WO2016078814A1 - Wicklungsanordnung für ein induktives energieübertragungssystem - Google Patents

Wicklungsanordnung für ein induktives energieübertragungssystem Download PDF

Info

Publication number
WO2016078814A1
WO2016078814A1 PCT/EP2015/072553 EP2015072553W WO2016078814A1 WO 2016078814 A1 WO2016078814 A1 WO 2016078814A1 EP 2015072553 W EP2015072553 W EP 2015072553W WO 2016078814 A1 WO2016078814 A1 WO 2016078814A1
Authority
WO
WIPO (PCT)
Prior art keywords
winding
conductor
windings
straight
straight conductor
Prior art date
Application number
PCT/EP2015/072553
Other languages
English (en)
French (fr)
Inventor
Faical Turki
Original Assignee
Paul Vahle Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Paul Vahle Gmbh & Co. Kg filed Critical Paul Vahle Gmbh & Co. Kg
Publication of WO2016078814A1 publication Critical patent/WO2016078814A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings

Definitions

  • the present invention relates to a winding arrangement for the primary and / or secondary side of an inductive energy transmission system, with two windings, which are respectively meander-shaped or have meander-shaped winding regions.
  • Winding arrangements for inductive energy transmission systems are known in various forms. So z. B. from WO 2011/145953 a winding arrangement with two meandering in the direction X laid primary windings known, wherein, as shown in Figure 1, the meandering laid primary windings 14, 15 are arranged in the direction X by the distance P shifted from each other and by separate sources 16th , 17 are fed. Due to the meandering shape, the secondary side to be inductively fed can be arranged at many points above the primary windings for energy transmission. The location at which the inductive energy transfer can take place is thus limited solely by the length and width of the meander-shaped primary windings 14, 15.
  • the object of the present invention is to provide a winding arrangement for area-wide inductive energy transmission, in which the primary-side winding arrangement extends over a flat area and the smaller secondary-side winding arrangement can be arranged within this area at various locations for inductive energy transmission
  • the meandering windings or winding regions are mechanically locked by 90 ° to one another. rotates and are arranged overlapping, wherein flow through the two windings electric currents, which are electrically out of phase with each other by 90 °.
  • the meander-shaped windings or winding regions which are mechanically rotated by 90 ° relative to one another and the currents which are electrically phase-shifted by 90 ° advantageously achieve a high power density, with no coupling between the two meander-shaped windings.
  • the electrical currents have a frequency between 10 and 200 kHz, advantageously 10-150 kHz.
  • each meander-shaped winding or each meandering winding area has mutually parallel straight conductor sections whose ends are each connected by means of one, in particular bent or semicircular, connecting conductor with the end of an adjacent parallel straight Leit rabitess the same winding.
  • the connecting conductors can be arranged so that they are outside the energy transmission range, which is formed by the intersecting straight conductor sections.
  • the length of the straight conductor sections is at least twice as large as the distance between two adjacent parallel conductor sections, so that the magnetic fields generated by the connecting conductors are negligible relative to the magnetic field generated by the straight conductor sections.
  • each winding is arranged at equidistant intervals parallel to one another. If the equidistant distances between the straight conductors of both meander-shaped windings or winding regions are the same size or different, either square or rectangular coil regions are formed, which are each formed by partial regions of the intersecting straight conductor sections. Each of these coil areas generates at 90 ° out of phase A rotating magnetic field.
  • the two meandering windings each have a forward conductor and a return conductor, which are electrically connected to each other, wherein the forward conductor and the return conductor is each formed of a plurality of mutually parallel straight conductor sections and connecting conductors, and the straight conductor sections of Hin and return conductors are arranged at equidistant intervals and parallel to one another, wherein in each case a straight conductor section of the Hinleiters in the immediate vicinity, in particular adjacent or superimposed, is arranged to a straight conductor portion of the return conductor.
  • the current flowing through the arrester thus also flows through the return conductor.
  • the winding arrangement forms the coil arrangement of the primary side of the energy transmission system, the windings of the winding arrangement together with capacitances forming oscillating circuits, in particular parallel or series resonant circuits, and inverters feeding the oscillating circuits.
  • winding arrangement stationary, z. B. in or on the road or the floor of a garage or even mobile, i. be arranged at the bottom of a vehicle.
  • Fig. 1 winding arrangement according to the prior art
  • Fig. 2 first possible embodiment of two mutually mechanically rotated by 90 ° to each other arranged meandering windings, by the electrical currents which are phase-shifted relative to one another by 90 ° flow;
  • Winding has a forward conductor and a return conductor
  • Fig. 4 current diagram.
  • Figure 2 shows a first embodiment of the winding arrangement according to the invention, consisting of the two meandering windings A and B.
  • Both the winding A and the winding B is formed of straight conductor sections 2a and 3a, which are parallel to one another at equidistant distances d to each other are arranged and connected to each other at their free ends 2b and 3b by means of the connecting conductors 2c and 3c.
  • the connecting conductors 2c and 3c may, as shown in Figure 2, be formed bent. However, it is of course also possible that the curved connection conductors 2c and 3c shown in the figures are replaced by straight or differently designed or routed conductors.
  • the windings A and B are mechanically rotated by 90 ° to each other, whereby the straight conductor sections 2a of the winding A are aligned perpendicular to the straight conductor sections 3a.
  • the two windings A and B are electrically and magnetically decoupled from each other, they are, as shown in Figure 4, of 90 ° to each other electrically out of phase currents i A and i B flows through.
  • the intersecting straight conductor sections 2 a and 3 b surround with their sub-conductor sections 2 a ' and 3 a ' rectangular coil areas SB. If the distances d between the straight conductor sections 2a, 3a of both windings A, B are the same size, the coil areas SB are square.
  • the windings A, B with not shown electrical components, in particular capacitors and inverters connected.
  • this covers one or more adjacent coil areas SB and, accordingly, is separated from that by the current-carrying partial conductor sections 2a ' and 3a ' of the one or more coil regions SB flooded generated magnetic flux.
  • each winding A, B has a meandering back and a meandering return conductor, as shown in Figure 3.
  • a forward conductor is understood to be the line segment of the winding A, B, which extends from the first terminal AI, Bl to the point farthest from the terminal AI, Bl.
  • the term return conductor is understood to mean the line section of the winding A, B, which extends from the farthest point back to the second terminal A2, B2.
  • a straight conductor section 2a H of Hinleiters and a straight conductor section 2a R of the return conductor are close or close to each other.
  • the current flowing through the closely spaced conductor sections 2a H and 2a R currents i A, ISS are the same direction and the same phase, which can be a from that described in Figure 2 first embodiment twice as high magnetic flux, particularly in the coil portions SB realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Coils Of Transformers For General Uses (AREA)

