WO2016078588A1 - 核反应堆冷却剂泵及其非能动停车密封组件 - Google Patents

核反应堆冷却剂泵及其非能动停车密封组件 Download PDF

Info

Publication number
WO2016078588A1
WO2016078588A1 PCT/CN2015/094925 CN2015094925W WO2016078588A1 WO 2016078588 A1 WO2016078588 A1 WO 2016078588A1 CN 2015094925 W CN2015094925 W CN 2015094925W WO 2016078588 A1 WO2016078588 A1 WO 2016078588A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
seal
reactor coolant
seal assembly
nuclear reactor
Prior art date
Application number
PCT/CN2015/094925
Other languages
English (en)
French (fr)
Inventor
丛国辉
罗志远
雍兴平
张翊勋
王学灵
陈春海
陈兴江
马玉杰
叶泉流
唐堃
王力风
Original Assignee
中广核工程有限公司
沈阳鼓风机集团核电泵业有限公司
吉林大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中广核工程有限公司, 沈阳鼓风机集团核电泵业有限公司, 吉林大学 filed Critical 中广核工程有限公司
Publication of WO2016078588A1 publication Critical patent/WO2016078588A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/10Shaft sealings
    • F04D29/14Shaft sealings operative only when pump is inoperative

Definitions

  • the present invention is in the field of nuclear power, and more particularly, the invention relates to a nuclear reactor coolant pump and its passive parking seal assembly.
  • the reactor coolant pump is usually referred to as a main pump, and the hydrostatic shaft seal type main pump is a single-stage, single-suction, vertical mixed-flow pump driven by a three-phase induction motor.
  • 1 is a schematic structural view of a conventional nuclear reactor coolant pump, which is composed of an electric motor 10, a static pressure shaft seal assembly 12 and a hydraulic component 14 in order from top to bottom, the pump shaft runs through the center of the main pump; the reactor coolant is composed of one The impeller pumped at the lower end of the pump shaft is drawn through the bottom of the pump casing and flows upward through the impeller, and then discharged through the vane and an outlet nozzle on the side of the pump casing.
  • the static pressure shaft seal assembly 12 in the main pump employs a three-stage shaft seal including a first seal assembly 15, a second seal assembly 16, and a third seal assembly 17 disposed in sequence between the hydraulic member 14 and the motor 10.
  • the three seal assemblies 15, 16, 17 are disposed in the circumferential direction of the pump shaft 18 and are arranged in the axial direction of the pump shaft 18, and the seal housing 19 is further disposed outside the first seal assembly 15 and the second seal assembly 16.
  • the first sealing component 15 is a balanced hydrostatic type controllable leakage seal
  • the second sealing component 16 is a pressure balanced type end face sealing
  • the third sealing component 17 is a ⁇ type double end sealing.
  • the first seal assembly 15 includes a movable ring 150, a stationary ring 152, a seal insert 154, and a seal insert support 156 that are sequentially disposed between the hydraulic component 14 and the second seal assembly 16; the seal insert 154 and There is a gap between the inner wall of the seal insertion support 156 and the pump shaft 18; the movable ring 150 is fixed on the pump shaft 18 and rotates with the pump shaft 18, and the stationary ring 152 does not rotate but can be in the axial direction or the oblique direction of the pump shaft 18. Move slightly up and down to maintain proper clearance with the follower ring 150.
  • Static ring under normal operating conditions 152 through the hydrostatic balance, the gap between the moving ring 150 and the stationary ring 152 is maintained to form a liquid film, so that the two end faces of the moving ring 150 and the stationary ring 152 slide relative to each other on both sides of a thin water film. It is not in direct contact, thereby controlling the amount of leakage and the amount of wear of the first seal assembly 15.
  • An O-ring and an auxiliary element are disposed between the stationary ring 152 and the adjacent structural member to form a slippable auxiliary seal between the high pressure zone and the low pressure zone.
  • the cooling of the first seal assembly 15 is ensured by the injected water provided by the RCV system (Chemical and Volume Control System).
  • the RCV system Controller and Volume Control System
  • the RCV system function will be lost and the normal cooling of the static pressure shaft seal assembly 12 in the main pump will not be provided.
  • the function of the RRI system Equipment Cooling Water System
  • the high temperature fluid of the primary circuit referring to the main circuit of the reactor coolant system
  • the main pump shaft seal function will quickly threaten the first seal assembly 15, and its thermal stress may cause the main pump shaft seal function to be lost, thereby destroying the primary circuit pressure boundary.
  • the nominal flow of the hydraulic test pump is 6m 3 / h, can only meet the shaft seal water injection demand of 3 main pumps of one unit; this leads to the failure of the shaft seal of the main pump emergency shaft seal of another unit when the whole plant is disconnected. Accidents; after losing all the hydration means, the leakage of the primary circuit could not be replenished, and the water quantity could not be guaranteed, which would make the core gradually exposed and eventually melted.
  • some nuclear power plants propose to ensure the safety of the core through the closed reactor coolant leakage path to avoid the dependence of the main pump emergency shaft seal injection system under the entire factory.
  • the flow direction of the high temperature and high pressure fluid at the first sealing assembly 15 of the main pump is as shown in the arrow of FIG.
  • the key to limiting reactor coolant leakage to the environment is to seal the two important sealing locations 20, 22.
  • Some existing nuclear power plants have begun to adopt passive parking seal technology to ensure the integrity of the main pump shaft seal. The specific operation mode is as follows: 1) directly increase the passive insertion in the seal insert 154 of the main pump first seal assembly 15.
  • the seal assembly 24 is parked to achieve a seal at the first seal location 20; 2) a high temperature resistant rubber O-ring 26 is utilized to achieve a seal at the second seal location 22 (ie, between the seal insert support 156 and the seal housing 19).
  • the existing passive parking seal assembly 24 has many components and complicated assembly, which not only makes the shaft seal assembly difficult to manufacture and cost, but also easily causes seal failure due to failure of one or more components.
  • the object of the present invention is to provide a nuclear reactor coolant pump with a simple structure and a firm seal and a passive parking seal assembly thereof, so as to improve the reliability of the main pump shaft seal without relying on the main pump emergency shaft seal injection system. Prevent the main pump shaft seal from breaking.
  • the present invention provides a nuclear reactor coolant pump passive parking seal assembly including a seal ring, a tightening ring and a fusible support block;
  • the seal ring is a split ring with an adjustable inner diameter, normal operation
  • the sealing ring surrounds the nuclear reactor coolant pump shaft in an open state and maintains a gap with the pump shaft, so that the reactor coolant can flow freely between the seal ring and the pump shaft;
  • the tightening ring is enclosed on the outer peripheral wall of the seal ring,
  • the utility model can apply a sufficient holding force to the sealing ring under the condition of the whole factory breaking electric condition, and drive the sealing ring to close and hold the pump shaft;
  • the fusible supporting block is embedded in the opening of the sealing ring under normal working conditions to make the sealing ring It remains open and melts out under the condition of the entire factory, so that the seal ring can be closed under the action of the clasp, thus effectively preventing the flow of the reactor coolant along the pump shaft.
  • annular groove is formed in the outer peripheral wall of the seal ring, and the tightening ring is received in the annular groove of the seal ring to be positioned relative to the seal ring.
  • the number of openings formed in the seal ring is 1-3, and both ends of each opening are joined to each other by a plug structure having a certain length.
  • the opening of the seal ring is a plug structure which forms a notch when opened, and the fusible support block is installed in a gap formed when the seal ring is opened to ensure The seal ring is open during normal operating conditions.
