WO2016082539A1 - 一种基站控制方法及基站 - Google Patents

一种基站控制方法及基站 Download PDF

Info

Publication number
WO2016082539A1
WO2016082539A1 PCT/CN2015/082101 CN2015082101W WO2016082539A1 WO 2016082539 A1 WO2016082539 A1 WO 2016082539A1 CN 2015082101 W CN2015082101 W CN 2015082101W WO 2016082539 A1 WO2016082539 A1 WO 2016082539A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
base station
sleep mode
bandwidth
radio frequency
Prior art date
Application number
PCT/CN2015/082101
Other languages
English (en)
French (fr)
Inventor
纪勇
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016082539A1 publication Critical patent/WO2016082539A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This document relates to energy-saving technologies in the field of mobile communications, and more particularly to a base station control method and a base station.
  • the direct impact of the information communication technology (ICT) industry on global greenhouse gas emissions accounts for about 2 to 2.5%.
  • the impact of the communications industry accounts for about 1/4, and the annual power consumption has exceeded 20 billion kWh.
  • the energy consumption of the base station accounts for 90% of the energy consumption of the entire mobile communication network equipment, and accounts for 60% to 70% of the total power consumption of the communication operator.
  • Base station energy saving is the key to energy saving of the entire mobile communication network, and how to reduce the base station energy consumption has become a topic of environmental protection and cost that communication operators pay attention to.
  • the main solution proposed by the industry for the deep energy saving of the base station is the cell shutdown.
  • the cell shutdown process will affect the signal coverage, which may cause subsequent terminals to fail to access, thereby affecting the user experience.
  • the embodiments of the present invention provide a method for controlling a base station and a base station, which can implement energy saving of a cell in a scenario in which a cell is not activated in a resource idle time period, and achieves deep energy saving of the base station.
  • the embodiment of the invention provides a base station control method, including:
  • the base station monitors the number of activated users of the cell according to a preset statistical period
  • the cell that has not activated the user in the statistical period enters the cell sleep mode.
  • the number of activated users of the monitoring cell includes: the baseband processing unit of the base station monitors the number of activated users of the cell in a statistical period in which the preset activated user status of the cell is counted.
  • the entering the cell sleep mode includes: the radio unit corresponding to the cell transmits a cell signal with a low bandwidth, and the monitoring process and the low-power radio frequency process are reserved; The baseband data of a system frame number SFN period is stored and cyclically transmitted.
  • the transmitting, by the radio unit corresponding to the cell entering the cell sleep mode, the cell signal by using the low bandwidth includes:
  • the bandwidth of the radio unit corresponding to the cell entering the cell sleep mode is adjusted to a preset bandwidth adjustment value
  • the bandwidth of the radio unit corresponding to the cell is adjusted to correspond to the time period. Bandwidth value.
  • the preset bandwidth adjustment value is 1.4M.
  • the method further includes: the baseband processing unit of the base station enters a sleep mode.
  • the entering the sleep mode by the baseband processing unit includes: low-voltage operation, idle process blocking, and only part of the listening process required to ensure that the cell recovers from the sleep state to the normal state.
  • the method further includes: the cell that has entered the cell sleep mode, and upon receiving the activation information, activate the cell to restore the normal state.
  • the activating the cell to restore the normal state includes:
  • the baseband processing unit of the base station If the baseband processing unit of the base station is already in the sleep mode, simultaneously activating the baseband processing unit of the base station and the radio frequency unit of the cell receiving the activation information;
  • the radio frequency unit of the cell that received the activation information is activated.
  • the activation information includes: random pilot information randomly accessed by the terminal, or measurement information of handover in the base station, or a handover request from the mobility management entity MME, or a handover request from the X2 link, or a background network management Activation information.
  • the embodiment of the present invention further provides a base station, including a baseband processing unit, and one or more radio frequency units corresponding to the cell;
  • the baseband processing unit is configured to monitor the number of active users of the cell according to a preset statistical period, and output a first notification to the radio frequency unit corresponding to the cell that has not activated the user in the statistical period;
  • the radio frequency unit is configured to receive the first notification and enter a cell sleep mode.
  • the radio frequency unit is configured to: receive the first notification, and send a cell signal by using a pre-set bandwidth adjustment value or a pre-stated system bandwidth that can be used in a corresponding idle time period, and retain the monitoring process and low power consumption.
  • RF process saves the baseband data of a system frame number SFN cycle and sends it cyclically.
  • the baseband processing unit is further configured to enter a sleep mode when all cells in the base station enter a cell sleep mode.
  • the radio frequency unit is further configured to return to a normal state before the hibernation when the activation information is received when the sleep mode has been entered.
  • the baseband processing unit is further configured to: when the sleep mode has been entered, when the activation information is received, return to the normal state before the sleep.
  • the embodiment of the invention further provides a computer readable storage medium storing program instructions, which can be implemented when the program instructions are executed.
  • the technical solution of the embodiment of the present application includes: the base station monitors the number of activated users of the cell according to a preset statistical period; and the cell that has not activated the user has entered the cell sleep mode in the statistical period. It can be seen that as long as a cell enters the cell sleep mode, its system bandwidth is adjusted to a minimum, and the software system of the radio unit blocks the idle software process, the power module controls the voltage supply of the idle hardware unit, and can pass the random connection initiated by the terminal. The signal is immediately restored from the sleep state to the normal state. Such a process not only ensures the coverage of the signal, but also ensures the access and user experience of the subsequent terminal, and realizes the energy saving of the base station.
  • the baseband processing unit of the base station When all cells in the base station enter the cell sleep mode, the baseband processing unit of the base station enters a sleep mode. When all cells of the base station enter the cell sleep mode, the working state of the baseband processing unit of the base station is adjusted to enter a sleep mode in which the low-voltage operation and the idle process are blocked, thereby further realizing the energy saving of the base station; and the baseband processing unit And RF unit, can be randomly accessed Activation information such as information and switching information is quickly restored to a normal state.
