WO2016084138A1 - レーザ照射装置,情報記録装置及び加工装置 - Google Patents
レーザ照射装置,情報記録装置及び加工装置 Download PDFInfo
- Publication number
- WO2016084138A1 WO2016084138A1 PCT/JP2014/081137 JP2014081137W WO2016084138A1 WO 2016084138 A1 WO2016084138 A1 WO 2016084138A1 JP 2014081137 W JP2014081137 W JP 2014081137W WO 2016084138 A1 WO2016084138 A1 WO 2016084138A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- spatial light
- information recording
- light modulator
- modulation pattern
- bitmap
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/04—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using optical elements ; using other beam accessed elements, e.g. electron or ion beam
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/073—Shaping the laser spot
Definitions
- the present invention relates to a laser irradiation apparatus, and an information recording apparatus and a processing apparatus that perform information recording using the laser irradiation apparatus.
- an information recording apparatus for recording information using a laser irradiation apparatus for example, as in Patent Document 1, using a short pulse laser and a spatial light modulator, a transparent medium such as quartz glass is used. It is known to record information by forming minute modified regions having different optical characteristics such as the refractive index from the surroundings.
- Patent Document 2 describes a laser processing method capable of performing processing over a wide range of a processed surface of a workpiece and a laser processing apparatus to which the laser processing method is applied.
- a modulation pattern for realizing a plurality of basic beam patterns and a modulation pattern for moving the beam pattern to a predetermined processing position are prepared separately, and these are added together to modulate the phase, resulting in mechanical It is described that a wide range of processing is possible without using a stage.
- As the modulation pattern for movement movement patterns in a plane orthogonal to the optical axis and in a direction parallel to the optical axis are prepared and combined to move to a desired position.
- Patent Document 3 describes an example in which modulation patterns corresponding to two or more basic beam patterns are arranged in parallel on a spatial light phase modulator and a plurality of basic figures are processed simultaneously. At this time, it is described that a modulation pattern having a condensing effect is added to each modulation pattern so that the basic beam pattern does not overlap. It is described that by changing the focal length of the condensing pattern, the condensing position of the beam pattern formed through the subsequent optical system can be moved in a direction parallel to the optical axis.
- a spatial light modulator is used as in Patent Document 1, incident laser light can be shaped into an outgoing beam having a desired shape.
- a beam pattern in order to realize a desired beam shape (hereinafter referred to as a beam pattern), there is a problem that it takes time to calculate a modulation pattern to be presented to the spatial light modulator.
- “Present” means that data for determining the modulation amount for each pixel of the spatial light modulator is input to the spatial light modulator, and the data for all the pixels is set in the spatial light modulator ( This is distinguished from storing necessary data in an external recording medium.
- the calculation of a modulation pattern for realizing a high-accuracy beam pattern using a spatial light phase modulator and a Fourier transform lens involves the inverse of the Fourier transform for a matrix having the number of pixels constituting the spatial light phase modulator.
- a method of repeatedly performing the conversion is used.
- the calculation of the phase modulation pattern to form a complex beam pattern with hundreds of spots is several tens of seconds to several minutes. It may take time.
- the calculation time of the modulation pattern is large relative to the response time of the spatial light modulator and the repetition frequency of the laser pulse, the latter will limit the processing speed.
- it is more difficult to shorten the calculation time of a modulation pattern if a beam pattern composed of a complex shape or a beam pattern composed of a large number of spots is to be realized with high accuracy. Therefore, the modulation presented to the spatial light modulator when irradiating many times while changing the shape of a beam pattern with many spots on one medium, or when performing various processing on many media continuously. If pattern calculation is performed each time, the production volume per unit time decreases, which may lead to problems such as cost increase.
- the calculation time of a modulation pattern for obtaining a desired quality greatly depends on the shape of the beam pattern. For this reason, there is a possibility that irradiation at a fixed interval may not be possible, and there may be a problem that production throughput fluctuates and production line management becomes difficult.
- a typical example of such a use is an application for recording data in a recording medium.
- a minutely modified region is formed at an arbitrary position on a lattice point on an imaginary plane inside, and a portion where the minutely modified region is formed is bit 1 and a portion where no minutely modified region is formed is bit 0 Assuming that digital data is recorded.
- a modulation pattern necessary for realizing a basic beam pattern for collectively irradiating a total of 36 bits of vertical 6 bits and horizontal 6 bits is calculated and recorded in a storage device.
- the required basic beam pattern is 2 to the 36th power, or about 68.7 billion.
- the time for calculating in advance such a large number of modulation patterns may be enormous.
- recording capacity If the number of pixels of the spatial phase modulator is 800 ⁇ 600 and the modulation amount is 8-bit gradation, the amount of data necessary for one irradiation is 0.48 megabytes, so that all 36-bit modulation patterns can be recorded. Requires approximately 33 petabytes of capacity.
- the above pixel group consists of vertical I and horizontal J pixels.
- one modulation pattern is recorded as vertical I and horizontal matrix data.
- a binary bitmap having M ⁇ K elements is input to a bitmap input device.
- the modulation pattern generation device is controlled by the control unit, reads the modulation pattern as I ⁇ J matrix data from the recording unit, multiplies the corresponding bitmap value for each pixel group, and outputs the result to the spatial light modulator.
- the laser beam incident on the pixel group whose corresponding bitmap element is bit 1 is modulated
- the laser beam incident on the pixel group whose corresponding bitmap element is bit 0 is not modulated.
- the above modulation pattern is calculated so that light is condensed in a spot shape inside the medium.
- the laser beam incident on the spatial light modulator forms a minute modified region only at the position of the bit 1 of the bitmap element. It is possible to form M ⁇ K or more three-dimensionally distributed micro-denatured regions by repeating irradiation by appropriately controlling the optical system or moving the stage on which the medium is installed.
- the capacity of the recording apparatus is small, the determination of the modulation pattern to be presented to the spatial light modulator can be accelerated, and the energy of each spot is also constant. For this reason, a beam pattern in which a large number of spots with little energy variation is arranged can be formed at high speed and switched.
- FIG. 2 is a first embodiment illustrating the operation of the embodiment of FIG. 1.
- FIG. 3 is a second embodiment illustrating the operation of the embodiment of FIG. 1.
- FIG. FIG. 4 is a third embodiment showing the operation of the embodiment of FIG. 1.
- FIG. 6 is an embodiment showing an example of a bitmap for simultaneously forming condensing spots distributed three-dimensionally using the embodiment of FIG. 4.
- FIG. 3 is a first example showing a spatial light modulator and a light collecting unit using an optical system in the example of FIG. 1.
- FIG. FIG. 3 is a second embodiment showing the light condensing means by the spatial light modulator and the optical system in the embodiment of FIG. 1.
- FIG. 4 is a third embodiment showing the light condensing means by the spatial light modulator and the optical system in the embodiment of FIG. 1.
- 1 is an embodiment of the present invention using a tape-shaped recording medium as a medium.
- This is an embodiment of the present invention using a plate-like recording medium as a medium.
- dots equal to or greater than the number of pixel groups are processed or recorded without moving the stage.
- FIG. 1 is a first embodiment showing a basic configuration of a laser irradiation apparatus, an information recording apparatus, and a processing apparatus of the present invention.
- L is a laser light source
- SLM is a spatial light modulator
- OP is an optical system
- MEMORY is a recording device
- CTL is a control device
- BITMAPIN is a bitmap data input device
- PG is a modulation pattern generation device
- SM is a medium.
- BITMAP-MATRIX is a bitmap matrix input to the bitmap data input device.
- SLM-FRAME indicates the frame of the spatial light modulator
- PIXG (2, 2) indicates one pixel group composed of I ⁇ J pixels of the spatial light modulator.
- the parentheses in the above PIXG (2,2) indicate the position of the pixel group, that is, the vertical and horizontal coordinates.
- the upper left pixel group is PIXG (1,1), and the first number is the line, that is, the vertical direction.
- the coordinates, the next number indicates the row, that is, the horizontal coordinate.
- the coordinates are indicated in parentheses.
- the recording device MEMORY records a modulation pattern MP1 used for setting in a pixel group.
- This modulation pattern MP1 is a matrix having I ⁇ J elements, and is presented to the corresponding pixel group of the spatial light modulator when the bitmap element input to the bitmap input device is 1.
- the modulation pattern MP1 is set in the pixel group PIXG (2,2) in the figure.
- the laser beam incident on the pixel group PIXG (2, 2) is modulated, and a spot-like condensing point is generated at a predetermined position of the medium, for example, a position on a plane orthogonal to the optical axis.
- the control device CTL performs control such as operation of components constituting the laser irradiation device, position adjustment of the medium, and synchronization with each other for operations described later. Although control of the position of the medium is omitted in the figure, it is performed by controlling the stage.
- Specific control objects of the control device CTL include an operation of inputting a modulation pattern to be set in a pixel group to the recording device MEMORY, an operation of inputting a bitmap to the bitmap input device, and a modulation pattern generation device PG from the bitmap.
- This includes generating modulation patterns and presenting them to the spatial light modulator SLM, laser irradiation, and focus adjustment of the optical system.
- the size of the pixel group is the energy threshold at which the energy at the condensing point of this condensing spot forms a micro-modified region (hereinafter referred to as a dot in the text and DOT in the figure). Decide to be higher. For convenience, a region that does not form a microdenatured region is described as a space in the text and as SPACE in the figure.
- the value of each bit that is 1 or 0 is multiplied by the modulation pattern MP1 read from the recording apparatus and then presented to the spatial light modulator.
- the rectangular area that is a part of the frame constituting the spatial light modulator SLM is defined as a pixel group.
- the collection is performed so that a micro-degeneration area can be formed by the spatial light modulation and the action of the optical system OP.
- it is only necessary to shine so it is not limited to a rectangle, but may be a line or a circle.
- the data amount of one modulation pattern is Z ⁇ I ⁇ J bits, where the gradation of one pixel of the spatial light modulator is 2 to the Z power.
- the number of pixels of the spatial phase modulator is 800 ⁇ 600
- the modulation amount is 8-bit gradation
- I and J are 20, and the plane on which the beam is focused inside the medium, that is, the number of layers is 16, is collected.
- 16 types of modulation patterns with different distances in the optical axis direction of the light spot are prepared, it is only 20 ⁇ 20 ⁇ 16 ⁇ 8 bits, that is, 6.4 kbytes.
- the number of pixel groups is 40 ⁇ 30, that is, 1200. That is, with a recording capacity as small as 6.4 kilobytes, a maximum of 1200 micro-modified regions can be formed on each of 16 planes with the position in the optical axis direction of the medium fixed. If the amount of light applied to the spatial light modulator is not sufficiently uniform, or if the aberration of the optical system is a problem, it may be necessary to optimize the modulation pattern for each pixel group. .
- the data amount of the modulation pattern to be recorded is small. In the above example, it is 1200 times larger than 6.4k bytes, so it is 6.7 megabytes. In either case, the amount is very small compared to the capacity of a modern recording apparatus, so it is possible to use a high-speed semiconductor memory instead of a low-speed hard disk or optical disk.
- the calculation after the dot arrangement to be recorded is given as a bit map can be performed by multiplying the modulation pattern of the recorded pixel group by 1 or 0, it can be processed at a very high speed. Therefore, as in the prior art, a large number of bits can be recorded at once without being limited by the recording capacity and calculation time of the basic pattern. Furthermore, since one spot is formed by light from one pixel group, there is an advantage that the spot energy can be made constant regardless of the number of spots.
- the maximum number of dots that can be formed simultaneously is the number of pixel groups.
- the number of pixel groups is a value obtained by dividing the number of pixels of the spatial light modulator by the number of pixels constituting the pixel group.
- the number of pixel groups is 40 ⁇ 30, that is, 1200, and in this example, a maximum of 1200 dots can be recorded simultaneously.
- the description will be made assuming that the size of the pixel group is constant regardless of the location on the spatial light modulator.
- the intensity of the laser light decreases at the periphery of the spatial light modulator.
- the energy required for dot formation can be condensed by increasing the size of the pixel group at the periphery.
- modulation patterns having different sizes are prepared in accordance with the size of the pixel group.
- SLM-PATTERN indicates the modulation pattern presented to the pixel group PIXG (S, T) on the spatial light modulator.
- the modulation pattern MP1 is presented to PIXG (2,2) whose corresponding bitmap matrix element is 1, so SLM-PATTERN (2,2) is MP1.
- step STEP3 when switching of the modulation values of the pixels of the spatial light modulator is completed, the spatial light modulator SLM is irradiated with laser light.
- the laser light incident on the spatial light modulator forms dots only at positions where the bit map value is bit 1.
- the medium is moved in a direction parallel to or orthogonal to the optical axis on a stage or the like, and the laser irradiation is performed according to the next bit map after returning to STEP1. Data is recorded and processed by continuing the series of operations described above.
- each step has been explained in time series for the sake of clarity.
- modifications such as bit map input, presentation to the spatial light modulator, and laser irradiation in a pipeline to increase the speed. It is.
- step STEP2 If an appropriate modulation pattern is selected and used according to the light depth, the beam according to the bitmap pattern can be condensed at different depths without moving the medium in the optical axis direction. It is. In this case, since movement in the optical axis direction by the stage can be omitted, there is an advantage that data recording or processing time can be shortened.
- the bit 0 part is not modulated.
- the laser beam that has passed through the pixel group that was not modulated may be condensed to some extent inside the medium, and the bit 0 and bit 1 discrimination may be adversely affected.
- the case where the laser beam condensed for forming 1 prevents the formation of dots is also conceivable. In such a case, by using the embodiment shown in FIG. 3, it is possible to apply modulation different from that of bit 1 to bit 0 so that the above-described adverse effects do not occur.
- the bitmap matrix element BITMAP (2,2) is 1, and BITMAP (2,3) is 0, so the pixel group PIXG (2,2) in the figure has a modulation pattern MP1.
- the modulation pattern MP0 is set in PIXG (2, 3).
- the modulation pattern MP0 for example, it is set so that the light is condensed before the medium and diffuses in the medium, or a modulation pattern that condenses in the air outside the medium is calculated in advance. Prepare it. Specifically, it depends on the optical system to be used, and will be described in the examples described later.
- step STEP3 when switching of the modulation values of the pixels of the spatial light modulator is completed, the spatial light modulator SLM is irradiated with laser light.
- the medium is moved in a direction parallel to or orthogonal to the optical axis on a stage or the like, and the laser irradiation is performed according to the next bitmap after returning to STEP1.
- Data is recorded and processed by continuing the series of operations described above.
- the laser light incident on the pixel group of the spatial light modulator is condensed inside the medium when the value of the corresponding bitmap element is 1, and when the value of the corresponding bitmap element is 0, the medium It is modulated so as not to denature it.
- each step has been described in time series for the sake of easy understanding. However, it is possible to make modifications such as speeding up the pipeline input, presentation to the spatial light modulator, and laser irradiation in a pipeline. This is the same as the second embodiment.
- the operation steps are described using an example in which only MP1 is used as a modulation pattern for condensing light.
- modulation patterns having different depths of condensing points are recorded in a plurality of memory devices MEMORY. If an appropriate modulation pattern is selected and used in step STEP2 according to the desired focusing depth, the beam corresponding to the bitmap pattern is focused at different depths without moving the medium in the optical axis direction. Of course you can do it. In this case, since movement in the optical axis direction by the stage can be omitted, there is an advantage that data recording or processing time can be shortened.
- FIG. 4 is a third embodiment showing the operation of the embodiment of FIG. Although this embodiment can be used for both data recording and processing, it is an embodiment capable of increasing the speed especially when processing three-dimensionally inside the medium.
- a modulation pattern in which spots are condensed at different depths of the medium is prepared as MP-1, if a modulation pattern in which spots are condensed at different depths of the medium. It can be formed by irradiation, and is suitable, for example, for applications in which a three-dimensional curved surface is processed inside the medium. Although the description is omitted, in this embodiment as well, as in the previous embodiment, a dedicated modulation pattern is prepared when the bit of the bitmap is 0 and no focused spot is formed, and the medium is not adversely affected. Of course it can be done.
- FIG. 5 shows an example of the bitmap pattern used in FIG.
- P being 5
- M and K being 5
- the present invention is not limited to these values, and more planes and pixel groups are used. Of course, it is possible to form a smooth and complex three-dimensionally distributed beam pattern.
- FIG. 6 shows an embodiment in which a spatial light phase modulator that modulates only the phase is used as the spatial light modulator SLM in the embodiment of FIG.
- This figure shows only the SLM, OP, and SM parts from the laser to the medium in FIG.
- FIG. 6 shows an example in which a transmissive spatial light phase modulator is used, it is needless to say that a similar embodiment can be configured by a reflective type.
- the lens LENS1, the mask MASK, and the lens LENS2 are installed on the right side of the spatial light phase modulator (laser beam traveling direction), and the lenses LENS3 and LENS4 are on the right side, and the medium SM is on the right side. is there.
- variable aperture VAP installed between the lenses LENS3 and 4 is used to adjust the depth of focus of the optical system. By reducing the aperture, the in-focus range is increased and the surrounding dots are not lost. Use to do. However, if the aperture is too large, high frequency components are lost and the image formation state of the dots deteriorates.
- the mask MASK is placed at a position away from the lens LENS1 by its focal length f1. For this reason, of the light transmitted through the spatial light phase modulator SLM, the 0th order light that is not modulated is condensed at almost one point at the position of the mask.
- the mask is parallel plane glass, and a material that reflects light, such as metal, is deposited on a region SPOT at the center of the mask. This cuts the zero-order light.
- the lens LENS2 set on the right side of the mask is set at a position away from the mask by the focal length f2, and the frame image of the phase modulator from which the zero-order light is removed at a position separated by the distance f2 on the right side of the lens LENS2.
- the lens LENS3 is set on the right side of LENS2 at a position separated by the sum of the focal length f2 of the lens 2 and the focal length f3 of the lens LENS3.
- the lens LENS4 is disposed on the right side of the lens LENS3, with the sum of the focal lengths of the lenses LENS3 and LENS4, and the distance between LENS4 and the medium surface is set to f4-Dz.
- f1 and f2 are equal and f3 is larger than f4
- the beam pattern image is reduced to 1 / f3 / f4 and formed inside the medium SM.
- f3 / f4 is the reduction magnification MAG. If this embodiment is applied to the embodiment of FIG. 1, a beam pattern having a maximum of M ⁇ K spots is formed in the medium according to the input bitmap, and dots are formed at the spot of the spot. .
- the pixel group on the frame of the spatial light phase modulator is composed of I ⁇ J pixels, and the phase can be changed for each individual pixel with respect to the incident light. is there.
- the phase modulation amount for the pixel (Q, R) is calculated.
- Q and R are integers from 1 to I and 1 to J, respectively.
- MAG is the magnification of the optical system as described above, and the distance Dz is the depth from the surface of the medium at which the light is focused inside the medium.
- Vxy be the intersection when a perpendicular line is dropped from the condensing point V to the plane formed by the pixel group, and let Dxy (Q, R) be the distance from Vxy to the center of the pixel (Q, R).
- Dxyz (Q, R) ((MAG ⁇ Dz) 2 + Dxy (Q, R) 2 ) 0.5 (1) It can be calculated by the formula
- the modulation amount ⁇ (Q, R) in the pixel (Q, R) is expressed as follows: ⁇ (Q, R) and 2 ⁇ ⁇ Dxyz (Q, R) / where the wavelength of the laser is ⁇ and the refractive index of the medium is n.
- the sum of (MAG ⁇ ( ⁇ / n)) may be determined to be an integer multiple of 2 ⁇ .
- the integer NI is adjusted so that the phase modulation amount ⁇ does not exceed the phase modulation amount that can be controlled by the spatial light phase modulator to be used, and is increased or decreased by 2 ⁇ to be within the control range Of course, it is only necessary to do so. If the phase modulation amount that can be set by the spatial light phase modulator is quantized into a digital value, it may be set to a value closest to the value obtained by calculation.
- the correction may be performed by making Dz in Equation (1) ⁇ (Q, R) ⁇ Dz and making the correction coefficient ⁇ have pixel (Q, R) dependency.
- the distance from the virtual focusing point to the vertical axis of the spatial light phase modulator that is, the distance of the pixel from the optical axis of the pixel group is Dxy
- the larger the Dxy the deeper the focusing position in the medium.
- the phase is corrected so that becomes shallow, that is, ⁇ (Q, R) decreases.
- ⁇ (Q, R) can be calculated as the ratio of tan ⁇ because tan ⁇ is Dxy / Dz, where ⁇ 0 is the incident angle of the light ray on the medium in air and ⁇ n is the angle in the medium.
- ⁇ 0 is arctan (Dxy / Dz)
- ⁇ n is arcsin ((sin ⁇ 0) / n)) from Snell's law. Therefore, ⁇ (Q, R) is multiplied by a function of Dxy and Dz as follows.
- modulation patterns with different values of Dz are required as (1), (2) and Accordingly, it may be calculated from the equation (3) and recorded in the recording device.
- phase modulation pattern for forming a spot can be set for each spatially independent pixel group.
- the phase modulation pattern can be easily calculated from the above formulas (1) and (2) and, if necessary, the formula (3). Therefore, it is possible to switch at high speed in accordance with a bitmap that is calculated in advance and recorded in the recording device and input. Further, in this embodiment, the zero-order light is removed by the mask MASK, and then the laser light is guided to the reduction optical system by the lenses LENS3 and LENS4.
- the lens LENS4 has a feature that it is not easily damaged by the 0th-order diffracted light when the rear focal plane of the lens is close to the lens, like an objective lens of a microscope using a large number of lens groups. For this reason, spots can be formed inside the medium with a high-performance lens, and variations among a large number of spots can be suppressed.
- Lenses LENS1 and LENS2 shown on the right side of the lens array are convex lenses with focal lengths f1 and f2, respectively, for reducing and projecting the condensing pattern that can be formed in the imaging part of the lenses that make up the lens array onto the medium as a real image.
- the difference from the above-described embodiment is that the light is not condensed by the spatial light modulator itself but is condensed by the microlens array.
- the distance between the lens of the microlens array and the lens LENS1 is set to the sum of the focal lengths f0 and f1, and the distance between the lenses LENS1 and LENS2 is also the sum of the focal lengths f1 and f2. Set to sum.
- both bit 1 and bit 0 are modulated as in the embodiment of FIG. That is, when the bit of the given bitmap is 1, the modulation pattern MP1 is set in the corresponding pixel group of the spatial light phase modulator, and when the bit is 0, the modulation pattern MP0 is set.
- the method for creating the modulation patterns MP0 and MP1 in this embodiment will be described below.
- the light from the pixel group is placed on the optical axis of each microlens by the microlens MICRO-LENS (S, T) at a position away from the lens LENS1 on the left by the focal length f1.
- the modulation pattern is to be condensed.
- the phase modulation amount of all the pixels in the pixel group may be set to a constant amount.
- MP0 is a modulation pattern that minimizes the energy collected by the microlens.
- the energy of the light that can be concentrated on the spot can be increased as compared with the case where the modulation using only diffraction is used.
- the optical system and the modulation pattern may be adjusted so as to be equal to or lower than the processing threshold for modifying the medium.
- the spot energy is increased using an ultra-short pulse laser, non-linear processing with multiphoton absorption is performed, and therefore it is easy to avoid denaturation at energy below the processing threshold.
- the spot image once formed is reduced and projected, the spot image may be blurred if the depth inside the medium is greatly changed for each spot. Therefore, it is suitable for the purpose of condensing spots on the same plane.
- the medium In order to change the spot condensing position inside the medium all at once, the medium is moved in the optical axis direction, and the distance between the medium and the lens LENS2 is changed.
- digital data is recorded on a plurality of layers, it is only necessary to form a plurality of dots collectively from the back layer on the same plane, which is suitable for use in this embodiment.
- a modulation pattern for correction according to the recording depth is added to the above modulation pattern, or the lens LENS2 is moved by moving the lens LENS2. It is possible to use an objective lens of a microscope with a spherical aberration correction function as another lens LENS2 that changes the distance of the lens, but these methods can be handled by engineers with knowledge of optics, so details are omitted. To do.
- FIG. 8 is another embodiment showing the light condensing means by the spatial light modulator and the optical system in the embodiment of FIG.
- a feature of this embodiment is that a micromirror device that performs intensity modulation is used as a spatial light modulator.
- a micromirror device is a device in which small mirrors are arranged vertically and horizontally as pixels constituting a frame, and the reflection direction of incident light can be switched between two angles for each pixel by a signal given from the outside.
- the above two angles are described as + ⁇ and ⁇ with respect to the normal line of the frame, but the embodiment of the present invention is similarly configured even if it is not symmetrical with respect to the normal line. can do.
- the micromirror device as described above can be used as a spatial light intensity modulator that modulates the intensity of incident light by individual pixels when observed from one of the two reflection directions. Since it is a mirror, it has the advantages of high light utilization efficiency and high speed switching of the modulation pattern compared to a spatial light modulator using liquid crystal.
- the frame structure of the micromirror device is shown as MIRROR-ARRAY-FRAME.
- modulation is performed for each pixel group PIXG (S, T) consisting of spatially independent I ⁇ J pixels (micromirrors). That is, laser light incident on the same pixel group is reflected in either the angle + ⁇ or ⁇ direction.
- the modulation pattern of each pixel group is determined from the input bitmap elements.
- the modulation patterns recorded as the modulation patterns MP0 and MP1 in this embodiment are set to values that control the reflection directions of the I ⁇ J mirrors collectively to ⁇ or + ⁇ , as is apparent from the above. That's fine.
- the component arrangement of the embodiment shown at the bottom of the figure is a view observed from above. As shown in the drawing, when the light emitted from the laser L is incident on the micromirror device MIRROR-ARRAY, it is reflected in one of the angles + ⁇ and ⁇ set for each pixel group.
- the medium is moved in the direction orthogonal to the optical axis or moved in the optical axis direction to change the distance between the medium and the lens LENS2.
- the wave front is not disturbed by the denatured region formed earlier, if irradiation is performed from the back.
- High quality processing or recording is possible.
- It is possible to use or control the wavefront by installing a spatial light phase modulator in the optical path such as in front of the lens LENS1, but these methods can be used by engineers with optical knowledge. Details are omitted because it is possible.
- aberration correction is performed using a spatial light phase modulator, the aberration correction pattern presented to the modulator does not need to be changed every time the laser beam pattern is switched. There is no adverse effect on the fast switching speed of the laser pattern depending on the speed.
- the recording apparatus By irradiating the laser pulse while rotating the spool, it is not necessary to irradiate the laser while moving the medium on the XY stage, so that the recording apparatus can be configured at low cost.
- an example is shown in which data blocks are arranged in a line.
- the medium is moved in one direction on a single axis stage after recording to the end of the tape. Of course, it can be recorded in multiple columns. Even in this case, it is not necessary to move the medium on the stage for each irradiation, and it is only necessary to move the medium every time it comes to the end of the tape.
- the shape of the medium in the present invention is not limited to the tape as described above.
- a plate-like medium can be used as follows.
- FIGS. 9 and 10 an example in which an image is recorded on a plate-like medium is shown.
- a plate-shaped medium it is necessary to move the medium on the stage, but there is an advantage that the possibility of damage due to folding is low compared to the case of a tape.
- multi-layer recording is possible even with a tape, but in the case of a plate-like medium, it is easy to increase the number of layers using the thickness.
- a two-dimensional barcode can be used for recording. In that case, numbers and characters can be recorded as digital information with error correction in accordance with the two-dimensional barcode standard.
- byte information can be a 2-digit hexadecimal number from 00 to FF, or if there are many character types, 32 types of characters can be used to change the binary number. It is possible to record a plurality of byte information by converting them into characters. In such a case, since the file is divided and recorded in a plurality of two-dimensional barcodes, the file name and the total number of the two-dimensional barcodes used together with the file format as header information in each two-dimensional barcode part. It is convenient to record whether it is the second two-dimensional barcode. By recording a combination of special characters that rarely appear in normal text at the beginning and end of the header, it is possible to determine whether the information is text information or binary data.
- FIG. 11 is an example assuming Example 2 using a modulation pattern for space, but it is needless to say that the same method can be applied to other examples such as Example 1 and 3 as easily understood.
- FIG. 11 there is no movement of the stage in four times at twice as much as the vertical and horizontal pitches of the condensing point to be irradiated at once, that is, the minimum pitch of dots formed in the medium.
- a 4 ⁇ 4 dot area which is a part of the irradiation area is shown.
- irradiation cycles show the irradiation cycle, bitmap pattern, arrangement of the modulation pattern on the spatial light modulator, the position of the focal point, and the arrangement of the micro-denaturation region on the medium when the irradiation cycle is completed.
- x indicates the focal point of the beam, and-indicates that the beam is not condensed.
- D indicates a dot, and S indicates a space.
- the dot pattern to be finally formed is sampled at twice the vertical and horizontal pitches in the bitmap pattern, and the focal point pitch is also set to double in the vertical and horizontal directions. is doing.
- the light collection position is shifted by the dot pitch on the plane orthogonal to the optical axis for each irradiation cycle.
- a modulation pattern that collects light may be prepared.
- the modulation amount necessary for the position of the light condensing point of the pixel group can be easily calculated from the equations (1) and (2).
- FIG. 8 in the sixth embodiment can also correspond to the embodiment in FIG.
- adjusting the dot pitch can be handled by changing the magnification of the optical system by changing the focal length of the lens to be used.
- a spatial phase modulator is installed on the Fourier plane of the lens constituting the optical system, and the phase inside the pixel group changes at a constant rate of change. By doing so, it becomes possible to shift the focal point of the pixel group by a certain amount due to the nature of Fourier transform.
- the number of divisions is not limited to four as in the above example, but may be other values. For example, if processing or recording is performed at a pitch of 3 times, it can be divided into 9 times, and the number of movements of the stage in the direction orthogonal to the optical axis can be reduced.
- a bitmap and recording for inputting to the apparatus whether or not to form a beam spot for each pixel group having no overlap on the frame of the spatial phase modulator. It can be determined at high speed by a small-capacity modulation pattern stored in the apparatus. For this reason, a beam pattern in which a large number of spots are arranged can be formed at high speed and switched. Furthermore, since each spot is formed by light from one pixel group, the spot energy is constant and does not change depending on the number of spots to be formed.
- the type of dot modification can be changed, for example, to change the refractive index, birefringence characteristics, or form a microscopic cavity called a void structure. it can. For this reason, depending on the purpose, it is possible to form a plurality of types of modification depending on one type or the location of the medium.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Optical Recording Or Reproduction (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
レーザ光源L,レーザ光源からのレーザ光に空間的に変調を与える空間光変調器SLM,レーザ光が照射される被照射体SMにレーザ光を集光する光学系OPとを有する装置で,空間光変調器SLMのフレームは,空間的に独立した重ならない複数のピクセルから成るピクセルグループPIXG(S,T)に分割され,ピクセルグループにセットされる変調量は外部から入力されるビットマップ行列で決定され,ビットマップ行列の各要素(BITMAP(S,T))がそれぞれのピクセルグループPIXG(S,T)に対応させるようにした。これにより,変調パターンの計算が単純化され,高速に処理ができる。
Description
本発明は,レーザ照射装置,及び当該レーザ照射装置を用いて情報記録を行なう情報記録装置及び加工装置に関する。
従来より,レーザ照射装置を用いて情報記録を行なう情報記録装置として,例えば,特許文献1のように,短パルスレーザと空間光変調器を用いて,石英ガラス等の透明な媒体の内部に,周囲と屈折率などの光学特性が異なる微小な変性領域を形成して情報の記録を行なうことが知られている。
一方で,特許文献2には被加工物の被加工面の広範囲に渡って加工を行うことができるレーザ加工方法及びそれを応用したレーザ加工装置が記載されている。複数の基本ビームパターンを実現するための変調パターンと,所定加工位置にビームパターンを移動するための変調パターンを別々に用意しておき,それらを加算して位相を変調することで,機械的なステージを用いずに広い範囲の加工が可能となると記載されている。移動するための変調パターンとしては,光軸と直交する平面内および光軸と平行な方向への移動パターンをそれぞれ用意して,組み合わせることで所望の位置への移動をする。
また,特許文献3には,空間光位相変調器上に2つ以上の基本ビームパターンに対応した変調パターンを並列に並べて,複数の基本図形を同時に加工する例が記載されている。このとき,基本ビームパターンに重なりが生じないように各々の変調パターンに集光作用を持つ変調パターンを加えることが記述されている。この集光パターンの焦点距離を変化させることで,後段の光学系を通じて結像されるビームパターンの集光位置を光軸と平行な方向に移動することが可能であると記載されている。
特許文献1のように,空間光変調器を用いると,入射したレーザ光を所望の形状を持つ出射ビームに整形することができる。しかしながら,所望のビームの形状(以下,ビームパターン)を実現するためには空間光変調器に提示するための変調パターンの計算に時間がかかるという課題があった。なお‘提示’とは,空間光変調器の各々の画素毎の変調量を決定するためのデータを空間光変調器に入力し,空間光変調器の内部に全画素のためのデータがセット(一時的に記憶)されることを意味するものとし,外部記録媒体に必要なデータを記憶することと区別する。
例えば空間光位相変調器とフーリエ変換レンズを用いて高精度なビームパターンを実現するための変調パターンの計算には,空間光位相変調器を構成するピクセル数の要素を持つ行列に対するフーリエ変換と逆変換を繰り返し行う方法が用いられる。我々が数値計算ソフトウエアを用いて通常のパーソナルコンピュータで計算したところ,数百点のスポットを持つような複雑なビームパターンを形成するための位相変調パターンの計算には数10秒から数分の時間がかかる場合があった。
空間光変調器の応答時間やレーザパルスの繰返し周波数に対して,変調パターンの計算時間が大きければ,後者によって加工速度が律速されてしまう。特に複雑な形状のビームパターンや多数のスポットから構成されるビームパターンを高精度に実現しようとすると,変調パターンの計算時間を短くするのはより困難となって来る。したがって,一つの媒体に多数のスポットを持つビームパターンの形状を変えながら何回も照射する場合や,連続して多数の媒体に対して様々な加工を行う場合に空間光変調器に提示する変調パターンの計算を毎回行うと単位時間辺りの生産量が低下し,コストアップなどの問題に繋がる恐れがある。さらに,一般に所望の品質を得るための変調パターンの計算時間がビームパターンの形状に大きく依存する。このため,一定間隔での照射ができない恐れがあり,生産スループットが変動し,生産ラインの管理が難しくなると言う問題も生じる恐れがある。
また,上記の特許文献2,3の方法によっても,微小変性領域を多数の決められた位置の中の複数の任意の場所に形成することは困難である。そのような用途の典型的なものとしてデータを記録媒体中に記録する応用が挙げられる。例えば,透明な記録媒体を考えてその内部の仮想的な平面上の格子点上の任意の位置に微小変性領域を形成し,微小変性領域を形成した部分をビット1,形成しないところをビット0としてデジタルデータを記録する場合を考える。この場合に縦6ビット,横6ビットの合計36ビットの領域を一括して照射する基本ビームパターンを実現するために予め必要な変調パターンを計算し,記憶装置に記録しておくことを考えてみる。必要な基本ビームパターンは2の36乗個すなわち約687億個となる。これだけの数の変調パターンを予め計算する時間も膨大になる恐れがある。また,記録容量の点でも問題が生じる。空間位相変調器のピクセル数を800×600とし,変調量を8ビット階調とすると,一回の照射に必要なデータ量は0.48メガバイトとなるため,36ビット全ての変調パターンの記録には,およそ33ペタバイトもの容量が必要となる。容易に判るように一括で記録するビット数を増加させると,変調パターンの記憶に必要な容量は2のべき乗で増加する。このようにデジタルデータの場合は,基本ビームパターンで形成できるビット数に対して計算時間や記録に必要な容量が2のべき乗で増加する。このため,基本ビームパターンを実現する変調パターンを予め計算して記憶装置に記録することに,特許文献2や3の方法を適用するのは困難である。
さらに,従来の方法では,空間位相変調器の同一ピクセルが複数のスポットの形成に関与しているため,形成されるスポットの数によって,一つのスポットに与えられるエネルギーが変化するという課題が生じる場合があった。スポットのエネルギーが一定でないと,媒体中に生じる変性領域の大きさや屈折率の変化などの性質にばらつきを生じる恐れがある。これが問題になる場合には形成するスポット数に応じてレーザ光源の強度を調整する手段が必要であった。
本発明の装置は,レーザ光源,空間光変調器,光学系,記録装置,制御装置,ビットマップデータ入力装置,変調パターン生成装置を含んで構成される。本装置では,空間光変調装置のフレームを空間的に独立した縦M,横K個のM×K個の領域(以下ピクセルグループ)に分割し,空間光変調器に提示する変調パターンを上記の空間的に独立したピクセルグループに対応した要素を持つビットマップをビットマップ入力装置に入力することで決定する。このとき,ビットマップの個々の要素の値が,対応するピクセルグループの変調パターンを決定する。それに従って,各々のピクセルグループ毎にスポット状の集光部を媒体内部に形成するか,あるいはしないかを決定する。以下の文で,より具体的に説明する。
上記ピクセルグループは,縦I,横J個のピクセルから構成されるとする。記録装置には,縦I,横Jの行列データとして変調パターンが1個記録されている。まず,M×Kの要素を持つ2値ビットマップをビットマップ入力装置に入力する。変調パターン生成装置は,制御部に制御されて,記録部からI×Jの行列データとして変調パターンを読み出し,ピクセルグループごとに対応するビットマップの値を乗じて,その結果を空間光変調器の対応するピクセルグループに提示する。この結果,対応するビットマップの要素がビット1であるピクセルグループに入射するレーザ光は変調をうけ,対応するビットマップの要素がビット0であるピクセルグループに入射するレーザ光は変調をうけない。
上記の変調パターンは媒体内部にスポット状に光が集光するように計算されたものである。こうして空間光変調器に入射されたレーザ光は,ビットマップの要素がビット1の位置にだけ微小変性領域を形成する。なお,光学系の制御あるいは媒体を設置したステージの移動などを適宜用いて照射を繰り返すことで,M×K個以上の3次元的に分布する微小変性領域を形成することが可能である。
上記によれば,入力するM×Kピクセルのビットマップを変更するだけで,任意の配置を持つ最大M×K個のスポットから成るビームパターンを形成できる。また,ビットマップを入力してから空間光変調器に提示する変調パターンの計算も単純で高速に処理ができる。さらに,一つのピクセルグループが一つのスポットを形成するので,個々のスポットのエネルギーが一定となり,形成するスポットの数に応じてレーザ光源の強度を調整する必要もない。用意する変調パターンもビームパターンによって変更する必要がないため記録装置の容量の増大の問題も回避できる。
このように,本願に拠れば,記録装置の容量が小さく,さらに,空間光変調器に提示する変調パターンの決定も高速化でき,個々のスポットのエネルギーも一定である。このためエネルギーのばらつきの少ない多数のスポットが配置されたビームパターンを高速に形成し,切り換えていくことが可能となる。
以下,本発明の実施の形態を図面に基づいて詳細に説明する。なお,実施の形態を説明するための全図において,同一の部材には原則として同一の符号を付し,その繰り返しの説明は省略する。但し,光学レンズなどを複数の実施例で用いる場合には,異なる実施例において焦点距離などが異なるレンズであっても,同一の記号LENS1などを用いることがある。
図1は,本発明のレーザ照射装置,情報記録装置及び加工装置の基本的な構成を示す第1の実施例である。図においてLはレーザ光源,SLMは空間光変調器,OPは光学系,MEMORYは記録装置,CTLは制御装置,BITMAPINはビットマップデータ入力装置,PGは変調パターン生成装置,SMは媒体を示す。BITMAP-MATRIXは,ビットマップデータ入力装置に入力されるビットマップ行列である。また,SLM-FRAMEは空間光変調器のフレームを示しており,PIXG(2,2)は,空間光変調器のI×Jピクセルから構成された一つのピクセルグループを示している。なお,上記PIXG(2,2)の括弧内はピクセルグループの位置,すなわち縦横の座標を示しており,左上のピクセルグループをPIXG(1,1)とし,先頭の数字が行,すなわち縦方向の座標,次の数字が列,すなわち横方向の座標を示している。BITMAP-MATRIXの要素などの座標を示す場合も同じように括弧で座標を示す。記録装置MEMORYには,ピクセルグループにセットするのに使用する変調パターンMP1が記録されている。この変調パターンMP1はI×J個の要素を持つ行列であり,ビットマップ入力装置に入力されるビットマップの要素が1の場合に空間光変調器の対応するピクセルグループに提示される。たとえば図中のビットマップ行列の要素BITMAP(2,2)は1なので,図中のピクセルグループPIXG(2,2)には変調パターンMP1がセットされる。この結果,ピクセルグループPIXG(2,2)に入射されるレーザビームが変調を受けて,媒体の所定の位置,例えば光軸と直交する平面上の位置にスポット状の集光点が生じる。上記において制御装置CTLは,後述する動作のためにレーザ照射装置を構成する部品の動作,媒体の位置調整,互いの同期を取ると言った制御を行う。なお,媒体の位置の制御は図では省略しているが,ステージを制御することによって行う。制御装置CTLの具体的な制御対象としては,ピクセルグループにセットする変調パターンを記録装置MEMORYに入力する動作,ビットマップ入力装置へのビットマップの入力動作,そのビットマップから変調パターン生成装置PGが変調パターンを生成して空間光変調器SLMに提示する動作,レーザの照射の他,光学系のフォーカス調整などである。なお,ピクセルグループの大きさは,この集光スポットの集光点でのエネルギーが媒体内部に微小変性領域(以下,文中ではドット,図中ではDOTと記載する)が形成されるエネルギーしきい値より高くなるように決めておく。なお,微小変性領域を形成しない領域を便宜上文中ではスペース,図中ではSPACEと記載する。
ビットマップが入力されると,1か0である各ビットの値が,記録装置から読み出された変調パターンMP1と乗算されてから空間光変調器に提示される。これにより,入力されたビットマップのビットが0であるピクセルグループでは,変調が起きないので,その部分にはスポット状のビームが形成されず,微小変性領域も形成されない。なお,本図では,空間光変調器SLMを構成するフレームの一部である矩形の領域をピクセルグループとしたが,空間光変調および光学系OPの作用によって,微小変性領域が形成できるように集光すればよいので,矩形ではなく,線状や円状などでもよいことはもちろんである。具体的な変調パターンの作成方法や光学系については後述の実施例で説明する。
本実施例によれば,最大M×K個のスポットを持つ任意のビームパターンを一つの変調パターンで実現できるので,非常に小さな記録容量の記録装置を用いて実現できる。一つの変調パターンのデータ量は空間光変調器の1ピクセルの階調を2のZ乗とするとZ×I×Jビットである。たとえば空間位相変調器のピクセル数を800×600とし,変調量を8ビット階調として,I,Jをそれぞれ20とし,媒体内部でビームが集光する平面,つまり層の数を16として,集光点の光軸方向の距離の異なる16種類の変調パターンを用意すると,20×20×16×8ビットすなわち6.4kバイトに過ぎない。この例ではピクセルグループの数は40×30,つまり1200となる。つまり,6.4kバイトという少ない記録容量で,媒体の光軸方向の位置を固定したまま16層を成す平面上に各々最大1200個の微小変性領域を形成できることになる。なお,空間光変調器に照射される光量が十分に均一でない,あるいは,光学系の収差が問題になると云った場合には,ピクセルグループ毎に変調パターンを最適化する必要が生じる場合もあり得る。このような場合でも記録しておくべき変調パターンのデータ量は少ない。上記の例では,6.4kバイトの1200倍であるから,6.7メガバイトとなる。いずれの場合でも現代の記録装置の容量に比べて大変小さい量であるから低速なハードディスクや光ディスクではなく,高速な半導体メモリを利用することが可能となる。
また,記録したいドット配置がビットマップとして与えられた後の演算も,記録していたピクセルグループの変調パターンと1もしくは0の乗算でよいため非常に高速な処理が可能である。このため従来のように,基本となるパターンの記録容量や計算時間に制限されることなく一括して多数のビットの記録が可能である。さらに一つのスポットを一つのピクセルグループからの光で形成するので,スポットのエネルギーをスポットの数に寄らず一定にできるというメリットもある。
これまでの説明から判るように,同時に形成できるドットの最大数は,ピクセルグループの数になる。ピクセルグループの数は,空間光変調器のピクセル数をピクセルグループを構成するピクセル数で割った値である。必要なメモリ容量を示す際に紹介した例では,ピクセルグループの数は40×30,つまり1200となり,この例では同時に最大1200ドットの記録ができることになる。
なお,本実施例および後述の実施例では,ピクセルグループの大きさは空間光変調器上の場所に寄らず一定として説明を行うが,例えば空間光変調器の周辺部ではレーザ光の強度が下がるような場合には,周辺部でピクセルグループの大きさを大きくして,ドットの形成に必要なエネルギーが集光されるようにすることもできる。この場合には,ピクセルグループの大きさに合わせて大きさの異なる変調パターンを用意することはもちろんである。
図2は,図1の実施例の動作を示す第1の実施例である。具体的な動作の流れを4つに分けて説明する。まず,最初のステップSTEP1では,所望のドット配置に対応した2値ビットマップをビットマップ入力装置に入力する。続くステップSTEP2では,空間光変調器に与える変調パターンを決定する。すなわち,制御部CTLが,記録装置からピクセルグループに対して用意した変調パターンを読み出し,変調パターン生成部がグループごとに対応するビットマップの値を乗じて,その結果を空間光変調器に提示する。この結果,対応するビットマップの値がビット1であるピクセルグループに入射するレーザ光は変調をうけ,対応するビットマップの値がビット0であるピクセルグループに入射するレーザ光は変調をうけない。なお, SLM-PATTERN(S,T)は,空間光変調器上のピクセルグループPIXG(S,T)に提示される変調パターンを示している。図2では対応するビットマップ行列の要素が1であるPIXG(2,2)には変調パターンMP1が提示されるので,SLM-PATTERN(2,2)はMP1となる。ステップSTEP3では,空間光変調器のピクセルの変調値の切り替えが完了したら空間光変調器SLMにレーザ光が照射される。こうして空間光変調器に入射されたレーザ光は,ビットマップの値がビット1である位置にだけドットを形成する。最後のステップSTEP4では,媒体をステージなどで光軸と平行あるいは直交方向に移動して,STEP1に戻って次のビットマップに従ってレーザ照射を行う。上記のような一連の動作を続けることで,データの記録や加工を行う。
ここでは説明を判りやすくするために各々のステップを時系列で説明したが,ビットマップの入力と空間光変調器への提示およびレーザ照射をパイプライン化して高速化するなどの変形ができることはもちろんである。
上記では一種類の変調パターンのみを利用する例を用いて動作のステップを説明したが,集光点の深さが異なる変調パターンを複数メモリ装置MEMORYに記録しておき,ステップSTEP2において所望の集光深さに応じて,適切な変調パターンを選択して利用すれば,媒体を光軸方向に移動させることなく,異なる深さにビットマップパターンに応じたビームを集光することができることはもちろんである。この場合は,ステージによる光軸方向の移動が省略できるので,データの記録あるいは加工時間を短縮できるというメリットがある。
なお,ステージの移動,あるいは変調パターンの切り替えにより集光位置を変えながら加工あるいは記録を行う場合にはレーザ側から見て媒体の奥の方からレーザの照射を行うようにすると,既に形成された微小変性領域によってレーザ光の波面が乱されないため,より品質の高い記録や加工を行うことが可能となる。
上記の実施例ではビット0の部分には変調を与えないようにした。しかし,レーザ光源,光学系や変調パターンの設計によっては変調しなかったピクセルグループを透過したレーザ光が媒体内部である程度集光してビット0とビット1との弁別に悪い影響を与えたり,ビット1の形成のために集光したレーザ光がドットを形成するのを妨げたりするような場合も考えられる。そのような場合には図3に示したような実施例を用いてビット0に対してもビット1とは異なる変調を与えて上記のような悪影響が出ないようにすることができる。
図3は,図1の実施例の動作を示す第2の実施例である。図3の実施例も基本的な動作ステップは図2と同様4つである。異なるのは,対応するビットマップの要素が0の場合にピクセルグループにセットする変調パターンMP0が記録装置に記憶されている点である。まず,最初のステップSTEP1では,所望のドット配置に対応した2値ビットマップをビットマップ入力装置に入力する。続くステップSTEP2では,空間光変調器に提示する変調パターンを変調パターン生成装置PGが決定する。このとき,入力されたビットマップを反転したビットマップを生成して用いる。STEP2の枠内に記載したように,ピクセルグループ(S,T)の変調パターンSLM-PATTERN(S,T)は,入力されたビットマップの要素BITMAP(S,T)と集光のための変調パターンMP1の積と,上記ビットマップを反転したビットマップの要素BITMAP-INV(S,T)とMP0との積の和で決定される。この結果,対応するビットマップの値がビット1であるピクセルグループに入射するレーザ光はMP1で変調をうけ媒体内部に集光し,対応するビットマップの値がビット0であるピクセルグループに入射するレーザ光は媒体に悪影響を与えないようにMP0で変調される。
たとえば図の右側に示した例では,ビットマップ行列の要素BITMAP(2,2)は1,BITMAP (2,3)は0なので,図中のピクセルグループPIXG(2,2)には変調パターンMP1がセットされ,PIXG(2,3)には変調パターンMP0がセットされる。ここで変調パターンMP0としては,たとえば媒体より手前で集光して,媒体中では拡散してしまうように設定するとか,あるいは,媒体を外れた空中に集光するような変調パターンをあらかじめ計算して用意すればよい。具体的には用いる光学系により異なるので後述の実施例中で説明する。ステップSTEP3では,空間光変調器のピクセルの変調値の切り替えが完了したら空間光変調器SLMにレーザ光が照射される。最後のステップSTEP4では,媒体をステージなどで光軸と平行あるいは直交方向に移動して,STEP1に戻って次のビットマップに従ってレーザ照射を行う。上記のような一連の動作を続けることで,データの記録や加工を行う。こうして空間光変調器のピクセルグループに入射されたレーザ光は,対応するビットマップの要素の値が1である場合は媒体内部で集光し,対応するビットマップの要素が0の場合は,媒体に変性を与えることがないように変調を受ける。
ここでは説明を判りやすくするために各々のステップを時系列で説明したが,ビットマップの入力および空間光変調器への提示とレーザ照射をパイプライン化して高速化するなどの変形ができることは図2の実施例と同様である。
また,本実施例でも集光する変調パターンとしてMP1のみを利用する例を用いて動作のステップを説明したが,集光点の深さが異なる変調パターンを複数メモリ装置MEMORYに記録しておき,ステップSTEP2において所望の集光深さに応じて,適切な変調パターンを選択して利用すれば,媒体を光軸方向に移動させることなく,異なる深さにビットマップパターンに応じたビームを集光することができることはもちろんである。この場合は,ステージによる光軸方向の移動が省略できるので,データの記録あるいは加工時間を短縮できるというメリットがある。
なお, 照射深さを変えて照射する場合には,レーザ側から見て媒体の奥の層からレーザの照射を行うようにすると,既に形成された微小変性領域によってレーザ光の波面が乱されないため,より品質の高い記録や加工を行うことが可能となることも前述の実施例と同様である。
図4は,図1の実施例の動作を示す第3の実施例である。本実施例は,データの記録にも加工にも利用できるが,特に媒体内部に3次元的に加工をする場合に高速化が可能な実施例である。
基本的な動作は,図2の実施例と同様であるが,本実施例では,複数のビットマップと複数の変調パターンMP-1, …, MP-Pを同時に使うことで,1回の照射で,P種類の深さの平面に各々最大M×K個のドットを形成できる。図2の実施例と原理は同じなので,ステップSTEP2における変調パターンの計算方法の違いについてのみ説明する。STEP2の枠内に記載したように,ピクセルグループ(S,T)の変調パターンSLM-PATTERN(S,T)は,ビットマップの対応するビットBITMAP(S,T,U)と変調パターンMP-Uとの積和で決定する。ここで上記Uは1からPまでの整数を表す。
本実施例において,MP-1, …, MP-Pとして媒体の異なる深さにスポットが集光する変調パターンを準備しておけば,3次元的に分布したレーザ集光パターンを一回のレーザ照射で形成することが可能となり,例えば媒体内部に3次元的な曲面状の加工を行うような用途に適している。なお,説明は省略するが,本実施例でも前述の実施例のように,ビットマップのビットが0で集光スポットを形成しない際に専用の変調パターンを用意して,媒体に悪影響が出ないようにすることができることはもちろんである。
図5は,図4に用いるビットマップパターンの実施例である。ここでは,判りやすいように,Pを5とし,M,Kをそれぞれ5とした単純な形状の例を示すが,これらの数値に限定されるものではなくもっと多数のプレーンやピクセルグループを用いて,なめらかに複雑な3次元的に分布するビームパターンを形成できることはもちろんである。
上記のように本実施例によれば,本発明の特徴を活かして一括して多数のドットを3次元的に形成できるため,データの記録にも使えるが特に媒体中に複雑な形状の加工を行う場合に適している。
図6は,図1の実施例における空間光変調器SLMとして,位相のみを変調する空間光位相変調器を用いる1実施例である。本図では,図1のレーザから媒体までの内,SLM,OP,SMの部分のみを示す。なお,図6では透過型の空間光位相変調器を用いた例を示したが,反射型でも同様な実施例を構成できることはもちろんである。まず,具体的な構成について説明する。本実施例では,空間光位相変調器の右側(レーザ光の進行方向)にレンズLENS1,マスクMASK,レンズLENS2が設置され,さらにその右に,レンズLENS3とLENS4があり,その右に媒体SMがある。レンズLENS3と4の間に設置した可変絞りVAPは,光学系の焦点深度を調整するためのものであり,絞ることによってフォーカスの合う範囲を増大し,周辺でのドットが欠けるなどの現象を防止するために使う。ただし,絞り過ぎると高周波成分が失われて,ドットの結像状態が悪くなるため,テスト加工で最適値にして利用する。マスクMASKはレンズLENS1から,その焦点距離f1離れた位置に設置している。このため,空間光位相変調器SLMを透過した光の内,変調を受けない0次光はマスクの位置でほぼ1点に集光する。マスクは,平行平面ガラスであり,マスクの中心部の領域SPOTには金属など光を反射する物質が蒸着されている。これで上記0次光をカットする。マスクの右側にセットされたレンズLENS2は,マスクからその焦点距離f2だけ離れた位置にセットされ,レンズLENS2の右側の距離f2だけ離れた位置に0次光を除去した位相変調器のフレーム像が結像される。レンズLENS3がLENS2の右側にレンズ2の焦点距離f2とレンズLENS3の焦点距離f3の和だけ離れた位置にセットされている。さらにレンズLENS4がレンズLENS3の右側に,レンズLENS3とLENS4の焦点距離の和だけ離れて設置されており,LENS4と媒体表面までの距離はf4-Dzに設定されている。ここでf4はレンズLENS4の焦点距離である。空間光位相変調器とレンズLENS1との距離はMAG・Dz+f1に設定する。ここでMAGは下記のようにレンズLENS3とLENS4による縮小倍率であり,f1はLENS1の焦点距離である。また,後述のようにスポットを集光するピクセルグループは,空間位相変調器のフレーム面からMAG・Dzの距離にスポットを集光する。容易に判るように,上記において0次光を除去したビームパターンは,レンズLENS3とLENS4を通じて媒体SMの内部の深さDzに結像される。説明を簡単にするためにf1とf2を等しいとし,f3をf4より大きいとすると,ビームパターンの像は,f3/f4分の1に縮小されて媒体SMの内部に結像される。f3/f4が縮小倍率MAGである。本実施例を図1の実施例に適用すれば,入力されるビットマップに従って最大でM×K個のスポットを持つビームパターンが媒体内部に形成され,スポットの集光点にドットが形成される。
本実施例においてピクセルグループ内部の画素に設定する変調パターンを求める方法について以下に説明する。前述のように空間光位相変調器のフレーム上のピクセルグループはI×Jのピクセル(画素)から構成されており,入射する光に対して,個々のピクセル毎に位相を変化させることが可能である。ここでは,ピクセル(Q,R)に対する位相変調量を計算する。Q,Rは,それぞれ1からIおよび1からJまでの整数である。一つのピクセルグループに対して1つの仮想集光点Vを考える。この仮想集光点Vとピクセルグループが載っているフレーム面までの距離をMAG・Dzとする。MAGは上述のように光学系の倍率であり,距離Dzは媒体内部で集光したい点の媒体表面からの深さである。上記集光点Vからピクセルグループが成す平面に垂線を降ろしたときの交点をVxyとし,Vxyからピクセル(Q,R)の中心までの距離をDxy(Q,R)とする。容易に判るようにピタゴラスの定理から,ピクセル(Q,R)の中心から仮想集光点Vまでの距離Dxyz(Q,R)は,
Dxyz(Q,R) = ((MAG・Dz)2+Dxy(Q,R)2)0.5 (1)
という式で計算できる。ピクセル(Q,R)における変調量Δφ(Q,R)は,レーザの波長をλ,媒体の屈折率をnとしたときに,Δφ(Q,R)と2π・Dxyz(Q,R)/(MAG・(λ/n))との和が2πの整数倍になるように決めればよい。なぜなら,媒体内部に集光するときに倍率MAG分の1に縮小投影され,また,媒体内部での光の波長がλ/nとなるから,上記のようにすればピクセルグループ内部のピクセルからの光の位相が2πの整数倍となり,媒体内部の集光点で強めあうためである。整理すると,
Δφ(Q,R)=2π(NI-Dxyz(Q,R)/(MAG・(λ/n))) (2)
となる。ここでNIは整数である。また,(1),(2)式において,Q,Rは,それぞれ1からIおよび1からJまでの整数である。なお,(2)式において位相変調量Δφが,用いる空間光位相変調器で制御可能な位相変調量を超えないように,整数NIを調整して2πを単位に増減して制御範囲内に収まるようにすればよいことはもちろんである。また,空間光位相変調器で設定できる位相変調量がデジタル値に量子化されている場合には計算で求めた値に最も近い値にセットすればよい。
Dxyz(Q,R) = ((MAG・Dz)2+Dxy(Q,R)2)0.5 (1)
という式で計算できる。ピクセル(Q,R)における変調量Δφ(Q,R)は,レーザの波長をλ,媒体の屈折率をnとしたときに,Δφ(Q,R)と2π・Dxyz(Q,R)/(MAG・(λ/n))との和が2πの整数倍になるように決めればよい。なぜなら,媒体内部に集光するときに倍率MAG分の1に縮小投影され,また,媒体内部での光の波長がλ/nとなるから,上記のようにすればピクセルグループ内部のピクセルからの光の位相が2πの整数倍となり,媒体内部の集光点で強めあうためである。整理すると,
Δφ(Q,R)=2π(NI-Dxyz(Q,R)/(MAG・(λ/n))) (2)
となる。ここでNIは整数である。また,(1),(2)式において,Q,Rは,それぞれ1からIおよび1からJまでの整数である。なお,(2)式において位相変調量Δφが,用いる空間光位相変調器で制御可能な位相変調量を超えないように,整数NIを調整して2πを単位に増減して制御範囲内に収まるようにすればよいことはもちろんである。また,空間光位相変調器で設定できる位相変調量がデジタル値に量子化されている場合には計算で求めた値に最も近い値にセットすればよい。
上記の実施例では,場合によっては,屈折率nの媒体によって外側の光線ほど奥に集光する球面収差の補正が必要な場合が考えられる。そのような場合は,例えば球面収差補正機能のある対物レンズをレンズLENS4として利用して補正を行うことが可能である。また,あるいはレンズ間の距離,例えばLENS1と2あるいはLENS3と4との距離を調整して媒体によって生じる収差を低減することも可能である。あるいは,式(1)のDzをα(Q,R)・Dzとして補正係数αにピクセル(Q,R)依存性を持たせて補正を行ってもよい。上記で仮想集光点から空間光位相変調器のフレームに降ろした垂線つまりピクセルグループの光軸から該当ピクセルの距離がDxyであるため,Dxyが大きいピクセルほど媒体内部での集光位置の深さが浅くなるように,すなわちα(Q,R)が減少するように位相を補正する。
一例として,次のように計算することができる。θ0を空気中での媒体への光線の入射角,θnを媒体中での角度とすると,α(Q,R)はtanθがDxy/Dzであることからtanθの比として計算できる。αをtanθn/tanθ0とするとDxyが大きくなると共にαが減少し集光点の媒体表面からの距離Dzが短くなる。ここでθ0は,arctan(Dxy/Dz)であり,θnはスネルの法則からarcsin((sinθ0)/n))となる。従ってα(Q,R)は次のようにDxy, Dzの関数でかける。
α(Q,R)=tanθn/tanθ0
=tan(arcsin((sinθ0)/n))/tan(arctan(Dxy/Dz))
=tan(arcsin((sin(arctan(Dxy/Dz)))/n))/tan(arctan(Dxy/Dz)) (3)
上記のように屈折率の影響を入れて変調量を計算しておけば媒体内部でのスポットの集光状態が改善されることが期待できる。なお,前述の実施例のように媒体中での集光点の深さの異なる集光スポットを同時に形成する場合にはDzの値を変えた変調パターンを(1),(2)および必要に応じて(3)式から計算して記録装置に記録しておけばよい。
α(Q,R)=tanθn/tanθ0
=tan(arcsin((sinθ0)/n))/tan(arctan(Dxy/Dz))
=tan(arcsin((sin(arctan(Dxy/Dz)))/n))/tan(arctan(Dxy/Dz)) (3)
上記のように屈折率の影響を入れて変調量を計算しておけば媒体内部でのスポットの集光状態が改善されることが期待できる。なお,前述の実施例のように媒体中での集光点の深さの異なる集光スポットを同時に形成する場合にはDzの値を変えた変調パターンを(1),(2)および必要に応じて(3)式から計算して記録装置に記録しておけばよい。
以上図6を用いて説明してきた本実施例の特徴を述べると,空間的に独立したピクセルグループ毎にスポットを形成するための位相変調パターンをセットできることである。位相変調パターンは上記(1)と(2)式および必要に応じて(3)式から簡便に計算できる。このため,あらかじめ計算して記録装置に記録しておいて入力されるビットマップに従って高速に切り換えることが可能となる。さらに,本実施例では,マスクMASKによって0次光を除去してからレンズLENS3とLENS4による縮小光学系にレーザ光を導いている。このためレンズLENS4として,多数のレンズ群を用いた顕微鏡の対物レンズのように,レンズの後方焦点面がレンズの近くにあるような場合に0次回折光によって損傷を受けにくいという特徴を有する。このため,高性能なレンズで媒体内部にスポットを形成でき,多数のスポットでのばらつきを抑えることが可能となる。
図7は,図1の実施例における空間光変調器と光学系による集光手段を示す別の実施例である。本図でも,先の実施例と同様に図1のレーザから媒体までの内,空間光変調器から媒体までの構成のみを示している。本実施例では,空間光位相変調器の後段にピクセルグループ毎に小さな集光レンズを並べたレンズアレイを用いる。図に示したLENS-ARRAYは,焦点距離f0を持つ小型の矩形凸レンズをアレイ状に並べたレンズアレイであり,個々のレンズは,空間光位相変調器のフレーム上のピクセルグループからの光を集光する働きを持つ。レンズアレイの右側に示したレンズLENS1およびLENS2は,それぞれ焦点距離f1,f2を持つ凸レンズであり,レンズアレイを構成するレンズの結像部にできる集光パターンを実像として媒体に縮小投影するためのものである。前述の実施例と異なるのは,空間光変調器自体で集光するのではなく,マイクロレンズアレイで集光している点である。図に示したようにマイクロレンズアレイのレンズとレンズLENS1の距離は,それぞれの焦点距離f0,f1の和に設定され,レンズLENS1とLENS2との距離もそれぞれの焦点距離の和f1とf2との和に設定する。また,レンズLENS2と媒体内部の加工位置までの距離をレンズLENS2の焦点距離f2に合わせてセットしている。なお,ここでは,説明を判りやすくするために媒体の屈折率によって集光位置がずれる影響には触れないが,加工あるいは記録深さは媒体の屈折率によって,f2より深い位置になるので,それを考慮して媒体の位置を決めることはもちろんである。本実施例では,図3の実施例のように,ビット1もビット0も変調を行う。すなわち,与えられたビットマップのビットが1の場合は,空間光位相変調器の対応するピクセルグループに変調パターンMP1が,ビットが0の場合は,変調パターンMP0がセットされる。
本実施例における変調パターンMP0とMP1の作成方法について以下に述べる。まず,MP1では,ピクセルグループからの光が,マイクロレンズMICRO-LENS(S,T)によって,個々のマイクロレンズの光軸上で,後段のレンズLENS1から左にその焦点距離f1だけ離れた位置に集光させるような変調パターンとする。たとえば,ピクセルグループ内のピクセル全体の位相変調量を一定量とすればよい。一方,MP0は,マイクロレンズによって集光されるエネルギーをできるだけ低くするような変調パターンとする。たとえば,ピクセルグループ内部で波面を乱すようにピクセル毎に0から2πまでの乱数を与えた変調パターンなどを使うことができる。
本実施例では,上記のようにマイクロレンズで集光した光を利用するため回折のみによる変調を利用した場合と比較してスポットに集中できる光のエネルギーを高くすることができる。一方,ビットが0の場合の変調パターンMP0の場合でも媒体にある程度の光が入射するが,媒体に変性を行う加工しきい値以下になるように光学系や変調パターンを調整すればよい。特に,超短パルスレーザを用いて,スポットのエネルギーを高くすれば,多光子吸収を伴う非線形加工となるため,加工しきい値以下のエネルギーでは変性を回避することが容易となる。なお,本実施例では,一旦結像したスポット像を縮小投影するため,個々のスポット毎に媒体内部の深さを大きく変えると,スポット像がぼける可能性がある。したがって,一括して同一平面上にスポットを集光する用途に向いている。媒体内部でスポットが集光する位置を一斉に変化させるには,媒体を光軸方向に移動し,媒体とレンズLENS2との距離を変化させる。デジタルデータを複数の層に記録する場合は,奥の層から同一平面に一括して複数のドットを形成すればよいため,本実施例の用途として向いている。なお,媒体中の集光位置が変化する時の球面収差の補正には,上記変調パターンに記録深さに応じた補正のための変調パターンを加える,あるいは,レンズLENS2を移動してレンズLENS1との距離を変化させる他レンズLENS2として球面収差補正機能の付いた顕微鏡の対物レンズを利用することが可能であるが,これらの方法は光学の知識のある技術者であれば対応できるため詳細は省略する。
図8は,図1の実施例における空間光変調器と光学系による集光手段を示す別の実施例である。本実施例の特徴は,空間光変調器として,強度変調を行うマイクロミラーデバイスを用いたことである。マイクロミラーデバイスとは,フレームを構成する画素として小さいミラーが縦横に並んだデバイスで,入射する光の反射方向を外部から与える信号により個々の画素で2つの角度のどちらかに切り換えることができる。以下では,説明を簡単にするために上記2つの角度をフレームの法線に対して+θ,-θとして説明を行うが,法線に対して対称でなくとも同様に本発明の実施例を構成することができる。上記のようなマイクロミラーデバイスは,上記2つの反射方向の一つから観測すると,入射した光の強度を個々の画素で変調する空間光強度変調器として利用することができる。ミラーなので光の利用効率が高いこと,また,液晶などを利用した空間光変調器に比較して,変調パターンの切り換えが高速であるという利点がある。図の上部には,マイクロミラーデバイスのフレームの構成をMIRROR-ARRAY-FRAMEとして示してある。これまでの実施例と同様に,空間的に独立したI×Jピクセル(マイクロミラー)からなるピクセルグループPIXG(S,T)毎に変調を行う。すなわち,同一のピクセルグループに入射するレーザ光は,角度+θか-θのいずれかの方向に反射される。本実施例でも,個々のピクセルグループの変調パターンは入力するビットマップの要素から決定される。なお,本実施例における変調パターンMP0およびMP1として記録しておく変調パターンは,上記から明らかなように,I×J個のミラーの反射方向をまとめて-θあるいは+θに制御する値に設定すればよい。本図の下方に示した実施例の部品配置は,上から観察した図になっていることに注意されたい。図に示したようにレーザLから出射された光がマイクロミラーデバイスMIRROR-ARRAYに入射すると,ピクセルグループ毎に設定された角度+θか-θのどちらか一方の方向に反射される。対応するビットマップの要素の値が0のピクセルグループの場合は-θ方向に反射され,後段の光学系には入射しない。一方,対応するビットマップの要素が1のピクセルグループに反射された光は+θ方向に反射され,ミラーMIRRORで反射されたのちに後段のレンズLENS1およびLENS2を通じて媒体SMの内部に集光する。レンズLENS2として顕微鏡の対物レンズなど焦点距離の短いものを使用し,レンズLENS1として焦点距離の長いものを使えば,ピクセルグループの像を充分縮小して結像することができる。このため,ピクセルグループからの光を微小な部分に集中できるため,媒体内部に微小な変性領域,ドットを形成することが可能となる。なお,本実施例では,同一のフレーム上にあるピクセルグループの像を縮小投影するため,図7の実施例と同様に一括して同一平面上にスポットを集光する用途に向いている。媒体内部でスポットが集光する位置を一斉に変化させるには,媒体を光軸と直交する方向に移動する,あるいは光軸方向に移動し,媒体とレンズLENS2との距離を変化させる。デジタルデータを複数の層に記録する場合など光軸と平行な方向に複数回照射を行う場合は,奥の方から照射を行うと先に形成された変性領域によって波面の乱れが生じないので,高い品質の加工あるいは記録ができる。なお,媒体中の集光位置が変化する時の球面収差の補正には,レンズLENS2を移動してレンズLENS1との距離を変化させる,レンズLENS2として球面収差補正機能の付いた顕微鏡の対物レンズを利用する,あるいはレンズLENS1の前などの光路中に空間光位相変調器を設置して,波面を制御するなどの方法が可能であるが,これらの方法は光学の知識のある技術者であれば対応できるため詳細は省略する。なお,空間光位相変調器で収差補正する場合には,その変調器に提示する収差補正パターンはレーザのビームパターンを切り換える毎に変える必要はなく,一定にしておけるため,ミラーアレイの高速な切り換え速度によるレーザパターンの高速切り換え速度には悪影響を与えることはない。
以下,図9および図10を用いて,本発明のレーザ照射装置を用いて,ガラスなどの透明媒体中にデータを記録する場合の媒体SMの実施例について説明する。以下では,1層の場合について説明を行うが,多層にデータを記録することも可能なことはもちろんである。
図9は,ポリエチレンテレフタレートやガラスなどの透明媒体で,テープ状の薄いフィルムを作成し,それを巻いた媒体の例である。媒体の左側の穴H1から,上述の実施例によって形成された複数のスポットを持つ,レーザ光LASER-MULTI-BEAMが入射され,フィルムにドットを記録する。右側の穴H2は,記録したドットの配置をH1側から読み取り,情報を再生する際にフィルムを透過する照明を入射するための穴であり,この穴は,記録時にテープを透過した光が,媒体のケースに損傷を与えないために光を逃がすのにも有効である。また,再生をH1側からの反射照明で行う場合に背景からの反射がないように光を逃がすためにも有用である。テープは,図中のスプールSPU,SPDに巻きついており,これらのスプールを回転させながら記録や再生を行う。図中のBIT-PATTERN1およびBIT-PATTERN2は,記録したドットの様子を示す実施例である。図中のデータブロックDATA-BLOCK1, DATA-BLOCK2, DATA-BLOCK3は,一度にレーザを照射する単位をあらわしている。
テープの巻き取り時間がレーザ照射のインターバルに対して遅い場合には,図に示したBIT-PATTERN2のように,データブロックが縦長のものを使うとよい。なお,一括で照射するデータブロックの形を変更するには,I×Jピクセルで構成されるピクセルグループの形を変更すればよいことはもちろんである。例えば,空間光変調器のフレームの画素数を800×600とし,Iを2,Jを200とすれば,MおよびKはそれぞれ400および3となり,たてに400個,横に3個,合計1200個までのドットを一括して記録することができるようになる。本実施例によれば,ガラスなどの透明材料から成るテープ状の媒体にドットとして情報を記録し,再生することが可能となる。スプールを回転させながらレーザパルスを照射すれば,媒体をXYステージに乗せて移動しながらレーザを照射する必要がないので,記録装置を安価に構成することが可能となる。なお,本実施例では,データブロックが一列に並んだ例を示したが,テープの幅に余裕がある場合には,テープの端まで記録した後に媒体を1軸ステージで一方向に移動して,複数の列に記録することができることはもちろんである。この場合でも,照射ごとにステージで媒体を移動する必要がなく,テープの端に来るごとに移動すればよいので,ステージの移動に伴う記録速度の低下を抑えることが可能である。本発明における媒体の形状は上記のようなテープに限られるものではない。例えば以下のように板状の媒体を使うこともできる。
図10は板状の媒体,例えば石英ガラスなどに画像データを記録した例である。本実施例は,人の顔を示す画像をドットパターンで記録した様子である。図に示したように,個々のデータブロックを16×16ドット領域としている。データブロック内部のドット数によって,画像の濃淡をアナログ的に表現している。なお,本実施例では,データブロックの位置での画像の濃度を256階調で計算し,その諧調の数だけのドットをブロック内部に記録している。即ち,媒体に照射されるドットパターンが,記録する画像に対応する画素の濃度に比例する数のドットを含むようにする。このため,低倍率のカメラや目視で見ると画像の濃度がアナログ的に表現されて人の顔が記録されているのが判る。さらに,ドットが分離して解像できる光学系を用いデータブロックの写真を撮影し,その中のドット数を画像処理技術で数えれば,デジタルデータとして,記録した顔の画像を再現することも可能である。画像をR(赤),G(緑),B(青)の3色に分解して3層に記録すれば,カラー画像をアナログおよびデジタルとして記録再生することもできる。この場合,モノクロの画像の層を第一層に加えるか,G(緑)の層を一番上にしておけば,アナログ画像として見た場合に自然に見える。本実施例では板状の媒体に画像を記録する例を示した。板状の媒体の場合は,ステージでの媒体の移動が必要になるが,テープの場合に比較して,折れたりすることで損傷する可能性が低いという利点がある。また,テープでも多層の記録は可能であるが,板状の媒体では,厚みを利用して層の数を増加させることが容易である。なお,図9および図10の実施例において,記録に2次元バーコードを用いることもできる。その場合は,2次元バーコードの規格に従って数字や文字などをエラーコレクション付でデジタル情報として記録できる。また,画像を含む一般のバイナリファイルでも,例えば,バイト情報を,2ケタの16進数として00からFFまでの文字としたり,文字種が多い場合には,32種の文字を用いて32進数などを使って複数のバイト情報を文字に変換したりして記録することが可能である。そのような場合は,ファイルを分割して複数の2次元バーコードに記録するため,個々の2次元バーコード部分にヘッダ情報としてファイル形式と共にファイル名や,用いた2次元バーコードの総数と何番目の2次元バーコードなのかを記録しておくと便利である。ヘッダの先頭および最後には,通常のテキストではほとんど現れることのない特殊な文字を組み合わせて記録しておけば,テキスト情報なのかバイナリデータなのかを判別することができる。
前述の実施例1から3に述べた実施例では,一括して加工および記録を行うための集光点の最大数はピクセルグループの数に等しい。従って一括して照射する集光点のピッチを加工あるいは記録するドットの最小ピッチに等しくしておいた場合には,ピクセルグループの数を超えたドットの記録あるいは加工を光軸と直交する方向に行う場合には,ステージなどによって媒体を光軸と直行する方向に移動することが必要となる。ステージの移動回数が増加すると場合によっては記録あるいは加工速度が低下する。特に本発明では,多数の集光点の照射をビームパターンを変えながら早いサイクルで実現できる。このためステージの移動が頻繁に起きることによる記録速度の低下が問題になる可能性がある。そのような場合には,ステージを移動させずに,ピクセルグループの数以上のドットを加工あるいは記録する方法が有効である。このための実施例を図11に示した。
図11はスペース用の変調パターンを用いる実施例2を想定した実施例であるが,容易に判るように実施例1や3などその他の実施例にも同様な方法が適用できることはもちろんである。図11では一括して照射する集光点,つまり媒体中に形成されるドットの最小ピッチを最終的に形成させたいピッチに対して縦,横ともに倍のピッチで4回に分けてステージ移動なしでレーザを照射する例を示している。これによって,最大でピクセルグループの4倍の数のドットの加工あるいは記録が可能となる。図では照射領域の一部である4x4ドット領域を示している。4回の照射サイクルについて,照射サイクル,ビットマップパターン,空間光変調器上の変調パターンの配置,集光点の位置,その照射サイクルが完了したときの媒体上の微小変性領域の配置を示している。図においてxはビームの集光点,-はビームが集光しないことを示す。また,Dはドット,Sはスペースを示している。図から判るように,各々の照射サイクルでは,最終的に形成したいドットパターンを縦横に共に2倍のピッチでサンプリングしたものをビットマップパターンに用い,集光点のピッチも縦横とも2倍に設定している。また,各々の照射サイクルでは,ドットピッチ分だけビームパターンを縦あるいは横方向にずらして照射を行っている。集光点のピッチを拡大するには,光学系で拡大率を調整してもよいし,あるいはピクセルグループに提示する変調パターンMP1をピクセルグループ毎に別々に設計して,ピクセルグループの中心から光軸方向からずれた位置に集光するようにしてもよく,これらの組み合わせで実現してもよい。また,照射サイクル毎にステージを使わずにドットピッチだけずらすには,ピクセルグループに提示する変調パターンMP1として,照射サイクル毎に集光位置がドットピッチ分だけ光軸と直交する平面上でずれて集光するような変調パターンを準備しておけばよい。例えば実施例4では,ピクセルグループの集光点の位置に対して必要な変調量は,式(1),(2)から容易に計算できる。実施例5の図7および実施例6の図8においても,図11の実施例に対応することは可能である。例えば,ドットピッチを調整することは,利用するレンズの焦点距離を変えることで光学系の倍率を変更することで対応することが可能である。
一方,照射サイクル毎にステージを使わずにドットピッチだけずらすには光学系を構成するレンズのフーリエ面に空間位相変調器を設置してピクセルグループ毎にその内部で位相を一定の変化率で変化させることで,フーリエ変換の性質からピクセルグループの集光点を一定量シフトすることが可能となる。
光学の知識のある者であれば判るようにこの変調量の計算は反復計算が不要で一意に求まるので計算時間がネックとなることはなく,予め計算して記録装置に記録しておくことが容易である。
例えば図7ではマイクロレンズと空間光位相変調器の距離をマイクロレンズの焦点距離f0に設定することで空間光位相変調器とマイクロレンズの集光点をフーリエ変換の関係にするか,第二の空間光変調器を後段のレンズのフーリエ面に挿入して変調を行えばよい。実施例6の図8でも例えばレンズ1からその焦点距離だけミラー側に近い位置に空間光変調器を設定して,ピクセルグループ毎に一定の変化量で位相を変化させることで対応することが可能である。なお,容易に判るように上記のようにピクセルグループ毎,照射サイクル毎に専用の変調パターンを準備したとしても,前述したように従来のように2のべき乗で記録装置の容量を増やす必要はないため,従来のように記録装置に必要な容量が問題になることはない。なお,分割する回数は上記の例のように4回に限定されるものではなく他の値でもよいことはもちろんである。例えば3倍のピッチで加工あるいは記録を行えば9回に分割することができ,さらに光軸と直交する方向のステージの移動回数を減少させることが可能となる。
前述のように本発明では,多数のドットの同時記録を従来に比べて早いサイクルで実現できる。このためステージの移動が頻繁に起きることによる記録速度の低下は従来の方法に比べて顕著である。したがって,本実施例のように記録したいドット領域をドットピッチが広くなるように分割することは,記録速度の低下を防止する観点で重要である。なお,特許文献1には,ドット間隔を非常に小さく記録したい場合には実現したいドットピッチの数倍のピッチで複数回に分割して記録すると,隣接ドットを形成する光の干渉の影響がなくなり,ドット品質の向上が可能となると記載されている。本実施例は隣接ドットの距離が十分に大きい場合であっても記録速度の低下防止の点で効果がある。
以上,本発明者によってなされた発明を実施の形態に基づき具体的に説明したが,本発明は前記実施の形態に限定されるものではなく,その要旨を逸脱しない範囲で種々変更や工夫が可能であることはいうまでもない。本願に拠れば,空間光変調器を利用したレーザ照射装置において,空間位相変調器のフレーム上で重なりを持たないピクセルグループ毎にビームスポットを形成するかしないかを装置に入力するビットマップおよび記録装置に記憶している小容量の変調パターンによって高速に決定できる。このため多数のスポットが配置されたビームパターンを高速に形成し,切り換えていくことが可能となる。さらに個々のスポットは一つのピクセルグループからの光で形成されるので,スポットのエネルギーが一定で,形成するスポットの数に依存して変化することがない。
この特長を活かして透明媒体中に微小なドットとしてデータを高速かつ均一に記録することが可能となる。これまで述べてきた実施例を使って,デジタルデータの記録や加工などさまざまな用途で高速化が期待できる。特に,ガラスやサファイア,ダイヤモンドなど透明媒体に本来吸収されない波長を持つフェムト秒あるいはピコ秒など短パルスレーザを集光することで誘起される多光子吸収を用いたデータの記録や加工では,変性が起きるエネルギーしきい値を超える集光点付近だけに吸収が起きるため,周辺に損傷を与えないドット形成が可能である。
なおレーザのエネルギーや集光スポットの大きさなどを変えることで,ドット部の変性の種類を例えば屈折率の変化,複屈折特性,ボイド構造と呼ばれる微小な空洞を形成するなどに変化させることができる。このため目的に応じて一種類あるいは媒体の場所によって複数の種類の変性を形成することが可能である。
本発明では,このような特長を有する多光子吸収による記録あるいは加工を従来に比較して高速に行うことができる。上記実施例は,主として情報記録装置,加工装置について記載したが,他に微細加工が必要な技術に適用可能であることは言うまでもない。なお,上述の図面や説明ではレーザ光の出射ビームを成形したり,必要なビーム径にする光学系には触れなかったが,これらは光学の知識のある者であれば,必要に応じた光学系を設計できるので説明を省略した。
L:レーザ光源,
SLM:空間光変調器,
OP:光学系,
SM:媒体,
SM-1,SM-P:媒体中の層,
DOT,D:ドット,
SPACE,S:スペース,
x:集光点,
-:集光点でない部分,
MEMORY:記録装置,
CTL:制御装置,
BITMAPIN:ビットマップデータ入力装置,
PG:変調パターン生成装置,
BITMAP-MATRIX, BITMAP-MATRIX-1, BITMAP-MATRIX-2, BITMAP-MATRIX-3, BITMAP-MATRIX-4, BITMAP-MATRIX-5, BITMAP-MATRIX-P:ビットマップデータ入力装置に入力されるビットマップ行列,
BITMAP(2,2):ビットマップデータ入力装置に入力されるビットマップ行列の2行2列目の要素,
BITMAP(2,3):ビットマップデータ入力装置に入力されるビットマップ行列の2行3列目の要素,
BITMAP(S,T):ビットマップデータ入力装置に入力されるビットマップ行列のS行T列目の要素,
BITMAP-INV-MATRIX :反転したビットマップ行列,
BITMAP-INV(2,2) :反転したビットマップ行列の2行2列目の要素,
BITMAP-INV(2,3):反転したビットマップ行列の2行3列目の要素,
BITMAP-INV(S,T):反転したビットマップ行列のS行T列の要素,
SLM-FRAME:空間光変調器のフレーム,
SLM-PATTERN(S,T):空間光変調器のI×Jピクセルから構成された一つのピクセルグループにセットされた変調パターン,
MP0, MP1, MP-U:変調パターン,
PIXG(2,2):2行2列目のピクセルグループ,
PIXG(2,3):2行3列目のピクセルグループ,
LENS1, LENS2, LENS3, LENS4:レンズ,
MASK:マスク,
SPOT:マスク中心部の遮光をする部分,
VAP:可変絞り,
f0, f1, f2, f3, f4:焦点距離,
LENS-ARRAY:レンズアレイ,
MICRO-LENS(2,2):レンズアレイを構成する2行2列目のマイクロレンズ,
MIRROR-ARRAY:マイクロミラーデバイス,
MIRROR-ARRAY-FRAME:マイクロミラーデバイスのフレーム,
MIRROR:ミラー,
SPU, SPD:スプール,
H1, H2:媒体ケースに開けた穴,
LASER-MULTI-BEAM:複数のスポットを持つレーザビーム,
BIT-PATTERN1, BIT-PATTERN2:記録したパターンの例,
DATA-BLOCK1, DATA-BLOCK2, DATA-BLOCK3:データブロック,
M:空間光変調器のフレーム上のピクセルグループの縦方向の数あるいはビットマップの行の数,
K:空間光変調器のフレーム上のピクセルグループの横方向の数あるいはビットマップの列の数,
I:ピクセルグループを構成するピクセルの行の数,
J:ピクセルグループを構成するピクセルの列の数,
S:1からMまでの整数,
T:1からKまでの整数,
U:1からPまでの整数,
SLM:空間光変調器,
OP:光学系,
SM:媒体,
SM-1,SM-P:媒体中の層,
DOT,D:ドット,
SPACE,S:スペース,
x:集光点,
-:集光点でない部分,
MEMORY:記録装置,
CTL:制御装置,
BITMAPIN:ビットマップデータ入力装置,
PG:変調パターン生成装置,
BITMAP-MATRIX, BITMAP-MATRIX-1, BITMAP-MATRIX-2, BITMAP-MATRIX-3, BITMAP-MATRIX-4, BITMAP-MATRIX-5, BITMAP-MATRIX-P:ビットマップデータ入力装置に入力されるビットマップ行列,
BITMAP(2,2):ビットマップデータ入力装置に入力されるビットマップ行列の2行2列目の要素,
BITMAP(2,3):ビットマップデータ入力装置に入力されるビットマップ行列の2行3列目の要素,
BITMAP(S,T):ビットマップデータ入力装置に入力されるビットマップ行列のS行T列目の要素,
BITMAP-INV-MATRIX :反転したビットマップ行列,
BITMAP-INV(2,2) :反転したビットマップ行列の2行2列目の要素,
BITMAP-INV(2,3):反転したビットマップ行列の2行3列目の要素,
BITMAP-INV(S,T):反転したビットマップ行列のS行T列の要素,
SLM-FRAME:空間光変調器のフレーム,
SLM-PATTERN(S,T):空間光変調器のI×Jピクセルから構成された一つのピクセルグループにセットされた変調パターン,
MP0, MP1, MP-U:変調パターン,
PIXG(2,2):2行2列目のピクセルグループ,
PIXG(2,3):2行3列目のピクセルグループ,
LENS1, LENS2, LENS3, LENS4:レンズ,
MASK:マスク,
SPOT:マスク中心部の遮光をする部分,
VAP:可変絞り,
f0, f1, f2, f3, f4:焦点距離,
LENS-ARRAY:レンズアレイ,
MICRO-LENS(2,2):レンズアレイを構成する2行2列目のマイクロレンズ,
MIRROR-ARRAY:マイクロミラーデバイス,
MIRROR-ARRAY-FRAME:マイクロミラーデバイスのフレーム,
MIRROR:ミラー,
SPU, SPD:スプール,
H1, H2:媒体ケースに開けた穴,
LASER-MULTI-BEAM:複数のスポットを持つレーザビーム,
BIT-PATTERN1, BIT-PATTERN2:記録したパターンの例,
DATA-BLOCK1, DATA-BLOCK2, DATA-BLOCK3:データブロック,
M:空間光変調器のフレーム上のピクセルグループの縦方向の数あるいはビットマップの行の数,
K:空間光変調器のフレーム上のピクセルグループの横方向の数あるいはビットマップの列の数,
I:ピクセルグループを構成するピクセルの行の数,
J:ピクセルグループを構成するピクセルの列の数,
S:1からMまでの整数,
T:1からKまでの整数,
U:1からPまでの整数,
Claims (15)
- レーザ光源と,
前記レーザ光源からのレーザ光に,空間的に変調を与える空間光変調器と,
前記レーザ光が照射される被照射体に,前記レーザ光を集光する光学系と
を有し,
前記空間光変調器の変調量は,前記空間光変調器のフレーム上の複数のピクセルから成り空間的に重ならないピクセルグループ単位で制御され,前記ピクセルグループにセットされる変調量は外部から入力されるビットマップ行列で決定され,前記ビットマップ行列の各要素がそれぞれの前記ピクセルグループに対応していることを特徴とするレーザ照射装置。 - レーザ光源と,
前記レーザ光源からのレーザ光に,空間的に変調を与える空間光変調器と,
情報記録媒体に前記レーザ光を集光する光学系と,
ビットマップ行列が入力されるビットマップデータ入力装置と,
前記ビットマップ行列の各要素に応じて,前記空間光変調器に与える変調パターンを生成する変調パターン生成装置と
を有し,
前記空間光変調器の変調量は,前記空間光変調器のフレーム上の複数のピクセルから成り空間的に重ならないピクセルグループ単位で制御され,前記ビットマップ行列の各要素がそれぞれの前記ピクセルグループに対応しており,
前記空間光変調器によって前記変調パターンが与えられた前記レーザ光を,前記情報記録媒体に照射することで,前記情報記録媒体に変性領域を生成し,情報を記録することを特徴とする情報記録装置。 - 前記ビットマップ行列のビット“1”に対応する前記変調パターンが,記録装置に記録されており,
前記変調パターン生成装置は,前記記録装置から前記変調パターンを読みだして前記空間光変調器に与える変調パターンを生成することを特徴とする請求項2記載の情報記録装置。 - 前記ビットマップ行列のビット“1”及び“0”に対応する前記変調パターンが,記録装置に記録されており,
前記変調パターン生成装置は,前記記録装置から前記変調パターンを読みだして前記空間光変調器に与える変調パターンを生成することを特徴とする請求項2記載の情報記録装置。 - 前記情報記録媒体の異なる深さ平面毎に,異なる前記ビットマップ行列と前記変調パターンが設けられていることを特徴とする請求項2記載の情報記録装置。
- 前記空間光変調器は,前記ピクセルグループ毎に,光の位相を変調することを特徴とする請求項2記載の情報記録装置。
- 前記光学系は,レンズをアレイ状に集積したレンズアレイを含んで構成されることを特徴とする請求項2記載の情報記録装置。
- 前記レンズアレイによって集光されるスポット像が,前記レンズアレイの後段に配置された前記光学系によって前記媒体内部に結像することを特徴とする請求項7記載の情報記録装置。
- 前記空間光変調器は,複数のミラーを平面状に集積したミラーアレイであって,前記ミラーアレイにより,前記ピクセルグループごとに2つの角度のいずれかにレーザ光が反射されることを特徴とする請求項2記載の情報記録装置。
- 前記ミラーアレイによって,一方の角度に反射された前記レーザ光を,前記媒体内部に縮小して結像することを特徴とする請求項9記載の情報記録装置。
- 前記情報記録媒体がテープ状の透明材料であることを特徴とする請求項2記載の情報記録装置。
- 前記情報記録媒体が板状の透明材料であることを特徴とする請求項2記載の情報記録装置。
- 前記情報記録装置は画像を記録するための装置であって,前記情報記録媒体に照射されるドットパターンは,記録する画像に対応する画素の濃度に比例する数のドットを含んでいることを特徴とする請求項2記載の情報記録装置。
- 異なる前記変調パターンを複数回、前記情報記録媒体の同一領域に照射することを特徴とする請求項2記載の情報記録装置。
- レーザ光源と,
前記レーザ光源からのレーザ光に,空間的に変調を与える空間光変調器と,
被加工体に,前記レーザ光を集光する光学系と,
ビットマップ行列が入力されるビットマップデータ入力装置と,
前記ビットマップ行列の各要素に応じて,前記空間光変調器に与える変調パターンを生成する変調パターン生成装置と
を有し,
前記空間光変調器の変調量は,前記空間光変調器のフレーム上の複数のピクセルから成り空間的に重ならないピクセルグループ単位で制御され,前記ビットマップ行列の各要素がそれぞれの前記ピクセルグループに対応しており,
前記空間光変調器によって前記変調パターンが与えられた前記レーザ光を,前記被加工体に照射することで,前記被照射体を加工することを特徴とする加工装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/081137 WO2016084138A1 (ja) | 2014-11-26 | 2014-11-26 | レーザ照射装置,情報記録装置及び加工装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/081137 WO2016084138A1 (ja) | 2014-11-26 | 2014-11-26 | レーザ照射装置,情報記録装置及び加工装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016084138A1 true WO2016084138A1 (ja) | 2016-06-02 |
Family
ID=56073762
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/081137 WO2016084138A1 (ja) | 2014-11-26 | 2014-11-26 | レーザ照射装置,情報記録装置及び加工装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2016084138A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020110809A1 (ja) * | 2018-11-29 | 2020-06-04 | デクセリアルズ株式会社 | レーザ加工方法及びレーザ加工装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0547041A (ja) * | 1991-03-22 | 1993-02-26 | Sony Corp | 光記録媒体 |
JPH06203407A (ja) * | 1992-09-18 | 1994-07-22 | Texas Instr Inc <Ti> | 光媒質にデータを書込む装置と方法 |
JPH1124039A (ja) * | 1997-07-02 | 1999-01-29 | Fuji Photo Film Co Ltd | 画像露光装置 |
JP2006252701A (ja) * | 2005-03-11 | 2006-09-21 | Tokyo Univ Of Science | ビタビ復号装置、方法及びプログラム |
JP2012256013A (ja) * | 2011-06-08 | 2012-12-27 | Samsung Electro-Mechanics Co Ltd | マスクレス加工装置 |
-
2014
- 2014-11-26 WO PCT/JP2014/081137 patent/WO2016084138A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0547041A (ja) * | 1991-03-22 | 1993-02-26 | Sony Corp | 光記録媒体 |
JPH06203407A (ja) * | 1992-09-18 | 1994-07-22 | Texas Instr Inc <Ti> | 光媒質にデータを書込む装置と方法 |
JPH1124039A (ja) * | 1997-07-02 | 1999-01-29 | Fuji Photo Film Co Ltd | 画像露光装置 |
JP2006252701A (ja) * | 2005-03-11 | 2006-09-21 | Tokyo Univ Of Science | ビタビ復号装置、方法及びプログラム |
JP2012256013A (ja) * | 2011-06-08 | 2012-12-27 | Samsung Electro-Mechanics Co Ltd | マスクレス加工装置 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020110809A1 (ja) * | 2018-11-29 | 2020-06-04 | デクセリアルズ株式会社 | レーザ加工方法及びレーザ加工装置 |
JP2020082170A (ja) * | 2018-11-29 | 2020-06-04 | デクセリアルズ株式会社 | レーザ加工方法及びレーザ加工装置 |
JP2023029493A (ja) * | 2018-11-29 | 2023-03-03 | デクセリアルズ株式会社 | レーザ加工方法及びレーザ加工装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI605896B (zh) | Light modulation method, light modulation program, light modulation device, and light irradiation device | |
US10236027B1 (en) | Data storage using light of spatially modulated phase and polarization | |
JP4790701B2 (ja) | ホログラフィック光情報記録再生装置およびホログラフィック光情報記録再生方法 | |
JP3299765B2 (ja) | 収束レーザビーム照射による感光性処理された基体の表面構造とこの表面構造を形成する方法および装置 | |
KR101985995B1 (ko) | 위상 변조 방법 및 위상 변조 장치 | |
WO2014097467A1 (ja) | 光記録装置、光記録方法及び情報記録媒体 | |
US7200097B2 (en) | Parallel recording and reading of diffractive memory using multiple object beams | |
US7027381B1 (en) | Laser drawing apparatus, laser drawing method, a master for manufacturing hologram, and manufacturing method thereof | |
JP5274959B2 (ja) | 光情報記録装置および方法 | |
JP7522767B2 (ja) | 高密度光データ記録 | |
JP2005010585A (ja) | ホログラフィック光学素子、その製造方法、及びホログラフィック記録システム | |
JP2006154163A (ja) | ホログラム記録装置、ホログラム再生装置、ホログラム記録方法及びホログラム再生方法 | |
WO2016084138A1 (ja) | レーザ照射装置,情報記録装置及び加工装置 | |
CN111883185B (zh) | 一种投影式超分辨光学数据的写入/读出方法及装置 | |
KR20110113126A (ko) | 읽기 장치 | |
US7428206B2 (en) | Holographic information recording apparatus | |
JPH04123016A (ja) | レーザ装置 | |
KR100588939B1 (ko) | 홀로그래픽 데이터 기록 장치 및 방법 | |
JP2005352097A (ja) | ホログラム記録方法、ホログラム再生方法、ホログラム記録装置、ホログラム再生装置、及びホログラム記録媒体 | |
KR100797713B1 (ko) | 1차원 회절형 광변조기를 이용한 광기록 장치 | |
KR102597352B1 (ko) | 홀로그래픽 광학소자를 이용한 다중 깊이 영상 재생 방법 | |
US20080018967A1 (en) | Hologram recording device, hologram reproducing device and hologram recording method not requiring positioning of a phase mask | |
WO2024183589A1 (zh) | 光读写装置、光读写系统以及数据读写方法 | |
WO2022137777A1 (ja) | 投射装置および投射方法 | |
JP2010020098A (ja) | 光制御装置および光制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14906868 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14906868 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |