is not shown.
  • the LED lamp 101 includes a plurality of LED elements 101a connected in series and a switch circuit SW connected in parallel with any of the plurality of LED elements 101a.
  • the number of LED elements 101a to be lit is switched by turning on / off the switch circuit SW.
  • the switch circuit SW can be switched on / off by the user.
  • the LED lamp 101 is, for example, a two-wheeled vehicle headlamp.
  • the LED element 101a to which the switch circuit SW is not connected in parallel is, for example, a Low beam LED element.
  • the LED element 101a connected in parallel to the switch circuit SW is, for example, a Hi beam LED element.
  • the number of LED elements 101a to be lit is switched by turning on / off the switch circuit SW.
  • the load of the LED lamp 101 changes by switching the number of the LED elements 101a that are lit in this way.
  • the LED driver circuit 102 supplies current to the LED lamp 101 to drive the LED lamp 101.
  • the LED driver circuit 102 includes, for example, a first battery terminal Tx, a second battery terminal (ground terminal) Ty, an output terminal Tz, a switching element M1, and a first inductor.
  • L1, capacitor C1, second inductor L2, first rectifier element D1, second rectifier element D2, third rectifier element D3, first detection resistor R1, and second A detection resistor R2, a control unit 103, and terminals T1 to T6 are provided.
  • the first battery terminal Tx is connected to the positive electrode TBa of the battery BAT.
  • the second battery terminal Ty is connected to the negative electrode TBb of the battery BAT and to one end (cathode side) 22 of the LED lamp 101.
  • the output terminal Tz is connected to the other end (anode side) 21 of the LED lamp 101.
  • the switching element M1 has one end (drain) connected to the first battery terminal Tx and the other end (source) connected to one end (anode) of the second rectifying element D2 via the second detection resistor R2. It is connected.
  • the switch element M1 is controlled to be turned on / off by a signal output from the terminal T1 of the control unit 103.
  • the switching element M1 is, for example, a MOS transistor as shown in FIG. In this case, the signal output from the terminal T1 of the control unit 103 is supplied to the gate of the MOS transistor.
  • the switching element M1 may be a bipolar transistor.
  • the first inductor L1 has one end connected to the second battery terminal Ty and the other end connected to the other end (cathode) of the second rectifier element D2.
  • the capacitor C1 has one end connected to the other end of the switching element M1 via the second detection resistor R2.
  • the second inductor L2 has one end connected to the other end of the capacitor C1 through the first detection resistor R1, and the other end connected to the output terminal Tz.
  • the first rectifying element D1 has one end connected to the second battery terminal Ty and the other end connected to the other end of the capacitor C1. In the first rectifying element D1, the direction from the second battery terminal Ty toward the other end of the capacitor C1 is the forward direction.
  • the first rectifying element D1 is, for example, a diode having an anode connected to the second battery terminal Ty and a cathode connected to the other end of the capacitor C1, as shown in FIG.
  • the first rectifying element D1 may be, for example, a switching element. That is, the first rectifying element D1 includes not only a diode but also a switching element.
  • the second rectifier element D2 has one end connected to the other end of the switching element M1 via the second detection resistor R2 and the other end connected to the other end of the first inductor L1.
  • the direction from the other end of the switching element M1 to the other end of the first inductor L1 is a forward direction.
  • the second rectifying element D2 has an anode connected to the other end of the switching element M1 via a second detection resistor R2, and a cathode other than the first inductor L1. It is a diode connected to the end.
  • the second rectifying element D2 may be a switching element, for example. That is, the second rectifying element D2 includes not only a diode but also a switching element.
  • the third rectifying element D3 has one end connected to the other end of the first inductor L1 and the other end connected to the other end of the capacitor C1.
  • the direction from the other end of the first inductor L1 toward the other end of the capacitor C1 is a forward direction.
  • the third rectifying element D3 is, for example, a diode having an anode connected to the other end of the first inductor L1 and a cathode connected to the other end of the capacitor C1, as shown in FIG.
  • the third rectifying element D3 may be, for example, a switching element. That is, the third rectifying element D3 includes not only a diode but also a switching element.
  • the first detection resistor R1 is connected in series with the second inductor L2 between the other end of the capacitor C1 and the output terminal Tz.
  • the second detection resistor R2 is connected between the other end of the switching element M1 and the other end of the first inductor L1.
  • the control unit 103 performs on / off control of the switching element M1 based on a current flowing through the second inductor L2 (hereinafter referred to as a first current). For example, as illustrated in FIG. 1, the control unit 103 acquires the value of the first current by detecting the current flowing through the first detection resistor R1.
  • control unit 103 turns on the switching element M1 until the first current increases to the first threshold (UPPER LIMIT).
  • control part 103 turns off the switching element M1, when a 1st electric current increases and it becomes a 1st threshold value (UPPER LIMIT).
  • control unit 103 turns off the switching element M1 until the first current decreases and becomes a second threshold value (LOWER LIMIT) smaller than the first threshold value (UPPER LIMIT).
  • control unit 103 turns on the switching element M1 when the first current decreases and becomes the second threshold (LOWER LIMIT).
  • the first current flowing through the second inductor L2 is controlled to transition between the first threshold value (UPPER LIMIT) and the second threshold value (LOWER LIMIT). . That is, the output current supplied from the output terminal Tz to the LED lamp 101 is controlled within a predetermined range.
  • the control unit 103 turns off the switching element M1.
  • the specified current value is larger than the first threshold value.
  • control unit 103 acquires the value of the second current flowing through the switching element M1 by detecting the current flowing through the second detection resistor R2.
  • the control unit 103 forcibly turns off the switching element M1 when the second current flowing through the switching element M1 becomes equal to or greater than a third threshold value that is larger than the first threshold value (UPPER LIMIT).
  • the control unit 103 is connected to the positive electrode TBa of the battery BAT via the terminal T6 and the first battery terminal Tx.
  • the control unit 103 is supplied with the voltage Vcc of the battery BAT via the terminal T6 and the first battery terminal Tx.
  • control unit 103 includes an output current detection unit 103a, an input overcurrent detection unit 103b, a switch control unit 103c, and a driver 103d.
  • the output current detection unit 103a is connected to the first detection resistor R1 via terminals T2 and T3.
  • the output current detector 103a detects the current flowing through the first detection resistor R1.
  • the input overcurrent detection unit 103b is connected to one end of the second detection resistor R2 through the terminal T4, and is connected to the other end of the second detection resistor R2 through the terminal T5.
  • the input overcurrent detection unit 103b detects a current flowing through the second detection resistor R2.
  • the other end of the second detection resistor R2 is connected to the reference potential of the control unit 103 via the terminal T5.
  • the reference potential is floating from the ground terminal.
  • the switching element M1 is an n-ch MOS transistor
  • the source potential is a floating potential from the ground potential. Therefore, if the reference potential of the control unit 103 is the ground potential, the high side driver is I need it.
  • the high-side driver is not required by adopting a configuration in which the reference potential of the control unit 103 is floated from the ground.
  • the switch control unit 103c outputs a control signal based on the current detected by the input overcurrent detection unit 103b and the current detected by the output current detection unit 103a.
  • the switch control unit 103c outputs a control signal for turning on the switching element M1 until the first current increases to reach the first threshold (UPPER LIMIT).
  • the switch control unit 103c outputs a control signal for turning off the switching element M1 when the first current increases and reaches the first threshold (UPPER LIMIT).
  • the switch control unit 103c outputs a control signal for turning off the switching element M1 until the first current decreases and becomes a second threshold (LOWER LIMIT) smaller than the first threshold (UPPER LIMIT). Output.
  • the switch control unit 103c outputs a control signal for turning on the switching element M1 when the first current decreases and reaches the second threshold (LOWER LIMIT).
  • the switch control unit 103c By such control of the switch control unit 103c, the first current flowing through the second inductor L2 is controlled to transition between the first threshold (UPPER LIMIT) and the second threshold (LOWER LIMIT). The That is, the output current supplied from the output terminal Tz to the LED lamp 101 is controlled within a predetermined range.
  • the switch control unit 103c When the first current exceeds a predetermined current value, the switch control unit 103c outputs a control signal for turning off the switching element M1.
  • the switch control unit 103c By controlling the switch control unit 103c as described above, it is possible to prevent current from flowing from the capacitor C1 to the LED lamp 101, and thus it is possible to prevent overcurrent from flowing to the LED lamp.
  • the switch control unit 103c outputs a control signal for forcibly turning off the switching element M1 when the second current is equal to or greater than a third threshold value that is greater than the first threshold value (UPPER LIMIT). .
  • the driver 103d amplifies the control signal output from the switch control unit 103c to a predetermined voltage and outputs it.
  • an output capacitor is not provided between the other end of the second inductor L2 and the ground.
  • the LED driver circuit 102 has a configuration in which a first rectifier element D1 and a second inductor L2 connected in series are provided between the second battery terminal (ground terminal) Ty and the output terminal Tz. . For this reason, the LED driver circuit 102 can output a continuous current even if an output capacitor is not provided, as will be described later.
  • the LED driver circuit 102 does not have an output capacitor, so that a faster response is possible. For example, when the number of LED elements in the LED lamp 101 (the number of lighting) changes (when the load changes suddenly) ), It is difficult to be affected by a sudden load change, and the output current can be supplied constant.
  • control unit 103 performs on / off control of the switching element M1 based on the first current flowing through the second inductor L2.
  • control unit 103 increases the first current (the current I (L2) flowing through the second inductor L2) to the first threshold (UPPER LIMIT) (for example, from time t0 to t1 in FIG. At time t2 to t3), the switching element M1 is turned on.
  • a current I (M1) flows through the switching element M1 (FIG. 4).
  • the current I (M1) is equal to the current flowing through the second detection resistor R2.
  • the current I (M1) includes a first current I1a flowing through the first detection resistor R1 (current I (L2) flowing through the second inductor L2) and a second current I2a (passing through the first inductor L1). And the sum of the flowing current I (L1)) (FIGS. 2 and 4).
  • the current I (L2) flowing through the second inductor L2 is supplied to the LED lamp 101 as an output current. As a result, the LED lamp 101 is turned on.
  • control unit 103 increases the first current I1a (current I (L2) flowing through the second inductor L2) to the first threshold (UPPER LIMIT) (for example, time t1 in FIG. 4). , Time t3), the switching element M1 is turned off.
  • control unit 103 reduces the first current I1b flowing through the first detection resistor R1 (current I (L2) flowing through the second inductor L2) to be smaller than the first threshold (UPPER LIMIT).
  • the switching element M1 is turned off until the second threshold (LOWER LIMIT) is reached (for example, time t1 to t2 in FIG. 4).
  • the first current I1b flowing through the first detection resistor R1 (current I (L2) flowing through the second inductor L2) is the output terminal Tz, the LED lamp 101, the second It flows through the battery terminal Ty and the rectifying element D1 in order (FIG. 3).
  • the current I (D1) flowing through the rectifying element D1 is the sum of the current I (L1) and the current I (L2) (FIGS. 3 and 4).
  • control unit 103 decreases the first current I1b flowing through the first detection resistor R1 (current I (L2) flowing through the second inductor L2) to the second threshold (LOWER LIMIT).
  • the switching element M1 is turned on.
  • the current I (L2) flowing through the second inductor L2 is controlled to transition between the first threshold (UPPER LIMIT) and the second threshold (LOWER LIMIT).
  • the output current supplied from the output terminal Tz to the LED lamp 101 is controlled within a predetermined range.
  • the LED driver circuit 102 includes the first rectifier element D1 and the inductor (second circuit) connected in series between the second battery terminal (ground terminal) Ty and the output terminal Tz. Since the inductor L2) is provided, a continuous current can be output without an output capacitor (FIGS. 2 to 4).
  • the LED driver circuit 102 can respond faster by not having an output capacitor. For example, when the number of LED elements 101a in the LED lamp 101 (the number of lighting) changes (the load changes suddenly). ), It is difficult to be affected by a sudden load change, and the output current can be supplied constant (FIG. 4).
  • the LED lighting device 100 it is difficult to be affected by a sudden load change, and an output current can be supplied constantly.
  • the LED driver circuit 102 is provided with a third rectifier element D3 for releasing the current flowing through the first inductor L1 to the output side.
  • the current I11 flows in the order of the first inductor L1, the third rectifier element D3, the second inductor L2, and the LED element 101a, so that an overvoltage is generated in the first inductor L1. Occurrence can be prevented.
  • the LED lamp X101 of the LED driver circuit 100A As shown in FIG. 6, immediately after the number of LED elements 101a in series decreases rapidly and the output voltage Vo decreases rapidly (time t4 in FIG. 6), the LED lamp X101 of the LED driver circuit 100A according to the first comparative example.
  • the current Io flowing through becomes excessive. (Area A1 in FIG. 6).
  • the switching element M1 when the first current exceeds the specified current, the switching element M1 is turned off, and after the switching element M1 is turned off, the first current decreases with time. This is because the discharge path of the capacitor C1, which is a voltage higher than the output voltage Vo in the LED driver circuit 100, is blocked by the second rectifier element D2, so that only the energy of the second inductor L2 is expelled. It is.
  • the switching element M1 is turned on. Thereafter, the switching element M1 is repeatedly turned off and on.
  • the current Io flowing through the LED lamp 101 (hereinafter referred to as LED current) Io is constant. It falls within the range (area A2 in FIG. 6). That is, the output current supplied from the output terminal Tz to the LED lamp 101 is controlled within a predetermined range.
  • the electric charge stored in the capacitor C1 is gradually discharged when the switching element M1 is on (see FIG. 6), and is discharged to a voltage close to the output voltage Vo.
  • the voltage V (C1) of the capacitor C1 is the output voltage from the time when the number of LED elements 101a in series decreases rapidly. The time until discharging to a voltage close to Vo becomes longer.
  • the current flowing through the second inductor L2 due to the sudden decrease in the load due to the reduction in the number of LED elements 101a in the LED lamp 101 is a predetermined current value.
  • the control unit 103 turns off the switching element M1.
  • the second rectifying element D2 prevents (blocks) the output current from returning to the capacitor C1 through the first inductor L1.
  • an increase in output current at the time of sudden decrease in the load can be suppressed, and an overcurrent can be prevented from flowing through the load.
  • the current flowing through the first inductor L1 is released to the output side by the third rectifying element D3. Thereby, it is possible to prevent an overvoltage (surge voltage) from being generated in the first inductor L1.
  • the configuration of the LED lighting device 100b in the second embodiment is changed from the LED driver circuit 102 to the LED driver circuit 102b with respect to the configuration of the LED lighting device 100 in the first embodiment. It is a thing.
  • the LED driver circuit 102b in the second embodiment differs from the LED driver circuit 102 in the first embodiment in the connection mode of the third rectifier element D3. That is, the third rectifying element D3 has one end connected to the other end of the first inductor L1 and the other end connected to one end of the switching element M1. In the third rectifying element D3, the direction from the other end of the first inductor L1 toward one end of the switching element M1 is the forward direction.
  • the third rectifying element D3 is, for example, a diode having an anode connected to the other end of the first inductor L1 and a cathode connected to one end of the switching element M1.
  • the control unit 103 of the present embodiment switches the switching element M1 when the current flowing through the second inductor L2 (first current) exceeds a specified current value. Turn off.
  • the second rectifying element D2 prevents (blocks) the output current from returning to the capacitor C1 through the first inductor L1. .
  • the LED driver circuit 102b is provided with a third rectifier element D3 for releasing the current flowing through the first inductor L1 to the input side.
  • the current I12 flows in the order of the first inductor L1, the third rectifier element D3, and the battery BAT, thereby preventing an overvoltage from being generated in the first inductor L1. Can do.
  • the current flowing through the second inductor L2 due to the rapid decrease of the load due to the decrease in the number of series of the LED elements 101a in the LED lamp 101 is a specified current value.
  • the control unit 103 turns off the switching element M1.
  • the second rectifying element D2 prevents (blocks) the output current from returning to the capacitor C1 through the first inductor L1.
  • an increase in output current at the time of sudden decrease in the load can be suppressed, and an overcurrent can be prevented from flowing through the load.
  • the current flowing through the first inductor L1 is released to the input side by the third rectifying element D3. Thereby, it is possible to prevent an overvoltage (surge voltage) from being generated in the first inductor L1.
  • the LED driver circuit 102 is changed to the LED driver circuit 102c with respect to the configuration of the LED lighting device 100 in the first embodiment. It has become a thing.
  • the switching element M1, the capacitor C1, and the second inductor L2 are connected in series between the first battery terminal Tx and the output terminal Tz, and one end of the capacitor C1. Is connected to the second battery terminal Ty via the first inductor L1.
  • the first inductor L1, the capacitor C1, and the second inductor L2 are connected in series between the first battery terminal Tx and the output terminal Tz.
  • One end of the capacitor C1 is connected to the second battery terminal Ty via the switching element M1.
  • a battery (DC power supply) BAT which will be described later, is not shown.
  • the LED driver circuit 102c supplies current to the LED lamp 101 and drives the LED lamp 101 in the same manner as the LED driver circuit 102 in the first embodiment.
  • the LED driver circuit 102c includes, for example, a first battery terminal Tx, a second battery terminal (ground terminal) Ty, an output terminal Tz, a first inductor L1, and a switching element.
  • M1 the first rectifier element D1, the capacitor C1, the second rectifier element D2, the second inductor L2, the third rectifier element D3, the first detection resistor R1, and the second A detection resistor R2, a control unit 103, and terminals T1 to T6 are provided.
  • the first battery terminal Tx is connected to the positive electrode TBa of the battery.
  • the second battery terminal Ty is connected to the negative electrode TBb of the battery and to one end (anode side) 22 of the LED lamp 101.
  • the output terminal Tz is connected to the other end (cathode side) 21 of the LED lamp 101.
  • One end of the first inductor L1 is connected to the first battery terminal Tx.
  • One end (source) of the switching element M1 is connected to the second battery terminal Ty via the second detection resistor R2, and the other end (drain) is the other end (cathode) of the first rectifying element D1. It is connected to the.
  • the switch element M1 is controlled to be turned on / off by a signal output from the terminal T1 of the control unit 103.
  • the switching element M1 is, for example, a MOS transistor as shown in FIG. In this case, the signal output from the terminal T1 of the control unit 103 is supplied to the gate of the MOS transistor.
  • the switching element M1 may be a bipolar transistor.
  • the first rectifying element D1 has one end connected to the other end of the first inductor L1 and the other end connected to the other end (drain) of the switching element M1.
  • the direction from the other end of the first inductor L1 toward the other end of the switching element M1 is a forward direction.
  • the first rectifying element D1 is, for example, a diode having an anode connected to the other end of the first inductor L1 and a cathode connected to one end of the capacitor C1, as shown in FIG.
  • the first rectifying element D1 may be a switching element. That is, the first rectifying element D1 includes not only a diode but also a switching element.
  • the capacitor C1 has one end connected to the other end (cathode) of the first rectifying element D1.
  • the second rectifying element D2 has one end connected to the second battery terminal Ty and the other end connected to the other end of the first inductor L1. In the second rectifying element D2, the direction from the second battery terminal Ty toward the other end of the first inductor L1 is the forward direction.
  • the second rectifying element D2 is, for example, a diode having an anode connected to the second battery terminal Ty and a cathode connected to the other end of the first inductor L1, as shown in FIG.
  • the second rectifying element D2 may be a switching element. That is, the second rectifying element D2 includes not only a diode but also a switching element.
  • the second inductor L2 has one end connected to the other end of the capacitor C1, and the other end connected to the output terminal Tz via the first detection resistor R1.
  • the third rectifying element D3 has one end connected to the second battery terminal Ty and the other end connected to the other end of the capacitor C1. In the third rectifying element D3, the direction from the other end of the capacitor C1 toward the second battery terminal Ty is the forward direction.
  • the third rectifying element D3 is, for example, a diode having an anode connected to the other end of the capacitor C1 and a cathode connected to the second battery terminal Ty, as shown in FIG.
  • the third rectifying element D3 may be a switching element. That is, the third rectifying element D3 includes not only a diode but also a switching element.
  • the first detection resistor R1 is connected in series with the second inductor L2 between the other end of the capacitor C1 (the other end of the third rectifying element D3) and the output terminal Tz.
  • the second detection resistor R2 is connected between the other end of the switching element M1 and the second battery terminal Ty. Note that the other end of the second detection resistor R2 is connected to the ground via a terminal T5.
  • the control unit 103 is connected to the positive electrode TBa of the battery via the terminal T6 and the first battery terminal Tx.
  • the controller 103 is supplied with the battery voltage Vcc via the terminal T6 and the first battery terminal Tx.
  • the control unit 103 performs on / off control of the switching element M1 based on the current (first current) flowing through the second inductor L2. Note that, for example, as illustrated in FIG. 9, the control unit 103 acquires the value of the first current by detecting the current flowing through the first detection resistor R ⁇ b> 1. Since the configuration of the control unit 103 is the same as the configuration of the control unit 103 according to the first embodiment, a detailed description thereof is omitted.
  • control unit 103 performs on / off control of the switching element M1 based on the current (first current) flowing through the second inductor L2.
  • the control unit 103 increases the first current (the current I (L2) flowing through the second inductor L2) to the first threshold (UPPER LIMIT) (for example, from time t10 to t11 in FIG. 12, At time t12 to t13), the switching element M1 is turned on, and the current I (M1) is equal to the current flowing through the second detection resistor R2.
  • the first threshold UPPER LIMIT
  • the current I (M1) flows through the switching element M1 (FIG. 10).
  • the current I (M1) includes a first current I3a flowing through the first detection resistor R1 (current I (L2) flowing through the second inductor L2) and a second current I4a (passing through the first inductor L1).
  • Current (I (L1)) flowing (FIGS. 10 and 12).
  • the current I (L2) flowing through the second inductor L2 is supplied to the LED lamp 101 as an output current. As a result, the LED lamp 101 is turned on.
  • the controller 103 increases the first current I3a (current I (L2) flowing through the second inductor L2) to the first threshold (UPPER LIMIT) (for example, time t11 in FIG. 12). , Time t13), the switching element M1 is turned off.
  • the control unit 103 reduces the first current I3b flowing through the first detection resistor R1 (the current I (L2) flowing through the second inductor L2) (FIG. 11) and the first threshold (UPPER LIMIT).
  • the switching element M1 is turned off until the second threshold value (LOWER LIMIT) is reached (for example, times t11 to t12 in FIG. 12).
  • the first current I3b flowing through the first detection resistor R1 (current I (L2) flowing through the second inductor L2) is the third rectifying element D3, the second battery terminal Ty, and the LED lamp 101. And the output terminal Tz in this order (FIG. 11).
  • the current I (L1) flowing through the first inductor L1 flows in the order of the capacitor C1 and the third rectifying element D3, and the capacitor C1 is charged (FIG. 11).
  • the current I (D3) flowing through the third rectifying element D3 is the sum of the current I (L1) and the current I (L2) (FIGS. 11 and 12).
  • control unit 103 decreases the first current I3b flowing through the first detection resistor R1 (current I (L2) flowing through the second inductor L2) to the second threshold (LOWER LIMIT).
  • the switching element M1 is turned on.
  • the current I (L2) flowing through the second inductor L2 is controlled to transition between the first threshold (UPPER LIMIT) and the second threshold (LOWER LIMIT).
  • the output current supplied from the output terminal Tz to the LED lamp 101 is controlled within a predetermined range.
  • LED driver circuit 102c is provided between the second battery terminal (ground terminal) Ty and the output terminal Tz, the third rectifier element D 3 connected in series with an inductor (second Therefore, even if no output capacitor is provided, a continuous current can be output (FIGS. 10 to 12).
  • the LED driver circuit 102c does not have an output capacitor, so that a faster response is possible. For example, when the number of LED elements 101a in the LED lamp 101 (the number of lighting) changes (the load changes suddenly). ), It is difficult to be affected by a sudden load change, and the output current can be supplied constantly (FIG. 12).
  • the LED lighting device 100c according to the present embodiment, it is difficult to be affected by a sudden load change, and an output current can be supplied constantly.
  • the control unit 103 of the present embodiment switches the switching element M1 when the current flowing through the second inductor L2 (first current) exceeds a specified current value. Turn off.
  • the first rectifying element D1 prevents (blocks) the output current from returning to the first inductor L1 through the capacitor C1.
  • the LED driver circuit 102c is provided with a second rectifying element D2 for releasing the current flowing through the first inductor L1 to the input side.
  • the current I13 flows in the order of the first inductor L1, the battery BAT, and the second rectifying element D2, thereby preventing an overvoltage from being generated in the first inductor L1. Can do.
  • the current flowing through the second inductor L2 due to the sudden decrease in the load due to the reduction in the number of LED elements 101a in the LED lamp 101 is a specified current value.
  • the control unit 103 turns off the switching element M1.
  • the first rectifying element D1 prevents (blocks) the output current from returning to the first inductor L1 through the capacitor C1.
  • an increase in output current at the time of sudden decrease in the load can be suppressed, and an overcurrent can be prevented from flowing through the load.
  • the current flowing through the first inductor L1 is released to the input side by the second rectifying element D2. Thereby, it is possible to prevent an overvoltage (surge voltage) from being generated in the first inductor L1.
  • the configuration of the LED lighting device 100d in the fourth embodiment is changed from the LED driver circuit 102c to the LED driver circuit 102d with respect to the configuration of the LED lighting device 100c in the third embodiment. It has become a thing.
  • the LED driver circuit 102d in the fourth embodiment differs from the LED driver circuit 102c in the third embodiment in the connection mode of the second rectifying element D2.
  • the second rectifying element D2 has one end connected to the other end of the capacitor C1 and the other end connected to the other end of the first inductor L1.
  • the direction from the other end of the capacitor C1 toward the other end of the first inductor L1 is the forward direction.
  • the second rectifying element D2 is, for example, a diode having an anode connected to the other end of the capacitor C1 and a cathode connected to the other end of the first inductor L1.
  • the control unit 103 of the present embodiment causes the switching element M1 to be switched when the current flowing through the second inductor L2 (first current) exceeds a specified current value. Turn off.
  • the first rectifying element D1 prevents (blocks) the output current from returning to the first inductor L1 through the capacitor C1.
  • the LED driver circuit 102d is provided with a second rectifying element D2 for releasing the current flowing through the first inductor L1 to the input side.
  • the current I14 flows in the order of the first inductor L1, the battery BAT, the LED lamp 101, the second inductor L2, and the second rectifier element D2, thereby causing the first inductor L1. It is possible to prevent the occurrence of overvoltage.
  • the current flowing through the second inductor L2 due to the rapid decrease of the load due to the decrease in the number of series of the LED elements 101a in the LED lamp 101 is a specified current value.
  • the control unit 103 turns off the switching element M1.
  • the first rectifying element D1 prevents (blocks) the output current from returning to the first inductor L1 through the capacitor C1.
  • an increase in output current at the time of sudden decrease in the load can be suppressed, and an overcurrent can be prevented from flowing through the load.
  • the current flowing through the first inductor L1 is released to the input side by the second rectifying element D2. Thereby, it is possible to prevent an overvoltage (surge voltage) from being generated in the first inductor L1.

