WO2016082201A1 - 一种多个单位载波的分配方法、基站及用户设备 - Google Patents

一种多个单位载波的分配方法、基站及用户设备 Download PDF

Info

Publication number
WO2016082201A1
WO2016082201A1 PCT/CN2014/092538 CN2014092538W WO2016082201A1 WO 2016082201 A1 WO2016082201 A1 WO 2016082201A1 CN 2014092538 W CN2014092538 W CN 2014092538W WO 2016082201 A1 WO2016082201 A1 WO 2016082201A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
frequency base
medium
frequency
low
Prior art date
Application number
PCT/CN2014/092538
Other languages
English (en)
French (fr)
Inventor
梁永明
李鹏
黄磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2014/092538 priority Critical patent/WO2016082201A1/zh
Priority to EP14906666.4A priority patent/EP3197218B1/en
Publication of WO2016082201A1 publication Critical patent/WO2016082201A1/zh
Priority to US15/594,918 priority patent/US10237878B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • H04L67/104Peer-to-peer [P2P] networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/60Scheduling or organising the servicing of application requests, e.g. requests for application data transmissions using the analysis and optimisation of the required network resources
    • H04L67/61Scheduling or organising the servicing of application requests, e.g. requests for application data transmissions using the analysis and optimisation of the required network resources taking into account QoS or priority requirements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/52Allocation or scheduling criteria for wireless resources based on load
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method for allocating a plurality of component carriers (CCs), a base station (BS), and a user equipment (User Equipment, UE).
  • CCs component carriers
  • BS base station
  • UE User Equipment
  • the 3rd Generation Partnership Project (3GPP) organization for mobile cellular communication is developing the fourth generation cellular communication (The 4rd Generation Cellular)
  • the Communication Standard (4G) standard is an advanced system on the Long Term Evolution (LTE) system, namely the Long Term Evolution-Advanced (LTE) system.
  • LTE and LTE-A systems consider a variety of communication scenarios, in which crowded hotspots, such as stadiums, cafes, concert halls, supermarkets, etc., not only have a large number of mobile phone users, but also the diversity of each user's business.
  • Some users use mobile phones for voice communication (characteristics are high-time requirements), watching video (characterized by the large amount of data in the downlink service packets), and some users use WeChat (characterized by the large amount of data in the uplink service packets and the number of service packets) Large), some users use QQ, MSN, Skype and other real-time software communication tools (characterized by the small amount of downlink service packets or uplink service packets but the number of business packages is large).
  • the amount of data required for downlink (DL) services or uplink (UL) services is relatively large, but the spectrum resources provided by each operator.
  • Video is the most important data traffic in scenes such as stadiums and concert halls. Measures need to be taken to implement data distribution of video content to LTE networks to meet the needs of each UE to watch video services.
  • Self Organizing Network (SON) is adopted.
  • HetNet heterogeneous network
  • the base stations of certain cells are turned on or off in a timely manner to implement traffic management.
  • the embodiment of the present invention provides a method for allocating a plurality of unit carriers, a base station, and a user equipment, which are used to solve the problem that the number of UEs in a hotspot area and multiple telecom operators coexistence scenarios is large, and the mobile network of each telecommunication operator is congested. Unable to provide good wireless service services to the UE.
  • an embodiment of the present invention provides a method for allocating multiple unit carriers, where the method includes:
  • the high frequency base station receives measurement information sent by a medium and low frequency base station of a plurality of telecommunication operators or a measurement report sent by a first user equipment of a plurality of telecommunication operators; the high frequency base station operates in a high frequency band, and the medium and low frequency base station works In the low frequency band, the first user equipment belongs to the high frequency base station;
  • the high-frequency base station allocates, according to the measurement information or the measurement report, a plurality of unit carriers included in the high-frequency resource to the medium-low frequency base station or the first user equipment, to obtain an allocation result;
  • the high frequency base station notifies the low frequency base station or the first user equipment of the allocation result.
  • the high frequency base station allocates, according to the measurement information, a plurality of unit carriers included in the high frequency resource to the medium and low frequency base station, Also includes:
  • the high frequency base station receives the capacity of the first backhaul link of the medium and low frequency base station sent by the medium and low frequency base station; the first backhaul link is provided by the medium and low frequency base station, and connects the high frequency base station and the Medium and low frequency base station;
  • the high-frequency base station allocates a plurality of unit carriers included in the high-frequency resource according to the measurement information, and obtains an allocation result, including:
  • the high frequency base station allocates a plurality of unit carriers included in the high frequency resource according to the measurement information and the capacity of the first backhaul link to obtain an allocation result.
  • the high frequency base station allocates, according to the measurement information, a plurality of unit carriers included in the high frequency resource to the medium and low frequency base station, Also includes:
  • the high-frequency base station Receiving, by the high-frequency base station, a proportion of the medium-low frequency base station that is sent by the medium-low frequency base station to occupy a second backhaul link of the high-frequency base station; the second back-link link is provided by the high-frequency base station, and the connection station Said high frequency base station and said medium and low frequency base station;
  • the high-frequency base station allocates a plurality of unit carriers included in the high-frequency resource according to the measurement information, and obtains an allocation result, including:
  • the high frequency base station allocates a plurality of unit carriers included in the high frequency resource according to the measurement information and a ratio of the medium and low frequency base stations occupying the second backhaul link, to obtain an allocation result.
  • the high frequency base station is configured according to the measurement information Or the measuring report, the multiple unit carriers included in the high frequency resource are allocated to the medium and low frequency base station or the first user equipment, including:
  • the high frequency base station allocates, according to the measurement information, a frequency band range of a unit carrier used in the high frequency resource for the medium and low frequency base station; or
  • the high frequency base station allocates the high frequency resource to the first user equipment according to the measurement report.
  • the high frequency base station allocates the medium and low frequency base station in the high frequency resource according to the measurement information After the frequency range of the unit carrier used, it also includes:
  • the high frequency base station allocates a frequency band of a unit carrier used in the frequency band range to a second user equipment belonging to the medium and low frequency base station.
  • the high frequency base station Notifying the medium and low frequency base station including:
  • the high frequency base station notifying the allocation result to the medium and low frequency base station including:
  • the high-frequency base station Transmitting, by the X2 interface or the S1 interface, the high-frequency base station to the low-frequency base station by using one-bit signaling; the one-bit signaling is used to notify the middle-low frequency base station whether to adopt the high frequency Unit carrier included in the resource; or,
  • the high-frequency base station sends the multi-bit signaling to the low-frequency base station by using the X2 interface or the S1 interface, and the multi-bit signaling is used to notify the medium-low frequency base station to adopt the high-frequency resource.
  • the frequency range of the unit carrier The frequency range of the unit carrier.
  • the high frequency base station sends one bit signaling to notify the low frequency base station of the allocation result After that, it also includes:
  • the high frequency base station notifies the second user equipment that belongs to the low frequency base station by using signaling or a downlink data packet; the signaling and the downlink data packet are used to indicate that the second user equipment is high.
  • the frequency band of the unit carrier used in the frequency resource is not limited to
  • the high frequency base station notifies the allocation result to the medium low frequency base station by using a downlink data packet
  • the second user device includes:
  • the high frequency base station fills a MAC mapping table according to the allocation result
  • the high frequency base station adds the MAC mapping table to the MAC information of the downlink data packet
  • the high frequency base station sends the downlink data packet to the second user equipment through a PDSCH.
  • Notifying the first user equipment including:
  • the high frequency base station sends the broadcast information carrying the allocation result to the first user equipment by transmitting on the PBCH.
  • the method further includes:
  • the high frequency base station communicates with the second user equipment or the first user equipment belonging to the medium and low frequency base station based on the frequency band of the unit carrier indicated by the allocation result.
  • an embodiment of the present invention provides a method for allocating multiple unit carriers, where the method includes:
  • the medium-low frequency base station of the plurality of telecommunication operators receives the measurement report sent by the user equipment attributed to the medium-low frequency base station; the medium-low frequency base station operates in the middle and low frequency frequency bands;
  • the medium-low frequency base station obtains measurement information according to the measurement report and the network load status of the low-frequency base station;
  • the medium-low frequency base station transmits the measurement information to a high-frequency base station; the high-frequency base station operates in a high-frequency frequency band;
  • the medium-low frequency base station receives the allocation result sent by the high-frequency base station, and the allocation result is obtained by the high-frequency base station, according to the measurement information, by assigning a plurality of unit carriers included in the high-frequency resource to the medium-low frequency base station. ;
  • the medium-low frequency base station notifies the user equipment of the allocation result.
  • the method before the medium and low frequency base station receives the allocation result sent by the high frequency base station, the method further includes:
  • the medium-low frequency base station transmits the capacity of the first backhaul link of the medium-low frequency base station to the high-frequency base station; the first backhaul link is provided by the medium-low frequency base station, and the medium-low frequency base station is connected The high frequency base station; or,
  • the medium-low frequency base station transmits, to the high-frequency base station, a proportion of the second back-haul link of the low-frequency base station occupying the high-frequency base station; the second back-link link is provided by the high-frequency base station, and the connection station.
  • the medium and low frequency base station receives the allocation result sent by the high frequency base station, including:
  • the medium-low frequency base station receives one-bit signaling that is sent by the high-frequency base station through the X2 interface or the S1 interface and carries the allocation result;
  • the medium-low frequency base station determines whether to use the unit carrier included in the high-frequency resource based on the one-bit signaling;
  • the low-frequency base station notifies the user equipment of the allocation result, including:
  • the low-frequency base station forwards the one-bit signaling that carries the allocation result to the user equipment, so that the user equipment determines, according to the one-bit signaling, whether to receive the bearer sent by the high-frequency base station.
  • the signaling or downlink data packet of the allocation result; the signaling and the downlink data packet are used to indicate a frequency band of a unit carrier used by the user equipment in the high frequency resource.
  • the medium and low frequency base station receives the distribution result sent by the high frequency base station, including:
  • the medium-low frequency base station receives multi-bit signaling that is sent by the high-frequency base station through the X2 interface or the S1 interface and carries the allocation result;
  • the medium-low frequency base station determines, according to the multi-bit signaling, a frequency band range of a unit carrier used in a high-frequency resource;
  • the low-frequency base station notifies the user equipment of the allocation result, including:
  • the medium-low frequency base station allocates, to the user equipment, a frequency band of a unit carrier used in the frequency band range, according to the determined frequency band range;
  • the medium-low frequency base station notifies the frequency of the unit carrier used by the user equipment in the frequency band range segment.
  • the medium and low frequency base station notifies the user equipment of a frequency band of a unit carrier used in the frequency band range, include:
  • the medium-low frequency base station notifies the user equipment of the frequency band of the unit carrier used in the frequency band range by using signaling or a downlink data packet.
  • the medium and low frequency base station notifies the user equipment of the unit in the frequency band range by using a downlink data packet
  • the frequency band of the carrier including:
  • the medium-low frequency base station fills the medium access control MAC mapping table according to the frequency band allocated to the user equipment for the unit carrier used in the frequency band range;
  • the medium-low frequency base station adds the MAC mapping table to the MAC information of the downlink data packet
  • the medium-low frequency base station sends the downlink data packet to the user equipment through a physical data sharing channel PDSCH.
  • an embodiment of the present invention provides a method for allocating multiple unit carriers, where the method includes:
  • the user equipment sends the measurement report to the high frequency base station or the medium and low frequency base station of the plurality of telecommunication operators; the high frequency base station operates in a high frequency band, and the medium and low frequency base station operates in the middle and low frequency bands;
  • the receiving, by the user equipment, the allocation result that is sent by the high frequency base station or the medium and low frequency base station includes:
  • the user equipment receives one-bit signaling that is forwarded by the medium-low frequency base station and carries the allocation result, and determines, according to the one-bit signaling, that the signaling sent by the high-frequency base station carries the allocation result or Receiving the signaling or the downlink data packet when the downlink data packet is used; the signaling and the downlink data packet are used to indicate a frequency band of the unit carrier used by the user equipment in the high frequency resource; or
  • the signaling or downlink data packet that is sent by the medium-low frequency base station and carrying the allocation result; the signaling and the downlink data packet are used to indicate the unit carrier used by the user equipment in the high frequency resource. Frequency band; or,
  • the user equipment receives broadcast information that is transmitted by the high frequency base station by using the allocation result on the physical broadcast channel PBCH.
  • the method further includes:
  • the user equipment communicates with the high frequency base station based on a frequency band of a unit carrier indicated by the allocation result.
  • an embodiment of the present invention provides a high frequency base station, where the high frequency base station operates in a high frequency band, and the high frequency base station includes:
  • a receiving unit configured to receive measurement information sent by a medium and low frequency base station of a plurality of telecommunication operators or a measurement report sent by a first user equipment of a plurality of telecommunication operators; the medium and low frequency base station operates in a low frequency band, the first User equipment belongs to the high frequency base station;
  • an allocating unit configured to allocate, according to the measurement information or the measurement report, a plurality of unit carriers included in the high frequency resource to the medium and low frequency base station or the first user equipment, to obtain an allocation result
  • a sending unit configured to notify the low frequency base station or the first user equipment of the allocation result.
  • the receiving unit is further configured to:
  • the first backhaul link is provided by the medium and low frequency base station, and connecting the high frequency base station and the medium and low frequency base station;
  • the allocation unit is specifically configured to:
  • the number of high frequency resources is included Each unit carrier is allocated to obtain an allocation result.
  • the receiving unit is further configured to:
  • the medium-low frequency base station Receiving, by the medium-low frequency base station, a ratio of the medium-low frequency base station occupying a second backhaul link of the high-frequency base station; the second back-link link being provided by the high-frequency base station, connecting the high-frequency base station and The medium and low frequency base station;
  • the allocation unit is specifically configured to:
  • the allocating unit is specifically configured to:
  • the first user equipment is allocated a frequency band of a unit carrier used in the high frequency resource.
  • the allocation unit is also used to:
  • a frequency band of a unit carrier used in the frequency band range is allocated to a second user equipment belonging to the medium-low frequency base station.
  • the sending unit is specifically configured to:
  • the one-bit signaling is used to notify the medium-low frequency base station whether to use the unit carrier included in the high-frequency resource Or,
  • the multi-bit signaling is used to notify the frequency band of the unit carrier used by the low-frequency base station in the high-frequency resource range.
  • the allocation result is notified to the medium-low frequency base station, the sending The unit is also used to:
  • the signaling and the downlink data packet are used to indicate that the second user equipment is used in the high-frequency resource.
  • the frequency band of the unit carrier is notifying, by the signaling or the downlink data packet, the second user equipment that belongs to the low-frequency base station; the signaling and the downlink data packet are used to indicate that the second user equipment is used in the high-frequency resource.
  • the sending unit is specifically configured to:
  • the sending unit is specifically configured to:
  • the first user equipment is transmitted by transmitting broadcast information carrying the allocation result on the PBCH.
  • the high frequency base station further includes:
  • a communication unit configured to: after the sending unit notifies the allocation result to the medium-low frequency base station or the first user equipment, a frequency band of a unit carrier indicated by the allocation result, and a frequency band attributed to the middle frequency
  • the second user equipment of the base station or the first user equipment communicates.
  • an embodiment of the present invention provides a medium-low frequency base station, where the medium-low frequency base station belongs to multiple telecommunication carriers, and operates in a low-frequency frequency band, where the low-frequency base station includes:
  • a first receiving unit configured to receive a measurement report sent by a user equipment that belongs to the medium-low frequency base station
  • An analyzing unit configured to obtain measurement information according to the measurement report and a network load state of the low-frequency base station
  • a first sending unit configured to send the measurement information to a high frequency base station; the high frequency base station operates in a high frequency band;
  • a second receiving unit configured to receive an allocation result sent by the high-frequency base station, where the allocation result is allocated, by the high-frequency base station, a plurality of unit carriers included in the high-frequency resource to the medium-low frequency according to the measurement information Base station obtained;
  • a second sending unit configured to notify the user equipment of the allocation result.
  • the first sending unit before the second receiving unit receives the distribution result sent by the high frequency base station, the first sending unit is further configured to:
  • the second receiving unit is specifically configured to:
  • the second sending unit is specifically configured to:
  • the user equipment Forwarding, by the user equipment, the one-bit signaling that carries the allocation result, and determining, by the user equipment, whether to receive the bearer sent by the high-frequency base station according to the one-bit signaling.
  • Resulting signaling or downlink data packet the signaling and downlink data packet is used to indicate the user The frequency band of the unit carrier used by the device in high frequency resources.
  • the second receiving unit is specifically configured to:
  • the second sending unit is specifically configured to:
  • the resulting signaling or downlink data packet; the signaling and downlink data packet is used to indicate a frequency band of the unit carrier used by the user equipment in the high frequency resource.
  • the second sending unit is specifically used for:
  • the frequency band of the unit carrier used by the user equipment in the frequency band range is notified by signaling or a downlink data packet.
  • the frequency band of the unit carrier used in the frequency band range is The second sending unit is specifically configured to:
  • an embodiment of the present invention provides a user equipment, where the user equipment includes:
  • a sending unit configured to send the measurement report to the low-frequency base station of the high-frequency base station or the plurality of telecommunication operators; the high-frequency base station operates in a high-frequency frequency band, and the medium-low frequency base station operates in the low-frequency frequency band;
  • a receiving unit configured to receive an allocation result sent by the high frequency base station or a low frequency base station, where The allocation result is obtained by the high frequency base station or the low frequency base station assigning a plurality of unit carriers included in the high frequency resource to the user equipment according to the measurement report.
  • the receiving unit when receiving the distribution result sent by the high-frequency base station, is specifically configured to:
  • the signaling and the downlink data packet are used to indicate a frequency band of the unit carrier used by the user equipment in the high frequency resource;
  • the low-frequency base station And receiving, by the low-frequency base station, a signaling or a downlink data packet that carries the allocation result; the signaling and the downlink data packet are used to indicate a frequency band of a unit carrier used by the user equipment in the high-frequency resource; or
  • the user equipment further includes:
  • a communication unit configured to: after the receiving unit receives the allocation result sent by the high frequency base station or the low frequency base station, communicate with the high frequency base station according to a frequency band of the unit carrier indicated by the allocation result.
  • the embodiment of the present invention provides a high frequency base station, where the high frequency base station operates in a high frequency band, and the high frequency base station includes:
  • a transceiver configured to receive measurement information sent by a medium-low frequency base station of a plurality of telecommunication carriers or a measurement report sent by a first user equipment of a plurality of telecommunication operators; the medium-low frequency base station operates in a low-frequency frequency band, the first User equipment belongs to the high frequency base station;
  • a controller configured to allocate, according to the measurement information or the measurement report, a plurality of unit carriers included in the high-frequency resource to the medium-low frequency base station or the first user equipment, to obtain an allocation result;
  • the transceiver is further configured to notify the low frequency base station or the first user equipment of the allocation result.
  • the transceiver is also used to:
  • the first backhaul link is provided by the medium and low frequency base station, and connecting the high frequency base station and the medium and low frequency base station;
  • the controller is specifically configured to:
  • the transceiver is also used to:
  • the medium-low frequency base station Receiving, by the medium-low frequency base station, a ratio of the medium-low frequency base station occupying a second backhaul link of the high-frequency base station; the second back-link link being provided by the high-frequency base station, connecting the high-frequency base station and The medium and low frequency base station;
  • the controller is specifically configured to:
  • the controller is specifically configured to:
  • the first user equipment is allocated a frequency band of a unit carrier used in the high frequency resource.
  • the controller is also used to:
  • a frequency band of a unit carrier used in the frequency band range is allocated to a second user equipment belonging to the medium-low frequency base station.
  • the transceiver is specifically used to:
  • the one-bit signaling Transmitting, by using the X2 interface or the S1 interface, the one-bit signaling to notify the low-frequency base station of the allocation result; the one-bit signaling is used to notify the medium-low frequency base station whether to use the unit carrier included in the high-frequency resource ;or,
  • the multi-bit signaling is used to notify the frequency band of the unit carrier used by the low-frequency base station in the high-frequency resource range.
  • the assigning result is notified to the foregoing by sending one-bit signaling by using an X2 interface or an S1 interface
  • the transceiver is also used to:
  • the signaling and the downlink data packet are used to indicate that the second user equipment is used in the high-frequency resource.
  • the frequency band of the unit carrier is notifying, by the signaling or the downlink data packet, the second user equipment that belongs to the low-frequency base station; the signaling and the downlink data packet are used to indicate that the second user equipment is used in the high-frequency resource.
  • the second user that belongs to the medium and low frequency base station is notified by using the downlink data packet
  • the transceiver is specifically used to:
  • the transceiver is specifically configured to:
  • the transceiver is further configured to:
  • the frequency band of the unit carrier indicated by the allocation result, and the second user equipment or the The first user equipment communicates.
  • an embodiment of the present invention provides a medium-low frequency base station, where the medium-low frequency base station belongs to multiple telecommunication operators, and operates in a low-frequency frequency band, where the low-frequency base station includes:
  • a transceiver configured to receive a measurement report sent by a user equipment that belongs to the medium-low frequency base station
  • a processor configured to obtain measurement information according to the measurement report and a network load state of the medium-low frequency base station
  • the transceiver is further configured to send the measurement information to a high frequency base station; the high frequency base station operates in a high frequency band; and receive an allocation result sent by the high frequency base station, where the allocation result is generated by the high frequency And the base station allocates, according to the measurement information, a plurality of unit carriers included in the high frequency resource to the medium and low frequency base station, and notifies the user equipment of the allocation result.
  • the transceiver before receiving the allocation result sent by the high frequency base station, the transceiver is further configured to:
  • the transceiver is specifically used to:
  • the user equipment Forwarding, by the user equipment, the one-bit signaling carrying the allocation result to the user equipment, so that the user equipment determines, according to the one-bit signaling, whether to receive the bearer that is sent by the high-frequency base station and carries the allocation result.
  • Signaling or downlink data packet the signaling and downlink data packet is used to indicate a frequency band of a unit carrier used by the user equipment in high frequency resources.
  • the transceiver is specifically used to:
  • the sending and receiving when the user equipment is notified of the frequency band of the unit carrier used in the frequency band range, the sending and receiving Specifically used to:
  • the frequency band of the unit carrier used by the user equipment in the frequency band range is notified by signaling or a downlink data packet.
  • the frequency band of the unit carrier used in the frequency band range is The transceiver is specifically used for:
  • a ninth aspect, the embodiment of the present invention provides a user equipment, where the user equipment includes:
  • a low frequency transceiver for transmitting measurement reports to medium and low frequency base stations of a plurality of telecommunication operators
  • the medium-low frequency base station operates in the middle and low frequency frequency bands; and receives the allocation result sent by the low-frequency base station, and the allocation result is allocated by the medium-low frequency base station to the plurality of unit carriers included in the high-frequency resource according to the measurement report.
  • User equipment is obtained;
  • a high frequency transceiver for transmitting a measurement report to a high frequency base station, the high frequency base station operating in a high frequency band; and receiving an allocation result transmitted by the high frequency base station, the allocation result being The measurement report allocates a plurality of unit carriers included in the high frequency resource to the user equipment.
  • the high frequency transceiver is specifically used to:
  • the low frequency transceiver is specifically used to:
  • the low-frequency base station And receiving, by the low-frequency base station, a signaling or a downlink data packet that carries the allocation result; the signaling and the downlink data packet are used to indicate a frequency band of a unit carrier used by the user equipment in the high-frequency resource.
  • the high frequency transceiver is further configured to:
  • the high-frequency base station is deployed in the hotspot area, and the high-frequency base station is used to provide signaling support and data offloading services for the UEs covered by the low-frequency base stations of multiple telecommunication operators, thereby improving the service of the UE.
  • Quality of Service QoS
  • the cost of deployment of base stations and Backhaul by multiple telecom operators is reduced.
  • FIG. 1 is a flowchart of allocating a plurality of high frequency CCs possessed by a high frequency base station according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a low-frequency base station notifying a UE of an allocation result of multiple high-frequency CCs according to an embodiment of the present disclosure
  • FIG. 3 is a flowchart of communication between a UE and a high frequency base station according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a deployment scheme of a high frequency base station based on a limited Backhaul according to an embodiment of the present invention
  • FIG. 5 is a detailed flowchart of providing a data offloading service for a UE by using a limited backhaul-based high frequency base station according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a deployment scheme of a high frequency base station based on sufficient Backhaul according to an embodiment of the present invention
  • FIG. 7 is a detailed flowchart of providing a data offloading service for a UE by using a sufficient backhaul-based high frequency base station according to an embodiment of the present invention
  • FIG. 8 is a schematic diagram of a deployment scheme of a high frequency base station based on shared Backhaul according to an embodiment of the present invention.
  • FIG. 9 is a detailed flowchart of providing a data offload service for a UE by using a shared backhaul-based high frequency base station according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a deployment scheme of a high frequency base station based on a shared RAN and a Backhaul according to an embodiment of the present invention
  • FIG. 11 is a detailed flowchart of providing a data offloading service for a UE by using a shared RAN and Backhaul-based high frequency base station according to an embodiment of the present invention
  • FIG. 12 is a schematic structural diagram of a high frequency base station according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of a medium-low frequency base station according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of a UE according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of a high frequency base station according to an embodiment of the present disclosure.
  • FIG. 16 is a schematic structural diagram of a medium-low frequency base station according to an embodiment of the present disclosure.
  • FIG. 17 is a schematic structural diagram of a UE according to an embodiment of the present invention.
  • the base stations deployed by the telecommunication operators communicate with the UE through the intermediate frequency band or the low frequency band.
  • the IF or low-frequency bands acquired by current telecom operators are generally below 6 GHz and the bandwidth of the bands is limited. Therefore, there are a large number of UEs in each crowded hotspot area and each When the UEs have their own uplink or downlink services, although a large number of UEs may belong to different telecom carriers, the base stations in the low- and medium-band bands deployed by each telecom operator cannot meet the uplink services required by the respective UEs.
  • Downstream services such as large data volume upload services or high speed data download services.
  • the embodiments of the present invention are providing an allocation method, a base station, and a UE for multiple CCs of multiple telecommunication carriers, because the telecommunication operators are not in a good hot spot area (such as a gymnasium, a concert hall, a cafe, etc.).
  • HF High Frequency
  • the base stations or UEs of each telecommunication operator can use the signaling support and data services provided by the high-frequency base stations to improve the QoS of the UE while avoiding or reducing
  • Each of the telecommunication operators deploys a base station or a backhaul (Backhaul), thereby reducing the equipment deployment cost of each telecommunication operator.
  • the present invention defines that a third-party company deploys a high-frequency base station in a frequency band above 6 GHz, the present invention does not deny that a third-party company can use an unlicensed spectrum to deploy a third-party high-frequency base station, for example, High-frequency base stations can also be deployed in unlicensed frequency bands such as the 5 GHz band and the 60 GHz band. Of course, high-frequency base stations can be deployed in bands of 10 GHz, 28 GHz, 38 GHz, and 70 GHz above 6 GHz. The present invention does not strictly define the use of high-frequency base stations. The specific frequency band.
  • Scenario 1 Each telecom operator deploys its own low-frequency base stations and their respective hotspots.
  • Backhaul a third-party company deploys high-frequency base stations in hotspots, and high-frequency base stations provide data offload services for the above-mentioned medium-low frequency base stations.
  • the scenario can be subdivided into a limited capacity of the medium-low frequency base station and a sufficient backhaul capacity of the medium-low frequency base station.
  • Scenario 2 Each telecom operator deploys its own low-frequency base stations in the hotspot area, but does not deploy their own Backhaul. Third-party companies deploy high-frequency base stations and Backhaul in the hotspot area. These multiple low-frequency base stations share the high-frequency base stations. Backhaul, the high frequency base station provides data shunting services for the above-mentioned medium and low frequency base stations.
  • Scenario 3 Each telecommunication carrier does not deploy its own low-frequency base station and its own Backhaul in the hotspot area.
  • the third-party company deploys the high-frequency base station and Backhaul in the hotspot area, and each operator shares the radio access network provided by the high-frequency base station ( Radio Access Network, RAN) and Backhaul.
  • RAN Radio Access Network
  • the UEs of each telecommunication operator may belong to the high frequency base station by default.
  • the UE may also be referred to as a mobile phone, a mobile terminal (Mobile Terminal) or a mobile device, and may be connected to an evolved packet core network (Evolved Packet Core) via a Radio Access Network (RAN). , EPC) for communication.
  • Evolved Packet Core evolved packet core network
  • RAN Radio Access Network
  • the base station may be a macro base station (Macro eNB), a small base station (Micro eNB), a pico base station (Pico eNB), a femto base station (Femto eNB), and the implementation form of the base station of the present invention is No restrictions.
  • the process of allocating a plurality of high frequency CCs owned by the high frequency base station is as follows:
  • Step 101 The high frequency base station receives the measurement information sent by the medium and low frequency base stations of the plurality of telecommunication operators or the measurement report sent by the first UE of the plurality of telecommunication operators; the high frequency base station works in the high frequency band, and the low frequency base station works in the middle In the low frequency band, the first UE belongs to the high frequency base station.
  • Step 102 The high-frequency base station allocates multiple CCs included in the high-frequency resource to the medium-low frequency base station or the first UE according to the foregoing measurement information or measurement report, to obtain an allocation result.
  • Step 103 The high frequency base station notifies the low frequency base station or the first UE of the foregoing allocation result.
  • the measurement information sent by the low-frequency base station includes information about a load condition of the medium-low frequency base station, channel state information, a number of second UEs belonging to the medium-low frequency base station, and an identifier (Identity, ID) of the second UE.
  • the load situation of the base station is a statistical information. For example, a high load indicates a combination of one or more of network congestion, a large number of UEs, and an average traffic volume of multiple UEs.
  • the medium load indicates that the network traffic is medium and the number of UEs is medium.
  • the channel state information is obtained based on the information of the UE, and includes channel state information and instantaneous channel state information that are obtained based on the UE measurement, wherein the UE detects the reference signal sent by the base station according to the geographical location, and obtains the instant
  • the channel status information can be fed back to the base station in the form of a measurement report.
  • the measurement report of the UE further includes a lot of information, which is described in detail in the 3GPP standardization resolution.
  • the present invention does not describe the measurement report of the UE.
  • the instantaneous channel state information and the measurement report fed back by the UEs are statistically obtained to obtain statistical channel state information.
  • the UE reports the measurement report to the low-frequency base station to which the low-frequency base station belongs, and the low-frequency base station obtains the measurement report reported by the UE in the coverage area and the network load state of the low-frequency base station itself. Covering the measurement information of the area, and then transmitting the measurement information to the high-frequency base station, where the network load status of the medium-low frequency base station includes the number of UEs in the coverage area of the low-frequency base station and the service of each UE; in the foregoing scenario 3, The high frequency base station directly receives the measurement report sent by the UE in its coverage area.
  • the high-frequency base station when the Backhaul capacity of the low-frequency base station is limited, the high-frequency base station also receives the low-frequency base station before transmitting the plurality of CCs included in the high-frequency resource to the medium-low frequency base station according to the measurement information.
  • the capacity of the first Backhaul of the medium-low frequency base station; the first Backhaul is provided by the low-frequency base station, connecting the high-frequency base station and the medium-low frequency base station.
  • step 102 the high frequency base station allocates a plurality of CCs included in the high frequency resource according to the measurement information and the capacity of the first Backhaul to obtain an allocation result.
  • the plurality of high frequency resources are included in the above measurement information.
  • the high-frequency base station Before the CC is allocated to the medium-low frequency base station, the high-frequency base station also receives the proportion of the second Backhaul of the low-frequency base station and the high-frequency base station transmitted by the low-frequency base station; the second Backhaul is provided by the high-frequency base station, and connects the high-frequency base station with the middle Low frequency base station.
  • the high frequency base station allocates a plurality of CCs included in the high frequency resource according to the measurement information and the ratio of the second low frequency base station occupying the second Backhaul, to obtain an allocation result.
  • the first Backhaul or the second Backhaul may be a connection of a wired medium, for example, by using an optical fiber, a coaxial cable, a network cable, or the like; or a connection of a wireless medium, for example, by millimeter wave, microwave, or the like.
  • the specific process of the high-frequency base station assigning multiple CCs included in the high-frequency resource to the medium-low frequency base station according to the measurement information when performing step 102 is: the high-frequency base station allocates the medium-low frequency base station according to the measurement information.
  • the frequency band range of the CC used for data splitting in the high frequency resource for example, the high frequency base station is configured with N CCs, and each CC is in a different frequency range, when the high frequency base station is based on one or more medium and low frequency base stations.
  • the frequency band range of the CC used for the data splitting of each of the low-frequency base stations is determined, that is, the CC frequency range It can be characterized by the index number of the CC, for example, high frequency CC_1, CC_2, ..., CC_N. It should be pointed out here that these medium and low frequency base stations do not directly use the frequency bands of these high frequency base stations, but rather the low frequency base stations.
  • the high frequency transceiver module is configured in one or more UEs covered and served, and the high frequency transceiver module can implement high frequency transmission and reception functions. Therefore, these UEs can receive the high frequency base station.
  • Data or signaling information carried in one or more CCs and these UEs can transmit data or signaling information in one or more CCs of the high-frequency base station, so that these UEs not only reach their respective belongings
  • the medium-low frequency base station splits the data and achieves the purpose of improving the QoS of the UE itself.
  • the high-frequency base station may further allocate a frequency band of the CC specifically used in the frequency band to the second UE that belongs to the medium-low frequency base station, that is, the high-frequency base station determines the second UE according to the measurement information of the medium-low frequency base station of the multiple operators.
  • the one or more CCs used are the index numbers of each CC, so that the high frequency base station can monitor itself.
  • UE-Specific multiple CC allocation mechanism can make the number of UEs attached to each CC It is basically the same as the service and reduces the traffic burden of some high-load CCs, thus ensuring the load balancing of high-frequency CC.
  • the high-frequency base station when the high-frequency base station performs the step 102, the specific process of allocating the multiple CCs included in the high-frequency resource to the first UE according to the measurement report is: the high-frequency base station allocates the high-frequency to the first UE according to the measurement report.
  • the frequency band of the CC used in the resource that is, the number of these high frequency CCs and the index number of each CC, for example, high frequency CC_1, CC_2, ... CC_N.
  • the UE can access only one CC at a time, or can access multiple CCs at the same time.
  • CA Carrier Aggregation
  • PCC Primary Component Carrier
  • SCC secondary component carrier
  • the concept of a secondary component carrier (SCC) such that a CA-based UE can simultaneously use one or more CCs for uplink and downlink data and signaling communication, thereby enabling high-speed data transmission and high-speed signaling transmission.
  • the carrier of the primary base station includes the PCC and the SCC
  • the carrier of the secondary base station includes the SCC.
  • the area covered by the primary base station and providing the primary service to the UE is called the serving cell of the UE, and the main service refers to supporting the upper and lower sides between the UE and the base station.
  • the service of the line signaling and the data communication; the area covered by the secondary base station and providing the secondary service to the UE is called the secondary cell of the UE, and the secondary service is the service generally supporting the uplink and downlink data communication between the UE and the base station.
  • the primary base station When the UE is in its serving cell, the primary base station generally covers and accepts the primary service provided by its serving cell; when the UE is in its serving cell and is simultaneously covered by the primary base station and the secondary base station, the UE is accepting its serving cell.
  • the UE can access only one CC at a time. This CC is the PCC of the LTE system. In the Release-10 and Release-11 versions of the LTE-A system, the UE can access multiple CCs at the same time.
  • the CC of the high-frequency base station includes a PCC and Multiple SCCs, and the allocation mechanism of PCC and SCC is UE-Specific.
  • UE_1 can use CC_1 for PCC and CC_2 for SCC
  • UE_2 can use CC_2 for PCC and CC_1 for SCC without loss of generality.
  • the high-frequency base station can allocate PCC and SCC for each UE according to the measurement report of each UE and the load condition of each operator and the Backhaul condition, that is, specify the number and index number of PCC and SCC used by the UE. .
  • the high-frequency base station when performing step 103, notifies the low-frequency base station of the allocation result, which may be in the following two manners:
  • the high-frequency base station notifies the low-frequency base station to the low-frequency base station by using one-bit (Bit) signaling; the 1Bit signaling is used to notify whether the UE served by the low-frequency base station uses multiple CCs included in the high-frequency resource for data offloading.
  • Bit one-bit
  • the high-frequency base station can send a signaling that the 1Bit content is “0” state or “1” state through the X2 interface or the S1 interface defined by the 3GPP standard to notify the low-frequency base station whether the high-frequency resource is used, where
  • the "0” state indicates that the low-frequency base station does not use one or more CCs included in the high-frequency resources
  • the "1" state indicates that the medium-low frequency base station adopts one or more CCs included in the high-frequency resources.
  • the high-frequency base station sends the signaling of the 1st state of the 1Bit through the X2 interface or the S1 interface. If the second UE in the coverage area of the low-frequency base station does not use the frequency band of the high-frequency CC, the high-frequency base station sends the signaling of the "0" state of the 1Bit to the medium-low frequency base station through the X2 interface or the S1 interface.
  • the high-frequency base station and the medium-low frequency base station exchange data and/or signaling through an X2 interface defined by the 3GPP standard or an S1 interface defined by the 3GPP standard.
  • the X2 interface or the S1 interface can be performed through a wired medium. Connections, for example, through optical fibers, coaxial cables, network cables, etc.; can also be connected via a wireless medium, such as by millimeter waves, microwaves, and the like.
  • the high frequency base station may also notify the second UE that belongs to the middle and low frequency base station by using the signaling or the downlink data packet, where the signaling and the downlink data packet are used to indicate the CC used by the second UE in the high frequency resource. Frequency band.
  • the low-frequency base station forwards the received 1Bit signaling to the second UE in the coverage area, and the second UE determines the content of the 1Bit signaling, and if the content of the 1Bit signaling is “1”, the high is turned on.
  • the frequency transceiver module receives the data or signaling information sent by the high frequency base station from the high frequency. If the content of the 1Bit signaling is “0”, the high frequency transceiver module is not turned on.
  • the high-frequency base station When the high-frequency base station notifies the second UE of the low-frequency base station by using the downlink data packet, the specific process is: the high-frequency base station fills the Media Access Control (MAC) mapping table according to the allocation result.
  • the MAC mapping table is added to the MAC information of the downlink data packet, and then the downlink data packet is sent to the second UE through a Physical Data Shared Channel (PDSCH).
  • PDSCH Physical Data Shared Channel
  • the high-frequency resources owned by the high-frequency base station are represented by 8 bits of one byte (Byte), as shown in Table 1, for example, 7 Bits can be used to characterize 7 high-frequency CCs, and one Bit reservation is reserved. For later use, by setting "0" or “1” on the Bit bits corresponding to C1-C7, it is characterized whether the state of "using" or “not using one or more CCs" is used.
  • the high-frequency base station sends the multi-bit signaling to the low-frequency base station through the X2 interface or the S1 interface, and the multi-bit signaling is used to notify the one or more UEs served by the low-frequency base station to use in the high-frequency resource.
  • the multi-bit signaling may be one multi-bit signaling or several multi-bit signaling.
  • the form of the multiple bit signaling may be as follows:
  • “0” indicates a frequency band in which high frequency CC is not used
  • “1” indicates a frequency band in which high frequency CC is used.
  • the high-frequency resources owned by the high-frequency base station are divided into 8 CCs
  • 4 DL CCs are represented by the upper 4 bits of 1 Byte
  • 4 UL CCs are 1 Byte lower 4 Bits.
  • the high-frequency base station allocates the uplink and downlink transmission CCs of one or more UEs served by the low-frequency base station to DL CC1 and UL CC2, respectively, the high-frequency base station transmits 1 Byte signaling to the medium-low frequency base station.
  • the content of the signaling is "00010010".
  • the low-frequency base station determines the frequency band range of the allocated CC according to the received multiple-bit signaling, and then further determines, for the second UE in the coverage area, the frequency band of the CC specifically used in the frequency band range of the CC to which it is allocated.
  • the medium and low frequency base station can directly notify the frequency band of the CC used by the UE by means of signaling.
  • the medium and low frequency base station may also fill the MAC mapping table according to the frequency band of the CC used by the UE in the high frequency resource in the respective coverage area, and add the MAC mapping table to the MAC information of the downlink data packet sent to the UE.
  • the frequency band of the CC used by the UE is notified by the PDSCH.
  • the high-frequency base station to notify the medium-low frequency base station of the allocation result by means 1.
  • the high-frequency base station notifies the allocation result to the low-frequency base station through the second method. It is better.
  • the high frequency base station may send the broadcast information carrying the allocation result to the first UE by using a physical broadcast channel (PBCH).
  • PBCH physical broadcast channel
  • the high-frequency base station After the high-frequency base station notifies the low-frequency base station or the first UE of the allocation result, the high-frequency base station can communicate with the second UE or the first UE belonging to the medium-low frequency base station based on the frequency band of the CC indicated by the allocation result, thereby achieving The purpose of providing data offloading services for UEs of various telecommunication operators.
  • the process of the low-frequency base station of the telecommunication operator notifying the UE of the allocation result of the multiple high-frequency CCs is as follows:
  • Step 201 The medium and low frequency base stations of the plurality of telecommunication operators receive the measurement reports sent by the UEs belonging to the medium and low frequency base stations; the medium and low frequency base stations work in the middle and low frequency bands.
  • Step 202 The low-frequency base station obtains measurement information according to the foregoing measurement report and the network load status of the low-frequency base station.
  • Step 203 The low-frequency base station transmits the foregoing measurement information to the high-frequency base station; the high-frequency base station operates in the high-frequency frequency band.
  • Step 204 The low-frequency base station receives the allocation result sent by the high-frequency base station, and the allocation result is obtained by the high-frequency base station assigning the plurality of CCs included in the high-frequency resource to the medium-low frequency base station according to the measurement information.
  • Step 205 The low-frequency base station notifies the UE of the foregoing allocation result.
  • the network load status of the medium-low frequency base station includes information about the number of UEs in the coverage area of the low-frequency base station and the service of each UE.
  • the foregoing measurement information includes information about a load condition of a medium-low frequency base station, channel state information, and a number of UEs belonging to a medium-low frequency base station, an ID of the UE, and the like.
  • the load situation of the base station is a statistical information. For example, the high load indicates that the network is congested, the number of UEs is large, and the average traffic of multiple UEs is large.
  • the medium load indicates that the network traffic is medium, the number of UEs is medium, and the average traffic volume of multiple UEs is medium.
  • the low load indicates that the network traffic is not large, the number of UEs is small, and the average traffic of multiple UEs is small.
  • the channel state information is obtained based on the information of the UE, and includes channel state information and instantaneous channel state information that are obtained based on the UE measurement, wherein the UE detects the reference signal sent by the base station according to the geographical location, and obtains the instant The channel state information is fed back to the base station in the form of a measurement report.
  • the base station performs statistics on the instantaneous channel state information and the measurement report fed back by the UE to obtain statistical channel state information.
  • the medium-low frequency base station transmits the capacity of the first Backhaul of the low-frequency base station to the high-frequency base station before receiving the allocation result sent by the high-frequency base station;
  • the first Backhaul is provided by a medium-low frequency base station, and connects the low-frequency base station and the high-frequency base station.
  • the low-frequency base station before receiving the allocation result sent by the high frequency base station, performing In step 203, the low-frequency base station further transmits the proportion of the second Backhaul of the low-frequency base station occupying the high-frequency base station to the high-frequency base station; the second Backhaul is provided by the high-frequency base station, and connects the low-frequency base station and the high-frequency base station.
  • the first Backhaul or the second Backhaul may be a connection of a wired medium, for example, by using an optical fiber, a coaxial cable, a network cable, or the like; or a connection of a wireless medium, for example, by millimeter wave, microwave, or the like.
  • the low-frequency base station can determine whether to adopt the 1Bit signaling according to the 1Bit signaling.
  • the content of the 1Bit signaling is a "0" state or a "1" state, wherein the "0" state indicates that the low-frequency base station does not adopt one or more CCs included in the high-frequency resource, and the "1" state indicates that the low-frequency base station is adopted.
  • One or more CCs included in the high frequency resource is adopted.
  • the specific process of the low-frequency base station notifying the foregoing allocation result to the UE is: the low-frequency base station forwards the 1Bit signaling carrying the allocation result to the UE, and determines, by the UE, whether to receive the signaling sent by the high-frequency base station according to the 1Bit signaling. Or a downlink data packet, the signaling and the downlink data packet are used to indicate a frequency band of a CC used by the UE in the high frequency resource. Specifically, if the content of the 1Bit signaling is in the “1” state, the UE turns on the high frequency transceiver module, and receives the signaling or data information sent by the high frequency base station from the high frequency.
  • the UE If the content of the 1Bit signaling is “0”, If the UE does not turn on the high-frequency transceiver module, the UE will not receive the signaling or data information sent by the high-frequency base station from the high-frequency base station, and will not send the uplink signaling and/or uplink data information to the high-frequency base station.
  • the high-frequency base station and the medium-low frequency base station exchange data and/or signaling through an X2 interface defined by the 3GPP standard or an S1 interface defined by the 3GPP standard.
  • the X2 interface or the S1 interface can be performed through a wired medium. Connections, for example, through optical fibers, coaxial cables, network cables, etc.; can also be connected via a wireless medium, such as by millimeter waves, microwaves, and the like.
  • the low-frequency base station can determine the multi-bit signaling based on the multi-bit signaling.
  • the CC band range can be characterized by the index number of the CC, for example, high frequency CC_1, CC_2, ..., CC_N, which It should be pointed out that these low-frequency base stations do not directly use the frequency bands of these high-frequency base stations, but the high-frequency transceiver modules are configured in one or more UEs covered and served by these low-frequency base stations.
  • the data or signaling information carried in one or more CCs of the high-frequency base station can be sent and received, so that the UEs not only achieve the purpose of diverting data for the low-frequency base stations to which they belong, but also achieve the purpose of improving the QoS of the UE itself.
  • the specific process of the low-frequency base station notifying the UE to the foregoing allocation result is: the medium-low frequency base station is based on the determined frequency band range, that is, after determining which high-frequency CCs are used by the low-frequency base station for data offloading, the UE is allocated in the frequency band.
  • the frequency band of the CC used in the range can determine the index number of each CC or each CC used by each UE according to the measurement report reported by each UE, and then notify the UE in the frequency range.
  • the frequency band of the CC used that is, the number of high frequency CCs used by the UE and the index number of each CC.
  • the medium-low frequency base station may notify the UE of the frequency band of the CC used in the foregoing frequency band range by using signaling or a downlink data packet.
  • the specific process of the medium and low frequency base station notifying the UE of the frequency band of the CC used in the frequency range by using the downlink data packet is: the medium and low frequency base station fills the MAC mapping table according to the frequency band of the CC used in the foregoing frequency range allocated for the UE, The specific form of the mapping table can be seen in Table 1. Then, the low-frequency base station adds the MAC mapping table to the MAC information of the downlink data packet, and sends the downlink data packet to the UE through the PDSCH.
  • the process of the UE communicating with the high frequency base station is as follows:
  • Step 301 The UE sends the measurement report to the high frequency base station or the medium and low frequency base stations of the plurality of telecommunication operators; the high frequency base station operates in the high frequency band, and the low frequency base station operates in the middle and low frequency bands.
  • Step 302 The UE receives the allocation result sent by the high-frequency base station or the low-frequency base station, and the allocation result is obtained by the high-frequency base station or the medium-low frequency base station, according to the foregoing measurement report, the multiple CCs included in the high-frequency resource are allocated to the UE.
  • the UE sends the measurement report to the low-frequency base station.
  • the UE sends the measurement report to the high-frequency base station.
  • the process of the UE receiving the allocation result from the high frequency base station or the low frequency base station in step 302 is:
  • the UE receives the 1Bit signaling carried by the low-frequency base station and carries the allocation result, and then determines, according to the 1Bit signaling, whether to receive the signaling or downlink data packet that is sent by the high-frequency base station and carries the allocation result, for example, when the 1Bit signaling is When the content is in the "1" state, the UE determines to receive the signaling or data information sent by the high-frequency base station from the high frequency. When the content of the 1Bit signaling is "0", the UE determines not to receive the high-frequency base station to transmit from the high frequency. Signaling or data information.
  • the configured high frequency transceiver module is opened, and the signaling or downlink data packet sent by the high frequency base station is received, and the signaling and the downlink data packet are used to indicate the frequency band of the CC used by the UE in the high frequency resource.
  • the UE receives the signaling or downlink data packet that is sent by the low-frequency base station and carries the allocation result, where the signaling and the downlink data packet are used to indicate the frequency band of the CC used by the UE in the high-frequency resource.
  • the process of the UE receiving the allocation result from the high-frequency base station in step 302 is: the UE receives the broadcast information that is transmitted by the high-frequency base station through the PBCH and carries the allocation result.
  • the UE may communicate with the high-frequency base station according to the frequency band of the CC indicated by the allocation result, thereby achieving the data for the low-frequency base station to which the respective belongs
  • the purpose is also to achieve the purpose of improving the QoS of the UE itself.
  • the scenario of the low-frequency base station of the scenario 1 is limited.
  • the embodiment of the present invention provides a schematic diagram of a deployment scheme of a high-frequency base station based on a limited Backhaul.
  • BS-100, BS-200, BS-300 are medium and low frequency base stations of multiple telecom operators, working in the middle and low frequency bands;
  • BS-400 is a high frequency base station of third party companies, working in the high frequency band;
  • Controller-400 is The controller of BS-400 is connected by Backhaul-4;
  • BS-100, BS-200 and BS-300 are connected to Controller-400 through X2 interface or S1 interface.
  • EPC-1, EPC-2, EPC-3 respectively It is the core network of BS-100, BS-200, BS-300, gateway GW-100 of EPC-1, gateway GW-200 of EPC-2, and gateway GW-300 of EPC-3 respectively pass Backhaul-1, Backhaul- 2.
  • Backhaul-3 is connected to Controller-400. Since Backhaul is often deployed at a higher cost through wired fiber or wireless microwave, multiple telecom operators will deploy a small amount of cost or simply deploy Backhaul, resulting in the capacity of Backhaul-1, Backhaul-2, and Backhaul-3. limited.
  • the controller is a component of the high frequency base station, and in actual application, the two may be in the same geographical location or in different geographical locations.
  • the controller and the high frequency base station are separately drawn in the schematic diagram of the embodiments of the present invention.
  • the low frequency base station and the high frequency base station are separately drawn in the schematic diagram of the embodiments of the present invention.
  • Backhaul-1, Backhaul-2, and Backhaul-3 are connected to Controller-400 in Figure 4, the actual representation is that Backhaul-1, Backhaul-2, Backhaul-3 and Controller-400 are in the same geographical position.
  • BS-100, BS-200, and BS-300 are respectively connected to Backhaul-1, Backhaul-2, and Backhaul-3 through wired media or wireless media, and then respectively through their own X2 interfaces or The S1 interface is connected to the Controller-400.
  • the capacity of the Backhaul-1, Backhaul-2, and Backhaul-3 is sent by the BS-100, BS-200, and BS-300 to the Controller-400 through the X2 interface or the S1 interface.
  • the X2 interface or the S1 interface of the high-frequency base station is not ideal.
  • the high-frequency base station is a plurality of telecommunication carriers.
  • the detailed process of the data offloading service provided by the UE under the coverage of the low-frequency base station is as shown in FIG. 5, which specifically includes the following steps:
  • Step 501 The BS-100, the BS-200, and the BS-300 receive the measurement report reported by the UE in the coverage area.
  • UE-100, UE-101, UE-102, etc. are users under the coverage of BS-100
  • each UE performs normal DL or UL communication in the middle and low frequency bands with its home base station.
  • BS-100, BS-200, BS-300 When each UE enters a hot spot or crowded area, BS-100, BS-200, BS-300 Although the hotspot area can be covered, the number of UEs is large, and the high-speed data download or large-data volume uploading service required by each UE cannot be well satisfied, so that the QoS of each UE is degraded. Therefore, UE-100, UE-101, UE-102, etc. need to report their respective measurement reports to the BS-100 to which they belong. Similarly, UE-200, UE-201, UE-202, etc. also need to report their respective measurements. It is reported to the BS-200 to which it belongs. Similarly, UE-300, UE-301, UE-302, etc. need to report their respective measurement reports to the BS-300 to which they belong.
  • Step 502 The BS-100, the BS-200, and the BS-300 obtain measurement information of the respective coverage areas according to the received UE measurement report and the network load status of the BS-100, the BS-200, and the BS-300.
  • the network load status of the BS-100, the BS-200, and the BS-300 includes information such as the number of UEs in the respective coverage areas and the services of the respective UEs.
  • the BS-100, the BS-200, and the BS-300 analyze and calculate the measurement report reported by the UE in combination with the network load status of the UE, and obtain the measurement information of the coverage area, including the load status of each low-frequency base station and the number of UEs covered.
  • Information such as the ID of the UE and the link environment information (such as channel state information) in which the UE is located, so that the UE in the coverage area can be well monitored.
  • Step 503 The BS-100, the BS-200, and the BS-300 send the measurement information of the respective coverage areas and the capacity of Backhaul-1, Backhaul-2, and Backhaul-3 to the Controller-400 through the X2 interface or the S1 interface.
  • the X2 interface or the S1 interface can be wired.
  • the medium is connected, for example, through an optical fiber, a coaxial cable, a network cable, etc., and can also be linked through a wireless medium, such as a millimeter wave, a microwave, or the like.
  • Step 504 The Controller-400 determines the allocation result of multiple CCs in the high frequency resource according to the measurement information sent by the BS-100, the BS-200, and the BS-300, and the capacity of the Backhaul-1, the Backhaul-2, and the Backhaul-3.
  • the allocation result of the CC is used to indicate the frequency band of the CC used by the UE in the coverage area of each of the BS-100, the BS-200, and the BS-300 in the high frequency resource.
  • the Controller-400 calculates the traffic of each BS-100, BS-200, and BS-300 in each CC band according to the received measurement information and the corresponding Backhaul capacity, and then owns
  • the frequency range of the CC used by the BS-100, the BS-200, and the BS-300 is determined in the high frequency resource, and the UEs in the coverage areas of the BS-100, the BS-200, and the BS-300 are further determined to be assigned to the UE.
  • the frequency band of the CC specifically used in the frequency band range of one or more CCs of the low-frequency base station.
  • Step 505 The Controller-400 sends the 1Bit signaling through the X2 interface or the S1 interface to notify whether the UE served by the BS-100, the BS-200, and the BS-300 adopts one or more CCs included in the high frequency resource, and passes the Backhaul-4.
  • the allocation result of the above CC is transmitted to the BS-400.
  • the X2 interface or S1 interface between the Controller-400 and the BS-100, BS-200, and BS-300 is not ideal, the X2 interface or the S1 interface transmits a large amount of information at a slower speed, which may cause delay.
  • the efficiency and real-time performance of the system are not good. Therefore, in order to improve the efficiency and real-time performance of the system, in the embodiment of the present invention, the high-frequency CCs that are owned by the controller-400 directly divide each UE under the coverage of the low-frequency base station.
  • the low-frequency base station adopts high-frequency resources by signaling that the 1Bit content is the "0" state or the "1" state, wherein the "0" state indicates that the low-frequency base station is not Using one or more CCs included in the high frequency resource, the "1" state indicates that the medium and low frequency base station employs one or more CCs included in the high frequency resource.
  • the Controller-400 transmits the signaling of the 1st state of the 1Bit to the BS-100; if the UE in the coverage area of the BS-200 does not have the UE When the frequency band of the high frequency CC is used, the Controller-400 transmits the signaling of the "0" state of the 1Bit to the BS-200.
