WO2023222329A1 - Näherungsschalter und verfahren zur erfassung eines auslösers - Google Patents
Näherungsschalter und verfahren zur erfassung eines auslösers Download PDFInfo
- Publication number
- WO2023222329A1 WO2023222329A1 PCT/EP2023/060490 EP2023060490W WO2023222329A1 WO 2023222329 A1 WO2023222329 A1 WO 2023222329A1 EP 2023060490 W EP2023060490 W EP 2023060490W WO 2023222329 A1 WO2023222329 A1 WO 2023222329A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- coil
- proximity switch
- coils
- receiving
- transmitting
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 10
- 238000011156 evaluation Methods 0.000 claims abstract description 10
- 230000004044 response Effects 0.000 claims abstract description 7
- 238000013459 approach Methods 0.000 claims abstract description 6
- 238000004804 winding Methods 0.000 claims description 24
- 238000010292 electrical insulation Methods 0.000 claims 1
- 238000001514 detection method Methods 0.000 description 10
- 230000008901 benefit Effects 0.000 description 7
- 230000001939 inductive effect Effects 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 239000004020 conductor Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/94—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
- H03K17/945—Proximity switches
- H03K17/95—Proximity switches using a magnetic detector
- H03K17/952—Proximity switches using a magnetic detector using inductive coils
- H03K17/9525—Proximity switches using a magnetic detector using inductive coils controlled by an oscillatory signal
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/94—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
- H03K17/945—Proximity switches
- H03K17/95—Proximity switches using a magnetic detector
- H03K17/952—Proximity switches using a magnetic detector using inductive coils
- H03K17/9522—Proximity switches using a magnetic detector using inductive coils with a galvanically isolated probe
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/94—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
- H03K17/945—Proximity switches
- H03K17/95—Proximity switches using a magnetic detector
- H03K17/952—Proximity switches using a magnetic detector using inductive coils
- H03K2017/9527—Details of coils in the emitter or receiver; Magnetic detector comprising emitting and receiving coils
Definitions
- the present invention relates to a proximity switch according to the preamble of claim 1 and a method for detecting a target according to the preamble of claim 9.
- Inductive proximity switches are known in the prior art, especially those in which at least one of the coils is printed on a circuit board.
- an inductive proximity switch is equipped with at least one receiving coil, an oscillator circuit and at least two receiving coils arranged in the alternating magnetic field of the transmitting coil.
- the receiving coil and the transmitting coils are arranged adjacently on a circuit board, with an evaluation circuit connected to the transmitting coils being provided, which generates a switching signal when a target approaches the proximity switch.
- the two receiving coils and the transmitting coil each consist of at least one annular, elliptical, polygonal or spiral-shaped turn, with either the transmitting coil being peripherally surrounded by the first receiving coil and this in turn being peripherally surrounded by the second receiving coil .
- a proximity switch with a coil arrangement generating an alternating magnetic field which has a main transmission coil and a compensation coil coaxially surrounding it.
- the proximity switch also has a receiving coil, the transmitting coil and the compensation coil being fed with alternating currents of opposite phase, the transmitting coil being connected in opposite directions to the compensation coil, having a larger number of turns than the compensation coil and the transmitting coil and the compensation coil being powered by a common alternating voltage generator, so that the magnetic field generated by the transmitter coil is greater than the magnetic field generated by the compensation coil.
- DE 100 57 773 B4 discloses a proximity switch with a coil arrangement having a coil and an evaluation circuit downstream of this for obtaining a switching signal in the event of a change in field strength when a target of the coil arrangement is on the Approaches the desired response distance, the at least one coil being formed by partial coils connected electrically in series and assigned axially parallel to one another, characterized in that the partial coils with the same winding direction are arranged next to one another in a common plane.
- the invention Proximity switch with a coil arrangement having at least two receiving coils and at least one transmitting coil and this downstream control and evaluation unit for obtaining a switching signal when a trigger of the coil arrangement approaches the desired response distance, the at least two receiving coils and the at least one transmitting coil as Planar coils are formed and are arranged in a common coil plane, the common coil plane being aligned essentially perpendicular to a longitudinal axis of the proximity switch and the coil axes parallel to this longitudinal axis, the at least two receiving coils and the at least one transmitting coil each being applied to a coil base, wherein the coil base surfaces do not overlap in the direction of the longitudinal axis and do not enclose each other circumferentially, in particular not enclose them in a ring.
- a switching signal occurs when there is a change in field strength that occurs due to the presence of a trigger (target).
- the arrangement of the individual coils in “one plane” does not mean a mathematical 2-dimensional surface.
- “a level” means the arrangement on a printed circuit board or circuit board, of course in particular on the same surface of the circuit board.
- a level should also be understood to mean that individual coils or coil groups are arranged recessed in the circuit board and/or are attached to the back or underside of a circuit board.
- a coil or the turns of the coils is in particular designed as a flat spiral, the first connection of which is arranged radially outside of the respective spiral at one end of the turns and the second end is arranged in the center, that is to say on a central inner surface of the respective coil.
- the connection from the second end of the winding to a further connection point takes place in particular through the circuit boards and in particular at least over a section on the back of the circuit board.
- At least one coil or a group of coils is designed in multiple layers by applying an electrically insulating layer (first insulating layer) to a first level with electrically conductive windings (first winding level) and a second winding level with a electrically conductive winding is applied, which in turn can be covered by a second insulating layer, whereby the structure can be continued in an analogous manner.
- first insulating layer electrically insulating layer
- first winding level electrically conductive windings
- second winding level with a electrically conductive winding is applied, which in turn can be covered by a second insulating layer, whereby the structure can be continued in an analogous manner.
- the winding on the second winding level is an electrically conductive, same-directed continuation of the winding on the first, lowest winding level.
- the winding of the second winding level can be congruent overall with all the windings of the level below or can only cover a subset of the windings in the coil axis direction.
- at least one of the turns is applied using an additive manufacturing process.
- the winding levels and the insulation levels are at least partially applied using an additive manufacturing process.
- At least one external correction or counter-winding is applied to at least one winding level, in particular the topmost winding level, which encloses the base area of the respective coil at least over a partial length of 360°, in particular with a partial length of over 180°, ideally with a partial length of over 270°.
- the flat coil cannot essentially be miniaturized significantly with the detection performance remaining the same, since the maximum detection area is always proportional to the total coil diameter.