Abstract

This LED driver circuit is provided with: a switching element which has one end connected to a first battery terminal; a first inductor which has one end connected to a second battery terminal; a capacitor which has one end connected to the other end of the switching element; a second inductor which has one end connected to the other end of the capacitor, while having the other end connected to an output terminal; a first rectifier element which has one end connected to the second battery terminal, while having the other end connected to the other end of the capacitor, such that the direction from the second battery terminal toward the other end of the capacitor is the forward direction; a second rectifier element which has one end connected to the other end of the switching element, while having the other end connected to the other end of the first inductor, such that the direction from the other end of the switching element toward the other end of the first inductor is the forward direction; a third rectifier element which has one end connected to the other end of the first inductor, while having the other end connected to the other end of the capacitor or to the one end of the switching element, such that the direction from the other end of the first inductor toward the other end of the capacitor or toward the one end of the switching element is the forward direction; and a control unit which controls on/off of the switching element on the basis of the current flowing through the second inductor.

Description

LEDドライバ回路、及び、LED照明装置LED driver circuit and LED lighting device
 本発明は、LEDドライバ回路、及び、LED照明装置に関する。 The present invention relates to an LED driver circuit and an LED lighting device.
 従来、直流電源であるバッテリ、このバッテリの電力を変換して所定の出力電流を出力する昇降圧方式のLEDドライバ回路(コンバータ、スイッチング電源)、及び、直列に接続され且つ出力電流が供給されて点灯する複数のLED素子を有するLEDランプを備えるLED照明装置がある(例えば、特開2006-340432号公報、中国実用新案202005034、特開2013-099072号公報、特開2013-098297号公報参照)。この従来のLED照明装置は、例えば、二輪車等の車両のヘッドライト等に用いられる。 Conventionally, a battery that is a DC power supply, a step-up / step-down LED driver circuit (converter, switching power supply) that converts the battery power and outputs a predetermined output current, and is connected in series and supplied with an output current There is an LED lighting device including an LED lamp having a plurality of LED elements to be lit (see, for example, JP 2006-340432 A, Chinese Utility Model 202005034, JP 2013-099072 A, JP 2013-098297 A). . This conventional LED lighting device is used for a headlight of a vehicle such as a two-wheeled vehicle, for example.
 従来、LED照明装置が有するLEDドライバ回路の出力端子間に出力コンデンサが接続されている。この従来のLEDドライバ回路は、動作中に、ハイビーム/ロービームの切り替え等を行ってLEDランプ内のLED素子の直列数(点灯数)が変化した場合に、1つのLED素子の明るさが変化しないように、高速に出力電圧を変化させることができない問題がある。 Conventionally, an output capacitor is connected between the output terminals of the LED driver circuit of the LED lighting device. In this conventional LED driver circuit, the brightness of one LED element does not change when the number of LED elements in the LED lamp in series (the number of lighting) changes by switching between high beam and low beam during operation. As described above, there is a problem that the output voltage cannot be changed at high speed.
 これに対し、このような負荷の急変時に出力電圧を高速に変化させることができるように、図16及び図17に示すように、LEDドライバ回路を出力端子間に出力コンデンサを接続しない構成とすることが考えられる。第1及び第2の比較例のLED照明装置100A及び100B(図16及び図17)のLEDドライバ回路には、コイルL101、L102、スイッチング素子M101、ダイオードD101、及びコンデンサC101を備える。第1の比較例のLED照明装置100Aが安定動作している状態では、コンデンサC101は出力端子T101及びT102間の電圧Voに近い電圧に充電される。一方、第2の比較例のLED照明装置100Bが安定動作している状態では、コンデンサC101は入力端子T103及びT104間の電圧Viと出力端子T101及びT102間の電圧Voとの和に近い電圧に充電される。 On the other hand, as shown in FIGS. 16 and 17, the LED driver circuit is configured such that no output capacitor is connected between the output terminals so that the output voltage can be changed at high speed when such a load suddenly changes. It is possible. The LED driver circuits of the LED lighting devices 100A and 100B (FIGS. 16 and 17) of the first and second comparative examples include coils L101 and L102, a switching element M101, a diode D101, and a capacitor C101. In a state where the LED lighting device 100A of the first comparative example is operating stably, the capacitor C101 is charged to a voltage close to the voltage Vo between the output terminals T101 and T102. On the other hand, in a state where the LED lighting device 100B of the second comparative example is operating stably, the capacitor C101 has a voltage close to the sum of the voltage Vi between the input terminals T103 and T104 and the voltage Vo between the output terminals T101 and T102. Charged.
 このような回路構成で、LEDランプ内のLED素子に直列数をスイッチ回路で切り替えるなどして出力端子間の電圧が急峻に下がった場合、スイッチング素子M101をオフにしても、その時点のコンデンサC101の電圧が出力端子間の電圧に比べて高いので、コンデンサC101から放電された電流が出力端子T101又はT102に向かって流れ込む。このようにして出力端子間の電圧が急峻に下がった場合、コンデンサの電圧が安定した電圧になるまで、コンデンサC101から放電電流が流れる。これにより、出力電流が増加し、LED素子に過電流を流してしまうという問題がある。 With such a circuit configuration, when the voltage between the output terminals sharply decreases by switching the number of LED elements in the LED lamp with a switch circuit or the like, even if the switching element M101 is turned off, the capacitor C101 at that time Is higher than the voltage between the output terminals, the current discharged from the capacitor C101 flows toward the output terminal T101 or T102. When the voltage between the output terminals drops sharply in this way, a discharge current flows from the capacitor C101 until the capacitor voltage becomes a stable voltage. Thereby, there is a problem that the output current increases and an overcurrent flows through the LED element.
 そこで、本発明は、負荷急減時に負荷に過電流が流れることを防止することが可能なLEDドライバ回路及びLED照明装置を提供することを目的とする。 Therefore, an object of the present invention is to provide an LED driver circuit and an LED lighting device that can prevent an overcurrent from flowing to the load when the load is suddenly reduced.
 本発明の一態様に係るLEDドライバ回路は、
 バッテリの正極に接続された第1のバッテリ端子と、
 前記バッテリの負極に接続され且つLEDランプのカソード側に接続された第2のバッテリ端子と、
 前記LEDランプのアノード側に接続された出力端子と、
 一端が前記第1のバッテリ端子に接続されたスイッチング素子と、
一端が前記第2のバッテリ端子に接続された第1のインダクタと、
 一端が前記スイッチング素子の他端に接続されたコンデンサと、
 一端が前記コンデンサの他端に接続され、他端が前記出力端子に接続された第2のインダクタと、
 一端が前記第2のバッテリ端子に接続され且つ他端が前記コンデンサの他端に接続され、前記第2のバッテリ端子から前記コンデンサの他端に向かう方向が順方向となる第1の整流素子と、
 一端が前記スイッチング素子の他端に接続され且つ他端が前記第1のインダクタの他端に接続され、前記スイッチング素子の他端から前記第1のインダクタの他端に向かう方向が順方向となる第2の整流素子と、
 一端が前記第1のインダクタの他端に接続され且つ他端が前記コンデンサの他端又は前記スイッチング素子の一端に接続され、前記第1のインダクタの他端から前記コンデンサの他端又は前記スイッチング素子の一端に向かう方向が順方向となる第3の整流素子と、
 前記第2のインダクタに流れる電流に基づいて、前記スイッチング素子をオン/オフ制御する制御部と、
を備えることを特徴とする。
An LED driver circuit according to one embodiment of the present invention includes:
A first battery terminal connected to the positive electrode of the battery;
A second battery terminal connected to the negative electrode of the battery and connected to the cathode side of the LED lamp;
An output terminal connected to the anode side of the LED lamp;
A switching element having one end connected to the first battery terminal;
A first inductor having one end connected to the second battery terminal;
A capacitor having one end connected to the other end of the switching element;
A second inductor having one end connected to the other end of the capacitor and the other end connected to the output terminal;
A first rectifying element having one end connected to the second battery terminal and the other end connected to the other end of the capacitor, the direction from the second battery terminal toward the other end of the capacitor being a forward direction; ,
One end is connected to the other end of the switching element and the other end is connected to the other end of the first inductor, and a direction from the other end of the switching element toward the other end of the first inductor is a forward direction. A second rectifying element;
One end is connected to the other end of the first inductor and the other end is connected to the other end of the capacitor or one end of the switching element, and the other end of the capacitor is connected to the other end of the capacitor or the switching element. A third rectifying element in which the direction toward one end of the
A control unit for controlling on / off of the switching element based on a current flowing through the second inductor;
It is characterized by providing.
 前記LEDドライバ回路において、
 前記制御部は、前記第2のインダクタに流れる電流が規定の電流値を上回った場合、前記スイッチング素子をオフすることを特徴とする。
In the LED driver circuit,
The control unit may turn off the switching element when a current flowing through the second inductor exceeds a predetermined current value.
 前記LEDドライバ回路において、
 前記第2のインダクタの他端と接地との間には、コンデンサが設けられていないことを特徴とする。
In the LED driver circuit,
A capacitor is not provided between the other end of the second inductor and the ground.
 前記LEDドライバ回路において、
 前記第2の整流素子は、アノードが前記スイッチング素子の他端に接続され、カソードが前記第1のインダクタの他端に接続されたダイオードであることを特徴とする。
In the LED driver circuit,
The second rectifying element is a diode having an anode connected to the other end of the switching element and a cathode connected to the other end of the first inductor.
 前記LEDドライバ回路において、
 前記第3の整流素子は、アノードが前記第1のインダクタの他端に接続され、カソードが前記コンデンサの他端又は前記スイッチング素子の一端に接続されたダイオードであることを特徴とする。
In the LED driver circuit,
The third rectifying element is a diode having an anode connected to the other end of the first inductor and a cathode connected to the other end of the capacitor or one end of the switching element.
 前記LEDドライバ回路において、
 前記第1の整流素子は、アノードが前記第2のバッテリ端子に接続され、カソードが前記コンデンサの他端に接続されたダイオードであることを特徴とする。
In the LED driver circuit,
The first rectifying element is a diode having an anode connected to the second battery terminal and a cathode connected to the other end of the capacitor.
 本発明の一態様に係るLED照明装置は、
 前記LEDドライバ回路と、
 前記LEDランプと、
 を備え、
 前記LEDランプは、
 直列に接続された複数のLED素子と、
 前記複数のLED素子のいずれかと並列に接続されたスイッチ回路と、
 を含み、
 前記スイッチ回路のオン/オフにより、点灯するLED素子の数が切り換えられることを特徴とする。
An LED lighting device according to an aspect of the present invention is provided.
The LED driver circuit;
The LED lamp;
With
The LED lamp is
A plurality of LED elements connected in series;
A switch circuit connected in parallel with any of the plurality of LED elements;
Including
The number of LED elements to be lit is switched by turning on / off the switch circuit.
 本発明の一態様に係るLEDドライバ回路は、
 バッテリの正極に接続される第1のバッテリ端子と、
 前記バッテリの負極に接続され且つLEDランプのアノード側が接続される第2のバッテリ端子と、
 前記LEDランプのカソード側に接続された出力端子と、
 一端が前記第1のバッテリ端子に接続された第1のインダクタと、
 一端が前記第2のバッテリ端子に接続されたスイッチング素子と、
 一端が前記第1のインダクタの他端に接続され且つ他端が前記スイッチング素子の他端に接続され、前記第1のインダクタの他端から前記スイッチング素子の他端に向かう方向が順方向となる第1の整流素子と、
 一端が前記第1の整流素子の他端に接続されたコンデンサと、
 一端が前記第2のバッテリ端子又は前記コンデンサの他端に接続され且つ他端が前記第1のインダクタの他端に接続され、前記第2のバッテリ端子又は前記コンデンサの他端から前記第1のインダクタの他端に向かう方向が順方向となる第2の整流素子と、
 一端が前記コンデンサの他端に接続され、他端が前記出力端子に接続された第2のインダクタと、
 一端が前記第2のバッテリ端子に接続され且つ他端が前記コンデンサの他端に接続され、前記コンデンサの他端から前記第2のバッテリ端子に向かう方向が順方向となる第3の整流素子と、
 前記第2のインダクタに流れる電流に基づいて、前記スイッチング素子をオン/オフ制御する制御部と、
 を備えることを特徴とする。
An LED driver circuit according to one embodiment of the present invention includes:
A first battery terminal connected to the positive electrode of the battery;
A second battery terminal connected to the negative electrode of the battery and connected to the anode side of the LED lamp;
An output terminal connected to the cathode side of the LED lamp;
A first inductor having one end connected to the first battery terminal;
A switching element having one end connected to the second battery terminal;
One end is connected to the other end of the first inductor and the other end is connected to the other end of the switching element, and a direction from the other end of the first inductor toward the other end of the switching element is a forward direction. A first rectifying element;
A capacitor having one end connected to the other end of the first rectifying element;
One end is connected to the other end of the second battery terminal or the capacitor and the other end is connected to the other end of the first inductor, and the first end is connected to the second battery terminal or the other end of the capacitor. A second rectifying element whose forward direction is toward the other end of the inductor;
A second inductor having one end connected to the other end of the capacitor and the other end connected to the output terminal;
A third rectifying element having one end connected to the second battery terminal and the other end connected to the other end of the capacitor, the direction from the other end of the capacitor toward the second battery terminal being a forward direction; ,
A control unit for controlling on / off of the switching element based on a current flowing through the second inductor;
It is characterized by providing.
 前記LEDドライバ回路において、
 前記制御部は、前記第2のインダクタに流れる電流が規定の電流値を上回った場合、前記スイッチング素子をオフすることを特徴とする。
In the LED driver circuit,
The control unit may turn off the switching element when a current flowing through the second inductor exceeds a predetermined current value.
 前記LEDドライバ回路において、
 前記第2のインダクタの他端と接地との間には、コンデンサが設けられていないことを特徴とする。
In the LED driver circuit,
A capacitor is not provided between the other end of the second inductor and the ground.
 前記LEDドライバ回路において、
 前記第1の整流素子は、アノードが前記第1のインダクタの他端に接続され、カソードが前記コンデンサの一端に接続されたダイオードであることを特徴とする。
In the LED driver circuit,
The first rectifying element is a diode having an anode connected to the other end of the first inductor and a cathode connected to one end of the capacitor.
 前記LEDドライバ回路において、
 前記第2の整流素子は、アノードが前記第2のバッテリ端子又は前記コンデンサの他端に接続され、カソードが前記第1のインダクタの他端に接続されたダイオードであることを特徴とする。
In the LED driver circuit,
The second rectifying element is a diode having an anode connected to the second battery terminal or the other end of the capacitor and a cathode connected to the other end of the first inductor.
 前記LEDドライバ回路において、
 前記第3の整流素子は、アノードが前記コンデンサの他端に接続され、カソードが前記第2のバッテリ端子に接続されたダイオードであることを特徴とする。
In the LED driver circuit,
The third rectifying element is a diode having an anode connected to the other end of the capacitor and a cathode connected to the second battery terminal.
 本発明の一態様に係るLED照明装置は、
 前記LEDドライバ回路と、
 前記LEDランプと、
 を備え、
 前記LEDランプは、
 直列に接続された複数のLED素子と、
 前記複数のLED素子のいずれかと並列に接続されたスイッチ回路と、
 を含み、
 前記スイッチ回路のオン/オフにより、点灯するLED素子の数が切り換えられることを特徴とする。
An LED lighting device according to an aspect of the present invention is provided.
The LED driver circuit;
The LED lamp;
With
The LED lamp is
A plurality of LED elements connected in series;
A switch circuit connected in parallel with any of the plurality of LED elements;
Including
The number of LED elements to be lit is switched by turning on / off the switch circuit.
 本発明の一態様に係るLEDドライバ回路の制御部は、負荷が急減することで第2のインダクタに流れる電流が規定の電流値を上回った場合、スイッチング素子M1をオフする。このとき、第2の整流素子により、出力電流が第1のインダクタL1を通ってコンデンサに戻ることが阻止(ブロック)される。これにより、スイッチング素子M1がオフの状態でコンデンサから放電する経路がないため、負荷急減時の出力電流の増加を抑制し、負荷に過電流が流れることを防止できる。 The control unit of the LED driver circuit according to one aspect of the present invention turns off the switching element M1 when the current flowing through the second inductor exceeds a specified current value due to a sudden decrease in the load. At this time, the second rectifying element prevents (blocks) the output current from returning to the capacitor through the first inductor L1. Thereby, since there is no path for discharging from the capacitor when the switching element M1 is off, an increase in the output current when the load is suddenly reduced can be suppressed, and an overcurrent can be prevented from flowing through the load.
 また、このとき、第3の整流素子により、第1のインダクタを流れる電流は入力側又は出力側に逃がされる。これにより、第1のインダクタに過電圧(サージ電圧)が発生することを防止できる。 At this time, the current flowing through the first inductor is released to the input side or the output side by the third rectifier element. Thereby, it is possible to prevent an overvoltage (surge voltage) from being generated in the first inductor.
図1は、第1の実施形態に係るLED照明装置100の構成の一例を示す図である。FIG. 1 is a diagram illustrating an example of the configuration of the LED lighting device 100 according to the first embodiment. 図2は、図1に示すLEDドライバ回路102のスイッチング素子M1がオンしている場合における、電流経路の一例を示す図である。FIG. 2 is a diagram illustrating an example of a current path when the switching element M1 of the LED driver circuit 102 illustrated in FIG. 1 is turned on. 図3は、図1に示すLEDドライバ回路102のスイッチング素子M1がオフしている場合における、電流経路の一例を示す図である。FIG. 3 is a diagram illustrating an example of a current path when the switching element M1 of the LED driver circuit 102 illustrated in FIG. 1 is turned off. 図4は、LEDドライバ回路102に流れる電流波形の一例を示す図である。FIG. 4 is a diagram illustrating an example of a current waveform flowing in the LED driver circuit 102. 図5は、図1に示すLED照明装置100で負荷急減時の電流経路の一例を示す図である。FIG. 5 is a diagram illustrating an example of a current path when the load is suddenly decreased in the LED lighting device 100 illustrated in FIG. 1. 図6は、LED素子101aの直列数が急減した前後の、LED素子101aに流れる電流波形の一例を示す図である。FIG. 6 is a diagram illustrating an example of a waveform of a current flowing through the LED element 101a before and after the series number of the LED elements 101a rapidly decreases. 図7は、第2の実施形態に係るLED照明装置100bの構成の一例を示す図である。FIG. 7 is a diagram illustrating an example of the configuration of the LED lighting device 100b according to the second embodiment. 図8は、図7に示すLED照明装置100bで負荷急減時の電流経路の一例を示す図である。FIG. 8 is a diagram illustrating an example of a current path when the load suddenly decreases in the LED lighting device 100b illustrated in FIG. 図9は、第3の実施形態に係るLED照明装置100cの構成の一例を示す図である。FIG. 9 is a diagram illustrating an example of the configuration of the LED lighting device 100c according to the third embodiment. 図10は、図9に示すLEDドライバ回路102cのスイッチング素子M1がオンしている場合における、電流経路の一例を示す図である。FIG. 10 is a diagram illustrating an example of a current path when the switching element M1 of the LED driver circuit 102c illustrated in FIG. 9 is turned on. 図11は、図9に示すLEDドライバ回路102cのスイッチング素子M1がオフしている場合における、電流経路の一例を示す図である。FIG. 11 is a diagram illustrating an example of a current path when the switching element M1 of the LED driver circuit 102c illustrated in FIG. 9 is off. 図12は、LEDドライバ回路102cに流れる電流波形の一例を示す図である。FIG. 12 is a diagram illustrating an example of a current waveform flowing through the LED driver circuit 102c. 図13は、図9に示すLED照明装置100cで負荷急減時の電流経路の一例を示す図である。FIG. 13 is a diagram illustrating an example of a current path when the load suddenly decreases in the LED lighting device 100c illustrated in FIG. 図14は、第4の実施形態に係るLED照明装置100dの構成の一例を示す図である。FIG. 14 is a diagram illustrating an example of a configuration of an LED illumination device 100d according to the fourth embodiment. 図15は、図14に示すLED照明装置100dで負荷急減時の電流経路の一例を示す図である。FIG. 15 is a diagram illustrating an example of a current path when the load suddenly decreases in the LED lighting device 100d illustrated in FIG. 図16は、第1の比較例のLED照明装置100Aの構成の一例を示す図である。FIG. 16 is a diagram illustrating an example of the configuration of the LED lighting apparatus 100A of the first comparative example. 図17は、第2の比較例のLED照明装置100Bの構成の一例を示す図である。FIG. 17 is a diagram illustrating an example of the configuration of the LED lighting device 100B of the second comparative example.
 以下、本発明に係る実施形態について図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(第1の実施形態)
 図1に示すように、第1の実施形態に係るLED照明装置100は、直列に接続された複数のLED素子101aを有するLEDランプ101と、このLEDランプ101を駆動するLEDドライバ回路102と、を備える。なお、この図1においては、後述するバッテリ(直流電源)BATは図示されていない。
(First embodiment)
As shown in FIG. 1, the LED lighting device 100 according to the first embodiment includes an LED lamp 101 having a plurality of LED elements 101a connected in series, an LED driver circuit 102 for driving the LED lamp 101, Is provided. In FIG. 1, a battery (DC power supply) BAT, which will be described later, is not shown.
 LEDランプ101は、直列に接続された複数のLED素子101aと、この複数のLED素子101aの何れかと並列に接続されたスイッチ回路SWと、を含む。 The LED lamp 101 includes a plurality of LED elements 101a connected in series and a switch circuit SW connected in parallel with any of the plurality of LED elements 101a.
 スイッチ回路SWのオン/オフにより、点灯するLED素子101aの数が切り換えられる。また、スイッチ回路SWは、ユーザによりオン/オフが切り替え可能になっている。 The number of LED elements 101a to be lit is switched by turning on / off the switch circuit SW. The switch circuit SW can be switched on / off by the user.
 このLEDランプ101は、例えば、2輪車のヘッドランプである。スイッチ回路SWが並列に接続されていないLED素子101aは、例えば、LowビームのLED素子である。また、スイッチ回路SWに並列に接続されたLED素子101aは、例えば、HiビームのLED素子である。 The LED lamp 101 is, for example, a two-wheeled vehicle headlamp. The LED element 101a to which the switch circuit SW is not connected in parallel is, for example, a Low beam LED element. The LED element 101a connected in parallel to the switch circuit SW is, for example, a Hi beam LED element.
 そして、スイッチ回路SWがユーザによりオフに制御されることにより、すべてのLED素子101aに電流が流れる状態になる。 Then, when the switch circuit SW is controlled to be turned off by the user, a current flows through all the LED elements 101a.
 一方、スイッチ回路SWがユーザによりオンに制御されることにより、スイッチ回路SWに並列に接続されたLED素子101aは、電流が流れない状態になる。 On the other hand, when the switch circuit SW is turned on by the user, the LED element 101a connected in parallel to the switch circuit SW is in a state where no current flows.
 このように、スイッチ回路SWのオン/オフにより、点灯するLED素子101aの数が切り換えられる。 Thus, the number of LED elements 101a to be lit is switched by turning on / off the switch circuit SW.
 このように点灯するLED素子101aの数が切り換えられることにより、LEDランプ101の負荷が変化することになる。 The load of the LED lamp 101 changes by switching the number of the LED elements 101a that are lit in this way.
 また、LEDドライバ回路102は、LEDランプ101に電流を供給して、LEDランプ101を駆動する。 Also, the LED driver circuit 102 supplies current to the LED lamp 101 to drive the LED lamp 101.
 このLEDドライバ回路102は、図1に示すように、例えば、第1のバッテリ端子Txと、第2のバッテリ端子(接地端子)Tyと、出力端子Tzと、スイッチング素子M1と、第1のインダクタL1と、コンデンサC1と、第2のインダクタL2と、第1の整流素子D1と、第2の整流素子D2と、第3の整流素子D3と、第1の検出用抵抗R1と、第2の検出用抵抗R2と、制御部103と、端子T1~T6と、を備える。 As shown in FIG. 1, the LED driver circuit 102 includes, for example, a first battery terminal Tx, a second battery terminal (ground terminal) Ty, an output terminal Tz, a switching element M1, and a first inductor. L1, capacitor C1, second inductor L2, first rectifier element D1, second rectifier element D2, third rectifier element D3, first detection resistor R1, and second A detection resistor R2, a control unit 103, and terminals T1 to T6 are provided.
 第1のバッテリ端子Txは、バッテリBATの正極TBaに接続されるようになっている。 The first battery terminal Tx is connected to the positive electrode TBa of the battery BAT.
 第2のバッテリ端子Tyは、バッテリBATの負極TBbに接続され且つLEDランプ101の一端(カソード側)22に接続されるようになっている。 The second battery terminal Ty is connected to the negative electrode TBb of the battery BAT and to one end (cathode side) 22 of the LED lamp 101.
 出力端子Tzは、LEDランプ101の他端(アノード側)21に接続されるようになっている。 The output terminal Tz is connected to the other end (anode side) 21 of the LED lamp 101.
 スイッチング素子M1は、一端(ドレイン)が第1のバッテリ端子Txに接続され、他端(ソース)が、第2の検出用抵抗R2を介して、第2の整流素子D2の一端(アノード)に接続されている。このスイッチ素子M1は、制御部103の端子T1から出力される信号により、オン/オフが制御される。 The switching element M1 has one end (drain) connected to the first battery terminal Tx and the other end (source) connected to one end (anode) of the second rectifying element D2 via the second detection resistor R2. It is connected. The switch element M1 is controlled to be turned on / off by a signal output from the terminal T1 of the control unit 103.
 このスイッチング素子M1は、例えば、図1に示すように、MOSトランジスタである。この場合、制御部103の端子T1から出力される信号は、MOSトランジスタのゲートに供給される。 The switching element M1 is, for example, a MOS transistor as shown in FIG. In this case, the signal output from the terminal T1 of the control unit 103 is supplied to the gate of the MOS transistor.
 なお、このスイッチング素子M1は、バイポーラトランジスタであってもよい。 Note that the switching element M1 may be a bipolar transistor.
 また、第1のインダクタL1は、一端が第2のバッテリ端子Tyに接続され、他端が第2の整流素子D2の他端(カソード)に接続されている。 The first inductor L1 has one end connected to the second battery terminal Ty and the other end connected to the other end (cathode) of the second rectifier element D2.
 コンデンサC1は、一端が第2の検出用抵抗R2を介して、スイッチング素子M1の他端に接続されている。 The capacitor C1 has one end connected to the other end of the switching element M1 via the second detection resistor R2.
 第2のインダクタL2は、一端が、第1の検出用抵抗R1を介して、コンデンサC1の他端に接続され、他端が出力端子Tzに接続されている。 The second inductor L2 has one end connected to the other end of the capacitor C1 through the first detection resistor R1, and the other end connected to the output terminal Tz.
 第1の整流素子D1は、一端が第2のバッテリ端子Tyに接続され且つ他端がコンデンサC1の他端に接続されている。この第1の整流素子D1は、第2のバッテリ端子TyからコンデンサC1の他端に向かう方向が順方向となる。 The first rectifying element D1 has one end connected to the second battery terminal Ty and the other end connected to the other end of the capacitor C1. In the first rectifying element D1, the direction from the second battery terminal Ty toward the other end of the capacitor C1 is the forward direction.
 そして、第1の整流素子D1は、例えば、図1に示すように、アノードが第2のバッテリ端子Tyに接続され、カソードがコンデンサC1の他端に接続されたダイオードである。 The first rectifying element D1 is, for example, a diode having an anode connected to the second battery terminal Ty and a cathode connected to the other end of the capacitor C1, as shown in FIG.
 なお、第1の整流素子D1は、例えば、スイッチング素子であってもよい。すなわち、第1の整流素子D1には、ダイオードだけでなくスイッチング素子も含まれる。 Note that the first rectifying element D1 may be, for example, a switching element. That is, the first rectifying element D1 includes not only a diode but also a switching element.
 第2の整流素子D2は、一端が第2の検出用抵抗R2を介してスイッチング素子M1の他端に接続され且つ他端が第1のインダクタL1の他端に接続されている。この第2の整流素子D2は、スイッチング素子M1の他端から第1のインダクタL1の他端に向かう方向が順方向となる。 The second rectifier element D2 has one end connected to the other end of the switching element M1 via the second detection resistor R2 and the other end connected to the other end of the first inductor L1. In the second rectifying element D2, the direction from the other end of the switching element M1 to the other end of the first inductor L1 is a forward direction.
 そして、第2の整流素子D2は、例えば、図1に示すように、アノードが第2の検出用抵抗R2を介してスイッチング素子M1の他端に接続され、カソードが第1のインダクタL1の他端に接続されたダイオードである。 For example, as shown in FIG. 1, the second rectifying element D2 has an anode connected to the other end of the switching element M1 via a second detection resistor R2, and a cathode other than the first inductor L1. It is a diode connected to the end.
 なお、第2の整流素子D2は、例えば、スイッチング素子であってもよい。すなわち、第2の整流素子D2には、ダイオードだけでなくスイッチング素子も含まれる。 Note that the second rectifying element D2 may be a switching element, for example. That is, the second rectifying element D2 includes not only a diode but also a switching element.
 第3の整流素子D3は、一端が第1のインダクタL1の他端に接続され且つ他端がコンデンサC1の他端に接続されている。この第3の整流素子D3は、第1のインダクタL1の他端からコンデンサC1の他端に向かう方向が順方向となる。 The third rectifying element D3 has one end connected to the other end of the first inductor L1 and the other end connected to the other end of the capacitor C1. In the third rectifying element D3, the direction from the other end of the first inductor L1 toward the other end of the capacitor C1 is a forward direction.
 そして、第3の整流素子D3は、例えば、図1に示すように、アノードが第1のインダクタL1の他端に接続され、カソードがコンデンサC1の他端に接続されたダイオードである。 The third rectifying element D3 is, for example, a diode having an anode connected to the other end of the first inductor L1 and a cathode connected to the other end of the capacitor C1, as shown in FIG.
 なお、第3の整流素子D3は、例えば、スイッチング素子であってもよい。すなわち、第3の整流素子D3には、ダイオードだけでなくスイッチング素子も含まれる。 Note that the third rectifying element D3 may be, for example, a switching element. That is, the third rectifying element D3 includes not only a diode but also a switching element.
 また、第1の検出用抵抗R1は、コンデンサC1の他端と出力端子Tzとの間で、第2のインダクタL2と直列に接続されている。 The first detection resistor R1 is connected in series with the second inductor L2 between the other end of the capacitor C1 and the output terminal Tz.
 第2の検出用抵抗R2は、スイッチング素子M1の他端と第1のインダクタL1の他端との間に接続されている。 The second detection resistor R2 is connected between the other end of the switching element M1 and the other end of the first inductor L1.
 制御部103は、第2のインダクタL2に流れる電流(以下、第1の電流という)に基づいて、スイッチング素子M1をオン/オフ制御する。なお、制御部103は、例えば、図1に示すように、第1の検出用抵抗R1に流れる電流を検出することにより、第1の電流の値を取得する。 The control unit 103 performs on / off control of the switching element M1 based on a current flowing through the second inductor L2 (hereinafter referred to as a first current). For example, as illustrated in FIG. 1, the control unit 103 acquires the value of the first current by detecting the current flowing through the first detection resistor R1.
 例えば、制御部103は、第1の電流が増加して第1の閾値(UPPER LIMIT)になるまで、スイッチング素子M1をオンする。 For example, the control unit 103 turns on the switching element M1 until the first current increases to the first threshold (UPPER LIMIT).
 そして、制御部103は、第1の電流が増加して第1の閾値(UPPER LIMIT)になったとき、スイッチング素子M1をオフする。 And the control part 103 turns off the switching element M1, when a 1st electric current increases and it becomes a 1st threshold value (UPPER LIMIT).
 そして、制御部103は、第1の電流が減少して第1の閾値(UPPER LIMIT)よりも小さい第2の閾値(LOWER LIMIT)になるまで、スイッチング素子M1をオフする。 Then, the control unit 103 turns off the switching element M1 until the first current decreases and becomes a second threshold value (LOWER LIMIT) smaller than the first threshold value (UPPER LIMIT).
 そして、制御部103は、第1の電流が減少して第2の閾値(LOWER LIMIT)になったとき、スイッチング素子M1をオンする。 Then, the control unit 103 turns on the switching element M1 when the first current decreases and becomes the second threshold (LOWER LIMIT).
 このような制御部103の制御により、第2のインダクタL2に流れる第1の電流が第1の閾値(UPPER LIMIT)と第2の閾値(LOWER LIMIT)との間で遷移するように制御される。すなわち、出力端子TzからLEDランプ101に供給される出力電流が所定範囲内に制御される。 By such control of the control unit 103, the first current flowing through the second inductor L2 is controlled to transition between the first threshold value (UPPER LIMIT) and the second threshold value (LOWER LIMIT). . That is, the output current supplied from the output terminal Tz to the LED lamp 101 is controlled within a predetermined range.
 一方、制御部103は、第2のインダクタL2に流れる電流が規定の電流値を上回った場合、スイッチング素子M1をオフする。ここで、規定の電流値は、第1の閾値よりも大きい。 On the other hand, when the current flowing through the second inductor L2 exceeds a specified current value, the control unit 103 turns off the switching element M1. Here, the specified current value is larger than the first threshold value.
 これにより、LEDランプ101内のLED素子101aの直列数(点灯数)が減るなどして負荷が急減に低下した結果、第2のインダクタL2に流れる電流が規定の電流を上回った場合、スイッチング素子M1がオフする。このようにスイッチング素子M1がオフしたときに、第2の整流素子D2により出力電流が第1のインダクタL1を通ってコンデンサC1に戻ることが阻止(ブロック)されることによって、第1のインダクタL1を通ってコンデンサを放電する経路が遮断される。その結果、コンデンサC1からLEDランプ101に電流が流入しないようにすることができるので、LEDランプ101に過電流が流れることを防止することができる。 As a result, when the number of LED elements 101a in the LED lamp 101 in series (the number of lighting) decreases, the load rapidly decreases, and as a result, when the current flowing through the second inductor L2 exceeds the specified current, the switching element M1 turns off. Thus, when the switching element M1 is turned off, the output current is prevented (blocked) from returning to the capacitor C1 through the first inductor L1 by the second rectifying element D2, and thereby the first inductor L1. The path through which the capacitor is discharged is blocked. As a result, it is possible to prevent current from flowing from the capacitor C1 to the LED lamp 101, and thus it is possible to prevent an overcurrent from flowing to the LED lamp 101.
 また、制御部103は、第2の検出用抵抗R2に流れる電流を検出することにより、スイッチング素子M1に流れる第2の電流の値を取得する。そして、制御部103は、スイッチング素子M1に流れる第2の電流が第1の閾値(UPPER LIMIT)よりも大きい第3の閾値以上になった場合には、スイッチング素子M1を強制的にオフする。 Also, the control unit 103 acquires the value of the second current flowing through the switching element M1 by detecting the current flowing through the second detection resistor R2. The control unit 103 forcibly turns off the switching element M1 when the second current flowing through the switching element M1 becomes equal to or greater than a third threshold value that is larger than the first threshold value (UPPER LIMIT).
 これにより、過電流によるスイッチング素子M1等の素子の破壊を抑制することができる。 Thereby, destruction of elements such as the switching element M1 due to overcurrent can be suppressed.
 なお、制御部103は、端子T6、第1のバッテリ端子Txを介して、バッテリBATの正極TBaに接続されている。この制御部103は、端子T6及び第1のバッテリ端子Txを介して、バッテリBATの電圧Vccが供給されるようになっている。 The control unit 103 is connected to the positive electrode TBa of the battery BAT via the terminal T6 and the first battery terminal Tx. The control unit 103 is supplied with the voltage Vcc of the battery BAT via the terminal T6 and the first battery terminal Tx.
 このような制御部103は、例えば、図1に示すように、出力電流検出部103aと、入力過電流検出部103bと、スイッチ制御部103cと、ドライバ103dと、を備える。 For example, as shown in FIG. 1, the control unit 103 includes an output current detection unit 103a, an input overcurrent detection unit 103b, a switch control unit 103c, and a driver 103d.
 出力電流検出部103aは、端子T2、T3を介して、第1の検出用抵抗R1に接続されている。この出力電流検出部103aは、第1の検出用抵抗R1に流れる電流を検出する。 The output current detection unit 103a is connected to the first detection resistor R1 via terminals T2 and T3. The output current detector 103a detects the current flowing through the first detection resistor R1.
 入力過電流検出部103bは、端子T4を介して第2の検出用抵抗R2の一端に接続されており、端子T5を介して第2の検出用抵抗R2の他端に接続されている。この入力過電流検出部103bは、第2の検出用抵抗R2に流れる電流を検出する。なお、第2の検出抵抗R2の他端は、端子T5を介して、制御部103の基準電位に接続されている。また、本実施形態では、この基準電位については、接地端子からフローティングされた構成としている。 The input overcurrent detection unit 103b is connected to one end of the second detection resistor R2 through the terminal T4, and is connected to the other end of the second detection resistor R2 through the terminal T5. The input overcurrent detection unit 103b detects a current flowing through the second detection resistor R2. The other end of the second detection resistor R2 is connected to the reference potential of the control unit 103 via the terminal T5. In this embodiment, the reference potential is floating from the ground terminal.
 例えば、本実施形態のように、スイッチング素子M1がn-ch MOSトランジスタの場合、ソース電位が接地電位からフローティングした電位となる為、制御部103の基準電位を接地電位とすると、ハイサイドドライバが必要になる。しかし、制御部103の基準電位を接地からフローティングされた構成にすることにより、このハイサイドドライバが不要になる。 For example, as in this embodiment, when the switching element M1 is an n-ch MOS transistor, the source potential is a floating potential from the ground potential. Therefore, if the reference potential of the control unit 103 is the ground potential, the high side driver is I need it. However, the high-side driver is not required by adopting a configuration in which the reference potential of the control unit 103 is floated from the ground.
 スイッチ制御部103cは、入力過電流検出部103bが検出した電流、及び出力電流検出部103aが検出した電流に基づいて、制御信号を出力する。 The switch control unit 103c outputs a control signal based on the current detected by the input overcurrent detection unit 103b and the current detected by the output current detection unit 103a.
 例えば、スイッチ制御部103cは、第1の電流が増加して第1の閾値(UPPER LIMIT)になるまで、スイッチング素子M1をオンするための制御信号を出力する。 For example, the switch control unit 103c outputs a control signal for turning on the switching element M1 until the first current increases to reach the first threshold (UPPER LIMIT).
 そして、スイッチ制御部103cは、第1の電流が増加して第1の閾値(UPPER LIMIT)になったとき、スイッチング素子M1をオフするための制御信号を出力する。 The switch control unit 103c outputs a control signal for turning off the switching element M1 when the first current increases and reaches the first threshold (UPPER LIMIT).
 そして、スイッチ制御部103cは、第1の電流が減少して第1の閾値(UPPER LIMIT)よりも小さい第2の閾値(LOWER LIMIT)になるまで、スイッチング素子M1をオフするための制御信号を出力する。 Then, the switch control unit 103c outputs a control signal for turning off the switching element M1 until the first current decreases and becomes a second threshold (LOWER LIMIT) smaller than the first threshold (UPPER LIMIT). Output.
 そして、スイッチ制御部103cは、第1の電流が減少して第2の閾値(LOWER LIMIT)になったとき、スイッチング素子M1をオンするための制御信号を出力する。 The switch control unit 103c outputs a control signal for turning on the switching element M1 when the first current decreases and reaches the second threshold (LOWER LIMIT).
 このようなスイッチ制御部103cの制御により、第2のインダクタL2に流れる第1の電流が第1の閾値(UPPER LIMIT)と第2の閾値(LOWER LIMIT)との間で遷移するように制御される。すなわち、出力端子TzからLEDランプ101に供給される出力電流が所定範囲内に制御される。 By such control of the switch control unit 103c, the first current flowing through the second inductor L2 is controlled to transition between the first threshold (UPPER LIMIT) and the second threshold (LOWER LIMIT). The That is, the output current supplied from the output terminal Tz to the LED lamp 101 is controlled within a predetermined range.
 一方、スイッチ制御部103cは、第1の電流が規定の電流値を上回った場合、スイッチング素子M1をオフするための制御信号を出力する。このようなスイッチ制御部103cの制御により、コンデンサC1からLEDランプ101に電流が流入しないようにすることができるので、LEDランプに過電流が流れることを防止することができる。 On the other hand, when the first current exceeds a predetermined current value, the switch control unit 103c outputs a control signal for turning off the switching element M1. By controlling the switch control unit 103c as described above, it is possible to prevent current from flowing from the capacitor C1 to the LED lamp 101, and thus it is possible to prevent overcurrent from flowing to the LED lamp.
 また、スイッチ制御部103cは、第2の電流が第1の閾値(UPPER LIMIT)よりも大きい第3の閾値以上になった場合には、スイッチング素子M1を強制的にオフする制御信号を出力する。 In addition, the switch control unit 103c outputs a control signal for forcibly turning off the switching element M1 when the second current is equal to or greater than a third threshold value that is greater than the first threshold value (UPPER LIMIT). .
 これにより、過電流によるスイッチング素子M1等の素子の破壊を抑制することができる。 Thereby, destruction of elements such as the switching element M1 due to overcurrent can be suppressed.
 また、ドライバ103dは、スイッチ制御部103cが出力した制御信号を所定の電圧に増幅して出力する。 Further, the driver 103d amplifies the control signal output from the switch control unit 103c to a predetermined voltage and outputs it.
 ここで、LEDドライバ回路102は、第2のインダクタL2の他端と接地との間には、出力コンデンサが設けられていない。 Here, in the LED driver circuit 102, an output capacitor is not provided between the other end of the second inductor L2 and the ground.
 そして、LEDドライバ回路102は、第2のバッテリ端子(接地端子)Tyと出力端子Tzとの間に、直列接続された第1の整流素子D1と第2のインダクタL2が設けられた構成を有する。このため、LEDドライバ回路102は、後述のように、出力コンデンサが設けられていなくとも、連続的な電流を出力することができる。 The LED driver circuit 102 has a configuration in which a first rectifier element D1 and a second inductor L2 connected in series are provided between the second battery terminal (ground terminal) Ty and the output terminal Tz. . For this reason, the LED driver circuit 102 can output a continuous current even if an output capacitor is not provided, as will be described later.
 そして、LEDドライバ回路102は、出力コンデンサを有しないことで、より高速の応答が可能であり、例えばLEDランプ101内のLED素子の直列数(点灯数)が変化した場合(負荷が急変した場合)であっても、負荷急変による影響を受け難く、出力電流を一定に供給することができる。 The LED driver circuit 102 does not have an output capacitor, so that a faster response is possible. For example, when the number of LED elements in the LED lamp 101 (the number of lighting) changes (when the load changes suddenly) ), It is difficult to be affected by a sudden load change, and the output current can be supplied constant.
 (通常時の制御方法について)
 次に、以上のような構成を有するLEDドライバ回路102の通常時の制御方法の一例について説明する。
(Regarding the normal control method)
Next, an example of a normal control method for the LED driver circuit 102 having the above configuration will be described.
 既述のように、制御部103は、第2のインダクタL2に流れる第1の電流に基づいて、スイッチング素子M1をオン/オフ制御する。 As described above, the control unit 103 performs on / off control of the switching element M1 based on the first current flowing through the second inductor L2.
 例えば、制御部103は、第1の電流(第2のインダクタL2に流れる電流I(L2)が増加して第1の閾値(UPPER LIMIT)になるまで(例えば、図4の時刻t0~t1、時刻t2~t3)、スイッチング素子M1をオンする。 For example, the control unit 103 increases the first current (the current I (L2) flowing through the second inductor L2) to the first threshold (UPPER LIMIT) (for example, from time t0 to t1 in FIG. At time t2 to t3), the switching element M1 is turned on.
 これにより、スイッチング素子M1に電流I(M1)が流れる(図4)。また、電流I(M1)は、第2の検出用抵抗R2に流れる電流と等しい。この電流I(M1)は、第1の検出用抵抗R1に流れる第1の電流I1a(第2のインダクタL2に流れる電流I(L2))と、第2の電流I2a(第1のインダクタL1に流れる電流I(L1))との和になる(図2、図4)。 Thereby, a current I (M1) flows through the switching element M1 (FIG. 4). The current I (M1) is equal to the current flowing through the second detection resistor R2. The current I (M1) includes a first current I1a flowing through the first detection resistor R1 (current I (L2) flowing through the second inductor L2) and a second current I2a (passing through the first inductor L1). And the sum of the flowing current I (L1)) (FIGS. 2 and 4).
 第2のインダクタL2に流れる電流I(L2)は、出力電流として、LEDランプ101に供給される。これにより、LEDランプ101が点灯する。 The current I (L2) flowing through the second inductor L2 is supplied to the LED lamp 101 as an output current. As a result, the LED lamp 101 is turned on.
 このとき、コンデンサC1が放電される。 At this time, the capacitor C1 is discharged.
 そして、制御部103は、第1の電流I1a(第2のインダクタL2に流れる電流I(L2))が増加して第1の閾値(UPPER LIMIT)になったとき(例えば、図4の時刻t1、時刻t3)、スイッチング素子M1をオフする。 Then, the control unit 103 increases the first current I1a (current I (L2) flowing through the second inductor L2) to the first threshold (UPPER LIMIT) (for example, time t1 in FIG. 4). , Time t3), the switching element M1 is turned off.
 これにより、スイッチング素子M1の電流I(M1)が、すなわち第2の検出用抵抗R2の電流が、遮断される(図3)。 Thereby, the current I (M1) of the switching element M1, that is, the current of the second detection resistor R2 is cut off (FIG. 3).
 そして、制御部103は、第1の検出用抵抗R1に流れる第1の電流I1b(第2のインダクタL2に流れる電流I(L2))が減少して第1の閾値(UPPER LIMIT)よりも小さい第2の閾値(LOWER LIMIT)になるまで(例えば、図4の時刻t1~t2)、スイッチング素子M1をオフする。 Then, the control unit 103 reduces the first current I1b flowing through the first detection resistor R1 (current I (L2) flowing through the second inductor L2) to be smaller than the first threshold (UPPER LIMIT). The switching element M1 is turned off until the second threshold (LOWER LIMIT) is reached (for example, time t1 to t2 in FIG. 4).
 このとき、図3に示すように第1の検出用抵抗R1に流れる第1の電流I1b(第2のインダクタL2に流れる電流I(L2))は、出力端子Tz、LEDランプ101、第2のバッテリ端子Ty、整流素子D1を順に流れる(図3)。 At this time, as shown in FIG. 3, the first current I1b flowing through the first detection resistor R1 (current I (L2) flowing through the second inductor L2) is the output terminal Tz, the LED lamp 101, the second It flows through the battery terminal Ty and the rectifying element D1 in order (FIG. 3).
 さらに、第1のインダクタL1に流れる電流I(L1)は、整流素子D1、コンデンサC1を順に流れる(図3)。 Furthermore, the current I (L1) flowing through the first inductor L1 flows through the rectifier element D1 and the capacitor C1 in order (FIG. 3).
 したがって、整流素子D1に流れる電流I(D1)は、電流I(L1)と電流I(L2)との和になる(図3、図4)。 Therefore, the current I (D1) flowing through the rectifying element D1 is the sum of the current I (L1) and the current I (L2) (FIGS. 3 and 4).
 そして、制御部103は、第1の検出用抵抗R1に流れる第1の電流I1b(第2のインダクタL2に流れる電流I(L2))が減少して第2の閾値(LOWER LIMIT)になったとき(例えば、図4の時刻t2)、スイッチング素子M1をオンする。 Then, the control unit 103 decreases the first current I1b flowing through the first detection resistor R1 (current I (L2) flowing through the second inductor L2) to the second threshold (LOWER LIMIT). When (for example, time t2 in FIG. 4), the switching element M1 is turned on.
 以降、同様の動作が繰り返される。 Thereafter, the same operation is repeated.
 以上のLEDドライバ回路102の動作により、第2のインダクタL2に流れる電流I(L2)が第1の閾値(UPPER LIMIT)と第2の閾値(LOWER LIMIT)との間で遷移するように制御される。 By the operation of the LED driver circuit 102 described above, the current I (L2) flowing through the second inductor L2 is controlled to transition between the first threshold (UPPER LIMIT) and the second threshold (LOWER LIMIT). The
 すなわち、出力端子TzからLEDランプ101に供給される出力電流が所定範囲内に制御される。 That is, the output current supplied from the output terminal Tz to the LED lamp 101 is controlled within a predetermined range.
 そして、既述のように、LEDドライバ回路102は、第2のバッテリ端子(接地端子)Tyと出力端子Tzとの間に、直列に接続された第1の整流素子D1とインダクタ(第2のインダクタL2)が設けられた構成を有するため、出力コンデンサが設けられていなくとも、連続的な電流を出力することができる(図2~図4)。 As described above, the LED driver circuit 102 includes the first rectifier element D1 and the inductor (second circuit) connected in series between the second battery terminal (ground terminal) Ty and the output terminal Tz. Since the inductor L2) is provided, a continuous current can be output without an output capacitor (FIGS. 2 to 4).
 そして、LEDドライバ回路102は、出力コンデンサを有しないことで、より高速の応答が可能であり、例えばLEDランプ101内のLED素子101aの直列数(点灯数)が変化した場合(負荷が急変した場合)であっても、負荷急変による影響を受け難く、出力電流を一定に供給することができる(図4)。 The LED driver circuit 102 can respond faster by not having an output capacitor. For example, when the number of LED elements 101a in the LED lamp 101 (the number of lighting) changes (the load changes suddenly). ), It is difficult to be affected by a sudden load change, and the output current can be supplied constant (FIG. 4).
 すなわち、本実施形態に係るLED照明装置100によれば、負荷急変による影響を受け難く、出力電流を一定に供給することができる。 That is, according to the LED lighting device 100 according to the present embodiment, it is difficult to be affected by a sudden load change, and an output current can be supplied constantly.
 (負荷急落時の電流経路について)
 続いて、LEDドライバ回路102の負荷急落時の電流経路について説明する。既述のように、制御部103は、第2のインダクタL2に流れる電流(第1の電流)が規定の電流値を上回った場合、スイッチング素子M1をオフする。このとき、図5に示すように、第2の整流素子D2により、出力電流が第1のインダクタL1を通ってコンデンサC1に戻ることが阻止(ブロック)される。これにより、スイッチング素子M1がオフの状態でコンデンサC1から放電する経路がないため、LED素子101aの直列数が急減した場合における出力電流の増加(過電流)を防止できる。
(About the current path at the time of sudden load drop)
Next, a current path when the load of the LED driver circuit 102 suddenly drops will be described. As described above, the control unit 103 turns off the switching element M1 when the current flowing through the second inductor L2 (first current) exceeds a specified current value. At this time, as shown in FIG. 5, the second rectifying element D2 prevents (blocks) the output current from returning to the capacitor C1 through the first inductor L1. As a result, there is no path for discharging from the capacitor C1 when the switching element M1 is in an off state, so that it is possible to prevent an increase in output current (overcurrent) when the number of LED elements 101a is rapidly reduced.
 一方、図16の第1の比較例に係るLEDドライバ回路100Aに対して、第2の整流素子D2を追加するだけでは、第1のインダクタL1に電流が流れなくなるので、第1のインダクタL1に過電圧(サージ電圧)が発生する。そこで、本実施形態に係るLEDドライバ回路102には、第1のインダクタL1を流れる電流を出力側に逃がすための第3の整流素子D3が設けられている。これにより、図5に示すように、電流I11が、第1のインダクタL1、第3の整流素子D3、第2のインダクタL2、LED素子101aの順に流れることにより、第1のインダクタL1に過電圧が発生することを防止することができる。 On the other hand, if only the second rectifier element D2 is added to the LED driver circuit 100A according to the first comparative example of FIG. 16, current does not flow to the first inductor L1, so that the first inductor L1 Overvoltage (surge voltage) occurs. Therefore, the LED driver circuit 102 according to the present embodiment is provided with a third rectifier element D3 for releasing the current flowing through the first inductor L1 to the output side. As a result, as shown in FIG. 5, the current I11 flows in the order of the first inductor L1, the third rectifier element D3, the second inductor L2, and the LED element 101a, so that an overvoltage is generated in the first inductor L1. Occurrence can be prevented.
 図6に示すように、LED素子101aの直列数が急減して出力電圧Voが急減した時(図6の時刻t4)の直後に、第1の比較例に係るLEDドライバ回路100AのLEDランプX101に流れる電流Ioが過大になる。(図6の領域A1)。それに対し、本実施形態では、第1の電流が、規定の電流を上回った場合、スイッチング素子M1がオフし、スイッチング素子M1がオフした後は、第1の電流が時間の経過とともに減少する。これは、LEDドライバ回路100内の出力電圧Voより高い電圧であるコンデンサC1の放電経路が第2の整流素子D2でブロックされているため、第2のインダクタL2のエネルギーがはき出されるだけであるからである。その後、第1の電流が第2の閾値(LOWER LIMIT)まで下落した場合、スイッチング素子M1がオンする。その後は、スイッチング素子M1のオフとオンが繰り返される。これにより、LED素子101aの直列数が急減して出力電圧Voが急減した時(図6の時刻t5)の直後に、LEDランプ101に流れる電流(以下、LED電流という)Ioは、ある一定の範囲に収まる(図6の領域A2)。すなわち、出力端子TzからLEDランプ101に供給される出力電流が所定範囲内に制御される。 As shown in FIG. 6, immediately after the number of LED elements 101a in series decreases rapidly and the output voltage Vo decreases rapidly (time t4 in FIG. 6), the LED lamp X101 of the LED driver circuit 100A according to the first comparative example. The current Io flowing through becomes excessive. (Area A1 in FIG. 6). On the other hand, in the present embodiment, when the first current exceeds the specified current, the switching element M1 is turned off, and after the switching element M1 is turned off, the first current decreases with time. This is because the discharge path of the capacitor C1, which is a voltage higher than the output voltage Vo in the LED driver circuit 100, is blocked by the second rectifier element D2, so that only the energy of the second inductor L2 is expelled. It is. After that, when the first current falls to the second threshold (LOWER LIMIT), the switching element M1 is turned on. Thereafter, the switching element M1 is repeatedly turned off and on. Thus, immediately after the number of LED elements 101a in series decreases rapidly and the output voltage Vo decreases rapidly (time t5 in FIG. 6), the current Io flowing through the LED lamp 101 (hereinafter referred to as LED current) Io is constant. It falls within the range (area A2 in FIG. 6). That is, the output current supplied from the output terminal Tz to the LED lamp 101 is controlled within a predetermined range.
 また、コンデンサC1に蓄えられた電荷は、スイッチング素子M1がオンのときに徐々に放電され(図6参照)、出力電圧Voに近い電圧まで放電される。このため、第1の比較例に係るLEDドライバ回路100AのコンデンサC101の電圧V(C101)と比べて、コンデンサC1の電圧V(C1)は、LED素子101aの直列数が急減した時から出力電圧Voに近い電圧まで放電されるまでの時間が長くなる。 Further, the electric charge stored in the capacitor C1 is gradually discharged when the switching element M1 is on (see FIG. 6), and is discharged to a voltage close to the output voltage Vo. For this reason, compared with the voltage V (C101) of the capacitor C101 of the LED driver circuit 100A according to the first comparative example, the voltage V (C1) of the capacitor C1 is the output voltage from the time when the number of LED elements 101a in series decreases rapidly. The time until discharging to a voltage close to Vo becomes longer.
 以上、本実施形態に係るLEDドライバ回路102によれば、LEDランプ101内のLED素子101aの直列数が減るなどして負荷が急減することで第2のインダクタL2に流れる電流が規定の電流値を上回った場合、制御部103は、スイッチング素子M1をオフする。このとき、第2の整流素子D2により、出力電流が第1のインダクタL1を通ってコンデンサC1に戻ることが阻止(ブロック)される。これにより、スイッチング素子M1がオフの状態でコンデンサC1から放電する経路がないため、負荷急減時の出力電流の増加を抑制し、負荷に過電流が流れることを防止できる。また、このとき、第3の整流素子D3により、第1のインダクタL1を流れる電流は出力側に逃がされる。これにより、第1のインダクタL1に過電圧(サージ電圧)が発生することを防止できる。 As described above, according to the LED driver circuit 102 according to the present embodiment, the current flowing through the second inductor L2 due to the sudden decrease in the load due to the reduction in the number of LED elements 101a in the LED lamp 101 is a predetermined current value. When the value exceeds the value, the control unit 103 turns off the switching element M1. At this time, the second rectifying element D2 prevents (blocks) the output current from returning to the capacitor C1 through the first inductor L1. Thereby, since there is no path for discharging from the capacitor C1 when the switching element M1 is OFF, an increase in output current at the time of sudden decrease in the load can be suppressed, and an overcurrent can be prevented from flowing through the load. At this time, the current flowing through the first inductor L1 is released to the output side by the third rectifying element D3. Thereby, it is possible to prevent an overvoltage (surge voltage) from being generated in the first inductor L1.
(第2の実施形態)
 続いて、第2の実施形態について説明する。図7に示すように、第2の実施形態におけるLED照明装置100bの構成は、第1の実施形態におけるLED照明装置100の構成に対して、LEDドライバ回路102がLEDドライバ回路102bに変更されたものになっている。第2の実施形態におけるLEDドライバ回路102bは、第1の実施形態におけるLEDドライバ回路102に比べて、第3の整流素子D3の接続態様が異なっている。すなわち、第3の整流素子D3は、一端が第1のインダクタL1の他端に接続され、他端がスイッチング素子M1の一端に接続されている。また、この第3の整流素子D3は、第1のインダクタL1の他端からスイッチング素子M1の一端に向かう方向が順方向となる。そして、図7に示すように、第3の整流素子D3は、例えば、アノードが第1のインダクタL1の他端に接続され、カソードがスイッチング素子M1の一端に接続されたダイオードである。
(Second Embodiment)
Next, the second embodiment will be described. As shown in FIG. 7, the configuration of the LED lighting device 100b in the second embodiment is changed from the LED driver circuit 102 to the LED driver circuit 102b with respect to the configuration of the LED lighting device 100 in the first embodiment. It is a thing. The LED driver circuit 102b in the second embodiment differs from the LED driver circuit 102 in the first embodiment in the connection mode of the third rectifier element D3. That is, the third rectifying element D3 has one end connected to the other end of the first inductor L1 and the other end connected to one end of the switching element M1. In the third rectifying element D3, the direction from the other end of the first inductor L1 toward one end of the switching element M1 is the forward direction. As shown in FIG. 7, the third rectifying element D3 is, for example, a diode having an anode connected to the other end of the first inductor L1 and a cathode connected to one end of the switching element M1.
 なお、第1の実施形態におけるLED照明装置100と共通する要素には同一の符号を付し、その具体的な説明を省略する。また、本実施形態の通常時の制御方法については、第1の実施形態の制御方法と同様であるので、その説明を省略する。 In addition, the same code | symbol is attached | subjected to the element which is common in the LED lighting apparatus 100 in 1st Embodiment, and the specific description is abbreviate | omitted. The normal control method of the present embodiment is the same as the control method of the first embodiment, and a description thereof will be omitted.
 (負荷急落時の電流経路について)
 次に、以上のような構成を有するLEDドライバ回路102bの負荷急落時の電流経路について説明する。本実施形態の制御部103は、第1の実施形態の制御部103と同様に、第2のインダクタL2に流れる電流(第1の電流)が規定の電流値を上回った場合、スイッチング素子M1をオフする。このとき、図8に示すように、第1の実施形態と同様に、第2の整流素子D2により、出力電流が第1のインダクタL1を通ってコンデンサC1に戻ることが阻止(ブロック)される。これにより、スイッチング素子M1がオフの状態でコンデンサC1から放電する経路がないため、LED素子101aの直列数が急減した場合における出力電流の増加(過電流)を防止できる。
(About the current path at the time of sudden load drop)
Next, a current path when the load of the LED driver circuit 102b having the above configuration is suddenly reduced will be described. Similar to the control unit 103 of the first embodiment, the control unit 103 of the present embodiment switches the switching element M1 when the current flowing through the second inductor L2 (first current) exceeds a specified current value. Turn off. At this time, as shown in FIG. 8, similarly to the first embodiment, the second rectifying element D2 prevents (blocks) the output current from returning to the capacitor C1 through the first inductor L1. . As a result, there is no path for discharging from the capacitor C1 when the switching element M1 is in an off state, so that it is possible to prevent an increase in output current (overcurrent) when the number of LED elements 101a is rapidly reduced.
 一方、図16の第1の比較例に係るLEDドライバ回路100Aに対して、第2の整流素子D2を追加するだけでは、第1のインダクタL1に電流が流れなくなるので、第1のインダクタL1に過電圧(サージ電圧)が発生する。そこで、本実施形態に係るLEDドライバ回路102bには、第1のインダクタL1を流れる電流を入力側に逃がすための第3の整流素子D3が設けられている。これにより、図8に示すように、電流I12が、第1のインダクタL1、第3の整流素子D3、バッテリBATの順に流れることにより、第1のインダクタL1に過電圧が発生することを防止することができる。 On the other hand, if only the second rectifier element D2 is added to the LED driver circuit 100A according to the first comparative example of FIG. 16, current does not flow to the first inductor L1, so that the first inductor L1 Overvoltage (surge voltage) occurs. Therefore, the LED driver circuit 102b according to the present embodiment is provided with a third rectifier element D3 for releasing the current flowing through the first inductor L1 to the input side. As a result, as shown in FIG. 8, the current I12 flows in the order of the first inductor L1, the third rectifier element D3, and the battery BAT, thereby preventing an overvoltage from being generated in the first inductor L1. Can do.
 以上、本実施形態に係るLEDドライバ回路102bによれば、LEDランプ101内のLED素子101aの直列数が減るなどして負荷が急減することで第2のインダクタL2に流れる電流が規定の電流値を上回った場合、制御部103は、スイッチング素子M1をオフする。このとき、第2の整流素子D2により、出力電流が第1のインダクタL1を通ってコンデンサC1に戻ることが阻止(ブロック)される。これにより、スイッチング素子M1がオフの状態でコンデンサC1から放電する経路がないため、負荷急減時の出力電流の増加を抑制し、負荷に過電流が流れることを防止できる。また、このとき、第3の整流素子D3により、第1のインダクタL1を流れる電流は入力側に逃がされる。これにより、第1のインダクタL1に過電圧(サージ電圧)が発生することを防止できる。 As described above, according to the LED driver circuit 102b according to the present embodiment, the current flowing through the second inductor L2 due to the rapid decrease of the load due to the decrease in the number of series of the LED elements 101a in the LED lamp 101 is a specified current value. When the value exceeds the value, the control unit 103 turns off the switching element M1. At this time, the second rectifying element D2 prevents (blocks) the output current from returning to the capacitor C1 through the first inductor L1. Thereby, since there is no path for discharging from the capacitor C1 when the switching element M1 is OFF, an increase in output current at the time of sudden decrease in the load can be suppressed, and an overcurrent can be prevented from flowing through the load. At this time, the current flowing through the first inductor L1 is released to the input side by the third rectifying element D3. Thereby, it is possible to prevent an overvoltage (surge voltage) from being generated in the first inductor L1.
(第3の実施形態)
 続いて、第3の実施形態について説明する。図9に示すように、第3の実施形態におけるLED照明装置100cの構成は、第1の実施形態におけるLED照明装置100の構成に対して、LEDドライバ回路102がLEDドライバ回路102cに変更されたものになっている。第1の実施形態におけるLEDドライバ回路102が、第1のバッテリ端子Txと出力端子Tzとの間でスイッチング素子M1、コンデンサC1及び第2のインダクタL2が直列に接続されており、コンデンサC1の一端が第1のインダクタL1を介して第2のバッテリ端子Tyと接続されている。それに対し、第3の実施形態におけるLEDドライバ回路102cは、第1のバッテリ端子Txと出力端子Tzとの間で第1のインダクタL1、コンデンサC1及び第2のインダクタL2が直列に接続されており、コンデンサC1の一端がスイッチング素子M1を介して第2のバッテリ端子Tyに接続されている。なお、この図9においては、後述するバッテリ(直流電源)BATは図示されていない。
(Third embodiment)
Subsequently, a third embodiment will be described. As shown in FIG. 9, in the configuration of the LED lighting device 100c in the third embodiment, the LED driver circuit 102 is changed to the LED driver circuit 102c with respect to the configuration of the LED lighting device 100 in the first embodiment. It has become a thing. In the LED driver circuit 102 according to the first embodiment, the switching element M1, the capacitor C1, and the second inductor L2 are connected in series between the first battery terminal Tx and the output terminal Tz, and one end of the capacitor C1. Is connected to the second battery terminal Ty via the first inductor L1. In contrast, in the LED driver circuit 102c in the third embodiment, the first inductor L1, the capacitor C1, and the second inductor L2 are connected in series between the first battery terminal Tx and the output terminal Tz. One end of the capacitor C1 is connected to the second battery terminal Ty via the switching element M1. In FIG. 9, a battery (DC power supply) BAT, which will be described later, is not shown.
 LEDドライバ回路102cは、第1の実施形態におけるLEDドライバ回路102と同様に、LEDランプ101に電流を供給して、LEDランプ101を駆動する。 The LED driver circuit 102c supplies current to the LED lamp 101 and drives the LED lamp 101 in the same manner as the LED driver circuit 102 in the first embodiment.
 このLEDドライバ回路102cは、図9に示すように、例えば、第1のバッテリ端子Txと、第2のバッテリ端子(接地端子)Tyと、出力端子Tzと、第1のインダクタL1と、スイッチング素子M1と、第1の整流素子D1と、コンデンサC1と、第2の整流素子D2と、第2のインダクタL2と、第3の整流素子D3と、第1の検出用抵抗R1と、第2の検出用抵抗R2と、制御部103と、端子T1~T6と、を備える。 As shown in FIG. 9, the LED driver circuit 102c includes, for example, a first battery terminal Tx, a second battery terminal (ground terminal) Ty, an output terminal Tz, a first inductor L1, and a switching element. M1, the first rectifier element D1, the capacitor C1, the second rectifier element D2, the second inductor L2, the third rectifier element D3, the first detection resistor R1, and the second A detection resistor R2, a control unit 103, and terminals T1 to T6 are provided.
 第1のバッテリ端子Txは、バッテリの正極TBaに接続されるようになっている。 The first battery terminal Tx is connected to the positive electrode TBa of the battery.
 第2のバッテリ端子Tyは、バッテリの負極TBbに接続され且つLEDランプ101の一端(アノード側)22に接続されるようになっている。 The second battery terminal Ty is connected to the negative electrode TBb of the battery and to one end (anode side) 22 of the LED lamp 101.
 出力端子Tzは、LEDランプ101の他端(カソード側)21に接続されるようになっている。 The output terminal Tz is connected to the other end (cathode side) 21 of the LED lamp 101.
 第1のインダクタL1は、一端が第1のバッテリ端子Txに接続されている。 One end of the first inductor L1 is connected to the first battery terminal Tx.
 スイッチング素子M1は、一端(ソース)が、第2の検出用抵抗R2を介して、第2のバッテリ端子Tyに接続され、他端(ドレイン)が第1の整流素子D1の他端(カソード)に接続されている。このスイッチ素子M1は、制御部103の端子T1から出力される信号により、オン/オフが制御される。 One end (source) of the switching element M1 is connected to the second battery terminal Ty via the second detection resistor R2, and the other end (drain) is the other end (cathode) of the first rectifying element D1. It is connected to the. The switch element M1 is controlled to be turned on / off by a signal output from the terminal T1 of the control unit 103.
 このスイッチング素子M1は、例えば、図9に示すように、MOSトランジスタである。この場合、制御部103の端子T1から出力される信号は、MOSトランジスタのゲートに供給される。 The switching element M1 is, for example, a MOS transistor as shown in FIG. In this case, the signal output from the terminal T1 of the control unit 103 is supplied to the gate of the MOS transistor.
 なお、このスイッチング素子M1は、バイポーラトランジスタであってもよい。 Note that the switching element M1 may be a bipolar transistor.
 第1の整流素子D1は、一端が第1のインダクタL1の他端に接続され、他端がスイッチング素子M1の他端(ドレイン)に接続されている。この第1の整流素子D1は、第1のインダクタL1の他端からスイッチング素子M1の他端に向かう方向が順方向となる。 The first rectifying element D1 has one end connected to the other end of the first inductor L1 and the other end connected to the other end (drain) of the switching element M1. In the first rectifying element D1, the direction from the other end of the first inductor L1 toward the other end of the switching element M1 is a forward direction.
 そして、第1の整流素子D1は、例えば、図9に示すように、アノードが第1のインダクタL1の他端に接続され、カソードがコンデンサC1の一端に接続されたダイオードである。 The first rectifying element D1 is, for example, a diode having an anode connected to the other end of the first inductor L1 and a cathode connected to one end of the capacitor C1, as shown in FIG.
 なお、第1の整流素子D1は、スイッチング素子であってもよい。すなわち、第1の整流素子D1には、ダイオードだけでなくスイッチング素子も含まれる。 Note that the first rectifying element D1 may be a switching element. That is, the first rectifying element D1 includes not only a diode but also a switching element.
 コンデンサC1は、一端が第1の整流素子D1の他端(カソード)に接続されている。 The capacitor C1 has one end connected to the other end (cathode) of the first rectifying element D1.
 第2の整流素子D2は、一端が第2のバッテリ端子Tyに接続され且つ他端が第1のインダクタL1の他端に接続されている。この第2の整流素子D2は、第2のバッテリ端子Tyから第1のインダクタL1の他端に向かう方向が順方向となる。 The second rectifying element D2 has one end connected to the second battery terminal Ty and the other end connected to the other end of the first inductor L1. In the second rectifying element D2, the direction from the second battery terminal Ty toward the other end of the first inductor L1 is the forward direction.
 そして、第2の整流素子D2は、例えば、図9に示すように、アノードが第2のバッテリ端子Tyに接続され、カソードが第1のインダクタL1の他端に接続されたダイオードである。 The second rectifying element D2 is, for example, a diode having an anode connected to the second battery terminal Ty and a cathode connected to the other end of the first inductor L1, as shown in FIG.
 なお、第2の整流素子D2は、スイッチング素子であってもよい。すなわち、第2の整流素子D2には、ダイオードだけでなくスイッチング素子も含まれる。 Note that the second rectifying element D2 may be a switching element. That is, the second rectifying element D2 includes not only a diode but also a switching element.
 第2のインダクタL2は、一端がコンデンサC1の他端に接続され、他端が第1の検出用抵抗R1を介して、出力端子Tzに接続されている。 The second inductor L2 has one end connected to the other end of the capacitor C1, and the other end connected to the output terminal Tz via the first detection resistor R1.
 第3の整流素子D3は、一端が第2のバッテリ端子Tyに接続され且つ他端がコンデンサC1の他端に接続されている。この第3の整流素子D3は、コンデンサC1の他端から第2のバッテリ端子Tyに向かう方向が順方向となる。 The third rectifying element D3 has one end connected to the second battery terminal Ty and the other end connected to the other end of the capacitor C1. In the third rectifying element D3, the direction from the other end of the capacitor C1 toward the second battery terminal Ty is the forward direction.
 そして、第3の整流素子D3は、例えば、図9に示すように、アノードがコンデンサC1の他端に接続され、カソードが第2のバッテリ端子Tyに接続されたダイオードである。 The third rectifying element D3 is, for example, a diode having an anode connected to the other end of the capacitor C1 and a cathode connected to the second battery terminal Ty, as shown in FIG.
 なお、第3の整流素子D3は、スイッチング素子であってもよい。すなわち、第3の整流素子D3には、ダイオードだけでなくスイッチング素子も含まれる。 Note that the third rectifying element D3 may be a switching element. That is, the third rectifying element D3 includes not only a diode but also a switching element.
 また、第1の検出用抵抗R1は、コンデンサC1の他端(第3の整流素子D3の他端)と出力端子Tzとの間で、第2のインダクタL2と直列に接続されている。 The first detection resistor R1 is connected in series with the second inductor L2 between the other end of the capacitor C1 (the other end of the third rectifying element D3) and the output terminal Tz.
 第2の検出用抵抗R2は、スイッチング素子M1の他端と第2のバッテリ端子Tyとの間に接続されている。なお、第2の検出抵抗R2の他端は、端子T5を介して、接地に接続されている。 The second detection resistor R2 is connected between the other end of the switching element M1 and the second battery terminal Ty. Note that the other end of the second detection resistor R2 is connected to the ground via a terminal T5.