Abstract

Die Erfindung betrifft eine Wicklungsanordnung (1) für die Primär- und/oder Sekundärseite eines induktiven Energieübertragungssystems, wobei die Wicklungsanordnung (1) zwei Wicklungen (A, B) aufweist, welche jeweils mäanderförmig ausgebildet sind oder mäanderförmig ausgebildete Wicklungsbereiche (A1, B1) aufweisen, dadurch gekennzeichnet, dass die Wicklungen (A, B) bzw. deren Wicklungsbereiche (A1, B1) um 90° zueinander verdreht und sich überlappend angeordnet sind, wobei durch die zwei Wicklungen (A, B) elektrische Ströme (iA, iB) fließen, die zueinander um 90° elektrisch phasenverschoben sind.

Description

Wicklungsanordnung für ein induktives Energieübertragungssystem
Die vorliegende Erfindung betrifft eine Wicklungsanordnung für die Primär- und/oder Sekundärseite eines induktiven Energieübertragungssystems, mit zwei Wicklungen, welche jeweils mäanderförmig ausgebildet sind oder mäan- derförmig ausgebildete Wicklungsbereiche aufweisen.
Wicklungsanordnungen für induktive Energieübertragungssysteme sind in verschiedensten Formen bekannt. So ist z. B. aus WO 2011/145953 eine Wicklungsanordnung mit zwei mäanderförmig in Richtung X verlegten Primärwicklungen bekannt, wobei, wie aus Figur 1 ersichtlich, die mäanderförmig verlegten Primärwicklungen 14, 15 in Richtung X um die Distanz P zueinander verschoben angeordnet sind und durch getrennte Quellen 16, 17 gespeist werden. Aufgrund der Mäanderform kann die induktiv zu speisende Sekundärseite an vielen Stellen oberhalb der Primärwicklungen zur Energieübertragung angeordnet werden. Der Ort, an dem die induktive Energieübertragung stattfinden kann, ist somit allein durch die Länge und Breite der mäanderförmig verlegten Primärwicklungen 14, 15 begrenzt.
Aufgabe der vorliegenden Erfindung ist es, eine Wicklungsanordnung für eine flächendeckende induktive Energieübertragung bereitzustellen, bei der die primärseitige Wicklungsanordnung sich über einen flächigen Bereich erstreckt und die kleinere sekundärseitige Wicklungsanordnung innerhalb dieses Bereiches an verschiedenen Stellen zur induktiven Energieübertragung anordbar ist
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass die mäanderförmi- gen Wicklungen bzw. Wicklungsbereiche um 90° zueinander mechanisch ver- dreht und sich überlappend angeordnet sind, wobei durch die zwei Wicklungen elektrische Ströme fließen, die zueinander um 90° elektrisch phasenverschoben sind.
Durch die mechanisch um 90° zueinander verdreht angeordneten mäander- förmigen Wicklungen bzw. Wicklungsbereiche und die um 90° zueinander elektrisch phasenverschobenen Ströme wird vorteilhaft eine hohe Leistungsdichte erzielt, wobei keine Kopplung zwischen den beiden mäanderförmigen Wicklungen erfolgt. Die elektrischen Ströme weisen eine Frequenz zwischen 10 und 200 kHz, vorteilhaft 10-150 kHz auf.
Dabei weist jede mäanderförmig ausgebildete Wicklung bzw. jeder mäander- förmig ausgebildete Wicklungsbereich zueinander parallele gerade Leiterabschnitte auf, deren Enden jeweils mittels eines, insbesondere gebogenen oder halbkreisförmigen, Verbindungsleiters mit dem Ende eines benachbarten parallelen geraden Leite rabschnitts derselben Wicklung verbunden sind . Die Verbindungsleiter können dabei so angeordnet werden, dass sie sich außerhalb des Energieübertragungsbereiches befinden, welcher durch die sich kreuzenden geraden Leiterabschnitte gebildet wird .
Die Länge der geraden Leiterabschnitte ist dabei mindestens doppelt so groß wie der Abstand zweier benachbarter paralleler Leiterabschnitte, so dass die von den Verbindungsleitern erzeugten magnetischen Felder gegenüber dem von den geraden Leiterabschnitten erzeugten magnetischen Feld vernachlässigbar sind.
Durch die um 90° verdrehte Anordnung der beiden mäanderförmigen Wicklungen sind deren gerade Leiterabschnitte zueinander orthogonal angeordnet.
Besonders vorteilhaft ist es, wenn die geraden Leiterabschnitte jeder Wicklung in äquidistanten Abständen parallel zueinander angeordnet sind . Sofern die äquidistanten Abstände der geraden Leiter beider mäanderförmigen Wicklungen bzw. Wicklungsbereiche gleich groß oder unterschiedlich groß sind, ergeben sich entweder quadratische oder rechteckige Spulenbereiche, die jeweils von Teilbereichen der sich kreuzenden geraden Leiterabschnitte gebildet werden. Jeder dieser Spulenbereiche erzeugt bei um 90° phasenverschobenen Strömen ein rotierendes Magnetfeld.
Besonders vorteilhaft ist es, wenn die beiden mäanderförmigen Wicklungen jeweils einen Hinleiter und einen Rückleiter aufweisen, die miteinander elektrisch verbunden sind, wobei der Hinleiter und der Rückleiter jeweils aus mehreren zueinander parallel angeordneten geraden Leiterabschnitten und Verbindungsleitern gebildet ist, und die geraden Leiterabschnitte der Hin- und Rückleiter in äquidistanten Abständen und parallel zueinander angeordnet sind, wobei jeweils ein gerader Leiterabschnitt des Hinleiters in unmittelbarer Nähe, insbesondere anliegend oder übereinanderliegend, zu einem geraden Leiterabschnitt des Rückleiters angeordnet ist. Der durch den Hinleiter fließende Strom fließt somit auch durch den Rückleiter. Beim Verlegen des Hin- und Rückleiters ist darauf zu achten, dass die in unmittelbarer Nähe zueinander angeordneten geraden Leiterabschnitte des Hinleiters und des Rückleiters so zueinander angeordnet sind, dass sich die durch sie fließenden Ströme gleichen Betrags und Phasenlage zur Bildung eines Magnetfeldes addieren.
Zur Ausbildung eines induktiven Energieübertragungssystems, bildet die Wicklungsanordnung die Spulenanordnung der Primärseite des Energieüberta- gungssystems, wobei die Wicklungen der Wicklungsanordnung zusammen mit Kapazitäten Schwingkreise, insbesondere Parallel- oder Reihenschwingkreise, bilden und Wechselrichter die Schwingkreise speisen.
Selbstverständlich kann die erfindungsgemäße Wicklungsanordnung stationär, z. B. in oder auf der Fahrbahn oder dem Boden einer Garage oder aber auch mobil, d.h . an der Unterseite eines Fahrzeuges angeordnet werden.
Nachfolgend werden anhand von Figuren zwei mögliche Ausführungsformen der erfindungsgemäßen Wicklungsanordnung erläutert.
Es zeigen :
Fig. 1 : Wicklungsanordnung nach dem Stand der Technik;
Fig. 2 : erste mögliche Ausführungsform zweier um 90° zueinander mechanisch verdreht angeordneter mäanderförmiger Wicklungen, durch die zueinander um 90° phasenverschobene elektrische Ströme fließen;
Fig. 3 : zweite mögliche Ausführungsform, wobei jede mäanderförmige
Wicklung einen Hinleiter und einen Rückleiter aufweist;
Fig. 4: Stromdiagramm.
Figur 2 zeigt eine erste Ausführungsform der erfindungsgemäßen Wicklungsanordnung, bestehend aus den beiden mäanderförmig ausgebildeten Wicklungen A und B. Sowohl die Wicklung A als auch die Wicklung B ist aus geraden Leiterabschnitten 2a bzw. 3a gebildet, welche parallel zueinander in äqui- distanten Abständen d zueinander angeordnet sind und an ihren freien Enden 2b bzw. 3b mittels der Verbindungsleiter 2c bzw. 3c miteinander verbunden sind . Die Verbindungsleiter 2c bzw. 3c können, wie in Figur 2 dargestellt, gebogen ausgebildet sein. Es ist jedoch selbstverständlich auch möglich, dass die in den Figuren dargestellten gebogenen Verbindungsleiter 2c bzw. 3c durch gerade oder andersartig ausgebildete bzw. verlegte Leiter ersetzt werden. Die Wicklungen A und B sind mechanisch um 90° verdreht zueinander angeordnet, wodurch die geraden Leiterabschnitte 2a der Wicklung A senkrecht zu den geraden Leiterabschnitten 3a ausgerichtet sind . Damit die beiden Wicklungen A und B elektrisch und magnetisch voneinander entkoppelt sind, sind sie, wie in Figur 4 dargestellt, von um 90° zueinander elektrisch phasenverschobenen Strömen iA und iB durchflössen. Die sich kreuzenden geraden Leiterabschnitte 2a und 3b umranden mit ihren Teilleiterabschnitten 2a ' und 3a ' rechteckige Spulenbereiche SB. Sofern die Abstände d zwischen den geraden Leiterabschnitten 2a, 3a beider Wicklungen A, B gleich groß sind, sind die Spulenbereiche SB quadratisch. Über die Wicklungsanschlüsse AI, A2 und Bl, B2 sind die Wicklungen A, B mit nicht dargestellten elektrischen Komponenten, insbesondere Kapazitäten und Wechselrichtern, verbunden.
Je nach Ausführungsform und Größe der sekundärseitigen Spulenanordnung überdeckt diese einen oder mehrere benachbarte Spulenbereiche SB und wird dementsprechend von dem durch die stromdurchflossenen Teilleiterabschnitte 2a ' und 3a ' des einen oder der mehreren Spulenbereiche SB erzeugten magnetischen Fluss durchflutet.
Die magnetische Durchflutung lässt sich erhöhen, indem jede Wicklung A, B einen mäanderförmigen Hin- und einen mäanderförmigen Rückleiter aufweist, wie dies in Figur 3 dargestellt ist. Unter Hinleiter wird im Sinne der Erfindung der Leitungsabschnitt der Wicklung A, B verstanden, der sich ausgehend von der ersten Klemme AI, Bl bis hin zum von der Klemme ersten Klemme AI, Bl am weitesten entfernten Punkt erstreckt. Unter Rückleiter wird im Sinne der Erfindung der Leitungsabschnitt der Wicklung A, B verstanden, der sich ausgehend von dem am weitesten entfernten Punkt zurück bis zur zweiten Klemme A2, B2 erstreckt. Jeweils ein gerader Leiterabschnitt 2aH des Hinleiters und ein gerader Leiterabschnitt 2aR des Rückleiters liegen eng bzw. nah beieinander. Die durch die nah beieinander angeordneten Leiterabschnitte 2aH und 2aR fließenden Ströme iA, iß sind dabei gleichsinnig und phasengleich, wodurch sich eine gegenüber der in Figur 2 beschriebenen ersten Ausführungsform doppelt so hohe magnetische Durchflutung, insbesondere in den Spulenbereichen SB, realisieren lässt.

Claims

Patentansprüche
1. Wicklungsanordnung (1) für die Primär- und/oder Sekundärseite eines induktiven Energieübertragungssystems, wobei die Wicklungsanordnung (1) zwei Wicklungen (A, B) aufweist, welche jeweils mäanderförmig ausgebildet sind oder mäanderförmig ausgebildete Wicklungsbereiche (Ai, Bi) aufweisen, dadurch gekennzeichnet, dass die Wicklungen (A, B) bzw. deren Wicklungsbereiche (Ai, Bi) um 90° zueinander verdreht und sich überlappend angeordnet sind, wobei durch die zwei Wicklungen (A, B) elektrische Ströme (iA, iß) fließen, die zueinander um 90° elektrisch phasenverschoben sind.
2. Wicklungsanordnung (1) nach Anspruch 1, dadurch gekennzeichnet, dass jede mäanderförmig ausgebildete Wicklung (A, B) bzw. jeder mäanderförmig ausgebildete Wicklungsbereich (Ai, Bi) zueinander parallele gerade Leiterabschnitte (2a, 3a) aufweist, deren Enden (2b, 3b) jeweils mittels eines, insbesondere geraden, gebogenen oder halbkreisförmigen, Verbindungsleiters (2c, 3c) mit dem Ende eines benachbarten parallelen geraden Leiterabschnitts derselben Wicklung (A, B) verbunden sind .
3. Wicklungsanordnung (1) nach Anspruch 2, dadurch gekennzeichnet, dass die Länge eines geraden Leiterabschnitts (2a, 3a) mindestens doppelt so groß ist wie der Abstand (d) zweier benachbarter paralleler gerader Leiterabschnitte (2a, 3a).
4. Wicklungsanordnung (1) nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die geraden Leiterabschnitte (2a) der ersten Wicklung (A) senkrecht zu den geraden Leiterabschnitten (3a) der zweiten Wicklung (B) angeordnet sind.
5. Wicklungsanordnung (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die geraden Leiterabschnitte (2a, 3a) jeder Wicklung (A, B) in äquidistanten Abständen parallel zueinander angeord- net sind .
6. Wicklungsanordnung (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Wicklungen (A, B) jeweils einen Hinleiter (AH, BH) und einen Rückleiter (AR, BR) aufweisen, wobei der Hinleiter (AH, Bh) und der Rückleiter (AR, BR) jeweils aus mehreren zueinander parallel angeordneten geraden Leiterabschnitten (2aH, 3aH; 2aR, 3aR) und Verbindungsleitern (2bH, 3bH; 2bR, 3bR) besteht, wobei die geraden Leiterabschnitte (2aH, 3aH; 2bR, 3bR) der Hin- und Rückleiter (AH, BH; AR, BR) in äquidistanten Abständen und parallel zueinander angeordnet sind, wobei jeweils ein gerader Leiterabschnitt (2aH, 3aH) des Hinleiters in unmittelbarer Nähe, insbesondere anliegend oder übereinander, zu einem geraden Leiterabschnitt (2aR, 3aR) des Rückleiters angeordnet ist.
7. Wicklungsanordnung (1) nach Anspruch 6, dadurch gekennzeichnet, dass die Stromrichtung der durch die jeweils in unmittelbarer Nähe zueinander angeordneten Leiterabschnitte (2aH, 3aH; 2aR, 3aR) fließenden Ströme (iA, iB) phasengleich und gleichsinnig sind .
8. Induktives Energieübertragungssystem mit einer Wicklungsanordnung (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Wicklungsanordnung (1) die Spulenanordnung einer Primärseite bildet, wobei die Wicklungen (A, B) der Wicklungsanordnung (1) zusammen mit Kapazitäten Schwingkreise, insbesondere Parallel- oder Reihenschwingkreise, bilden und Wechselrichter die Schwingkreise speisen.
PCT/EP2015/072553 2014-11-19 2015-09-30 Wicklungsanordnung für ein induktives energieübertragungssystem WO2016078814A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014116901.8A DE102014116901A1 (de) 2014-11-19 2014-11-19 Wicklungsanordnung für ein induktives Energieübertragungssystem
DE102014116901.8 2014-11-19

Publications (1)

Publication Number Publication Date
WO2016078814A1 true WO2016078814A1 (de) 2016-05-26

Family

ID=54199688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/072553 WO2016078814A1 (de) 2014-11-19 2015-09-30 Wicklungsanordnung für ein induktives energieübertragungssystem

Country Status (2)

Country Link
DE (1) DE102014116901A1 (de)
WO (1) WO2016078814A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019106719A1 (de) * 2019-03-15 2020-09-17 Balluff Gmbh Vorrichtung zur induktiven Übertragung von elektrischer Energie und/oder von Daten
DE102019106716A1 (de) * 2019-03-15 2020-09-17 Balluff Gmbh Vorrichtung zur induktiven Übertragung von elektrischer Energie und/oder von Daten und Verfahren zur Herstellung einer solchen Vorrichtung
US11201504B2 (en) 2019-03-15 2021-12-14 Balluff Gmbh Circuit for inductively transferring electrical energy

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018120779B3 (de) 2018-08-24 2019-12-12 Phoenix Contact Gmbh & Co. Kg Kontaktloses PoE-Verbindungssystem

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB657036A (en) * 1946-03-26 1951-09-12 George Iljitch Babat Overhead and underground traction power supply systems for high-frequency electrified transport with contactless energy transfer
WO2014041176A2 (de) * 2012-09-17 2014-03-20 Paul Vahle Gmbh & Co. Kg Metall-fremdkörper-erkennungssystem für induktive energieübertragungssysteme
WO2014157030A1 (ja) * 2013-03-27 2014-10-02 株式会社村田製作所 ワイヤレス給電装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10600564B2 (en) 2010-05-19 2020-03-24 Auckland Uniservices Limited Inductive power transfer system primary track topologies
DE202012101406U1 (de) * 2012-04-17 2013-07-18 Conductix-Wampfler Gmbh Vorrichtung zur Zustandsüberwachung eines Gehäuses

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB657036A (en) * 1946-03-26 1951-09-12 George Iljitch Babat Overhead and underground traction power supply systems for high-frequency electrified transport with contactless energy transfer
WO2014041176A2 (de) * 2012-09-17 2014-03-20 Paul Vahle Gmbh & Co. Kg Metall-fremdkörper-erkennungssystem für induktive energieübertragungssysteme
WO2014157030A1 (ja) * 2013-03-27 2014-10-02 株式会社村田製作所 ワイヤレス給電装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SATO F ET AL: "A NEW MEANDER TYPE CONTACTLESS POWER TRANSMISSION SYSTEM - ACTIVE EXCITATION WITH A CHARACTERISTICS OF COIL SHAPE", IEEE TRANSACTIONS ON MAGNETICS, IEEE SERVICE CENTER, NEW YORK, NY, US, vol. 34, no. 4, PART 01, 1 July 1998 (1998-07-01), pages 2069 - 2071, XP000833274, ISSN: 0018-9464, DOI: 10.1109/20.706799 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019106719A1 (de) * 2019-03-15 2020-09-17 Balluff Gmbh Vorrichtung zur induktiven Übertragung von elektrischer Energie und/oder von Daten
DE102019106716A1 (de) * 2019-03-15 2020-09-17 Balluff Gmbh Vorrichtung zur induktiven Übertragung von elektrischer Energie und/oder von Daten und Verfahren zur Herstellung einer solchen Vorrichtung
CN111696762A (zh) * 2019-03-15 2020-09-22 巴鲁夫公司 用于感应地传输电能和/或数据的装置以及用于生产这种装置的方法
US10992180B2 (en) 2019-03-15 2021-04-27 Balluff Gmbh Device for inductively transferring electrical energy and/or data, and method for producing such a device
US11201504B2 (en) 2019-03-15 2021-12-14 Balluff Gmbh Circuit for inductively transferring electrical energy
US11355965B2 (en) 2019-03-15 2022-06-07 Balluff Gmbh Device for inductively transferring electrical energy and/or data
CN111696762B (zh) * 2019-03-15 2024-03-12 巴鲁夫公司 用于感应地传输电能和/或数据的装置以及用于生产这种装置的方法

Also Published As

Publication number Publication date
DE102014116901A1 (de) 2016-06-02

Similar Documents

Publication Publication Date Title
EP3567703A1 (de) Stator für eine elektrische maschine und herstellungsverfahren
WO2014139606A1 (de) Sekundärseitige spulenanordnung zur induktiven energieübertragung mit quadrupolen
WO2016078814A1 (de) Wicklungsanordnung für ein induktives energieübertragungssystem
DE102004009896A1 (de) Induktive Energie- und Datenübertragung mit Parallelleiteranordnung
DE102012207557A1 (de) Dreiphasige Drossel
EP2973623A1 (de) Primärseitige spulenanordnung zur induktiven energieübertragung mit quadrupolen
DE102006025460B4 (de) Anlage mit einem Primärleitersystem
DE102017210445A1 (de) Stator für eine elektrische Maschine
DE102016201258A1 (de) Elektrischer Spannungswandler mit mehreren Speicherdrosseln
WO2018065451A1 (de) Spuleneinheit zum induktiven laden eines fahrzeuges
WO2003106213A1 (de) Primärleiteranordnung für ein system zur induktiven übertragung elektrischer energie
WO2016008663A1 (de) Induktives energieübertragungssystem mit mehrphasigem primärkreis
WO2015144619A1 (de) Magnetischer kreis zum dynamischen laden von elektrofahrzeugen
EP3314617B1 (de) Induktives bauteil für eine stromschiene
EP3329739A2 (de) Induktor und induktoranordnung
WO2015024901A1 (de) Elektrisches resonanzelement für die berührungsfreie induktive energieübertragung
WO2019096737A1 (de) Spuleneinheit für ein induktives ladesystem
DE19915487C1 (de) Vorrichtung zur induktiven Übertragung elektrischer Energie
EP3005831B1 (de) Induktor zur induktiven heizung
DE102012107358A1 (de) Primärleitersystem und Energieversorgungseinrichtung
WO2023186750A1 (de) Induktive ladeeinrichtung für ein fahrzeugladesystem
DE102022120690A1 (de) Induktive Ladeeinrichtung für ein Fahrzeugladesystem
DE102022107568A1 (de) Induktive Ladeeinrichtung für ein Fahrzeugladesystem
EP4265077A2 (de) Leiterplatte, insbesondere als primärleiter verwendbare leiterplatte
DE102012215862B4 (de) Oberflächenmontierbare Drossel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15771137

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15771137

Country of ref document: EP

Kind code of ref document: A1