- the multi-layer structure can improve the detection performance without increasing the size of the structure, for example by increasing the inductance of the transmitter coil.
- the receiving coils are connected in series with one another.
- the transmitting coil either has turns in opposite directions to the receiving coils or current flows through it in opposite directions to the receiving coils.
- the coil arrangement works on a transformer coupling factor principle, in which the receiving coils are excited by an oscillator or form an oscillator circuit. In this alternating magnetic field of the receiving coils, the at least one transmitting coil is arranged adjacently.
- the control and evaluation unit connected to the transmitter coil generates a switching signal from the changed output or rest signals of the transmitter coil.
- the coil axis of the at least one transmitting coil lies radially inside in the common coil plane and the at least two coil axes of the receiving coils lie radially outside
- a further advantage can be that in one embodiment exactly one transmitting coil is provided, the coil axis of which runs in line with the longitudinal axis, and the coil axes of the at least two receiving coils have the identical distance from the coil axis of the transmitting coil.
- at least two groups or pairs of receiving coils are arranged symmetrically to the coil axis of the central transmitting coil.
- the receiving coils or their coil axes are arranged at an identical angular distance around the transmitting coil or their coil axis.
- the coil axes of all receiving coils have the identical or essentially identical distance from the coil axis of the central transmitting coil.
- One transmitter coil is thus positioned in the center of the coil arrangement (Cu layer) and several ring-shaped receiver coils are arranged around it, which form a differential voltage through the electrical interconnection. This allows the position of metallic triggers (targets) to be detected, regardless of their conductivity. There is therefore a factor of 1, which can be evaluated at the usual industrial detection (switching) distance.
- This embodiment can be improved in that 3 to 6 receiving coils are provided, the coil axes of which are arranged concentrically around the coil axis of the transmitting coil.
- the distances between the receiving coil or their coil axes are not necessarily identical to one another, but advantageously have symmetry in order to achieve the most uniform possible distribution of the magnetic field.
- each receiving coil has a number S of turns and each transmitting coil has a number E of turns, the ratio ZS/ZE being in the range from 0.46 to 0.30, ideally in the range of 0.43 to 0.32.
- four receiving coils each have 3.5 turns and the one central transmitting coil has 5.5 turns, resulting in a ratio of 0.393.
- the ratio of the coil base areas of a receiving coil to a transmitting coil is 1, plus/minus 0.2.
- the coil base area is only to be understood as the surface area covered by the spiral-shaped turns in particular; any necessary lines or conductor tracks do not define the coil base area.
- the coil arrangement must be designed in such a way that a differential voltage is formed by the electrical interconnection of receiving coils and transmitting coils.
- a differential voltage is formed by the electrical interconnection of receiving coils and transmitting coils.
- the outermost turn of the transmitting coil is a multiple of the turn spacing of a receiving coil, the multiple being in the range from 0.8 to 3, ideally in the range from 0.8 to 1.5.
- the turn spacing is the vertical distance in the radial direction between two parallel turns of a spiral.
- the receiving coils are constructed identically or largely identically, at least with regard to the number of turns and their dimensions.
- the invention further includes a method with which a trigger (target) can be detected, using a proximity switch with an associated circuit and evaluation unit, and wherein the proximity switch is designed according to one of the previous variants and embodiments.
- the coil system for the inductive proximity sensor described here has a reduction factor of 1 for all metals, has a very simple structure and is characterized by high temperature and long-term stability.
- the coil system is suitable in that there is no directional priority, so that detection can be carried out from both sides of the board with identical sensitivity and effect.
- FIG. 1 shows a sectional view of the proximity sensor according to the invention as a top view of the coil arrangement of a first embodiment
- FIG. 2 shows a second embodiment of the coil arrangement
- Fig. 4 shows a fourth embodiment of the coil arrangement
- Fig. 5 is a vertical sectional view in the longitudinal direction of the
- Proximity sensor as an overview display.
- Figure 1 shows the proximity switch 100, which has a housing 104 in which a circuit board 106 with a coil arrangement 200 made up of four receiving coils 210 and a transmitting coil 220 is arranged.
- the top of the boards 106 forms the coil level 114 in the exemplary embodiment shown.
- the receiving coil 210 has a coil axis 212 and the transmitting coil 220 has a coil axis 222, the coil axis 222 of the transmitting coil 220 being congruent with the longitudinal axis 102 of the coil arrangement 200 or the proximity sensor 100.
- the axes emerging from the image plane are designed as a circle with an inner " X” symbolizes.
- the receiving coils 210 and the transmitting coils 212 or their windings run concentrically around the respective coil axis 212, 222.
- the longitudinal axis 102 of the coil arrangement 200 is generally located in particular in the center of all coil axes 212, 222 or forms the center.
- the circuit board 106 is arranged parallel to the cutting plane, not shown, which is aligned parallel to the image plane.
- a control and evaluation unit 108 is connected to the circuit board 106 and in particular to the electronic components 118 (FIG. 5) arranged thereon and not shown.
- FIG. 1 also shows a trigger 110 (target) which moves in the direction 122 of the proximity sensor 100 and is still outside the response distance 112 of the proximity sensor 100 in the position shown.
- All coils of the coil arrangement 200 are designed as planar coils, which are applied to the surface of the circuit board 106, for example by means of a melting or printing process.
- the four receiving coils 210 are connected in series and conductively connected to one another on the underside of the circuit board 106.
- the central transmitting coil 220 is positioned in the center of the coil arrangement (Cu layer) and the four receiving coils 210 are arranged around this.
- the electrical interconnection creates a differential voltage, the change of which represents the detection of a metallic trigger (target). This occurs regardless of the conductivity of the trigger. There is therefore a factor of 1, which can be evaluated at the usual industrial detection (switching) distance.
- the electrical interconnection is, as described above, a series connection of the four receiving coils. What is important here is that the individual coils are electrically connected to one another in such a way that the direction of the current flow results in a differential voltage across all receiving coils, with which the coil system can be adjusted. This differential voltage to be evaluated results in a zero crossing.
- the coil base surfaces 230 which can be seen better in Figures 2, 3 and 4, do not overlap.
- the four receiving coils 210 are not arranged symmetrically with identical angular distances around the central transmitting coil 220, which means an angle which has as its center the passage point of the longitudinal axis 102 and runs through the passage points of the respective coil axes.
- the pair of receiving coils 210 shown above includes a first angle between them, which is identical to the angle that the lower pair of receiving coils 210 includes.
- a larger second angle is spanned between the left upper and the left lower reception coil 210, which is designed analogously to the right reception coils 210.
- the four coil axes 212 of the four receiving coils 210 are arranged at an identical radius from the longitudinal axis 102 and thus also from the coil axis 222 of the transmitting coil 220. Furthermore, the circuit board 106 has guide surfaces 124 as flats, which serve for positioning within the housing 104.
- the advantage of the embodiment of the proximity sensor 100 shown in Figure 1 and in particular of the coil arrangement 200 on the circuit board 106 is that the receiving coils 210 could be brought very close to the central transmitting coil 220 and further in the second angle there is plenty of space for the necessary soldering is available.
- the distance 128 of the outermost turn of the transmitting coil 220 to the respective opposite outermost turn of one of the receiving coils 210 is on the distance between the respective coil axes 212 the inner turn spacing of the receiving coil or the transmitting coil.
- Figure 2 shows an arrangement of a coil arrangement 200 with five receiving coils 210 and a central transmitting coil 220, which lie in a common coil plane 114, as can be seen in the sectional view of partial image II.
- Partial image I shows that the receiving coils 210 or their coil axes 212 are arranged symmetrically as petaloids around the central longitudinal axis 102 or the central coil axis 212 of the transmitting coil 220. Furthermore, reference number 130 indicates the direction of the view of the sectional view in partial image II. Instead of a guide surface as an installation and positioning aid, the circuit board 106 has a guide groove 126.
- FIG. 3 shows a coil arrangement 200, which consists of six receiving coils 210, which are arranged symmetrically and at equal angular distances around the central transmitting coil 220.
- the exemplary embodiment according to FIG. 3 differs from that according to FIG. 1 or 2 in addition to the number of receiving coils 210 in that the coil plane 114 can also run centrally in the circuit board 106 in the sense of this invention.
- the receiving coils 210 are arranged on one side of the circuit board 106 and the one central transmitting coil 220 is arranged on the opposite side of the (same) circuit board 106 (partial image II.).
- the one central transmission coil 220 can, as shown in Figure 4, also consist of a group of several transmission coils 220.
- At least one type of coil is arranged in a recess or recess in the circuit board.
- the upper coils 210, 220 are shown as continuous (circular) lines and the rear coils 210, 220 are shown as dashed (circular) lines.
- the circuit board 106 has two guide grooves 126 on the outer contour, which serve for positioning within the housing 104 analogous to the guide surfaces 124, as described in FIG.
- the exemplary embodiment according to FIG. 4 differs from the previous exemplary embodiments in that a group of three transmitting coils 220 is arranged centrally in the middle of three receiving coils 210.
- the transmitting coils 220 are connected in series with one another and are connected as a group to the receiving coils 210, which are also connected in series.
- the central longitudinal axis 102 is not congruent with any of the coil axes 212.
- FIG. 5 shows the entire proximity sensor 100, the circuit board 106 with the coil arrangement 200 there being arranged on the detection side 132 and the connecting cable 116 for the data and current-conducting connection to the circuit board 106 and its components 118 of the control and evaluation unit 108, is arranged on the connection side 134.
- Control and evaluation unit Trigger, target Response distance Coil level Connecting cable Components Guide groove Direction
Landscapes
- Switches That Are Operated By Magnetic Or Electric Fields (AREA)
Abstract
Die vorliegende Erfindung betrifft einen Näherungsschalter mit einer mindestens zwei Empfangsspulen und mindestens eine Sendespule aufweisenden Spulenanordnung und dieser nachgeordneten Steuer- und Auswerteeinheit zur Gewinnung eines Schaltsignales, wenn sich ein Auslöser der Spulenanordnung auf den gewünschten Ansprechabstand nähert, wobei die mindestens zwei Empfangsspulen und die mindestens eine Sendespule als Planarspulen ausgebildet sind und in einer gemeinsamen Spulenebene angeordnet sind. Die gemeinsame Spulenebene ist im Wesentlichen senkrecht zu einer Längsachse des Näherungsschalters und den zu dieser Längsachse parallelen Spulenachsen ausgerichtet, wobei die mindestens zwei Empfangsspulen und die mindestens eine Sendespule jeweils auf einer Spulengrundfläche aufgebracht sind, wobei die Spulengrundflächen sich Richtung der Längsachse nicht überdecken und nicht umlaufend umschließen. Weiterhin ist von der Erfindung ein Verfahren zum Erfassen eines Targets umfasst, bei welchem der vorgenannte Näherungsschalter verwendet wird.
Description
Näherungsschalter und Verfahren zur Erfassung eines Auslösers
Die vorliegende Erfindung betrifft einen Näherungsschalter nach dem Oberbegriff des Anspruchs 1 und ein Verfahren zur Erfassung eines Targets nach dem Oberbegriff des Anspruchs 9.
Im Stand der Technik sind induktive Näherungsschalter bekannt, insbesondere solche, bei denen mindestens eine der Spulen auf einer Platine aufgedruckt ist.
Eine solche Anordnung zeigt beispielsweise die DE 202006 004 158 U1 , bei der ein induktiver Näherungsschalter mit wenigstens einer Empfangsspule, einem Oszillatorschaltkreis und wenigstens zwei im magnetischen Wechselfeld der Sendespule angeordnete Empfangsspulen ausgestattet ist. Hierbei sind die Empfangsspule und die Sendespulen benachbart auf einer Platine angeordnet, wobei eine an die Sendespulen angeschlossene Auswerteschaltung vorgesehen ist, die bei Annäherung eines Targets an den Näherungsschalter ein Schaltsignal erzeugt. Die zwei Empfangsspulen und die Sendespule bestehen gemäß der DE 20 2006 004 158 U1 jeweils aus wenigstens einer ringförmig, elliptisch, polygonal oder spiralartig geformten Windung, wobei entweder die Sendespule von der ersten Empfangsspule peripher umgeben ist und diese ihrerseits von der zweiten Empfangsspule peripher umgeben ist.
Weiterhin ist aus der DE 102006 053 023 A1 ein Näherungsschalter mit einer ein magnetisches Wechselfeld erzeugenden Spulenanordnung bekannt, welche eine Hauptsendespule und eine diese koaxial umgebende Kompensationsspule aufweist. Der Näherungsschalter weist weiterhin eine Empfangsspule auf, wobei die Sendespule und die Kompensationsspule mit Wechselströmen entgegengesetzter Phase gespeist werden, wobei die Sendespule gegensinnig zur Kompensationsspule geschaltet ist, eine größere Windungszahl als die Kompensationsspule aufweist und die Sendespule und die Kompensationsspule von einem gemeinsamen Wechselspannungsgenerator bestromt werden, so dass das von der Sendespule erzeugte Magnetfeld größer ist, als das von der Kompensationsspule erzeugte Magnetfeld.
Schließlich offenbart die DE 100 57 773 B4 einen Näherungsschalter mit einer eine Spule aufweisenden Spulenanordnung und dieser nachgeordneten Auswerteschaltung zur Gewinnung eines Schaltsignales bei einer Feldstärkenänderung, wenn sich ein Target der Spulenanordnung auf den
gewünschten Ansprechabstand nähert, wobei die mindestens eine Spule von elektrisch in Reihe geschalteten, achsparallel einander zugeordneten Teilspulen ausgebildet wird, dadurch gekennzeichnet, dass die Teilspulen mit gleichem Windungssinn in Reihe geschaltet in einer gemeinsamen Ebene nebeneinander angeordnet sind.
Bei diesen grundsätzlich geeigneten Näherungsschaltern besteht ein Bedarf der Weiterentwicklung hin zu stabileren, störungsfreien Nullzuständen, wenn sich kein Target im Erfassungsbereich befindet, bei gleichzeitig hoher Empfindlichkeit (Schaltabstand) und Ansprechcharakteristik.
Es ist die Aufgabe der vorliegenden Erfindung einen verbesserten Näherungssensor und ein zugehöriges Verfahren zur Erfassung eines Targets vorzuschlagen, wobei ein stabilerer Nullzustand vorliegt, und weniger Störungen auftreten.
Diese Aufgabe wird erfindungsgemäß gelöst durch einen induktiven Näherungsschalter nach den Merkmalen des Anspruchs 1 und einem Verfahren nach den Merkmalen des Anspruches 9. Vorteilhafte Ausgestaltungen sind in den jeweiligen, zugehörigen Unteransprüchen angegeben.
Die Erfindung Näherungsschalter mit einer mindestens zwei Empfangsspulen und mindestens einer Sendespule aufweisenden Spulenanordnung und dieser nachgeordneten Steuer- und Auswerteeinheit zur Gewinnung eines Schaltsignales, wenn sich ein Auslöser der Spulenanordnung auf den gewünschten Ansprechabstand nähert, wobei die mindestens zwei Empfangsspulen und die die mindestens eine Sendespule als Planarspulen ausgebildet sind und in einer gemeinsamen Spulenebene angeordnet sind, wobei die gemeinsame Spulenebene im Wesentlichen senkrecht zu einer Längsachse des Näherungsschalters und den zu dieser Längsachse parallelen Spulenachsen ausgerichtet ist, wobei die mindestens zwei Empfangsspulen und die mindestens eine Sendespule jeweils auf einer Spulengrundfläche aufgebracht sind, wobei die Spulengrundflächen sich Richtung der Längsachse nicht überdecken und nicht umlaufend umschließen, insbesondere nicht ringförmig umschließen.
Hierbei erfolgt insbesondere ein Schaltsignales bei einer Feldstärkenänderung, die aufgrund der Anwesenheit eines Auslösers (Targets) eintritt.
Hierbei ist unter der Anordnung der einzelnen Spulen in „einer Ebene“ nicht eine mathematisch 2-dimensionale Fläche zu verstehen. Vorliegend meint „eine Ebene“ die Anordnung auf einer Leiterplatte oder Platine, natürlich insbesondere auf derselben Oberfläche der Platine. Hierbei soll unter einer Ebene auch verstanden werden, dass einzelne Spulen oder Spulengruppen in der Platine vertieft angeordnet sind und/oder auf der Rückseite oder Unterseite einer Platine angebracht sind.
Eine Spule oder die Windungen der Spulen ist insbesondere als eine flache Spirale ausgebildet, deren erster Anschluss radial außen zu der jeweiligen Spirale an einem Ende der Windungen angeordnet ist und das zweite Ende ist im Zentrum, dass heißt auf einer zentralen Innenfläche der jeweiligen Spule angeordnet. Die Verbindung vom zweiten Ende der Windung zu einer weiteren Anschlussstelle erfolgt insbesondere durch die Platinen hindurch und insbesondere mindestens auf einer Strecke auf der Rückseite der Platine.
Bei einer weiter verbesserten Ausführungsform ist mindestens eine Spule oder eine Gruppe von Spulen mehrlagig ausgebildet, indem auf einer ersten Ebene mit elektrisch leitenden Windungen (erste Windungsebene) eine elektrisch isolierende Schicht aufgebracht ist (erste Isolierschicht) und auf der ersten Isolierschicht eine zweite Windungsebene mit einer elektrisch leitenden Windung aufgetragen ist, die wiederum von einer zweiten Isolierschicht überdeckt sein kann, wobei der Aufbau in analoger Weise fortgesetzt werden kann.
Hierbei ist die Windung auf der zweiten Windungsebene eine elektrisch leitende, gleichsinnige Fortsetzung der Windung auf der ersten, untersten Windungsebene. Die Windung der zweiten Windungsebene kann herbei insgesamt deckungsgleich mit allen Windungen der darunterliegenden Ebene sein oder nur eine Teilzahl der Windungen in Spulenachsrichtung überdecken. Vorteilhafterweise ist mindestens eine der Windungen durch einen additiven Fertigungsprozess aufgebracht. Idealerweise werden die Windungsebenen und die Isolierebenen mindestens teilweise durch einen additiven Fertigungsprozess aufgebracht.
Bei einer weiter verbesserten Ausführungsform wird auf mindestens einer Windungsebene, insbesondere der obersten Windungsebene, mindestens eine äußere Korrektur- oder Gegenwindung aufgebracht, die die Grundfläche der jeweiligen Spule mindestens auf einer Teillänge von 360° umschließt, insbesondere
mit einer Teillänge von über 180° umschließt, idealerweise mit einer Teillänge von über 270° umschließt.
Durch den mehrlagigen Aufbau kann die Flachspule bei gleichbleibender Erfassungsleistung dem Grunde nach bei gleichbleibendem Erfassungsbereich nicht wesentlich miniaturisiert werden, da sich der maximale Erfassungsbereich auch immer proportional mit dem Gesamtspulendurchmesser verhält. Allerdings kann durch den mehrlagigen Aufbau die Erfassungsleistung ohne bauliche Vergrößerung verbessert werden, beispielsweise durch die Erhöhung der Induktivität der Sendespule.
Die Empfangsspulen sind untereinander in Reihe geschaltet. Die Sendespule weist entweder zu den Empfangsspulen gegensinnige Windungen auf oder wird gegensinnig zu den Empfangsspulen mit Strom durchflossen.
Hierbei funktioniert die Spulenanordnung auf einem transformatorischen Kopplungsfaktor-Prinzip, bei dem die Empfangsspulen durch einen Oszillator angeregt werden oder einen Oszillatorschaltkreis bilden. In diesem magnetischen Wechselfeld der Empfangsspulen ist die mindestens eine Sendespulen benachbart angeordnet. Die an die Sendespule angeschlossene Steuerung- und Auswerteeinheit erzeugt bei der Annäherung eines Auslösers im Erfassungsbereich des Näherungsschalters aus den geänderten Ausgangs- oder Ruhesignalen der Sendespule ein Schaltsignal.
Bei einer verbesserten Ausführungsform kann vorgesehen sein, dass die Spulenachse, der mindestens einen Sendespule in der gemeinsamen Spulenebene radial innen liegt und die mindestens zwei Spulenachsen der Empfangsspulen radial außen liegen
Ein weiterer Vorteil kann darin bestehen, dass bei einer Ausführungsform genau eine Sendespule vorgesehen ist, deren Spulenachse in Deckung mit der Längsachse verläuft, und wobei die Spulenachsen der mindestens zwei Empfangsspulen zur Spulenachse der Sendespule den identischen Abstand aufweisen. Vorteilhafterweise sind mindestens zwei Gruppen oder Paare von Empfangsspulen symmetrisch zur Spulenachse der zentralen Sendespule angeordnet. Idealerweise sind die Empfangsspulen bzw. deren Spulenachsen in identischem Winkelabstand um die Sendespule bzw. deren Spulenachse angeordnet.
Zum Aufbau eines gleichmäßigen und stabilen Magnetfeldes kann ein besonderer Vorteil insbesondere darin bestehen, dass die Spulenachsen aller Empfangsspulen zur Spulenachse der zentralen Sendespule den identischen oder im Wesentlichen identischen Abstand aufweisen.
Die eine Sendespule ist somit im Zentrum der Spulenanordnung (Cu-Lage) positioniert und um diese sind mehrere ringförmige Empfangsspulen angeordnet, die durch die elektrische Zusammenschaltung eine Differenzspannung bilden. Hierdurch kann eine Positionserkennung von metallischen Auslösern (Targets) erfolgen, unabhängig von deren Leitfähigkeit. Es besteht somit ein Faktor 1 , der im industriell üblichen Erkennungs- (Schalt-)abstand ausgewertet werden kann.
Diese Ausführungsform kann dahingehend verbessert werden, dass 3 bis 6 Empfangsspulen vorgesehen sind, deren Spulenachsen konzentrisch um die Spulenachse der Sendespule angeordnet sind. Hierbei sind die Abstände der Empfangsspule beziehungsweise deren Spulenachsen untereinander nicht zwingend identisch, weisen aber vorteilhafterweise eine Symmetrie auf, um eine möglichste gleichmäßige Verteilung des Magnetfeldes zu erreichen.
Vorteilhaft kann es sein, wenn bei einer Ausführungsform vorgesehen wird, dass jede Empfangsspule eine Anzahl S an Windungen aufweist, und jede Sendespulen eine Anzahl E an Windung aufweist, wobei das Verhältnis ZS/ZE im Bereich von 0,46 bis 0,30 liegt, idealerweise im Bereich von 0,43 bis 0,32. Bei einer vorteilhaften Ausführungsform weisen beispielsweise vier Empfangsspulen jeweils 3,5 Windungen auf und die eine, zentrale Sendespule weist 5,5 Windungen auf, so dass sich hieraus ein Verhältnis von 0,393 ergibt.
Vorteilhaft kann weiterhin sein, wenn bei einer Ausführungsform vorgesehen wird, dass das Verhältnis der Spulengrundflächen einer Empfangsspule zu einer Sendespule 1 ist, plus/minus 0,2. Hierbei ist als Spulengrundfläche nur der von den insb. spiralförmigen Windungen überdeckte Flächenbereich zu verstehen, ggf. nötige Leitungen oder Leitungsbahnen definieren die Spulengrundfläche nicht.
Insgesamt ist die Spulenanordnung derart auszulegen, dass durch die elektrische Zusammenschaltung von Empfangsspulen und Sendespulen eine Differenzspannung gebildet wird.
Zum Aufbau eines sehr dichten magnetischen Feldes und zur Verminderung der Störeinflüsse hat sich herausgestellt, dass es vorteilhaft sein kann, wenn der lotrechte Abstand zwischen
- der äußersten Windung einer Empfangsspule und
- der äußersten Windung der Sendespule, ein Vielfaches des Windungsabstandes einer Empfangsspule beträgt, wobei das Vielfache im Bereich von 0,8 bis 3 liegt, idealerweise im Bereich von 0,8 bis 1 ,5 liegt.
Der Windungsabstand ist hierbei die lotrechte Strecke in radialer Richtung zwischen zwei parallel verlaufenden Windungen einer Spirale. Idealerweise sind die Empfangsspulen mindestens bezüglich der Windungszahl und deren Dimension identisch oder weitgehend identisch aufgebaut.
Von der Erfindung ist weiterhin ein Verfahren umfasst, womit ein Auslöser (Target) erfasst werden kann, wobei ein Näherungsschalter mit zugehöriger Schaltung und Auswerteeinheit verwendet wird, und wobei der Näherungsschalter nach einem der vorherigen Varianten und Ausführungsformen ausgebildet ist.
Alle zum Näherungsschalter gemachten Ausführungen, Hinweise und Nennungen von Vorteilen, gelten in analoger Weise für das Verfahren unter Verwendung des Näherungsschalters.
Als besonderer Vorteil hat sich herausgestellt, dass das Spulensystem für den hier beschriebenen induktiven Näherungssensor einen Reduktionsfaktor von 1 für alle Metalle aufweist, einen sehr einfachen Aufbau aufweist und sich durch eine hohe Temperatur- und Langzeitstabilität ausweist.
Weiterhin wird keine Ferritkern benötigt, so dass externe Magnetfelder keinen störenden Einfluss auf den Sensor ausüben können. Als ein weiterer Vorteil hat sich herausgestellt, dass das Spulensystem geeignet ist, dass kein Richtungsvorrang gegeben ist, so dass von beiden Seiten der Platine mit einer identischen Empfindlichkeit und Wirkung eine Erfassung vorgenommen werden kann.
Weitere Einzelheiten und Vorteile der Erfindung sollen nun anhand eines in den Zeichnungen dargestellten Ausführungsbeispiels näher erläutert werden.
Es zeigen:
Fig. 1 eine Schnittdarstellung des erfindungsgemäßen Näherungssensors als Draufsicht auf die Spulenanordnung einer ersten Ausführungsform, Fig. 2 eine zweite Ausführungsform der Spulenanordnung,
Fig. 3 eine dritte Ausführungsform der Spulenanordnung,
Fig. 4 eine vierte Ausführungsform der Spulenanordnung und
Fig. 5 eine vertikale Schnittdarstellung in Längsrichtung des
Näherungssensors als Überblicksdarstellung.
Die Figur 1 zeigt den Näherungsschalter 100, der ein Gehäuse 104 aufweist, in welchem eine Platine 106 mit einer Spulenanordnung 200 aus vier Empfangsspulen 210 und einer Sendespule 220 angeordnet ist. Die Oberseite der Platinen 106 bildet die Spulenebene 114 in dem gezeigten Ausführungsbeispiel. Empfangsspule 210 weist eine Spulenachse 212 auf und die Sendespule 220 eine Spulenachse 222, wobei die Spulenachse 222 der Sendespule 220 deckungsgleich ist mit der Längsachse 102 der Spulenanordnung 200 bzw. des Näherungssensors 100. Die aus der Bildebene heraustretenden Achsen sind als Kreis mit einem inneren „X“ symbolisiert.
Die Empfangsspulen 210 und die Sendespulen 212 beziehungsweise deren Windungen, verlaufen konzentrisch um die jeweilige Spulenachse 212, 222. Die Längsachse 102 der Spulenanordnung 200 liegt ganz allgemein insbesondere im Zentrum aller Spulenachsen 212, 222 beziehungsweise bildet das Zentrum.
Die Platine 106 ist parallel zur nicht dargestellten Schnittebene angeordnet, die parallel zur Bildebene ausgerichtet ist. Mit der Platine 106 und insbesondere den darauf angeordneten und nicht dargestellten elektronischen Bauteilen 118 (Fig. 5) ist eine Steuer- und Auswerteeinheit 108 verbunden.
In der Figur 1 ist weiterhin ein Auslöser 110 (Target) dargestellt, der sich in Richtung 122 des Näherungssensors 100 bewegt und sich in der dargestellten Position noch außerhalb des Ansprechabstand 112 des Näherungssensors 100 befindet.
Alle Spulen der Spulenanordnung 200 sind als Planarspulen ausgebildet, die beispielsweise mittels eines Schmelz- oder Druckverfahrens auf die Oberfläche der Platine 106 aufgetragen sind. Die vier Empfangsspulen 210 sind in Reihe geschaltet und auf der Unterseite der Platine 106 miteinander leitend verbunden.
Die zentrale Sendespule 220 ist im Zentrum der Spulenanordnung (Cu-Lage) positioniert und um diese sind die vier Empfangsspulen 210 angeordnet. Durch die elektrische Zusammenschaltung bildet sich eine Differenzspannung, deren Veränderung die Detektion eines metallischen Auslösers (Targets) darstellt. Dies erfolgt unabhängig von der Leitfähigkeit des Auslösers. Es besteht somit ein Faktor 1 , der im industriell üblichen Erkennungs- (Schalt-)abstand ausgewertet werden kann.
Die elektrische Zusammenschaltung ist, wie vorstehend beschrieben, eine Reihenschaltung der vier Empfangsspulen. Wesentlich ist hierbei, dass die Einzelspulen elektrisch so miteinander verbunden sind, so dass sich durch die Richtung des Stromflusses eine Differenzspannung über alle Empfangsspulen ergibt, mit der das Spulensystem abgleichbar ist. Diese auszuwertende Differenzspannung ergibt einen Nulldurchgang.
Die Spulengrundflächen 230, besser zu erkennen in den Figuren 2, 3 und 4, überlappen sich nicht. In dem gezeigten Beispiel der Figur 1 , sind die vier Empfangsspulen 210 nicht in symmetrisch mit identischen Winkelabständen um die zentrale Sendespule 220 angeordnet, wobei ein Winkel gemeint ist, der als Zentrum den Durchtrittspunkt der Längsachse 102 hat und durch die Durchtrittspunkte der jeweiligen Spulenachsen verläuft. Vorliegend schließt das oben dargestellte Paar an Empfangsspulen 210 zwischen sich einen ersten Winkel ein, der identisch ist mit dem Winkel, den das untere Paar an Empfangsspule 210 einschließt. Zwischen der linken oberen und der linken unteren Empfangsspule 210 ist ein größerer zweiter Winkel aufgespannt, der analog der rechten Empfangsspulen 210 ausgebildet ist.
Die vier Spulenachsen 212 der vier Empfangsspulen 210 sind von der Längsachse 102 und damit auch von der Spulenachse 222 der Sendespule 220 im identischen Radius angeordnet. Weiterhin weist die Platine 106 als Anflächungen Führungsflächen 124 auf, die zur Lagepositionierung innerhalb des Gehäuses 104 dienen.
Der Vorteil, der in der Figur 1 gezeigten Ausführungsform des Näherungssensors 100 und insbesondere der Spulenanordnung 200 auf der Platine 106 besteht darin, dass die Empfangsspulen 210 sehr eng an die zentrale Sendespule 220 herangeführt werden konnten und weiter in dem zweiten Winkel viel Platz für nötige Verlötungen zur Verfügung steht.
Der Abstand 128 der äußersten Windung der Sendespule 220 zur jeweiligen gegenüberliegenden äußersten Windung einer der Empfangsspulen 210, beträgt auf der Strecke zwischen den jeweiligen Spulenachsen 212 dem inneren Windungsabstand der Empfangsspule oder der Sendespule.
Die Figur 2 zeigt eine Anordnung einer Spulenanordnung 200 mit fünf Empfangsspulen 210 und einer zentralen Sendespule 220, die in einer gemeinsamen Spulenebene 114 liegen, wie in der Schnittdarstellung des Teilbildes II. erkennbar ist.
In Teilbild I. ist dargestellt, dass die Empfangsspulen 210 bzw. deren Spulenachsen 212 symmetrisch als Petaloide um die zentrale Längsachse 102 bzw. die zentrale Spulenachse 212 der Sendespule 220 angeordnet sind. Weiterhin ist mit dem Bezugszeichen 130 die Richtung der Ansicht auf die Schnittdarstellung im Teilbild II. angezeigt. Statt einer Führungsfläche als Einbau- und Positionierhilfe, weist die Platine 106 eine Führungsnut 126 auf.
In der Figur 3 ist ein Spulenanordnung 200 dargestellt, die aus sechs Empfangsspulen 210 besteht, welche symmetrisch und mit gleichen Winkelabständen um die eine zentrale Sendespule 220 herum angeordnet sind. Das Ausführungsbeispiel nach Figur 3 unterscheidet sich von dem nach Figur 1 oder 2 neben der Anzahl der Empfangsspulen 210 darin, dass die Spulenebene 114 im Sinne dieser Erfindung auch zentral in der Platine 106 verlaufen kann. Hierbei sind die Empfangsspulen 210 auf der einen Seite der Platine 106 angeordnet und die eine, zentrale Sendespule 220 ist auf der gegenüberliegenden Seite der (selben) Platine 106 angeordnet (Teilbild II.). Die eine zentrale Sendespule 220 kann, wie in Figur 4 gezeigt, auch aus einer Gruppe von mehreren Sendespulen 220 bestehen.
Dabei kann auch vorgesehen sein, dass mindestens eine Art der Spulen (Empfangs- und/oder Empfangsspulen) in einer Vertiefung oder Aussparung der Platine angeordnet ist. In den Teilbildern I. und III. sind die oberen Spulen 210, 220 als durchgehende (Kreis-)Linien dargestellt und die rückseitigen Spulen 210, 220 als gestrichelte (Kreis-)Linien. Die Platine 106 weist an der Außenkontur zwei Führungsnuten 126 auf, die analog der Führungsflächen 124, wie zur Figur 1 beschrieben, zur Positionierung innerhalb des Gehäuses 104 dienen.
Das Ausführungsbeispiel nach Figur 4 unterscheidet sich von den vorherigen Ausführungsbeispielen dadurch, dass eine Gruppe aus drei Sendespulen 220 zentral in der Mitte von ebenfalls drei Empfangsspulen 210 angeordnet ist. Die zentrale
Längsachse 102. Die Sendespulen 220 sind untereinander in Reihe geschaltet und als Gruppe mit den ebenfalls in Reihe geschalteten Empfangsspulen 210 verbunden.
Die zentrale Längsachse 102 ist in diesem Ausführungsbeispiel mit keiner der Spulenachsen 212 deckungsgleich.
In der Figur 5 ist der gesamte Näherungssensor 100 dargestellt, wobei die Platine 106 mit der dortigen Spulenanordnung 200 auf der Erfassungsseite 132 angeordnet ist und das Verbindungskabel 116 zur daten- und stromleitenden Verbindung zur Platine 106 und deren Bauteile 118 der Steuer- und Auswerteeinheit 108, auf der Verbindungsseite 134 angeordnet ist.
Bezugszeichenliste
Näherungsschalter Längsachse Gehäuse Platine
Steuer- und Auswerteeinheit Auslöser, Target Ansprechabstand Spulenebene Verbindungskabel Bauteile Führungsnut Richtung
Führungsfläche Führungsnut Abstand Richtung
Erfassungsseite Verbindungsseite
Spulenanordnung
Empfangsspulen Spulenachse von 210 Spulenebene
Sendespule
Spulenachse von 220
Spulengrundfläche
Claims
Patentansprüche Näherungsschalter (100) mit einer mindestens zwei Empfangsspulen (210) und mindestens einer Sendespule (220) aufweisenden Spulenanordnung (200) und einer dieser nachgeordneten Steuer- und Auswerteeinheit (108) zur Gewinnung eines Schaltsignales, wenn sich ein Auslöser (110) der Spulenanordnung (200) auf den gewünschten Ansprechabstand (112) nähert, wobei die mindestens zwei Empfangsspulen (210) und die mindestens eine Sendespule (220) als Planarspulen ausgebildet und in einer gemeinsamen Spulenebene (114) angeordnet sind, wobei die gemeinsame Spulenebene (114) im Wesentlichen senkrecht zu einer Längsachse (102) des Näherungsschalters (100) und den zu dieser Längsachse parallelen Spulenachsen (212, 222) ausgerichtet ist, dadurch gekennzeichnet, dass die mindestens zwei Empfangsspulen (210) und die mindestens eine Sendespule (220) jeweils auf einer Spulengrundfläche (230) aufgebracht sind, wobei die Spulengrundflächen (230) sich Richtung der Längsachse (102) nicht überdecken und nicht umlaufend umschließen. Näherungsschalter nach Anspruch 1 , dadurch gekennzeichnet, dass die Spulenachse (222) der mindestens einen Sendespule (220) in der gemeinsamen Spulenebene (114) radial innen liegt und die mindestens zwei Spulenachsen (212) der Empfangsspulen (210) radial außen liegen Näherungsschalter nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass genau eine Sendespule (220) vorgesehen ist, deren Spulenachse (222) in Deckung mit der Längsachse (102) verläuft, und wobei die Spulenachsen (212) der mindestens zwei Empfangsspulen (210) zur Spulenachse (222) der Sendespule (220) den identischen Abstand aufweisen. Näherungsschalter nach Anspruch 3, dadurch gekennzeichnet, dass 3 bis 6 Empfangsspulen (210) vorgesehen sind, deren Spulenachsen (212) konzentrisch um die Spulenachse (222) der Sendespule (220) angeordnet sind.