  • a cell that has entered the sleep mode once it receives the activation information, immediately activates the cell to return to the normal state. This ensures the access of subsequent terminals and the user experience.
  • FIG. 1 is a flowchart of a method for controlling a base station according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • Example 3 is a schematic diagram of implementing base station control according to Example 1 of the present invention.
  • Example 4 is a schematic diagram of implementing base station control according to Example 2 of the present invention.
  • Example 5 is a schematic diagram of implementing base station control according to Example 3 of the present invention.
  • FIG. 6 is a schematic diagram of implementing base station control according to Example 4 of the present invention.
  • the baseband processing unit of the base station is mainly responsible for processing of S1 data and signaling, internal monitoring and data signaling processing of the base station, processing of baseband processing such as encoding, multiplexing, modulation, and spreading, maintenance of the network management link and the X2 link, and local And remote operation and maintenance functions, etc.
  • the radio unit of the base station is mainly responsible for performing baseband digital transmission, power matching, downlink data transmission, and uplink data reception with the baseband processing unit.
  • the 3GPP protocol defines six bandwidths for the LTE system: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, 20 MHz. Different bandwidths, using the same reference signal (RS, Reference Signal) power, have the same coverage, but the power consumption is significantly different.
  • RS Reference Signal
  • FIG. 1 is a flowchart of a method for controlling a base station according to an embodiment of the present invention. As shown in FIG. 1, the method includes:
  • Step 100 The base station monitors the number of activated users of the cell according to a preset statistical period.
  • the baseband processing unit of the base station monitors the number of activated users of the cell in a statistical period in which the preset activated user status of the cell is counted.
  • Step 101 The cell that has not activated the user in the statistical period enters the cell sleep mode.
  • a radio unit corresponding to the cell transmits a cell signal with a low bandwidth, and the radio unit retains only a listening process for monitoring, capturing specific information, a low-power radio frequency process, and a clock synchronization process (for a TDD system, Clock synchronization is required; the FDD system does not need to be blocked by other processes; at the same time, the RF unit saves the baseband data of a system frame number (SFN) and cyclically transmits it; the power module controls the voltage supply of the idle hardware.
  • SFN system frame number
  • bandwidths are defined in the LTE protocol, of which 1.4M is the lowest bandwidth; 20M is the highest and common bandwidth; in the scenario where the RS power is configured to 18.2dbm and the cell is unloaded, the 20M bandwidth is 45W higher than the 5M bandwidth. Left and right, the power consumption of the 1.4M bandwidth is about 55W; when the cell enters the sleep mode, the lower bandwidth such as 1.4M, 3M or 5M can be selected for cell signal transmission to achieve energy saving.
  • the radio frequency unit corresponding to the cell entering the cell sleep mode in this step transmits the cell signal with a low bandwidth, including:
  • the bandwidth of the radio unit corresponding to the cell entering the cell sleep mode is adjusted to a preset bandwidth adjustment value such as a transmitting cell signal such as 1.4M, 3M, or 5M; for the most complete energy saving, the bandwidth adjustment value may be 1.4M, which is the minimum bandwidth specified by the protocol;
  • the bandwidth is adjusted to the bandwidth value corresponding to the time zone, that is, the bandwidth of the radio unit of the cell entering the cell sleep mode is adjusted to the usable system bandwidth value corresponding to the time period in the corresponding time period, so as to achieve the purpose of energy saving.
  • the cell bandwidth is changed from 20M to 5M.
  • the cell enters the cell sleep mode and the bandwidth becomes lower (such as from 20M to 1.4M), the voltage and power consumption of the power amplifier module of the RF unit are also reduced; at the same time, the effective signal output is maintained, and the terminal initiates random access. So it is called a low-power RF process here.
  • this embodiment emphasizes that as long as a cell enters the cell sleep mode, the system bandwidth of its corresponding radio unit is adjusted to the minimum, such processing not only ensures signal coverage, but also ensures subsequent terminal access. It improves the user experience and realizes the energy saving of the base station.
  • the foregoing method may further include step 102:
  • the baseband processing unit of the base station When all cells in the base station enter the cell sleep mode, the baseband processing unit of the base station enters a sleep mode. That is, at this time, the baseband processing unit of the base station enters a sleep mode in which the low-voltage operation and the idle process are blocked, and only retains part of the maintenance monitoring process and the clock synchronization process (for the TDD system) required to ensure that the cell recovers from the sleep state to the normal state.
  • S1/X2 coupling, network management and other maintenance and maintenance processes such as S1/X2 link maintenance monitoring process, network management link maintenance and monitoring, and monitoring process.
  • the working state of the baseband processing unit of the base station is adjusted to enter a sleep mode of low-voltage operation and process blocking, thereby realizing energy saving of the base station.
  • the foregoing method further includes:
  • the low-voltage operation of the baseband processing unit of the base station is: on the hardware, the power module reduces the voltage supply to the idle idle hardware; the process blocking can be implemented by software, and the hardware running power is reduced by blocking the software system process.
  • a cell that has entered the sleep mode once it receives the activation information, immediately activates the cell to return to the normal state. This ensures the access of subsequent terminals and improves the user experience.
  • the emphasis here is that by blocking the idle process of the radio unit and the optional baseband processing unit, the low voltage operation achieves the purpose of deep energy saving of the base station, and at the same time, the dormant cell is activated when the activation information is received, and the operation is ensured. Subsequent terminal access and user experience.
  • the activation information includes, but is not limited to, random pilot information of the terminal random access, measurement information of the handover within the base station, a handover request (Handover Request) from the mobility management entity (MME), a handover request from the X2 link, and a background. Network management activation information, etc.
  • the activation of the cell to restore the normal state includes:
  • the baseband processing unit of the base station If the baseband processing unit of the base station is already in the sleep mode, the baseband processing unit of the base station and the radio unit of the cell receiving the activation information are simultaneously activated, and the cell is restored to the normal state before the sleep;
  • the radio unit of the cell that receives the activation information is directly activated, and the cell is restored to the normal state before the sleep.
  • FIG. 2 is a schematic structural diagram of a base station according to an embodiment of the present invention. As shown in FIG. 2, at least a baseband processing unit, one or more radio units corresponding to a cell, such as radio frequency unit 1, radio frequency unit 2, ... RF unit n. among them,
  • the baseband processing unit is configured to monitor the number of active users of the cell according to a preset statistical period, and output a first notification to the radio frequency unit corresponding to the cell that has not activated the user in the statistical period;
  • the radio frequency unit is configured to receive the first notification and enter a cell sleep mode.
  • the cell signal is transmitted by using a preset bandwidth adjustment value or a pre-stated system bandwidth that can be used in the corresponding idle time period, and the radio unit only keeps the monitoring process, the low-power radio frequency process, and the clock synchronization process (for the TDD system), and the like. The process is blocked; the baseband data of an SFN cycle is saved and sent cyclically.
  • the baseband processing unit is further configured to enter a sleep mode when all cells in the base station enter the cell sleep mode.
  • the baseband processing unit enters a sleep mode with low-voltage operation and process blocking, and only partially monitors the maintenance process.
  • the radio unit is also configured to activate the cell to return to its normal state upon receipt of the activation information upon entering the sleep mode.
  • the baseband processing unit is further configured to return to the normal state before the sleep when the activation information is received when the sleep mode has been entered.
  • Example 3 is a schematic diagram of an example 1 for implementing base station control.
  • Example 1 is a scenario in which a normal cell enters a sleep mode, and a terminal activates a cell, as shown in the first stage of FIG. 3, assuming that the cell is normal and the bandwidth is 20 M. The shaded squares are shown) and the cell signal is output according to the set power.
  • the uplink and downlink share a 20M bandwidth; for the FDD system, the downlink and uplink bandwidths are each 20M, and the following 20M bandwidth is taken as an example.
  • the cell has not activated the user, then the cell performs cell sleep state: the cell bandwidth is adjusted from 20M to 1.4M (as shown in the oblique squared grid in the figure) As shown, the RS power is constant, so the coverage of the signal is also unchanged.
  • the system of the cell operates in a low-voltage power-saving mode, and adopts partial process blocking, and only saves the monitoring process and the low-frequency consumption RF process to save energy, as shown in the second stage in FIG. 3;
  • the terminal When the cell is in the third phase, within the coverage of the cell, the terminal is suddenly activated, the terminal searches for the cell, and then initiates a random access pilot signal; the cell in the cell sleep mode receives the cell once When the pilot signal is randomly accessed, the cell is activated and restored to the cell state before the sleep, as shown in the fourth stage of FIG.
  • example 4 is a schematic diagram of an example 2 for implementing base station control, and example 2 is a scenario of a cell entering a cell sleep mode by S1 handover or X2 handover.
  • the target base station receives the signaling of the handover request, whether it is the S1 handover or the X2 handover.
  • the handover request signaling is used as the activation information for activating the cell in the cell sleep mode.
  • the terminal accesses the normal bandwidth to 20M (as indicated by the shaded square in the figure), that is, the source base station (Source eNB), and the other bandwidth is 1.4M (such as The cell movement in the cell sleep mode shown in the shaded square of the figure (the following example shows the 20M bandwidth in the following line);
  • the target base station receives the Handover Request information
  • the target base station After receiving the Handover Request, the target base station immediately activates another cell in the cell sleep mode. In the third phase shown in FIG. 4, the bandwidth of the cell is restored from 1.4 M to 20 M to ensure normal handover of the terminal.
  • FIG. 5 is a schematic diagram of Example 3 for implementing base station control
  • Example 3 is a scenario for activating a cell entering a cell sleep mode by intra-station handover.
  • the base station performs handover decision and admission control.
  • the measurement report of the cell is activation information.
  • the terminal moves from the normal cell of the same base station to the cell in the cell sleep mode, and the bandwidth of the source cell of the normal cell is 20 M (as shown by the shaded square in the figure). ), the dormant cell is the target cell (Target cell), and the bandwidth is 1.4M (shown as a shaded square in the oblique square in the figure);
  • the measurement report is reported; after receiving the measurement report, the base station detects the information of the target dormant cell in the measurement report.
  • the target cell in the cell sleep mode is activated immediately, as shown in the third stage of FIG.
  • FIG. 6 is a schematic diagram of an example 4 for implementing base station control.
  • a scenario of a cell activated in a cell sleep mode is implemented for inter-system handover.
  • the LTE system base station receives the handover request.
  • the handover request when the system is switched is the activation information.
  • the terminal accesses the UMTS cell, and moves to the dormant cell of the LTE system with a bandwidth of 1.4M (shown by a hatched square in the oblique square in the figure);
  • the target base station of the LTE system receives the Handover Request information; after receiving the Handover Request information, the target base station immediately activates the The cell in the cell sleep mode ensures the normal handover of the terminal, as shown in the third phase of FIG. 6.
  • the system bandwidth is adjusted to the minimum, which ensures the coverage of the signal, ensures the access and user experience of the subsequent terminal, and realizes the energy saving of the base station.
  • the working state of the baseband processing unit of the base station is adjusted to enter a sleep mode in which the low-voltage operation and the idle process are blocked, thereby further realizing the energy saving of the base station; and the baseband processing unit and the radio frequency unit can randomly access information, switch information, and the like. Activate the information and quickly return to normal.
  • a cell that has entered the sleep mode once it receives the activation information, immediately activates the cell to return to the normal state. This ensures the access of subsequent terminals and the user experience.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种基站控制方法及基站,所述方法包括:基站按照预先设置的统计周期监测小区的激活用户数;在统计周期内一直没有激活用户的小区进入小区休眠模式。所述基站包括:基带处理单元、一个或一个以上与小区对应的射频单元。

Description

一种基站控制方法及基站 技术领域
本文涉及移动通信领域节能技术,尤指一种基站控制方法及基站。
背景技术
根据Gartner咨询报告的显示,信息通信技术(ICT,Information Communication Technology)行业对全球温室气体排放的直接影响占比约为2~2.5%。其中,通信业的影响约占1/4,年耗电量已经超过200亿千瓦时。根据测算,基站的能源消耗占到整个移动通信网络设备能耗的90%,占到通信运营商整体运维总耗电量的60%~70%。
基站节能是整个移动通信网络节能的关键,而如何降低基站能耗也成为通信运营商关注的环保与成本话题。目前,行业对基站深度节能提出的主要方案是小区关断,但是,当小区没有激活用户时进行小区关断处理,会影响信号覆盖,可能造成后续终端无法实现接入,从而影响了用户体验。相关技术中,对于资源空闲时间段且没有激活用户的小区,仍没有较好的节能方案。
发明内容
本发明实施例提供一种基站控制方法及基站,能够实现资源空闲时间段小区没有激活用户场景下的小区节能,达到基站深度节能。
本发明实施例提供了一种基站控制方法,包括:
基站按照预先设置的统计周期监测小区的激活用户数;
在统计周期内一直没有激活用户的小区进入小区休眠模式。
可选地,所述监测小区的激活用户数包括:所述基站的基带处理单元在预先设置的对小区的激活用户情况进行统计的统计周期内,监控小区的激活用户数。
可选地,所述进入小区休眠模式包括:所述小区对应的射频单元以低带宽发射小区信号,保留监听进程、低功耗射频进程;所述小区的射频单元保 存一个系统帧号SFN周期的基带数据并循环发送。
可选地,所述进入小区休眠模式的小区对应的射频单元以低带宽发射小区信号包括:
所述进入小区休眠模式的小区对应的射频单元带宽调整为预先设置的带宽调整值;
或者,根据预先通过小区的网络管理服务器统计并分析得出的每个小区的空闲时间段和在这些空闲时间段内可使用的系统带宽,将小区对应的射频单元的带宽调整为所在时间段对应的带宽值。
可选地,当所述进入小区休眠模式的小区对应的射频单元带宽调整为预先设置的带宽调整值时,所述预先设置的带宽调整值为1.4M。
可选地,当所述基站内的所有小区都进入小区休眠模式时,该方法还包括:所述基站的基带处理单元进入休眠模式。
可选地,所述基带处理单元进入休眠模式包括:低压运行、空闲进程阻塞,只保留能保证小区在从休眠状态恢复到正常状态所需的部分监听进程。
可选地,该方法还包括:已进入所述小区休眠模式的小区,一旦接收到激活信息,激活该小区使其恢复正常状态。
可选地,所述激活小区使其恢复正常状态包括:
如果所述基站的基带处理单元已处于休眠模式,则同时激活所述基站的基带处理单元,和接收到激活信息的小区的射频单元;
如果所述基站的基带处理单元未处于休眠模式,则激活接收到激活信息的小区的射频单元。
可选地,所述激活信息包括:终端随机接入的随机导频信息、或基站内切换的测量信息、或来自移动管理实体MME的切换请求、或来自X2链路的切换请求、或后台网管的激活信息。
本发明实施例还提供了一种基站,包括基带处理单元、一个或一个以上与小区对应的射频单元;其中,
所述基带处理单元,设置为按照预先设置的统计周期监测小区的激活用户数,向在统计周期内一直没有激活用户的小区对应的射频单元输出第一通知;
所述射频单元,设置为接收到第一通知,进入小区休眠模式。
可选地,所述射频单元是设置为:接收到第一通知,以预先设置的带宽调整值或预先统计的对应空闲时间段内可使用的系统带宽发射小区信号,保留监听进程、低功耗射频进程;保存一个系统帧号SFN周期的基带数据并循环发送。
可选地,所述基带处理单元还设置为,当所述基站内的所有小区都进入小区休眠模式时,进入休眠模式。
可选地,所述射频单元还设置为,在已进入休眠模式时,当接收到激活信息,恢复到休眠前的正常状态。
可选地,所述基带处理单元还设置为:在已进入休眠模式时,当接收到激活信息,恢复到休眠前的正常状态。
本发明实施例还提供一种计算机可读存储介质,存储有程序指令,当该程序指令被执行时可实现上述方法。
与相关技术相比,本申请实施例技术方案包括基站按照预先设置的统计周期监测小区的激活用户数;在统计周期内一直没有激活用户的小区进入小区休眠模式。可见,只要有小区进入小区休眠模式,就会将其系统带宽调整至最低,射频单元的软件系统阻塞闲置的软件进程、电源模块控制闲置硬件单元的电压供应,并能通过如终端发起的随机接入信号而从休眠状态立刻恢复到正常状态,这样的处理既保证了信号的覆盖,从而确保了后续终端的接入和用户体验,又实现了基站的节能。
当基站内的所有小区都进入小区休眠模式时,基站的基带处理单元进入休眠模式。通过在基站的所有小区均进入小区休眠模式时,对基站的基带处理单元的工作状态进行调整,使其进入低压运行、空闲进程阻塞的休眠模式,从而进一步实现了基站的节能;同时基带处理单元和射频单元,能随机接入 信息、切换信息等激活信息,迅速恢复到正常状态。
已进入休眠模式的小区,一旦接收到激活信息,立即激活小区使其恢复正常状态。这样保证了后续终端的接入,和用户体验。
附图概述
图1为本发明实施例基站控制方法的流程图;
图2为本发明实施例基站的组成结构示意图;
图3为本发明示例1实现基站控制的示意图;
图4为本发明示例2实现基站控制的示意图;
图5为本发明示例3实现基站控制的示意图;
图6为本发明示例4实现基站控制的示意图。
本发明的实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
基站的基带处理单元主要负责S1数据和信令的处理、基站内部监控与数据信令处理、基带处理如编码、复用、调制和扩频等处理、网管链路和X2链路的保持、本地和远程操作维护功能等。基站的射频单元主要负责与基带处理单元进行基带数字传输、功率匹配、下行数据的发送、上行数据的接收等。
3GPP协议定义了LTE系统的六种带宽为:1.4MHz、3MHz、5MHz、10MHz、15MHz、20MHz。不同的带宽,采用相同的参考信号(RS,Reference Signal)功率,具有相同的覆盖效果,但是功耗存在明显差异。
图1为本发明实施例基站控制方法的流程图,如图1所示,包括:
步骤100:基站按照预先设置的统计周期监测小区的激活用户数。
本步骤中,基站的基带处理单元在预先设置的对小区的激活用户情况进行统计的统计周期内,监控小区的激活用户数。
步骤101:在统计周期内一直没有激活用户的小区进入小区休眠模式。
对于进入小区休眠模式的小区,该小区对应的射频单元以低带宽发射小区信号,射频单元只保留用于监听、捕获特定信息的监听进程、低功耗射频进程和时钟同步进程(对于TDD系统,需要时钟同步;FDD系统不需要),其它进程均阻塞;同时,该射频单元保存一个系统帧号(SFN,System Frame Number)周期的基带数据,并循环发送;电源模块控制闲置硬件的电压供应。
在LTE协议中定义了几种带宽,其中1.4M为最低带宽;20M为最高且常用带宽;在RS功率配置为18.2dbm,小区空载的场景下,20M带宽比5M带宽的功耗要高45W左右,比1.4M带宽功耗要高55W左右;当小区进入休眠模式时,可以选择1.4M、3M或5M等更低带宽进行小区信号发射,以达到节能的目的。本步骤中的进入小区休眠模式的小区对应的射频单元以低带宽发射小区信号包括:
进入小区休眠模式的小区对应的射频单元带宽调整为预先设置的带宽调整值如1.4M、3M或5M等发射小区信号;为了节能最彻底,带宽调整值可为协议规定的最低带宽即1.4M;
或者,根据预先通过网络管理服务器的统计如小区N天的KPI信息的统计,分析得出的每个小区的空闲时间段和在这些空闲时间段内可使用的系统带宽,将小区对应的射频单元的带宽调整为所在时间段对应的带宽值,即在对应时间段内,进入小区休眠模式的小区的射频单元的带宽调整为该时间段对应的可使用的系统带宽值,以达到节能的目的。比如,对于一资源空闲时间段:小区带宽从20M更改至5M,当一段时间内没有用户接入,小区便进入休眠模式,系统带宽仍保持5M不变;当小区被激活时,仍为5M带宽。这样处理,便于终端的频点扫描和随机接入。
因为小区进入了小区休眠模式,带宽变低(如从20M变化到1.4M),射频单元的功放模块电压、功耗也会随之减低;同时,又保持有效信号输出,满足终端发起随机接入,因此此处称之为低功耗射频进程。
可见,本实施例强调的是,只要有小区进入小区休眠模式,就会将其对应的射频单元的系统带宽调整至最低,这样的处理既保证了信号的覆盖,从而确保了后续终端的接入,提升了用户体验,又实现了基站的节能。
可选地,上述方法还可包括步骤102:
当基站内的所有小区都进入小区休眠模式时,基站的基带处理单元进入休眠模式。即此时,基站的基带处理单元进入低压运行、空闲进程阻塞的休眠模式,只保留能保证小区在从休眠状态恢复到正常状态所需的部分维护监听进程、时钟同步进程(对于TDD系统)和S1/X2偶联、网管等管理维护进程即可,比如S1/X2链路维护监听进程和网管链路管理维护、监听进程等。可见,本实施例方法通过在基站的所有小区均进入小区休眠模式时,对基站的基带处理单元的工作状态进行调整,使其进入低压运行、进程阻塞的休眠模式,从而实现了基站的节能。
可选地,上述方法还包括:
基站的基带处理单元的低压运行为:硬件上,电源模块减少对闲置空闲硬件的电压供应;进程阻塞可以采用软件实现,通过对软件系统进程的阻塞,以减少硬件运行功耗。
已进入休眠模式的小区,一旦接收到激活信息,立即激活小区使其恢复正常状态。这样保证了后续终端的接入,提升了用户体验。这里强调的是,通过将射频单元、以及可选的基带处理单元的闲置进程阻塞,低电压运行,达到了基站深度节能的目的,同时,在接收到激活信息的时激活休眠的小区,保证了后续终端的接入和用户的体验。
其中,激活信息包括但不限于:终端随机接入的随机导频信息、基站内切换的测量信息、来自移动管理实体(MME)的切换请求(Handover Request)、来自X2链路的切换请求、后台网管的激活信息等。
其中,激活小区使其恢复正常状态包括:
如果基站的基带处理单元已处于休眠模式,则同时激活基站的基带处理单元,和接收到激活信息的小区的射频单元,让该小区恢复到休眠前的正常状态;
如果基站的基带处理单元未处于休眠模式,则直接激活接收到激活信息的小区的射频单元,让该小区恢复到休眠前的正常状态。
图2为本发明实施例基站的组成结构示意图,如图2所示,至少包括基带处理单元、一个或一个以上与小区对应的射频单元,如图2中的射频单元1,射频单元2,…射频单元n。其中,
所述基带处理单元,设置为按照预先设置的统计周期监测小区的激活用户数,向在统计周期内一直没有激活用户的小区对应的射频单元输出第一通知;
所述射频单元,是设置为接收到第一通知,进入小区休眠模式。其中,以预先设置的带宽调整值或预先统计的对应空闲时间段内可使用的系统带宽发射小区信号,射频单元只保留监听进程、低功耗射频进程和时钟同步进程(对于TDD系统),其它进程均阻塞;保存一个SFN周期的基带数据并循环发送。
基带处理单元还设置为,当基站内的所有小区都进入小区休眠模式时,进入休眠模式。其中,基带处理单元进入低压运行、进程阻塞的休眠模式,只保留部分监听维护进程,
射频单元还设置为,在已进入休眠模式时,一旦接收到激活信息,立即激活小区使其恢复正常状态。
基带处理单元还设置为,在已进入休眠模式时,当接收到激活信息,恢复到休眠前的正常状态。
下面结合几个示例对上述方法进行描述。
图3为实现基站控制的示例1的示意图,示例1为正常小区进入休眠模式,以及终端开机激活小区的场景,如图3的第①阶段所示,假设小区正常,带宽为20M(如图中斜线阴影方格所示)并按照设定的功率进行小区信号输出。这里,对于TDD系统,上下行共用20M带宽;对于FDD系统,下行和上行带宽各20M,图3以下行20M带宽为例。
假设在统计周期如30分钟(时间粒度可预先设置)内,该小区一直没有激活用户,那么,该小区进行小区休眠状态:小区带宽从20M调整为1.4M(如图中斜方格阴影方格所示),RS功率不变,因此信号的覆盖也随之不变, 同时,该小区的系统以低压省电模式运行,并采取部分进程阻塞,只保留监听进程与低频耗射频进程的方式进行节能省电,如图3中的第②阶段所示;
在该小区处于第③阶段时,在该小区的覆盖范围内,突发性有终端开机,终端搜索到该小区,随后便发起随机接入导频信号;该处于小区休眠模式的小区一接收到随机接入导频信号时,便激活本小区,恢复至休眠前的小区状态,如图3中的第④阶段所示。
图4为实现基站控制的示例2的示意图,示例2为通过S1切换、或X2切换激活进入小区休眠模式的小区的场景。按照相关技术,无论是S1切换,还是X2切换,目标基站都会收到切换请求(handover request)的信令,本示例中,将切换请求信令作为激活处于小区休眠模式的小区的激活信息。
如图4的第①阶段所示,假设终端接入到正常的带宽为20M(如图中斜线阴影方格所示)小区即源基站(Source eNB),并向另外带宽为1.4M(如图中斜方格阴影方格所示)的处于小区休眠模式的小区移动(图4中以下行20M带宽为例);
如图4所示的第②阶段,按照相关技术,当终端达到切换小区切换门限,并切换判决成功时,目标基站(Target eNB)会收到Handover Request的信息;
目标基站收到Handover Request后,便立刻激活另一处于小区休眠模式的小区,如图4所示的第③阶段,该小区的带宽从1.4M恢复到20M,以保障终端的正常切换。
图5为实现基站控制的示例3的示意图,示例3为通过站内切换激活进入小区休眠模式的小区的场景。按照相关技术,基站内部进行切换判决、接纳控制;本实施例中,小区的测量报告为激活信息。
如图5所示的第①阶段,终端从同一基站的正常小区往处于小区休眠模式的小区移动,正常小区为源小区(Source cell)的带宽为20M(如图中斜线阴影方格所示),休眠小区为目标小区(Target cell),带宽为1.4M(如图中斜方格阴影方格所示);
如图5所示的第②阶段,在终端向处于小区休眠模式的目标小区移动过程中,上报测量报告(Measurement Report);基站收到测量报告后,检测到测量报告中有目标休眠小区的信息且满足切换条件,则立刻将处于小区休眠模式的该目标小区激活,如图5所示的第③阶段。
图6为实现基站控制的示例4的示意图,示例4中为异系统间切换实现的激活处于小区休眠模式的小区的场景。本示例中,假设,在LTE系统与UMTS系统间切换。按照相关技术,当终端从UMTS系统切换到LTE系统时,LTE系统基站会收到handover request,本实施例中,将系统间切换时的切换请求为激活信息。
如图6所示的第①阶段,终端接入到UMTS小区,并向LTE系统的带宽为1.4M(如图中斜方格阴影方格所示)的休眠小区进行移动;
如图6所示的第②阶段,当终端达到切换小区切换门限,并切换判决成功时,LTE系统的目标基站会收到Handover Request的信息;目标基站收到Handover Request信息后,便立刻激活处于小区休眠模式的小区,以保障终端的正常切换,如图6所示的第③阶段。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序来指令相关硬件完成,上述程序可以存储于计算机可读存储介质中,如只读存储器、磁盘或光盘等。可选地,上述实施例的全部或部分步骤也可以使用一个或多个集成电路来实现。相应地,上述实施例中的各模块/单元可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。本发明实施例不限制于任何特定形式的硬件和软件的结合。
工业实用性
采用本发明实施例技术方案,只要有小区进入小区休眠模式,就会将其系统带宽调整至最低,既保证了信号的覆盖,确保了后续终端的接入和用户体验,又实现了基站的节能。通过在基站的所有小区均进入小区休眠模式时, 对基站的基带处理单元的工作状态进行调整,使其进入低压运行、空闲进程阻塞的休眠模式,从而进一步实现了基站的节能;同时基带处理单元和射频单元,能随机接入信息、切换信息等激活信息,迅速恢复到正常状态。已进入休眠模式的小区,一旦接收到激活信息,立即激活小区使其恢复正常状态。这样保证了后续终端的接入,和用户体验。

Claims (16)

  1. 一种基站控制方法,包括:
    基站按照预先设置的统计周期监测小区的激活用户数;
    在统计周期内一直没有激活用户的小区进入小区休眠模式。
  2. 根据权利要求1所述的基站控制方法,其中,所述监测小区的激活用户数包括:所述基站的基带处理单元在预先设置的对小区的激活用户情况进行统计的统计周期内,监控小区的激活用户数。
  3. 根据权利要求1所述的基站控制方法,其中,所述进入小区休眠模式包括:
    所述小区对应的射频单元以低带宽发射小区信号,保留监听进程、低功耗射频进程;所述小区的射频单元保存一个系统帧号SFN周期的基带数据并循环发送。
  4. 根据权利要求3所述的基站控制方法,其中,所述进入小区休眠模式的小区对应的射频单元以低带宽发射小区信号包括:
    所述进入小区休眠模式的小区对应的射频单元带宽调整为预先设置的带宽调整值;
    或者,根据预先通过小区的网络管理服务器统计并分析得出的每个小区的空闲时间段和在这些空闲时间段内可使用的系统带宽,将小区对应的射频单元的带宽调整为所在时间段对应的带宽值。
  5. 根据权利要求4所述的基站控制方法,其中,当所述进入小区休眠模式的小区对应的射频单元带宽调整为预先设置的带宽调整值时,所述预先设置的带宽调整值为1.4M。
  6. 根据权利要求1~3任一项所述的基站控制方法,当所述基站内的所有小区都进入小区休眠模式时,该方法还包括:所述基站的基带处理单元进入休眠模式。
  7. 根据权利要求6所述的基站控制方法,其中,所述基带处理单元进入休眠模式包括:低压运行、空闲进程阻塞,只保留能保证小区在从休眠状态 恢复到正常状态所需的部分监听进程。
  8. 根据将权利要求1所述的基站控制方法,该方法还包括:已进入所述小区休眠模式的小区,一旦接收到激活信息,激活该小区使其恢复正常状态。
  9. 根据权利要求8所述的基站控制方法,其中,所述激活小区使其恢复正常状态包括:
    如果所述基站的基带处理单元已处于休眠模式,则同时激活所述基站的基带处理单元,和接收到激活信息的小区的射频单元;
    如果所述基站的基带处理单元未处于休眠模式,则激活接收到激活信息的小区的射频单元。
  10. 根据权利要求8或9所述的基站控制方法,其中,所述激活信息包括:终端随机接入的随机导频信息、或基站内切换的测量信息、或来自移动管理实体MME的切换请求、或来自X2链路的切换请求、或后台网管的激活信息。
  11. 一种基站,包括:基带处理单元、一个或一个以上与小区对应的射频单元;其中:
    所述基带处理单元,设置为按照预先设置的统计周期监测小区的激活用户数,向在统计周期内一直没有激活用户的小区对应的射频单元输出第一通知;
    所述射频单元,设置为接收到第一通知,进入小区休眠模式。
  12. 根据权利要求11所述的基站,所述射频单元是设置为:接收到第一通知,以预先设置的带宽调整值或预先统计的对应空闲时间段内可使用的系统带宽发射小区信号,保留监听进程、低功耗射频进程;保存一个系统帧号SFN周期的基带数据并循环发送。
  13. 根据权利要求11所述的基站,所述基带处理单元还设置为,当所述基站内的所有小区都进入小区休眠模式时,进入休眠模式。
  14. 根据权利要求11~13任一项所述的基站,所述射频单元还设置为:在已进入休眠模式时,当接收到激活信息,恢复到休眠前的正常状态。
  15. 根据权利要求14所述的基站,所述基带处理单元还设置为:在已进 入休眠模式时,当接收到激活信息,恢复到休眠前的正常状态。
  16. 一种计算机可读存储介质,存储有程序指令,当该程序指令被执行时可实现权利要求1-10任一项所述的方法。
PCT/CN2015/082101 2014-11-28 2015-06-23 一种基站控制方法及基站 WO2016082539A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410709602.4A CN105704793A (zh) 2014-11-28 2014-11-28 一种基站控制方法及基站
CN201410709602.4 2014-11-28

Publications (1)

Publication Number Publication Date
WO2016082539A1 true WO2016082539A1 (zh) 2016-06-02

Family

ID=56073523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/082101 WO2016082539A1 (zh) 2014-11-28 2015-06-23 一种基站控制方法及基站

Country Status (2)

Country Link
CN (1) CN105704793A (zh)
WO (1) WO2016082539A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113938991A (zh) * 2020-06-29 2022-01-14 大唐移动通信设备有限公司 基站射频单元及其休眠唤醒方法
CN114339796A (zh) * 2021-12-21 2022-04-12 中国电信股份有限公司 小区休眠数据处理方法、装置、电子设备及存储介质

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106060911B (zh) * 2016-07-19 2020-05-08 上海华为技术有限公司 一种射频单元的休眠、唤醒方法及基站
CN109286965A (zh) * 2017-07-20 2019-01-29 中国移动通信有限公司研究院 分布式基站的休眠处理方法、网元实体及存储介质
CN112243285B (zh) * 2019-07-16 2023-04-14 中国移动通信集团重庆有限公司 基站节能方法及装置
CN112291835A (zh) * 2019-07-25 2021-01-29 大唐移动通信设备有限公司 一种系统带宽处理方法、基站及装置、介质
CN115599447A (zh) * 2021-06-28 2023-01-13 中兴通讯股份有限公司(Cn) 节能方法、节能设备、电子设备及计算机存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101835247A (zh) * 2009-03-12 2010-09-15 华为技术有限公司 基站节能和激活的方法、网络装置、激活装置和网络系统
EP2355594A1 (en) * 2010-01-28 2011-08-10 Alcatel Lucent Controlling small cell base stations
CN102421172A (zh) * 2010-09-28 2012-04-18 上海贝尔股份有限公司 基站、用户设备及节约基站能耗的方法
CN103391604A (zh) * 2013-07-17 2013-11-13 浙江大学 小基站休眠的控制方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101208915A (zh) * 2005-04-22 2008-06-25 美国奥林巴斯通信技术公司 通信信道分配的碎片消除
US8576943B2 (en) * 2011-09-09 2013-11-05 Telefonaktiebolaget L M Ericsson (Publ) Linearization for a single power amplifier in a multi-band transmitter
CN103139929A (zh) * 2013-02-28 2013-06-05 王梓 一种应用于智能家居系统的无线链接技术
CN103118405B (zh) * 2013-03-19 2015-05-20 大唐移动通信设备有限公司 Ue在小区间移动的测试系统及测试方法
CN104168615B (zh) * 2013-05-17 2019-05-10 中兴通讯股份有限公司 信号发送的方法及装置
CN103906076B (zh) * 2014-03-26 2017-10-20 浙江工商大学 一种分布式自适应调节小基站发射功率偏置值的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101835247A (zh) * 2009-03-12 2010-09-15 华为技术有限公司 基站节能和激活的方法、网络装置、激活装置和网络系统
EP2355594A1 (en) * 2010-01-28 2011-08-10 Alcatel Lucent Controlling small cell base stations
CN102421172A (zh) * 2010-09-28 2012-04-18 上海贝尔股份有限公司 基站、用户设备及节约基站能耗的方法
CN103391604A (zh) * 2013-07-17 2013-11-13 浙江大学 小基站休眠的控制方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113938991A (zh) * 2020-06-29 2022-01-14 大唐移动通信设备有限公司 基站射频单元及其休眠唤醒方法
CN113938991B (zh) * 2020-06-29 2023-09-26 大唐移动通信设备有限公司 基站射频单元及其休眠唤醒方法
CN114339796A (zh) * 2021-12-21 2022-04-12 中国电信股份有限公司 小区休眠数据处理方法、装置、电子设备及存储介质
CN114339796B (zh) * 2021-12-21 2024-03-19 中国电信股份有限公司 小区休眠数据处理方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
CN105704793A (zh) 2016-06-22

Similar Documents

Publication Publication Date Title
WO2016082539A1 (zh) 一种基站控制方法及基站
KR101225195B1 (ko) 무선통신 시스템에서 rrc 연결 해제 방법 및 장치
AU2020209603B2 (en) Terminal energy-saving method, base station, terminal, terminal energy-saving system and computer-readable storage medium
US20220256622A1 (en) Power saving method, terminal, access network device, and readable storage medium
CN110881208B (zh) 一种通信方法及设备
CN104301976A (zh) 无线路由器及其工作方法
TW201943311A (zh) 一種rrc狀態的控制方法及裝置、電腦存儲媒介
JP2013527692A (ja) ネットワーク管理システムにおいてエネルギー節約を管理するための方法、デバイス、およびシステム
JP2015520570A (ja) ユーザ装置の移動性パラメータを報告する方法及びシステム、並びにユーザ装置及びネットワーク装置
CN110557810B (zh) 一种pdcch盲检方法、终端和网络侧设备
WO2022042752A1 (zh) 物理下行控制信道的监听方法、装置和设备
Elnashar et al. Extending the battery life of smartphones and tablets: A practical approach to optimizing the LTE network
US20200100312A1 (en) User device, radio base station, and radio communication method
DE112013007545T5 (de) Leistungsoptimierung für Benutzereinrichtung
CN114980283A (zh) 状态的切换方法及装置、信标信号的发送及装置
US20230379817A1 (en) Terminal State Control Method, Terminal, and Non-transitory Readable Storage Medium
US11812353B2 (en) Network assisted emergency monitoring
US20230101796A1 (en) Power headroom report phr reporting method and apparatus, and terminal
WO2019136586A1 (zh) 一种工作模式的控制方法及装置、计算机存储介质
US20220174731A1 (en) Collision handling method and apparatus
WO2021128925A1 (zh) 信息处理方法、装置、设备及计算机可读存储介质
AU2022230622A1 (en) Service notification method, apparatus and device, and readable storage medium
WO2021056469A1 (zh) 一种定时器控制的方法和装置
US20240015844A1 (en) Radio Resource Management Relaxation For Radio Resource Control Connected Mode
EP4277339A2 (en) Radio resource management relaxation for radio resource control connected mode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15862250

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15862250

Country of ref document: EP

Kind code of ref document: A1