WO2016083603A1 - Hydrocyclone anti-boudinage - Google Patents

Hydrocyclone anti-boudinage Download PDF

Info

Publication number
WO2016083603A1
WO2016083603A1 PCT/EP2015/077967 EP2015077967W WO2016083603A1 WO 2016083603 A1 WO2016083603 A1 WO 2016083603A1 EP 2015077967 W EP2015077967 W EP 2015077967W WO 2016083603 A1 WO2016083603 A1 WO 2016083603A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrocyclone
section
frustoconical
underflow
inlet
Prior art date
Application number
PCT/EP2015/077967
Other languages
English (en)
Inventor
Jacques Robert
Thomas Thouvenot
Nathalie VIGNERON-LAROSA
Original Assignee
Veolia Water Solutions & Technologies Support
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to MX2017006680A priority Critical patent/MX2017006680A/es
Priority to CN201580071247.5A priority patent/CN107107077A/zh
Priority to BR112017010986A priority patent/BR112017010986A2/pt
Priority to AU2015352424A priority patent/AU2015352424A1/en
Application filed by Veolia Water Solutions & Technologies Support filed Critical Veolia Water Solutions & Technologies Support
Priority to JP2017528194A priority patent/JP2017535419A/ja
Priority to CA2967535A priority patent/CA2967535A1/fr
Priority to UAA201705165A priority patent/UA117073C2/uk
Priority to RU2017122415A priority patent/RU2017122415A/ru
Priority to US15/531,023 priority patent/US20170312764A1/en
Priority to SG11201704223YA priority patent/SG11201704223YA/en
Priority to KR1020177014427A priority patent/KR20170087894A/ko
Priority to TN2017000189A priority patent/TN2017000189A1/fr
Priority to EP15805419.7A priority patent/EP3223957A1/fr
Publication of WO2016083603A1 publication Critical patent/WO2016083603A1/fr
Priority to ZA2017/03235A priority patent/ZA201703235B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/02Construction of inlets by which the vortex flow is generated, e.g. tangential admission, the fluid flow being forced to follow a downward path by spirally wound bulkheads, or with slightly downwardly-directed tangential admission
    • B04C5/04Tangential inlets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/12Construction of the overflow ducting, e.g. diffusing or spiral exits
    • B04C5/13Construction of the overflow ducting, e.g. diffusing or spiral exits formed as a vortex finder and extending into the vortex chamber; Discharge from vortex finder otherwise than at the top of the cyclone; Devices for controlling the overflow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/14Construction of the underflow ducting; Apex constructions; Discharge arrangements ; discharge through sidewall provided with a few slits or perforations