  • Step 506 The BS-400 fills the downlink data packet according to the allocation result of the received CC, and sends the downlink data packet to the UE in the coverage area of the BS-100, the BS-200, and the BS-300 through the PDSCH, where the downlink data packet is used to indicate that the UE is high.
  • the frequency band of the CC used in the frequency resource.
  • the BS-400 may fill the MAC mapping table according to the allocation result of the received CC, and add the MAC mapping table to the MAC information of the downlink data packet sent to the UE.
  • Step 507 The BS-100, the BS-200, and the BS-300 forward the 1Bit signaling sent by the Controller-400 to the UEs in the respective coverage areas.
  • steps 506 and 507 have no specific sequence in implementation.
  • Step 508 The UE determines, according to the received 1Bit signaling, when receiving the downlink data packet sent by the BS-400, receives the downlink data packet, and based on the frequency band of the CC indicated by the downlink data packet, and the BS-400. Communicate.
  • the UE turns on the high frequency transceiver module to receive the high frequency base station.
  • the downlink data packet sent by the high frequency reads the corresponding MAC byte from the downlink data packet, acquires an indication of the frequency band of one or more CCs used, and communicates with the BS-400 based on the indicated frequency band of the CC .
  • the embodiment of the present invention provides a schematic diagram of a deployment scheme of a high-frequency base station based on sufficient Backhaul.
  • BS-100, BS-200, and BS-300 characterize the mid-low frequency base stations of multiple telecom operators, working in the low-mid frequency band;
  • BS-400 characterizes the high-frequency base station of third-party companies, working in the high-frequency band;
  • Controller-400 is The controller of BS-400 is connected by Backhaul-4;
  • BS-100, BS-200 and BS-300 are connected to Controller-400 through X2 interface or S1 interface.
  • EPC-1, EPC-2, and EPC-3 are the core networks of BS-100, BS-200, and BS-300, gateway GW-100 of EPC-1, gateway GW-200 of EPC-2, and EPC-3.
  • the gateway GW-300 is connected to the Controller-400 through Backhaul-1, Backhaul-2, and Backhaul-3 respectively.
  • Backhaul-1, Backhaul-2, and Backhaul-3 have sufficient capacity.
  • Backhaul-1, Backhaul-2 and Backhaul-3 are connected to Controller-400 in Figure 6, the actual representations are that Backhaul-1, Backhaul-2, Backhaul-3 and Controller-400 are placed together.
  • BS-100, BS-200, and BS-300 are respectively connected to Backhaul-1, Backhaul-2, and Backhaul-3 through wired media or wireless media, and then respectively pass through themselves.
  • the X2 interface or the S1 interface is connected to the Controller-400.
  • the capacity of the Backhaul-1, Backhaul-2, and Backhaul-3 is sent by the BS-100, BS-200, and BS-300 to the Controller-400 through the X2 interface or the S1 interface. .
  • the X2 interface or the S1 interface of the high-frequency base station is ideal.
  • the high-frequency base station is used by each of the plurality of telecommunication operators.
  • the detailed flow of the data distribution service provided by the UE under the coverage of the low-frequency base station is shown in Figure 7. As shown, it specifically includes the following steps:
  • Step 701 The BS-100, the BS-200, and the BS-300 receive the measurement report reported by the UE in the coverage area.
  • Step 702 The BS-100, the BS-200, and the BS-300 obtain measurement information of the respective coverage areas according to the received UE measurement report and the network load status of the BS-100, the BS-200, and the BS-300.
  • the network load status of the BS-100, the BS-200, and the BS-300 includes information such as the number of UEs in the respective coverage areas and the services of the respective UEs.
  • the BS-100, the BS-200, and the BS-300 analyze and calculate the measurement report reported by the UE in combination with the network load status of the UE, and obtain the measurement information of the coverage area, including the load status of each low-frequency base station and the number of UEs covered.
  • Information such as the ID of the UE and the link environment information (such as channel state information) in which the UE is located, so that the UE in the coverage area can be well monitored.
  • Step 703 The BS-100, the BS-200, and the BS-300 send the measurement information of the respective coverage areas to the Controller-400 through the X2 interface or the S1 interface.
  • the X2 interface or the S1 interface can be wired.
  • the medium is connected, for example, through an optical fiber, a coaxial cable, a network cable, etc., and can also be linked through a wireless medium, such as a millimeter wave, a microwave, or the like.
  • Step 704 The Controller-400 determines the allocation result of multiple CCs in the high frequency resource according to the measurement information sent by the BS-100, the BS-200, and the BS-300, and the allocation result of the CC is used to indicate the BS-100 and the BS-200.
  • the Controller-400 only needs to calculate BS-100, BS-200, and BS-300 according to the received measurement information.
  • the traffic in the CC and then determine the frequency range of the CC used by the BS-100, BS-200, and BS-300 in the owned high-frequency resources.
  • Step 705 The Controller-400 sends the multi-bit signaling through the X2 interface or the S1 interface, and sends the allocation result of the CC to the BS-100, the BS-200, and the BS-300, and sends the allocation result of the CC to the Hahaul-4.
  • BS-400 The Controller-400 sends the multi-bit signaling through the X2 interface or the S1 interface, and sends the allocation result of the CC to the BS-100, the BS-200, and the BS-300, and sends the allocation result of the CC to the Hahaul-4.
  • BS-400 The Controller-400 sends the multi-bit signaling through the X2 interface or the S1 interface, and sends the allocation result of the CC to the BS-100, the BS-200, and the BS-300, and sends the allocation result of the CC to the Hahaul-4.
  • BS-400 The Controller-400 sends the multi-bit signaling through the X2 interface or the
  • the X2 interface or the S1 interface between the Controller-400 and the BS-100, the BS-200, and the BS-300 is ideal, the X2 interface or the S1 interface can carry all the allocation results of the CC. Therefore, in the embodiment of the present invention, after the high-frequency CC pair low-frequency base station is owned by the Controller-400, each CC under the coverage of each low-frequency base station specifically determines which CC is determined by the medium-low frequency base station to which it belongs, Controller- In the X2 interface or the S1 interface, the frequency range of the CC used by each low-frequency base station in the high-frequency resource is notified by means of multi-bit signaling.
  • Step 706 The BS-100, the BS-200, and the BS-300 determine, according to the received multiple-bit signaling, a frequency band range of the CC used for data splitting in the high-frequency resource, and further determine that the UE in the respective coverage area is in the The frequency band of the CC used in the frequency range.
  • the BS-100, the BS-200, and the BS-300 determine, according to the received multi-bit signaling, which high-frequency CCs are used for data offloading, and further determine each UE according to the measurement report reported by each UE. Which one or which CCs are specifically used in the assigned high frequency CCs.
  • Step 707 The BS-100, the BS-200, and the BS-300 notify the frequency bands of the CCs used by the UEs in the respective coverage areas in the high frequency resources.
  • the BS-100, the BS-200, and the BS-300 may fill the MAC mapping table according to the frequency band of the CC used by the UE in the high frequency resource in the respective coverage area, and add the MAC mapping table to the UE to be sent to the UE.
  • the MAC information of the downlink data packet is transmitted to the UE through the PDSCH.
  • the BS-100, the BS-200, and the BS-300 may directly notify the UE of the frequency band of the CC used by signaling.
  • Step 708 The UE communicates with the BS-400 according to the frequency band of the CC notified by the medium-low frequency base station to which it belongs.
  • FIG. 8 a scenario in which a plurality of low-frequency base stations of the scenario 2 share the Backhaul provided by the high-frequency base station is provided.
  • the embodiment of the present invention provides a schematic diagram of a deployment scheme of the high-frequency base station based on the shared Backhaul.
  • BS-100, BS-200, and BS-300 characterize the mid-low frequency base stations of multiple telecom operators, working in the low-mid frequency band
  • BS-400 characterizes the high-frequency base station of third-party companies, working in the high-frequency band
  • Controller-400 is Controller of BS-400, which is connected by Backhaul-4
  • BS-100, The BS-200 and the BS-300 are connected to the Controller-400 through the X2 interface or the S1 interface.
  • the X2 interface or the S1 interface is ideal.
  • EPC-1, EPC-2, and EPC-3 are the core networks of BS-100, BS-200, and BS-300, gateway GW-100 of EPC-1, gateway GW-200 of EPC-2, and EPC-3. After the gateway GW-300 is connected to the connector Connector-400, it is connected to the Controller-400 through the shared backhaul link Shared Backhaul-400 provided by the Controller-400.
  • the BS-100, BS-200, and BS-300 are connected to the Shared Backhaul-400 through wired media or wireless media, and then connected to the Controller-400 through their own X2 interface or S1 interface.
  • the ratio of BS-100, BS-200, and BS-300 occupying Shared Backhaul-400 is sent by BS-100, BS-200, and BS-300 to Controller-400 through X2 interface or S1 interface.
  • the X2 interface or the S1 interface of the high-frequency base station is ideal.
  • the high-frequency base station is the medium-low frequency base station of the plurality of telecommunication operators.
  • the detailed process of providing the data offloading service by the UE under coverage is as shown in FIG. 9 , and specifically includes the following steps:
  • Step 901 The BS-100, the BS-200, and the BS-300 receive the measurement report reported by the UE in the coverage area.
  • Step 902 The BS-100, the BS-200, and the BS-300 obtain measurement information of the respective coverage areas according to the received UE measurement report and the network load status of the BS-100, the BS-200, and the BS-300.
  • the network load status of the BS-100, the BS-200, and the BS-300 includes information such as the number of UEs in the respective coverage areas and the services of the respective UEs.
  • the BS-100, the BS-200, and the BS-300 analyze and calculate the measurement report reported by the UE in combination with the network load status of the UE, and obtain the measurement information of the coverage area, including the load status of each low-frequency base station and the number of UEs covered.
  • Information such as the ID of the UE and the link environment information (such as channel state information) in which the UE is located, so that the UE in the coverage area can be well monitored.
  • Step 903 The BS-100, the BS-200, and the BS-300 send the measurement information of the respective coverage areas and the proportion of the BS-100, the BS-200, and the BS-300 occupying the Shared Backhaul-400 to the Controller through the X2 interface or the S1 interface. 400.
  • the X2 interface or the S1 interface can be wired.
  • the medium is connected, for example, through an optical fiber, a coaxial cable, a network cable, etc., and can also be linked through a wireless medium, such as a millimeter wave, a microwave, or the like.
  • Step 904 The Controller-400 determines the plurality of high-frequency resources according to the measurement information sent by the BS-100, the BS-200, and the BS-300, and the proportion of the Shared Backhaul-400 occupied by the BS-100, the BS-200, and the BS-300.
  • the allocation result of the CC is used to indicate the frequency band range of the CC used by the BS-100, the BS-200, and the BS-300 in the high frequency resource.
  • Step 905 The Controller-400 sends the multi-bit signaling through the X2 interface or the S1 interface, and sends the allocation result of the CC to the BS-100, the BS-200, and the BS-300, and sends the allocation result of the CC to the Hahaul-4.
  • BS-400 The Controller-400 sends the multi-bit signaling through the X2 interface or the S1 interface, and sends the allocation result of the CC to the BS-100, the BS-200, and the BS-300, and sends the allocation result of the CC to the Hahaul-4.
  • BS-400 sends the multi-bit signaling through the X2 interface or the S1 interface, and sends the allocation result of the CC to the BS-100, the BS-200, and the BS-300, and sends the allocation result of the CC to the Hahaul-4.
  • BS-400 The Controller-400 sends the multi-bit signaling through the X2 interface or the S1 interface,
  • the X2 interface or the S1 interface between the Controller-400 and the BS-100, the BS-200, and the BS-300 is ideal, the X2 interface or the S1 interface can carry all the allocation results of the CC. Therefore, in the embodiment of the present invention, after the high-frequency CC pair low-frequency base station is owned by the Controller-400, each CC under the coverage of each low-frequency base station specifically determines which CC is determined by the medium-low frequency base station to which it belongs, Controller- In the X2 interface or the S1 interface, the frequency range of the CC used by each low-frequency base station in the high-frequency resource is notified by means of multi-bit signaling.
  • Step 906 The BS-100, the BS-200, and the BS-300 determine, according to the received multiple-bit signaling, a frequency band range of the CC used for data splitting in the high-frequency resource, and further determine that the UE in the respective coverage area is in the The frequency band of the CC used in the frequency range.
  • the BS-100, the BS-200, and the BS-300 determine, according to the received multi-bit signaling, which high-frequency CCs are used for data offloading, and further determine each UE according to the measurement report reported by each UE. Which one or which CCs are specifically used in the assigned high frequency CCs.
  • Step 907 The BS-100, the BS-200, and the BS-300 notify the frequency bands of the CCs used by the UEs in the respective coverage areas in the high frequency resources.
  • the BS-100, the BS-200, and the BS-300 may fill the MAC mapping table according to the frequency band of the CC used by the UE in the high frequency resource in the respective coverage area, and add the MAC mapping table to the
  • the MAC information of the downlink data packet sent to the UE is transmitted to the UE through the PDSCH.
  • the BS-100, the BS-200, and the BS-300 may directly notify the UE of the frequency band of the CC used by signaling.
  • Step 908 The UE communicates with the BS-400 according to the frequency band of the CC notified by the medium-low frequency base station to which it belongs.
  • the embodiment of the present invention provides a schematic diagram of a deployment scheme of the high-frequency base station based on the shared RAN and the Backhaul.
  • the BS-400 characterizes the high-frequency base station of a third-party company and operates in the high-frequency band;
  • the Controller-400 is the controller of the BS-400, which is connected by Backhaul-4.
  • EPC1, EPC2, and EPC3 are the core networks of BS-400, and gateways GW-400 of EPC1, EPC2, and EPC3 are connected to Controller-400 through Backhaul-400.
  • Each telecommunication operator shares the RAN and Backhaul-400 provided by the BS-400.
  • the high-frequency base station of the third-party company provides the data offload service for the UE of each telecommunication carrier.
  • Figure 11 specifically includes the following steps:
  • Step 1101 The BS-400 receives the measurement report reported by the UE in the coverage area.
  • Step 1102 The BS-400 obtains measurement information of the coverage area of the BS-400 according to the received UE measurement report and the network load status of the BS-400.
  • the network load status of the BS-400 includes information such as the number of UEs in the respective coverage areas and the services of the respective UEs.
  • the BS-400 analyzes and calculates the measurement report reported by the UE in combination with its own network load status, and obtains the measurement information of the coverage area, including the load status of each low-frequency base station, the number of UEs covered, the ID of the UE, and the location of the UE.
  • Information such as link environment information (such as channel state information), so that UEs in the covered area can be well monitored.
  • Step 1103 The BS-400 sends the above measurement information to the Controller-400 through the Backhaul-4.
  • Step 1104 The Controller-400 determines the allocation result of the CC in the high frequency resource according to the measurement information sent by the BS-400, and the allocation result of the CC is used to indicate that the UE in the coverage area of the BS-400 is in the The frequency range of the CC used in high frequency resources.
  • Step 1105 The Controller-400 sends the allocation result of the foregoing CC to the BS-400 through Backhaul-4.
  • Step 1106 The BS-400 sends a broadcast message to notify the frequency band of the CC used by the UE in the coverage area in the high frequency resource through the PBCH.
  • Step 1107 The UE communicates with the BS-400 according to the frequency band of the CC notified by the broadcast information.
  • an embodiment of the present invention provides a high frequency base station 12 for implementing the process of allocating a plurality of high frequency CCs as shown in FIG. 1 of the present invention.
  • the high frequency base station 12 operates in a high frequency band, and includes:
  • the receiving unit 121 is configured to receive measurement information sent by the medium and low frequency base stations of the plurality of telecommunication operators or measurement reports sent by the first UE of the plurality of telecommunication operators; the medium and low frequency base stations operate in the middle and low frequency bands, and the first UE belongs to the high Frequency base station 12.
  • the allocating unit 122 is configured to allocate, according to the foregoing measurement information or the measurement report, a plurality of CCs included in the high frequency resource to the medium and low frequency base station or the first UE, to obtain an allocation result.
  • the sending unit 123 is configured to notify the low frequency base station or the first UE of the foregoing allocation result.
  • the measurement information includes a load condition of the medium-low frequency base station, channel state information, and a number of second UEs belonging to the low-mid frequency base station and an ID of the second UE.
  • the receiving unit 121 is further configured to:
  • the first Backhaul is provided by the low-frequency base station, and connecting the high-frequency base station 12 and the medium-low frequency base station.
  • the allocating unit 122 is specifically configured to:
  • a plurality of CCs included in the high frequency resource are allocated to obtain an allocation result.
  • the receiving unit 121 is further configured to:
  • the second Backhaul is provided by the high-frequency base station 12, connecting the high-frequency base station 12 and the medium-low frequency base station.
  • the allocating unit 122 is specifically configured to:
  • the plurality of CCs included in the high-frequency resource are allocated to obtain an allocation result.
  • the allocating unit 122 is specifically configured to:
  • the medium and low frequency base station is allocated a frequency band range of the CC used in the high frequency resource; or, according to the measurement report, the frequency band of the CC used in the high frequency resource is allocated to the first UE.
  • the allocating unit 122 is further configured to:
  • the sending unit 123 is specifically configured to:
  • the sending unit 123 is further configured to:
  • the signaling and the downlink data packet are used to indicate the frequency band of the CC used by the second UE in the high frequency resource.
  • the sending unit 123 is specifically configured to:
  • the MAC mapping table is populated according to the allocation result, the MAC mapping table is added to the MAC information of the downlink data packet, and then the downlink data packet is sent to the second UE through the PDSCH.
  • the sending unit 123 is specifically configured to:
  • the first UE is transmitted by transmitting broadcast information carrying the allocation result on the PBCH.
  • the high frequency base station 12 further includes:
  • the communication unit 124 is configured to, after the sending unit 123 notifies the low-frequency base station or the first UE, the communication, according to the frequency band of the CC indicated by the allocation result, to communicate with the second UE or the first UE that belongs to the medium-low frequency base station.
  • an embodiment of the present invention provides a medium-low frequency base station 13 for implementing a process of notifying a plurality of high-frequency CCs allocated by a high-frequency base station to a UE according to the present invention.
  • the medium-low frequency base station 13 belongs to a plurality of telecommunication operators and operates in the middle and low frequency bands, including:
  • the first receiving unit 131 is configured to receive a measurement report sent by the UE that belongs to the medium-low frequency base station 13.
  • the analyzing unit 132 is configured to obtain measurement information according to the foregoing measurement report and the network load status of the low-frequency base station 13.
  • the first sending unit 133 is configured to send the foregoing measurement information to the high frequency base station; the high frequency base station operates in the high frequency band.
  • the second receiving unit 134 is configured to receive an allocation result sent by the high-frequency base station, where the allocation result is obtained by the high-frequency base station distributing the plurality of CCs included in the high-frequency resource to the low-frequency base station 13 according to the measurement information.
  • the second sending unit 135 is configured to notify the UE of the foregoing allocation result.
  • the network load status of the medium-low frequency base station 13 includes information about the number of UEs in the coverage area of the low-frequency base station 13 and the services of the respective UEs.
  • the above measurement information includes the load condition of the low-frequency base station 13, the channel state information, and the number of UEs belonging to the low-mid-frequency base station 13, and the ID of the UE.
  • the first sending unit 133 is further configured to:
  • the first Backhaul is provided by the low-frequency base station 13 to connect the low-frequency base station 13 with the high-frequency base station; or, the low-frequency base station 13 occupies the high-frequency base station
  • the ratio of the second Backhaul is sent to the high frequency base station; the second Backhaul is provided by a high frequency base station, which connects the low frequency base station 13 with the high frequency base station.
  • the second receiving unit 134 is specifically configured to:
  • the second sending unit 135 is specifically configured to:
  • the signaling and the downlink data packet are used for Indicates the frequency band of the CC used by the UE in the high frequency resource.
  • the second receiving unit 134 is specifically configured to:
  • the multi-bit signaling that carries the allocation result sent by the high-frequency base station through the X2 interface or the S1 interface is received; and the frequency band range of the CC used in the high-frequency resource is determined based on the multi-bit signaling.
  • the second sending unit 135 is specifically configured to:
  • the UE Based on the determined frequency band range, the UE is allocated a frequency band of the CC used in the frequency band range; and the frequency band of the CC used by the UE in the frequency band is notified.
  • the second sending unit 135 may notify the UE of the frequency band of the CC used in the frequency band range by signaling; or, may notify the UE by using the downlink data packet.
  • the frequency band of the CC used in this frequency range may notify the UE of the frequency band of the CC used in this frequency range.
  • the second sending unit 135 may fill the MAC mapping table according to the frequency band of the CC used in the foregoing frequency band range allocated for the UE, and The MAC mapping table is added to the MAC information of the downlink data packet, and then the downlink data packet is transmitted to the UE through the PDSCH.
  • the embodiment of the present invention provides a UE 14 for implementing the process of the UE shown in FIG. 3 communicating with a high frequency base station.
  • the UE 14 includes:
  • the sending unit 141 is configured to send the measurement report to the low-frequency base station of the high-frequency base station or the plurality of telecommunication operators; the high-frequency base station operates in the high-frequency frequency band, and the low-frequency base station operates in the low-frequency frequency band.
  • the receiving unit 142 is configured to receive an allocation result sent by the high-frequency base station or the low-frequency base station, and the allocation result is obtained by the high-frequency base station or the medium-low frequency base station, and the multiple CCs included in the high-frequency resource are allocated to the UE 14 according to the foregoing measurement report.
  • the receiving unit 142 when receiving the allocation result sent by the high frequency base station, is specifically configured to:
  • the signaling and downlink data packets are used to indicate the frequency band of the CC used by the IE in the high frequency resource; or
  • the receiving high frequency base station transmits broadcast information carrying the distribution result on the PBCH.
  • the receiving unit 142 when receiving the allocation result sent by the low-frequency base station, is specifically configured to:
  • the signaling and downlink data packets are used to indicate the frequency band of the CC used by the UE 14 in the high-frequency resource.
  • UE 14 also includes:
  • the communication unit 143 is configured to, after the receiving unit 142 receives the allocation result sent by the high frequency base station or the low frequency base station, communicate with the high frequency base station based on the frequency band of the CC indicated by the allocation result.
  • an embodiment of the present invention provides a high frequency base station 15 that operates in a high frequency band and includes:
  • the transceiver 151 is configured to receive measurement information sent by a medium-low frequency base station of multiple telecommunication carriers or a measurement report sent by a first UE of multiple telecommunication operators; the medium-low frequency base station operates in a low-frequency frequency band, and the first UE belongs to the high Frequency base station 15.
  • the controller 152 is configured to allocate, according to the foregoing measurement information or the measurement report, a plurality of CCs included in the high frequency resource to the medium and low frequency base station or the first UE, to obtain an allocation result.
  • the transceiver 151 is further configured to notify the low frequency base station or the first UE of the foregoing allocation result.
  • the measurement information includes a load condition of the medium-low frequency base station, channel state information, and a number of second UEs belonging to the low-mid frequency base station and an ID of the second UE.
  • the controller 152 allocates multiple CCs included in the high frequency resource according to the measurement information.
  • the transceiver 151 is also used to:
  • the first Backhaul is provided by the low-frequency base station, and connecting the high-frequency base station 15 and the medium-low frequency base station.
  • controller 152 is specifically configured to:
  • a plurality of CCs included in the high frequency resource are allocated to obtain an allocation result.
  • the transceiver 151 is further configured to:
  • the medium-low frequency base station transmitted by the low-frequency base station receives the proportion of the second Backhaul of the high-frequency base station 15; the second Backhaul is provided by the high-frequency base station 15, and connects the high-frequency base station 15 and the medium-low frequency base station.
  • controller 152 is specifically configured to:
  • a plurality of CCs included in the high-frequency resource are allocated to obtain an allocation result.
  • the controller 152 may allocate, according to the foregoing measurement information, a frequency band range of the CC used in the high frequency resource for the medium and low frequency base station; or may allocate the first UE to use the high frequency resource according to the foregoing measurement report.
  • the frequency band of CC may be allocated, according to the foregoing measurement information, a frequency band range of the CC used in the high frequency resource for the medium and low frequency base station; or may allocate the first UE to use the high frequency resource according to the foregoing measurement report.
  • the controller 152 is further configured to:
  • the frequency band of the CC employed in the above frequency band range is allocated to the second UE belonging to the low frequency base station.
  • the transceiver 151 may send the 1Bit signaling to notify the low-frequency base station by using the X2 interface or the S1 interface; the 1Bit signaling is used to notify the middle Whether the low frequency base station adopts one or more CCs included in the high frequency resource.
  • the transceiver 151 may send the multi-bit signaling to the low-frequency base station by using the X2 interface or the S1 interface, and the multi-bit signaling is used to notify the frequency band of the CC used by the low-frequency base station in the high-frequency resource. range.
  • the transceiver 151 After transmitting the 1Bit signaling to notify the low frequency base station of the above allocation result, the transceiver 151 further Used for:
  • the transceiver 151 is specifically configured to:
  • the transceiver 151 is specifically configured to:
  • the first UE is transmitted by transmitting broadcast information carrying the allocation result on the PBCH.
  • transceiver 151 is further configured to:
  • the second UE or the first UE belonging to the medium-low frequency base station communicates based on the frequency band of the CC indicating the allocation result.
  • the embodiment of the present invention provides a medium-low frequency base station 16 that belongs to multiple telecommunication carriers and operates in the middle and low frequency bands, including:
  • the transceiver 161 is configured to receive a measurement report sent by a UE that belongs to the medium-low frequency base station 16.
  • the processor 162 is configured to obtain measurement information according to the foregoing measurement report and a network load state of the low-frequency base station.
  • the transceiver 161 is further configured to send the measurement information to the high frequency base station; the high frequency base station operates in the high frequency band; and receive the distribution result sent by the high frequency base station, where the allocation result is high frequency base station according to the measurement information A plurality of CCs included in the resource are allocated to the medium-low frequency base station; and the foregoing allocation result is notified to the UE.
  • the network load status of the medium-low frequency base station 16 includes information about the number of UEs in the coverage area of the low-frequency base station 16 and the services of the UEs.
  • the above measurement information includes the load condition of the low-frequency base station 16, the channel state information, and the number of UEs belonging to the low-mid-frequency base station 16, and the ID of the UE.
  • the transceiver 161 Before receiving the allocation result sent by the high frequency base station, the transceiver 161 is further configured to:
  • the first Backhaul is provided by the low-frequency base station 16, connecting the low-frequency base station 16 with the high-frequency base station; or, the low-frequency base station 16 occupies the high-frequency base station
  • the proportion of the second Backhaul is sent to the high frequency base station; the second Backhaul is provided by the high frequency base station, connecting the low frequency base station 16 and the high frequency base station.
  • the transceiver 161 is specifically configured to:
  • the 1Bit signaling carried by the X2 interface or the S1 interface, and carrying the allocation result; determining, according to the 1Bit signaling, whether to adopt one or more CCs included in the high-frequency resource; forwarding the 1Bit signaling to the UE And determining, by the UE, whether to receive the signaling or the downlink data packet that is sent by the high-frequency base station and carrying the allocation result according to the 1Bit signaling; the signaling and the downlink data packet are used to indicate the frequency band of the CC used by the UE in the high-frequency resource.
  • the transceiver 161 is specifically configured to:
  • the transceiver 161 When notifying the UE of the frequency band of the CC used in the above frequency range, the transceiver 161 is specifically configured to:
  • the frequency band of the CC used by the UE in the foregoing frequency band range is notified by signaling; or the frequency band of the CC used by the UE in the foregoing frequency band range is notified by the downlink data packet.
  • the transceiver 161 When notifying the frequency band of the CC used by the UE in the frequency band range by using a downlink data packet, the transceiver 161 is specifically configured to:
  • an embodiment of the present invention provides a UE 17, which includes:
  • a low frequency transceiver 171 configured to send a measurement report to a medium and low frequency base station of a plurality of telecommunication operators,
  • the low-frequency base station operates in the middle and low-frequency frequency bands; and receives the allocation result sent by the low-frequency base station, and the allocation result is obtained by the low-frequency base station to allocate the plurality of CCs included in the high-frequency resource to the UE 17 according to the foregoing measurement report.
  • the high frequency transceiver 172 is configured to send the measurement report to the high frequency base station, the high frequency base station operates in the high frequency frequency band, and receive the distribution result sent by the high frequency base station, and the allocation result is high frequency base station according to the above measurement report A plurality of CCs included in the resource are allocated to the UE 17 for obtaining.
  • the high-frequency transceiver 172 is specifically configured to: receive, in the low-frequency transceiver 171, the 1Bit signaling carried by the low-frequency base station and carry the allocation result, and determine, according to the 1Bit signaling, the signaling or downlink that is sent by the receiving high-frequency base station and has the allocation result.
  • the broadcast information carrying the distribution result carrying the distribution result.
  • the low frequency transceiver 171 is specifically configured to: receive signaling or downlink data packets that are sent by the low frequency base station and carry the allocation result; the signaling and downlink data packets are used to indicate the frequency band of the CC used by the UE in the high frequency resource.
  • the high frequency transceiver 172 is further configured to: communicate with the high frequency base station based on the frequency band of the CC indicated by the allocation result.
  • the technical solution provided by the embodiment of the present invention can be applied to a hotspot area, and provides a signaling support and a data offload service for the UE covered by the low-frequency base station by deploying a high-frequency base station, thereby improving the QoS of the UE. Reduce the cost of deployment of base stations and Backhaul by multiple telecom operators.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the present invention is directed to a method, apparatus (system), and computer program according to an embodiment of the present invention.
  • the flow chart and/or block diagram of the product is described. It will be understood that each flow and/or block of the flowchart illustrations and/or FIG.
  • These computer program instructions can be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine for the execution of instructions for execution by a processor of a computer or other programmable data processing device.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Abstract