 制御部103は、端子T6、第1のバッテリ端子Txを介して、バッテリの正極TBaに接続されている。この制御部103は、端子T6及び第1のバッテリ端子Txを介して、バッテリの電圧Vccが供給されるようになっている。制御部103は、第2のインダクタL2に流れる電流(第1の電流)に基づいて、スイッチング素子M1をオン/オフ制御する。なお、制御部103は、例えば、図9に示すように、第1の検出用抵抗R1に流れる電流を検出することにより、第1の電流の値を取得する。制御部103の構成は、第1の実施形態に係る制御部103の構成と同様であるので、その詳細な説明を省略する。 The control unit 103 is connected to the positive electrode TBa of the battery via the terminal T6 and the first battery terminal Tx. The controller 103 is supplied with the battery voltage Vcc via the terminal T6 and the first battery terminal Tx. The control unit 103 performs on / off control of the switching element M1 based on the current (first current) flowing through the second inductor L2. Note that, for example, as illustrated in FIG. 9, the control unit 103 acquires the value of the first current by detecting the current flowing through the first detection resistor R <b> 1. Since the configuration of the control unit 103 is the same as the configuration of the control unit 103 according to the first embodiment, a detailed description thereof is omitted.
 次に、以上のような構成を有するLEDドライバ回路102cの制御方法の一例について説明する。 
 既述のように、制御部103は、第2のインダクタL2に流れる電流(第1の電流)に基づいて、スイッチング素子M1をオン/オフ制御する。
Next, an example of a method for controlling the LED driver circuit 102c having the above configuration will be described.
As described above, the control unit 103 performs on / off control of the switching element M1 based on the current (first current) flowing through the second inductor L2.
 例えば、制御部103は、第1の電流(第2のインダクタL2に流れる電流I(L2)が増加して第1の閾値(UPPER LIMIT)になるまで(例えば、図12の時刻t10~t11、時刻t12~t13)、スイッチング素子M1をオンする。また、電流I(M1)は、第2の検出用抵抗R2に流れる電流と等しい。 For example, the control unit 103 increases the first current (the current I (L2) flowing through the second inductor L2) to the first threshold (UPPER LIMIT) (for example, from time t10 to t11 in FIG. 12, At time t12 to t13), the switching element M1 is turned on, and the current I (M1) is equal to the current flowing through the second detection resistor R2.
 これにより、スイッチング素子M1に電流I(M1)が流れる(図10)。この電流I(M1)は、第1の検出用抵抗R1に流れる第1の電流I3a(第2のインダクタL2に流れる電流I(L2))と、第2の電流I4a(第1のインダクタL1に流れる電流I(L1))との和になる(図10、図12)。 Thereby, a current I (M1) flows through the switching element M1 (FIG. 10). The current I (M1) includes a first current I3a flowing through the first detection resistor R1 (current I (L2) flowing through the second inductor L2) and a second current I4a (passing through the first inductor L1). Current (I (L1)) flowing (FIGS. 10 and 12).
 第2のインダクタL2に流れる電流I(L2)は、出力電流として、LEDランプ101に供給される。これにより、LEDランプ101が点灯する。 The current I (L2) flowing through the second inductor L2 is supplied to the LED lamp 101 as an output current. As a result, the LED lamp 101 is turned on.
 このとき、コンデンサC1が放電される。 At this time, the capacitor C1 is discharged.
 そして、制御部103は、第1の電流I3a(第2のインダクタL2に流れる電流I(L2))が増加して第1の閾値(UPPER LIMIT)になったとき(例えば、図12の時刻t11、時刻t13)、スイッチング素子M1をオフする。 Then, the controller 103 increases the first current I3a (current I (L2) flowing through the second inductor L2) to the first threshold (UPPER LIMIT) (for example, time t11 in FIG. 12). , Time t13), the switching element M1 is turned off.
 これにより、スイッチング素子M1の電流I(M1)が、すなわち第2の検出用抵抗R2の電流が、遮断される(図11)。 Thereby, the current I (M1) of the switching element M1, that is, the current of the second detection resistor R2 is cut off (FIG. 11).
 そして、制御部103は、第1の検出用抵抗R1に流れる第1の電流I3b(第2のインダクタL2に流れる電流I(L2))が減少して(図11)第1の閾値(UPPER LIMIT)よりも小さい第2の閾値(LOWER LIMIT)になるまで(例えば、図12の時刻t11~t12)、スイッチング素子M1をオフする。 Then, the control unit 103 reduces the first current I3b flowing through the first detection resistor R1 (the current I (L2) flowing through the second inductor L2) (FIG. 11) and the first threshold (UPPER LIMIT). The switching element M1 is turned off until the second threshold value (LOWER LIMIT) is reached (for example, times t11 to t12 in FIG. 12).
 このとき、第1の検出用抵抗R1に流れる第1の電流I3b(第2のインダクタL2に流れる電流I(L2))は、第3の整流素子D3、第2のバッテリ端子Ty、LEDランプ101、及び出力端子Tzの順に流れる(図11)。 At this time, the first current I3b flowing through the first detection resistor R1 (current I (L2) flowing through the second inductor L2) is the third rectifying element D3, the second battery terminal Ty, and the LED lamp 101. And the output terminal Tz in this order (FIG. 11).
 さらに、第1のインダクタL1に流れる電流I(L1)は、コンデンサC1、及び第3の整流素子D3の順に流れ、コンデンサC1が充電される(図11)。 Furthermore, the current I (L1) flowing through the first inductor L1 flows in the order of the capacitor C1 and the third rectifying element D3, and the capacitor C1 is charged (FIG. 11).
 したがって、第3の整流素子D3に流れる電流I(D3)は、電流I(L1)と電流I(L2)との和になる(図11、図12)。 Therefore, the current I (D3) flowing through the third rectifying element D3 is the sum of the current I (L1) and the current I (L2) (FIGS. 11 and 12).
 そして、制御部103は、第1の検出用抵抗R1に流れる第1の電流I3b(第2のインダクタL2に流れる電流I(L2))が減少して第2の閾値(LOWER LIMIT)になったとき(例えば、図4の時刻t12)、スイッチング素子M1をオンする。 Then, the control unit 103 decreases the first current I3b flowing through the first detection resistor R1 (current I (L2) flowing through the second inductor L2) to the second threshold (LOWER LIMIT). When (for example, time t12 in FIG. 4), the switching element M1 is turned on.
 以降、同様の動作が繰り返される。 Thereafter, the same operation is repeated.
 以上のLEDドライバ回路102cの動作により、第2のインダクタL2に流れる電流I(L2)が第1の閾値(UPPER LIMIT)と第2の閾値(LOWER LIMIT)との間で遷移するように制御される。 By the operation of the LED driver circuit 102c described above, the current I (L2) flowing through the second inductor L2 is controlled to transition between the first threshold (UPPER LIMIT) and the second threshold (LOWER LIMIT). The
 すなわち、出力端子TzからLEDランプ101に供給される出力電流が所定範囲内に制御される。 That is, the output current supplied from the output terminal Tz to the LED lamp 101 is controlled within a predetermined range.
 そして、既述のように、LEDドライバ回路102cは、第2のバッテリ端子(接地端子)Tyと出力端子Tzとの間に、直列に接続された第の整流素子Dとインダクタ(第2のインダクタL2)が設けられた構成を有するため、出力コンデンサが設けられていなくとも、連続的な電流を出力することができる(図10~図12)。 Then, as described above, LED driver circuit 102c is provided between the second battery terminal (ground terminal) Ty and the output terminal Tz, the third rectifier element D 3 connected in series with an inductor (second Therefore, even if no output capacitor is provided, a continuous current can be output (FIGS. 10 to 12).
 そして、LEDドライバ回路102cは、出力コンデンサを有しないことで、より高速の応答が可能であり、例えばLEDランプ101内のLED素子101aの直列数(点灯数)が変化した場合(負荷が急変した場合)であっても、負荷急変による影響を受け難く、出力電流を一定に供給することができる(図12)。 The LED driver circuit 102c does not have an output capacitor, so that a faster response is possible. For example, when the number of LED elements 101a in the LED lamp 101 (the number of lighting) changes (the load changes suddenly). ), It is difficult to be affected by a sudden load change, and the output current can be supplied constantly (FIG. 12).
 すなわち、本実施形態に係るLED照明装置100cによれば、負荷急変による影響を受け難く、出力電流を一定に供給することができる。 That is, according to the LED lighting device 100c according to the present embodiment, it is difficult to be affected by a sudden load change, and an output current can be supplied constantly.
 (負荷急落時の電流経路について)
 続いて、LEDドライバ回路102cの負荷急落時の電流経路について説明する。本実施形態の制御部103は、第1の実施形態の制御部103と同様に、第2のインダクタL2に流れる電流(第1の電流)が規定の電流値を上回った場合、スイッチング素子M1をオフする。このとき、図13に示すように、第1の整流素子D1により、出力電流がコンデンサC1を通って第1のインダクタL1に戻ることが阻止(ブロック)される。これにより、スイッチング素子M1がオフの状態でコンデンサC1から放電する経路がないため、LED素子101aの直列数が急減した場合における出力電流の増加(過電流)を防止できる。
(About the current path at the time of sudden load drop)
Subsequently, a current path when the load of the LED driver circuit 102c suddenly drops will be described. Similar to the control unit 103 of the first embodiment, the control unit 103 of the present embodiment switches the switching element M1 when the current flowing through the second inductor L2 (first current) exceeds a specified current value. Turn off. At this time, as shown in FIG. 13, the first rectifying element D1 prevents (blocks) the output current from returning to the first inductor L1 through the capacitor C1. As a result, there is no path for discharging from the capacitor C1 when the switching element M1 is in an off state, so that it is possible to prevent an increase in output current (overcurrent) when the number of LED elements 101a is rapidly reduced.
 一方、図17の第2の比較例に係るLEDドライバ回路100Bに対して、第1の整流素子D1を追加するだけでは、第1のインダクタL1に電流が流れなくなるので、第1のインダクタL1に過電圧(サージ電圧)が発生する。そこで、本実施形態に係るLEDドライバ回路102cには、第1のインダクタL1を流れる電流を入力側に逃がすための第2の整流素子D2が設けられている。これにより、図13に示すように、電流I13が、第1のインダクタL1、バッテリBAT、第2の整流素子D2の順に流れることにより、第1のインダクタL1に過電圧が発生することを防止することができる。 On the other hand, if only the first rectifying element D1 is added to the LED driver circuit 100B according to the second comparative example of FIG. 17, current does not flow to the first inductor L1, so that the first inductor L1 Overvoltage (surge voltage) occurs. Therefore, the LED driver circuit 102c according to the present embodiment is provided with a second rectifying element D2 for releasing the current flowing through the first inductor L1 to the input side. As a result, as shown in FIG. 13, the current I13 flows in the order of the first inductor L1, the battery BAT, and the second rectifying element D2, thereby preventing an overvoltage from being generated in the first inductor L1. Can do.
 以上、本実施形態に係るLEDドライバ回路102cによれば、LEDランプ101内のLED素子101aの直列数が減るなどして負荷が急減することで第2のインダクタL2に流れる電流が規定の電流値を上回った場合、制御部103は、スイッチング素子M1をオフする。このとき、第1の整流素子D1により、出力電流がコンデンサC1を通って第1のインダクタL1に戻ることが阻止(ブロック)される。これにより、スイッチング素子M1がオフの状態でコンデンサC1から放電する経路がないため、負荷急減時の出力電流の増加を抑制し、負荷に過電流が流れることを防止できる。また、このとき、第2の整流素子D2により、第1のインダクタL1を流れる電流は入力側に逃がされる。これにより、第1のインダクタL1に過電圧(サージ電圧)が発生することを防止できる。 As described above, according to the LED driver circuit 102c according to the present embodiment, the current flowing through the second inductor L2 due to the sudden decrease in the load due to the reduction in the number of LED elements 101a in the LED lamp 101 is a specified current value. When the value exceeds the value, the control unit 103 turns off the switching element M1. At this time, the first rectifying element D1 prevents (blocks) the output current from returning to the first inductor L1 through the capacitor C1. Thereby, since there is no path for discharging from the capacitor C1 when the switching element M1 is OFF, an increase in output current at the time of sudden decrease in the load can be suppressed, and an overcurrent can be prevented from flowing through the load. At this time, the current flowing through the first inductor L1 is released to the input side by the second rectifying element D2. Thereby, it is possible to prevent an overvoltage (surge voltage) from being generated in the first inductor L1.
(第4の実施形態)
 続いて、第4の実施形態について説明する。図14に示すように、第4の実施形態におけるLED照明装置100dの構成は、第3の実施形態におけるLED照明装置100cの構成に対して、LEDドライバ回路102cがLEDドライバ回路102dに変更されたものになっている。第4の実施形態におけるLEDドライバ回路102dは、第3の実施形態におけるLEDドライバ回路102cに比べて、第2の整流素子D2の接続態様が異なっている。すなわち、第2の整流素子D2は、一端がコンデンサC1の他端に接続され且つ他端が第1のインダクタL1の他端に接続されている。この第2の整流素子D2は、は、コンデンサC1の他端から第1のインダクタL1の他端に向かう方向が順方向となる。そして、図14に示すように、第2の整流素子D2は、例えば、アノードがコンデンサC1の他端に接続され、カソードが第1のインダクタL1の他端に接続されたダイオードである。
(Fourth embodiment)
Subsequently, a fourth embodiment will be described. As shown in FIG. 14, the configuration of the LED lighting device 100d in the fourth embodiment is changed from the LED driver circuit 102c to the LED driver circuit 102d with respect to the configuration of the LED lighting device 100c in the third embodiment. It has become a thing. The LED driver circuit 102d in the fourth embodiment differs from the LED driver circuit 102c in the third embodiment in the connection mode of the second rectifying element D2. In other words, the second rectifying element D2 has one end connected to the other end of the capacitor C1 and the other end connected to the other end of the first inductor L1. In the second rectifying element D2, the direction from the other end of the capacitor C1 toward the other end of the first inductor L1 is the forward direction. As shown in FIG. 14, the second rectifying element D2 is, for example, a diode having an anode connected to the other end of the capacitor C1 and a cathode connected to the other end of the first inductor L1.
 なお、第3の実施形態におけるLED照明装置100cと共通する要素には同一の符号を付し、その具体的な説明を省略する。また、本実施形態の通常時の制御方法については、第3の実施形態の制御方法と同様であるので、その説明を省略する。 In addition, the same code | symbol is attached | subjected to the element which is common in LED lighting apparatus 100c in 3rd Embodiment, and the specific description is abbreviate | omitted. The normal control method of the present embodiment is the same as the control method of the third embodiment, and a description thereof will be omitted.
 (負荷急落時の電流経路について)
 次に、以上のような構成を有するLEDドライバ回路102dの負荷急落時の電流経路について説明する。本実施形態の制御部103は、第3の実施形態の制御部103と同様に、第2のインダクタL2に流れる電流(第1の電流)が規定の電流値を上回った場合、スイッチング素子M1をオフする。このとき、図15に示すように、第1の整流素子D1により、出力電流がコンデンサC1を通って第1のインダクタL1に戻ることが阻止(ブロック)される。これにより、スイッチング素子M1がオフの状態でコンデンサC1から放電する経路がないため、LED素子101aの直列数が急減した場合における出力電流の増加(過電流)を防止できる。
(About the current path at the time of sudden load drop)
Next, a current path when the load of the LED driver circuit 102d having the above configuration is suddenly dropped will be described. Similarly to the control unit 103 of the third embodiment, the control unit 103 of the present embodiment causes the switching element M1 to be switched when the current flowing through the second inductor L2 (first current) exceeds a specified current value. Turn off. At this time, as shown in FIG. 15, the first rectifying element D1 prevents (blocks) the output current from returning to the first inductor L1 through the capacitor C1. As a result, there is no path for discharging from the capacitor C1 when the switching element M1 is in an off state, so that it is possible to prevent an increase in output current (overcurrent) when the number of LED elements 101a is rapidly reduced.
 一方、図17の第2の比較例に係るLEDドライバ回路100Bに対して、第1の整流素子D1を追加するだけでは、第1のインダクタL1に電流が流れなくなるので、第1のインダクタL1に過電圧(サージ電圧)が発生する。そこで、本実施形態に係るLEDドライバ回路102dには、第1のインダクタL1を流れる電流を入力側に逃がすための第2の整流素子D2が設けられている。これにより、図15に示すように、電流I14が、第1のインダクタL1、バッテリBAT、LEDランプ101、第2のインダクタL2、第2の整流素子D2の順に流れることにより、第1のインダクタL1に過電圧が発生することを防止することができる。 On the other hand, if only the first rectifying element D1 is added to the LED driver circuit 100B according to the second comparative example of FIG. 17, current does not flow to the first inductor L1, so that the first inductor L1 Overvoltage (surge voltage) occurs. Therefore, the LED driver circuit 102d according to the present embodiment is provided with a second rectifying element D2 for releasing the current flowing through the first inductor L1 to the input side. As a result, as shown in FIG. 15, the current I14 flows in the order of the first inductor L1, the battery BAT, the LED lamp 101, the second inductor L2, and the second rectifier element D2, thereby causing the first inductor L1. It is possible to prevent the occurrence of overvoltage.
 以上、本実施形態に係るLEDドライバ回路102dによれば、LEDランプ101内のLED素子101aの直列数が減るなどして負荷が急減することで第2のインダクタL2に流れる電流が規定の電流値を上回った場合、制御部103は、スイッチング素子M1をオフする。このとき、第1の整流素子D1により、出力電流がコンデンサC1を通って第1のインダクタL1に戻ることが阻止(ブロック)される。これにより、スイッチング素子M1がオフの状態でコンデンサC1から放電する経路がないため、負荷急減時の出力電流の増加を抑制し、負荷に過電流が流れることを防止できる。また、このとき、第2の整流素子D2により、第1のインダクタL1を流れる電流は入力側に逃がされる。これにより、第1のインダクタL1に過電圧(サージ電圧)が発生することを防止できる。 As described above, according to the LED driver circuit 102d according to the present embodiment, the current flowing through the second inductor L2 due to the rapid decrease of the load due to the decrease in the number of series of the LED elements 101a in the LED lamp 101 is a specified current value. When the value exceeds the value, the control unit 103 turns off the switching element M1. At this time, the first rectifying element D1 prevents (blocks) the output current from returning to the first inductor L1 through the capacitor C1. Thereby, since there is no path for discharging from the capacitor C1 when the switching element M1 is OFF, an increase in output current at the time of sudden decrease in the load can be suppressed, and an overcurrent can be prevented from flowing through the load. At this time, the current flowing through the first inductor L1 is released to the input side by the second rectifying element D2. Thereby, it is possible to prevent an overvoltage (surge voltage) from being generated in the first inductor L1.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.