  • the fusible support block is fixed on the tightening ring, and the self-retracting ring protrudes into the opening of the sealing ring to ensure that the sealing ring is in normal condition. It is on when working.
  • the seal ring is provided with a plurality of through grooves on the end surface facing the inflow direction of the coolant, and each of the through grooves extends in the radial direction of the seal ring and penetrates The seal ring allows the reactor coolant to reach the outer edge of the seal ring at any time along the channel.
  • the seal ring forms a pressure slope at the boundary between the outer peripheral wall and the end face facing the coolant inflow direction.
  • the tightening ring is a memory alloy ring whose diameter decreases with increasing temperature.
  • the tightening ring does not generate or only generates a small holding force under normal working conditions; A large grip is generated to drive the seal ring into the pump shaft.
  • the tightening ring is a circlip, which has a tendency to tighten after installation.
  • the seal ring is made of PEEK, PEEK containing glass fiber or PEEK containing carbon fiber, which can withstand a high temperature of 300 degrees Celsius.
  • the seal The ring is made of metal.
  • the present invention also provides another nuclear reactor coolant pump passive parking seal assembly including a seal ring, a tightening ring and a fusible support block; both the seal ring and the tightening ring are adjustable
  • the inner ring has a split ring.
  • the seal ring Under normal conditions, the seal ring surrounds the nuclear reactor coolant pump shaft and opens a gap with the pump shaft, so that the reactor coolant can flow freely between the seal ring and the pump shaft; the tightening ring is surrounded by The outer peripheral wall of the sealing ring can exert a sufficient holding force on the sealing ring under the condition of the whole factory breaking electric condition, driving the sealing ring to close and holding the pump shaft; the fusible supporting block is embedded in the tightening under normal working conditions In the opening of the ring, the tightening ring is kept in an open state in which the tightening force cannot be applied to the sealing ring, but in the case of the entire factory, the fusible support block will melt and fail, so that the tightening ring can be closed and sealed. The ring exerts a holding force that closes the seal ring and effectively blocks the flow of the reactor coolant along the pump shaft.
  • annular groove is formed in the outer peripheral wall of the seal ring, and the tightening ring is received in the annular groove of the seal ring to be relatively sealed. Ring positioning.
  • the openings of the seal ring and the tightening ring are staggered from each other, and the fusible support block and the tightening ring are housed in the annular groove of the seal ring. in.
  • the seal ring is provided with a plurality of through grooves on an end surface facing the inflow direction of the coolant, each of the grooves being along the radial direction of the seal ring Extending and penetrating the sealing ring, the reactor coolant can reach the outer edge of the sealing ring along the through groove at any time; the sealing ring forms a pressure inclined surface at the boundary between the outer peripheral wall and the end surface facing the inflow direction of the coolant.
  • the tightening ring is a memory alloy ring whose diameter decreases with an increase in temperature, or a circlip which has a tendency to tighten.
  • the present invention also provides a nuclear reactor coolant pump including a motor, a static pressure shaft seal assembly, and a hydraulic component disposed in sequence from top to bottom, and a pump shaft extending through the center of the main pump;
  • the static pressure shaft seal assembly includes a plurality of fluidly disposed between the main pump hydraulic component and the motor a seal assembly, each of which is disposed in a circumferential direction of the pump shaft; wherein: at least one of the plurality of seal assemblies and the pump shaft are provided with the passive parking seal assembly of any of the above paragraphs, thereby The sealing assembly and the pump shaft are sealed by a passive parking seal assembly under the condition of the entire factory.
  • a seal assembly closest to the hydraulic component in the static pressure shaft seal assembly is a first seal assembly, and a nuclear reactor coolant pump passive stop seal assembly is installed in the static pressure shaft seal assembly. On a sealed assembly.
  • the first seal assembly of the nuclear reactor coolant pump static pressure shaft seal assembly comprises a moving ring, a stationary ring, a sealing insert and a seal insertion support, and a nuclear reactor coolant pump passive parking
  • the sealing assembly is mounted in the receiving groove formed by the inner wall of the sealing insert or in the receiving groove formed by the inner wall of the sealing insertion support.
  • the static pressure shaft seal assembly adopts a three-stage shaft seal, and includes a first seal assembly, a second seal assembly and a third seal assembly which are sequentially disposed between the hydraulic component and the motor;
  • the first sealing component is a balanced hydrostatic type controllable leakage sealing
  • the second sealing component is a pressure balanced type end face sealing
  • the third sealing component is a ⁇ type double end sealing.
  • the nuclear reactor coolant pump passive parking seal assembly of the invention has only three components, which can not only meet the shaft seal integrity of the whole plant when the electrical condition is not dependent on the emergency shaft seal injection system. Sexual requirements, but also has the advantages of simple structure and firm sealing.
  • FIG. 1 is a schematic structural view of a conventional nuclear reactor coolant pump.
  • Figure 2 is a cross-sectional view of the static pressure shaft seal assembly of the main pump of Figure 1.
  • Figure 3 is a cross-sectional view of the first seal assembly of the main pump of Figure 1.
  • FIG. 4 is a schematic structural view of a conventional passive parking seal technology.
  • FIG. 5 is a schematic view showing the installation position of the nuclear reactor coolant pump passive parking seal assembly on the first seal assembly of the nuclear reactor coolant pump of the present invention.
  • FIG. 6 is a schematic exploded view of the passive parking seal assembly of the nuclear reactor coolant pump of the present invention.
  • Figure 7 is an enlarged view of a portion A of Figure 6.
  • Figure 8 is a schematic view showing the combined structure of the passive shutdown seal assembly of the nuclear reactor coolant pump of the present invention.
  • FIG. 9 is a schematic view showing the use state of the passive reactor seal assembly of the nuclear reactor coolant pump of the present invention and the flow direction of the coolant in the vicinity thereof under normal working conditions.
  • Fig. 10 is a schematic view showing the state of use of the passive parking seal assembly of the nuclear reactor coolant pump of the present invention and the flow direction of the coolant in the vicinity thereof under the condition of the whole plant breaking electrical condition.
  • the nuclear reactor coolant pump of the present invention comprises an electric motor arranged in order from top to bottom, a static pressure shaft seal assembly and a hydraulic component, and a pump shaft running through the center of the main pump; the reactor coolant is pumped by an impeller installed at the lower end of the pump shaft. It is drawn in through the bottom of the pump casing and flows upward through the impeller, and then discharged through the vane and an outlet nozzle on the side of the pump casing.
  • the static pressure shaft seal assembly adopts a three-stage shaft seal, and includes a first seal assembly, a second seal assembly and a third seal assembly which are sequentially disposed between the main pump hydraulic component and the electric motor; the three seal assemblies are disposed in the circumferential direction of the pump shaft and Arranged in the axial direction of the pump shaft, a sealing shell is further disposed outside the first sealing assembly and the second sealing assembly.
  • the first sealing component is a balanced hydrostatic type controllable leakage sealing
  • the second sealing component is a pressure balanced type end face sealing
  • the third sealing component is a ⁇ type double end sealing.