本发明提供了一种多个单位载波的分配方法、基站及用户设备,用于在热点地区或人群密集场合为多个电信运营商覆盖下的UE提供信令支持和数据服务,不但降低了各个电信运营商的部署基站和Backhaul的成本,而且能大大提高了各个电信运营商所服务的UE的QoS。具体实现方法为:高频基站接收多个电信运营商的中低频基站发送的测量信息或多个电信运营商的第一用户设备发送的测量报告;高频基站工作在高频频段,中低频基站工作在中低频频段,第一用户设备归属于高频基站;高频基站根据该测量信息或测量报告,将高频资源中包括的多个单位载波分配给中低频基站或第一用户设备,得到分配结果;高频基站将分配结果通知给中低频基站或第一用户设备。

Description

一种多个单位载波的分配方法、基站及用户设备 技术领域
本发明涉及通信技术领域,尤其涉及一种多个单位载波(Component Carrier,CC)的分配方法、基站(Base station,BS)及用户设备(User Equipment,UE)。
背景技术
随着社会经济发展和人们对无线通信技术的需求,国际上关于移动蜂窝通信的第三代移动通信伙伴项目(The 3rd Generation Partnership Project,3GPP)组织正在制定第四代蜂窝通信(The 4rd Generation Cellular Communication Standard,4G)标准,3GPP标准组织制定的4G标准是在长期演进系统后续演进(Long Term Evolution,LTE)系统上的高级系统,即长期演进系统后续演进高级系统(Long Term Evolution-Advanced,LTE-A)。LTE和LTE-A系统考虑了多种通信场景,其中在人群密集的热点区域,例如,体育馆、咖啡厅、音乐厅、超级市场等场合,不但手机用户众多,而且各个用户的业务具有多样性,有的用户用手机进行语音通讯(特点是实时性要求高)、看视频(特点是下行业务包的数据量大),有的用户用微信(特点是上行业务包的数据量大且业务包数量大)、有的用户使用QQ、MSN、Skype等即时软件通讯工具(特点是下行业务包或上行业务包数据量小但业务包数量众多)等等。这些场合由于用户数量较多和业务的多样性,导致下行链路(Downlink,DL)业务或上行链路(Uplink,UL)业务需要的数据量也比较大,但是每个运营商提供的频谱资源是有限的,无法同时支持众多的用户的多种多样业务的需求,从而可能导致用户的下行业务或上行业务的服务质量(Quality of Service,QoS)得不到很好的满足,从而造成用户感觉到下载数据和上传数据的速率下降、接收信号质量变差、时延严重等问题。
针对上述问题,业界提出了一种针对上述场景的解决方案,该方案认为: 在体育场、音乐厅等场景中视频是最主要的数据流量,需要采用措施来对LTE网络实现视频内容的数据分流以满足各个UE观看视频业务的需求;采用自组织网络(Self Organising Network,SON),在异构网络(HetNet),即由不同大小、类型的小区构成的网络,包括宏小区(Macro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等中,根据用户数目、流量、链路等综合情况,适时地开启或关闭某些小区的基站,实现对流量的管理。
但上述方案在网络管理上过于复杂,并且该方案仅考虑了单个电信运营商的场景,不适用于多个电信运营商共存的场景,而实际的场景往往是多个电信运营商共存的。
因此,针对热点区域或人群密集场景的多个电信运营商共存的场景,亟需寻找一种既能保证为多个电信运营商的所有用户提供良好的数据、语音等服务的解决方案。
发明内容
本发明实施例提供了一种多个单位载波的分配方法、基站及用户设备,用以解决在热点地区且多个电信运营商共存场景下UE数量众多而导致各电信运营商的移动网络拥塞而无法为UE提供良好无线业务服务的问题。
第一方面,本发明实施例提供了一种多个单位载波的分配方法,该方法包括:
高频基站接收多个电信运营商的中低频基站发送的测量信息或多个电信运营商的第一用户设备发送的测量报告;所述高频基站工作在高频频段,所述中低频基站工作在中低频频段,所述第一用户设备归属于所述高频基站;
所述高频基站根据所述测量信息或所述测量报告,将高频资源中包括的多个单位载波分配给所述中低频基站或所述第一用户设备,得到分配结果;
所述高频基站将所述分配结果通知给所述中低频基站或所述第一用户设备。
结合第一方面,在第一方面的第一种可能的实现方式中,所述高频基站根据所述测量信息,将高频资源中包括的多个单位载波分配给所述中低频基站之前,还包括:
所述高频基站接收所述中低频基站发送的所述中低频基站的第一回程链路的容量;所述第一回程链路由所述中低频基站提供,连接所述高频基站与所述中低频基站;
所述高频基站根据所述测量信息,对高频资源包括的多个单位载波进行分配,得到分配结果,包括:
所述高频基站根据所述测量信息以及所述第一回程链路的容量,对高频资源包括的多个单位载波进行分配,得到分配结果。
结合第一方面,在第一方面的第二种可能的实现方式中,所述高频基站根据所述测量信息,将高频资源中包括的多个单位载波分配给所述中低频基站之前,还包括:
所述高频基站接收所述中低频基站发送的所述中低频基站占用所述高频基站的第二回程链路的比例;所述第二回程链路由所述高频基站提供,连接所述高频基站与所述中低频基站;
所述高频基站根据所述测量信息,对高频资源包括的多个单位载波进行分配,得到分配结果,包括:
所述高频基站根据所述测量信息以及所述中低频基站占用所述第二回程链路的比例,对高频资源包括的多个单位载波进行分配,得到分配结果。
结合第一方面和第一方面的第一种至第二种可能的实现方式中的任意一种,在第一方面的第三种可能的实现方式中,所述高频基站根据所述测量信息或所述测量报告,将高频资源包括的多个单位载波分配给所述中低频基站或所述第一用户设备,包括:
所述高频基站根据所述测量信息,为所述中低频基站分配在高频资源中采用的单位载波的频段范围;或者,
所述高频基站根据所述测量报告,为所述第一用户设备分配在高频资源 中采用的单位载波的频段。
结合第一方面的第三种可能的实现方式,在第一方面的第四种可能的实现方式中,所述高频基站根据所述测量信息,为所述中低频基站分配在高频资源中采用的单位载波的频段范围之后,还包括:
所述高频基站为归属于所述中低频基站的第二用户设备分配在所述频段范围中采用的单位载波的频段。
结合第一方面和第一方面的第一种至第四种可能的实现方式中的任意一种,在第一方面的第五种可能的实现方式中,所述高频基站将所述分配结果通知给所述中低频基站,包括:
所述高频基站将所述分配结果通知给所述中低频基站,包括:
所述高频基站通过X2接口或S1接口,发送一比特信令将所述分配结果通知给所述中低频基站;所述一比特信令用于通知所述中低频基站是否采用所述高频资源包括的单位载波;或者,
所述高频基站通过X2接口或S1接口,发送多比特信令将所述分配结果通知给所述中低频基站;所述多比特信令用于通知所述中低频基站在高频资源中采用的单位载波的频段范围。
结合第一方面的第五种可能的实现方式,在第一方面的第六种可能的实现方式中,在所述高频基站发送一比特信令将所述分配结果通知给所述中低频基站之后,还包括:
所述高频基站通过信令或者下行数据包将所述分配结果通知给归属于所述中低频基站的第二用户设备;该信令和下行数据包用于指示所述第二用户设备在高频资源中采用的单位载波的频段。
结合第一方面的第六种可能的实现方式,在第一方面的第七种可能的实现方式中,所述高频基站通过下行数据包将所述分配结果通知给归属于所述中低频基站的第二用户设备,包括:
所述高频基站根据所述分配结果填充MAC映射表;
所述高频基站将所述MAC映射表添加到下行数据包的MAC信息中;
所述高频基站将所述下行数据包通过PDSCH发送给所述第二用户设备。
结合第一方面和第一方面的第一种至第四种可能的实现方式中的任意一种,在第一方面的第八种可能的实现方式中,所述高频基站将所述分配结果通知给所述第一用户设备,包括:
所述高频基站通过在PBCH上发送承载有所述分配结果的广播信息给所述第一用户设备。
结合第一方面和第一方面的第一种至第八种可能的实现方式中的任意一种,在第一方面的第九种可能的实现方式中,所述高频基站将所述分配结果通知给所述中低频基站或所述第一用户设备之后,所述方法还包括:
所述高频基站基于所述分配结果指示的单位载波的频段,与归属于所述中低频基站的第二用户设备或所述第一用户设备进行通信。
第二方面,本发明实施例提供了一种多个单位载波的分配方法,该方法包括:
多个电信运营商的中低频基站接收归属于所述中低频基站的用户设备发送的测量报告;所述中低频基站工作在中低频频段;
所述中低频基站根据所述测量报告以及所述中所述低频基站的网络负载状态,得到测量信息;
所述中低频基站将所述测量信息发送给高频基站;所述高频基站工作在高频频段;
所述中低频基站接收所述高频基站发送的分配结果,所述分配结果由所述高频基站根据所述测量信息将高频资源中包括的多个单位载波分配给所述中低频基站得到;
所述中低频基站将所述分配结果通知给所述用户设备。
结合第二方面,在第二方面的第一种可能的实现方式中,所述中低频基站接收所述高频基站发送的分配结果之前,还包括:
所述中低频基站将所述中低频基站的第一回程链路的容量发送给所述高频基站;所述第一回程链路由所述中低频基站提供,连接所述中低频基站与 所述高频基站;或者,
所述中低频基站将所述中低频基站占用所述高频基站的第二回程链路的比例发送给所述高频基站;所述第二回程链路由所述高频基站提供,连接所述中低频基站与所述高频基站。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,所述中低频基站接收所述高频基站发送的分配结果,包括:
所述中低频基站接收所述高频基站通过X2接口或S1接口发送的承载有所述分配结果的一比特信令;
所述中低频基站基于所述一比特信令,确定是否采用所述高频资源中包括的单位载波;
所述中低频基站将所述分配结果通知给所述用户设备,包括:
所述中低频基站将承载有所述分配结果的所述一比特信令转发给所述用户设备,令所述用户设备根据所述一比特信令确定是否接收所述高频基站发送的承载有所述分配结果的信令或下行数据包;该信令和下行数据包用于指示所述用户设备在高频资源中采用的单位载波的频段。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第三种可能的实现方式中,所述中低频基站接收所述高频基站发送的分配结果,包括:
所述中低频基站接收所述高频基站通过X2接口或S1接口发送的承载有所述分配结果的多比特信令;
所述中低频基站基于所述多比特信令,确定在高频资源中采用的单位载波的频段范围;
所述中低频基站将所述分配结果通知给所述用户设备,包括:
所述中低频基站基于确定的所述频段范围,为所述用户设备分配在所述频段范围中采用的单位载波的频段;
所述中低频基站通知所述用户设备在所述频段范围采用的单位载波的频 段。
结合第二方面的第三种可能的实现方式,在第二方面的第四种可能的实现方式中,所述中低频基站通知所述用户设备在所述频段范围中采用的单位载波的频段,包括:
所述中低频基站通过信令或者下行数据包,通知所述用户设备在所述频段范围中采用的单位载波的频段。
结合第二方面的第四种可能的实现方式,在第二方面的第五种可能的实现方式中,所述中低频基站通过下行数据包通知所述用户设备在所述频段范围中采用的单位载波的频段,包括:
所述中低频基站根据为所述用户设备分配的在所述频段范围中采用的单位载波的频段,填充介质访问控制MAC映射表;
所述中低频基站将所述MAC映射表添加到下行数据包的MAC信息中;
所述中低频基站将所述下行数据包通过物理数据共享信道PDSCH发送给所述用户设备。
第三方面,本发明实施例提供了一种多个单位载波的分配方法,该方法包括:
用户设备将测量报告发送给高频基站或多个电信运营商的中低频基站;所述高频基站工作在高频频段,所述中低频基站工作在中低频频段;
所述用户设备接收所述高频基站或中低频基站发送的分配结果,所述分配结果由所述高频基站或中低频基站根据所述测量报告将高频资源中包括的多个单位载波分配给所述用户设备得到。
结合第三方面,在第三方面的第一种可能的实现方式中,所述用户设备接收所述高频基站或中低频基站发送的分配结果,包括:
所述用户设备接收所述中低频基站转发的承载有所述分配结果的一比特信令,根据所述一比特信令确定接收所述高频基站发送的承载有所述分配结果的信令或下行数据包时,接收该信令或下行数据包;该信令和下行数据包用于指示所述用户设备在高频资源中采用的单位载波的频段;或者,
所述用户设备接收所述中低频基站发送的承载有所述分配结果的信令或下行数据包;该信令和下行数据包用于指示所述用户设备在高频资源中采用的单位载波的频段;或者,
所述用户设备接收所述高频基站通过在物理广播信道PBCH上发送的承载有所述分配结果的广播信息。
结合第三方面或第三方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述用户设备接收所述高频基站或中低频基站发送的分配结果之后,所述方法还包括:
所述用户设备基于所述分配结果指示的单位载波的频段,与所述高频基站进行通信。
第四方面,本发明实施例提供了一种高频基站,所述高频基站工作在高频频段,所述高频基站包括:
接收单元,用于接收多个电信运营商的中低频基站发送的测量信息或多个电信运营商的第一用户设备发送的测量报告;所述中低频基站工作在中低频频段,所述第一用户设备归属于所述高频基站;
分配单元,用于根据所述测量信息或所述测量报告,将高频资源中包括的多个单位载波分配给所述中低频基站或所述第一用户设备,得到分配结果;
发送单元,用于将所述分配结果通知给所述中低频基站或所述第一用户设备。
结合第四方面,在第四方面的第一种可能的实现方式中,在所述分配单元根据所述测量信息,将高频资源中包括的多个单位载波分配给所述中低频基站之前,所述接收单元还用于:
接收所述中低频基站发送的所述中低频基站的第一回程链路的容量;所述第一回程链路由所述中低频基站提供,连接所述高频基站与所述中低频基站;
所述分配单元具体用于:
根据所述测量信息以及所述第一回程链路的容量,对高频资源包括的多 个单位载波进行分配,得到分配结果。
结合第四方面,在第四方面的第二种可能的实现方式中,在所述分配单元根据所述测量信息,将高频资源中包括的多个单位载波分配给所述中低频基站之前,所述接收单元还用于:
接收所述中低频基站发送的所述中低频基站占用所述高频基站的第二回程链路的比例;所述第二回程链路由所述高频基站提供,连接所述高频基站与所述中低频基站;
所述分配单元具体用于:
根据所述测量信息以及所述中低频基站占用所述第二回程链路的比例,对高频资源包括的多个单位载波进行分配,得到分配结果。
结合第四方面和第四方面的第一种至第二种可能的实现方式中的任意一种,在第四方面的第三种可能的实现方式中,所述分配单元具体用于:
根据所述测量信息,为所述中低频基站分配在高频资源中采用的单位载波的频段范围;或者,
根据所述测量报告,为所述第一用户设备分配在高频资源中采用的单位载波的频段。
结合第四方面的第三种可能的实现方式,在第四方面的第四种可能的实现方式中,在为所述中低频基站分配在高频资源中采用的单位载波的频段范围之后,所述分配单元还用于:
为归属于所述中低频基站的第二用户设备分配在所述频段范围中采用的单位载波的频段。
结合第四方面和第四方面的第一种至第四种可能的实现方式中的任意一种,在第四方面的第五种可能的实现方式中,在将所述分配结果通知给所述中低频基站时,所述发送单元具体用于:
通过X2接口或S1接口,发送一比特信令将所述分配结果通知给所述中低频基站;所述一比特信令用于通知所述中低频基站是否采用所述高频资源包括的单位载波;或者,
通过X2接口或S1接口,发送多比特信令将所述分配结果通知给所述中低频基站;所述多比特信令用于通知所述中低频基站在高频资源中采用的单位载波的频段范围。
结合第四方面的第五种可能的实现方式,在第四方面的第六种可能的实现方式中,在发送一比特信令将所述分配结果通知给所述中低频基站之后,所述发送单元还用于:
通过信令或者下行数据包将所述分配结果通知给归属于所述中低频基站的第二用户设备;该信令和下行数据包用于指示所述第二用户设备在高频资源中采用的单位载波的频段。
结合第四方面的第六种可能的实现方式,在第四方面的第七种可能的实现方式中,在通过下行数据包将所述分配结果通知给归属于所述中低频基站的第二用户设备时,所述发送单元具体用于:
根据所述分配结果填充MAC映射表;
将所述MAC映射表添加到下行数据包的MAC信息中;
将所述下行数据包通过PDSCH发送给所述第二用户设备。
结合第四方面和第四方面的第一种至第四种可能的实现方式中的任意一种,在第四方面的第八种可能的实现方式中,在将所述分配结果通知给所述第一用户设备时,所述发送单元具体用于:
通过在PBCH上发送承载有所述分配结果的广播信息给所述第一用户设备。
结合第四方面和第四方面的第一种至第八种可能的实现方式中的任意一种,在第四方面的第九种可能的实现方式中,所述高频基站还包括:
通信单元,用于在所述发送单元将所述分配结果通知给所述中低频基站或所述第一用户设备之后,基于所述分配结果指示的单位载波的频段,与归属于所述中低频基站的第二用户设备或所述第一用户设备进行通信。
第五方面,本发明实施例提供了一种中低频基站,所述中低频基站属于多个电信运营商,工作在中低频频段,所述中低频基站包括:
第一接收单元,用于接收归属于所述中低频基站的用户设备发送的测量报告;
分析单元,用于根据所述测量报告以及中低频基站的网络负载状态,得到测量信息;
第一发送单元,用于将所述测量信息发送给高频基站;所述高频基站工作在高频频段;
第二接收单元,用于接收所述高频基站发送的分配结果,所述分配结果由所述高频基站根据所述测量信息将高频资源中包括的多个单位载波分配给所述中低频基站得到;
第二发送单元,用于将所述分配结果通知给所述用户设备。
结合第五方面,在第五方面的第一种可能的实现方式中,在所述第二接收单元接收所述高频基站发送的分配结果之前,所述第一发送单元还用于:
将所述中低频基站的第一回程链路的容量发送给所述高频基站;所述第一回程链路由所述中低频基站提供,连接所述中低频基站与所述高频基站;或者,
将所述中低频基站占用所述高频基站的第二回程链路的比例发送给所述高频基站;所述第二回程链路由所述高频基站提供,连接所述中低频基站与所述高频基站。
结合第五方面或第五方面的第一种可能的实现方式,在第五方面的第二种可能的实现方式中,所述第二接收单元具体用于:
接收所述高频基站通过X2接口或S1接口发送的承载有所述分配结果的一比特信令;
基于所述一比特信令,确定是否采用所述高频资源中包括的单位载波;
所述第二发送单元具体用于:
将所述承载有所述分配结果的所述一比特信令转发给所述用户设备,令所述用户设备根据所述一比特信令确定是否接收所述高频基站发送的承载有所述分配结果的信令或下行数据包;该信令和下行数据包用于指示所述用户 设备在高频资源中采用的单位载波的频段。
结合第五方面或第五方面的第一种可能的实现方式,在第五方面的第三种可能的实现方式中,所述第二接收单元具体用于:
接收所述高频基站通过X2接口或S1接口发送的承载有所述分配结果的一比特信令;
基于所述一比特信令,确定是否采用所述高频资源中包括的单位载波;
所述第二发送单元具体用于:
将所述承载有所述分配结果的所述一比特信令转发给所述用户设备,令所述用户设备根据所述一比特信令确定是否接收所述高频基站发送的承载有所述分配结果的信令或下行数据包;该信令和下行数据包用于指示所述用户设备在高频资源中采用的单位载波的频段。
结合第五方面的第三种可能的实现方式,在第五方面的第四种可能的实现方式中,在通知所述用户设备在所述频段范围中采用的单位载波的频段时,所述第二发送单元具体用于:
通过信令或者下行数据包通知所述用户设备在所述频段范围中采用的单位载波的频段。
结合第五方面的第四种可能的实现方式,在第五方面的第五种可能的实现方式中,在通过下行数据包通知所述用户设备在所述频段范围中采用的单位载波的频段时,所述第二发送单元具体用于:
根据为所述用户设备分配的在所述频段范围中采用的单位载波的频段,填充MAC映射表;
将所述MAC映射表添加到下行数据包的MAC信息中;
将所述下行数据包通过PDSCH发送给所述用户设备。
第六方面,本发明实施例提供了一种用户设备,该用户设备包括:
发送单元,用于将测量报告发送给高频基站或多个电信运营商的中低频基站;所述高频基站工作在高频频段,所述中低频基站工作在中低频频段;
接收单元,用于接收所述高频基站或中低频基站发送的分配结果,所述 分配结果由所述高频基站或中低频基站根据所述测量报告将高频资源中包括的多个单位载波分配给所述用户设备得到。
结合第六方面,在第六方面的第一种可能的实现方式中,在接收所述高频基站发送的分配结果时,所述接收单元具体用于:
接收所述中低频基站转发的承载有所述分配结果的一比特信令,根据所述一比特信令确定接收所述高频基站发送的承载有所述分配结果的信令或下行数据包时,接收该信令或下行数据包;该信令和下行数据包用于指示所述用户设备在高频资源中采用的单位载波的频段;或者,
接收所述中低频基站发送的承载有所述分配结果的信令或下行数据包;该信令和下行数据包用于指示所述用户设备在高频资源中采用的单位载波的频段;或者,
接收所述高频基站通过在PBCH上发送的承载有所述分配结果的广播信息。
结合第六方面或第六方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述用户设备还包括:
通信单元,用于在所述接收单元接收所述高频基站或中低频基站发送的分配结果之后,基于所述分配结果指示的单位载波的频段,与所述高频基站进行通信。
第七方面,本发明实施例提供了一种高频基站,所述高频基站工作在高频频段,所述高频基站包括:
收发器,用于接收多个电信运营商的中低频基站发送的测量信息或多个电信运营商的第一用户设备发送的测量报告;所述中低频基站工作在中低频频段,所述第一用户设备归属于所述高频基站;
控制器,用于根据所述测量信息或所述测量报告,将高频资源中包括的多个单位载波分配给所述中低频基站或所述第一用户设备,得到分配结果;
所述收发器,还用于将所述分配结果通知给所述中低频基站或所述第一用户设备。
结合第七方面,在第七方面的第一种可能的实现方式中,在所述控制器根据所述测量信息,将高频资源中包括的多个单位载波分配给所述中低频基站之前,所述收发器还用于:
接收所述中低频基站发送的所述中低频基站的第一回程链路的容量;所述第一回程链路由所述中低频基站提供,连接所述高频基站与所述中低频基站;
所述控制器具体用于:
根据所述测量信息以及所述第一回程链路的容量,对高频资源包括的多个单位载波进行分配,得到分配结果。
结合第七方面,在第七方面的第二种可能的实现方式中,在所述控制器根据所述测量信息,将高频资源中包括的多个单位载波分配给所述中低频基站之前,所述收发器还用于:
接收所述中低频基站发送的所述中低频基站占用所述高频基站的第二回程链路的比例;所述第二回程链路由所述高频基站提供,连接所述高频基站与所述中低频基站;
所述控制器具体用于:
根据所述测量信息以及所述中低频基站占用所述第二回程链路的比例,对高频资源包括的多个单位载波进行分配,得到分配结果。
结合第七方面和第七方面的第一种至第二种可能的实现方式中的任意一种,在第七方面的第三种可能的实现方式中,所述控制器具体用于:
根据所述测量信息,为所述中低频基站分配在高频资源中采用的单位载波的频段范围;或者,
根据所述测量报告,为所述第一用户设备分配在高频资源中采用的单位载波的频段。
结合第七方面的第三种可能的实现方式,在第七方面的第四种可能的实现方式中,在为所述中低频基站分配在高频资源中采用的单位载波的频段范围之后,所述控制器还用于:
为归属于所述中低频基站的第二用户设备分配在所述频段范围中采用的单位载波的频段。
结合第七方面和第七方面的第一种至第四种可能的实现方式中的任意一种,在第七方面的第五种可能的实现方式中,在将所述分配结果通知给所述中低频基站时,所述收发器具体用于:
通过X2接口或S1接口,发送一比特信令将所述分配结果通知给所述中低频基站;所述一比特信令用于通知所述中低频基站是否采用所述高频资源包括的单位载波;或者,
通过X2接口或S1接口,发送多比特信令将所述分配结果通知给所述中低频基站;所述多比特信令用于通知所述中低频基站在高频资源中采用的单位载波的频段范围。
结合第七方面的第五种可能的实现方式,在第七方面的第六种可能的实现方式中,在通过X2接口或S1接口,在发送一比特信令将所述分配结果通知给所述中低频基站之后,所述收发器还用于:
通过信令或者下行数据包将所述分配结果通知给归属于所述中低频基站的第二用户设备;该信令和下行数据包用于指示所述第二用户设备在高频资源中采用的单位载波的频段。
结合第七方面的第六种可能的实现方式,在第七方面的第七种可能的实现方式中,在通过下行数据包将所述分配结果通知给归属于所述中低频基站的第二用户设备时,所述收发器具体用于:
根据所述分配结果填充MAC映射表;
将所述MAC映射表添加到下行数据包的MAC信息中;
将所述下行数据包通过PDSCH发送给所述第二用户设备。
结合第七方面和第七方面的第一种至第四种可能的实现方式中的任意一种,在第七方面的第八种可能的实现方式中,在将所述分配结果通知给所述第一用户设备时,所述收发器具体用于:
通过在PBCH上发送承载有所述分配结果的广播信息给所述第一用户设 备。
结合第七方面和第七方面的第一种至第八种可能的实现方式中的任意一种,在第七方面的第九种可能的实现方式中,所述收发器还用于:
在将所述分配结果通知给所述中低频基站或所述第一用户设备之后,基于所述分配结果指示的单位载波的频段,与归属于所述中低频基站的第二用户设备或所述第一用户设备进行通信。
第八方面,本发明实施例提供了一种中低频基站,所述中低频基站属于多个电信运营商,工作在中低频频段,所述中低频基站包括:
收发器,用于接收归属于所述中低频基站的用户设备发送的测量报告;
处理器,用于根据所述测量报告以及所述中低频基站的网络负载状态,得到测量信息;
所述收发器,还用于将所述测量信息发送给高频基站;所述高频基站工作在高频频段;接收所述高频基站发送的分配结果,所述分配结果由所述高频基站根据所述测量信息将高频资源中包括的多个单位载波分配给所述中低频基站得到;以及将所述分配结果通知给所述用户设备。
结合第八方面,在第八方面的第一种可能的实现方式中,在接收所述高频基站发送的分配结果之前,所述收发器还用于:
将所述中低频基站的第一回程链路的容量发送给所述高频基站;所述第一回程链路由所述中低频基站提供,连接所述中低频基站与所述高频基站;或者,
将所述中低频基站占用所述高频基站的第二回程链路的比例发送给所述高频基站;所述第二回程链路由所述高频基站提供,连接所述中低频基站与所述高频基站。
结合第八方面或第八方面的第一种可能的实现方式,在第八方面的第二种可能的实现方式中,所述收发器具体用于:
接收所述高频基站通过X2接口或S1接口发送的承载有所述分配结果的一比特信令;
基于所述一比特信令,确定是否采用所述高频资源中包括的单位载波;
将所述承载有所述分配结果的一比特信令转发给所述用户设备,令所述用户设备根据所述一比特信令确定是否接收所述高频基站发送的承载有所述分配结果的信令或下行数据包;该信令和下行数据包用于指示所述用户设备在高频资源中采用的单位载波的频段。
结合第八方面或第八方面的第一种可能的实现方式,在第八方面的第三种可能的实现方式中,所述收发器具体用于:
接收所述高频基站通过X2接口或S1接口发送的承载有所述分配结果的多比特信令;
基于所述多比特信令,确定在高频资源中采用的单位载波的频段范围;
基于确定的所述频段范围,为所述用户设备分配在所述频段范围中采用的单位载波的频段;
通知所述用户设备在所述频段范围采用的单位载波的频段。
结合第八方面的第三种可能的实现方式,在第八方面的第四种可能的实现方式中,在通知所述用户设备在所述频段范围中采用的单位载波的频段时,所述收发器具体用于:
通过信令或者下行数据包通知所述用户设备在所述频段范围中采用的单位载波的频段。
结合第八方面的第四种可能的实现方式,在第八方面的第五种可能的实现方式中,在通过下行数据包通知所述用户设备在所述频段范围中采用的单位载波的频段时,收发器具体用于:
根据为所述用户设备分配的在所述频段范围中采用的单位载波的频段的信息,填充MAC映射表;
将所述MAC映射表添加到下行数据包的MAC信息中;
将所述下行数据包通过PDSCH发送给所述用户设备。
第九方面,本发明实施例提供了一种用户设备,该用户设备包括:
低频收发器,用于将测量报告发送给多个电信运营商的中低频基站,所 述中低频基站工作在中低频频段;以及接收中低频基站发送的分配结果,所述分配结果由所述中低频基站根据所述测量报告将高频资源中包括的多个单位载波分配给所述用户设备得到;
高频收发器,用于将测量报告发送给高频基站,所述高频基站工作在高频频段;以及接收所述高频基站发送的分配结果,所述分配结果由所述高频基站根据所述测量报告将高频资源中包括的多个单位载波分配给所述用户设备得到。
结合第九方面,在第九方面的第一种可能的实现方式中,在接收所述高频基站或中低频基站发送的分配结果时,
所述高频收发器具体用于:
在所述低频收发器接收所述中低频基站转发的承载有所述分配结果的一比特信令并根据所述一比特信令确定接收所述高频基站发送的承载有所述分配结果的信令或下行数据包时,接收所述高频基站发送的信令或下行数据包;该信令和下行数据包用于指示所述用户设备在高频资源中采用的单位载波的频段;或者,接收所述高频基站通过在物理广播信道PBCH上发送的承载有所述分配结果的广播信息;
所述低频收发器具体用于:
接收所述中低频基站发送的承载有所述分配结果的信令或下行数据包;该信令和下行数据包用于指示所述用户设备在高频资源中采用的单位载波的频段。
结合第九方面或第九方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述高频收发器还用于:
基于所述分配结果指示的单位载波的频段,与所述高频基站进行通信。
利用本发明实施例提供的方案,通过在热点区域部署高频基站,利用高频基站为多个电信运营商的中低频基站覆盖下的UE提供信令支持和数据分流服务,提高了UE的业务质量(Quality of Service,QoS),同时减少了多个电信运营商各自对基站和Backhaul的部署成本。