Claims (14)

  1.  バッテリの正極に接続された第1のバッテリ端子と、
     前記バッテリの負極に接続され且つLEDランプのカソード側に接続された第2のバッテリ端子と、
     前記LEDランプのアノード側に接続された出力端子と、
     一端が前記第1のバッテリ端子に接続されたスイッチング素子と、
     一端が前記第2のバッテリ端子に接続された第1のインダクタと、
     一端が前記スイッチング素子の他端に接続されたコンデンサと、
     一端が前記コンデンサの他端に接続され、他端が前記出力端子に接続された第2のインダクタと、
     一端が前記第2のバッテリ端子に接続され且つ他端が前記コンデンサの他端に接続され、前記第2のバッテリ端子から前記コンデンサの他端に向かう方向が順方向となる第1の整流素子と、
     一端が前記スイッチング素子の他端に接続され且つ他端が前記第1のインダクタの他端に接続され、前記スイッチング素子の他端から前記第1のインダクタの他端に向かう方向が順方向となる第2の整流素子と、
     一端が前記第1のインダクタの他端に接続され且つ他端が前記コンデンサの他端又は前記スイッチング素子の一端に接続され、前記第1のインダクタの他端から前記コンデンサの他端又は前記スイッチング素子の一端に向かう方向が順方向となる第3の整流素子と、
     前記第2のインダクタに流れる電流に基づいて、前記スイッチング素子をオン/オフ制御する制御部と、
     を備えるLEDドライバ回路。
    A first battery terminal connected to the positive electrode of the battery;
    A second battery terminal connected to the negative electrode of the battery and connected to the cathode side of the LED lamp;
    An output terminal connected to the anode side of the LED lamp;
    A switching element having one end connected to the first battery terminal;
    A first inductor having one end connected to the second battery terminal;
    A capacitor having one end connected to the other end of the switching element;
    A second inductor having one end connected to the other end of the capacitor and the other end connected to the output terminal;
    A first rectifying element having one end connected to the second battery terminal and the other end connected to the other end of the capacitor, the direction from the second battery terminal toward the other end of the capacitor being a forward direction; ,
    One end is connected to the other end of the switching element and the other end is connected to the other end of the first inductor, and a direction from the other end of the switching element toward the other end of the first inductor is a forward direction. A second rectifying element;
    One end is connected to the other end of the first inductor and the other end is connected to the other end of the capacitor or one end of the switching element, and the other end of the capacitor is connected to the other end of the capacitor or the switching element. A third rectifying element in which the direction toward one end of the
    A control unit for controlling on / off of the switching element based on a current flowing through the second inductor;
    LED driver circuit comprising:
  2.  前記制御部は、前記第2のインダクタに流れる電流が規定の電流値を上回った場合、前記スイッチング素子をオフする請求項1に記載のLEDドライバ回路。 2. The LED driver circuit according to claim 1, wherein the control unit turns off the switching element when a current flowing through the second inductor exceeds a specified current value.
  3.  前記第2のインダクタの他端と接地との間には、コンデンサが設けられていない請求項1に記載のLEDドライバ回路。 The LED driver circuit according to claim 1, wherein no capacitor is provided between the other end of the second inductor and the ground.
  4.  前記第2の整流素子は、アノードが前記スイッチング素子の他端に接続され、カソードが前記第1のインダクタの他端に接続されたダイオードである請求項1に記載のLEDドライバ回路。 The LED driver circuit according to claim 1, wherein the second rectifying element is a diode having an anode connected to the other end of the switching element and a cathode connected to the other end of the first inductor.
  5.  前記第3の整流素子は、アノードが前記第1のインダクタの他端に接続され、カソードが前記コンデンサの他端又は前記スイッチング素子の一端に接続されたダイオードである請求項1に記載のLEDドライバ回路。 2. The LED driver according to claim 1, wherein the third rectifying element is a diode having an anode connected to the other end of the first inductor and a cathode connected to the other end of the capacitor or one end of the switching element. circuit.
  6.  前記第1の整流素子は、アノードが前記第2のバッテリ端子に接続され、カソードが前記コンデンサの他端に接続されたダイオードである請求項1に記載のLEDドライバ回路。 The LED driver circuit according to claim 1, wherein the first rectifying element is a diode having an anode connected to the second battery terminal and a cathode connected to the other end of the capacitor.
  7.  請求項1に記載のLEDドライバ回路と、
     前記LEDランプと、
     を備え、
     前記LEDランプは、
     直列に接続された複数のLED素子と、
     前記複数のLED素子のいずれかと並列に接続されたスイッチ回路と、
     を含み、
     前記スイッチ回路のオン/オフにより、点灯するLED素子の数が切り換えられることを特徴とするLED照明装置。
    An LED driver circuit according to claim 1;
    The LED lamp;
    With
    The LED lamp is
    A plurality of LED elements connected in series;
    A switch circuit connected in parallel with any of the plurality of LED elements;
    Including
    The LED lighting device, wherein the number of LED elements to be lit is switched by turning on / off the switch circuit.
  8.  バッテリの正極に接続される第1のバッテリ端子と、
     前記バッテリの負極に接続され且つLEDランプのアノード側が接続される第2のバッテリ端子と、
     前記LEDランプのカソード側に接続された出力端子と、
     一端が前記第1のバッテリ端子に接続された第1のインダクタと、
     一端が前記第2のバッテリ端子に接続されたスイッチング素子と、
     一端が前記第1のインダクタの他端に接続され且つ他端が前記スイッチング素子の他端に接続され、前記第1のインダクタの他端から前記スイッチング素子の他端に向かう方向が順方向となる第1の整流素子と、
     一端が前記第1の整流素子の他端に接続されたコンデンサと、
     一端が前記第2のバッテリ端子又は前記コンデンサの他端に接続され且つ他端が前記第1のインダクタの他端に接続され、前記第2のバッテリ端子又は前記コンデンサの他端から前記第1のインダクタの他端に向かう方向が順方向となる第2の整流素子と、
     一端が前記コンデンサの他端に接続され、他端が前記出力端子に接続された第2のインダクタと、
     一端が前記第2のバッテリ端子に接続され且つ他端が前記コンデンサの他端に接続され、前記コンデンサの他端から前記第2のバッテリ端子に向かう方向が順方向となる第3の整流素子と、
     前記第2のインダクタに流れる電流に基づいて、前記スイッチング素子をオン/オフ制御する制御部と、
     を備えるLEDドライバ回路。
    A first battery terminal connected to the positive electrode of the battery;
    A second battery terminal connected to the negative electrode of the battery and connected to the anode side of the LED lamp;
    An output terminal connected to the cathode side of the LED lamp;
    A first inductor having one end connected to the first battery terminal;
    A switching element having one end connected to the second battery terminal;
    One end is connected to the other end of the first inductor and the other end is connected to the other end of the switching element, and a direction from the other end of the first inductor toward the other end of the switching element is a forward direction. A first rectifying element;
    A capacitor having one end connected to the other end of the first rectifying element;
    One end is connected to the other end of the second battery terminal or the capacitor and the other end is connected to the other end of the first inductor, and the first end is connected to the second battery terminal or the other end of the capacitor. A second rectifying element whose forward direction is toward the other end of the inductor;
    A second inductor having one end connected to the other end of the capacitor and the other end connected to the output terminal;
    A third rectifying element having one end connected to the second battery terminal and the other end connected to the other end of the capacitor, the direction from the other end of the capacitor toward the second battery terminal being a forward direction; ,
    A control unit for controlling on / off of the switching element based on a current flowing through the second inductor;
    LED driver circuit comprising:
  9.  前記制御部は、前記第2のインダクタに流れる電流が規定の電流値を上回った場合、前記スイッチング素子をオフする請求項8に記載のLEDドライバ回路。 The LED driver circuit according to claim 8, wherein the control unit turns off the switching element when a current flowing through the second inductor exceeds a specified current value.
  10.  前記第2のインダクタの他端と接地との間には、コンデンサが設けられていない請求項8に記載のLEDドライバ回路。 The LED driver circuit according to claim 8, wherein a capacitor is not provided between the other end of the second inductor and the ground.
  11.  前記第1の整流素子は、アノードが前記第1のインダクタの他端に接続され、カソードが前記コンデンサの一端に接続されたダイオードである請求項8に記載のLEDドライバ回路。 The LED driver circuit according to claim 8, wherein the first rectifying element is a diode having an anode connected to the other end of the first inductor and a cathode connected to one end of the capacitor.
  12.  前記第2の整流素子は、アノードが前記第2のバッテリ端子又は前記コンデンサの他端に接続され、カソードが前記第1のインダクタの他端に接続されたダイオードである請求項8に記載のLEDドライバ回路。 The LED according to claim 8, wherein the second rectifying element is a diode having an anode connected to the second battery terminal or the other end of the capacitor and a cathode connected to the other end of the first inductor. Driver circuit.
  13.  前記第3の整流素子は、アノードが前記コンデンサの他端に接続され、カソードが前記第2のバッテリ端子に接続されたダイオードである請求項8に記載のLEDドライバ回路。 The LED driver circuit according to claim 8, wherein the third rectifying element is a diode having an anode connected to the other end of the capacitor and a cathode connected to the second battery terminal.
  14.  請求項8に記載のLEDドライバ回路と、
     前記LEDランプと、
     を備え、
     前記LEDランプは、
     直列に接続された複数のLED素子と、
     前記複数のLED素子のいずれかと並列に接続されたスイッチ回路と、
     を含み、
     前記スイッチ回路のオン/オフにより、点灯するLED素子の数が切り換えられることを特徴とするLED照明装置。
    An LED driver circuit according to claim 8;
    The LED lamp;
    With
    The LED lamp is
    A plurality of LED elements connected in series;
    A switch circuit connected in parallel with any of the plurality of LED elements;
    Including
    The LED lighting device, wherein the number of LED elements to be lit is switched by turning on / off the switch circuit.
PCT/JP2014/081171 2014-11-26 2014-11-26 Led driver circuit and led lighting device WO2016084144A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2014/081171 WO2016084144A1 (en) 2014-11-26 2014-11-26 Led driver circuit and led lighting device
JP2016561125A JP6231224B2 (en) 2014-11-26 2014-11-26 LED driver circuit and LED lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/081171 WO2016084144A1 (en) 2014-11-26 2014-11-26 Led driver circuit and led lighting device

Publications (1)

Publication Number Publication Date
WO2016084144A1 true WO2016084144A1 (en) 2016-06-02

Family

ID=56073768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081171 WO2016084144A1 (en) 2014-11-26 2014-11-26 Led driver circuit and led lighting device

Country Status (2)

Country Link
JP (1) JP6231224B2 (en)
WO (1) WO2016084144A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011233264A (en) * 2010-04-23 2011-11-17 Panasonic Electric Works Co Ltd Lighting device and head lamp device and vehicle using the same
JP2013099072A (en) * 2011-10-31 2013-05-20 Panasonic Corp Power supply device and led driving device
JP2013110840A (en) * 2011-11-21 2013-06-06 Panasonic Corp Power-supply device, lighting device, lighting fixture, and vehicle

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6114582B2 (en) * 2013-03-14 2017-04-12 株式会社小糸製作所 Light source control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011233264A (en) * 2010-04-23 2011-11-17 Panasonic Electric Works Co Ltd Lighting device and head lamp device and vehicle using the same
JP2013099072A (en) * 2011-10-31 2013-05-20 Panasonic Corp Power supply device and led driving device
JP2013110840A (en) * 2011-11-21 2013-06-06 Panasonic Corp Power-supply device, lighting device, lighting fixture, and vehicle

Also Published As

Publication number Publication date
JPWO2016084144A1 (en) 2017-05-25
JP6231224B2 (en) 2017-11-15

Similar Documents

Publication Publication Date Title
US9350241B2 (en) Buck converter and control method therefor
JP6262557B2 (en) VEHICLE LAMP, ITS DRIVE DEVICE, AND CONTROL METHOD THEREOF
JP5046791B2 (en) LED drive circuit
US9462647B2 (en) Lighting device, head light and vehicle
JP5714976B2 (en) Semiconductor light source lighting circuit
US20140055031A1 (en) Leakage current detection circuit, semiconductor apparatus, led illumination apparatus, and vehicle
JP6138354B2 (en) Load drive circuit and load short circuit detection circuit
JP2013045518A (en) Lighting device, headlight lighting device, headlight using the same, and vehicle
JP6203020B2 (en) Battery pack having charge / discharge switch circuit
JP6491414B2 (en) Vehicular lamp driving device and vehicular lamp driving method
US20180159526A1 (en) Switching element driving device
JP2013229384A (en) Led driving circuit, illuminating device, and illuminating device for vehicle
JP6171754B2 (en) LED lighting device and LED lighting device
JP6231224B2 (en) LED driver circuit and LED lighting device
JP6243063B2 (en) LED driver circuit and LED lighting device
JP6574743B2 (en) Power circuit
JP2014021634A (en) Rush current suppression circuit
JP6249549B2 (en) Vehicle lighting
WO2016079878A1 (en) Led driver circuit, led lighting device, and method for controlling led driver circuit
WO2016079877A1 (en) Led driver circuit, led lighting device, and method for controlling led driver circuit
JP2017103961A (en) Voltage conversion circuit
JP6451612B2 (en) Power supply control device
JP2017070204A5 (en)
JP2023161485A (en) Lighting device and illuminating device
JP6323200B2 (en) Vehicle headlamp device and constant voltage supply device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14907031

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016561125

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14907031

Country of ref document: EP

Kind code of ref document: A1