  • the first sealing assembly includes a moving ring, a stationary ring, which are sequentially disposed between the hydraulic component and the second sealing component, The seal insert and the seal insert support; a gap exists between the seal insert and the inner wall of the seal insert support and the pump shaft; a portion of the outer wall of the seal insert support abuts against the seal shell to seal with the seal shell.
  • the moving ring is fixed on the pump shaft and rotates with the pump shaft.
  • the static ring does not rotate but can move up and down slightly along the axial or oblique direction of the pump shaft to maintain proper clearance with the moving ring.
  • the static ring Under normal operating conditions, the static ring is hydrostatically balanced, and a small gap is formed between the moving ring and the stationary ring to form a liquid film, so that the two end faces of the moving ring and the stationary ring are on both sides of a thin water film. Relative sliding, no direct contact during operation, thereby controlling the amount of leakage and wear of the first seal assembly.
  • An O-ring and an auxiliary element are disposed between the stationary ring and the adjacent structural member to form a slippable auxiliary seal between the high pressure zone and the low pressure zone.
  • the present invention also provides a passive parking seal assembly between the first seal assembly and the pump shaft.
  • the nuclear reactor coolant pump passive parking seal assembly 30 of the present invention is installed in a receiving groove formed by the inner wall of the sealing insert 154 of the first seal assembly 15 of the nuclear reactor coolant pump, under normal working conditions and the pump shaft. There is a gap between the 18 so that the reactor coolant can flow freely along the pump shaft 18, but will be tightly attached to the pump shaft 18 to achieve a circumferential seal between the first seal assembly 15 and the pump shaft 18 under full plant electrical conditions. .
  • the nuclear reactor coolant pump passive parking seal assembly 30 of the present invention includes a seal ring 40, a fusible support block 50 mounted on the seal ring 40, and a tightening ring surrounding the outer peripheral wall of the seal ring 40. 60.
  • the seal ring 40 is a split ring with an adjustable inner diameter, and the two ends of the opening 42 formed therein are joint structures which are fitted to each other and have a certain length, preferably a plug structure: when the ends of the opening 42 are completely engaged, the seal ring 40 In the closed state, it appears as a non-notched closed ring, at which time its inner diameter matches the diameter of the pump shaft 18 at the corresponding position; when the two ends of the opening 42 are engaged, the sealing ring 40 is in an open state and presents as a
  • the ring with the notch 420 has a larger inner diameter than the closed state.
  • An annular groove 44 for receiving the tightening ring 60 is opened on the outer peripheral wall of the seal ring 40.
  • the seal ring 40 is formed with a pressure inclined surface 46 (shown in FIG. 9) at a boundary between the outer peripheral wall and the end surface facing the coolant inflow direction, and a plurality of through grooves 48 are uniformly formed on the end surface facing the coolant inflow direction.
  • the groove 48 is along the sealing ring 40 Radially extending through the seal ring 40.
  • the sealing ring 40 is made of PEEK (PEEK is short for polyetheretherketone, Chinese name is polyetheretherketone) or PEEK containing glass fiber or carbon fiber, so it can withstand high temperatures of 300 degrees Celsius.
  • the shape of the fusible support block 50 is adapted to the shape of the notch 420 formed in the open state of the seal ring 40, which fits into the notch 420 to prevent the seal ring 402 from closing.
  • the material of the fusible support block 50 is such that it can be melted at a set temperature after a set time, so that it will be melted by the high temperature fluid and lose the opening to the seal ring 40 within the set time under the entire factory electrical condition. 42 support.
  • the tightening ring 60 is received in the annular groove 44 of the seal ring 40, which is made of a memory alloy material, and the diameter is reduced with an increase in temperature: under normal operating conditions, the tightening ring 60 does not produce or only produces very much a small holding force, the diameter in this state is adapted to the diameter of the annular groove 44 of the sealing ring 40 propped by the fusible support block 50; in the case of a factory-completed electrical condition, the tightening ring 60 will be temperature-dependent The rise creates a greater grip and thus can drive the seal ring 40, which is supported by the lost fusible support block 50, to grip the pump shaft 18, creating an effective circumferential seal between the pump shaft 18 and the seal ring 40.
  • the seal ring 40 of the nuclear reactor coolant pump passive stop seal assembly 30 of the present invention is opened under the support of the fusible support block 50, and a gap is maintained between the seal ring 40 and the pump shaft 18. 32, such that coolant leakage can flow freely between the seal insert 154 and the pump shaft 18 in the direction indicated by the arrow and into the first seal leak line.
  • the high-temperature high-pressure reactor coolant flows upward along the pump shaft 18, and the tightening ring 60 has memory characteristics due to its alloy material. There is a tendency to drive the seal ring 40 to grip the pump shaft 18, but the seal ring 40 remains open due to the prevention of the fusible support block 50.
  • the temperature at the fusible support block 50 reaches its melting temperature and elapses for a certain period of time (a predetermined time, typically a few minutes to a dozen minutes), the fusible support block 50 will lose support due to phase change volatilization.
  • the sealing ring 40 is contracted inwardly under the tightening force of the tightening ring 60 to close and hold the pump shaft 18 to realize the sealing function; at this time, the high temperature and high pressure coolant enters the passive parking seal through the through groove 48.
  • the nuclear reactor coolant pump passive parking seal assembly 30 of the present invention may also be mounted on the seal insert 154 of the first seal assembly 15 instead of the seal insert support of the first seal assembly 15.
  • the piece 156 as long as the purpose of limiting the leakage of the reactor coolant to the environment can be achieved; wherein the opening on the seal ring 40 can be set to one to three as needed; the fusible support block 50 can be directly embedded as shown in FIG.
  • the notch 420 may be fixed in the tightening ring 60 and inserted into the opening 42 of the sealing ring 40, or may not be embedded in the sealing ring 40, but instead embedded in the notch provided by the tightening ring 60 to tighten
  • the ring 60 cannot apply a tight force to the seal ring 40, as long as the seal ring 40 can be prevented from closing under normal operating conditions; the seal ring 40 can also be made of metal; the tightening ring 60 can also be a snap spring, and A pre-tightening force is applied to the seal ring 40 sufficient to hold the pump shaft 18 after installation.
  • the nuclear reactor coolant pump passive parking seal assembly of the present invention drives the seal ring 40 through the tightening ring 60 to ensure the functional integrity of the main pump static pressure shaft seal under the condition of the entire factory, thus disarming the emergency shaft.
  • the dependency of the injection system and the active drive device is reduced, and the core damage probability of the nuclear power plant is effectively reduced; in addition, since the present invention only slots the inner wall of the seal insert 154 of the first seal assembly 15 or the seal insert support member 156 Therefore, it has no effect on the other structure of the main pump, and does not affect the performance of the main pump when it is operating under normal conditions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种核反应堆冷却剂泵非能动停车密封组件(30),包括密封环(40)、收紧环(60)和可熔支撑块(50);密封环(40)为开口环,正常工况下,密封环(40)以开启状态环绕泵轴(18)并与泵轴(18)保持间隙;收紧环(60)包围在密封环(40)的外周壁上,其在全厂断电工况下给密封环(40)提供足够大的抱紧力,驱使密封环(40)闭合抱紧泵轴(18);可熔支撑块(50)嵌于密封环(40)或收紧环(60)的开口中,其在正常工况下阻止所在环闭合而确保密封环(40)处于开启状态,并在全厂断电工况下熔化失效而使密封环(40)在收紧环(60)的作用下闭合。以及一种包括这种停车密封组件(30)的核反应堆冷却剂泵。这种非能动停车密封组件仅有三个元件,不仅能够在不依赖于应急轴封注入系统的条件下满足全厂断电工况时的轴封完整性要求,而且结构简单、密封牢固。

Description

核反应堆冷却剂泵及其非能动停车密封组件 技术领域
本发明属于核电领域,更具体地说,本发明涉及一种核反应堆冷却剂泵及其非能动停车密封组件。
背景技术
在压水堆核电厂中,通常将反应堆冷却剂泵称为主泵,流体静压轴封型主泵是由三相感应式电动机驱动的单级、单吸、立式混流泵。图1是一种现有核反应堆冷却剂泵的结构示意图,其从上至下依次由电动机10、静压轴封组件12和水力部件14组成,泵轴贯穿整个主泵的中心;反应堆冷却剂由一个装在泵轴下端的叶轮泵送,其通过泵壳底部吸入并向上流过叶轮,然后通过导叶和泵壳侧面的一个出口接管排出。
请参阅图2,主泵中的静压轴封组件12采用三级轴封,包括依次设置在水力部件14和电动机10之间的第一密封组件15、第二密封组件16和第三密封组件17;三个密封组件15、16、17设置在泵轴18的周向并沿泵轴18轴向依次排列,第一密封组件15和第二密封组件16外部还设有密封壳19。其中,第一密封组件15是平衡型流体静压型可控泄漏密封,第二密封组件16是压力平衡型端面密封,第三密封组件17是堰式双端面密封。
请参阅图3,第一密封组件15包括依次设置在水力部件14和第二密封组件16之间的动环150、静环152、密封插入件154和密封插入支撑件156;密封插入件154和密封插入支撑件156的内壁均与泵轴18之间存在缝隙;动环150固定在泵轴18上而随泵轴18转动,静环152不转动但可以沿泵轴18的轴向或倾斜方向小幅上下移动,以跟动环150保持恰当间隙。在正常运行工况下,静环 152通过流体静力平衡,控制动环150、静环152之间保持极小的间隙形成液膜,使动环150、静环152两个端面在一层薄水膜两侧相对滑动,运转时不直接接触,从而控制第一密封组件15的泄漏量和磨损量。在静环152与相邻的结构件之间配有O形环及辅助元件,以在高压区和低压区之间形成一个可滑移的辅助密封。
在正常运行工况下,第一密封组件15的冷却由RCV系统(Chemical and Volume Control System,即化学及容积控制系统)提供的注入水来保障。但是,在全厂断电工况下,RCV系统功能会丧失而无法为主泵中的静压轴封组件12提供正常冷却,同时,RRI系统(Equipment Cooling Water System,即设备冷却水系统)的功能也会丧失,无法为主泵中的第一密封组件15提供备用冷却。此时,一回路(指反应堆冷却剂系统主回路)的高温流体将很快威胁到第一密封组件15,其热应力可能使主泵轴封功能丧失,从而破坏一回路压力边界。
为此,部分核电厂在全厂断电工况发生后,通过水压试验泵柴油发电机组(LLS系统)向一回路的水压试验泵供电,以保证水压试验泵向主泵轴封应急注水,维持第一密封组件15处的冷却及润滑,同时将高温高压反应堆冷却剂限制在第一密封组件15下方,保证第一密封组件15处的温度在其运行要求的范围内,防止主泵轴封破口事故(Seal LOCA)发生,保证一回路压力边界的完整性。但是,由于现有核电厂多为双堆布置,两台机组共用一台水压试验泵,在设计上也仅考虑单台机组发生断电事故,因此水压试验泵的名义流量为6m3/h,仅能满足一台机组3台主泵的轴封水注入量需求;这导致在全厂断电工况时,另外一台机组的主泵应急轴封注入无法保证而发生轴封破口事故;在失去了所有的补水手段后,一回路的泄漏无法得到补充,水装量得不到保证,将使得堆芯逐渐裸露并最终熔化。
为了解决上述问题,一些核电厂提出通过封闭反应堆冷却剂泄露途径来保证堆芯的安全,以避免全厂断电工况下对主泵应急轴封注入系统的依赖。在全厂断电工况下,主泵第一密封组件15处的高温高压流体流动方向如图4的箭头 所示,从图中可以看出,限制反应堆冷却剂向环境泄漏的关键在于对两个重要密封位置20、22进行密封。现有的部分核电厂已开始采用非能动停车密封技术来保证主泵轴封的完整性,其具体操作方式是:1)直接在主泵第一密封组件15的密封插入件154内增加非能动停车密封组件24,来实现第一密封位置20处的密封;2)采用耐高温橡胶O圈26,实现第二密封位置22处(即密封插入支撑件156与密封壳19之间)的密封。但是,现有的非能动停车密封组件24大都元件众多且装配复杂,不仅使得轴封组件制造难度和成本加大,而且易于因某一个或多个元件故障而导致密封失效。
有鉴于此,确有必要提供一种结构简单、密封牢固的核反应堆冷却剂泵非能动停车密封组件。
发明内容
本发明的目的在于:提供一种结构简单、密封牢固的核反应堆冷却剂泵及其非能动停车密封组件,以提高主泵轴封的可靠性,在不依赖主泵应急轴封注入系统的情况下防止主泵轴封破口事故的发生。
为了实现上述发明目的,本发明提供了一种核反应堆冷却剂泵非能动停车密封组件,其包括密封环、收紧环和可熔支撑块;所述密封环为可调整内径的开口环,正常工况下,密封环以开启状态环绕核反应堆冷却剂泵泵轴并与泵轴保持间隙,使反应堆冷却剂可以在密封环与泵轴之间自由流动;收紧环包围在密封环的外周壁上,其在全厂断电工况下能够对密封环施加足够大地抱紧力,驱使密封环闭合而抱紧泵轴;可熔支撑块在正常工况下嵌于密封环的开口中而使密封环保持开启状态,并在全厂断电工况下熔化失效,使密封环得以在抱紧环的作用下闭合,从而有效阻止反应堆冷却剂沿泵轴的流动。
作为本发明核反应堆冷却剂泵非能动停车密封组件的一种改进,所述密封环的外周壁上开设有一个环形凹槽,收紧环收容在密封环的环形凹槽中而相对密封环定位。
作为本发明核反应堆冷却剂泵非能动停车密封组件的一种改进,所述密封环上开设的开口数量为1~3个,每一开口的两端都通过具有一定长度的插接结构彼此接合。
作为本发明核反应堆冷却剂泵非能动停车密封组件的一种改进,所述密封环的开口为开启时形成缺口的插接结构,可熔支撑块安装在密封环开启时所形成的缺口中,确保密封环在正常工况时处于开启状态。
作为本发明核反应堆冷却剂泵非能动停车密封组件的一种改进,所述可熔支撑块固定在收紧环上,其自收紧环凸出而插入密封环的开口中,确保密封环在正常工况时处于开启状态。
作为本发明核反应堆冷却剂泵非能动停车密封组件的一种改进,所述密封环在朝向冷却剂流入方向的端面上开设有多个通槽,每一通槽均沿密封环的径向延伸并贯通密封环,使得反应堆冷却剂随时可以沿通槽到达密封环的外缘处。
作为本发明核反应堆冷却剂泵非能动停车密封组件的一种改进,所述密封环在外周壁与朝向冷却剂流入方向的端面交界处成型出一个受压斜面。
作为本发明核反应堆冷却剂泵非能动停车密封组件的一种改进,所述收紧环为记忆合金环,其直径随温度的升高而缩小。
作为本发明核反应堆冷却剂泵非能动停车密封组件的一种改进,所述收紧环在正常工况下,不产生或仅产生很小的抱紧力;在全厂断电工况下,将产生较大的抱紧力而驱使密封环抱紧泵轴。
作为本发明核反应堆冷却剂泵非能动停车密封组件的一种改进,所述收紧环为卡簧,其安装后一直具有收紧倾向。
作为本发明核反应堆冷却剂泵非能动停车密封组件的一种改进,所述密封环的材质为PEEK、含有玻璃纤维的PEEK或是含有碳纤维的PEEK,其能够耐受300摄氏度的高温。
作为本发明核反应堆冷却剂泵非能动停车密封组件的一种改进,所述密封 环由金属制成。
为了实现上述发明目的,本发明还提供了另一种核反应堆冷却剂泵非能动停车密封组件,其包括密封环、收紧环和可熔支撑块;所述密封环和收紧环均为可调整内径的开口环,正常工况下,密封环以开启状态环绕核反应堆冷却剂泵泵轴并与泵轴保持间隙,使反应堆冷却剂可以在密封环与泵轴之间自由流动;收紧环包围在密封环的外周壁上,其在全厂断电工况下能够对密封环施加足够大地抱紧力,驱使密封环闭合而抱紧泵轴;可熔支撑块在正常工况下嵌于收紧环的开口中,将收紧环保持在无法对密封环施加抱紧力的开启状态,但在全厂断电工况下,可熔支撑块将熔化失效,使收紧环得以闭合而对密封环施加抱紧力,密封环闭合并有效阻止反应堆冷却剂沿泵轴的流动。
作为本发明另一种核反应堆冷却剂泵非能动停车密封组件的一种改进,所述密封环的外周壁上开设有一个环形凹槽,收紧环收容在密封环的环形凹槽中而相对密封环定位。
作为本发明另一种核反应堆冷却剂泵非能动停车密封组件的一种改进,所述密封环和收紧环的开口彼此错开,可熔支撑块与收紧环一起收容在密封环的环形凹槽中。
作为本发明另一种核反应堆冷却剂泵非能动停车密封组件的一种改进,所述密封环在朝向冷却剂流入方向的端面上开设有多个通槽,每一通槽均沿密封环的径向延伸并贯通密封环,使得反应堆冷却剂随时可以沿通槽到达密封环的外缘处;密封环在外周壁与朝向冷却剂流入方向的端面交界处成型出一个受压斜面。
作为本发明另一种核反应堆冷却剂泵非能动停车密封组件的一种改进,所述收紧环为直径随温度的升高而缩小的记忆合金环,或是一直有收紧倾向的卡簧。
为了实现上述发明目的,本发明还提供了一种核反应堆冷却剂泵,其包括 从上至下依次设置的电动机、静压轴封组件和水力部件,以及一根贯穿整个主泵中心的泵轴;所述静压轴封组件包括依次设置在主泵水力部件和电动机之间的多个密封组件,这些密封组件均设置在泵轴的周向;其特征在于:所述多个密封组件中的至少一个与泵轴之间设有上述任一段落所述的非能动停车密封组件,从而在全厂断电工况下通过非能动停车密封组件实现该密封组件与泵轴的密封。
作为本发明核反应堆冷却剂泵的一种改进,所述静压轴封组件中最靠近水力部件的一个密封组件为第一密封组件,核反应堆冷却剂泵非能动停车密封组件安装在静压轴封组件的第一密封组件上。
作为本发明核反应堆冷却剂泵的一种改进,所述核反应堆冷却剂泵静压轴封组件的第一密封组件包括动环、静环、密封插入件和密封插入支撑件,核反应堆冷却剂泵非能动停车密封组件安装在密封插入件内壁所开设的收容槽中,或是安装在密封插入支撑件内壁所开设的收容槽中。
作为本发明核反应堆冷却剂泵的一种改进,所述静压轴封组件采用三级轴封,包括依次设置在水力部件和电动机之间的第一密封组件、第二密封组件和第三密封组件;其中,第一密封组件是平衡型流体静压型可控泄漏密封,第二密封组件是压力平衡型端面密封,第三密封组件是堰式双端面密封。
与现有技术相比,本发明核反应堆冷却剂泵非能动停车密封组件仅有三个元件,其不仅能够在不依赖于应急轴封注入系统的条件下满足全厂断电工况时的轴封完整性要求,而且具有结构简单、密封牢固的优点。
附图说明
下面结合附图和具体实施方式,对本发明核反应堆冷却剂泵、非能动停车密封组件及其有益技术效果进行详细说明。
图1为一种现有核反应堆冷却剂泵的结构示意图。
图2是图1所示主泵中的静压轴封组件的剖视图。
图3是图1所示主泵中的第一密封组件的剖视图。
图4为现有非能动停车密封技术的结构示意图。
图5为本发明核反应堆冷却剂泵非能动停车密封组件在核反应堆冷却剂泵第一密封组件上的安装位置示意图。
图6为本发明核反应堆冷却剂泵非能动停车密封组件的分解结构示意图。
图7为图6中A部分的放大图。
图8为本发明核反应堆冷却剂泵非能动停车密封组件的组合结构示意图。
图9为正常工况下本发明核反应堆冷却剂泵非能动停车密封组件的使用状态及其附近冷却剂流向的示意图。
图10为全厂断电工况下本发明核反应堆冷却剂泵非能动停车密封组件的使用状态及其附近冷却剂流向的示意图。
具体实施方式
为了使本发明的目的、技术方案及其有益技术效果更加清晰,以下结合附图和具体实施方式,对本发明进行进一步详细说明。应当理解的是,本说明书中描述的具体实施方式仅仅是为了解释本发明,并非为了限定本发明。
本发明核反应堆冷却剂泵包括从上至下依次设置的电动机、静压轴封组件和水力部件,以及一根贯穿整个主泵中心的泵轴;反应堆冷却剂由一个装在泵轴下端的叶轮泵送,其通过泵壳底部吸入并向上流过叶轮,然后通过导叶和泵壳侧面的一个出口接管排出。
静压轴封组件采用三级轴封,包括依次设置在主泵水力部件和电动机之间的第一密封组件、第二密封组件和第三密封组件;三个密封组件设置在泵轴的周向并沿泵轴轴向依次排列,第一密封组件和第二密封组件外部还设有密封壳。其中,第一密封组件是平衡型流体静压型可控泄漏密封,第二密封组件是压力平衡型端面密封,第三密封组件是堰式双端面密封。
第一密封组件包括依次设置在水力部件和第二密封组件之间的动环、静环、 密封插入件和密封插入支撑件;密封插入件和密封插入支撑件的内壁均与泵轴之间存在缝隙;密封插入支撑件的部分外壁紧贴密封壳而与密封壳密封。动环固定在泵轴上而随泵轴转动,静环不转动但可以沿泵轴轴向或倾斜方向小幅上下移动,以跟动环保持恰当间隙。在正常运行工况下,静环通过流体静力平衡,控制动环、静环之间保持极小的间隙形成液膜,使动环、静环的两个端面在一层薄水膜两侧相对滑动,运转时不直接接触,从而控制第一密封组件的泄漏量和磨损量。在静环与相邻的结构件之间配有O形环及辅助元件,以在高压区和低压区之间形成一个可滑移的辅助密封。为了能够在全厂断电工况下保证堆芯的安全,本发明还在第一密封组件与泵轴之间设置了一个非能动停车密封组件。
请参阅图5,本发明核反应堆冷却剂泵非能动停车密封组件30安装在核反应堆冷却剂泵第一密封组件15的密封插入件154内壁所开设的收容槽中,其在正常工况下与泵轴18之间存在间隙,使反应堆冷却剂可以沿泵轴18自由流动,但在全厂断电工况下将紧贴泵轴18而实现第一密封组件15与泵轴18之间的周向密封。
请参阅图6至图9,本发明核反应堆冷却剂泵非能动停车密封组件30包括密封环40、安装在密封环40上的可熔支撑块50和环绕在密封环40外周壁上的收紧环60。
密封环40为可调整内径的开口环,其上所开设开口42的两端为彼此嵌合且具有一定长度的接合结构,优选为插接结构:当开口42两端完全接合时,密封环40处于闭合状态而呈现为一个无缺口的闭合环,此时其内径与相应位置处泵轴18的直径相适配;当开口42的两端部分接合时,密封环40处于开启状态而呈现为一个带缺口420的圆环,此时的内径较闭合状态时略大。密封环40的外周壁上开设有一个用于收容收紧环60的环形凹槽44。密封环40在外周壁与朝向冷却剂流入方向的端面交界处成型出一个受压斜面46(如图9所示),并在朝向冷却剂流入方向的端面上均匀开设有多个通槽48,通槽48沿密封环40的 径向延伸并贯通密封环40。密封环40的材质为PEEK(PEEK是polyetheretherketone的简称,中文名称为聚醚醚酮)或是含有玻璃纤维或碳纤维的PEEK,因此可以耐受300摄氏度的高温。
可熔支撑块50的形状与密封环40开启状态下所形成缺口420的形状相适配,其嵌合在缺口420中而使密封环402无法闭合。可熔支撑块50的材质使其可在设定温度下、经设定时间后熔化,因此在全厂断电工况下将在设定时间内被高温流体熔化而失去对密封环40的开口42的支撑。
收紧环60收容在密封环40的环形凹槽44中,其由记忆合金材料制成,直径随温度的升高而缩小:在在正常工况下,收紧环60不产生或仅产生很小的抱紧力,此状态下的直径与由可熔支撑块50撑开的密封环40的环形凹槽44直径相适配;在全厂断电工况下,收紧环60将因温度升高而产生较大的抱紧力,因此可以驱使失去可熔支撑块50支撑的密封环40抱紧泵轴18,在泵轴18与密封环40之间形成有效地周向密封。
请参阅图9,在正常工况下,本发明核反应堆冷却剂泵非能动停车密封组件30的密封环40在可熔支撑块50的支撑下处于开启状态,密封环40与泵轴18间保持间隙32,使得冷却剂泄露可以沿箭头所示方向在密封插入件154和泵轴18之间自由流动,并进入到第一密封泄漏管线中。
请参阅图10,在全厂断电工况下,主泵轴封注入水和冷却水同时丧失时,高温高压反应堆冷却剂沿泵轴18向上流动,收紧环60由于其合金材料的记忆特性,产生较大的抱紧力,有驱动密封环40抱紧泵轴18的倾向,但由于可熔支撑块50的阻止,密封环40依然维持开启状态。当可熔支撑块50处的温度达到其熔化温度并经过一定的时间(时间为预设时间,一般为几分到十几分)后,可熔支撑块50将因产生相变挥发而失去支撑作用,密封环40便在收紧环60的收紧力作用下向内收缩而闭合并抱紧泵轴18,实现密封功能;此时,高温高压冷却剂通过通槽48进入非能动停车密封的外侧区域,并对密封环40施加压力, 由于密封环40与密封插入支撑件156处的间隙很小,高温高压冷却剂的压力将使密封环40向密封插入支撑件156和泵轴18两个方向压紧而进一步达到自密封;同时,由于密封环40的材料在高温下略微变软,在泵轴18与密封插入支撑件156之间的缝隙有微量挤出,因此能够使得密封效果达到最佳。
在不同的实施方式中,本发明核反应堆冷却剂泵非能动停车密封组件30也可以不安装在第一密封组件15的密封插入件154上,而改为安装在第一密封组件15的密封插入支撑件156上,只要能达到限制反应堆冷却剂向环境泄漏的目的即可;其中,密封环40上的开口可以根据需要设为一至三个;可熔支撑块50可以如图8所示那样直接嵌入缺口420中,也可以固定在收紧环60中并插入密封环40的开口42中,还可以不嵌入密封环40中,而是改为嵌入收紧环60所开设的缺口中而使收紧环60无法对密封环40施加抱紧力,总之只要能在正常工况下防止密封环40闭合即可;密封环40还可以由金属制成;收紧环60也可以为卡簧,并在安装后一直对密封环40施加足以使其抱紧泵轴18的预紧力。
通过以上描述可知,本发明核反应堆冷却剂泵非能动停车密封组件通过收紧环60驱使密封环40保证主泵静压轴封在全厂断电工况下的功能完整性,因此解除了对应急轴封注入系统和能动驱动装置的依赖,并且有效降低了核电厂的堆芯损坏概率;另外,由于本发明只是对第一密封组件15的密封插入件154或密封插入支撑件156的内壁进行开槽,因此对主泵的其他结构没有任何影响,也不会影响主泵在正常工况下运行时的性能。
根据上述说明书的揭示和教导,本发明所属领域的技术人员还可以对上述实施方式进行适当的变更和修改。因此,本发明并不局限于上面揭示和描述的具体实施方式,对本发明的一些修改和变更也应当落入本发明的权利要求的保护范围内。此外,尽管本说明书中使用了一些特定的术语,但这些术语只是为了方便说明,并不对本发明构成任何限制。

Claims (21)

  1. 一种核反应堆冷却剂泵非能动停车密封组件,其特征在于:包括密封环、收紧环和可熔支撑块;所述密封环为可调整内径的开口环,正常工况下,密封环以开启状态环绕核反应堆冷却剂泵泵轴并与泵轴保持间隙,使反应堆冷却剂可以在密封环与泵轴之间自由流动;收紧环包围在密封环的外周壁上,其在全厂断电工况下能够对密封环施加足够大地抱紧力,驱使密封环闭合而抱紧泵轴;可熔支撑块在正常工况下嵌于密封环的开口中而使密封环保持开启状态,并在全厂断电工况下熔化失效,使密封环得以在抱紧环的作用下闭合,从而有效阻止反应堆冷却剂沿泵轴的流动。
  2. 根据权利要求1所述的核反应堆冷却剂泵非能动停车密封组件,其特征在于:所述密封环的外周壁上开设有一个环形凹槽,收紧环收容在密封环的环形凹槽中而相对密封环定位。
  3. 根据权利要求1所述的核反应堆冷却剂泵非能动停车密封组件,其特征在于:所述密封环上开设的开口数量为1~3个,每一开口的两端都通过具有一定长度的插接结构彼此接合。
  4. 根据权利要求1所述的核反应堆冷却剂泵非能动停车密封组件,其特征在于:所述密封环的开口为开启时形成缺口的插接结构,可熔支撑块安装在密封环开启时所形成的缺口中,确保密封环在正常工况时处于开启状态。
  5. 根据权利要求1所述的核反应堆冷却剂泵非能动停车密封组件,其特征在于:所述可熔支撑块固定在收紧环上,其自收紧环凸出而插入密封环的开口中,确保密封环在正常工况时处于开启状态。
  6. 根据权利要求1所述的核反应堆冷却剂泵非能动停车密封组件,其特征在于:所述密封环在朝向冷却剂流入方向的端面上开设有多个通槽,每一通槽均沿密封环的径向延伸并贯通密封环,使得反应堆冷却剂随时可以沿通槽到达 密封环的外缘处。
  7. 根据权利要求6所述的核反应堆冷却剂泵非能动停车密封组件,其特征在于:所述密封环在外周壁与朝向冷却剂流入方向的端面交界处成型出一个受压斜面。
  8. 根据权利要求1所述的核反应堆冷却剂泵非能动停车密封组件,其特征在于:所述收紧环为记忆合金环,其直径随温度的升高而缩小。
  9. 根据权利要求1所述的核反应堆冷却剂泵非能动停车密封组件,其特征在于:所述收紧环在正常工况下,不产生或仅产生很小的抱紧力;在全厂断电工况下,将产生较大的抱紧力而驱使密封环抱紧泵轴。
  10. 根据权利要求1所述的核反应堆冷却剂泵非能动停车密封组件,其特征在于:所述收紧环为卡簧,其安装后一直具有收紧倾向。
  11. 根据权利要求1所述的核反应堆冷却剂泵非能动停车密封组件,其特征在于:所述密封环的材质为PEEK、含有玻璃纤维的PEEK或是含有碳纤维的PEEK,其能够耐受300摄氏度的高温。
  12. 根据权利要求1所述的核反应堆冷却剂泵非能动停车密封组件,其特征在于:所述密封环由金属制成。
  13. 一种核反应堆冷却剂泵非能动停车密封组件,其特征在于:包括密封环、收紧环和可熔支撑块;所述密封环和收紧环均为可调整内径的开口环,正常工况下,密封环以开启状态环绕核反应堆冷却剂泵泵轴并与泵轴保持间隙,使反应堆冷却剂可以在密封环与泵轴之间自由流动;收紧环包围在密封环的外周壁上,其在全厂断电工况下能够对密封环施加足够大地抱紧力,驱使密封环闭合而抱紧泵轴;可熔支撑块在正常工况下嵌于收紧环的开口中,将收紧环保持在无法对密封环施加抱紧力的开启状态,但在全厂断电工况下,可熔支撑块将熔化失效,使收紧环得以闭合而对密封环施加抱紧力,密封环闭合并有效阻止反应堆冷却剂沿泵轴的流动。
  14. 根据权利要求13所述的核反应堆冷却剂泵非能动停车密封组件,其特征在于:所述密封环的外周壁上开设有一个环形凹槽,收紧环收容在密封环的环形凹槽中而相对密封环定位。
  15. 根据权利要求14所述的核反应堆冷却剂泵非能动停车密封组件,其特征在于:所述密封环和收紧环的开口彼此错开,可熔支撑块与收紧环一起收容在密封环的环形凹槽中。
  16. 根据权利要求13所述的核反应堆冷却剂泵非能动停车密封组件,其特征在于:所述密封环在朝向冷却剂流入方向的端面上开设有多个通槽,每一通槽均沿密封环的径向延伸并贯通密封环,使得反应堆冷却剂随时可以沿通槽到达密封环的外缘处;密封环在外周壁与朝向冷却剂流入方向的端面交界处成型出一个受压斜面。
  17. 根据权利要求13所述的核反应堆冷却剂泵非能动停车密封组件,其特征在于:所述收紧环为直径随温度的升高而缩小的记忆合金环,或是一直有收紧倾向的卡簧。
  18. 一种核反应堆冷却剂泵,其包括从上至下依次设置的电动机、静压轴封组件和水力部件,以及一根贯穿整个主泵中心的泵轴;所述静压轴封组件包括依次设置在主泵水力部件和电动机之间的多个密封组件,这些密封组件均设置在泵轴的周向;其特征在于:所述多个密封组件中的至少一个与泵轴之间设有权利要求1至17中任一项所述的非能动停车密封组件,从而在全厂断电工况下通过非能动停车密封组件实现该密封组件与泵轴的密封。
  19. 根据权利要求18所述的核反应堆冷却剂泵,其特征在于:所述静压轴封组件中最靠近水力部件的一个密封组件为第一密封组件,核反应堆冷却剂泵非能动停车密封组件安装在静压轴封组件的第一密封组件上。
  20. 根据权利要求19所述的核反应堆冷却剂泵,其特征在于:所述核反应堆冷却剂泵静压轴封组件的第一密封组件包括动环、静环、密封插入件和密封 插入支撑件,核反应堆冷却剂泵非能动停车密封组件安装在密封插入件内壁所开设的收容槽中,或是安装在密封插入支撑件内壁所开设的收容槽中。
  21. 根据权利要求18所述的核反应堆冷却剂泵,其特征在于:所述静压轴封组件采用三级轴封,包括依次设置在水力部件和电动机之间的第一密封组件、第二密封组件和第三密封组件;其中,第一密封组件是平衡型流体静压型可控泄漏密封,第二密封组件是压力平衡型端面密封,第三密封组件是堰式双端面密封。
PCT/CN2015/094925 2014-11-19 2015-11-18 核反应堆冷却剂泵及其非能动停车密封组件 WO2016078588A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410664722.7 2014-11-19
CN201410664722.7A CN105240309B (zh) 2014-11-19 2014-11-19 核反应堆冷却剂泵及其非能动停车密封组件

Publications (1)

Publication Number Publication Date
WO2016078588A1 true WO2016078588A1 (zh) 2016-05-26

Family

ID=55038086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/094925 WO2016078588A1 (zh) 2014-11-19 2015-11-18 核反应堆冷却剂泵及其非能动停车密封组件

Country Status (2)

Country Link
CN (1) CN105240309B (zh)
WO (1) WO2016078588A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112096873A (zh) * 2020-07-31 2020-12-18 中核核电运行管理有限公司 核电站流体动压型主泵机械密封的浮动密封装置
CN113958535A (zh) * 2021-09-02 2022-01-21 西安航天动力研究所 一种液体火箭发动机用叶轮压降型脱开式密封装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107100882B (zh) * 2017-05-16 2019-04-16 中广核工程有限公司 核反应堆冷却剂泵及其非能动停车密封装置
WO2018209545A1 (zh) * 2017-05-16 2018-11-22 中广核工程有限公司 核反应堆冷却剂泵及其非能动停车密封装置
CN110886720A (zh) * 2018-09-10 2020-03-17 威乐(中国)水泵系统有限公司 一种易拆卸口环
CN112648193A (zh) * 2020-12-16 2021-04-13 江苏飞跃机泵集团有限公司 一种强制循环铅铋泵
CN114215919B (zh) * 2021-12-17 2022-12-13 中密控股股份有限公司 一种能显著提高稳定性的新型核主泵静压轴封结构

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4105040A (en) * 1977-06-27 1978-08-08 Chester Arnold M Temperature responsive valve seal
CN202851941U (zh) * 2012-11-15 2013-04-03 中国核动力研究设计院 一种大直径的合金o形密封环
CN103267030A (zh) * 2013-05-22 2013-08-28 哈尔滨电气动力装备有限公司 反应堆冷却剂泵停车密封装置
WO2014001702A1 (fr) * 2012-06-25 2014-01-03 Jspm Dispositif d'etancheite a l'arret passif pour systeme de joints d'arbre d'un groupe motopompe primaire
CN103711910A (zh) * 2013-12-10 2014-04-09 合肥通用机械研究院 核反应堆主循环泵密封装置用自补偿式应急组合密封
CN103790855A (zh) * 2014-02-21 2014-05-14 清华大学 一种具有能动与非能动停车密封的核主泵机械密封系统
WO2014147915A1 (ja) * 2013-03-19 2014-09-25 三菱重工業株式会社 漏洩防止シール、原子炉冷却材ポンプ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2986300B1 (fr) * 2012-02-01 2014-03-07 Jeumont Systemes De Pompes Et De Mecanismes Dispositif d'etancheite a l'arret passif pour systeme de joints d'arbre d'un groupe motopompe primaire
CN203214294U (zh) * 2012-04-18 2013-09-25 孟想 一种泵用非能动停车密封装置
CN103671228A (zh) * 2013-12-10 2014-03-26 中广核工程有限公司 对反应堆冷却剂泵进行应急轴封的方法及轴封组件

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4105040A (en) * 1977-06-27 1978-08-08 Chester Arnold M Temperature responsive valve seal
WO2014001702A1 (fr) * 2012-06-25 2014-01-03 Jspm Dispositif d'etancheite a l'arret passif pour systeme de joints d'arbre d'un groupe motopompe primaire
CN202851941U (zh) * 2012-11-15 2013-04-03 中国核动力研究设计院 一种大直径的合金o形密封环
WO2014147915A1 (ja) * 2013-03-19 2014-09-25 三菱重工業株式会社 漏洩防止シール、原子炉冷却材ポンプ
CN103267030A (zh) * 2013-05-22 2013-08-28 哈尔滨电气动力装备有限公司 反应堆冷却剂泵停车密封装置
CN103711910A (zh) * 2013-12-10 2014-04-09 合肥通用机械研究院 核反应堆主循环泵密封装置用自补偿式应急组合密封
CN103790855A (zh) * 2014-02-21 2014-05-14 清华大学 一种具有能动与非能动停车密封的核主泵机械密封系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112096873A (zh) * 2020-07-31 2020-12-18 中核核电运行管理有限公司 核电站流体动压型主泵机械密封的浮动密封装置
CN113958535A (zh) * 2021-09-02 2022-01-21 西安航天动力研究所 一种液体火箭发动机用叶轮压降型脱开式密封装置
CN113958535B (zh) * 2021-09-02 2023-06-27 西安航天动力研究所 一种液体火箭发动机用叶轮压降型脱开式密封装置

Also Published As

Publication number Publication date
CN105240309B (zh) 2017-11-17
CN105240309A (zh) 2016-01-13

Similar Documents

Publication Publication Date Title
WO2016078588A1 (zh) 核反应堆冷却剂泵及其非能动停车密封组件
US9903473B2 (en) Method for carrying out emergent shaft sealing for reactor coolant pump and shaft sealing assembly
KR102291353B1 (ko) 열 후퇴 액추에이터를 갖는 펌프 시일
US20140027984A1 (en) Abeyance Seal for High Temperature, High Pressure Applications
KR20110099304A (ko) 회전가능한 샤프트를 위한 열적으로 활성화되는 셧다운 시일
US20150192142A1 (en) Passive shutdown sealing device for a system of shaft seals in a reactor coolant pump set
WO2013143448A1 (zh) 一种核电站用余热排出泵
US20150050141A1 (en) Passive shutdown sealing device for a shaft sealing system of a reactor coolant pump set
CN104976150B (zh) 核反应堆冷却剂泵及其非能动停车密封装置
CN102330819B (zh) 一种机械密封装置
JP6021702B2 (ja) 漏洩防止シール、原子炉冷却材ポンプ
AU2016280925B2 (en) Expansion turbine device
WO2018209545A1 (zh) 核反应堆冷却剂泵及其非能动停车密封装置
RU2707779C2 (ru) Масляное сопло для газотурбинного двигателя
CN107100882B (zh) 核反应堆冷却剂泵及其非能动停车密封装置
KR102139735B1 (ko) 고온, 고압 적용을 위한 정지 씰
JPS6135760Y2 (zh)
JP2019039415A (ja) シールシステム
CN202215743U (zh) 一种机械密封装置
US20230014978A1 (en) Stop seal for application of high temperature and high pressure
CN105673551A (zh) 核电厂核反应堆冷却剂泵及其静压轴封组件
JP2018123954A (ja) シャットダウンシール
JP2004270659A (ja) 軸封装置及びこれを用いたポンプ水車
CN103711908A (zh) 温度触发式非能动停车安全密封装置
KR20030028850A (ko) 냉각재 순환펌프의 일차냉각수 유입 저감장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15861560

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 29/09/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15861560

Country of ref document: EP

Kind code of ref document: A1