附图说明
图1为本发明实施例提供的一种高频基站对拥有的多个高频CC进行分配的流程图;
图2为本发明实施例提供的一种中低频基站将多个高频CC的分配结果通知给UE的流程图;
图3为本发明实施例提供的一种UE与高频基站进行通信的流程图;
图4为本发明实施例提供的一种基于有限Backhaul的高频基站的部署方案的示意图;
图5为本发明实施例提供的一种基于有限Backhaul的高频基站为UE提供数据分流服务的详细流程图;
图6为本发明实施例提供的一种基于充足Backhaul的高频基站的部署方案的示意图;
图7为本发明实施例提供的一种基于充足Backhaul的高频基站为UE提供数据分流服务的详细流程图;
图8为本发明实施例提供的一种基于共享Backhaul的高频基站的部署方案的示意图;
图9为本发明实施例提供的一种基于共享Backhaul的高频基站为UE提供数据分流服务的详细流程图;
图10为本发明实施例提供的一种基于共享RAN和Backhaul的高频基站的部署方案的示意图;
图11为本发明实施例提供的一种基于共享RAN和Backhaul的高频基站为UE提供数据分流服务的详细流程图;
图12为本发明实施例提供的一种高频基站的结构示意图;
图13为本发明实施例提供的一种中低频基站的结构示意图;
图14为本发明实施例提供的一种UE的结构示意图;
图15为本发明实施例提供的一种高频基站的结构示意图;
图16为本发明实施例提供的一种中低频基站的结构示意图;
图17为本发明实施例提供的一种UE的结构示意图。
具体实施方式
现有技术中,电信运营商所部署的基站均通过中频频段或低频频段与UE进行通信。但由于中低频段的频谱资源十分有限,当前电信运营商所获取的中频频段或低频频段一般在6GHz以下而且频段带宽是有限的,因此,在人群密集的热点区域有大量的UE而且每个UE都有各自的上行业务或下行业务时,虽然大量UE可能归属于不同的电信运营商,但各个电信运营商部署的中低频段的基站还是不能很好地满足各自UE所需的上行业务或下行业务,例如,大数据量的上传服务或高速数据下载服务。
本发明实施例正在于提供了一种针对多个电信运营商的多个CC的分配方法、基站及UE,由于电信运营商在热点区域(如体育馆、音乐厅、咖啡馆等)不能很好地满足各自服务的UE的业务需求,而这些热点地区往往是由第三方公司(如体育馆运营公司、音乐厅运营公司等)的工作区域,因此,这些第三方公司可以很方便地部署高频(High Frequency,HF)基站,例如,这些高频基站所用的频段往往大于6GHz,各个电信运营商的基站或UE可以利用高频基站提供的信令支持和数据服务来提高UE的QoS,同时避免或减少了各个电信运营商各自部署基站或回程链路(Backhaul),从而降低了各个电信运营商的设备部署成本。这里需要指出的是,虽然本发明定义第三方公司部署高频基站是在6GHz以上频段,但本发明并不否认第三方公司可以采用非授权频段(Unlicensed Spectrum)来部署第三方高频基站,例如,5GHz频段、60GHz频段等的非授权频段也可以部署高频基站,当然,6GHz以上的10GHz、28GHz、38GH、70GHz等频段也可以部署高频基站,本发明并不严格定义高频基站所采用的具体的频段。
本发明技术方案可应用于以下三种场景:
场景一:各个电信运营商在热点区域分别部署各自的中低频基站和各自 的Backhaul,第三方公司在热点区域部署高频基站,高频基站为上述中低频基站提供数据分流服务。具体的,此场景根据中低频基站的Backhaul容量还可以细分为中低频基站的Backhaul容量有限以及中低频基站的Backhaul容量充足两种情况。
场景二:各个电信运营商在热点区域分别部署各自的中低频基站,但不部署各自的Backhaul,第三方公司在热点区域部署高频基站和Backhaul,这多个中低频基站共享高频基站提供的Backhaul,高频基站为上述中低频基站提供数据分流服务。
场景三:各个电信运营商在热点区域不部署各自的中低频基站和各自的Backhaul,第三方公司在热点区域部署高频基站和Backhaul,各个运营商共享该高频基站提供的无线接入网(Radio Access Network,RAN)和Backhaul。在此场景下,各个电信运营商的UE即可默认归属于该高频基站。
本发明的技术方案中,UE,也可称之为手机、移动终端(Mobile Terminal)或移动设备等,可以经无线接入网(Radio Access Network,RAN)与演进型分组核心网(Evolved Packet Core,EPC)进行通信。
基站,可以是宏基站(Macro eNodeB,Macro eNB)、小基站(Small eNB)微基站(Micro eNB)、微微基站(Pico eNB)、毫微微基站(Femto eNB),本发明对基站的实现形式并不作限制。
下面结合说明书附图和各实施例对本发明技术方案进行说明。
实施例一
如图1所示,基于上述三种场景,本发明实施例中,高频基站对拥有的多个高频CC进行分配的流程如下:
步骤101:高频基站接收多个电信运营商的中低频基站发送的测量信息或多个电信运营商的第一UE发送的测量报告;高频基站工作在高频频段,中低频基站工作在中低频频段,第一UE归属于高频基站。
步骤102:高频基站根据上述测量信息或测量报告,将高频资源包括的多个CC分配给中低频基站或第一UE,得到分配结果。
步骤103:高频基站将上述分配结果通知给中低频基站或第一UE。
其中,中低频基站发送的测量信息包括中低频基站的负载情况、信道状态信息以及归属于中低频基站的第二UE的数量、第二UE的标识(Identity,ID)等信息。基站的负载情况是个统计信息,例如,高负载表示网络拥塞、UE数量众多、多个UE的平均业务量大等情况的一种或多种的组合,中负载表示网络流量中等、UE数量中等、多个UE的平均业务量中等情况的一种或多种的组合,低负载表示网络流量不大、UE数量较少、多个UE的平均业务量较少等情况的一种或多种的组合。信道状态信息是基于UE的信息得到的,包括基于UE测量得到的统计的信道状态信息和即时的信道状态信息,其中,UE根据所处的地理位置而检测基站发来的参考信号而得到即时的信道状态信息,可通过测量报告的形式反馈给基站,当然,UE的测量报告还包括很多信息,在3GPP标准化决议书中有详细描述,本发明对UE的测量报告不作赘述,另外,基站再对这些UE反馈的即时的信道状态信息以及测量报告,进行统计而得到统计的信道状态信息。
在上述场景一和场景二中,UE将测量报告上报到各自归属的中低频基站,中低频基站根据对其覆盖区域中的UE上报的测量报告以及中低频基站本身的网络负载状态的分析得到其覆盖区域的测量信息,然后将测量信息发送给高频基站,其中,中低频基站的网络负载状态包括中低频基站覆盖区域中的UE的数量以及各个UE的业务等信息;在上述场景三中,高频基站直接接收其覆盖区域中的UE发送的测量报告。
特别的,在上述场景一中,当中低频基站的Backhaul容量有限时,在根据上述测量信息将高频资源中包括的多个CC分配给中低频基站之前,高频基站还会接收中低频基站发送的中低频基站的第一Backhaul的容量;该第一Backhaul由中低频基站提供,连接高频基站与中低频基站。执行步骤102时,高频基站根据上述测量信息以及第一Backhaul的容量,对高频资源包括的多个CC进行分配,得到分配结果。
特别的,在上述场景二中,在根据上述测量信息将高频资源中包括的多 个CC分配给中低频基站之前,高频基站还会接收中低频基站发送的中低频基站占用高频基站的第二Backhaul的比例;该第二Backhaul由高频基站提供,连接高频基站与中低频基站。执行步骤102时,高频基站根据上述测量信息以及中低频基站占用第二Backhaul的比例,对高频资源包括的多个CC进行分配,得到分配结果。
实际应用中,上述第一Backhaul或第二Backhaul可以是有线介质的连接,例如通过光纤、同轴电缆、网线等实现;也可以是无线介质的连接,例如通过毫米波、微波等实现。
在场景一和场景二中,执行步骤102时高频基站根据测量信息,将高频资源包括的多个CC分配给中低频基站的具体过程为:高频基站根据测量信息,为中低频基站分配在高频资源中为数据分流而采用的CC的频段范围,例如,高频基站配置了N个CC,每个CC分别处于不同的频段范围,当高频基站根据一个或多个中低频基站的测量信息来决定每个中低频基站所采用的N个CC中的一个或多个CC时,也就确定了每个中低频基站所为数据分流而采用的CC的频段范围,也即CC频段范围可以用CC的索引号来表征,例如,高频CC_1、CC_2、…、CC_N,这里需要指出的是:并不是这些中低频基站直接采用这些高频基站的频段,而是这些中低频基站各自所覆盖并服务的一个或多个UE中配置了高频收发模块,高频收发模块可以实现高频的发送和接收功能,因此,这些UE可以接收高频基站的一个或多个CC里面所携带的数据或信令信息,而且,这些UE可以在高频基站的一个或多个CC里面发送数据或信令信息,从而使这些UE不但达到了为各自所归属的中低频基站分流数据的目的而且达到了提高UE自身的QoS的目的。并且可选的,在为中低频基站分配在高频资源中用于数据分流目的而所采用的CC的频段范围之后,也即确定中低频基站采用哪几个高频CC用于数据分流之后,高频基站还可以进一步为归属于中低频基站的第二UE分配在该频段范围中具体采用的CC的频段,即高频基站根据多个运营商的中低频基站的测量信息来决定第二UE所采用的一个或多个CC即每个CC的索引号,这样,利用高频基站可以监测自身 多个高频CC的负载情况,而基于UE(UE-Specific)的多个CC的分配机制,例如,UE-Specfic的高频多个CC的分配机制可以使每个CC上所附着的UE数量和业务基本相同而减轻了某些高负载CC的业务负担,从而保证了高频CC的负载平衡。
在场景三中,执行步骤102时高频基站根据测量报告,将高频资源包括的多个CC分配给第一UE的具体过程为:高频基站根据测量报告,为第一UE分配在高频资源中采用的CC的频段,即这些高频CC的数量及每个CC的索引号,例如,高频CC_1、CC_2、…CC_N。
基于不同的通信系统,UE可以同一时间只能接入一个CC,也可以同一时间接入多个CC。例如,相比于LTE系统,LTE-A系统中引入了多个CC及载波聚集(Carrier Aggregation,CA)技术,而且在CA技术中又引入了主单位载波(Primary Component Carrier,PCC)和次单位载波(Secondary Component Carrier,SCC)的概念,这样,基于CA技术的UE可以同时使用一个或多个CC进行上下行数据和信令通信,从而可以实现高速数据传输和高速信令传输。其中,主基站的载波包括PCC和SCC,辅基站的载波包括SCC,由主基站所覆盖并可为UE提供主要服务的区域称为UE的服务小区,主要服务是指支持UE与基站间的上下行信令和数据通信的服务;由辅基站所覆盖并可为UE提供次要服务的区域称为UE的辅助小区,次要服务是指一般支持UE与基站间的上下行数据通信的服务。当UE处于其服务小区中时,一般由主基站覆盖并接受其服务小区提供的主要服务;当UE处于其服务小区中,且被主基站和辅基站同时覆盖时,该UE在接受其服务小区提供的主要服务的同时,还可以接受辅助小区提供的次要服务。在LTE系统中,UE同一时间只能接入一个CC,这个CC就是LTE系统的PCC;在LTE-A系统的Release-10和Release-11版本中,UE同一时间可以接入多个CC,即一个PCC和一个或多个SCC;在LTE-A Release-12版本及以上第五代蜂窝通信(5G)系统中,归属于某一个运营商的UE可以同时连接一个主基站的PCC和一个或多个主基站的SCC以及辅助基站(例如,第三方高频基站)的高频CC,这些高频 通常是SCC用于数据分流。这里需要特别指出的是,当运营商也采用第三方的高频基站用于主基站,即一个或多个运营商与第三方公司共享RAN基站,此时,高频基站的CC包括一个PCC和多个SCC,而且,PCC和SCC的分配机制是UE-Specific,例如,UE_1可以采用CC_1用于PCC而CC_2用于SCC,而UE_2可以采用CC_2用于PCC而CC_1用于SCC,不失一般性,高频基站可以根据每个UE自身的测量报告以及每个运营商的负载情况及Backhaul情况来为每个UE进行PCC和SCC的分配,即规定UE所采用PCC和SCC的个数和索引号。
具体的,在场景一和场景二中,执行步骤103时高频基站将分配结果通知给中低频基站,可以有以下两种方式:
方式一、
高频基站通过1比特(Bit)信令将上述分配结果通知给中低频基站;该1Bit信令用于通知中低频基站所服务的UE是否采用高频资源包括的多个CC用于数据分流。
较佳的,高频基站可以通过3GPP标准定义的X2接口或S1接口,发送一条1Bit内容为“0”状态或“1”状态的信令来通知中低频基站是否采用了高频资源,其中,“0”状态表示中低频基站未采用高频资源包括的一个或多个CC,“1”状态表示中低频基站采用了高频资源包括的一个或多个CC。例如,若中低频基站覆盖区域中的第二UE采用了一个或多个高频CC用于数据分流服务,则高频基站发送1Bit的“1”状态的信令,通过X2接口或S1接口给中低频基站;若中低频基站覆盖区域中的第二UE没有采用高频CC的频段,则高频基站发送1Bit的“0”状态的信令通过X2接口或S1接口给中低频基站。
其中,高频基站与中低频基站之间通过3GPP标准定义的X2接口或者3GPP标准定义的S1接口进行数据和/或信令的交换,在承载媒介上,X2接口或者S1接口可以通过有线介质进行连接,例如通过光纤、同轴电缆、网线等;也可以通过无线介质进行连接,例如通过毫米波、微波等实现。
在高频基站发送1Bit信令将上述分配结果通知给中低频基站之后,高频 基站还可以通过信令或者下行数据包将分配结果通知给归属于中低频基站的第二UE;其中,该信令和该下行数据包用于指示第二UE在高频资源中采用的CC的频段。期间,中低频基站将上述接收到的1Bit信令转发给覆盖区域中的第二UE,第二UE确定该1Bit信令的内容,若该1Bit信令的内容为“1”状态,则打开高频收发模块,接收高频基站从高频发送的数据或信令信息,若该1Bit信令的内容为“0”状态,则不打开高频收发模块。
当高频基站通过下行数据包将分配结果通知给归属于中低频基站的第二UE时,其具体过程为:高频基站根据分配结果来填充介质访问控制(Media Access Control,MAC)映射表,将该MAC映射表添加到下行数据包的MAC信息中,然后将该下行数据包通过物理数据共享信道(Physical Data Shared Channel,PDSCH)来发送给第二UE。
若高频基站所拥有的高频资源用一个字节(Byte)的8个Bit来表征,如表1所示,例如,可以用7个Bit来表征7个高频CC,1个Bit预留用于日后使用,通过在C1-C7所对应Bit位上设置“0”或“1”,来表征是否“采用”或“未采用一个或多个CC的状态。
表1
Figure PCTCN2014092538-appb-000001
方式二、
高频基站通过X2接口或S1接口,发送多Bit信令将上述分配结果通知给中低频基站;该多Bit信令用于通知中低频基站所服务一个或多个UE在高频资源中采用的一个或多个CC的频段范围。其中,多Bit信令可以是一条多Bit信令,也可以是几条多Bit信令。
其中,该多Bit信令的形式可以如下:
DL CC1(0/1),DL CC2(0/1),…DL CCi(0/1)
UL CC1(0/1),UL CC2(0/1),…UL CCj(0/1)
其中,“0”表示未采用高频CC的频段,“1”表示采用了高频CC的频段。例如,若高频基站所拥有的高频资源划分为8个CC,其中,4个DL CC用1个Byte的高位4个Bit来表示,而4个UL CC用1个Byte的低位4个Bit来表示,那么,如果高频基站分配给中低频基站所服务一个或多个UE的进行上下行传输的CC分别为DL CC1和UL CC2,那么高频基站发送1Byte的信令给中低频基站,信令的内容为“00010010”。
中低频基站根据接收到的多Bit信令,确定分配到的CC的频段范围,然后进一步为覆盖区域中的第二UE确定在其分配到的CC的频段范围中具体采用的CC的频段。
具体地,中低频基站可以通过信令的方式,直接通知UE所采用的CC的频段。或者,中低频基站也可以根据各自覆盖区域中的UE在高频资源中采用的CC的频段,填充MAC映射表,并将该MAC映射表添加到发送给UE的下行数据包的MAC信息中,通过PDSCH来通知UE所采用的CC的频段。
需要说明的是,在中低频基站与高频基站之间的X2接口或S1接口非理想的情况下,X2接口或S1接口传输大数据量的信息的速度较慢,有可能造成时延而使系统的高效性和实时性不好,因此,为了提高系统的高效性和实时性,高频基站通过方式一将分配结果通知给中低频基站为佳。在中低频基站与高频基站之间的X2接口或S1接口理想的情况下,由于X2接口或S1接口可以携带所有的CC的分配结果,高频基站通过方式二将分配结果通知给中低频基站为佳。
另外,在场景三中,执行步骤103时高频基站可以通过在物理广播信道(Physical Broadcast Channel,PBCH)上发送承载有分配结果的广播信息给第一UE。
高频基站将分配结果通知给中低频基站或第一UE之后,高频基站便可以基于分配结果指示的CC的频段,与归属于中低频基站的第二UE或第一UE进行通信,从而达到为各电信运营商的UE提供数据分流服务的目的。
实施例二
如图2所示,基于上述三种场景,电信运营商的中低频基站将多个高频CC的分配结果通知给UE的流程如下:
步骤201:多个电信运营商的中低频基站接收归属于中低频基站的UE发送的测量报告;中低频基站工作在中低频频段。
步骤202:中低频基站根据上述测量报告以及中低频基站的网络负载状态,得到测量信息。
步骤203:中低频基站将上述测量信息发送给高频基站;高频基站工作在高频频段。
步骤204:中低频基站接收高频基站发送的分配结果,该分配结果由高频基站根据上述测量信息将高频资源中包括的多个CC分配给中低频基站得到。
步骤205:中低频基站将上述分配结果通知给UE。
其中,上述中低频基站的网络负载状态包括中低频基站覆盖区域中的UE的数量以及各个UE的业务等信息。上述测量信息包括中低频基站的负载情况、信道状态信息以及归属于中低频基站的UE的数量、UE的ID等信息。基站的负载情况是个统计信息,例如,高负载表示网络拥塞、UE数量众多、多个UE的平均业务量大等情况,中负载表示网络流量中等、UE数量中等、多个UE的平均业务量中等情况,低负载表示网络流量不大、UE数量较少、多个UE的平均业务量较少等情况。信道状态信息是基于UE的信息得到的,包括基于UE测量得到的统计的信道状态信息和即时的信道状态信息,其中,UE根据所处的地理位置而检测基站发来的参考信号而得到即时的信道状态信息,通过测量报告的形式反馈给基站,另外,基站再对这些UE反馈的即时的信道状态信息以及测量报告进行统计而得到统计的信道状态信息。
特别的,在上述场景一中,当中低频基站的Backhaul容量有限时,在接收高频基站发送的分配结果之前,中低频基站还会将中低频基站的第一Backhaul的容量发送给高频基站;该第一Backhaul由中低频基站提供,连接中低频基站与高频基站。
特别的,在上述场景二中,在接收高频基站发送的分配结果之前,执行 步骤203时中低频基站还会将中低频基站占用高频基站的第二Backhaul的比例发送给高频基站;该第二Backhaul由高频基站提供,连接中低频基站与高频基站。
实际应用中,上述第一Backhaul或第二Backhaul可以是有线介质的连接,例如通过光纤、同轴电缆、网线等实现;也可以是无线介质的连接,例如通过毫米波、微波等实现。
具体的,若在步骤204中,中低频基站接收到的是高频基站通过X2接口或S1接口发送的承载有分配结果的1Bit信令,那么中低频基站基于该1Bit信令,可以确定是否采用高频基站拥有的高频资源。该1Bit信令的内容为“0”状态或“1”状态,其中,“0”状态表示中低频基站未采用高频资源包括的一个或多个CC,“1”状态表示中低频基站采用了高频资源包括的一个或多个CC。后续中低频基站将上述分配结果通知给UE的具体过程为:中低频基站将上述承载有分配结果的1Bit信令转发给UE,令UE根据该1Bit信令确定是否接收高频基站发送的信令或下行数据包,该信令和下行数据包用于指示UE在高频资源中采用的CC的频段。具体的,若1Bit信令的内容为“1”状态,则UE打开高频收发模块,接收高频基站从高频发送的信令或数据信息,若1Bit信令的内容为“0”状态,则UE不打开高频收发模块,便不会接收到高频基站从高频发送的信令或数据信息,后续也不会向高频基站发送上行信令和/或上行数据信息。
其中,高频基站与中低频基站之间通过3GPP标准定义的X2接口或者3GPP标准定义的S1接口进行数据和/或信令的交换,在承载媒介上,X2接口或者S1接口可以通过有线介质进行连接,例如通过光纤、同轴电缆、网线等;也可以通过无线介质进行连接,例如通过毫米波、微波等实现。
具体的,若在步骤204中,中低频基站接收到的是高频基站通过X2接口或S1接口发送的承载有分配结果的多Bit信令,那么中低频基站基于该多Bit信令,可以确定在高频资源中为数据分流而采用的CC的频段范围。CC频段范围可以用CC的索引号来表征,例如,高频CC_1、CC_2、…、CC_N,这 里需要指出的是:并不是这些中低频基站直接采用这些高频基站的频段,而是这些中低频基站各自所覆盖并服务的一个或多个UE中配置了高频收发模块,因此,这些UE可以收发高频基站的一个或多个CC里面所携带的数据或信令信息,从而使这些UE不但达到了为各自所归属的中低频基站分流数据的目的而且达到了提高UE自身的QoS的目的。后续中低频基站将上述分配结果通知给UE的具体过程为:中低频基站基于确定的频段范围,也即确定中低频基站采用哪几个高频CC用于数据分流之后,为UE分配在该频段范围中采用的CC的频段,即中低频基站可以根据每个UE上报的测量报告决定每个UE分别所采用的一个或多个CC即每个CC的索引号,然后通知UE在该频段范围中采用的CC的频段,即UE采用的高频CC的数量及每个CC的索引号。
具体的,中低频基站可以通过信令或者下行数据包通知UE在上述频段范围中采用的CC的频段。
其中,中低频基站通过下行数据包通知UE在上述频段范围中采用的CC的频段的具体过程为:中低频基站根据为UE分配的在上述频段范围中采用的CC的频段,填充MAC映射表,映射表的具体形式可见表1,然后中低频基站将该MAC映射表添加到下行数据包的MAC信息中,将该下行数据包通过PDSCH发送给UE。
实施例三
如图3所示,基于上述三种场景,UE与高频基站进行通信的流程如下:
步骤301:UE将测量报告发送给高频基站或多个电信运营商的中低频基站;高频基站工作在高频频段,中低频基站工作在中低频频段。
步骤302:UE接收高频基站或中低频基站发送的分配结果,该分配结果由高频基站或中低频基站根据上述测量报告将高频资源中包括的多个CC分配给UE得到。
具体的,在上述场景一和场景二中,UE将测量报告发送给中低频基站,在场景三中,UE将测量报告发送给高频基站。
在上述场景一和场景二中,步骤302中UE从高频基站或中低频基站接收分配结果的过程为:
UE接收中低频基站转发的承载有分配结果的1Bit信令,然后根据该1Bit信令确定是否接收高频基站发送的承载有分配结果的信令或下行数据包,例如,当该1Bit信令的内容为“1”状态时,UE确定接收高频基站从高频发送的信令或数据信息,当该1Bit信令的内容为“0”状态时,UE确定不接收高频基站从高频发送的信令或数据信息。当UE确定接收时,打开配置的高频收发模块,接收高频基站发送的信令或下行数据包,该信令和下行数据包用于指示UE在高频资源中采用的CC的频段。
或者,UE接收中低频基站发送的承载有分配结果的信令或下行数据包,该信令和下行数据包用于指示UE在高频资源中采用的CC的频段。
在上述场景三中,步骤302中UE从高频基站接收分配结果的过程为:UE接收高频基站通过在PBCH发送的承载有分配结果的广播信息。
进一步地,UE在接收高频基站或中低频基站发送的分配结果之后,UE可以基于该分配结果指示的CC的频段,与高频基站进行通信,从而达到为各自所归属的中低频基站分流数据的目的而且达到了提高UE自身的QoS的目的。
为了更清楚地说明本发明的技术方案,下面通过实施例四-实施例七对上述三种场景做进一步的说明,需要说明的是,以下4个实施例仅仅是本发明的一些实施例,不构成对本发明的限定。
实施例四
参阅图4所示,基于场景一的中低频基站的Backhaul容量有限的场景,本发明实施例提供了一种基于有限Backhaul的高频基站的部署方案的示意图。BS-100、BS-200、BS-300为多个电信运营商的中低频基站,工作在中低频频段;BS-400为第三方公司的高频基站,工作在高频频段;Controller-400为BS-400的控制器,二者通过Backhaul-4相连;BS-100、BS-200、BS-300通过X2接口或S1接口与Controller-400相连。EPC-1、EPC-2、EPC-3分别 为BS-100、BS-200、BS-300的核心网,EPC-1的网关GW-100、EPC-2的网关GW-200、EPC-3的网关GW-300分别通过Backhaul-1、Backhaul-2、Backhaul-3与Controller-400相连。由于Backhaul往往通过有线光纤或无线微波等实现而部署的成本较高,多个电信运营商从成本的角度会少量部署或者简单部署Backhaul,而导致Backhaul-1、Backhaul-2、Backhaul-3的容量有限。
需要说明的是,控制器为高频基站的组成部分,实际应用中二者可以在同一个地理位置,也可以在不同的地理位置。为了便于说明,本发明的各实施例的示意图中将控制器和高频基站分开绘制。另外,在实际场景下,由于第三方公司工作区域的站址有限,往往选择在同一个地理位置部署中低频基站和高频基站。为了便于说明,本发明的各实施例的示意图中将中低频基站和高频基站分开绘制。另外,虽然图4中Backhaul-1、Backhaul-2、Backhaul-3与Controller-400相连,但实际表示的是Backhaul-1、Backhaul-2、Backhaul-3与Controller-400放在同一个地理位置,例如同一个机柜上,实际场景下,BS-100、BS-200、BS-300分别通过有线介质或无线介质分别连接Backhaul-1、Backhaul-2、Backhaul-3,再分别通过自身的X2接口或S1接口与Controller-400连接,Backhaul-1、Backhaul-2、Backhaul-3的容量是由BS-100、BS-200、BS-300通过X2接口或S1接口发送给Controller-400的。
基于图4的系统架构图,假设高频基站的X2接口或S1接口非理想,在中低频基站与高频基站之间的Backhaul资源有限的情况下,高频基站为多个电信运营商的各中低频基站覆盖下的UE提供数据分流服务的详细流程如图5所示,具体包括以下步骤:
步骤501:BS-100、BS-200、BS-300接收各自覆盖区域中的UE上报的测量报告。
例如,假设UE-100、UE-101、UE-102等为BS-100覆盖下的用户,UE-200、UE-201、UE-202等为BS-200覆盖下的用户,UE-300、UE-301、UE-302等为BS-300覆盖下的用户,各UE与其归属的基站在中低频段进行正常的DL或UL通信。当各UE进入热点地区或人群密集的区域,BS-100、BS-200、BS-300 虽然能覆盖该热点区域,但由于UE数目众多,不能很好地满足各UE所需的高速数据下载或大数据量的上传服务,从而使得各UE的QoS下降。因此,UE-100、UE-101、UE-102等需要把各自的测量报告上报给所属的BS-100;同理,UE-200、UE-201、UE-202等也需要把各自的测量报告上报给所属的BS-200;同理,UE-300、UE-301、UE-302等需要把各自的测量报告等上报给所属的BS-300。
步骤502:BS-100、BS-200、BS-300根据接收的UE测量报告以及BS-100、BS-200、BS-300的网络负载状态,得到各自覆盖区域的测量信息。
具体地,BS-100、BS-200、BS-300的网络负载状态包括各自覆盖区域中的UE的数量以及各个UE的业务等信息。BS-100、BS-200、BS-300对UE上报的测量报告结合自身的网络负载状态进行分析计算,可以得到其覆盖区域的测量信息,包括各中低频基站的负载情况、覆盖的UE的数目、UE的ID、UE所处的链路环境信息(如信道状态信息)等信息,从而可以对所覆盖区域中的UE进行良好的监控。
步骤503:BS-100、BS-200、BS-300通过X2接口或S1接口将各自覆盖区域的测量信息以及Backhaul-1、Backhaul-2、Backhaul-3的容量发送给Controller-400。
BS-100、BS-200、BS-300与Controller-400之间通过3GPP标准定义的X2接口或S1接口进行数据和/或信令的交换,在承载媒介上,X2接口或者S1接口可以通过有线介质连接,例如通过光纤、同轴电缆、网线等;也可以通过无线介质进行链接,例如通过毫米波、微波等。
步骤504:Controller-400根据BS-100、BS-200、BS-300发送的测量信息以及Backhaul-1、Backhaul-2、Backhaul-3的容量,确定高频资源中多个CC的分配结果,该CC的分配结果用于指示BS-100、BS-200、BS-300各自覆盖区域中的UE在高频资源中采用的CC的频段。
具体地,Controller-400根据接收的测量信息和相应的Backhaul的容量,分别计算BS-100、BS-200、BS-300在每个CC频段中的通信量,然后在拥有 的高频资源中确定BS-100、BS-200、BS-300采用的CC的频段范围,以及进一步分别确定BS-100、BS-200、BS-300覆盖区域中的UE在分配给其所属的中低频基站的一个或多个CC的频段范围中具体采用的CC的频段。
步骤505:Controller-400通过X2接口或S1接口发送1Bit信令通知BS-100、BS-200、BS-300所服务的UE是否采用高频资源包括的一个或多个CC,以及通过Backhaul-4将上述CC的分配结果发送给BS-400。
由于Controller-400与BS-100、BS-200、BS-300之间的X2接口或S1接口非理想,X2接口或S1接口传输大数据量的信息的速度较慢,有可能造成时延而使系统的高效性和实时性不好,因此,为了提高系统的高效性和实时性,本发明实施例中,由Controller-400直接将拥有的高频CC对中低频基站覆盖下的各个UE进行划分,并在X2接口或S1接口,通过一条1Bit内容为“0”状态或“1”状态的信令来通知各个中低频基站是否采用了高频资源,其中,“0”状态表示中低频基站未采用高频资源包括的一个或多个CC,“1”状态表示中低频基站采用了高频资源包括的一个或多个CC。例如,若BS-100的覆盖区域中的UE采用了高频CC的频段,则Controller-400发送1Bit的“1”状态的信令给BS-100;若BS-200的覆盖区域中的UE没有采用高频CC的频段,则Controller-400发送1Bit的“0”状态的信令给BS-200。
步骤506:BS-400根据接收的CC的分配结果,填充下行数据包并通过PDSCH发送给BS-100、BS-200、BS-300覆盖区域中的UE,该下行数据包用于指示UE在高频资源中采用的CC的频段。
具体地,BS-400可以根据接收的CC的分配结果填充MAC映射表,并将该MAC映射表添加到发送给UE的下行数据包的MAC信息中。
步骤507:BS-100、BS-200、BS-300将Controller-400发送的1Bit信令转发给各自覆盖区域中的UE。
需要说明的是,步骤506和步骤507在实施上没有特定的先后顺序。
步骤508:UE根据接收到的1Bit信令,确定接收BS-400发送的下行数据包时,接收该下行数据包并基于该下行数据包指示的CC的频段与BS-400 进行通信。
具体地,若该1Bit信令的内容为“0”状态,则不打开高频收发模块;若该1Bit信令的内容为“1”状态,UE则打开高频收发模块,接收高频基站从高频发送的下行数据包,从该下行数据包中,读出相应的MAC字节,获取所采用的一个或多个CC的频段的指示,基于该指示的CC的频段与BS-400进行通信。
实施例五
参阅图6所示,基于场景一的中低频基站的Backhaul容量充足的场景,本发明实施例提供了一种基于充足Backhaul的高频基站的部署方案的示意图。BS-100、BS-200、BS-300表征多个电信运营商的中低频基站,工作在中低频频段;BS-400表征第三方公司的高频基站,工作在高频频段;Controller-400为BS-400的控制器,二者通过Backhaul-4相连;BS-100、BS-200、BS-300通过X2接口或S1接口与Controller-400相连。EPC-1、EPC-2、EPC-3分别为BS-100、BS-200、BS-300的核心网,EPC-1的网关GW-100、EPC-2的网关GW-200、EPC-3的网关GW-300分别通过Backhaul-1、Backhaul-2、Backhaul-3与Controller-400相连。Backhaul-1、Backhaul-2、Backhaul-3的容量充足。
这里需要指出的是,虽然图6中Backhaul-1、Backhaul-2、Backhaul-3与Controller-400相连,但实际表示的是Backhaul-1、Backhaul-2、Backhaul-3与Controller-400放在同一个地理位置,例如同一个机柜上,实际场景下,BS-100、BS-200、BS-300分别通过有线介质或无线介质分别连接Backhaul-1、Backhaul-2、Backhaul-3,再分别通过自身的X2接口或S1接口与Controller-400连接,Backhaul-1、Backhaul-2、Backhaul-3的容量是由BS-100、BS-200、BS-300通过X2接口或S1接口发送给Controller-400的。
基于图6的系统架构图,假设高频基站的X2接口或S1接口理想,在中低频基站与高频基站之间的Backhaul资源充足的情况下,高频基站为多个电信运营商的各中低频基站覆盖下的UE提供数据分流服务的详细流程如图7 所示,具体包括以下步骤:
步骤701:BS-100、BS-200、BS-300接收各自覆盖区域中的UE上报的测量报告。
步骤702:BS-100、BS-200、BS-300根据接收的UE测量报告以及BS-100、BS-200、BS-300的网络负载状态,得到各自覆盖区域的测量信息。
具体地,BS-100、BS-200、BS-300的网络负载状态包括各自覆盖区域中的UE的数量以及各个UE的业务等信息。BS-100、BS-200、BS-300对UE上报的测量报告结合自身的网络负载状态进行分析计算,可以得到其覆盖区域的测量信息,包括各中低频基站的负载情况、覆盖的UE的数目、UE的ID、UE所处的链路环境信息(如信道状态信息)等信息,从而可以对所覆盖区域中的UE进行良好的监控。
步骤703:BS-100、BS-200、BS-300通过X2接口或S1接口将各自覆盖区域的测量信息发送给Controller-400。
BS-100、BS-200、BS-300与Controller-400之间通过3GPP标准定义的X2接口或S1接口进行数据和/或信令的交换,在承载媒介上,X2接口或者S1接口可以通过有线介质连接,例如通过光纤、同轴电缆、网线等;也可以通过无线介质进行链接,例如通过毫米波、微波等。
步骤704:Controller-400根据BS-100、BS-200、BS-300发送的测量信息,确定高频资源中多个CC的分配结果,该CC的分配结果用于指示BS-100、BS-200、BS-300在高频资源中采用的CC的频段范围。
由于GW-100、GW-200、GW-300与Controller-400之间的Backhaul资源充足,Controller-400只需根据接收的测量信息,分别计算BS-100、BS-200、BS-300在每个CC中的通信量,然后在拥有的高频资源中确定BS-100、BS-200、BS-300采用的CC的频段范围。
步骤705:Controller-400通过X2接口或S1接口发送多Bit信令将上述CC的分配结果发送给BS-100、BS-200、BS-300,以及通过Backhaul-4将上述CC的分配结果发送给BS-400。
由于Controller-400与BS-100、BS-200、BS-300之间的X2接口或S1接口理想,X2接口或S1接口可以携带所有的CC的分配结果。因此,本发明实施例中,由Controller-400将拥有的高频CC对中低频基站划分后,各中低频基站覆盖下的各个UE具体采用哪个CC由各自所属的中低频基站所决定,Controller-400在X2接口或S1接口,通过多Bit信令的方式来通知各个中低频基站在高频资源中采用的CC的频段范围。
步骤706:BS-100、BS-200、BS-300根据接收的多Bit信令,确定在高频资源中为数据分流而采用的CC的频段范围,以及进一步确定各自覆盖区域中的UE在该频段范围中采用的CC的频段。
具体地,BS-100、BS-200、BS-300根据接收到的多Bit信令确定各自采用哪几个高频CC用于数据分流后,进一步根据每个UE上报的测量报告决定每个UE分别在分配到的几个高频CC中具体采用哪个或哪几个CC。
步骤707:BS-100、BS-200、BS-300通知各自覆盖区域中的UE在高频资源中采用的CC的频段。
具体地,BS-100、BS-200、BS-300可以根据各自覆盖区域中的UE在高频资源中采用的CC的频段,填充MAC映射表,并将该MAC映射表添加到发送给UE的下行数据包的MAC信息中,通过PDSCH发送给UE。
或者,BS-100、BS-200、BS-300也可以通过信令的方式,直接通知UE所采用的CC的频段。
步骤708:UE根据各自所属中低频基站通知的CC的频段与BS-400进行通信。
实施例六
参阅图8所示,基于场景二的多个中低频基站共享高频基站提供的Backhaul的场景,本发明实施例提供了一种基于共享Backhaul的高频基站的部署方案的示意图。BS-100、BS-200、BS-300表征多个电信运营商的中低频基站,工作在中低频频段;BS-400表征第三方公司的高频基站,工作在高频频段;Controller-400为BS-400的控制器,二者通过Backhaul-4相连;BS-100、 BS-200、BS-300通过X2接口或S1接口与Controller-400相连,X2接口或S1接口理想。EPC-1、EPC-2、EPC-3分别为BS-100、BS-200、BS-300的核心网,EPC-1的网关GW-100、EPC-2的网关GW-200、EPC-3的网关GW-300连接到连接器Connector-400后,通过Controller-400提供的共享回程链路Shared Backhaul-400与Controller-400相连。
这里需要指出的是,实际场景下,BS-100、BS-200、BS-300分别通过有线介质或无线介质连接Shared Backhaul-400,再分别通过自身的X2接口或S1接口与Controller-400连接,BS-100、BS-200、BS-300占用Shared Backhaul-400的比例是由BS-100、BS-200、BS-300通过X2接口或S1接口发送给Controller-400的。
基于图8的系统架构图,假设高频基站的X2接口或S1接口理想,在中低频基站共享高频基站提供的Backhaul资源的情况下,高频基站为多个电信运营商的各中低频基站覆盖下的UE提供数据分流服务的详细流程如图9所示,具体包括以下步骤:
步骤901:BS-100、BS-200、BS-300接收各自覆盖区域中的UE上报的测量报告。
步骤902:BS-100、BS-200、BS-300根据接收的UE测量报告以及BS-100、BS-200、BS-300的网络负载状态,得到各自覆盖区域的测量信息。
具体地,BS-100、BS-200、BS-300的网络负载状态包括各自覆盖区域中的UE的数量以及各个UE的业务等信息。BS-100、BS-200、BS-300对UE上报的测量报告结合自身的网络负载状态进行分析计算,可以得到其覆盖区域的测量信息,包括各中低频基站的负载情况、覆盖的UE的数目、UE的ID、UE所处的链路环境信息(如信道状态信息)等信息,从而可以对所覆盖区域中的UE进行良好的监控。
步骤903:BS-100、BS-200、BS-300通过X2接口或S1接口将各自覆盖区域的测量信息以及BS-100、BS-200、BS-300占用Shared Backhaul-400的比例发送给Controller-400。
BS-100、BS-200、BS-300与Controller-400之间通过3GPP标准定义的X2接口或S1接口进行数据和/或信令的交换,在承载媒介上,X2接口或者S1接口可以通过有线介质连接,例如通过光纤、同轴电缆、网线等;也可以通过无线介质进行链接,例如通过毫米波、微波等。
步骤904:Controller-400根据BS-100、BS-200、BS-300发送的测量信息,以及BS-100、BS-200、BS-300占用Shared Backhaul-400的比例,确定高频资源中多个CC的分配结果,该CC的分配结果用于指示BS-100、BS-200、BS-300在高频资源中采用的CC的频段范围。
步骤905:Controller-400通过X2接口或S1接口发送多Bit信令将上述CC的分配结果发送给BS-100、BS-200、BS-300,以及通过Backhaul-4将上述CC的分配结果发送给BS-400。
由于Controller-400与BS-100、BS-200、BS-300之间的X2接口或S1接口理想,X2接口或S1接口可以携带所有的CC的分配结果。因此,本发明实施例中,由Controller-400将拥有的高频CC对中低频基站划分后,各中低频基站覆盖下的各个UE具体采用哪个CC由各自所属的中低频基站所决定,Controller-400在X2接口或S1接口,通过多Bit信令的方式来通知各个中低频基站在高频资源中采用的CC的频段范围。
步骤906:BS-100、BS-200、BS-300根据接收的多Bit信令,确定在高频资源中为数据分流而采用的CC的频段范围,以及进一步确定各自覆盖区域中的UE在该频段范围中采用的CC的频段。
具体地,BS-100、BS-200、BS-300根据接收到的多Bit信令确定各自采用哪几个高频CC用于数据分流后,进一步根据每个UE上报的测量报告决定每个UE分别在分配到的几个高频CC中具体采用哪个或哪几个CC。
步骤907:BS-100、BS-200、BS-300通知各自覆盖区域中的UE在高频资源中采用的CC的频段。
具体地,BS-100、BS-200、BS-300可以根据各自覆盖区域中的UE在高频资源中采用的CC的频段,填充MAC映射表,并将该MAC映射表添加到 发送给UE的下行数据包的MAC信息中,通过PDSCH发送给UE。
或者,BS-100、BS-200、BS-300也可以通过信令的方式,直接通知UE所采用的CC的频段。
步骤908:UE根据各自所属中低频基站通知的CC的频段与BS-400进行通信。
实施例七
参阅图10所示,基于场景三的各个运营商共享高频基站提供的RAN和Backhaul的场景,本发明实施例提供了一种基于共享RAN和Backhaul的高频基站的部署方案的示意图。BS-400表征第三方公司的高频基站,工作在高频频段;Controller-400为BS-400的控制器,二者通过Backhaul-4相连。EPC1、EPC2、EPC3为BS-400的核心网,EPC1、EPC2、EPC3的网关GW-400通过Backhaul-400与Controller-400相连。各个电信运营商共享BS-400提供的RAN和Backhaul-400。
基于图10的系统架构图,在各个电信运营商共享第三方公司的高频基站提供的RAN和Backhaul资源的情况下,第三方公司的高频基站为各个电信运营商的UE提供数据分流服务的详细流程如图11所示,具体包括以下步骤:
步骤1101:BS-400接收覆盖区域中的UE上报的测量报告。
步骤1102:BS-400根据接收的UE测量报告以及BS-400的网络负载状态,得到BS-400覆盖区域的测量信息。
具体地,BS-400的网络负载状态包括各自覆盖区域中的UE的数量以及各个UE的业务等信息。BS-400对UE上报的测量报告结合自身的网络负载状态进行分析计算,可以得到其覆盖区域的测量信息,包括各中低频基站的负载情况、覆盖的UE的数目、UE的ID、UE所处的链路环境信息(如信道状态信息)等信息,从而可以对所覆盖区域中的UE进行良好的监控。
步骤1103:BS-400通过Backhaul-4将上述测量信息发送给Controller-400。
步骤1104:Controller-400根据BS-400发送的测量信息,确定高频资源中CC的分配结果,该CC的分配结果用于指示BS-400覆盖区域中的UE在 高频资源中采用的CC的频段范围。
步骤1105:Controller-400通过Backhaul-4将上述CC的分配结果发送给BS-400。
步骤1106:BS-400通过PBCH,发送广播信息通知覆盖区域中的UE在高频资源中采用的CC的频段。
步骤1107:UE根据广播信息通知的CC的频段与BS-400进行通信。
实施例八
参阅图12所示,本发明实施例提供了一种高频基站12,用于实现本发明图1所示的对多个高频CC进行分配的流程。
所述高频基站12工作在高频频段,包括:
接收单元121,用于接收多个电信运营商的中低频基站发送的测量信息或多个电信运营商的第一UE发送的测量报告;中低频基站工作在中低频频段,第一UE归属于高频基站12。
分配单元122,用于根据上述测量信息或测量报告,将高频资源中包括的多个CC分配给中低频基站或第一UE,得到分配结果。
发送单元123,用于将上述分配结果通知给中低频基站或第一UE。
其中,上述测量信息包括中低频基站的负载情况、信道状态信息以及归属于中低频基站的第二UE的数量、第二UE的ID。
可选地,在分配单元122根据测量信息,将高频资源中包括的多个CC分配给中低频基站之前,接收单元121还用于:
接收中低频基站发送的中低频基站的第一Backhaul的容量;该第一Backhaul由中低频基站提供,连接高频基站12与中低频基站。
相应的,分配单元122具体用于:
根据测量信息以及第一Backhaul的容量,对高频资源包括的多个CC进行分配,得到分配结果。
可选地,在分配单元122根据测量信息,将高频资源中包括的多个CC分配给中低频基站之前,接收单元121还用于:
接收中低频基站发送的中低频基站占用高频基站12的第二Backhaul的比例;该第二Backhaul由高频基站12提供,连接高频基站12与中低频基站。
相应的,分配单元122具体用于:
根据测量信息以及中低频基站占用第二Backhaul的比例,对高频资源包括的多个CC进行分配,得到分配结果。
可选地,分配单元122具体用于:
根据测量信息,为中低频基站分配在高频资源中采用的CC的频段范围;或者,根据测量报告,为第一UE分配在高频资源中采用的CC的频段。
进一步地,在为中低频基站分配在高频资源中采用的CC的频段范围之后,分配单元122还用于:
为归属于中低频基站的第二UE在该频段范围中采用的CC的频段。
可选地,在将分配结果通知给中低频基站时,发送单元123具体用于:
通过X2接口或S1接口,发送1Bit信令将分配结果通知给中低频基站;该一Bit信令用于通知中低频基站是否采用高频资源包括的一个或多个CC;或者,通过X2接口或S1接口,发送多Bit信令将分配结果通知给中低频基站;该多Bit信令用于通知中低频基站在高频资源中采用的CC的频段范围。
具体地,在发送1Bit信令将分配结果通知给中低频基站之后,发送单元123还用于:
通过信令或者下行数据包将分配结果通知给归属于中低频基站的第二UE;该信令和下行数据包用于指示所述第二UE在高频资源中采用的CC的频段。
具体地,在通过下行数据包将分配结果通知给归属于中低频基站的第二UE时,发送单元123具体用于:
根据分配结果填充MAC映射表,将MAC映射表添加到下行数据包的MAC信息中,然后将下行数据包通过PDSCH发送给第二UE。
可选地,在将分配结果通知给第一UE时,发送单元123具体用于:
通过在PBCH上发送承载有分配结果的广播信息给所述第一UE。
所述高频基站12还包括:
通信单元124,用于在发送单元123将分配结果通知给中低频基站或第一UE之后,基于分配结果指示的CC的频段,与归属于中低频基站的第二UE或第一UE进行通信。
实施例九
参阅图13所示,本发明实施例提供了一种中低频基站13,用于实现本发明图2所示的将高频基站分配的多个高频CC通知给UE的流程。
所述中低频基站13属于多个电信运营商,工作在中低频频段,包括:
第一接收单元131,用于接收归属于中低频基站13的UE发送的测量报告。
分析单元132,用于根据上述测量报告以及中低频基站13的网络负载状态,得到测量信息。
第一发送单元133,用于将上述测量信息发送给高频基站;高频基站工作在高频频段。
第二接收单元134,用于接收高频基站发送的分配结果,该分配结果由高频基站根据上述测量信息将高频资源包括的多个CC分配给中低频基站13得到。
第二发送单元135,用于将上述分配结果通知给UE。
其中,上述中低频基站13的网络负载状态包括中低频基站13覆盖区域中的UE的数量以及各个UE的业务等信息。上述测量信息包括中低频基站13的负载情况、信道状态信息以及归属于中低频基站13的UE的数量、UE的ID。
可选地,在第二接收单元134接收高频基站发送的分配结果之前,第一发送单元133还用于:
将中低频基站13的第一Backhaul的容量发送给高频基站;该第一Backhaul由中低频基站13提供,连接中低频基站13与高频基站;或者,将中低频基站13占用高频基站的第二Backhaul的比例发送给高频基站;该第二 Backhaul由高频基站提供,连接中低频基站13与高频基站。
可选地,第二接收单元134具体用于:
接收高频基站通过X2接口或S1接口发送的承载有分配结果的1Bit信令;基于该1Bit信令,确定是否采用高频资源中包括的一个或多个CC;
相应地,第二发送单元135具体用于:
将上述承载有分配结果的1Bit信令转发给UE,令UE根据该1Bit信令确定是否接收高频基站发送的承载有分配结果的信令或下行数据包;该信令和下行数据包用于指示UE在高频资源中采用的CC的频段。
可选地,第二接收单元134具体用于:
接收高频基站通过X2接口或S1接口发送的承载有分配结果的多Bit信令;基于该多Bit信令,确定在高频资源中采用的CC的频段范围。
相应地,第二发送单元135具体用于:
基于确定的频段范围,为UE分配在该频段范围中采用的CC的频段;通知UE在该频段范围采用的CC的频段。
具体地,在通知UE在该频段范围中采用的CC的频段时,第二发送单元135可以通过信令通知UE在该频段范围中采用的CC的频段;或者,也可以通过下行数据包通知UE在该频段范围中采用的CC的频段。
具体地,在通过下行数据包通知UE在上述频段范围中采用的CC的频段时,第二发送单元135可以根据为UE分配的在上述频段范围中采用的CC的频段,填充MAC映射表,将MAC映射表添加到下行数据包的MAC信息中,然后将该下行数据包通过PDSCH发送给UE。
实施例十
参阅图14所示,本发明实施例提供了一种UE14,用于实现本发明图3所示的UE与高频基站进行通信的流程。
UE14包括:
发送单元141,用于将测量报告发送给高频基站或多个电信运营商的中低频基站;高频基站工作在高频频段,中低频基站工作在中低频频段。
接收单元142,用于接收高频基站或中低频基站发送的分配结果,该分配结果由高频基站或中低频基站根据上述测量报告将高频资源中包括的多个CC分配给UE14得到。
可选地,在接收高频基站发送的分配结果时,接收单元142具体用于:
接收中低频基站转发的承载有分配结果的1Bit信令,根据该1Bit信令确定接收高频基站发送的承载有分配结果的信令或下行数据包时,接收该信令或下行数据包;该信令和下行数据包用于指示IE在高频资源中采用的CC的频段;或者,
接收高频基站通过在PBCH上发送的承载有分配结果的广播信息。
可选地,在接收中低频基站发送的分配结果时,接收单元142具体用于:
接收中低频基站发送的信令或下行数据包;该信令和下行数据包用于指示UE14在高频资源中采用的CC的频段。
UE14还包括:
通信单元143,用于在接收单元142接收高频基站或中低频基站发送的分配结果之后,基于该分配结果指示的CC的频段,与高频基站进行通信。
实施例十一
参阅图15所示,本发明实施例提供了一种高频基站15,该高频基站15工作在高频频段,包括:
收发器151,用于接收多个电信运营商的中低频基站发送的测量信息或多个电信运营商的第一UE发送的测量报告;中低频基站工作在中低频频段,第一UE归属于高频基站15。
控制器152,用于根据上述测量信息或测量报告,将高频资源中包括的多个CC分配给中低频基站或第一UE,得到分配结果。
上述收发器151,还用于将上述分配结果通知给中低频基站或第一UE。
其中,上述测量信息包括中低频基站的负载情况、信道状态信息以及归属于中低频基站的第二UE的数量、第二UE的ID。
可选地,在控制器152根据测量信息,将高频资源中包括的多个CC分配 给中低频基站之前,收发器151还用于:
接收中低频基站发送的中低频基站的第一Backhaul的容量;该第一Backhaul由中低频基站提供,连接高频基站15与中低频基站。
相应地,控制器152具体用于:
根据测量信息以及第一Backhaul的容量,对高频资源包括的多个CC进行分配,得到分配结果。
可选地,在控制器152根据测量信息,将高频资源中包括的多个CC分配给中低频基站之前,收发器151还用于:
接收中低频基站发送的中低频基站占用高频基站15的第二Backhaul的比例;该第二Backhaul由高频基站15提供,连接高频基站15与中低频基站。
相应地,控制器152具体用于:
根据上述测量信息以及中低频基站占用第二Backhaul的比例,对高频资源包括的多个CC进行分配,得到分配结果。
具体地,控制器152可以根据上述测量信息,为中低频基站分配在高频资源中采用的CC的频段范围;或者,也可以根据上述测量报告,为第一UE分配在高频资源中采用的CC的频段。
具体地,在为中低频基站分配在高频资源中采用的CC的频段范围之后,控制器152还用于:
为归属于中低频基站的第二UE分配在上述频段范围中采用的CC的频段。
具体地,在将上述分配结果通知给中低频基站时,收发器151可以通过X2接口或S1接口,发送1Bit信令将上述分配结果通知给中低频基站;该1Bit信令用于通知所述中低频基站是否采用所述高频资源包括的一个或多个CC。或者,收发器151也可以通过X2接口或S1接口,发送多Bit信令将上述分配结果通知给中低频基站;该多Bit信令用于通知中低频基站在高频资源中采用的CC的频段范围。
在发送1Bit信令将上述分配结果通知给中低频基站之后,收发器151还 用于:
通过信令将上述分配结果通知给归属于中低频基站的第二UE;或者,通过下行数据包将上述分配结果通知给归属于中低频基站的第二UE;该信令和下行数据包用于指示第二UE在高频资源中采用的CC的频段。
在通过下行数据包将上述分配结果通知给归属于中低频基站的第二UE时,收发器151具体用于:
根据上述分配结果填充MAC映射表,将该MAC映射表添加到下行数据包的MAC信息中,然后将该下行数据包通过PDSCH发送给第二UE。
在将上述分配结果通知给第一UE时,收发器151具体用于:
通过在PBCH上发送承载有分配结果的广播信息给第一UE。
进一步地,收发器151还用于:
在将上述分配结果通知中低频基站或第一UE之后,基于是分配结果指示的CC的频段,与归属于中低频基站的第二UE或第一UE进行通信。
实施例十二
参阅图16所示,本发明实施例提供了一种中低频基站16,该中低频基站16属于多个电信运营商,工作在中低频频段,包括:
收发器161,用于接收归属于中低频基站16的UE发送的测量报告。
处理器162,用于根据上述测量报告以及中低频基站的网络负载状态,得到测量信息。
上述收发器161,还用于将上述测量信息发送给高频基站;高频基站工作在高频频段;接收高频基站发送的分配结果,该分配结果由高频基站根据上述测量信息将高频资源中包括的多个CC分配给中低频基站得到;以及将上述分配结果通知给UE。
其中,上述中低频基站16的网络负载状态包括中低频基站16覆盖区域中的UE的数量以及各个UE的业务等信息。上述测量信息包括中低频基站16的负载情况、信道状态信息以及归属于中低频基站16的UE的数量、UE的ID。
在接收高频基站发送的分配结果之前,收发器161还用于:
将中低频基站16的第一Backhaul的容量发送给高频基站;该第一Backhaul由中低频基站16提供,连接中低频基站16与高频基站;或者,将中低频基站16占用高频基站的第二Backhaul的比例发送给高频基站;该第二Backhaul由高频基站提供,连接中低频基站16与高频基站。
可选地,收发器161具体用于:
接收高频基站通过X2接口或S1接口发送的承载有分配结果的1Bit信令;基于该1Bit信令,确定是否采用高频资源中包括的一个或多个CC;将该1Bit信令转发给UE,令UE根据该1Bit信令确定是否接收高频基站发送的承载有分配结果的信令或下行数据包;该信令和下行数据包用于指示UE在高频资源中采用的CC的频段。
可选地,收发器161具体用于:
接收高频基站通过X2接口或S1接口发送的承载有分配结果的多Bit信令;基于该多Bit信令,确定在高频资源中采用的CC的频段范围;基于确定的频段范围,为UE分配在该频段范围中采用的CC的频段;通知UE在该频段范围采用的CC的频段。
在通知UE在上述频段范围中采用的CC的频段时,收发器161具体用于:
通过信令通知UE在上述频段范围中采用的CC的频段;或者,通过下行数据包通知UE在上述频段范围中采用的CC的频段。
在通过下行数据包通知所述UE在所述频段范围中采用的CC的频段时,收发器161具体用于:
根据为UE分配的在上述频段范围中采用的CC的频段的信息,填充MAC映射表;将该MAC映射表添加到下行数据包的MAC信息中;将该下行数据包通过PDSCH发送给UE。
实施例十三
参阅图17所示,本发明实施例提供了一种UE17,包括:
低频收发器171,用于将测量报告发送给多个电信运营商的中低频基站, 中低频基站工作在中低频频段;以及接收中低频基站发送的分配结果,该分配结果由中低频基站根据上述测量报告将高频资源中包括的多个CC分配给UE17得到。
高频收发器172,用于将测量报告发送给高频基站,高频基站工作在高频频段;以及接收高频基站发送的分配结果,该分配结果由高频基站根据上述测量报告将高频资源中包括的多个CC分配给UE17得到。
在接收高频基站或中低频基站发送的分配结果时,
高频收发器172具体用于:在低频收发器171接收中低频基站转发的承载有分配结果的1Bit信令并根据该1Bit信令确定接收高频基站发送的承载有分配结果的信令或下行数据包时,接收高频基站发送的信令或下行数据包;该信令和下行数据包用于指示UE17在高频资源中采用的CC的频段;或者,接收高频基站通过在PBCH上发送的承载有分配结果的广播信息。
低频收发器171具体用于:接收中低频基站发送的承载有分配结果的信令或下行数据包;该信令和下行数据包用于指示UE在高频资源中采用的CC的频段。
进一步地,高频收发器172还用于:基于该分配结果指示的CC的频段,与高频基站进行通信。
综上所述,本发明实施例提供的技术方案,可以应用于热点区域,通过部署高频基站,为中低频基站覆盖下的UE提供信令支持和数据分流服务,提高了UE的QoS,同时减少多个电信运营商各自对基站和Backhaul的部署成本。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产 品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明实施例的精神和范围。这样,倘若本发明实施例的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (57)