Näherungsschalter nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass jede Empfangsspule (210) eine Anzahl S an Windungen aufweist, und jede Sendespule (212) eine Anzahl E an Windung aufweist, wobei das Verhältnis ZS/ZE im Bereich von 0,46 bis 0,30 liegt, idealerweise im Bereich von 0,43 bis 0,32. Näherungsschalter nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass das Verhältnis der Spulengrundflächen 230 einer Empfangsspule (210) zu einer Sendespule (212) 1 ist, plus/minus 0,2. Näherungsschalter nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der lotrechte Abstand (116) zwischen der äußersten Windung einer Empfangsspule (210) und der äußersten Windung der Sendespule (220) ein Vielfaches des Windungsabstandes einer Empfangsspule (210) und im Bereich von 0,8 bis 3 liegt, idealerweise im Bereich von 0,8 bis 1 ,5 liegt. Näherungsschalter nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass mindestens eine Spule und/oder eine Gruppe von Spulen mehrlagig ausgebildet ist und mindestens die folgenden Schichtenabfolge aufweist:
- eine erste Windungsebene mit elektrisch leitenden Windungen,
- eine erste elektrische Isolierebene oder Isolierschicht und
- eine zweite Windungsebene mit einer elektrisch leitenden Windung, und wobei insbesondere die Schichtenabfolge in analoger Weise weitere Windungs- und/oder Isolierebene aufweist. Verfahren zum Erfassen eines Auslösers (110) mittels eines Näherungsschalters (100), dadurch gekennzeichnet, dass der Näherungsschalter (100) ausgebildet ist nach einem der vorherigen Ansprüche.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102022112541.6 | 2022-05-19 | ||
DE102022112541.6A DE102022112541A1 (de) | 2022-05-19 | 2022-05-19 | Näherungsschalter und Verfahren zur Erfassung eines Auslösers |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023222329A1 true WO2023222329A1 (de) | 2023-11-23 |
Family
ID=86328868
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2023/060490 WO2023222329A1 (de) | 2022-05-19 | 2023-04-21 | Näherungsschalter und verfahren zur erfassung eines auslösers |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102022112541A1 (de) |
WO (1) | WO2023222329A1 (de) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4102542A1 (de) * | 1991-01-29 | 1992-07-30 | Turck Werner Kg | Induktiver naeherungsschalter |
DE10318350B3 (de) * | 2003-04-23 | 2004-12-09 | Werner Turck Gmbh & Co. Kg | Induktiver Näherungsschalter |
DE202006004158U1 (de) | 2005-02-08 | 2006-09-21 | Pepperl + Fuchs Gmbh | Induktiver Näherungsschalter basierend auf dem transformatorischen Kopplungsfaktor-Prinzip |
DE102006053023A1 (de) | 2006-02-10 | 2007-08-16 | Werner Turck Gmbh & Co. Kg | Induktiver Näherungsschalter |
DE102015117075A1 (de) * | 2015-10-07 | 2017-04-13 | Turck Holding Gmbh | Sensoranordnung an einem Stromabnehmer |
DE10057773B4 (de) | 2000-11-22 | 2021-05-27 | Werner Turck Gmbh & Co. Kg | Näherungsschalter |
-
2022
- 2022-05-19 DE DE102022112541.6A patent/DE102022112541A1/de active Pending
-
2023
- 2023-04-21 WO PCT/EP2023/060490 patent/WO2023222329A1/de unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4102542A1 (de) * | 1991-01-29 | 1992-07-30 | Turck Werner Kg | Induktiver naeherungsschalter |
DE10057773B4 (de) | 2000-11-22 | 2021-05-27 | Werner Turck Gmbh & Co. Kg | Näherungsschalter |
DE10318350B3 (de) * | 2003-04-23 | 2004-12-09 | Werner Turck Gmbh & Co. Kg | Induktiver Näherungsschalter |
DE202006004158U1 (de) | 2005-02-08 | 2006-09-21 | Pepperl + Fuchs Gmbh | Induktiver Näherungsschalter basierend auf dem transformatorischen Kopplungsfaktor-Prinzip |
DE102006053023A1 (de) | 2006-02-10 | 2007-08-16 | Werner Turck Gmbh & Co. Kg | Induktiver Näherungsschalter |
DE102015117075A1 (de) * | 2015-10-07 | 2017-04-13 | Turck Holding Gmbh | Sensoranordnung an einem Stromabnehmer |
Also Published As
Publication number | Publication date |
---|---|
DE102022112541A1 (de) | 2023-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2920798B1 (de) | Planarübertrager | |
EP1705673B1 (de) | Induktiver Drehübertrager | |
DE3731286A1 (de) | Laminierter transformator | |
EP0557608A1 (de) | Spulenaufbau | |
DE102008037893B4 (de) | Induktiver Leitungsfähigkeitssensor | |
DE202016008306U1 (de) | Z-förmige Doppelring-NFC-Antenne gewickelter Art und Antennensystem | |
EP1011187A1 (de) | Vorrichtung zur berührungsfreien, induktiven Übertragung von Energie | |
WO2021239175A1 (de) | Positionssensor, zentralausrücker und kupplungseinrichtung | |
EP0972291B1 (de) | Transformator | |
EP2302328B1 (de) | Positionsmesseinrichtung mit sich mehrfach kreuzender Senderwindungsanordnung | |
EP3008474B1 (de) | Stromsensoranordnung mit messspulen | |
EP2149784B1 (de) | Magnetisches Wegsensorsystem | |
DE19651923C2 (de) | Sonde zur Erfassung von magnetischen Wechselfeldern | |
DE19739962C2 (de) | Planare, gekoppelte Spulenanordnung | |
WO2023222329A1 (de) | Näherungsschalter und verfahren zur erfassung eines auslösers | |
EP4384777A1 (de) | Sekundärspulenanordnung für ein induktives encodersystem sowie induktives encodersystem | |
DD290738A5 (de) | Sende- und/oder empfangsspule aus mehrebenenleiterplatte | |
DE102020115424A1 (de) | Induktiver Positionssensor | |
EP2284848B1 (de) | Übertrager | |
DE102022121645A1 (de) | Induktiver Näherungssensor und Verfahren zum Erfassen von Objekten | |
DE102021122810A1 (de) | Miniaturisierter, induktiver Näherungssensor und Verfahren zur Detektion eines Erfassungskörpers | |
DE3023847C2 (de) | ||
DE102019132963B4 (de) | Strommessanordnung | |
DE2154731A1 (de) | Lagemessumformer | |
DE202020102991U1 (de) | Gleichtaktdrosselspule |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23721665 Country of ref document: EP Kind code of ref document: A1 |