Definitions

  • the field of the invention is that of the design and manufacture of hydrocyclones conventionally used in the effluent treatment sector in order to separate the liquid phase and the solid phase of a mixture.
  • Hydrocyclones are commonly used during the treatment of certain effluents in order to proceed to a liquid-solid separation.
  • the Applicant uses hydrocyclones in the example implementation of the process marketed under the name of Actiflo ® for the treatment of water. These same hydrocyclones are used in other water treatment processes or industrial effluents.
  • a water treatment process of the Actiflo ® type comprises a weighted flocculation step during which the previously coagulated and / or flocculated water is brought into contact with ballast, such as microsand, in order to decant rapidly. the flocs it contains during a subsequent decantation step.
  • ballast such as microsand
  • This decantation step leads to the production of at least partially treated water and a mixture of sludge and ballast.
  • the ballast concentration In order to maintain the performance level of such a treatment process, the ballast concentration must be kept substantially constant during the course of treatment.
  • the ballast is recycled during the treatment.
  • the mixture of sludge and ballast is conveyed to a hydrocyclone inside which the solid phase composed of ballast is essentially separated from the liquid phase.
  • the mixture of liquid, sludge and ballast is introduced under pressure laterally inside the body of the hydrocyclone which has a cylindro-frustoconical internal cavity whose diameter decreases towards the underflow of the hydrocyclone.
  • a vortex is created inside the internal cavity tending to press the solid phase against the peripheral wall of the cavity.
  • the solid phase then flows towards the underflow of the hydrocyclone while the liquid phase rises towards the overflow of hydrocyclone.
  • a mixture of sand and a small amount of liquid and sludge is withdrawn to be at least partially recycled to reintroduce the ballast into the process.
  • a mixture of liquid, sludge and a small amount of ballast is extracted in overflow.
  • the present hydrocyclones are sensitive to the fluctuations in the concentration of suspended matter (SS) of the water to be treated.
  • SS suspended matter
  • the SS load of the water to be treated varies greatly over the course of a year.
  • the hydrocyclone then has difficulty evacuating the mixture of sludge and ballast underflow: this phenomenon is called "extrusion".
  • Part of the sludge and ballast is then discharged in overflow with the treated water which induces losses in ballast and a drop in the quality of the treated water.
  • the invention particularly aims to provide an effective solution to at least some of these different problems.
  • an object of the invention is to provide a hydrocyclone which is insensitive to fluctuations in the concentration of MES of the effluent to be treated.
  • the object of the invention is, according to at least one embodiment, to provide such a hydrocyclone which is not very sensitive to the phenomenon of extrusion.
  • Another object of the invention is, according to at least one embodiment, to provide such a hydrocyclone which induces low energy consumption, at least compared to the hydrocyclones according to the prior art.
  • an object of the invention is to provide a hydrocyclone which can operate efficiently with a low feed pressure, at least compared to the hydrocyclones of the prior art.
  • Another object of the invention is, according to at least one embodiment, to provide such a hydrocyclone which is reliable and / or robust and / or simple in design.
  • the invention provides a hydrocyclone comprising:
  • a body defining a hollow interior cavity, said hollow interior cavity having an upper portion of cylindrical section extended by a lower portion of frustoconical section, the diameter of said frustoconical section decreasing in the direction of the lower portion of said body;
  • an underflow outlet for discharging said substantially separate solids from said liquid, communicating with the lower end of said interior cavity
  • an overflow outlet for discharging said liquid substantially separated from said solids, communicating with the upper end of said interior cavity
  • underflow outlet extends from the lower end of said lower portion of frusto-conical section and has a frustoconical section whose diameter increases toward the lower portion of said hydrocyclone.
  • the implementation of a frustoconical section underflow whose diameter widens towards the bottom of the hydrocyclone helps to maintain the swirling motion of the fluid.
  • a hydrocyclone according to the invention is thus less sensitive to variations in the MES concentration of the effluent to be treated.
  • the outline of said underflow comprises at least one helical groove whose winding direction is identical to the direction of winding (or circulation) of the liquid inside said internal cavity.
  • said at least one groove extends in part on the contour of said lower portion of said interior cavity.
  • said helical groove forms a hollow.
  • the groove could also project into the interior cavity.
  • the length of said underflow is greater than three times the diameter of the junction between the frustoconical lower portion of the inner cavity and the underflow of the hydrocyclone.
  • the length of said underflow will preferably be less than or equal to ten times the diameter of the junction between the frustoconical lower portion of the inner cavity and the underflow of the hydrocyclone.
  • a shorter length would limit the effect expected by the implementation of the frustoconical underflow, ie improve the liquid-solid separation and make the hydrocyclone less sensitive to changes in the concentration of MES of the effluent to be treated while reducing the supply pressure. Too long a length would however induce a significant loss of load.
  • the angle a of the frustoconical section of the underflow relative to its axis of revolution is between 10 and 25 °.
  • said overflow outlet comprises a frustoconical pipe which extends in the extension of said cylindrical portion and whose diameter increases in the direction of the upper part of said hydrocyclone.
  • said frustoconical tubing comprises an inlet which communicates with said internal cavity and an outlet which opens into a peripheral housing formed in said body, said overflow further comprising a discharge pipe which extends laterally to said body, said tubing discharge device comprising an inlet which communicates with said peripheral housing and an outlet which opens out of said body.
  • the overflow of the hydrocyclone is of the overflow type.
  • the liquid phase from the inner cavity flows overflow into the peripheral housing constituting a collection box before flowing thereof through the lateral discharge pipe.
  • the sludge has an anisotropic flow, that is to say it is different (direction and speed) depending on the location of the hydrocylone where this flow is measured. This results in particular from the rotational movement of the sludge inside the hydrocyclone and the nature of the sludge (layers not perfectly homogeneous). If the evacuation was different from an overflow (eg a pipe), the flow would then be forced and would strongly constrain the vortex that one wishes to maintain.
  • the overflow box (overflow collection box) therefore makes it possible not to constrain the flow.
  • the angle ⁇ of the frustoconical tubing of the overflow relative to its axis of revolution is between 10 and 30 °.
  • said inlet comprises an inlet pipe which extends along a spiral about the longitudinal axis of said body.
  • said inlet pipe extends along said spiral over a length between 1 ⁇ 2 and 3 ⁇ 4 of a turn of said body.
  • said inlet pipe extends inclined downwards from said body.
  • the angle of inclination of said inlet pipe with respect to the transverse axis of said body is less than or equal to 30 °.
  • connection of said inlet pipe to said cylindrical portion of said inner cavity is made tangentially. This allows the mixture to be pressed against the peripheral wall of the internal cavity as soon as it enters the hydrocyclone, to improve the liquid-solid separation and to reduce the supply pressure.
  • the section of said inlet pipe gradually decreases in the direction of said cylindrical portion.
  • the largest section of said inlet pipe is between 30 and 50% of the section of said cylindrical portion, and the smallest section of said inlet pipe is between 20 and 30% of the section. of said cylindrical portion.
  • said inlet pipe has a circular section, the connection of said inlet pipe to said cylindrical portion of said inner cavity being made elliptically.
  • This also contributes to pressing the mixture against the peripheral wall of the interior cavity as soon as it enters the hydrocyclone, to improve the liquid-solid separation and to reduce the supply pressure.
  • the ratio between the small radius and the large radius of said elliptical shaped connection is between 1 and 2.
  • the passage of the circular section of said inlet tube to the elliptical shape of the connection thereof to said cylindrical portion of the inner cavity is progressively made.
  • the upper contour of said cylindrical portion of said internal cavity extends in a helical manner with a direction of winding identical to the direction of circulation of the liquid inside said internal cavity.
  • said upper contour of said cylindrical portion of said interior cavity helically extends from the top to the bottom of said elliptical shaped connection.
  • said hydrocyclone comprises means for injecting operating water into said internal cavity, at the junction between said frustoconical lower portion and said underflow.
  • Such injection means can act as a fuse if, in an extreme case, the hydrocyclone was to close it.
  • FIG. 1 illustrates a front view of a hydrocyclone according to the invention
  • - Figure 2 illustrates a sectional view along a plane passing through the longitudinal axis of the hydrocyclone and the axis of the discharge pipe of a hydrocyclone according to the invention
  • FIG. 3 illustrates a schematic partial view of the inner contour of the inlet pipe and the upper portion of cylindrical section of a hydrocyclone according to the invention
  • FIG. 4 illustrates a schematic view from above of the inlet pipe and of the upper portion of cylindrical section of a hydrocyclone according to the invention
  • FIG. 5 illustrates a view from above of a hydrocyclone according to the invention, the upper part of which has been removed;
  • FIG. 6 illustrates a side view in transparency of the underflow of a hydrocyclone according to the invention
  • Figure 7 illustrates a front view of a variant of a hydrocyclone according to the invention, the inlet pipe is inclined.
  • FIGS. 1 to 7 an example of a hydrocyclone according to the invention is presented.
  • such a hydrocyclone comprises a body 10 which extends along a longitudinal axis.
  • This body 10 comprises a hollow interior cavity 11.
  • This hollow interior cavity 11 comprises:
  • the frustoconical section here is the trunk of a cone of revolution. Its diameter tends to decrease towards the bottom of the hydrocyclone.
  • the hydrocyclone comprises an inlet 12 for a mixture of liquid and solid, for example a mixture of water, sludge and ballast.
  • This inlet 12 comprises an inlet pipe 120.
  • the axis of this inlet pipe 120 is inclined downwards relative to a transverse axis of the body of the hydrocyclone, that is to say with respect to an axis orthogonal to the longitudinal axis of the body 10, an angle ⁇ less than or equal to 30 ° (see Figure 7).
  • the inlet of this pipe 120 is thus higher than its outlet. In a variant, it may not be inclined (see Figures 1 and 2). In this case, it will extend along an axis orthogonal to the longitudinal axis of the body 10.
  • the inlet pipe 120 forms a spiral around the longitudinal axis of the body 10. This spiral extends over between 1 ⁇ 2 and 3 ⁇ 4 of the periphery of the body 10.
  • the connection 17 of the inlet pipe 120 to the cylindrical portion 110 of the inner cavity 10 is made tangentially.
  • the section of the inlet pipe 120 gradually decreases towards the cylindrical portion 110.
  • the largest section of the inlet manifold i.e. the section of its inlet, is between 30 and 50% of the section of the cylindrical portion 110, and the smallest section of the tubing of the inlet 120 is between 20 and 30% of the section of the cylindrical portion 110.
  • the inlet pipe 120 has a circular section. Its connection to the cylindrical portion 110 of the inner cavity 10 is preferably made elliptically. In other words, the connection 17 has the shape of an ellipse.
  • the ratio between the small radius and the large radius of the elliptically shaped connection 17 between the inlet pipe 120 and the cylindrical portion 110 is between 1 and 2.
  • the upper contour 112 of the cylindrical portion 110 of the inner cavity 11 extends helically with a direction of winding identical to the direction of circulation of the liquid inside the inner cavity 11, and preferably from the top 171 down to the bottom 172 of the elliptical shaped connection 17 between the inlet pipe 120 and the cylindrical portion 110.
  • the hydrocyclone comprises an underflow outlet 13 for discharging the solids essentially separated from the liquid of the mixture introduced into the hydrocyclone via the inlet pipe 120.
  • This underflow 13 communicates with the lower end of the inner cavity 11, plus precisely with the lower end of the frustoconical portion 111.
  • the underflow outlet 13 extends from the lower end of the lower portion of frustoconical section 111. It has a frustoconical section 130 whose diameter increases towards the lower part of the hydrocyclone.
  • This frustoconical portion is in this embodiment the trunk of a cone of revolution. It opens out of the body 10.
  • the length L of the underflow 13 is greater than three times the diameter of the junction between the frustoconical lower portion of the inner cavity and the underflow outlet of the hydrocyclone.
  • the angle ⁇ of the frustoconical section 130 of the underflow 13 with respect to its longitudinal or revolving axis is between 10 and 25 °.
  • the underflow 13 comprises at least one helical groove 14 whose winding direction is identical to the direction of circulation of the liquid inside the inner cavity 11, that is to say the liquid mixture composed of solids and liquid which is introduced inside the hydrocyclone.
  • the number of grooves will preferably be even. It may for example be equal to two or four.
  • the grooves will be uniformly distributed at the periphery of the frustoconical section 130 of the underflow 13.
  • the groove or grooves will preferably be hollowed out on the surface of the frustoconical section 130 of the underflow 13. Alternatively, they may protrude on the surface of the frustoconical section of the underflow, that is to say forming an extra thickness inside the underflow 13.
  • the groove or grooves 14 extend in part over the contour of the lower portion of the inner cavity.
  • the hydrocyclone comprises an overflow outlet 15 for discharging the liquid essentially separated from the solids of the mixture introduced into the hydrocyclone via the inlet manifold.
  • This overflow communicates with the upper end of the inner cavity 11, more precisely with the upper end of the cylindrical upper portion 110.
  • the overflow outlet 15 comprises a frustoconical pipe 151 which extends in the extension of the cylindrical portion 110. Its diameter increases. towards the upper part of the hydrocyclone. In this embodiment, it constitutes the trunk of a cone of revolution.
  • the frustoconical tubing 151 of the overflow 15 comprises an inlet 1510 which communicates with the internal cavity 11, in this case with its cylindrical upper portion 110, and an outlet 1511 which opens into a peripheral recess 16 formed in the body 10.
  • This housing device is a collection box.
  • the overflow 15 further comprises a discharge pipe 152 which extends laterally to the body 10 along an axis substantially orthogonal to the longitudinal axis of the body 10.
  • This lateral evacuation pipe 152 comprises an inlet 1521 which communicates with the housing 16 and an outlet 1522 which opens out of the body 10.
  • the overflow 15 is an overflow overflow to the extent that the liquid from the frustoconical pipe 151 overflows into the peripheral housing 16 and flows into the discharge pipe 152 .
  • the angle of the frustoconical tubing 151 of the overflow relative to its longitudinal or revolving axis is between 10 and 30 °.
  • the hydrocyclone comprises means for injecting operating water into the internal cavity, at the junction between the frustoconical lower portion and the underflow.
  • injection means may for example comprise a service water injection pipe 60.
  • a hydrocyclone according to the invention can conventionally be used to carry out the separation of a liquid phase and a solid phase from a mixture, such as for example a mixture of water and sludge containing ballast. .
  • a mixture such as for example a mixture of water and sludge containing ballast.
  • such a mixture is introduced inside the hydrocyclone via the inlet pipe 120 at a low pressure preferably between 0.3 and 1.5 bar.
  • the inlet manifold is inclined towards the underflow of the hydrocyclone.
  • the fluid is thus oriented as it enters the hydrocyclone in the direction of its flow inside the inner cavity 11 of the hydrocyclone. This further reduces the supply pressure by avoiding the "dead volume" at the top of the internal cavity that traps solid and adversely affect the quality of the separation.
  • the fluid enters the interior of the cylindrical upper portion 110 through the elliptical shaped connection between the inlet manifold 120 and the cylindrical upper section.
  • this connection is made tangentially to the inner peripheral contour of the upper cylindrical portion 110. Because of the geometric characteristics of this connection, the solids and the liquid remain plated near the inner wall of the inner cavity 11 as soon as they entry into it.
  • the fluid flows along the upper contour 112 of the cylindrical portion 110 of the inner cavity 11 which extends helically with a direction of winding identical to the direction of flow of the liquid inside the inner cavity 11 from the top to the bottom of the elliptical shaped connection between the inlet pipe 120 and the cylindrical portion 110. This makes it possible to avoid the dead zones in the upper region of the cylindrical upper portion 110, to cause the fluid to flow towards the underflow of the hydrocyclone and to reduce the supply pressure.
  • the fluid continues to flow inside the inner cavity 11 passing through the frustoconical lower portion 111.
  • the solid phase then flows to the underflow 13 of the hydrocyclone while the liquid phase rises to the overflow 15 of the hydrocyclone.
  • the solid phase flows from the frustoconical lower section 111 towards the underflow 13. It then flows along the grooves 14 which extend over the peripheral contour of the lower region of the frustoconical section 111.
  • the implementation of the grooves 14 in this zone makes it possible to maintain the rotation of the fluid and to reduce the sensitivity of the hydrocyclone to the load in MES of the mixture introduced into it.
  • the solid part of the fluid flows inside the frustoconical section 130 of the underflow 13.
  • the implementation of a frustoconical section underflow whose diameter widens downwards makes it possible to avoid the induced flows therefrom. which makes it possible to maintain the rotation of the fluid inside the hydrocyclone. This reduces the supply pressure.
  • Grooving 14 inside the frusto-conical section 130 makes it possible to maintain the rotation of the fluid and consequently to make the hydrocyclone less sensitive to the change in the charge in MES of the mixture introduced into it.
  • the liquid phase rises inside the interior cavity 11, passing from the frustoconical lower portion 111 to the cylindrical upper portion 110 and then to the frustoconical tubing 151 of the overflow 15.
  • the implementation of the frustoconical tubing 151 whose diameter widens upwards keeps the anisotropy of the flow overflow. This keeps the rotation of the fluid. This also reduces the supply pressure.
  • the liquid then overflows from the upper part of the frustoconical pipe 151 inside the peripheral housing 16. It then flows from the peripheral housing 16 inside the evacuation pipe 152.
  • the technique according to the invention makes it possible to facilitate the rotation of the fluid inside the hydrocyclone and to maintain this rotation by the implementation, independently or in combination:
  • the technique according to the invention makes it possible to reduce the supply pressure of the hydrocyclone by the implementation, independently or in combination: of the spiral-shaped inlet pipe;
  • the technique according to the invention makes it possible to reduce the sensitivity of the hydrocyclone to the variations in MES charge of the mixture introduced inside thereof and thus to limit the phenomenon of bottlenecks of the underflow, by the implementation of , independently or in combination:

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Cyclones (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Glanulating (AREA)

Abstract

La présente invention concerne un hydrocyclone comprenant : - un corps (10) définissant une cavité intérieure creuse (11), ladite cavité intérieure creuse (11) présentant une portion supérieure de section cylindrique (110) prolongée par une portion inférieure de section tronconique (111), le diamètre de ladite section tronconique (111) diminuant en direction de la partie inférieur dudit corps (10); - une entrée (12) pour un mélange de liquide et de solides débouchant dans ladite portion cylindrique (110); une sortie de sousverse (13), pour l'évacuation desdits solides essentiellement séparés dudit liquide, communiquant avec l'extrémité inférieure de ladite cavité intérieure (11); - une sortie de surverse (15), pour l'évacuation dudit liquide essentiellement séparé desdits solides, communiquant avec l'extrémité supérieure de ladite cavité intérieure (11); dans lequel ladite sortie de sousverse (13) s'étend depuis l'extrémité inférieure de ladite portion inférieure de section tronconique (111) et présente une section tronconique dont le diamètre croît en direction de la partie inférieure dudit hydrocyclone.

Description

Hydrocyclone anti-boudinage
1. Domaine de l'invention
Le domaine de l'invention est celui de la conception et de la fabrication des hydrocyclones classiquement mis en œuvre dans le secteur du traitement des effluents afin de séparer la phase liquide et la phase solide d'un mélange.
2. Art antérieur
Les hydrocyclones sont couramment mis en œuvre au cours du traitement de certains effluents afin de procéder à une séparation liquide-solide.
La Demanderesse utilise des hydrocyclones lors de la mise en œuvre par exemple de son procédé commercialisé sous le nom d'Actiflo® pour le traitement de l'eau. Ces mêmes hydrocyclones sont utilisés dans d'autres procédés de traitement d'eau ou d'effluents industriels.
Un procédé de traitement d'eau du type d'Actiflo® comprend une étape de floculation lestée au cours de laquelle l'eau préalablement coagulée et/ou floculée est mise en contact avec du lest, tel que du microsable, afin de faire décanter rapidement les flocs qu'elle contient lors d'une étape ultérieure de décantation.
Cette étape de décantation conduit à la production d'une eau au moins en partie traitée et d'un mélange de boues de décantation et de lest.
Dans le but de maintenir le niveau de performance d'un procédé de traitement de ce type, la concentration en lest doit être conservée essentiellement constante au cours du traitement.
Pour garantir le maintien du niveau de performance tout en limitant la consommation en lest et ainsi réduire les coûts d'exploitation, le lest est recyclé au cours du traitement. Pour cela, le mélange de boues et de lest est acheminé vers un hydrocyclone à l'intérieur duquel la phase solide composée de lest est essentiellement séparée de la phase liquide.
Le mélange de liquide, de boues et de lest est introduit sous pression latéralement à l'intérieur du corps de l'hydrocyclone qui présente une cavité intérieure de forme cylindro-tronconique dont le diamètre diminue vers la sousverse de l'hydrocyclone. Sous l'effet de la pression d'alimentation, il se créé à l'intérieur de la cavité intérieure un vortex tendant à plaquer la phase solide contre la paroi périphérique de la cavité. La phase solide s'écoule alors vers la sousverse de l'hydrocyclone alors que la phase liquide remonte vers la surverse de l'hydrocyclone.
Un mélange de sable et d'une faible quantité de liquide et de boues est extrait en sousverse en vue d'être au moins en partie recyclé afin de réintroduire le lest dans le procédé. Un mélange de liquide, de boues et d'une faible quantité de lest est extrait en surverse.
La mise en œuvre de tels hydrocyclones permet de récupérer de manière efficace le lest en vue de le recycler dans le procédé. Leur mise en œuvre concourt ainsi à réduire la consommation en lest ainsi que les coûts inhérents à celle-ci.
Pour assurer une séparation efficace de la phase liquide et de la phase solide du mélange d'eau, de boues et de lest, celui-ci doit être introduit dans l'hydrocyclone avec une forte pression généralement de l'ordre de 2 bars. Il est pour cela nécessaire d'employer des pompes de puissance élevée. De telles pompes sont toutefois énergivores.
Par ailleurs, les hydrocyclones actuels sont sensibles aux fluctuations de concentration en Matières En Suspensions (MES) des eaux à traiter. Pourtant, la charge en MES des eaux à traiter varie fortement au cours d'une année. Durant les périodes au cours desquelles les eaux à traiter présentent une concentration en MES élevée, la sousverse de l'hydrocycle peut avoir tendance à s'engorger. L'hydrocyclone a alors des difficultés à évacuer le mélange de boues et de lest en sousverse : ce phénomène est appelé « boudinage ». Une partie des boues et du lest est alors évacuée en surverse avec l'eau traitée ce qui induit des pertes en lest et une baisse de la qualité de l'eau traitée.
3. Objectifs de l'invention
L'invention a notamment pour objectif d'apporter une solution efficace à au moins certains de ces différents problèmes.
En particulier, selon au moins un mode de réalisation, un objectif de l'invention est de fournir un hydrocyclone qui soit peu sensible aux fluctuations de concentration en MES de l'effluent à traiter.
Notamment, l'invention a pour objectif, selon au moins un mode de réalisation, de fournir un tel hydrocyclone qui soit peu sensible au phénomène de boudinage.
Un autre objectif de l'invention est, selon au moins un mode de réalisation, de fournir un tel hydrocyclone qui induise une consommation en énergie faible, à tout le moins comparativement aux hydrocyclones selon l'art antérieur.
En particulier, selon au moins un mode de réalisation, un objectif de l'invention est de fournir un hydrocyclone qui puisse fonctionner de manière efficace avec une pression d'alimentation faible, à tout le moins comparativement aux hydrocyclones de l'art antérieur.
Un autre objectif de l'invention est, selon au moins un mode de réalisation, de fournir un tel hydrocyclone qui soit fiable et/ou robuste et/ou simple de conception.
4. Présentation de l'invention
Pour ceci, l'invention propose un hydrocyclone comprenant :
un corps définissant une cavité intérieure creuse, ladite cavité intérieure creuse présentant une portion supérieure de section cylindrique prolongée par une portion inférieure de section tronconique, le diamètre de ladite section tronconique diminuant en direction de la partie inférieure dudit corps ;
une entrée pour un mélange de liquide et de solides débouchant dans ladite portion cylindrique ;
une sortie de sousverse, pour l'évacuation desdits solides essentiellement séparés dudit liquide, communiquant avec l'extrémité inférieure de ladite cavité intérieure ;
une sortie de surverse, pour l'évacuation dudit liquide essentiellement séparé desdits solides, communiquant avec l'extrémité supérieure de ladite cavité intérieure ;
dans lequel ladite sortie de sousverse s'étend depuis l'extrémité inférieure de ladite portion inférieure de section tronconique et présente une section tronconique dont le diamètre croît en direction de la partie inférieure dudit hydrocyclone.
Ainsi, selon cet aspect de l'invention, la mise en œuvre d'une sousverse de section tronconique dont le diamètre s'élargit vers le bas de l'hydrocyclone aide à conserver le mouvement tourbillonnant du fluide.
Ceci participe à favoriser la séparation des phases liquide et solide à l'intérieur de l'hydrocyclone et à limiter le phénomène d'engorgement de la sousverse de l'hydrocyclone. Un hydrocyclone selon l'invention est ainsi moins sensible aux variations de concentration en MES de l'effluent à traiter.
Ceci permet également de réduire la pression d'alimentation tout en conservant un bon niveau de séparation de la phase liquide et de la phase solide d'un mélange. On réduit de ce fait la consommation en énergie ainsi que le coût inhérent à la mise en œuvre d'une séparation liquide-solide par hydrocyclonage.
Selon une variante, le contour de ladite sousverse comprend au moins une rainure hélicoïdale dont le sens d'enroulement est identique au sens d'enroulement (ou de circulation) du liquide à l'intérieur de ladite cavité intérieure.
La mise en œuvre d'une telle rainure permet d'entretenir la rotation du fluide dans la partie inférieure de l'hydrocyclone. Ceci participe à éviter l'engorgement de la sousverse de l'hydrocyclone et à le rendre moins sensible aux variations de concentration en MES de l'effluent à traiter
Selon une variante, ladite au moins une rainure se prolonge en partie sur le contour de ladite portion inférieure de ladite cavité intérieure.
Ceci permet également d'entretenir la rotation du fluide dans la partie inférieure de l'hydrocyclone, et participe à éviter l'engorgement de la sousverse de l'hydrocyclone et à le rendre moins sensible aux variations de concentration en MES de l'effluent à traiter
Selon une variante, ladite rainure hélicoïdale forme un creux.
Ceci permet d'assurer un bon guidage de fluide à l'intérieur de l'hydrocyclone. Dans une variante, la rainure pourrait également former saillie à l'intérieur de la cavité intérieure.
Selon une variante, la longueur de ladite sousverse est supérieure au triple du diamètre de la jonction entre la portion inférieure tronconique de la cavité intérieure et la sousverse de l'hydrocyclone.
La longueur de ladite sousverse sera préférentiellement inférieure ou égale à dix fois le diamètre de la jonction entre la portion inférieure tronconique de la cavité intérieure et la sousverse de l'hydrocyclone. Une longueur plus courte conduirait à limiter l'effet escompté par la mise en œuvre de la sousverse tronconique, à savoir améliorer la séparation liquide-solide et rendre moins sensible l'hydrocyclone aux variations de concentration en MES de l'effluent à traiter tout en réduisant la pression d'alimentation. Une longueur trop importante induirait toutefois une perte de charge importante.
Selon une variante, l'angle a de la section tronconique de la sousverse par rapport à son axe de révolution est compris entre 10 et 25°.
Selon une variante, ladite sortie de surverse comprend une tubulure tronconique qui s'étend dans le prolongement de ladite portion cylindrique et dont le diamètre croît en direction de la partie supérieure dudit hydrocyclone.
Cela participe à réduire la pression d'alimentation et à entretenir la rotation du fluide à l'intérieur de l'hydrocyclone.
Selon une variante, ladite tubulure tronconique comprend une entrée qui communique avec ladite cavité intérieure et une sortie qui débouche dans un logement périphérique ménagé dans ledit corps, ladite surverse comprenant en outre une tubulure d'évacuation qui s'étend latéralement audit corps, ladite tubulure d'évacuation comprenant une entrée qui communique avec ledit logement périphérique et une sortie qui débouche en dehors dudit corps.
Selon cette variante, la surverse de l'hydrocyclone est du type à débordement. En effet, la phase liquide provenant de la cavité intérieure s'écoule par débordement dans le logement périphérique constituant une boite de collecte avant de s'écouler de celle-ci à travers la tubulure d'évacuation latérale. Ceci permet de conserver l'anisotropie et donc la rotation de l'écoulement en surverse. Les boues ont un écoulement anisotropique, c'est-à- dire qu'il est différent (sens et vitesse) en fonction de l'endroit de l'hydrocylone où l'on mesure cet écoulement. Ceci résulte notamment du mouvement de rotation des boues à l'intérieur de l'hydrocyclone et de la nature des boues (couches pas parfaitement homogènes). Si l'évacuation était différente d'un débordement (par exemple une conduite), l'écoulement serait alors forcé et viendrait fortement contraindre le tourbillon que l'on souhaite maintenir. La boite de débordement (boite de collecte à débordement) permet donc de ne pas contraindre l'écoulement.
Selon une variante, l'angle β de la tubulure tronconique de la surverse par rapport à son axe de révolution est compris entre 10 et 30°.
Ceci permet d'obtenir une faible perte de charge de la surverse tout en maintenant le mouvement de rotation.
Selon une variante, ladite entrée comprend une tubulure d'entrée qui s'étend le long d'une spirale autour de l'axe longitudinal dudit corps.
Ceci permet d'augmenter la vitesse d'entrée du mélange à l'intérieur de la cavité intérieure et d'augmenter l'effet centrifuge. A contrario, pour un niveau d'effet centrifuge équivalent, le débit et la pression d'alimentation peuvent être réduits.
Selon une variante, ladite tubulure d'entrée s'étend le long de ladite spirale sur une longueur comprise entre ½ et ¾ de tour dudit corps.
Cela permet de conférer un bon niveau d'accélération de la vitesse du mélange de liquide et de solide et d'augmenter l'effet centrifuge à l'intérieur de l'hydrocyclone.
Selon une variante, ladite tubulure d'entrée s'étend de manière inclinée vers le bas dudit corps.
Ceci permet d'orienter le mélange vers la sousverse dès son entrée dans l'hydrocyclone. On favorise ainsi la circulation des solides vers la partie inférieure de l'hydrocyclone ce qui réduit la pression d'alimentation sans nuire à la séparation liquide solide.
Selon une variante, l'angle d'inclinaison de ladite tubulure d'entrée par rapport à l'axe transversal dudit corps est inférieur ou égal à 30°.
Selon une variante, le raccordement de ladite tubulure d'entrée à ladite portion cylindrique de ladite cavité intérieure est réalisé de manière tangentielle. Ceci permet de plaquer le mélange contre la paroi périphérique de la cavité intérieure dès son entrée dans l'hydrocyclone, d'améliorer la séparation liquide-solide et de diminuer la pression d'alimentation.
Selon une variante, la section de ladite tubulure d'entrée diminue progressivement en direction de ladite portion cylindrique.
Ceci permet d'accélérer l'écoulement du mélange et participe à plaquer le mélange contre la paroi périphérique de la cavité intérieure dès son entrée dans l'hydrocyclone, d'améliorer la séparation liquide-solide et de diminuer la pression d'alimentation.
Selon une variante, la plus grande section de ladite tubulure d'entrée est comprise entre 30 et 50 % de la section de ladite portion cylindrique, et la plus petite section de ladite tubulure d'entrée est comprise entre 20 et 30 % de la section de ladite portion cylindrique.
Selon une variante, ladite tubulure d'entrée présente une section circulaire, le raccordement de ladite tubulure d'entrée à ladite portion cylindrique de ladite cavité intérieure étant réalisé de manière elliptique.
Ceci participe également à plaquer le mélange contre la paroi périphérique de la cavité intérieure dès son entrée dans l'hydrocyclone, à améliorer la séparation liquide-solide et à diminuer la pression d'alimentation.
Selon une variante, le rapport entre le petit rayon et le grand rayon dudit raccordement de forme elliptique est compris entre 1 et 2.
Selon une variante, le passage de la section circulaire de ladite tubulure d'entrée à la forme elliptique du raccordement de celle-ci à ladite portion cylindrique de la cavité intérieure se fait de manière progressive.
Ceci participe à réduire la pression d'alimentation de l'hydrocyclone.
Selon une variante, le contour supérieur de ladite portion cylindrique de ladite cavité intérieure s'étend de manière hélicoïdale avec un sens d'enroulement identique au sens de circulation du liquide à l'intérieur de ladite cavité intérieure. Ceci permet d'entretenir la mise en rotation du fluide dès l'entrée à l'intérieur de l'hydrocyclone, d'orienter l'écoulement vers la sousverse et d'éliminer le volume mort en haut de la partie cylindrique, et ainsi de favoriser la séparation des phases liquide et solide à l'intérieur de l'hydrocyclone et de limiter le phénomène d'engorgement de la sousverse de l'hydrocyclone. L'hydrocyclone est ainsi moins sensibles aux variations de concentration en MES de l'effluent à traiter. Ceci permet également de réduire la pression d'alimentation de l'hydrocyclone.
Selon une variante, ledit contour supérieur de ladite portion cylindrique de ladite cavité intérieure s'étend de manière hélicoïdale depuis le haut jusqu'au bas dudit raccordement de forme elliptique.
Ceci permet de maximiser les effets de la mise en œuvre du contour supérieur de la cavité intérieure de forme hélicoïdale.
Selon une variante, ledit hydrocyclone comprend des moyens d'injection d'eau de service dans ladite cavité intérieure, à la jonction entre ladite portion inférieure tronconique et ladite sousverse.
De tels moyens d'injection peuvent agir comme un fusible si, dans un cas extrême, l'hydrocyclone venait à sa boucher.
5. Liste des figures
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description suivante d'un mode de réalisation particulier, donné à titre de simple exemple illustratif et non limitatif, et des dessins annexés parmi lesquels :
la figure 1 illustre une vue de face d'un hydrocyclone selon l'invention ; - la figure 2 illustre une vue en coupe selon un plan passant par l'axe longitudinal de l'hydrocyclone et l'axe de la tubulure d'évacuation d'un hydrocyclone selon l'invention ;
la figure 3 illustre une vue partielle schématique du contour intérieur de la tubulure d'entrée et de la portion supérieure de section cylindrique d'un hydrocyclone selon l'invention ;
la figure 4 illustre une vue schématique de dessus de la tubulure d'entrée et de la portion supérieure de section cylindrique d'un hydrocyclone selon l'invention ;
la figure 5 illustre une vue de dessus d'un hydrocyclone selon l'invention dont la partie supérieure a été ôtée ;
la figure 6 illustre une vue de côté en transparence de la sousverse d'un hydrocyclone selon l'invention ;
la figure 7 illustre une vue de face d'une variante d'un hydrocyclone selon l'invention dont la tubulure d'entrée est inclinée.
6. Description d'un mode de réalisation particulier
6.1. Architecture
On présente, en relation avec les figures 1 à 7, un exemple d'un hydrocyclone selon l'invention.
Ainsi que cela est représenté sur ces figures, un tel hydrocyclone comprend un corps 10 qui s'étend le long d'un axe longitudinal. Ce corps 10 comprend une cavité intérieure creuse 11.
Cette cavité intérieure creuse 11 comprend :
une portion supérieure de section cylindrique 110, et
une position inférieure de section tronconique 111, cette portion de section tronconique étant ménagée dans le prolongement de la section cylindrique vers le bas de l'hydrocyclone.
La section tronconique est ici le tronc d'un cône de révolution. Son diamètre tend à diminuer en direction du bas de l'hydrocyclone.
L'hydrocyclone comprend une entrée 12 pour un mélange de liquide et de solide, par exemple un mélange d'eau, de boues de décantation et de lest.
Cette entrée 12 comprend une tubulure d'entrée 120. Celle-ci présente une section circulaire. L'axe de cette tubulure d'entrée 120 est incliné vers le bas par rapport à un axe transversal du corps de l'hydrocyclone, c'est-à-dire par rapport à une axe orthogonal à l'axe longitudinal du corps 10, d'un angle β inférieur ou égal à 30° (cf. figure 7). L'entrée de cette tubulure 120 est ainsi plus haute que sa sortie. Dans une variante, celle-ci pourra ne pas être inclinée (cf. figures 1 et 2). Dans ce cas, elle s'étendra selon un axe orthogonal à l'axe longitudinal du corps 10.
La tubulure d'entrée 120 forme une spirale autour de l'axe longitudinal du corps 10. Cette spirale s'étend sur entre ½ et ¾ de la périphérie du corps 10. Le raccordement 17 de la tubulure d'entrée 120 à la portion cylindrique 110 de la cavité intérieure 10 est réalisé de manière tangentielle.
La section de la tubulure d'entrée 120 diminue progressivement en direction de la portion cylindrique 110.
La plus grande section de la tubulure d'entrée, c'est-à-dire la section de son entrée, est comprise entre 30 et 50 % de la section de la portion cylindrique 110, et la plus petite section de la tubulure d'entrée 120 est comprise entre 20 et 30 % de la section de la portion cylindrique 110.
La tubulure d'entrée 120 présente une section circulaire. Son raccordement à la portion cylindrique 110 de la cavité intérieure 10 est préférentiellement réalisé de manière elliptique. En d'autres termes, le raccordement 17 présente la forme d'une ellipse.
Le rapport entre le petit rayon et le grand rayon du raccordement 17 de forme elliptique entre la tubulure d'entrée 120 et la portion cylindrique 110 est compris entre 1 et 2.
Le passage de la section circulaire de la tubulure d'entrée 120 à la forme elliptique du raccordement de celle-ci à la portion cylindrique 110 de la cavité intérieure 11 se fait de manière progressive.
Le contour supérieur 112 de la portion cylindrique 110 de la cavité intérieure 11 s'étend de manière hélicoïdale avec un sens d'enroulement identique au sens de circulation du liquide à l'intérieur de la cavité intérieure 11, et ce préférentiellement depuis le haut 171 jusqu'au bas 172 du raccordement 17 de forme elliptique entre la tubulure d'entrée 120 et la portion cylindrique 110.
L'hydrocyclone comprend une sortie de sousverse 13 pour l'évacuation des solides essentiellement séparés du liquide du mélange introduit dans l'hydrocyclone via la tubulure d'entrée 120. Cette sousverse 13 communique avec l'extrémité inférieure de la cavité intérieure 11, plus précisément avec l'extrémité inférieure de la portion tronconique 111. La sortie de sousverse 13 s'étend depuis l'extrémité inférieure de la portion inférieure de section tronconique 111. Elle présente une section tronconique 130 dont le diamètre croît en direction de la partie inférieure de l'hydrocyclone. Cette portion tronconique est dans ce mode de réalisation le tronc d'un cône de révolution. Elle débouche à l'extérieur du corps 10.
La longueur L de la sousverse 13 est supérieure au triple du diamètre de la jonction entre la portion inférieure tronconique de la cavité intérieure et la sortie de sousverse de l'hydrocyclone. L'angle a de la section tronconique 130 de la sousverse 13 par rapport à son axe longitudinal ou de révolution est compris entre 10 et 25°.
La sousverse 13 comprend au moins une rainure hélicoïdale 14 dont le sens d'enroulement est identique au sens de circulation du liquide à l'intérieur de la cavité intérieure 11, c'est-à-dire du mélange liquide composé de solides et de liquide qui est introduit à l'intérieur de l'hydrocyclone. Le nombre de rainure sera préférentiellement pair. Il pourra par exemple être égal à deux ou à quatre. Les rainures seront réparties de manière uniforme à la périphérie de la section tronconique 130 de la sousverse 13. La ou les rainures seront préférentiellement ménagées en creux à la surface de la section tronconique 130 de la sousverse 13. De manière alternative, elles pourraient former saillie à la surface de la section tronconique de la sousverse, c'est-à-dire former une surépaisseur à l'intérieur de la sousverse 13.
La ou les rainures 14 se prolongent en partie sur le contour de la portion inférieure de la cavité intérieure.
L'hydrocyclone comprend une sortie de surverse 15 pour l'évacuation du liquide essentiellement séparé des solides du mélange introduit dans l'hydrocyclone via la tubulure d'entrée. Cette surverse communique avec l'extrémité supérieure de la cavité intérieure 11, plus précisément avec l'extrémité supérieure de la portion supérieure cylindrique 110.
La sortie de surverse 15 comprend une tubulure tronconique 151 qui s'étend dans le prolongement de la portion cylindrique 110. Son diamètre croît en direction de la partie supérieure de l'hydrocyclone. Elle constitue dans ce mode de réalisation le tronc d'un cône de révolution.
La tubulure tronconique 151 de la surverse 15 comprend une entrée 1510 qui communique avec la cavité intérieure 11, en l'occurrence avec sa portion supérieure cylindrique 110, et une sortie 1511 qui débouche dans un logement périphérique 16 ménagé dans le corps 10. Ce logement périphérique constitue une boite de collecte. La surverse 15 comprend en outre une tubulure d'évacuation 152 qui s'étend latéralement au corps 10 selon un axe essentiellement orthogonal à l'axe longitudinal du corps 10. Cette tubulure d'évacuation latérale 152 comprend une entrée 1521 qui communique avec le logement périphérique 16 et une sortie 1522 qui débouche en dehors du corps 10. La surverse 15 constitue une surverse à débordement dans la mesure où le liquide provenant de la tubulure tronconique 151 déborde dans le logement périphérique 16 et se déverse dans la tubulure d'évacuation 152.
L'angle de la tubulure tronconique 151 de la surverse par rapport à son axe longitudinal ou de révolution est compris entre 10 et 30°.
Selon une variante, l'hydrocyclone comprend des moyens d'injection d'eau de service dans la cavité intérieure, à la jonction entre la portion inférieure tronconique et la sousverse. Ces moyens d'injection peuvent par exemple comprendre une canalisation d'injection d'eau de service 60.
Le fait d'injecter de l'eau de service à la jonction entre la portion inférieure tronconique et la sousverse peut agir comme un fusible si, dans un cas extrême, l'hydrocyclone venait à sa boucher, et ainsi permettre de le déboucher.
6.2. Fonctionnement
Un hydrocyclone selon l'invention peut classiquement être mis en œuvre pour réaliser la séparation d'une phase liquide et d'une phase solide d'un mélange, comme par exemple d'un mélange d'eau et de boues de décantation contenant du lest. Pour cela, un tel mélange est introduit à l'intérieur de l'hydrocyclone via la tubulure d'entrée 120 sous une faible pression préférentiellement comprise entre 0,3 et 1,5 bars.
Du fait de la forme en spirale de cette tubulure d'entrée le fluide accélère à l'intérieur de la tubulure d'entrée et l'effet centrifuge augmente. A contrario, pour un même effet centrifuge, le débit d'alimentation et la perte de charge peuvent être plus faible. Il est ainsi possible de réduire la pression d'alimentation.
Du fait que la section de la tubulure d'entrée diminue, le fluide est accéléré, ce qui produit le même effet que celui mentionné au paragraphe précédent. L'effet centrifuge tend à plaquer les solides contre la paroi externe.
La tubulure d'entrée est inclinée vers la sousverse de l'hydrocyclone. Le fluide est ainsi orienté dès son entrée dans l'hydrocyclone selon le sens de son écoulement à l'intérieur de la cavité intérieure 11 de l'hydrocyclone. Ceci permet encore de diminuer la pression d'alimentation en évitant le « volume mort » en haut de cavité interne qui piégerait du solide et nuirait à la qualité de la séparation.
Le fluide pénètre à l'intérieur de la portion supérieure cylindrique 110 en passant à travers le raccordement de forme elliptique entre la tubulure d'entrée 120 et la section supérieure cylindrique. En outre, ce raccordement se fait de manière tangentielle au contour périphérique intérieur de la portion supérieure cylindrique 110. Du fait des caractéristiques géométriques de ce raccordement, les solides ainsi que le liquide restent plaqués près de la paroi intérieure de la cavité intérieure 11 dès leur entrée dans celle-ci.
Le fluide s'écoule le long du contour supérieur 112 de la portion cylindrique 110 de la cavité intérieure 11 qui s'étend de manière hélicoïdale avec un sens d'enroulement identique au sens de circulation du liquide à l'intérieur de la cavité intérieure 11, depuis le haut jusqu'au bas du raccordement de forme elliptique entre la tubulure d'entrée 120 et la portion cylindrique 110. Ceci permet d'éviter les zones mortes dans la région supérieure de la portion supérieure cylindrique 110, d'amener le fluide à circuler en direction de la sousverse de l'hydrocyclone et de réduire la pression d'alimentation.
Le fluide poursuit de s'écouler à l'intérieur de la cavité intérieure 11 en passant dans la portion inférieure tronconique 111. La phase solide s'écoule alors vers la sousverse 13 de l'hydrocyclone alors que la phase liquide remonte vers la surverse 15 de l'hydrocyclone.
La phase solide s'écoule depuis la section inférieure tronconique 111 vers la sousverse 13. Elle s'écoule alors le long des rainures 14 qui s'étendent sur le contour périphérique de la région inférieure de la section tronconique 111. La mise en œuvre des rainures 14 dans cette zone permet d'entretenir la rotation du fluide et de diminuer la sensibilité de l'hydrocyclone à la charge en MES du mélange introduit dans celui-ci.
La partie solide du fluide s'écoule à l'intérieur de la section tronconique 130 de la sousverse 13. La mise en œuvre d'une sousverse de section tronconique dont le diamètre s'élargit vers le bas permet d'y éviter les écoulements induits ce qui permet de maintenir la rotation du fluide à l'intérieur de l'hydrocyclone. Ceci permet de diminuer la pression d'alimentation.
Le rainurage 14 à l'intérieur de la section tronconique 130 permet d'entretenir la rotation du fluide et de rendre en conséquence moins sensible l'hydrocyclone à la variation de charge en MES du mélange introduit dans celui-ci.
La phase liquide remonte à l'intérieur de la cavité intérieure 11 en passant de la portion inférieure tronconique 111 à la portion supérieure cylindrique 110 puis à la tubulure tronconique 151 de la surverse 15.
La mise en œuvre de la tubulure tronconique 151 dont le diamètre s'élargit vers le haut permet de conserver l'anisotropie de l'écoulement en surverse. Ceci permet de maintenir la rotation du fluide. Ceci permet également de diminuer la pression d'alimentation.
Le liquide déborde ensuite depuis la partie supérieure de la tubulure tronconique 151 à l'intérieur du logement périphérique 16. Il s'écoule ensuite depuis le logement périphérique 16 à l'intérieur de la tubulure d'évacuation 152.
Du fait que la phase liquide déborde depuis la tubulure tronconique 151 à l'intérieur du logement périphérique 16, permet de maintenir une hauteur d'eau faible et constante dans la surverse, et ainsi de ne pas contraindre l'écoulement en sousverse.
6.3. Avantages
La technique selon l'invention permet de faciliter la mise en rotation du fluide à l'intérieur de hydrocyclone et de conserver cette mise en rotation par la mise en œuvre, de manière indépendante ou combinée :
de la tubulure d'entrée inclinée ;
de la forme hélicoïdale de la surface supérieure de la portion supérieure cylindrique ;
- de la section tronconique de la sousverse ;
de la tubulure tronconique de la surverse ;
de l'évacuation de la phase liquide par débordement ;
du rainurage à l'intérieur de la section tronconique de la sousverse ;
du rainurage dans la zone inférieure de la portion inférieure tronconique de la cavité intérieure ;
Tout ceci participe à favoriser la séparation des phases liquide et solide à l'intérieur de l'hydrocyclone et à limiter le phénomène d'engorgement de la sousverse de l'hydrocyclone.
La technique selon l'invention permet de réduire la pression d'alimentation de l'hydrocyclone par la mise en œuvre, de manière indépendante ou combinée : de la tubulure d'entrée en forme de spirale ;
du raccordement de forme elliptique et tangentielle entre la tubulure d'entrée et la portion supérieure cylindrique ;
de la réduction de la section de la tubulure d'entrée en direction de la cavité intérieure ;
du changement de forme progressif de circulaire à elliptique entre la tubulure d'entrée et son raccordement à la cavité intérieure ;
de l'inclinaison de la tubulure d'entrée ;
de la forme hélicoïdale de la surface supérieure de la portion supérieure cylindrique ;
de la section tronconique de la sousverse ;
de la tubulure tronconique de la surverse ;
de l'évacuation de la phase liquide par débordement. La technique selon l'invention permet de réduire la sensibilité de l'hydrocyclone aux variations de charge en MES du mélange introduit à l'intérieur de celui-ci et ainsi de limiter le phénomène d'engorgement de la sousverse, par la mise en œuvre, de manière indépendante ou combinée :
- du rainurage à l'intérieur de la section tronconique de la sousverse ;
du rainurage dans la zone inférieure de la portion inférieure tronconique de la cavité intérieure ;
de l'évacuation de la phase liquide par débordement.

Claims

REVENDICATIONS
1. Hydrocyclone comprenant :
un corps (10) définissant une cavité intérieure creuse (11), ladite cavité intérieure creuse (11) présentant une portion supérieure de section cylindrique (110) prolongée par une portion inférieure de section tronconique (111), le diamètre de ladite section tronconique (111) diminuant en direction de la partie inférieure dudit corps (10) ;
une entrée (12) pour un mélange de liquide et de solides débouchant dans ladite portion cylindrique (110) ;
- une sortie de sousverse (13), pour l'évacuation desdits solides essentiellement séparés dudit liquide, communiquant avec l'extrémité inférieure de ladite cavité intérieure (11) ;
une sortie de surverse (15), pour l'évacuation dudit liquide essentiellement séparé desdits solides, communiquant avec l'extrémité supérieure de ladite cavité intérieure (11) ;
dans lequel ladite sortie de sousverse (13) s'étend depuis l'extrémité inférieure de ladite portion inférieure de section tronconique (111) et présente une section tronconique dont le diamètre croît en direction de la partie inférieure dudit hydrocyclone,
caractérisé en ce que le contour de ladite sousverse (13) comprend au moins une rainure hélicoïdale (14) dont le sens d'enroulement est identique au sens d'enroulement du liquide à l'intérieur de ladite cavité intérieure (11).
2. Hydrocyclone selon la revendication 1, dans lequel ladite au moins une rainure (14) se prolonge en partie sur le contour de ladite portion inférieure
(111) de ladite cavité intérieure (11).
3. Hydrocyclone selon la revendication 1 ou 2, dans lequel ladite rainure hélicoïdale (14) forme un creux.
4. Hydrocyclone selon l'une quelconque des revendications 1 à 3, dans lequel la longueur de ladite sousverse (13) est supérieure au triple du diamètre de la jonction entre la portion inférieure tronconique (111) de la cavité intérieure (11) et la sousverse (13) de l'hydrocyclone.
5. Hydrocyclone selon l'une quelconque des revendications 1 à 4, dans lequel l'angle a de la section tronconique (130) de la sousverse (13) par rapport à son axe de révolution est compris entre 10 et 25°.
6. Hydrocyclone selon l'une quelconque des revendications 1 à 5, dans lequel ladite sortie de surverse (15) comprend une tubulure tronconique (151) qui s'étend dans le prolongement de ladite portion cylindrique (110) et dont le diamètre croît en direction de la partie supérieure dudit hydrocyclone.
7. Hydrocyclone selon la revendication 6, dans lequel ladite tubulure tronconique (151) comprend une entrée (1511) qui communique avec ladite cavité intérieure (11) et une sortie (1512) qui débouche dans un logement périphérique (16) ménagé dans ledit corps (10), ladite surverse (15) comprenant en outre une tubulure d'évacuation (152) qui s'étend latéralement audit corps (10), ladite tubulure d'évacuation (152) comprenant une entrée
(1521) qui communique avec ledit logement périphérique (16) et une sortie
(1522) qui débouche en dehors dudit corps (10).
8. Hydrocyclone la revendication 6 ou 7, dans lequel l'angle de la tubulure tronconique (151) de la surverse (15) par rapport à son axe de révolution est compris entre 10 et 30°.
9. Hydrocyclone selon l'une quelconque des revendications 1 à 4, dans lequel ladite entrée (12) comprend une tubulure d'entrée (120) qui s'étend le long d'une spirale autour de l'axe longitudinal dudit corps (10).
10. Hydrocyclone selon la revendication 9, dans lequel ladite tubulure d'entrée (120) s'étend le long de ladite spirale sur une longueur comprise entre ¾. et ¾ de tour dudit corps.
11. Hydrocyclone selon la revendication 9 ou 10 dans lequel ladite tubulure d'entrée (120) s'étend de manière inclinée vers le bas dudit corps (10).
12. Hydrocyclone selon la revendication 11, dans lequel l'angle d'inclinaison β de ladite tubulure d'entrée (120) par rapport à un axe transversal dudit corps
(10) est inférieur ou égal à 30°.
13. Hydrocyclone selon l'une quelconque des revendications 9 à 12 dans lequel le raccordement de ladite tubulure d'entrée (120) à ladite portion cylindrique (110) de ladite cavité intérieure (11) est réalisé de manière tangentielle.
14. Hydrocyclone selon l'une quelconque des revendications 9 à 13 dans lequel la section de ladite tubulure d'entrée (120) diminue progressivement en direction de ladite portion cylindrique (11).
15. Hydrocyclone selon la revendication 14, dans lequel la plus grande section de ladite tubulure d'entrée (120) est comprise entre 30 et 50 % de la section de ladite portion cylindrique (110), et la plus petite section de ladite tubulure d'entrée (120) est comprise entre 20 et 30 % de la section de ladite portion cylindrique (110).
16. Hydrocyclone selon l'une quelconque des revendications 9 à 15 dans lequel ladite tubulure d'entrée (120) présente une section circulaire, le raccordement (17) de ladite tubulure d'entrée (120) à ladite portion cylindrique (110) de ladite cavité intérieure (11) étant réalisé de manière elliptique.
17. Hydrocyclone selon la revendication 16, dans lequel le rapport entre le petit rayon et le grand rayon dudit raccordement (17) de forme elliptique est compris entre 1 et 2.
18. Hydrocyclone selon l'une quelconque des revendications 14 à 17 dans lequel le passage de la section circulaire de ladite tubulure d'entrée (120) à la forme elliptique du raccordement (17) de celle-ci à ladite portion cylindrique (110) de la cavité intérieure (11) se fait de manière progressive.
19. Hydrocyclone selon l'une quelconque des revendications 9 à 18 dans lequel le contour supérieur (112) de ladite portion cylindrique (110) de ladite cavité intérieure (11) s'étend de manière hélicoïdale avec un sens d'enroulement identique au sens de circulation du liquide à l'intérieur de ladite cavité intérieure (11).
20. Hydrocyclone selon la revendication 19, dans lequel ledit contour supérieur (112) de ladite portion cylindrique (110) de ladite cavité intérieure
(11) s'étend de manière hélicoïdale depuis le haut (171) jusqu'au bas (172) dudit raccordement de forme elliptique (17).
21. Hydrocyclone selon l'une quelconque des revendications 1 à 20, comprenant des moyens d'injection (60) d'eau de service dans ladite cavité intérieure (11), à la jonction entre ladite portion inférieure tronconique (111) et ladite sousverse (13).
PCT/EP2015/077967 2014-11-28 2015-11-27 Hydrocyclone anti-boudinage WO2016083603A1 (fr)

Priority Applications (14)

Application Number Priority Date Filing Date Title
CA2967535A CA2967535A1 (fr) 2014-11-28 2015-11-27 Anti-extrusion hydrocyclone
BR112017010986A BR112017010986A2 (pt) 2014-11-28 2015-11-27 ?hidrociclone antiextrusão?.
AU2015352424A AU2015352424A1 (en) 2014-11-28 2015-11-27 Anti-extrusion hydrocyclone
RU2017122415A RU2017122415A (ru) 2014-11-28 2015-11-27 Гидроциклон с предупреждением забивания
JP2017528194A JP2017535419A (ja) 2014-11-28 2015-11-27 詰まり防止液体サイクロン
CN201580071247.5A CN107107077A (zh) 2014-11-28 2015-11-27 防堵塞水力旋流器
UAA201705165A UA117073C2 (uk) 2014-11-28 2015-11-27 Гідроциклон
MX2017006680A MX2017006680A (es) 2014-11-28 2015-11-27 Hidrociclon antiextrusion.
US15/531,023 US20170312764A1 (en) 2014-11-28 2015-11-27 Anti-extrusion hydrocyclone
SG11201704223YA SG11201704223YA (en) 2014-11-28 2015-11-27 Anti-extrusion hydrocyclone
KR1020177014427A KR20170087894A (ko) 2014-11-28 2015-11-27 압출방지 하이드로사이클론
TN2017000189A TN2017000189A1 (fr) 2014-11-28 2015-11-27 Hydrocyclone anti-boudinage
EP15805419.7A EP3223957A1 (fr) 2014-11-28 2015-11-27 Hydrocyclone anti-boudinage
ZA2017/03235A ZA201703235B (en) 2014-11-28 2017-05-10 Anti-clogging hydrocyclone

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1461630A FR3029192A1 (fr) 2014-11-28 2014-11-28 Hydrocyclone anti-boudinage.
FR1461630 2014-11-28

Publications (1)

Publication Number Publication Date
WO2016083603A1 true WO2016083603A1 (fr) 2016-06-02

Family

ID=52450425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/077967 WO2016083603A1 (fr) 2014-11-28 2015-11-27 Hydrocyclone anti-boudinage

Country Status (17)

Country Link
US (1) US20170312764A1 (fr)
EP (1) EP3223957A1 (fr)
JP (1) JP2017535419A (fr)
KR (1) KR20170087894A (fr)
CN (1) CN107107077A (fr)
AU (1) AU2015352424A1 (fr)
BR (1) BR112017010986A2 (fr)
CA (1) CA2967535A1 (fr)
FR (1) FR3029192A1 (fr)
MA (1) MA41015A (fr)
MX (1) MX2017006680A (fr)
RU (1) RU2017122415A (fr)
SG (1) SG11201704223YA (fr)
TN (1) TN2017000189A1 (fr)
UA (1) UA117073C2 (fr)
WO (1) WO2016083603A1 (fr)
ZA (1) ZA201703235B (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106621468A (zh) * 2017-02-20 2017-05-10 福建龙净环保股份有限公司 一种漩涡式灰水浓淡分离装置
JP2018176309A (ja) * 2017-04-05 2018-11-15 ブラザー工業株式会社 工具洗浄装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD828422S1 (en) * 2017-01-24 2018-09-11 Superior Industries, Inc. Hydrocyclone inlet head
USD857071S1 (en) * 2017-01-24 2019-08-20 Superior Industries, Inc. Hydrocyclone inlet head
BE1024631B9 (nl) * 2016-10-11 2019-05-13 Atlas Copco Airpower Nv Vloeistofafscheider
EP3666640A1 (fr) * 2018-12-14 2020-06-17 ABB Schweiz AG Dispositif de traitement de l'eau
CN112984635A (zh) * 2019-12-13 2021-06-18 广东美的制冷设备有限公司 空气净化模块及空调室内机
CN115867703A (zh) * 2020-07-03 2023-03-28 维美德技术有限公司 具有改进的流体注入构件的水力旋流器
CN114433371B (zh) * 2020-11-05 2024-03-22 广东美的白色家电技术创新中心有限公司 一种旋流分离器
CN115608527A (zh) * 2022-08-06 2023-01-17 江苏大学流体机械温岭研究院 一种带有螺旋沟槽减阻结构的固液旋流分离器
CN115569415A (zh) * 2022-09-29 2023-01-06 汕头市潮阳区广业练江生态环境有限公司 一种闭式压力旋流沉砂器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0215075A1 (fr) * 1985-03-19 1987-03-25 Siegbert Schulz Separateur a cyclone avec deux chambres de separation et dispositfs statiques de guidage.
WO1987006502A1 (fr) * 1986-04-23 1987-11-05 Noel Carroll Separateur a cyclone
WO2000027538A1 (fr) * 1998-11-06 2000-05-18 Shell Internationale Research Maatschappij B.V. Separateur
CN201702040U (zh) * 2010-04-21 2011-01-12 苏州市锦翔压力容器制造有限公司 旋风分离器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA941753A (en) * 1970-09-28 1974-02-12 Elast-O-Cor Products And Engineering Limited Hydrocyclones
CN102225383B (zh) * 2011-04-07 2012-08-08 常州大学 一种分离器
CN102389864A (zh) * 2011-09-19 2012-03-28 黄山 新型底流水流可调旋流器
CN103639076A (zh) * 2013-12-04 2014-03-19 烟台宜陶矿业有限公司 一种旋转器沉沙口自动疏通装置
CN104014413B (zh) * 2014-05-07 2016-04-06 江苏大学 一种封闭式的粉碎物料收集装置及收集方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0215075A1 (fr) * 1985-03-19 1987-03-25 Siegbert Schulz Separateur a cyclone avec deux chambres de separation et dispositfs statiques de guidage.
WO1987006502A1 (fr) * 1986-04-23 1987-11-05 Noel Carroll Separateur a cyclone
WO2000027538A1 (fr) * 1998-11-06 2000-05-18 Shell Internationale Research Maatschappij B.V. Separateur
CN201702040U (zh) * 2010-04-21 2011-01-12 苏州市锦翔压力容器制造有限公司 旋风分离器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106621468A (zh) * 2017-02-20 2017-05-10 福建龙净环保股份有限公司 一种漩涡式灰水浓淡分离装置
JP2018176309A (ja) * 2017-04-05 2018-11-15 ブラザー工業株式会社 工具洗浄装置

Also Published As

Publication number Publication date
FR3029192A1 (fr) 2016-06-03
RU2017122415A (ru) 2018-12-29
MX2017006680A (es) 2017-10-04
EP3223957A1 (fr) 2017-10-04
ZA201703235B (en) 2018-05-30
CN107107077A (zh) 2017-08-29
SG11201704223YA (en) 2017-06-29
CA2967535A1 (fr) 2016-06-02
AU2015352424A1 (en) 2017-06-08
MA41015A (fr) 2017-10-03
TN2017000189A1 (fr) 2018-10-19
US20170312764A1 (en) 2017-11-02
UA117073C2 (uk) 2018-06-11
BR112017010986A2 (pt) 2018-02-14
JP2017535419A (ja) 2017-11-30
KR20170087894A (ko) 2017-07-31

Similar Documents

Publication Publication Date Title
EP3223957A1 (fr) Hydrocyclone anti-boudinage
EP2108005B1 (fr) Procede et installation de traitement d'eau par floculation lestee et decantation
JP5191565B2 (ja) 遠心脱水方法及び遠心脱水装置
EP0228097A2 (fr) Séparateur tournant à vortex pour liquide hétérogéne
EP1988947B1 (fr) Procédé et chambre de centrifugation pour le lavage et la séparation en continu de constituants sanguins
EP2897913A1 (fr) Procédé de traitement d'eau comprenant une flottation combinée à une filtration gravitaire et installation correspondante
FR2460720A1 (fr) Separateur de sable pour la preparation de pate cellulosique
JP2012187570A5 (fr)
KR100945273B1 (ko) 고농도 유기폐수의 원심 농축장치
EP0404647A1 (fr) Dispositif de désaération de liquides
EP0104966B1 (fr) Centrifugeuse à récupération d'énergie
KR100407896B1 (ko) 슬러지 농축탈수용 수평 원심분리기
EP2560923A1 (fr) Réacteur de purification anaérobie d'eaux usées à flux ascendant et procédé de mise en oeuvre
EP1958699A1 (fr) Procédé et appareil permettant de perfectionner le fonctionnement des hydrocyclones
FR2489716A1 (fr) Centrifugeuse pour separation de matieres solides et de deux liquides, notamment dans la preparation de l'huile d'olive
FR2588778A1 (fr) Separateur a vortex liquide
JP2003245574A (ja) デカンタ型遠心脱水装置および該装置を用いた遠心脱水方法
BE522765A (fr)
WO1999025480A1 (fr) Dispositif et procede pour la separation d'un melange heterogene
CN209531150U (zh) 用于降低污泥含水率的螺旋推进器
FR2988013A1 (fr) Separateur de phase et procede de separation correspondant
FR3110859A1 (fr) Cuve de traitement d’eaux avec des goulottes de guidage
FR2511268A3 (fr) Cyclone pour la separation de solides en suspension dans un liquide
JP6222486B2 (ja) ドラム型濃縮機
FR2522586A1 (fr) Filtre-presse a vis a etages multiples pour extraire et filtrer les matieres solubles contenues dans les matieres vegetales

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15805419

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2967535

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2015805419

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/006680

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2017528194

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177014427

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 11201704223Y

Country of ref document: SG

Ref document number: 15531023

Country of ref document: US

Ref document number: A201705165

Country of ref document: UA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017010986

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2015352424

Country of ref document: AU

Date of ref document: 20151127

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017122415

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112017010986

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170524