  1. 一种多个单位载波的分配方法,其特征在于,包括:
    高频基站接收多个电信运营商的中低频基站发送的测量信息或第一用户设备发送的测量报告;所述高频基站工作在高频频段,所述中低频基站工作在中低频频段,所述第一用户设备归属于所述高频基站;
    所述高频基站根据所述测量信息或所述测量报告,将高频资源中包括的多个单位载波分配给所述中低频基站或所述第一用户设备,得到分配结果;
    所述高频基站将所述分配结果通知给所述中低频基站或所述第一用户设备。
  2. 如权利要求1所述的方法,其特征在于,所述高频基站根据所述测量信息,将高频资源中包括的多个单位载波分配给所述中低频基站之前,还包括:
    所述高频基站接收所述中低频基站发送的所述中低频基站的第一回程链路的容量;所述第一回程链路由所述中低频基站提供,连接所述高频基站与所述中低频基站;
    所述高频基站根据所述测量信息,对高频资源包括的多个单位载波进行分配,得到分配结果,包括:
    所述高频基站根据所述测量信息以及所述第一回程链路的容量,对高频资源包括的多个单位载波进行分配,得到分配结果。
  3. 如权利要求1所述的方法,其特征在于,所述高频基站根据所述测量信息,将高频资源中包括的多个单位载波分配给所述中低频基站之前,还包括:
    所述高频基站接收所述中低频基站发送的所述中低频基站占用所述高频基站的第二回程链路的比例;所述第二回程链路由所述高频基站提供,连接所述高频基站与所述中低频基站;
    所述高频基站根据所述测量信息,对高频资源包括的多个单位载波进行 分配,得到分配结果,包括:
    所述高频基站根据所述测量信息以及所述中低频基站占用所述第二回程链路的比例,对高频资源包括的多个单位载波进行分配,得到分配结果。
  4. 如权利要求1-3中任意一项所述的方法,其特征在于,所述高频基站根据所述测量信息或所述测量报告,将高频资源包括的多个单位载波分配给所述中低频基站或所述第一用户设备,包括:
    所述高频基站根据所述测量信息,为所述中低频基站分配在高频资源中采用的单位载波的频段范围;或者,
    所述高频基站根据所述测量报告,为所述第一用户设备分配在高频资源中采用的单位载波的频段。
  5. 如权利要求4所述的方法,其特征在于,所述高频基站根据所述测量信息,为所述中低频基站分配在高频资源中采用的单位载波的频段范围之后,还包括:
    所述高频基站为归属于所述中低频基站的第二用户设备分配在所述频段范围中采用的单位载波的频段。
  6. 如权利要求1-5中任意一项所述的方法,其特征在于,所述高频基站将所述分配结果通知给所述中低频基站,包括:
    所述高频基站通过X2接口或S1接口,发送一比特信令将所述分配结果通知给所述中低频基站;所述一比特信令用于通知所述中低频基站是否采用所述高频资源包括的单位载波;或者,
    所述高频基站通过X2接口或S1接口,发送多比特信令将所述分配结果通知给所述中低频基站;所述多比特信令用于通知所述中低频基站在高频资源中采用的单位载波的频段范围。
  7. 如权利要求6所述的方法,其特征在于,在所述高频基站发送一比特信令将所述分配结果通知给所述中低频基站之后,还包括:
    所述高频基站通过信令或者下行数据包将所述分配结果通知给归属于所述中低频基站的第二用户设备;该信令和下行数据包用于指示所述第二用户 设备在高频资源中采用的单位载波的频段。
  8. 如权利要求7所述的方法,其特征在于,所述高频基站通过下行数据包将所述分配结果通知给归属于所述中低频基站的第二用户设备,包括:
    所述高频基站根据所述分配结果填充介质访问控制MAC映射表;
    所述高频基站将所述MAC映射表添加到下行数据包的MAC信息中;
    所述高频基站将所述下行数据包通过物理数据共享信道PDSCH发送给所述第二用户设备。
  9. 如权利要求1-5中任意一项所述的方法,其特征在于,所述高频基站将所述分配结果通知给所述第一用户设备,包括:
    所述高频基站通过在物理广播信道PBCH上发送承载有所述分配结果的广播信息给所述第一用户设备。
  10. 如权利要求1-9中任意一项所述的方法,其特征在于,所述高频基站将所述分配结果通知给所述中低频基站或所述第一用户设备之后,所述方法还包括:
    所述高频基站基于所述分配结果指示的单位载波的频段,与归属于所述中低频基站的第二用户设备或所述第一用户设备进行通信。
  11. 一种多个单位载波的分配方法,其特征在于,包括:
    多个电信运营商的中低频基站接收归属于所述中低频基站的用户设备发送的测量报告;所述中低频基站工作在中低频频段;
    所述中低频基站根据所述测量报告以及所述中所述低频基站的网络负载状态,得到测量信息;
    所述中低频基站将所述测量信息发送给高频基站;所述高频基站工作在高频频段;
    所述中低频基站接收所述高频基站发送的分配结果,所述分配结果由所述高频基站根据所述测量信息将高频资源中包括的多个单位载波分配给所述中低频基站得到;
    所述中低频基站将所述分配结果通知给所述用户设备。
  12. 如权利要求11所述的方法,其特征在于,所述中低频基站接收所述高频基站发送的分配结果之前,还包括:
    所述中低频基站将所述中低频基站的第一回程链路的容量发送给所述高频基站;所述第一回程链路由所述中低频基站提供,连接所述中低频基站与所述高频基站;或者,
    所述中低频基站将所述中低频基站占用所述高频基站的第二回程链路的比例发送给所述高频基站;所述第二回程链路由所述高频基站提供,连接所述中低频基站与所述高频基站。
  13. 如权利要求11或12所述的方法,其特征在于,所述中低频基站接收所述高频基站发送的分配结果,包括:
    所述中低频基站接收所述高频基站通过X2接口或S1接口发送的承载有所述分配结果的一比特信令;
    所述中低频基站基于所述一比特信令,确定是否采用所述高频资源中包括的单位载波;
    所述中低频基站将所述分配结果通知给所述用户设备,包括:
    所述中低频基站将承载有所述分配结果的所述一比特信令转发给所述用户设备,令所述用户设备根据所述一比特信令确定是否接收所述高频基站发送的承载有所述分配结果的信令或下行数据包;该信令和下行数据包用于指示所述用户设备在高频资源中采用的单位载波的频段。
  14. 如权利要求11或12所述的方法,其特征在于,所述中低频基站接收所述高频基站发送的分配结果,包括:
    所述中低频基站接收所述高频基站通过X2接口或S1接口发送的承载有所述分配结果的多比特信令;
    所述中低频基站基于所述多比特信令,确定在高频资源中采用的单位载波的频段范围;
    所述中低频基站将所述分配结果通知给所述用户设备,包括:
    所述中低频基站基于确定的所述频段范围,为所述用户设备分配在所述 频段范围中采用的单位载波的频段;
    所述中低频基站通知所述用户设备在所述频段范围采用的单位载波的频段。
  15. 如权利要求14所述的方法,其特征在于,所述中低频基站通知所述用户设备在所述频段范围中采用的单位载波的频段,包括:
    所述中低频基站通过信令或者下行数据包,通知所述用户设备在所述频段范围中采用的单位载波的频段。
  16. 如权利要求15所述的方法,其特征在于,所述中低频基站通过下行数据包通知所述用户设备在所述频段范围中采用的单位载波的频段,包括:
    所述中低频基站根据为所述用户设备分配的在所述频段范围中采用的单位载波的频段,填充介质访问控制MAC映射表;
    所述中低频基站将所述MAC映射表添加到下行数据包的MAC信息中;
    所述中低频基站将所述下行数据包通过物理数据共享信道PDSCH发送给所述用户设备。
  17. 一种多个单位载波的分配方法,其特征在于,包括:
    用户设备将测量报告发送给高频基站或多个电信运营商的中低频基站;所述高频基站工作在高频频段,所述中低频基站工作在中低频频段;
    所述用户设备接收所述高频基站或中低频基站发送的分配结果,所述分配结果由所述高频基站或中低频基站根据所述测量报告将高频资源中包括的多个单位载波分配给所述用户设备得到。
  18. 如权利要求17所述的方法,其特征在于,所述用户设备接收所述高频基站或中低频基站发送的分配结果,包括:
    所述用户设备接收所述中低频基站转发的承载有所述分配结果的一比特信令,根据所述一比特信令确定接收所述高频基站发送的承载有所述分配结果的信令或下行数据包时,接收该信令或下行数据包;该信令和下行数据包用于指示所述用户设备在高频资源中采用的单位载波的频段;或者,
    所述用户设备接收所述中低频基站发送的承载有所述分配结果的信令或 下行数据包;该信令和下行数据包用于指示所述用户设备在高频资源中采用的单位载波的频段;或者,
    所述用户设备接收所述高频基站通过在物理广播信道PBCH上发送的承载有所述分配结果的广播信息。
  19. 如权利要求17或18所述的方法,其特征在于,所述用户设备接收所述高频基站或中低频基站发送的分配结果之后,所述方法还包括:
    所述用户设备基于所述分配结果指示的单位载波的频段,与所述高频基站进行通信。
  20. 一种高频基站,其特征在于,所述高频基站工作在高频频段,所述高频基站包括:
    接收单元,用于接收多个电信运营商的中低频基站发送的测量信息或多个电信运营商的第一用户设备发送的测量报告;所述中低频基站工作在中低频频段,所述第一用户设备归属于所述高频基站;
    分配单元,用于根据所述测量信息或所述测量报告,将高频资源中包括的多个单位载波分配给所述中低频基站或所述第一用户设备,得到分配结果;
    发送单元,用于将所述分配结果通知给所述中低频基站或所述第一用户设备。
  21. 如权利要求20所述的高频基站,其特征在于,在所述分配单元根据所述测量信息,将高频资源中包括的多个单位载波分配给所述中低频基站之前,所述接收单元还用于:
    接收所述中低频基站发送的所述中低频基站的第一回程链路的容量;所述第一回程链路由所述中低频基站提供,连接所述高频基站与所述中低频基站;
    所述分配单元具体用于:
    根据所述测量信息以及所述第一回程链路的容量,对高频资源包括的多个单位载波进行分配,得到分配结果。
  22. 如权利要求20所述的高频基站,其特征在于,在所述分配单元根据 所述测量信息,将高频资源中包括的多个单位载波分配给所述中低频基站之前,所述接收单元还用于:
    接收所述中低频基站发送的所述中低频基站占用所述高频基站的第二回程链路的比例;所述第二回程链路由所述高频基站提供,连接所述高频基站与所述中低频基站;
    所述分配单元具体用于:
    根据所述测量信息以及所述中低频基站占用所述第二回程链路的比例,对高频资源包括的多个单位载波进行分配,得到分配结果。
  23. 如权利要求20-22中任意一项所述的高频基站,其特征在于,所述分配单元具体用于:
    根据所述测量信息,为所述中低频基站分配在高频资源中采用的单位载波的频段范围;或者,
    根据所述测量报告,为所述第一用户设备分配在高频资源中采用的单位载波的频段。
  24. 如权利要求23所述的高频基站,其特征在于,在为所述中低频基站分配在高频资源中采用的单位载波的频段范围之后,所述分配单元还用于:
    为归属于所述中低频基站的第二用户设备分配在所述频段范围中采用的单位载波的频段。
  25. 如权利要求20-24中任意一项所述的高频基站,其特征在于,在将所述分配结果通知给所述中低频基站时,所述发送单元具体用于:
    通过X2接口或S1接口,发送一比特信令将所述分配结果通知给所述中低频基站;所述一比特信令用于通知所述中低频基站是否采用所述高频资源包括的单位载波;或者,
    通过X2接口或S1接口,发送多比特信令将所述分配结果通知给所述中低频基站;所述多比特信令用于通知所述中低频基站在高频资源中采用的单位载波的频段范围。
  26. 如权利要求25所述的高频基站,其特征在于,在发送一比特信令将 所述分配结果通知给所述中低频基站之后,所述发送单元还用于:
    通过信令或者下行数据包将所述分配结果通知给归属于所述中低频基站的第二用户设备;该信令和下行数据包用于指示所述第二用户设备在高频资源中采用的单位载波的频段。
  27. 如权利要求26所述的高频基站,其特征在于,在通过下行数据包将所述分配结果通知给归属于所述中低频基站的第二用户设备时,所述发送单元具体用于:
    根据所述分配结果填充介质访问控制MAC映射表;
    将所述MAC映射表添加到下行数据包的MAC信息中;
    将所述下行数据包通过物理数据共享信道PDSCH发送给所述第二用户设备。
  28. 如权利要求20-24中任意一项所述的高频基站,其特征在于,在将所述分配结果通知给所述第一用户设备时,所述发送单元具体用于:
    通过在物理广播信道PBCH上发送承载有所述分配结果的广播信息给所述第一用户设备。
  29. 如权利要求20-28中任意一项所述的高频基站,其特征在于,所述高频基站还包括:
    通信单元,用于在所述发送单元将所述分配结果通知给所述中低频基站或所述第一用户设备之后,基于所述分配结果指示的单位载波的频段,与归属于所述中低频基站的第二用户设备或所述第一用户设备进行通信。
  30. 一种中低频基站,其特征在于,所述中低频基站属于多个电信运营商,工作在中低频频段,所述中低频基站包括:
    第一接收单元,用于接收归属于所述中低频基站的用户设备发送的测量报告;
    分析单元,用于根据所述测量报告以及中低频基站的网络负载状态,得到测量信息;
    第一发送单元,用于将所述测量信息发送给高频基站;所述高频基站工 作在高频频段;
    第二接收单元,用于接收所述高频基站发送的分配结果,所述分配结果由所述高频基站根据所述测量信息将高频资源中包括的多个单位载波分配给所述中低频基站得到;
    第二发送单元,用于将所述分配结果通知给所述用户设备。
  31. 如权利要求30所述的中低频基站,其特征在于,在所述第二接收单元接收所述高频基站发送的分配结果之前,所述第一发送单元还用于:
    将所述中低频基站的第一回程链路的容量发送给所述高频基站;所述第一回程链路由所述中低频基站提供,连接所述中低频基站与所述高频基站;或者,
    将所述中低频基站占用所述高频基站的第二回程链路的比例发送给所述高频基站;所述第二回程链路由所述高频基站提供,连接所述中低频基站与所述高频基站。
  32. 如权利要求30或31所述的中低频基站,其特征在于,所述第二接收单元具体用于:
    接收所述高频基站通过X2接口或S1接口发送的承载有所述分配结果的一比特信令;
    基于所述一比特信令,确定是否采用所述高频资源中包括的单位载波;
    所述第二发送单元具体用于:
    将所述承载有所述分配结果的所述一比特信令转发给所述用户设备,令所述用户设备根据所述一比特信令确定是否接收所述高频基站发送的承载有所述分配结果的信令或下行数据包;该信令和下行数据包用于指示所述用户设备在高频资源中采用的单位载波的频段。
  33. 如权利要求30或31所述的中低频基站,其特征在于,所述第二接收单元具体用于:
    接收所述高频基站通过X2接口或S1接口发送的承载有所述分配结果的所述多比特信令;
    基于所述多比特信令,确定在高频资源中采用的单位载波的频段范围;
    所述第二发送单元具体用于:
    基于确定的所述频段范围,为所述用户设备分配在所述频段范围中采用的单位载波的频段;
    通知所述用户设备在所述频段范围采用的单位载波的频段。
  34. 如权利要求33所述的中低频基站,其特征在于,在通知所述用户设备在所述频段范围中采用的单位载波的频段时,所述第二发送单元具体用于:
    通过信令或者下行数据包通知所述用户设备在所述频段范围中采用的单位载波的频段。
  35. 如权利要求34所述的中低频基站,其特征在于,在通过下行数据包通知所述用户设备在所述频段范围中采用的单位载波的频段时,所述第二发送单元具体用于:
    根据为所述用户设备分配的在所述频段范围中采用的单位载波的频段,填充介质访问控制MAC映射表;
    将所述MAC映射表添加到下行数据包的MAC信息中;
    将所述下行数据包通过物理数据共享信道PDSCH发送给所述用户设备。
  36. 一种用户设备,其特征在于,包括:
    发送单元,用于将测量报告发送给高频基站或多个电信运营商的中低频基站;所述高频基站工作在高频频段,所述中低频基站工作在中低频频段;
    接收单元,用于接收所述高频基站或中低频基站发送的分配结果,所述分配结果由所述高频基站或中低频基站根据所述测量报告将高频资源中包括的多个单位载波分配给所述用户设备得到。
  37. 如权利要求36所述的用户设备,其特征在于,在接收所述高频基站发送的分配结果时,所述接收单元具体用于:
    接收所述中低频基站转发的承载有所述分配结果的一比特信令,根据所述一比特信令确定接收所述高频基站发送的承载有所述分配结果的信令或下行数据包时,接收该信令或下行数据包;该信令和下行数据包用于指示所述 用户设备在高频资源中采用的单位载波的频段;或者,
    接收所述中低频基站发送的承载有所述分配结果的信令或下行数据包;该信令和下行数据包用于指示所述用户设备在高频资源中采用的单位载波的频段;或者,
    接收所述高频基站通过在物理广播信道PBCH上发送的承载有所述分配结果的广播信息。
  38. 如权利要求36或37所述的用户设备,其特征在于,所述用户设备还包括:
    通信单元,用于在所述接收单元接收所述高频基站或中低频基站发送的分配结果之后,基于所述分配结果指示的单位载波的频段,与所述高频基站进行通信。
  39. 一种高频基站,其特征在于,所述高频基站工作在高频频段,所述高频基站包括:
    收发器,用于接收多个电信运营商的中低频基站发送的测量信息或多个电信运营商的第一用户设备发送的测量报告;所述中低频基站工作在中低频频段,所述第一用户设备归属于所述高频基站;
    控制器,用于根据所述测量信息或所述测量报告,将高频资源中包括的多个单位载波分配给所述中低频基站或所述第一用户设备,得到分配结果;
    所述收发器,还用于将所述分配结果通知给所述中低频基站或所述第一用户设备。
  40. 如权利要求39所述的高频基站,其特征在于,在所述控制器根据所述测量信息,将高频资源中包括的多个单位载波分配给所述中低频基站之前,所述收发器还用于:
    接收所述中低频基站发送的所述中低频基站的第一回程链路的容量;所述第一回程链路由所述中低频基站提供,连接所述高频基站与所述中低频基站;
    所述控制器具体用于:
    根据所述测量信息以及所述第一回程链路的容量,对高频资源包括的多个单位载波进行分配,得到分配结果。
  41. 如权利要求39所述的高频基站,其特征在于,在所述控制器根据所述测量信息,将高频资源中包括的多个单位载波分配给所述中低频基站之前,所述收发器还用于:
    接收所述中低频基站发送的所述中低频基站占用所述高频基站的第二回程链路的比例;所述第二回程链路由所述高频基站提供,连接所述高频基站与所述中低频基站;
    所述控制器具体用于:
    根据所述测量信息以及所述中低频基站占用所述第二回程链路的比例,对高频资源包括的多个单位载波进行分配,得到分配结果。
  42. 如权利要求39-41中任意一项所述的高频基站,其特征在于,所述控制器具体用于:
    根据所述测量信息,为所述中低频基站分配在高频资源中采用的单位载波的频段范围;或者,
    根据所述测量报告,为所述第一用户设备分配在高频资源中采用的单位载波的频段。
  43. 如权利要求42所述的高频基站,其特征在于,在为所述中低频基站分配在高频资源中采用的单位载波的频段范围之后,所述控制器还用于:
    为归属于所述中低频基站的第二用户设备分配在所述频段范围中采用的单位载波的频段。
  44. 如权利要求39-43任意一项所述的高频基站,其特征在于,在将所述分配结果通知给所述中低频基站时,所述收发器具体用于:
    通过X2接口或S1接口,发送一比特信令将所述分配结果通知给所述中低频基站;所述一比特信令用于通知所述中低频基站是否采用所述高频资源包括的单位载波;或者,
    通过X2接口或S1接口,发送多比特信令将所述分配结果通知给所述中 低频基站;所述多比特信令用于通知所述中低频基站在高频资源中采用的单位载波的频段范围。
  45. 如权利要求44所述的高频基站,其特征在于,在发送一比特信令将所述分配结果通知给所述中低频基站之后,所述收发器还用于:
    通过信令或者下行数据包将所述分配结果通知给归属于所述中低频基站的第二用户设备;该信令和下行数据包用于指示所述第二用户设备在高频资源中采用的单位载波的频段。
  46. 如权利要求45所述的高频基站,其特征在于,在通过下行数据包将所述分配结果通知给归属于所述中低频基站的第二用户设备时,所述收发器具体用于:
    根据所述分配结果填充介质访问控制MAC映射表;
    将所述MAC映射表添加到下行数据包的MAC信息中;
    将所述下行数据包通过物理数据共享信道PDSCH发送给所述第二用户设备。
  47. 如权利要求39-43中任意一项所述的高频基站,其特征在于,在将所述分配结果通知给所述第一用户设备时,所述收发器具体用于:
    通过在物理广播信道PBCH上发送承载有所述分配结果的广播信息给所述第一用户设备。
  48. 如权利要求39-47任意一项所述的高频基站,其特征在于,所述收发器还用于:
    在将所述分配结果通知给所述中低频基站或所述第一用户设备之后,基于所述分配结果指示的单位载波的频段,与归属于所述中低频基站的第二用户设备或所述第一用户设备进行通信。
  49. 一种中低频基站,其特征在于,所述中低频基站属于多个电信运营商,工作在中低频频段,所述中低频基站包括:
    收发器,用于接收归属于所述中低频基站的用户设备发送的测量报告;
    处理器,用于根据所述测量报告以及所述中低频基站的网络负载状态, 得到测量信息;
    所述收发器,还用于将所述测量信息发送给高频基站;所述高频基站工作在高频频段;接收所述高频基站发送的分配结果,所述分配结果由所述高频基站根据所述测量信息将高频资源中包括的多个单位载波分配给所述中低频基站得到;以及将所述分配结果通知给所述用户设备。
  50. 如权利要求49所述的中低频基站,其特征在于,在接收所述高频基站发送的分配结果之前,所述收发器还用于:
    将所述中低频基站的第一回程链路的容量发送给所述高频基站;所述第一回程链路由所述中低频基站提供,连接所述中低频基站与所述高频基站;或者,
    将所述中低频基站占用所述高频基站的第二回程链路的比例发送给所述高频基站;所述第二回程链路由所述高频基站提供,连接所述中低频基站与所述高频基站。
  51. 如权利要求49或50所述的中低频基站,其特征在于,所述收发器具体用于:
    接收所述高频基站通过X2接口或S1接口发送的承载有所述分配结果的一比特信令;
    基于所述一比特信令,确定是否采用所述高频资源中包括的单位载波;
    将所述承载有所述分配结果的一比特信令转发给所述用户设备,令所述用户设备根据所述一比特信令确定是否接收所述高频基站发送的承载有所述分配结果的信令或下行数据包;该信令和下行数据包用于指示所述用户设备在高频资源中采用的单位载波的频段。
  52. 如权利要求49或50所述的中低频基站,其特征在于,所述收发器具体用于:
    接收所述高频基站通过X2接口或S1接口发送的承载有所述分配结果的多比特信令;
    基于所述多比特信令,确定在高频资源中采用的单位载波的频段范围;
    基于确定的所述频段范围,为所述用户设备分配在所述频段范围中采用的单位载波的频段;
    通知所述用户设备在所述频段范围采用的单位载波的频段。
  53. 如权利要求52所述的中低频基站,其特征在于,在通知所述用户设备在所述频段范围中采用的单位载波的频段时,所述收发器具体用于:
    通过信令或者下行数据包通知所述用户设备在所述频段范围中采用的单位载波的频段。
  54. 如权利要求53所述的中低频基站,其特征在于,在通过下行数据包通知所述用户设备在所述频段范围中采用的单位载波的频段时,收发器具体用于:
    根据为所述用户设备分配的在所述频段范围中采用的单位载波的频段的信息,填充介质访问控制MAC映射表;
    将所述MAC映射表添加到下行数据包的MAC信息中;
    将所述下行数据包通过物理数据共享信道PDSCH发送给所述用户设备。
  55. 一种用户设备,其特征在于,包括:
    低频收发器,用于将测量报告发送给多个电信运营商的中低频基站,所述中低频基站工作在中低频频段;以及接收中低频基站发送的分配结果,所述分配结果由所述中低频基站根据所述测量报告将高频资源中包括的多个单位载波分配给所述用户设备得到;
    高频收发器,用于将测量报告发送给高频基站,所述高频基站工作在高频频段;以及接收所述高频基站发送的分配结果,所述分配结果由所述高频基站根据所述测量报告将高频资源中包括的多个单位载波分配给所述用户设备得到。
  56. 如权利要求55所述的用户设备,其特征在于,在接收所述高频基站或中低频基站发送的分配结果时,
    所述高频收发器具体用于:
    在所述低频收发器接收所述中低频基站转发的承载有所述分配结果的一 比特信令并根据所述一比特信令确定接收所述高频基站发送的承载有所述分配结果的信令或下行数据包时,接收所述高频基站发送的信令或下行数据包;该信令和下行数据包用于指示所述用户设备在高频资源中采用的单位载波的频段;或者,接收所述高频基站通过在物理广播信道PBCH上发送的承载有所述分配结果的广播信息;
    所述低频收发器具体用于:
    接收所述中低频基站发送的承载有所述分配结果的信令或下行数据包;该信令和下行数据包用于指示所述用户设备在高频资源中采用的单位载波的频段。
  57. 如权利要求55或56所述的用户设备,其特征在于,所述高频收发器还用于:
    基于所述分配结果指示的单位载波的频段,与所述高频基站进行通信。
PCT/CN2014/092538 2014-11-28 2014-11-28 一种多个单位载波的分配方法、基站及用户设备 WO2016082201A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2014/092538 WO2016082201A1 (zh) 2014-11-28 2014-11-28 一种多个单位载波的分配方法、基站及用户设备
EP14906666.4A EP3197218B1 (en) 2014-11-28 2014-11-28 Method for allocating multiple component carriers, base station and user equipment
US15/594,918 US10237878B2 (en) 2014-11-28 2017-05-15 Method for allocating multiple component carriers, base station, and user equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/092538 WO2016082201A1 (zh) 2014-11-28 2014-11-28 一种多个单位载波的分配方法、基站及用户设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/594,918 Continuation US10237878B2 (en) 2014-11-28 2017-05-15 Method for allocating multiple component carriers, base station, and user equipment

Publications (1)

Publication Number Publication Date
WO2016082201A1 true WO2016082201A1 (zh) 2016-06-02

Family

ID=56073395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/092538 WO2016082201A1 (zh) 2014-11-28 2014-11-28 一种多个单位载波的分配方法、基站及用户设备

Country Status (3)

Country Link
US (1) US10237878B2 (zh)
EP (1) EP3197218B1 (zh)
WO (1) WO2016082201A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10405193B1 (en) 2018-06-28 2019-09-03 At&T Intellectual Property I, L.P. Dynamic radio access network and intelligent service delivery for multi-carrier access for 5G or other next generation network

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160218912A1 (en) * 2015-01-27 2016-07-28 Nokia Solutions And Networks Oy Quality of experience aware transport self organizing network framework
US10833736B2 (en) * 2018-11-23 2020-11-10 Electronics And Telecommunications Research Institute Hybrid beamforming method for beam-based cooperative transmission, and apparatus for the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101904199A (zh) * 2007-12-19 2010-12-01 阿尔卡特朗讯美国公司 上行链路载波切换和基于路径损耗的上行链路载波切换的触发方法
CN102215503A (zh) * 2010-04-09 2011-10-12 华为技术有限公司 组成载波管理方法及设备
CN102802243A (zh) * 2011-05-24 2012-11-28 中兴通讯股份有限公司 一种终端载波配置的方法及系统
CN103975539A (zh) * 2011-12-06 2014-08-06 爱立信(中国)通信有限公司 多普勒频移补偿装置和方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008114662A1 (ja) * 2007-03-19 2008-09-25 Ntt Docomo, Inc. 移動通信システムで使用される基地局装置、ユーザ装置及び方法
KR20110111790A (ko) * 2010-04-05 2011-10-12 주식회사 팬택 다중 요소 반송파를 사용하는 무선 통신 시스템에서의 핸드오버 시 요소반송파 정보 시그널링 방법 및 장치
US9181093B2 (en) * 2011-07-29 2015-11-10 Avent, Inc. Two part oxygen generating system
US20150126207A1 (en) * 2012-05-31 2015-05-07 Nokia Corporation Coexistence of lte operated in unlicesnsed band
WO2014176503A1 (en) * 2013-04-25 2014-10-30 Accelera Mobile Broadband, Inc. Cloud-based management platform for heterogeneous wireless devices

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101904199A (zh) * 2007-12-19 2010-12-01 阿尔卡特朗讯美国公司 上行链路载波切换和基于路径损耗的上行链路载波切换的触发方法
CN102215503A (zh) * 2010-04-09 2011-10-12 华为技术有限公司 组成载波管理方法及设备
CN102802243A (zh) * 2011-05-24 2012-11-28 中兴通讯股份有限公司 一种终端载波配置的方法及系统
CN103975539A (zh) * 2011-12-06 2014-08-06 爱立信(中国)通信有限公司 多普勒频移补偿装置和方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3197218A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10405193B1 (en) 2018-06-28 2019-09-03 At&T Intellectual Property I, L.P. Dynamic radio access network and intelligent service delivery for multi-carrier access for 5G or other next generation network
US10791467B2 (en) 2018-06-28 2020-09-29 At&T Intellectual Property I, L.P. Dynamic radio access network and intelligent service delivery for multi-carrier access for 5G or other next generation network

Also Published As

Publication number Publication date
EP3197218A4 (en) 2017-10-25
EP3197218B1 (en) 2020-10-14
US10237878B2 (en) 2019-03-19
US20170251480A1 (en) 2017-08-31
EP3197218A1 (en) 2017-07-26

Similar Documents

Publication Publication Date Title
US11166331B2 (en) Apparatus configured to report aperiodic channel state information for dual connectivity
JP7043506B2 (ja) ロングタームエボリューション通信システムのためのマルチテクノロジアグリゲーションアーキテクチャ
US9918325B2 (en) Enhanced inter-cell interference coordination
CN107155187B (zh) 通信方法、终端设备和网络侧设备
KR102209738B1 (ko) 무선통신 시스템에서 적응적 플로우 제어 방법 및 장치
US11240700B2 (en) Communication method and access network device
CN110087332A (zh) 基站、用户设备及其通信方法
JP2016517246A (ja) ユーザ端末に対する異なるオペレータの周波数リソースの割り付けのための方法、ならびにそのための基地局およびユーザ端末
US10237878B2 (en) Method for allocating multiple component carriers, base station, and user equipment
WO2017080380A1 (zh) 一种数据传输控制方法,及网络设备
US10869298B2 (en) Wireless communication system control of carrier aggregation for a wireless relay
CN112333811B (zh) 一种同步信号/物理广播信道块发送功率配置方法及装置
JP7450030B2 (ja) 基地局、基地局の制御方法、及びセルラ通信システム
US20180288791A1 (en) User equipment assisted coordination for scheduled wireless transmissions
RU2782866C2 (ru) Архитектура с агрегированием технологий для систем связи стандарта долгосрочного развития
JP2017038118A (ja) 無線通信システム及びその通信制御方法
JP2022000996A (ja) 端末、無線通信方法、基地局装置及び無線通信システム
CN115942486A (zh) 一种通信方法及通信装置
CN115379399A (zh) 数据传输的方法、相关装置、设备以及通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14906666

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014906666

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE