WO2016077600A1 - Modular portable ballet bar exercise device - Google Patents

Modular portable ballet bar exercise device Download PDF

Info

Publication number
WO2016077600A1
WO2016077600A1 PCT/US2015/060408 US2015060408W WO2016077600A1 WO 2016077600 A1 WO2016077600 A1 WO 2016077600A1 US 2015060408 W US2015060408 W US 2015060408W WO 2016077600 A1 WO2016077600 A1 WO 2016077600A1
Authority
WO
WIPO (PCT)
Prior art keywords
vertical column
neck
attached
horizontal bar
leg
Prior art date
Application number
PCT/US2015/060408
Other languages
French (fr)
Inventor
Jennie Kwo
Original Assignee
Fluidity Enterprises, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to AU2015346257A priority Critical patent/AU2015346257B2/en
Priority to MX2017006208A priority patent/MX2017006208A/en
Application filed by Fluidity Enterprises, Inc. filed Critical Fluidity Enterprises, Inc.
Priority to CA2967360A priority patent/CA2967360C/en
Priority to KR1020177016207A priority patent/KR20170091635A/en
Priority to KR1020197019240A priority patent/KR102028310B1/en
Priority to ES15858235T priority patent/ES2920386T3/en
Priority to JP2017544841A priority patent/JP2017537756A/en
Priority to CN201580073479.4A priority patent/CN107427708B/en
Priority to BR112017009856-3A priority patent/BR112017009856B1/en
Priority to RU2017120804A priority patent/RU2667298C1/en
Priority to NZ732172A priority patent/NZ732172A/en
Priority to EP15858235.3A priority patent/EP3218071B1/en
Priority to TW104137568A priority patent/TWI593445B/en
Priority to TW106117661A priority patent/TWI632940B/en
Publication of WO2016077600A1 publication Critical patent/WO2016077600A1/en
Priority to HK18107114.6A priority patent/HK1247585A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B1/00Horizontal bars
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B17/00Exercising apparatus combining several parts such as ladders, rods, beams, slides
    • A63B17/04Exercising apparatus combining several parts such as ladders, rods, beams, slides separable
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/40Interfaces with the user related to strength training; Details thereof
    • A63B21/4027Specific exercise interfaces
    • A63B21/4037Exercise mats for personal use, with or without hand-grips or foot-grips, e.g. for Yoga or supine floor exercises
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B71/00Games or sports accessories not covered in groups A63B1/00 - A63B69/00
    • A63B71/02Games or sports accessories not covered in groups A63B1/00 - A63B69/00 for large-room or outdoor sporting games
    • A63B71/023Supports, e.g. poles
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B71/00Games or sports accessories not covered in groups A63B1/00 - A63B69/00
    • A63B71/02Games or sports accessories not covered in groups A63B1/00 - A63B69/00 for large-room or outdoor sporting games
    • A63B71/023Supports, e.g. poles
    • A63B2071/025Supports, e.g. poles on rollers or wheels
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/02Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices using resilient force-resisters
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2210/00Space saving
    • A63B2210/50Size reducing arrangements for stowing or transport
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2225/00Miscellaneous features of sport apparatus, devices or equipment
    • A63B2225/09Adjustable dimensions
    • A63B2225/093Height
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2244/00Sports without balls
    • A63B2244/22Dancing

Definitions

  • What is needed is an improved portable ballet bar exercise device that is adjustable in height, easier to assemble, collapse, transport, and store than the prior art devices. What is further needed is a portable ballet bar with an improved structural design. What is further needed is a portable ballet bar with fewer components, to simplify the manufacturing and assembly process. What is further needed is a portable ballet bar that is modular in nature such that it can be used as a single stand-alone unit or a single wall-mountable unit, or can be combined with an identical unit to form a double stand-alone unit or a double wall-mountable unit.
  • FIG. 1 depicts a front view of an embodiment of a single unit portable exercise bar device with legs and floorboard folded inward.
  • FIG. 2 depicts a back view of an embodiment of a single unit portable exercise bar device with legs and floorboard folded inward.
  • FIG. 3 depicts a side view of an embodiment of a single unit portable exercise bar device with legs and floorboard folded inward.
  • FIG. 4 depicts a front view of an embodiment of a single unit portable exercise bar device with legs extended outward and floorboard folded inward.
  • FIG. 5 depicts a front view of an embodiment of a single unit portable exercise bar device with legs and floorboard extended outward.
  • FIG. 6 depicts a front view of an embodiment of a single unit portable exercise bar device with legs and floorboard extended outward with a mat installed.
  • FIG. 7 depicts a back view of an embodiment of a single unit portable exercise bar device with legs extended outward.
  • FIG. 8 depicts a back view of an embodiment of a single unit portable exercise bar device with legs extended outward with a mat installed.
  • FIG. 9 depicts a side view of an embodiment of a single unit portable exercise bar device with legs and floorboard extended outward with a mat installed.
  • FIG. 10 depicts a front view of an embodiment of a single unit portable exercise bar device mounted on a wall.
  • FIG. 11 depicts a front view of an embodiment of a single unit portable exercise bar device mounted on a wall with mat installed.
  • FIG. 12 depicts a back view of an embodiment of a single unit portable exercise bar device that can be mounted on a wall.
  • FIG. 13 depicts a side view of an embodiment of a single unit portable exercise bar device mounted on a wall and a mat installed.
  • FIG. 14 depicts an embodiment of a leg assembly.
  • FIG. 15 depicts a front view of an embodiment of a double unit portable exercise bar device with legs and floorboards folded inward.
  • FIG. 16 depicts a front view of an embodiment of a double unit portable exercise bar device with legs extended outward and floorboards folded inward.
  • FIG. 17 depicts a front view of an embodiment of a double unit portable exercise bar device with legs and floorboards extended outward.
  • FIG. 18 depicts a side view of an embodiment of a double unit portable exercise bar device with legs and floorboards folded inward.
  • FIG. 19 depicts a front view of an embodiment of a double unit portable exercise bar device with legs and floorboard extended outward with a mat installed.
  • FIG. 20 depicts a side view of an embodiment of a double unit portable exercise bar device with legs and floorboard extended outward with a mat installed.
  • FIG. 21 depicts a top view of an embodiment of a double unit portable exercise bar device with legs and floorboards folded inward.
  • FIG. 22 depicts a front view of an embodiment of two halves of a double unit portable exercise bar device mounted on a wall.
  • FIG. 23 depicts a magnet embedded in a bore in a floorboard of a portable exercise bar device.
  • FIG. 24 depicts a clamping mechanism for holding a horizontal bar in a portable exercise bar device.
  • FIG. 25 depicts a hook mechanism for securing two legs in a portable exercise bar device.
  • FIG. 26 depicts a velcro mechanism for securing two legs in a portable exercise bar device.
  • FIG. 27 depicts a strap mechanism for securing two legs in a portable exercise bar device.
  • FIG. 28 depicts a strap mechanism for securing two legs in a portable exercise bar device.
  • FIG. 29 depicts a friction bushing mechanism for securing a leg in a portable exercise bar device.
  • FIG. 30 depicts a spring loaded ball plunger mechanism for securing a leg in a portable exercise bar device.
  • FIG. 31 depicts a zipper mechanism for securing a leg in a portable exercise bar device.
  • FIGs. 32A and 32B depict a lift and rotate mechanism for securing a leg in a portable exercise bar device.
  • FIG. 33 depicts a collar mechanism for securing a vertical member in a portable exercise bar device.
  • FIG. 34 depicts a cam lock pawl for securing a vertical member in a portable exercise bar device.
  • FIG. 35 depicts a spring loaded pin mechanism for securing a vertical member in a portable exercise bar device.
  • FIG. 36 depicts a push button side lock mechanism for securing a vertical member in a portable exercise bar device.
  • FIG. 37 depicts an independent adjustment mechanism for adjusting the height of a horizontal bar in a portable exercise bar device.
  • FIG. 38 depicts a screw jack mechanism for adjusting the height of a horizontal bar in a portable exercise bar device.
  • FIG. 39 depicts a cable lift mechanism for adjusting the height of a horizontal bar in a portable exercise bar device.
  • FIG. 40 depicts a gas cylinder lift for adjusting the height of a horizontal bar in a portable exercise bar device.
  • FIG. 41 depicts a foot pump lift for adjusting the height of a horizontal bar in a portable exercise bar device.
  • FIG. 42 depicts a spring lift mechanism for adjusting the height of a horizontal bar in a portable exercise bar device.
  • FIG. 43 depicts a foot lift for adjusting the height of a horizontal bar in a portable exercise bar device.
  • FIG. 44 depicts a center lift mechanism for adjusting the height of a horizontal bar in a portable exercise bar device.
  • FIG. 45 depicts a multiple bar mechanism for a portable exercise bar device.
  • FIG. 46 depicts a rotating bar mechanism for a portable exercise bar device.
  • FIG. 47 depicts a multiple slot mechanism for a portable exercise bar device.
  • FIG. 48 depicts a multiple bar linkage mechanism for a portable exercise bar device.
  • FIG. 49 depicts a damping grease mechanism for a portable exercise bar device.
  • FIG. 50 depicts an extrusion in extrusion mechanism for sliding a horizontal bar vertically in a portable exercise bar device.
  • FIG. 51 depicts a stock tubing with rollers mechanism for sliding a horizontal bar vertically in a portable exercise bar device
  • FIG. 52 depicts an external carriage mechanism for sliding a horizontal bar vertically in a portable exercise bar device
  • FIG. 53 depicts a rotating bar for a portable exercise bar device.
  • FIG. 54 depicts a telescoping bar for a portable exercise bar device.
  • FIG. 55 depicts a removable bar for a portable exercise bar device.
  • FIG. 56 depicts a fixed leg mechanism for a portable exercise bar device.
  • FIG. 57 depicts a folding leg mechanism for a portable exercise bar device.
  • FIG. 58 depicts a fixed floorboard mechanism for a portable exercise bar device.
  • FIG. 59 depicts a fold down floorboard mechanism for a portable exercise bar device.
  • FIG. 60 depicts an extended floorboard for a portable exercise bar device.
  • FIG. 61 depicts a retractable wheel mechanism for a portable exercise bar device.
  • FIG. 62 depicts a wheel mechanism for a portable exercise bar device.
  • FIG. 63 depicts a bracket for attaching a leg to a vertical column in a portable exercise bar device.
  • FIG. 64 depicts an underneath mounting method for a horizontal bar in a portable exercise bar device.
  • FIG. 65 depicts a center mounting method for a horizontal bar in a portable exercise bar device.
  • FIG. 66 depicts an end mounting method for a horizontal bar in a portable exercise bar device.
  • FIG. 67 depicts a leg mounting mechanism in a portable exercise bar device.
  • FIG. 68 depicts a side view of a neck for use in a portable exercise bar device.
  • FIG. 69 depicts an opposite side view of the neck from FIG. 68 for use in a portable exercise bar device.
  • FIG. 70 depicts a top view of a vertical column for receiving the neck from FIG. 68-69 for use in a portable exercise bar device.
  • FIG. 71 depicts a top view of a vertical column and a neck for use in a portable exercise bar device.
  • FIG. 72 depicts a cross-section from a front view of a constant force spring for exerting force against a neck within a vertical column for use in a portable exercise bar device.
  • FIG. 73 depicts a cross-section from a front view of a constant force spring for exerting force against a neck within a vertical column for use in a portable exercise bar device.
  • FIG. 74 depicts a side view of a constant force spring attached to a neck for use in a portable exercise bar device.
  • FIG. 1 depicts a front view of an embodiment of a portable exercise bar 100.
  • Portable exercise bar 100 is a single unit.
  • Portable exercise bar 100 comprises horizontal bar 110, neck 121, neck 122, vertical column 131, vertical column 132, knob 141, knob 142, floorboard 150, hinge 151, crossbar 160, leg 171, leg 172, leg 173, leg 174, shaft 176, shaft 177, shaft 178 (not shown), shaft 179 (not shown), foot mechanism 181, foot mechanism 182, wheel 191, wheel 192, wheel 193, and wheel 194.
  • Horizontal bar 110 optionally is a ballet bar. Horizontal bar 110 is secured in place by neck 121 and neck 122. Neck 121 comprises clamping mechanism 123, and neck 122 comprises clamping mechanism 124. Clamping mechanism 123 and clamping mechanism 124 are secured to horizontal bar 110 such that horizontal bar 110 does not move within clamping mechanism 123 and clamping mechanism 124.
  • clamping mechanism 123 and 124 each comprise band 2410, screw 2420, and bolt 2430.
  • Band 2410 wraps around horizontal bar 110 and is tightened with bold 2430.
  • Bolt 2430 optionally can be a hex bolt. Screw 2420 is inserted through band 2410 into horizontal bar 110
  • neck 121 can slide within vertical column 131 when knob 141 is pulled outward from vertical column 131, and neck 121 is held in place within vertical column 131 by knob 141 when knob 141 is not pulled outward.
  • Neck 122 can slide within vertical column 132 when knob 142 is pulled outward from vertical column 132, and neck 122 is held in place within vertical column 132 by knob 142 when knob 142 is not pulled outward.
  • Knob 141 and knob 142 optionally are spring-loaded.
  • knob 141 and knob 142 are T-shaped, which is a shape that is easy for the human hand to grasp and pull. Other shapes are possible, such as a circular shape.
  • neck 121 and neck 122 can be held in place by knob 141 and knob 142, respectively, in a maximum vertical position such that horizontal bar 110 is located at least 28.00 inches from the floor.
  • Crossbar 160 is coupled to vertical column 131 and vertical column 132.
  • Floorboard 150 is coupled to hinge 151, which also is coupled to crossbar 410 (shown in Figure 4).
  • hinge 151 is designed such that when floorboard 150 is folded in, hinge 151 is raised off the floor to provide clearance when portable exercise bar 100 is transported.
  • hinge 151 extends to the floor such that floorboard 150 is placed in contact with the floor.
  • hinge 151 can be spring loaded so that floorboard 150 is placed in contact with the floor when a user stands on floorboard 150.
  • Leg 171 and leg 173 are coupled to vertical column 131 by shaft 176 and shaft 178, respectively.
  • Leg 172 and leg 174 are coupled to vertical column 132 by shaft 177 and 179 (shown in Figure 2 but not Figure 1), respectively.
  • Shafts 176, 177, 178, and 179 optionally are embedded within the legs as shown.
  • Leg 171 can rotate about shaft 176 between a folded position (shown in Figures 1-3) and an extended position (shown in Figures 4-9).
  • vertical columns 131 and 132 each comprise a cut-out portion for receiving shafts 176, 177, 178, and 179.
  • leg 171, 172, 173, and 174 prevents legs 171, 172, 173, and 174 from extending beyond the position where the leg is parallel with floorboard 150 in the unfolded position (i.e., it prevents overextension of the legs), which is a feature that enhances user safety.
  • Leg 172 can rotate about shaft 177
  • leg 173 can rotate about shaft 178
  • leg 174 can rotate about shaft 179 in the same manner described for leg 171 and shaft 176.
  • shafts 176, 177, 178, and 179 each can be attached to a bracket, which in turn is attached to vertical columns 131 and 132, and the brackets can prevent legs 171, 172, 173, and 174 from extending beyond the position where the leg is parallel with floorboard 150 in the unfolded position, in accordance with the design shown in Figure 67.
  • the distance between the bottom of vertical column 131 and the floor is at least 1.80 inches and the distance between the bottom of vertical column 132 and the floor is at least 1.80 inches.
  • each of shafts 176, 177, 178, and 179 can comprise a hollow cylinder fixed to each of legs 171, 172, 173, and 174, respectively, with each cylinder enclosing another cylinder (or pin) fixed to vertical columns 131 (for shafts 176 and 178) and 132 (for shafts 177 and 179).
  • each of shafts 176, 177, 178, and 179 can comprise a cylinder fixed to each of legs 171, 172,
  • leg and shaft design is shown in Figure 14 and described below.
  • Wheels 191 ad 193 are connected to a horizontal bracket that is connected to vertical column 131, and wheels 192 and 194 are connected to a horizontal bracket that is connected to vertical column 132.
  • Foot mechanism 181 is coupled to leg 171
  • foot mechanism 182 is coupled to leg 172
  • foot mechanism 183 (not shown) is coupled to leg 173
  • foot mechanism 184 (not shown) is coupled to leg 174.
  • Foot mechanism 181, 182, 183, and 184 each comprise a knob and a lever, and the user can lock each foot mechanism by pushing the knob and release the lock by pushing the lever.
  • FIG. 2 depicts a rear view of the embodiment of a portable exercise bar 100.
  • Portable exercise bar 100 further comprises horizontal bar 210, handle 220, backboard 230, leg 173, leg
  • Horizontal bar 210 is substantially parallel to horizontal bar 110 and is coupled to neck 121 and neck 122. Horizontal bar 210 provides additional stability for portable exercise bar 100.
  • Handle 220 is coupled to crossbar 160 and can be used for carrying or rolling portable exercise bar 100. It also can be used to hold floorboard 150 and mat 610 in the folded position. For example, a latch or velcro strap (not shown) can be used to connect floorboard 150 to handle 220 when floorboard 150 is folded inward.
  • Figure 3 depicts a side view of the embodiment of a portable exercise bar 100.
  • Figure 4 depicts another front view of portable exercise bar 100. In this view, legs 171, 172, 173, and 174 have been extended outward.
  • Backboard 230 is coupled to crossbar 160 and crossbar 410.
  • Crossbar 410 is coupled to vertical column 131 and vertical column 132.
  • Floorboard 150 comprises magnet 421 and magnet 422. In the folded position (as in Figure 1), magnet 421 will hold leg 171 against floorboard 150 through magnetic force, and magnet 422 will hold leg 172 against floorboard 150 through magnetic force.
  • Figure 5 depicts the same view as Figure 4, except floorboard 150 now has been unfolded to the ground.
  • Floorboard 150 comprises bore 521 and bore 522. Magnet 421 is placed into bore 521, and magnet 422 is placed into bore 522.
  • the diameters of bore 521 and bore 522 preferably are smaller on the side of floorboard 150 facing outward (i.e., the side of floorboard 150 shown in Figure 4), such that magnets 421 and 422 are retained within floorboard 150 by the floorboard 150 itself, and the diameters of bore 521 and 522 are larger on the side of floorboard 150 facing backboard 230 to increase the ease with which magnets 421 and 422 are installed in bores 521 and 522 during the manufacturing process.
  • Magnets 421 and 422 optionally are secured within bores 521 and 522, respectively, by epoxy or other adhesive or mechanical means (for example, a metal plate with fasteners).
  • Backboard 230 comprises bore 531 and bore 532, into which other magnets are installed, as discussed below with reference to Figure 7. Bores 531 and 532 are similar in design to bores 521 and 522.
  • FIG. 23 contains further detail regarding the magnets and bores shown previously in Figures 4-5 (as well as Figures 16-17 discussed below).
  • Magnetic system 2300 is depicted.
  • a floorboard 2310 comprises bore 2340.
  • magnet 2330 is installed and secured with adhesive 2320.
  • Bore 2340 comprises a portion with a first diameter 2341 (I think 2341 needs to be labeled, unless I am not reading image correctly) and a portion with a second diameter 2342, and the diameter 2343 of magnet 2330 is larger than the first diameter 2341 and smaller than the second diameter 2342.
  • Magnet 2330 generates a magnetic field according to known magnetic principles. The magnetic field attracts leg 2360 toward magnet 2330, even with mat 2350 located between leg 2360 and magnet 2330.
  • Magnet 2330 is held in place by floorboard 2310.
  • Magnet 2330 optionally can be a rare-earth magnet such as a neodymium magnet or samarium-cobalt magnet and ideally is selected such that leg 2360 is held in place even when the unit is being moved yet is easy for a normal user to overcome when he or she wishes to extend the leg to use the portable exercise bar by pushing/pulling the leg outward with his or her hands or feet.
  • Figure 6 depicts the same configuration of portable exercise bar 100 shown in
  • Mat 610 optionally comprises portions 611, 612, and 613 which join at creases 621 and 622.
  • the user can add mat 610 after unfolding legs 171 and 172 and floorboard 150, or mat 610 can be coupled to floorboard 150 and backboard 230 and remain attached even when floorboard 150 and legs 171 and 172 are folded inward.
  • portion 612 can include a pocket that envelopes floorboard 150.
  • Mat 610 is utilized by the user during exercises and provides padding on the floor.
  • Mat 610 also provides padding for crossbar 160, which is beneficial if the user stretches his or her leg by placing the leg on crossbar 160.
  • portions 612 and 613 comprise a vinyl covering over adhesive foam that is attached to floorboard 150 and backboard 230, respectively, and portion 611 comprises a vinyl enclosure containing foam.
  • FIG. 7 depicts another rear view of portable exercise bar 100. In this view, legs
  • Backboard 230 comprises magnets 731 and 732. Magnet 731 is placed in bore 531, and magnet 732 is placed in bore 532 (such as through the mechanism shown in Figure 23).
  • the diameters of bore 531 and bore 532 preferably are smaller on the side of backboard 230 on the rear of portable exercise bar 100 ( (i.e., the side of backboard 230 shown in Figure 7), such that magnets 731 and 732 are retained within backboard 230 by backboard 230 itself, and the diameters of bore 531 and 532 are larger on the side of backboard 230 facing floorboard 150 to increase the ease with which magnets 731 and 732 are installed in bores 531 and 532 during the manufacturing process.
  • Magnets 731 and 732 optionally are secured within bores 531 and 532, respectively, by epoxy or other adhesive.
  • magnet 731 will hold leg 173 against backboard 230 through magnetic force
  • magnet 732 will hold leg 174 against backboard 230 through magnetic force
  • Figure 8 is the same view as Figure 7 of portable exercise bar 100, except mat 610 comprises portions 614 and 615 that wrap around the vertical sides of backboard 230 and portions 616 and 617 that wrap over the top side of backboard 230 next to handle 220. This provides further stability for mat 610. Mat 610 optionally can be screwed into hinge 151.
  • Figure 9 depicts another side view of portable exercise bar 100.
  • floorboard 150 has been unfolded away from crossbar 160 and legs 171, 172, 173, and 174 have been extended.
  • Figures 4-9 is used, with floorboard 150 unfolded, legs 171, 172, 173, and 174 extended, and mat 610 installed.
  • the user can hold horizontal bar 120 while exercising or stretching, just as he or she could do with a fixed ballet bar.
  • wall-mountable portable exercise bar 1000 comprises horizontal bar 1010, neck 1021, neck 1022, vertical column 1031, vertical column 1032, knob 1041, knob 1042, backboard 1220 (shown in Figure 12), hinge 1090, crossbar 1060, crossbar 1080, and handle 1070.
  • Wall-mountable portable exercise bar 1000 can be mounted to wall 1090.
  • Horizontal bar 1010 optionally is a ballet bar. Horizontal bar 1010 is secured in place by neck 1021 and neck 1022. Neck 1021 comprises clamping mechanism 1023, and neck 1022 comprises clamping mechanism 1024. Clamping mechanism 1023 and clamping mechanism 1024 are secured to horizontal bar 1010 such that horizontal bar 1010 does not move within clamping mechanism 1023 and clamping mechanism 1024.
  • Neck 1021 can slide within vertical column 1031 when knob 1041 is pulled outward from vertical column 1031, and neck 1021 is held in place within vertical column 1031 by knob 1041 when knob 1041 is not pulled outward.
  • Neck 1022 can slide within vertical column 1032 when knob 1042 is pulled outward from vertical column 1032, and neck 1022 is held in place within vertical column 1032 by knob 1042 when knob 1042 is not pulled outward.
  • Knob 1041 and knob 1042 optionally are spring-loaded.
  • knob 1041 and knob 1042 are T-shaped, which is a shape that is easy for the human hand to grasp and pull. Other shapes are possible, such as a circular shape.
  • neck 1021 and neck 1022 can be held in place by knob 1041 and knob 1042, respectively, in a maximum vertical position such that horizontal bar 1010 is located at least 28.00 inches from the floor.
  • Crossbar 1060 and crossbar 1080 are coupled to vertical column 1031 and vertical column 1032.
  • Crossbars 1060 and 1080 optionally comprise a plurality of holes 1061 and 1081, respectively, for receiving attachment devices such as screws.
  • Backboard 1220 is coupled to crossbar 1060 and crossbar 1080. .
  • Figure 11 depicts the same configuration of wall-mountable portable exercise bar
  • Mat 1110 optionally comprises portions 1111, 1112, and 1113, which join at creases 1121 and 1122.
  • Mat 1110 can be attached to backboard 1220.
  • portion 1113 can be attached to backboard 1220 using velcro straps.
  • Portions 1111 and 1112 can be folded upward toward backboard 1220 and can be attached to handle 1070 with velcro straps.
  • Figure 12 depicts a rear view of the embodiment of a wall-mountable portable exercise bar 1000.
  • Wall-mountable portable exercise bar 1000 further comprises horizontal bar 1210.
  • Horizontal bar 1210 is substantially parallel to horizontal bar 1110 and is coupled to neck 1121 and neck 1122.
  • Horizontal bar 1210 provides additional stability for wall-mountable portable exercise bar 1000.
  • Figure 13 depicts a side view of wall-mountable portable exercise bar 1000.
  • Wall-mountable portable exercise bar 1000 is mounted to wall 1090 with attachment devices 1310 and 1320.
  • Attachment devices 1310 and 1320 each can comprise a metal bracket that is attached to studs in wall 1090, such as by screws.
  • Crossbar 1060 and/or crossbar 1080 are then attached to metal bracket, such as by using nuts and bolts through plurality of holes 1061 and 1081.
  • portable exercise bar 100 can be modified into portable exercise bar 1010 by removing leg 171-174, wheels 191-194, shafts 176- 179, and foot mechanisms 181-184,.
  • portable exercise bar 100 can be used as a standalone unit or as a wall-mountable unit.
  • FIG. 14 depicts assembly 1400.
  • Assembly 1400 comprises leg
  • Attachment mechanism 1440 optionally comprises shaft 1442 (which allows leg 1410 to rotate about an axis), attachment device 1443, and attachment device 1444.
  • Attachment device 1443 and attachment device 1444 optionally are screws that are placed in holes in attachment mechanism 1440 and then screwed into vertical columns 131 and 132.
  • assembly 1400 can be used for either the front legs or rear legs attached to vertical columns 131 and 132 in portable exercise bar 100. When attached to the front and rear of vertical columns 131 and 132, the unit becomes portable exercise bar 100. When removed from the front and rear of vertical columns 131 and 132, the unit becomes wall-mountable portable exercise bar 1000.
  • assembly 1400 in this manner creates a versatile portable exercise bar that can be either a stand-alone unit (such as portable exercise bar 100) or a wall-mounted unit (such as wall-mountable portable exercise bar 1000).
  • a stand-alone unit such as portable exercise bar 100
  • a wall-mounted unit such as wall-mountable portable exercise bar 1000.
  • STAND-ALONE DOUBLE UNIT PORTABLE EXERCISE BAR Figures 15-20 depict an embodiment of a stand-alone double unit portable exercise bar.
  • double unit portable exercise bar 1500 is depicted.
  • Double unit portable exercise bar 1500 comprises first module 1501 and second module 1502.
  • First module 1501 and second module 1502 are identical and attach in a back-to-back configuration as shown.
  • First module 1501 comprises horizontal bar 1510, neck 1521, neck 1522, vertical column 1531, vertical column 1532, knob 1541, knob 1542, floorboard 1550, hinge 1551, crossbar 1560, leg 1571, leg 1572, shaft 1576, shaft 1577, foot mechanism 1581, foot mechanism 1582, wheel 1591, and wheel 1592.
  • Horizontal bar 1510 optionally is a ballet bar. Horizontal bar 1510 is secured in place by neck 1521 and neck 1522. Neck 1521 comprises clamping mechanism 1523, and neck 1522 comprises clamping mechanism 1524. Clamping mechanism 1523 and clamping mechanism 1524 are secured to horizontal bar 1510 such that horizontal bar 1510 does not move within clamping mechanism 1523 and clamping mechanism 1524. Clamping mechanisms 1523 and 1524 can follow the design of Figure 24, described previously.
  • Neck 1521 can slide within vertical column 1531 when knob 1541 is pulled outward from vertical column 1531, and neck 1521 is held in place within vertical column 1531 by knob 1541 when knob 1541 is not pulled outward.
  • Neck 1522 can slide within vertical column 1532 when knob 1542 is pulled outward from vertical column 1532, and neck 1522 is held in place within vertical column 1532 by knob 1542 when knob 1542 is not pulled outward.
  • Knob 1541 and knob 1542 optionally are spring-loaded.
  • knob 1541 and knob 1542 are T-shaped, which is a shape that is easy for the human hand to grasp and pull. Other shapes are possible, such as a circular shape.
  • Crossbar 1560 is coupled to vertical column 1531 and vertical column 1532.
  • Horizontal bar 1515 is coupled to vertical column 1531 and vertical column 1532 and provides additional stability for double unit portable exercise bar 1500.
  • Floorboard 1550 is coupled to hinge 1551, which also is coupled to backboard
  • hinge 1551 is designed such that when floorboard 1550 is folded in, hinge 1551 is raised off the floor to provide clearance when portable exercise bar 1500 is transported.
  • hinge 1551 extends to the floor such that floorboard 1550 is placed in contact with the floor.
  • hinge 1551 can be spring loaded so that floorboard 1550 is placed in contact with the floor when a user stands on floorboard 1550.
  • Leg 1571 is coupled to vertical column 1531 by shaft 1576.
  • Leg 1572 is coupled to vertical column 1532 by shaft 1577.
  • Shafts 1576 and 1577 optionally are embedded within the legs as shown.
  • Leg 1571 can rotate about shaft 1576 between a folded position (shown in Figures 15, 18, and 21) and an extended position (shown in Figures 16-17 and 19-20).
  • vertical columns 1531 and 1532 each comprise a cut-out portion for receiving shafts 1576, 1577, 1578, and 1579.
  • the cut-out prevents legs 1571, 1572, 1573, and 1574 from extending beyond the position where the leg is parallel with floorboard 1550 in the unfolded position (i.e., it prevents over-extension of the legs), which is a feature that enhances user safety.
  • Leg 1572 can rotate about shaft 1577
  • leg 1573 can rotate about shaft 1578
  • leg 1574 can rotate about shaft 1579 in the same manner described for leg 1571 and shaft 1576.
  • Leg 1572 can rotate about shaft 1577 in the same manner described for leg 171 and shaft 176.
  • shafts 1576, 1577, 1578, and 1579 each can be attached to a bracket, which in turn is attached to vertical columns 1531 and 1532, and the brackets can prevent legs 1571, 1572, 1573, and 1574 from extending beyond the position where the leg is parallel with floorboard 1550 in the unfolded position, in accordance with the design shown in Figure 67.
  • the distance between the bottom of vertical column 1531 and the floor is at least 1.80 inches and the distance between the bottom of vertical column 1532 and the floor is at least 1.80 inches.
  • each of shafts 1576 and 1577 can comprise a hollow cylinder fixed to each of legs 1571 and 1572, respectively, with each cylinder enclosing another cylinder (or pin) fixed to vertical columns 1531 (for shaft 1576) and 1532 (for shafts 1577).
  • each of shafts 1576 and 1577 can comprise a cylinder fixed to each of legs 1571 and 1572, respectively, with spring- loaded members extending from the top and bottom of each cylinder received by a recess in vertical columns 1531 and 1532.
  • Wheel 1591 is connected to a horizontal bracket that is connected to vertical column 1531, and wheel 1592 is connected to a horizontal bracket that is connected to vertical column 1532.
  • Foot mechanism 1581 is coupled to leg 1581, and foot mechanism 1582 is coupled to leg 1572.
  • Foot mechanism 1581 and 1582 each comprise a knob and a lever, and the user can lock each foot mechanism by pushing the knob and release the lock by pushing the lever.
  • FIG 16 depicts the same view as Figure 15, except legs 1571 and 1572 have been extended.
  • Floorboard 1550 comprises magnet 1611 and magnet 1612.
  • Crossbar 1560 comprises plurality of holes 1561
  • crossbar 1620 comprises plurality of holes 1621.
  • FIG 17 depicts the same view as Figure 16, except floorboard 1550 now has been unfolded to the ground.
  • Floorboard 1550 comprises bore 1711 and 1712.
  • Magnet 1611 is placed into bore 1711
  • magnet 1612 is placed into bore 1712 (such as through the design of Figure 23).
  • the diameters of bores 1621 and 1612 preferably are smaller on the side of floorboard 1550 facing outward (i.e., the side of floorboard 1550 shown in Figure 16), such that magnets 1611 and 1612 are retained within floorboard 1550 by the floorboard 1550 itself, and the diameters of bore 1711 and 1712 are larger on the side of floorboard 1550 facing backboard 1720 to increase the ease with which magnets 1611 and 1612 are installed in bores 1711 and 1712 during the manufacturing process.
  • Magnets 1611 and 1612 optionally are secured within bores 1711 and 1712, respectively, by epoxy or other adhesive or mechanical means *for example, a metal plate with fasteners). Further detail regarding these magnets and bores is shown in Figure 23 and
  • Handle 1730 is coupled to crossbar 1560.
  • Backboard 1720 is coupled to crossbar
  • Figure 18 depicts a side view of double unit portable exercise bar 1500 with legs and floorboards in a folded position. First module 1501 and second module 1502 are shown in a back-to-back configuration. In this configuration, double unit portable exercise bar 1500 is extremely compact and space-efficient, which is useful when it is being stored.
  • Figure 19 depicts the same configuration of double unit portable exercise bar
  • Mat 1910 optionally comprises portions 1911, 1912, and 1913, which join at creases 1921 and 1922.
  • the user can add mat 1910 after unfolding legs 1571 and 1572 and floorboard 1550, or mat 1910 can be coupled to floorboard 1550 and backboard 1720 and remain attached even when floorboard 1550 and legs 1571 and 1572 are folded inward.
  • portion 1912 can include a pocket that envelopes floorboard 1550.
  • portions 1912 and 1913 comprise a vinyl covering over adhesive foam that is attached to floorboard 1550 and backboard 1720, respectively, and portion 1911 comprises a vinyl enclosure containing foam.
  • Figure 20 depicts the same side view of double unit portable exercise bar 1500 as shown in Figure 18, except mat 1810 has been added to first module 1501 and second module 1502.
  • Figure 21 depicts a top (bird's eye) view of double unit portable exercise bar
  • Attachment devices 2110 are depicted and couple first module 1501 and second module 1502.
  • Attachment devices 2110 can comprise, for example, a plurality of bolts that extends through one or more of plurality of holes 1561 and plurality of holes 1621 and are secured by a nut or wingnut such that attachment devices 2110 press the crossbar 1560 of first module 1501 and second module 1502 together and/or press the crossbar 1620 of first module 1501 and second module 1502 together.
  • first module 1501 and second module 1502 can be detached from one another by undoing attachment devices 2110. Once decoupled from one another, first module 1501 or second module 1502 can be used as a wall-mountable portable exercise bar 1000 shown previously in Figures 9-13
  • first module 1501 and second module 1502 can be attached from one another by undoing attachment devices 2110, and then assembly 1400 can be added to the rear of vertical columns 1531 and 1532 for first module 1501 and second module 1502, such that first module 1501 and second module 1502 each become portable exercise bar 100 (i.e., a standalone single unit).
  • both first module 1501 and second module 1502 can be used as wall- mountable units in a double configuration.
  • first module 1501 and second module 1502 are decoupled from one another and then mounted to wall 2210 in the same manner described previously for wall-mountable portable exercise bar 1000. In this
  • first module 1501 and second module 1502 together are a double-unit, wall mountable portable exercise ballet bar system 2200.
  • Hook mechanism comprises hook 2510 on a leg and connector 2520 on a cross bar or another leg.
  • velcro mechanism 2600 comprises a velcro patch (not shown) installed on a leg and velcro patch 2610 installed on the mat.
  • Strap mechanism 2700 comprises strap 2710 attached to the mat and wraps around the leg. Strap 2710 can be made of elastic and can be sewn to the mat. In the alternative, strap 2710 can be made of a non-stretchable material, and one end can be sewn to the mat and another end can be attached to the mat with velcro.
  • Second strap mechanism 2800 comprises strap 2810 that ties two legs together in the folded position. Strap 2810 is of an ideal length that prevents the legs from spreading apart when the portable exercise bar is being stored or moved. Strap 2810 can be made of elastic or similar stretchable material. [00149] With reference to Figure 29, friction bushing mechanism 2900 is depicted.
  • Friction bushing mechanism 2900 comprises bushings 2910 that each have a larger diameter than the leg tube, which creates frictive resistance when a user tries to move the leg. This resistance keeps the legs secured in the folded position.
  • Spring loaded ball plunger mechanism 3000 comprises spring 3010, ball 3020, and divot 3030.
  • Spring 3010 and ball 3020 together are a spring loaded ball attached to the vertical column that are received by divot 3030 in the leg, which will then keep the leg secured to the column.
  • zipper mechanism 3100 is depicted.
  • Zipper mechanism 3100 comprises covering 3110 (which optionally is made of fabric) that is placed over the leg.
  • Patch 3130 is attached to the mat, such as by being sewed onto the mat.
  • Zipper 3120 is attached to patch 3130 and covering 3110 and can be used to secure the leg against the mat.
  • lift and rotate mechanism 3200 is depicted.
  • the leg needs to be lifted vertically over pin 3210 to be rotated.
  • the leg is in the folded position, and pin 3210 keeps the leg in place.
  • the leg is in an open, extended position, and pin 3210 again keeps the leg in place.
  • collar mechanism 3300 is depicted. Neck 3320 is inserted into vertical column 3310. Screw 3330 tightens collar 3340 around neck 3320 to hold neck 3320 in place.
  • cam lock pawl 3400 is depicted. Neck 3420 is inserted into vertical column 3410. Pawl 3430 is used to tighten collar 3440 around neck 3420 to hold neck 3420 in place.
  • Neck 3510 is inserted into vertical column (not shown). Pin 3520 is forced outward by spring 3530. Pin 3520 can be inserted into holes or divots in the vertical column. A user can depress pin 3520 to be able to move neck 3510 up and down within the vertical column.
  • push button side lock mechanism 3600 is depicted.
  • Friction members 3640 exert force outward against the inside surface of vertical column 3610, this securing neck 3620 within vertical column 3610.
  • MECHANISMS Numerous options are possible for adjusting the height of the horizontal bar of any of the embodiments described herein. For example, instead of using the vertical column, neck, and knob described above, any of the alternatives shown in Figures 37-49 can be used.
  • Neck 3710 can be moved up and down within vertical column 3720 to raise or lower one end of horizontal bar 3730, which connects to neck 3710 through joint 3740.
  • each side of horizontal bar 3730 can be moved up or down independently of the other side.
  • Screw jack mechanism 3800 is depicted.
  • Neck 3810 can be moved up and down within vertical column 3820 to raise or lower horizontal bar 3830. The movement occurs by rotating reel 3830, which turns a screw (not shown) that is coupled to a screw portion (not shown) of neck 3810.
  • Neck 3910 can be moved up or down within vertical column 3920 by winding or unwinding cable 3930 with reel 3950.
  • the other end of cable 3930 is attached to vertical column 3920.
  • the cable is supported by pulleys 3940 located at the bottom of each neck 3920.
  • Neck 4010 can be moved up or down within vertical column 4020.
  • Vertical column 4020 is attached to base 4030.
  • Valve 4040 allows a user to pump gas into, or release gas from, the chamber created by neck 4010, vertical column 4020, and base 4030, thus causing neck 4010 to move upward or downward.
  • Foot pump lift 4010 is depicted.
  • Neck 4110 can be moved up or down within vertical column 4120.
  • Foot pump 4030 allows a user to pump air into, or release air from, the chamber created by neck 4110 and vertical column 4120, thus causing neck 4110 to move upward or downward.
  • spring lift mechanism 4200 is depicted.
  • Vertical column 4210 is moved upward or downward by springs 4220 and scissors support 4230, where springs 4220 and scissors support 4230 are connected to cross bar 4250, which in turn is connected to vertical column 4210.
  • foot lift mechanism 4300 is depicted.
  • Vertical support structure 4310 is moved upward or downward by the movement by a user of lever 4330.
  • Lever 4330 contains a screw portion that interacts with screw 4320 that is attached to vertical support structure 4310. Lever 4330 thus causes vertical support structure 4310 to move upward or downward.
  • center lift mechanism 4400 is depicted.
  • Neck 4410 can be moved up or down within vertical column 4420. Friction pads 4430 keep neck 4410 in place.
  • the user can turn push lever 4460, which causes member 4450 to pull supportive pins out of vertical column 4420 so that neck 4410 can move upward or downward. This is convenient because a user could move neck 4410 (and its counterpart neck on the other side) up or down using a single hand mechanism.
  • Vertical column 4510 supports a plurality 4520 of horizontal bars, each located at a different height.
  • rotating bar mechanism 4600 is depicted.
  • Neck 4610 is supported by vertical column 4620 and is attached to horizontal bar 4630 through joint 4640.
  • a user can move horizontal bar 4630 around joint 4640 to adjust the vertical height and horizontal placement of horizontal bar 4630.
  • Vertical column 4710 (or vertical neck) contains a plurality 4720 of slots, each located at a different height, into which horizontal bar 4730 can be placed.
  • Neck 4820 is connected to vertical column 4810 through joint 4840.
  • Neck 4820 supports horizontal bar 4830.
  • Vertical column 4810 is supported by dual support members 4860, which are connected to one another at joint 4870 and by spring 4880. Dual support members 4860 can move within base 4870 and can be locked in place through mechanical means within base 4870. [00171] With reference to Figure 49, damping grease mechanism 4900 is depicted. Neck
  • MECHANISMS Numerous sliding options are possible for adjusting the height of the horizontal bar of any of the embodiments described herein. For example, instead of using the vertical column, neck, and knob, any of the alternatives shown in Figures 50-52 can be used.
  • an extrusion-in-extrusion mechanism 5000 is depicted.
  • Neck 5010 slides within vertical column 5020.
  • Neck 5010 and vertical column 5020 are sized to optimize the amount of friction between them, such that neck 5010 can slide when force is applied but will remain stationary when no force (other than gravity) is applied.
  • a stock tubing with rollers mechanism 5100 is depicted.
  • Neck 5110 slides within vertical column 5120.
  • Rollers 5130 assist in the movement and minimize the amount of force the user must exert to move neck 5110 up and down.
  • Carriage 5220 slides up and down vertical column 5210 using bearings or wheels (not shown). Carriage 5220 holds one end of a horizontal bar (not shown).
  • any of the alternatives shown in Figures 53-55 can be used. This may be useful for collapsing, moving, storing, and/or stacking the portable exercise bar.
  • rotating bar 5300 is depicted.
  • Neck 5310 connects to support member 5330 through joint 5340.
  • Support member 5330 holds one end of horizontal bar 5320.
  • Horizontal bar 5320 can rotate about joint 5340.
  • Horizontal bar 5530 slides within vertical column 5520.
  • Horizontal bar 5530 comprises two pieces, first member 5540 and second member 5550.
  • Second member 5550 is slightly smaller in diameter and can fit within first member 5540.
  • a spring is placed between the inside structures of first member 5540 and second member 5550 to exert force in the outer direction toward the neck 5510 on each side.
  • the user can push first member 5540 and second member 5550 together to remove the horizontal bar 5530 from the neck 5510 on each side for storage.
  • leg 5620 is fixed in a non-movable fashion to vertical column 5610. There are at least four legs of the type leg 5620.
  • folding leg mechanism 5700 is depicted. Leg 5720 folds up vertically toward vertical column 5710 and can fold down toward the floor.
  • Floorboard 5820 is connected to backboard 5810 through a fixed support member 5930.
  • fold down floorboard mechanism 5900 is depicted.
  • Floorboard 5820 is connected to backboard 5910 through a hinged support member 5930, which allows floorboard 5820 to fold up toward backboard 5910 or to fold down toward the floor.
  • extended floorboard mechanism 6000 is depicted.
  • Floorboard 6020 when folded to the floor extends in the right and left directions such that parts of floorboard 6020 are captured under each leg 6030.
  • Floorboard 6020 also is attached to backboard 6010 through a hinge or other means.
  • retractable wheel mechanism 6100 is depicted.
  • Wheel apparatus 6120 is contained within vertical column 6110.
  • Wheel apparatus 6120 comprises a pedal 6130 and wheel 6140.
  • pedal 6130 When pedal 6130 is pressed toward the floor, wheel 6140 is moved toward the floor and can be locked in that position to enable vertical column 6110 to roll on the floor.
  • Wheels 6210 are installed only on one side of the portable exercise bar device.
  • Handle 6220 is installed on the other side of the portable exercise bar device. The user can lift handle 6220 and toll the device using wheels 6210.
  • mechanism 6300 is shown.
  • Leg 6310 is connected to vertical column 6320 through angled bracket 6330.
  • Angled bracket 6330 allows leg 6310 to rotate toward vertical column 6320 when leg 6310 is folded inward to provide more clearance with the floor when leg 6310 is in the folded position.
  • leg 6310 can be forced outward by an internal leaf spring or coiled spring, by scissor jacks, by conical springs (which would cause reduced internal stack height), which pushes leg 6310 toward the floor, reducing the need for feet (such as foot mechanisms 181, 182, 183, and 184).
  • Angled bracket 6330 can be designed in a ratcheting configuration so that it angles upward in discrete steps.
  • Support structure 6410 supports the underside of horizontal bar 6420.
  • Support structure 6510 is attached to the center of horizontal bar 6520, such as through a screw or a bar that runs through the entire middle of horizontal bar 6520 (to another support structure 6510 on the opposite end of horizontal bar 6520.
  • Support structure 6510 is attached to the end face of horizontal bar 6620.
  • Support structure 6510 can include a recess for receiving the end of horizontal bar 6620.
  • a screw can be inserted through support structure 6510 into horizontal bar 6620.
  • a leg mounting mechanism 6700 is shown.
  • Leg 6710 attaches to shaft 6720, which attaches to bracket 6730, which attaches to vertical column 6740.
  • Bracket 6730 prevent leg 6710 from extending beyond the position where the 6710 is parallel with a floorboard in the unfolded position (i.e., it prevents over-extension of the leg).
  • neck 121 comprises wheels 6811, 6812, 6813, and 6814 on a first side and wheels 6815 and 6816 on a second side.
  • neck 121 further comprises wheels 6821, 6822, 6823, and 6824 on a third side and wheel 6825 and 6826 on a fourth side.
  • Vertical column 141 is designed to receive the embodiment of neck 121 shown in Figures 68 and 69.
  • Vertical column 141 comprises constant force spring 7010, wall 7026, and wall segments 7021, 7022, 7023, 7024, and 7025.
  • Wall 7026 is configured to receive wheels 6815 and 6816
  • wall segment 7021 is configured to receive wheels 6821 and 6822
  • wall segment 7022 is configured to receive wheels 6823 and 6824
  • wall segment 7023 is configured to receive wheels 6825 and 6826
  • wall segment 7024 is configured to receive wheels 6811 and 6812
  • wall segment 7025 is configured to receive wheels 6813 and 6814.
  • FIG. 71 Another top view of vertical column 141 is depicted, this time with neck 121 within vertical column 141. Wheels 6815, 6821, 6823, 6825, 6811, and 6813 are shown in contact with wall 7026 and wall segments 7021, 7022, 7023, 7024, and 7025, respectively.
  • FIG. 72 a cross-section side view of vertical column 141 and neck 121 is shown.
  • Neck 121 comprises diagonal piece 7210, against which constant force spring 7010 is in contact.
  • Figure 73 the same view is shown but from a greater distance.
  • constant force spring 7010 is elongated.
  • constant force spring 7010 is retracted.
  • the force exerted by constant force spring 7010 serves as a counterbalance to the weight of neck 123 itself as well as horizontal bars 110 and 210.
  • Figures 68 through 74 can be applied to any neck and any vertical column of the embodiments described herein, and that typically, a portable bar exercise device will contain such designs, if used at all, in all of its necks and vertical columns.
  • 210, 1010, 1210, and 1510 can be constructed of wood, plastic, metal, or other materials.
  • the crossbars bars described above, such as crossbars 160, 1060, 1080, and 1560, can be constructed of wood, plastic, metal, or other materials.
  • the floorboards described above, such as floorboards 150 and 1550, can be constructed of wood, plastic, metal, or other materials.
  • the backboards describe above, such as backboards 230, 1220, and 1720, can be constructed of word, plastic, metal, or other materials.
  • the backboards each can comprise a vacuum-formed back plate, a perforated metal back plate, a honeycomb plastic backboard, roto-molded plastic, or a fabric, lawn chair-type backboard.
  • mats described above each can comprise a laminate plastic/rubber structure attached to a floorboard or backboard, the backboard, or each can be created using self-skinning foam. All other structures can be constructed of wood, plastic, metal, or other materials.
  • references to the present invention herein are not intended to limit the scope of any claim or claim term, but instead merely make reference to one or more features that may be covered by one or more of the claims.
  • Materials, processes and numerical examples described above are exemplary only, and should not be deemed to limit the claims.
  • the terms “over” and “on” both inclusively include “directly on” (no intermediate materials, elements or space disposed there between) and “indirectly on” (intermediate materials, elements or space disposed there between).
  • the term “adjacent” includes “directly adjacent” (no intermediate materials, elements or space disposed there between) and “indirectly adjacent” (intermediate materials, elements or space disposed there between).
  • forming an element "over a substrate” can include forming the element directly on the substrate with no intermediate materials/elements there between, as well as forming the element indirectly on the substrate with one or more intermediate materials/elements there between.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Rehabilitation Tools (AREA)
  • Professional, Industrial, Or Sporting Protective Garments (AREA)
  • Emergency Lowering Means (AREA)
  • Measuring Volume Flow (AREA)
  • Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)
  • Handcart (AREA)
  • Respiratory Apparatuses And Protective Means (AREA)
  • Purses, Travelling Bags, Baskets, Or Suitcases (AREA)

Abstract

Multiple embodiments of a portable ballet bar exercise device are disclosed. In certain embodiments, the portable ballet bar exercise device is modular in nature such that it can be used as a single stand-alone unit or a single wall-mountable unit, or can be combined with an identical unit to form a double stand-alone unit or a double wall-mountable unit.

Description

MODULAR PORTABLE BALLET BAR EXERCISE DEVICE
TECHNICAL FIELD
[0001] Multiple embodiments of a modular portable ballet bar exercise device are disclosed.
BACKGROUND OF THE INVENTION
[0002] Fixed ballet bars are standard equipment in dance studios and exercise facilities. Ballet bars are used by dancers and persons exercising to keep their balance while engaging in stretching, dancing, cardio-vascular, weight-strengthening, and other exercise activities.
[0003] Traditional free-standing ballet bars in the prior art were relatively heavy and cumbersome to transport and use. In addition, they often were difficult to store because they could not be easily collapsed into a compact configuration.
[0004] The assignee of this application is an innovator in free-standing ballet bar exercise devices and previously obtained United States Patent Nos. 6,743,152 and 7,608,029, both of which are incorporated by reference herein. The inventions of those patents greatly improved upon the prior art, but nevertheless still contained limitations.
[0005] What is needed is an improved portable ballet bar exercise device that is adjustable in height, easier to assemble, collapse, transport, and store than the prior art devices. What is further needed is a portable ballet bar with an improved structural design. What is further needed is a portable ballet bar with fewer components, to simplify the manufacturing and assembly process. What is further needed is a portable ballet bar that is modular in nature such that it can be used as a single stand-alone unit or a single wall-mountable unit, or can be combined with an identical unit to form a double stand-alone unit or a double wall-mountable unit.
SUMMARY OF THE INVENTION
[0006] Multiple embodiments of a portable ballet bar exercise device are disclosed. BRIEF DESCRIPTION OF THE DRAWINGS
[0007] FIG. 1 depicts a front view of an embodiment of a single unit portable exercise bar device with legs and floorboard folded inward.
[0008] FIG. 2 depicts a back view of an embodiment of a single unit portable exercise bar device with legs and floorboard folded inward.
[0009] FIG. 3 depicts a side view of an embodiment of a single unit portable exercise bar device with legs and floorboard folded inward.
[0010] FIG. 4 depicts a front view of an embodiment of a single unit portable exercise bar device with legs extended outward and floorboard folded inward.
[0011] FIG. 5 depicts a front view of an embodiment of a single unit portable exercise bar device with legs and floorboard extended outward.
[0012] FIG. 6 depicts a front view of an embodiment of a single unit portable exercise bar device with legs and floorboard extended outward with a mat installed.
[0013] FIG. 7 depicts a back view of an embodiment of a single unit portable exercise bar device with legs extended outward.
[0014] FIG. 8 depicts a back view of an embodiment of a single unit portable exercise bar device with legs extended outward with a mat installed.
[0015] FIG. 9 depicts a side view of an embodiment of a single unit portable exercise bar device with legs and floorboard extended outward with a mat installed.
[0016] FIG. 10 depicts a front view of an embodiment of a single unit portable exercise bar device mounted on a wall.
[0017] FIG. 11 depicts a front view of an embodiment of a single unit portable exercise bar device mounted on a wall with mat installed.
[0018] FIG. 12 depicts a back view of an embodiment of a single unit portable exercise bar device that can be mounted on a wall.
[0019] FIG. 13 depicts a side view of an embodiment of a single unit portable exercise bar device mounted on a wall and a mat installed.
[0020] FIG. 14 depicts an embodiment of a leg assembly.
[0021] FIG. 15 depicts a front view of an embodiment of a double unit portable exercise bar device with legs and floorboards folded inward. [0022] FIG. 16 depicts a front view of an embodiment of a double unit portable exercise bar device with legs extended outward and floorboards folded inward.
[0023] FIG. 17 depicts a front view of an embodiment of a double unit portable exercise bar device with legs and floorboards extended outward.
[0024] FIG. 18 depicts a side view of an embodiment of a double unit portable exercise bar device with legs and floorboards folded inward.
[0025] FIG. 19 depicts a front view of an embodiment of a double unit portable exercise bar device with legs and floorboard extended outward with a mat installed.
[0026] FIG. 20 depicts a side view of an embodiment of a double unit portable exercise bar device with legs and floorboard extended outward with a mat installed.
[0027] FIG. 21 depicts a top view of an embodiment of a double unit portable exercise bar device with legs and floorboards folded inward.
[0028] FIG. 22 depicts a front view of an embodiment of two halves of a double unit portable exercise bar device mounted on a wall.
[0029] FIG. 23 depicts a magnet embedded in a bore in a floorboard of a portable exercise bar device.
[0030] FIG. 24 depicts a clamping mechanism for holding a horizontal bar in a portable exercise bar device.
[0031] FIG. 25 depicts a hook mechanism for securing two legs in a portable exercise bar device.
[0032] FIG. 26 depicts a velcro mechanism for securing two legs in a portable exercise bar device.
[0033] FIG. 27 depicts a strap mechanism for securing two legs in a portable exercise bar device.
[0034] FIG. 28 depicts a strap mechanism for securing two legs in a portable exercise bar device.
[0035] FIG. 29 depicts a friction bushing mechanism for securing a leg in a portable exercise bar device.
[0036] FIG. 30 depicts a spring loaded ball plunger mechanism for securing a leg in a portable exercise bar device.
[0037] FIG. 31 depicts a zipper mechanism for securing a leg in a portable exercise bar device.
[0038] FIGs. 32A and 32B depict a lift and rotate mechanism for securing a leg in a portable exercise bar device. [0039] FIG. 33 depicts a collar mechanism for securing a vertical member in a portable exercise bar device.
[0040] FIG. 34 depicts a cam lock pawl for securing a vertical member in a portable exercise bar device.
[0041] FIG. 35 depicts a spring loaded pin mechanism for securing a vertical member in a portable exercise bar device.
[0042] FIG. 36 depicts a push button side lock mechanism for securing a vertical member in a portable exercise bar device.
[0043] FIG. 37 depicts an independent adjustment mechanism for adjusting the height of a horizontal bar in a portable exercise bar device.
[0044] FIG. 38 depicts a screw jack mechanism for adjusting the height of a horizontal bar in a portable exercise bar device.
[0045] FIG. 39 depicts a cable lift mechanism for adjusting the height of a horizontal bar in a portable exercise bar device.
[0046] FIG. 40 depicts a gas cylinder lift for adjusting the height of a horizontal bar in a portable exercise bar device.
[0047] FIG. 41 depicts a foot pump lift for adjusting the height of a horizontal bar in a portable exercise bar device.
[0048] FIG. 42 depicts a spring lift mechanism for adjusting the height of a horizontal bar in a portable exercise bar device.
[0049] FIG. 43 depicts a foot lift for adjusting the height of a horizontal bar in a portable exercise bar device.
[0050] FIG. 44 depicts a center lift mechanism for adjusting the height of a horizontal bar in a portable exercise bar device.
[0051] FIG. 45 depicts a multiple bar mechanism for a portable exercise bar device.
[0052] FIG. 46 depicts a rotating bar mechanism for a portable exercise bar device.
[0053] FIG. 47 depicts a multiple slot mechanism for a portable exercise bar device.
[0054] FIG. 48 depicts a multiple bar linkage mechanism for a portable exercise bar device.
[0055] FIG. 49 depicts a damping grease mechanism for a portable exercise bar device.
[0056] FIG. 50 depicts an extrusion in extrusion mechanism for sliding a horizontal bar vertically in a portable exercise bar device. [0057] FIG. 51 depicts a stock tubing with rollers mechanism for sliding a horizontal bar vertically in a portable exercise bar device
[0058] FIG. 52 depicts an external carriage mechanism for sliding a horizontal bar vertically in a portable exercise bar device
[0059] FIG. 53 depicts a rotating bar for a portable exercise bar device.
[0060] FIG. 54 depicts a telescoping bar for a portable exercise bar device.
[0061] FIG. 55 depicts a removable bar for a portable exercise bar device.
[0062] FIG. 56 depicts a fixed leg mechanism for a portable exercise bar device.
[0063] FIG. 57 depicts a folding leg mechanism for a portable exercise bar device.
[0064] FIG. 58 depicts a fixed floorboard mechanism for a portable exercise bar device.
[0065] FIG. 59 depicts a fold down floorboard mechanism for a portable exercise bar device.
[0066] FIG. 60 depicts an extended floorboard for a portable exercise bar device.
[0067] FIG. 61 depicts a retractable wheel mechanism for a portable exercise bar device.
[0068] FIG. 62 depicts a wheel mechanism for a portable exercise bar device.
[0069] FIG. 63 depicts a bracket for attaching a leg to a vertical column in a portable exercise bar device.
[0070] FIG. 64 depicts an underneath mounting method for a horizontal bar in a portable exercise bar device.
[0071] FIG. 65 depicts a center mounting method for a horizontal bar in a portable exercise bar device.
[0072] FIG. 66 depicts an end mounting method for a horizontal bar in a portable exercise bar device.
[0073] FIG. 67 depicts a leg mounting mechanism in a portable exercise bar device.
[0074] FIG. 68 depicts a side view of a neck for use in a portable exercise bar device.
[0075] FIG. 69 depicts an opposite side view of the neck from FIG. 68 for use in a portable exercise bar device.
[0076] FIG. 70 depicts a top view of a vertical column for receiving the neck from FIG. 68-69 for use in a portable exercise bar device.
[0077] FIG. 71 depicts a top view of a vertical column and a neck for use in a portable exercise bar device. [0078] FIG. 72 depicts a cross-section from a front view of a constant force spring for exerting force against a neck within a vertical column for use in a portable exercise bar device.
[0079] FIG. 73 depicts a cross-section from a front view of a constant force spring for exerting force against a neck within a vertical column for use in a portable exercise bar device.
[0080] FIG. 74 depicts a side view of a constant force spring attached to a neck for use in a portable exercise bar device.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0081] STAND-ALONE SINGLE UNIT PORTABLE EXERCISE BAR. Figure 1 depicts a front view of an embodiment of a portable exercise bar 100. Portable exercise bar 100 is a single unit. Portable exercise bar 100 comprises horizontal bar 110, neck 121, neck 122, vertical column 131, vertical column 132, knob 141, knob 142, floorboard 150, hinge 151, crossbar 160, leg 171, leg 172, leg 173, leg 174, shaft 176, shaft 177, shaft 178 (not shown), shaft 179 (not shown), foot mechanism 181, foot mechanism 182, wheel 191, wheel 192, wheel 193, and wheel 194.
[0082] Horizontal bar 110 optionally is a ballet bar. Horizontal bar 110 is secured in place by neck 121 and neck 122. Neck 121 comprises clamping mechanism 123, and neck 122 comprises clamping mechanism 124. Clamping mechanism 123 and clamping mechanism 124 are secured to horizontal bar 110 such that horizontal bar 110 does not move within clamping mechanism 123 and clamping mechanism 124.
[0083] Further detail regarding clamping mechanism 123 and clamping mechanism 124 is shown in Figure 24. Clamping mechanism 123 and 124 each comprise band 2410, screw 2420, and bolt 2430. Band 2410 wraps around horizontal bar 110 and is tightened with bold 2430. Bolt 2430 optionally can be a hex bolt. Screw 2420 is inserted through band 2410 into horizontal bar 110
[0084] With reference to Figure 1, neck 121 can slide within vertical column 131 when knob 141 is pulled outward from vertical column 131, and neck 121 is held in place within vertical column 131 by knob 141 when knob 141 is not pulled outward. Neck 122 can slide within vertical column 132 when knob 142 is pulled outward from vertical column 132, and neck 122 is held in place within vertical column 132 by knob 142 when knob 142 is not pulled outward. Knob 141 and knob 142 optionally are spring-loaded. In this exemplary embodiment, knob 141 and knob 142 are T-shaped, which is a shape that is easy for the human hand to grasp and pull. Other shapes are possible, such as a circular shape. In one embodiment, neck 121 and neck 122 can be held in place by knob 141 and knob 142, respectively, in a maximum vertical position such that horizontal bar 110 is located at least 28.00 inches from the floor.
[0085] Crossbar 160 is coupled to vertical column 131 and vertical column 132.
[0086] Floorboard 150 is coupled to hinge 151, which also is coupled to crossbar 410 (shown in Figure 4). Optionally, hinge 151 is designed such that when floorboard 150 is folded in, hinge 151 is raised off the floor to provide clearance when portable exercise bar 100 is transported. When floorboard 150 is extended to the floor, hinge 151 extends to the floor such that floorboard 150 is placed in contact with the floor. For example, hinge 151 can be spring loaded so that floorboard 150 is placed in contact with the floor when a user stands on floorboard 150.
[0087] Leg 171 and leg 173 are coupled to vertical column 131 by shaft 176 and shaft 178, respectively. Leg 172 and leg 174 are coupled to vertical column 132 by shaft 177 and 179 (shown in Figure 2 but not Figure 1), respectively. Shafts 176, 177, 178, and 179 optionally are embedded within the legs as shown. Leg 171 can rotate about shaft 176 between a folded position (shown in Figures 1-3) and an extended position (shown in Figures 4-9). Optionally, vertical columns 131 and 132 each comprise a cut-out portion for receiving shafts 176, 177, 178, and 179. The cut-out prevents legs 171, 172, 173, and 174 from extending beyond the position where the leg is parallel with floorboard 150 in the unfolded position (i.e., it prevents overextension of the legs), which is a feature that enhances user safety. Leg 172 can rotate about shaft 177, leg 173 can rotate about shaft 178, and leg 174 can rotate about shaft 179 in the same manner described for leg 171 and shaft 176. In the alternative, shafts 176, 177, 178, and 179 each can be attached to a bracket, which in turn is attached to vertical columns 131 and 132, and the brackets can prevent legs 171, 172, 173, and 174 from extending beyond the position where the leg is parallel with floorboard 150 in the unfolded position, in accordance with the design shown in Figure 67.
[0088] In one embodiment, the distance between the bottom of vertical column 131 and the floor is at least 1.80 inches and the distance between the bottom of vertical column 132 and the floor is at least 1.80 inches.
[0089] Various designs for shafts 176, 177, 178, and 179 are possible. For example, each of shafts 176, 177, 178, and 179 can comprise a hollow cylinder fixed to each of legs 171, 172, 173, and 174, respectively, with each cylinder enclosing another cylinder (or pin) fixed to vertical columns 131 (for shafts 176 and 178) and 132 (for shafts 177 and 179). In another example, each of shafts 176, 177, 178, and 179 can comprise a cylinder fixed to each of legs 171, 172,
173, and 174, respectively, with spring-loaded members extending from the top and bottom of each cylinder received by a recess in vertical columns 131 and 132. One embodiment of a leg and shaft design is shown in Figure 14 and described below.
[0090] Wheels 191 ad 193 are connected to a horizontal bracket that is connected to vertical column 131, and wheels 192 and 194 are connected to a horizontal bracket that is connected to vertical column 132.
[0091] Foot mechanism 181 is coupled to leg 171, foot mechanism 182 is coupled to leg 172, foot mechanism 183 (not shown) is coupled to leg 173, and foot mechanism 184 (not shown) is coupled to leg 174. Foot mechanism 181, 182, 183, and 184 each comprise a knob and a lever, and the user can lock each foot mechanism by pushing the knob and release the lock by pushing the lever.
[0092] Figure 2 depicts a rear view of the embodiment of a portable exercise bar 100. Portable exercise bar 100 further comprises horizontal bar 210, handle 220, backboard 230, leg 173, leg
174, shaft 178, shaft 179, foot mechanism 183, and foot mechanism 184.
[0093] Horizontal bar 210 is substantially parallel to horizontal bar 110 and is coupled to neck 121 and neck 122. Horizontal bar 210 provides additional stability for portable exercise bar 100.
[0094] Handle 220 is coupled to crossbar 160 and can be used for carrying or rolling portable exercise bar 100. It also can be used to hold floorboard 150 and mat 610 in the folded position. For example, a latch or velcro strap (not shown) can be used to connect floorboard 150 to handle 220 when floorboard 150 is folded inward.
[0095] Figure 3 depicts a side view of the embodiment of a portable exercise bar 100.
[0096] Figure 4 depicts another front view of portable exercise bar 100. In this view, legs 171, 172, 173, and 174 have been extended outward. Backboard 230 is coupled to crossbar 160 and crossbar 410. Crossbar 410 is coupled to vertical column 131 and vertical column 132.
[0097] Floorboard 150 comprises magnet 421 and magnet 422. In the folded position (as in Figure 1), magnet 421 will hold leg 171 against floorboard 150 through magnetic force, and magnet 422 will hold leg 172 against floorboard 150 through magnetic force. [0098] Figure 5 depicts the same view as Figure 4, except floorboard 150 now has been unfolded to the ground. Floorboard 150 comprises bore 521 and bore 522. Magnet 421 is placed into bore 521, and magnet 422 is placed into bore 522. The diameters of bore 521 and bore 522 preferably are smaller on the side of floorboard 150 facing outward (i.e., the side of floorboard 150 shown in Figure 4), such that magnets 421 and 422 are retained within floorboard 150 by the floorboard 150 itself, and the diameters of bore 521 and 522 are larger on the side of floorboard 150 facing backboard 230 to increase the ease with which magnets 421 and 422 are installed in bores 521 and 522 during the manufacturing process. Magnets 421 and 422 optionally are secured within bores 521 and 522, respectively, by epoxy or other adhesive or mechanical means (for example, a metal plate with fasteners).
[0099] Backboard 230 comprises bore 531 and bore 532, into which other magnets are installed, as discussed below with reference to Figure 7. Bores 531 and 532 are similar in design to bores 521 and 522.
[00100] Figure 23 contains further detail regarding the magnets and bores shown previously in Figures 4-5 (as well as Figures 16-17 discussed below). Magnetic system 2300 is depicted. A floorboard 2310 comprises bore 2340. Within bore 2340, magnet 2330 is installed and secured with adhesive 2320. Bore 2340 comprises a portion with a first diameter 2341 (I think 2341 needs to be labeled, unless I am not reading image correctly) and a portion with a second diameter 2342, and the diameter 2343 of magnet 2330 is larger than the first diameter 2341 and smaller than the second diameter 2342. Magnet 2330 generates a magnetic field according to known magnetic principles. The magnetic field attracts leg 2360 toward magnet 2330, even with mat 2350 located between leg 2360 and magnet 2330. Magnet 2330 is held in place by floorboard 2310. Magnet 2330 optionally can be a rare-earth magnet such as a neodymium magnet or samarium-cobalt magnet and ideally is selected such that leg 2360 is held in place even when the unit is being moved yet is easy for a normal user to overcome when he or she wishes to extend the leg to use the portable exercise bar by pushing/pulling the leg outward with his or her hands or feet.
[00101] Figure 6 depicts the same configuration of portable exercise bar 100 shown in
Figure 5, except that mat 610 has been placed over floorboard 150 and wrapped around backboard 230 as shown in Figures 6 and 8. Mat 610 optionally comprises portions 611, 612, and 613 which join at creases 621 and 622. The user can add mat 610 after unfolding legs 171 and 172 and floorboard 150, or mat 610 can be coupled to floorboard 150 and backboard 230 and remain attached even when floorboard 150 and legs 171 and 172 are folded inward. For example, portion 612 can include a pocket that envelopes floorboard 150. Mat 610 is utilized by the user during exercises and provides padding on the floor. Mat 610 also provides padding for crossbar 160, which is beneficial if the user stretches his or her leg by placing the leg on crossbar 160. Optionally, portions 612 and 613 comprise a vinyl covering over adhesive foam that is attached to floorboard 150 and backboard 230, respectively, and portion 611 comprises a vinyl enclosure containing foam.
[00102] Figure 7 depicts another rear view of portable exercise bar 100. In this view, legs
173 and 174 have been extended. Backboard 230 comprises magnets 731 and 732. Magnet 731 is placed in bore 531, and magnet 732 is placed in bore 532 (such as through the mechanism shown in Figure 23). The diameters of bore 531 and bore 532 preferably are smaller on the side of backboard 230 on the rear of portable exercise bar 100 ( (i.e., the side of backboard 230 shown in Figure 7), such that magnets 731 and 732 are retained within backboard 230 by backboard 230 itself, and the diameters of bore 531 and 532 are larger on the side of backboard 230 facing floorboard 150 to increase the ease with which magnets 731 and 732 are installed in bores 531 and 532 during the manufacturing process. Magnets 731 and 732 optionally are secured within bores 531 and 532, respectively, by epoxy or other adhesive.
[00103] In the folded position (as in Figure 2), magnet 731 will hold leg 173 against backboard 230 through magnetic force, and magnet 732 will hold leg 174 against backboard 230 through magnetic force.
[00104] Figure 8 is the same view as Figure 7 of portable exercise bar 100, except mat 610 comprises portions 614 and 615 that wrap around the vertical sides of backboard 230 and portions 616 and 617 that wrap over the top side of backboard 230 next to handle 220. This provides further stability for mat 610. Mat 610 optionally can be screwed into hinge 151.
[00105] Figure 9 depicts another side view of portable exercise bar 100. In this view, floorboard 150 has been unfolded away from crossbar 160 and legs 171, 172, 173, and 174 have been extended.
[00106] During operation of portable exercise bar 100 by a user, the configuration of
Figures 4-9 is used, with floorboard 150 unfolded, legs 171, 172, 173, and 174 extended, and mat 610 installed. The user can hold horizontal bar 120 while exercising or stretching, just as he or she could do with a fixed ballet bar.
[00107] WALL-MOUNTABLE SINGLE UNIT PORTABLE EXERCISE BAR. Another embodiment is depicted in Figures 10-13. With reference to Figure 10, wall-mountable portable exercise bar 1000 comprises horizontal bar 1010, neck 1021, neck 1022, vertical column 1031, vertical column 1032, knob 1041, knob 1042, backboard 1220 (shown in Figure 12), hinge 1090, crossbar 1060, crossbar 1080, and handle 1070. Wall-mountable portable exercise bar 1000 can be mounted to wall 1090.
[00108] Horizontal bar 1010 optionally is a ballet bar. Horizontal bar 1010 is secured in place by neck 1021 and neck 1022. Neck 1021 comprises clamping mechanism 1023, and neck 1022 comprises clamping mechanism 1024. Clamping mechanism 1023 and clamping mechanism 1024 are secured to horizontal bar 1010 such that horizontal bar 1010 does not move within clamping mechanism 1023 and clamping mechanism 1024.
[00109] Neck 1021 can slide within vertical column 1031 when knob 1041 is pulled outward from vertical column 1031, and neck 1021 is held in place within vertical column 1031 by knob 1041 when knob 1041 is not pulled outward. Neck 1022 can slide within vertical column 1032 when knob 1042 is pulled outward from vertical column 1032, and neck 1022 is held in place within vertical column 1032 by knob 1042 when knob 1042 is not pulled outward. Knob 1041 and knob 1042 optionally are spring-loaded. In this exemplary embodiment, knob 1041 and knob 1042 are T-shaped, which is a shape that is easy for the human hand to grasp and pull. Other shapes are possible, such as a circular shape. In one embodiment, neck 1021 and neck 1022 can be held in place by knob 1041 and knob 1042, respectively, in a maximum vertical position such that horizontal bar 1010 is located at least 28.00 inches from the floor.
[00110] Crossbar 1060 and crossbar 1080 are coupled to vertical column 1031 and vertical column 1032. Crossbars 1060 and 1080 optionally comprise a plurality of holes 1061 and 1081, respectively, for receiving attachment devices such as screws.
[00111] Backboard 1220 is coupled to crossbar 1060 and crossbar 1080. .
[00112] Figure 11 depicts the same configuration of wall-mountable portable exercise bar
1000 as shown in Figure 10, except mat 1110 has been placed over backboard 1220 as shown. Mat 1110 optionally comprises portions 1111, 1112, and 1113, which join at creases 1121 and 1122. Mat 1110 can be attached to backboard 1220. For example, portion 1113 can be attached to backboard 1220 using velcro straps. Portions 1111 and 1112 can be folded upward toward backboard 1220 and can be attached to handle 1070 with velcro straps.
[00113] Figure 12 depicts a rear view of the embodiment of a wall-mountable portable exercise bar 1000. Wall-mountable portable exercise bar 1000 further comprises horizontal bar 1210. Horizontal bar 1210 is substantially parallel to horizontal bar 1110 and is coupled to neck 1121 and neck 1122. Horizontal bar 1210 provides additional stability for wall-mountable portable exercise bar 1000.
[00114] Figure 13 depicts a side view of wall-mountable portable exercise bar 1000.
Wall-mountable portable exercise bar 1000 is mounted to wall 1090 with attachment devices 1310 and 1320. Attachment devices 1310 and 1320 each can comprise a metal bracket that is attached to studs in wall 1090, such as by screws. Crossbar 1060 and/or crossbar 1080 are then attached to metal bracket, such as by using nuts and bolts through plurality of holes 1061 and 1081.
[00115] One of ordinary skill the art will understand that portable exercise bar 100 can be modified into portable exercise bar 1010 by removing leg 171-174, wheels 191-194, shafts 176- 179, and foot mechanisms 181-184,. Thus, portable exercise bar 100 can be used as a standalone unit or as a wall-mountable unit.
[00116] To that end, Figure 14 depicts assembly 1400. Assembly 1400 comprises leg
1410, foot mechanism 1420, wheel 1430, and attachment mechanism 1440. Attachment mechanism 1440 optionally comprises shaft 1442 (which allows leg 1410 to rotate about an axis), attachment device 1443, and attachment device 1444. Attachment device 1443 and attachment device 1444 optionally are screws that are placed in holes in attachment mechanism 1440 and then screwed into vertical columns 131 and 132. Thus, assembly 1400 can be used for either the front legs or rear legs attached to vertical columns 131 and 132 in portable exercise bar 100. When attached to the front and rear of vertical columns 131 and 132, the unit becomes portable exercise bar 100. When removed from the front and rear of vertical columns 131 and 132, the unit becomes wall-mountable portable exercise bar 1000. The use of assembly 1400 in this manner creates a versatile portable exercise bar that can be either a stand-alone unit (such as portable exercise bar 100) or a wall-mounted unit (such as wall-mountable portable exercise bar 1000). [00117] STAND-ALONE DOUBLE UNIT PORTABLE EXERCISE BAR. Figures 15-20 depict an embodiment of a stand-alone double unit portable exercise bar.
[00118] With reference to Figure 15, double unit portable exercise bar 1500 is depicted.
Double unit portable exercise bar 1500 comprises first module 1501 and second module 1502. First module 1501 and second module 1502 are identical and attach in a back-to-back configuration as shown.
[00119] Description will now be made of first module 1501. It should be understood that the description applies to second module 1502 as well.
[00120] First module 1501 comprises horizontal bar 1510, neck 1521, neck 1522, vertical column 1531, vertical column 1532, knob 1541, knob 1542, floorboard 1550, hinge 1551, crossbar 1560, leg 1571, leg 1572, shaft 1576, shaft 1577, foot mechanism 1581, foot mechanism 1582, wheel 1591, and wheel 1592.
[00121] Horizontal bar 1510 optionally is a ballet bar. Horizontal bar 1510 is secured in place by neck 1521 and neck 1522. Neck 1521 comprises clamping mechanism 1523, and neck 1522 comprises clamping mechanism 1524. Clamping mechanism 1523 and clamping mechanism 1524 are secured to horizontal bar 1510 such that horizontal bar 1510 does not move within clamping mechanism 1523 and clamping mechanism 1524. Clamping mechanisms 1523 and 1524 can follow the design of Figure 24, described previously.
[00122] Neck 1521 can slide within vertical column 1531 when knob 1541 is pulled outward from vertical column 1531, and neck 1521 is held in place within vertical column 1531 by knob 1541 when knob 1541 is not pulled outward. Neck 1522 can slide within vertical column 1532 when knob 1542 is pulled outward from vertical column 1532, and neck 1522 is held in place within vertical column 1532 by knob 1542 when knob 1542 is not pulled outward. Knob 1541 and knob 1542 optionally are spring-loaded. In this exemplary embodiment, knob 1541 and knob 1542 are T-shaped, which is a shape that is easy for the human hand to grasp and pull. Other shapes are possible, such as a circular shape.
[00123] Crossbar 1560 is coupled to vertical column 1531 and vertical column 1532.
[00124] Horizontal bar 1515 is coupled to vertical column 1531 and vertical column 1532 and provides additional stability for double unit portable exercise bar 1500.
[00125] Floorboard 1550 is coupled to hinge 1551, which also is coupled to backboard
1610 (shown in Figure 16). Optionally, hinge 1551 is designed such that when floorboard 1550 is folded in, hinge 1551 is raised off the floor to provide clearance when portable exercise bar 1500 is transported. When floorboard 1550 is extended to the floor, hinge 1551 extends to the floor such that floorboard 1550 is placed in contact with the floor. For example, hinge 1551 can be spring loaded so that floorboard 1550 is placed in contact with the floor when a user stands on floorboard 1550.
[00126] Leg 1571 is coupled to vertical column 1531 by shaft 1576. Leg 1572 is coupled to vertical column 1532 by shaft 1577. Shafts 1576 and 1577 optionally are embedded within the legs as shown. Leg 1571 can rotate about shaft 1576 between a folded position (shown in Figures 15, 18, and 21) and an extended position (shown in Figures 16-17 and 19-20).
Optionally, vertical columns 1531 and 1532 each comprise a cut-out portion for receiving shafts 1576, 1577, 1578, and 1579. The cut-out prevents legs 1571, 1572, 1573, and 1574 from extending beyond the position where the leg is parallel with floorboard 1550 in the unfolded position (i.e., it prevents over-extension of the legs), which is a feature that enhances user safety. Leg 1572 can rotate about shaft 1577, leg 1573 can rotate about shaft 1578, and leg 1574 can rotate about shaft 1579 in the same manner described for leg 1571 and shaft 1576. Leg 1572 can rotate about shaft 1577 in the same manner described for leg 171 and shaft 176.
[00127] In the alternative, shafts 1576, 1577, 1578, and 1579 each can be attached to a bracket, which in turn is attached to vertical columns 1531 and 1532, and the brackets can prevent legs 1571, 1572, 1573, and 1574 from extending beyond the position where the leg is parallel with floorboard 1550 in the unfolded position, in accordance with the design shown in Figure 67.
[00128] In one embodiment, the distance between the bottom of vertical column 1531 and the floor is at least 1.80 inches and the distance between the bottom of vertical column 1532 and the floor is at least 1.80 inches.
[00129] Various designs for shafts 1576 and 1577 are possible. For example, each of shafts 1576 and 1577 can comprise a hollow cylinder fixed to each of legs 1571 and 1572, respectively, with each cylinder enclosing another cylinder (or pin) fixed to vertical columns 1531 (for shaft 1576) and 1532 (for shafts 1577). In another example, each of shafts 1576 and 1577 can comprise a cylinder fixed to each of legs 1571 and 1572, respectively, with spring- loaded members extending from the top and bottom of each cylinder received by a recess in vertical columns 1531 and 1532. One embodiment of a leg and shaft design is shown in Figure 14.
[00130] Wheel 1591 is connected to a horizontal bracket that is connected to vertical column 1531, and wheel 1592 is connected to a horizontal bracket that is connected to vertical column 1532.
[00131] Foot mechanism 1581 is coupled to leg 1581, and foot mechanism 1582 is coupled to leg 1572. Foot mechanism 1581 and 1582 each comprise a knob and a lever, and the user can lock each foot mechanism by pushing the knob and release the lock by pushing the lever.
[00132] Figure 16 depicts the same view as Figure 15, except legs 1571 and 1572 have been extended. Floorboard 1550 comprises magnet 1611 and magnet 1612.
[00133] In the folded position (as in Figure 15), magnet 1611 will hold leg 1571 against floorboard 1550 through magnetic force, and magnet 1612 will hold leg 1572 against floorboard 1550 through magnetic force. Crossbar 1620 is coupled to vertical column 1531 and vertical column 1532 and provides additional stability for double unit portable exercise bar 1500.
Crossbar 1560 comprises plurality of holes 1561, and crossbar 1620 comprises plurality of holes 1621.
[00134] Figure 17 depicts the same view as Figure 16, except floorboard 1550 now has been unfolded to the ground. Floorboard 1550 comprises bore 1711 and 1712. Magnet 1611 is placed into bore 1711, and magnet 1612 is placed into bore 1712 (such as through the design of Figure 23). The diameters of bores 1621 and 1612 preferably are smaller on the side of floorboard 1550 facing outward (i.e., the side of floorboard 1550 shown in Figure 16), such that magnets 1611 and 1612 are retained within floorboard 1550 by the floorboard 1550 itself, and the diameters of bore 1711 and 1712 are larger on the side of floorboard 1550 facing backboard 1720 to increase the ease with which magnets 1611 and 1612 are installed in bores 1711 and 1712 during the manufacturing process. Magnets 1611 and 1612 optionally are secured within bores 1711 and 1712, respectively, by epoxy or other adhesive or mechanical means *for example, a metal plate with fasteners). Further detail regarding these magnets and bores is shown in Figure 23 and was previously described.
[00135] Handle 1730 is coupled to crossbar 1560. Backboard 1720 is coupled to crossbar
1560 and crossbar 1620. [00136] Figure 18 depicts a side view of double unit portable exercise bar 1500 with legs and floorboards in a folded position. First module 1501 and second module 1502 are shown in a back-to-back configuration. In this configuration, double unit portable exercise bar 1500 is extremely compact and space-efficient, which is useful when it is being stored.
[00137] Figure 19 depicts the same configuration of double unit portable exercise bar
1500 as shown in Figure 17, except that mat 1910 has been placed over floorboard 1550 and backboard 1720 as shown. Mat 1910 optionally comprises portions 1911, 1912, and 1913, which join at creases 1921 and 1922. The user can add mat 1910 after unfolding legs 1571 and 1572 and floorboard 1550, or mat 1910 can be coupled to floorboard 1550 and backboard 1720 and remain attached even when floorboard 1550 and legs 1571 and 1572 are folded inward. For example, portion 1912 can include a pocket that envelopes floorboard 1550. Optionally, portions 1912 and 1913 comprise a vinyl covering over adhesive foam that is attached to floorboard 1550 and backboard 1720, respectively, and portion 1911 comprises a vinyl enclosure containing foam.
[00138] Figure 20 depicts the same side view of double unit portable exercise bar 1500 as shown in Figure 18, except mat 1810 has been added to first module 1501 and second module 1502.
[00139] Figure 21 depicts a top (bird's eye) view of double unit portable exercise bar
1500. Attachment devices 2110 are depicted and couple first module 1501 and second module 1502. Attachment devices 2110 can comprise, for example, a plurality of bolts that extends through one or more of plurality of holes 1561 and plurality of holes 1621 and are secured by a nut or wingnut such that attachment devices 2110 press the crossbar 1560 of first module 1501 and second module 1502 together and/or press the crossbar 1620 of first module 1501 and second module 1502 together.
[00140] WALL-MOUNTABLE DOUBLE UNIT PORTABLE EXERCISE BAR. It will be understood that first module 1501 and second module 1502 can be detached from one another by undoing attachment devices 2110. Once decoupled from one another, first module 1501 or second module 1502 can be used as a wall-mountable portable exercise bar 1000 shown previously in Figures 9-13
[00141] In addition, first module 1501 and second module 1502 can be attached from one another by undoing attachment devices 2110, and then assembly 1400 can be added to the rear of vertical columns 1531 and 1532 for first module 1501 and second module 1502, such that first module 1501 and second module 1502 each become portable exercise bar 100 (i.e., a standalone single unit).
[00142] In addition, both first module 1501 and second module 1502 can be used as wall- mountable units in a double configuration. With reference to Figure 22, first module 1501 and second module 1502 are decoupled from one another and then mounted to wall 2210 in the same manner described previously for wall-mountable portable exercise bar 1000. In this
configuration, first module 1501 and second module 1502 together are a double-unit, wall mountable portable exercise ballet bar system 2200.
[00143] Alternative Designs for Portable Exercise Bar Devices 100, 1000, 1500, and
2200. Numerous alternative designs are possible for various portions of the portable exercise device. These alternative designs are shown in Figures 25-66 and will be discussed in turn.
[00144] ALTERNATIVE LEG SECURING MECHANISMS. Numerous options are possible for securing the legs in the inward position when storing or transporting the portable exercise bar. For example, instead of using a magnet installed within a bore in the backboard, any of the alternatives shown in Figures 25-32 can be used.
[00145] With reference to Figure 25, a hook mechanism 2500 is depicted. Hook mechanism comprises hook 2510 on a leg and connector 2520 on a cross bar or another leg.
[00146] With reference to Figure 26, a velcro mechanism 2600 is depicted, velcro mechanism 2600 comprises a velcro patch (not shown) installed on a leg and velcro patch 2610 installed on the mat.
[00147] With reference to Figure 27, first strap mechanism 2700 is depicted. Strap mechanism 2700 comprises strap 2710 attached to the mat and wraps around the leg. Strap 2710 can be made of elastic and can be sewn to the mat. In the alternative, strap 2710 can be made of a non-stretchable material, and one end can be sewn to the mat and another end can be attached to the mat with velcro.
[00148] With reference to Figure 28, second strap mechanism 2800 is depicted. Second strap mechanism 2800 comprises strap 2810 that ties two legs together in the folded position. Strap 2810 is of an ideal length that prevents the legs from spreading apart when the portable exercise bar is being stored or moved. Strap 2810 can be made of elastic or similar stretchable material. [00149] With reference to Figure 29, friction bushing mechanism 2900 is depicted.
Friction bushing mechanism 2900 comprises bushings 2910 that each have a larger diameter than the leg tube, which creates frictive resistance when a user tries to move the leg. This resistance keeps the legs secured in the folded position.
[00150] With reference to Figure 30, spring loaded ball plunger mechanism 3000 is depicted. Spring loaded ball plunger mechanism 3000 comprises spring 3010, ball 3020, and divot 3030. Spring 3010 and ball 3020 together are a spring loaded ball attached to the vertical column that are received by divot 3030 in the leg, which will then keep the leg secured to the column.
[00151] With reference to Figure 31, zipper mechanism 3100 is depicted. Zipper mechanism 3100 comprises covering 3110 (which optionally is made of fabric) that is placed over the leg. Patch 3130 is attached to the mat, such as by being sewed onto the mat. Zipper 3120 is attached to patch 3130 and covering 3110 and can be used to secure the leg against the mat.
[00152] With reference to Figures 32A and 32B, lift and rotate mechanism 3200 is depicted. The leg needs to be lifted vertically over pin 3210 to be rotated. In Figure 32A, the leg is in the folded position, and pin 3210 keeps the leg in place. In Figure 32B, the leg is in an open, extended position, and pin 3210 again keeps the leg in place.
[00153] ALTERNATIVE NECK LOCKING MECHANISMS. Numerous options are possible for securing the neck of any of the embodiments described herein within the vertical column. For example, instead of using a knob that is inserted into a hole in the neck, any of the alternatives shown in Figures 33-36 can be used.
[00154] With reference to Figure 33, collar mechanism 3300 is depicted. Neck 3320 is inserted into vertical column 3310. Screw 3330 tightens collar 3340 around neck 3320 to hold neck 3320 in place.
[00155] With reference to Figure 34, cam lock pawl 3400 is depicted. Neck 3420 is inserted into vertical column 3410. Pawl 3430 is used to tighten collar 3440 around neck 3420 to hold neck 3420 in place.
[00156] With reference to Figure 35, spring loaded pin mechanism 3500 is depicted.
Neck 3510 is inserted into vertical column (not shown). Pin 3520 is forced outward by spring 3530. Pin 3520 can be inserted into holes or divots in the vertical column. A user can depress pin 3520 to be able to move neck 3510 up and down within the vertical column.
[00157] With reference to Figure 36, push button side lock mechanism 3600 is depicted.
Neck 3620 is inserted into vertical column 3610. Friction members 3640 exert force outward against the inside surface of vertical column 3610, this securing neck 3620 within vertical column 3610. A user presses button 3630 to release friction members 3640 to allow neck 3620 to move up and down within vertical column 3610.
[00158] ALTERNATIVE HORIZONTAL BAR HEIGHT ADJUSTMENT
MECHANISMS. Numerous options are possible for adjusting the height of the horizontal bar of any of the embodiments described herein. For example, instead of using the vertical column, neck, and knob described above, any of the alternatives shown in Figures 37-49 can be used.
[00159] With reference to Figure 37, independent adjustment mechanism 3700 is depicted.
Neck 3710 can be moved up and down within vertical column 3720 to raise or lower one end of horizontal bar 3730, which connects to neck 3710 through joint 3740. Thus, each side of horizontal bar 3730 can be moved up or down independently of the other side.
[00160] With reference to Figure 38, screw jack mechanism 3800 is depicted. Neck 3810 can be moved up and down within vertical column 3820 to raise or lower horizontal bar 3830. The movement occurs by rotating reel 3830, which turns a screw (not shown) that is coupled to a screw portion (not shown) of neck 3810.
[00161] With reference to Figure 39, cable lift mechanism 3900 is depicted. Neck 3910 can be moved up or down within vertical column 3920 by winding or unwinding cable 3930 with reel 3950. The other end of cable 3930 is attached to vertical column 3920. The cable is supported by pulleys 3940 located at the bottom of each neck 3920.
[00162] With reference to Figure 40, gas cylinder lift 4000 is depicted. Neck 4010 can be moved up or down within vertical column 4020. Vertical column 4020 is attached to base 4030. Valve 4040 allows a user to pump gas into, or release gas from, the chamber created by neck 4010, vertical column 4020, and base 4030, thus causing neck 4010 to move upward or downward.
[00163] With reference to Figure 41, foot pump lift 4010 is depicted. Neck 4110 can be moved up or down within vertical column 4120. Foot pump 4030 allows a user to pump air into, or release air from, the chamber created by neck 4110 and vertical column 4120, thus causing neck 4110 to move upward or downward.
[00164] With reference to Figure 42, spring lift mechanism 4200 is depicted. Vertical column 4210 is moved upward or downward by springs 4220 and scissors support 4230, where springs 4220 and scissors support 4230 are connected to cross bar 4250, which in turn is connected to vertical column 4210.
[00165] With reference to Figure 43, foot lift mechanism 4300 is depicted. Vertical support structure 4310 is moved upward or downward by the movement by a user of lever 4330. Lever 4330 contains a screw portion that interacts with screw 4320 that is attached to vertical support structure 4310. Lever 4330 thus causes vertical support structure 4310 to move upward or downward.
[00166] With reference to Figure 44, center lift mechanism 4400 is depicted. Neck 4410 can be moved up or down within vertical column 4420. Friction pads 4430 keep neck 4410 in place. The user can turn push lever 4460, which causes member 4450 to pull supportive pins out of vertical column 4420 so that neck 4410 can move upward or downward. This is convenient because a user could move neck 4410 (and its counterpart neck on the other side) up or down using a single hand mechanism.
[00167] With reference to Figure 45, multiple bar mechanism 4500 is depicted. Vertical column 4510 supports a plurality 4520 of horizontal bars, each located at a different height.
[00168] With reference to Figure 46, rotating bar mechanism 4600 is depicted. Neck 4610 is supported by vertical column 4620 and is attached to horizontal bar 4630 through joint 4640. A user can move horizontal bar 4630 around joint 4640 to adjust the vertical height and horizontal placement of horizontal bar 4630.
[00169] With reference to Figure 47, multiple slot mechanism 4700 is depicted. Vertical column 4710 (or vertical neck) contains a plurality 4720 of slots, each located at a different height, into which horizontal bar 4730 can be placed.
[00170] With reference to Figure 48, multiple bar linkage mechanism 4800 is depicted.
Neck 4820 is connected to vertical column 4810 through joint 4840. Neck 4820 supports horizontal bar 4830. Vertical column 4810 is supported by dual support members 4860, which are connected to one another at joint 4870 and by spring 4880. Dual support members 4860 can move within base 4870 and can be locked in place through mechanical means within base 4870. [00171] With reference to Figure 49, damping grease mechanism 4900 is depicted. Neck
4910 can move up or down within vertical column 4920, which is supported by base 4930. The chamber formed by neck 4910, vertical column 4920, and base 4930 is filled with grease 4940. Grease 4940 provides a damping effect that keeps neck 4910 in a fixed position.
[00172] ALTERNATIVE HORIZONTAL BAR HEIGHT SLIDING ADJUSTMENT
MECHANISMS. Numerous sliding options are possible for adjusting the height of the horizontal bar of any of the embodiments described herein. For example, instead of using the vertical column, neck, and knob, any of the alternatives shown in Figures 50-52 can be used.
[00173] With reference to Figure 50, an extrusion-in-extrusion mechanism 5000 is depicted. Neck 5010 slides within vertical column 5020. Neck 5010 and vertical column 5020 are sized to optimize the amount of friction between them, such that neck 5010 can slide when force is applied but will remain stationary when no force (other than gravity) is applied.
[00174] With reference to Figure 51, a stock tubing with rollers mechanism 5100 is depicted. Neck 5110 slides within vertical column 5120. Rollers 5130 assist in the movement and minimize the amount of force the user must exert to move neck 5110 up and down.
[00175] With reference to Figure 52, external carriage mechanism 5200 is depicted.
Carriage 5220 slides up and down vertical column 5210 using bearings or wheels (not shown). Carriage 5220 holds one end of a horizontal bar (not shown).
[00176] ALTERNATIVE HORIZONTAL BAR ADJUSTMENT MECHANISMS .
Numerous adjustment options are possible for the horizontal bar of any of the embodiments described herein. For example, instead of placing the horizontal bar in a fixed position within the neck, any of the alternatives shown in Figures 53-55 can be used. This may be useful for collapsing, moving, storing, and/or stacking the portable exercise bar.
[00177] With reference to Figure 53, rotating bar 5300 is depicted. Neck 5310 connects to support member 5330 through joint 5340. Support member 5330 holds one end of horizontal bar 5320. Horizontal bar 5320 can rotate about joint 5340.
[00178] With reference to Figure 54, telescoping bar 5400 is depicted. Horizontal bar
5430 is connected to supporting member 5420, which is slidable within neck 5410. Thus, horizontal bar 5430 can be moved toward the user or away from the user.
[00179] With reference to Figure 55, removable bar mechanism 5500 is depicted. Neck
5510 slides within vertical column 5520. Horizontal bar 5530 comprises two pieces, first member 5540 and second member 5550. Second member 5550 is slightly smaller in diameter and can fit within first member 5540. A spring is placed between the inside structures of first member 5540 and second member 5550 to exert force in the outer direction toward the neck 5510 on each side. Thus, the user can push first member 5540 and second member 5550 together to remove the horizontal bar 5530 from the neck 5510 on each side for storage.
[00180] ALTERNATIVE LEG MECHANISMS. Numerous alternative leg mechanisms are possible for any of the embodiments described herein, including the alternatives shown in Figures 56-57.
[00181] With reference to Figure 56, fixed leg mechanism 5600 is depicted. Leg 5620 is fixed in a non-movable fashion to vertical column 5610. There are at least four legs of the type leg 5620.
[00182] With reference to Figure 57, folding leg mechanism 5700 is depicted. Leg 5720 folds up vertically toward vertical column 5710 and can fold down toward the floor.
[00183] ALTERNATIVE BACKBOARD AND FLOORBOARD CONFIGURATIONS .
Numerous alternatives exist for connecting the backboard and floorboard for any of the embodiments described herein, including the alternatives shown in Figures 58-60.
[00184] With reference to Figure 58, fixed floor board mechanism 5800 is depicted.
Floorboard 5820 is connected to backboard 5810 through a fixed support member 5930.
[00185] With reference to Figure 59, fold down floorboard mechanism 5900 is depicted.
Floorboard 5820 is connected to backboard 5910 through a hinged support member 5930, which allows floorboard 5820 to fold up toward backboard 5910 or to fold down toward the floor.
[00186] With reference to Figure 60, extended floorboard mechanism 6000 is depicted.
Floorboard 6020, when folded to the floor extends in the right and left directions such that parts of floorboard 6020 are captured under each leg 6030. Floorboard 6020 also is attached to backboard 6010 through a hinge or other means.
[00187] ALTERNATIVE WHEEL CONFIGURATIONS. Numerous alternatives exist for wheel configurations of any of the embodiments described herein, including the alternatives shown in Figures 61-62.
[00188] With reference to Figure 61, retractable wheel mechanism 6100 is depicted.
Wheel apparatus 6120 is contained within vertical column 6110. Wheel apparatus 6120 comprises a pedal 6130 and wheel 6140. When pedal 6130 is pressed toward the floor, wheel 6140 is moved toward the floor and can be locked in that position to enable vertical column 6110 to roll on the floor.
[00189] With reference to Figure 62, single set of wheels mechanism 6200 is depicted.
Wheels 6210 are installed only on one side of the portable exercise bar device. Handle 6220 is installed on the other side of the portable exercise bar device. The user can lift handle 6220 and toll the device using wheels 6210.
[00190] ALTERNATIVE FOOT LEVEL LOCK AND RETRACTION MECHANISM.
Numerous alternatives exist for the foot mechanism of any of the embodiments described herein, including the alternative shown in Figure 63.
[00191] With reference to Figure 63, mechanism 6300 is shown. Leg 6310 is connected to vertical column 6320 through angled bracket 6330. Angled bracket 6330 allows leg 6310 to rotate toward vertical column 6320 when leg 6310 is folded inward to provide more clearance with the floor when leg 6310 is in the folded position. In the extended position, leg 6310 can be forced outward by an internal leaf spring or coiled spring, by scissor jacks, by conical springs (which would cause reduced internal stack height), which pushes leg 6310 toward the floor, reducing the need for feet (such as foot mechanisms 181, 182, 183, and 184). Angled bracket 6330 can be designed in a ratcheting configuration so that it angles upward in discrete steps.
[00192] ALTERNATIVE HORIZONTAL BAR MOUNTING METHODS. Numerous alternatives exist for mounting the horizontal bar of any of the embodiments described herein, including the alternative shown in Figures 64-66.
[00193] With reference to Figure 64, an underneath mounting method 6400 is depicted.
Support structure 6410 supports the underside of horizontal bar 6420.
[00194] With reference to Figure 65, a center mounting method 6500 is depicted. Support structure 6510 is attached to the center of horizontal bar 6520, such as through a screw or a bar that runs through the entire middle of horizontal bar 6520 (to another support structure 6510 on the opposite end of horizontal bar 6520.
[00195] With reference to Figure 66, an end mounting method 6600 is depicted. Support structure 6510 is attached to the end face of horizontal bar 6620. Support structure 6510 can include a recess for receiving the end of horizontal bar 6620. Optionally, a screw can be inserted through support structure 6510 into horizontal bar 6620. [00196] With reference to Figure 67, a leg mounting mechanism 6700 is shown. Leg 6710 attaches to shaft 6720, which attaches to bracket 6730, which attaches to vertical column 6740. Bracket 6730 prevent leg 6710 from extending beyond the position where the 6710 is parallel with a floorboard in the unfolded position (i.e., it prevents over-extension of the leg).
[00197] OPTIONAL NECK AND VERTICAL COLUMN DESIGNS . With reference to
Figure 68, an embodiment of neck 121 is depicted. In this embodiment, neck 121 comprises wheels 6811, 6812, 6813, and 6814 on a first side and wheels 6815 and 6816 on a second side. With reference to Figure 69, an opposite side of neck 121 is depicted. Neck 121 further comprises wheels 6821, 6822, 6823, and 6824 on a third side and wheel 6825 and 6826 on a fourth side.
[00198] With reference to Figure 70, an embodiment of vertical column 141 is depicted.
Vertical column 141 is designed to receive the embodiment of neck 121 shown in Figures 68 and 69. Vertical column 141 comprises constant force spring 7010, wall 7026, and wall segments 7021, 7022, 7023, 7024, and 7025. Wall 7026 is configured to receive wheels 6815 and 6816, wall segment 7021 is configured to receive wheels 6821 and 6822, wall segment 7022 is configured to receive wheels 6823 and 6824, wall segment 7023 is configured to receive wheels 6825 and 6826, wall segment 7024 is configured to receive wheels 6811 and 6812, and wall segment 7025 is configured to receive wheels 6813 and 6814.
[00199] With reference to Figure 71, another top view of vertical column 141 is depicted, this time with neck 121 within vertical column 141. Wheels 6815, 6821, 6823, 6825, 6811, and 6813 are shown in contact with wall 7026 and wall segments 7021, 7022, 7023, 7024, and 7025, respectively.
[00200] With reference to Figure 72, a cross-section side view of vertical column 141 and neck 121 is shown. Neck 121 comprises diagonal piece 7210, against which constant force spring 7010 is in contact. With reference to Figure 73, the same view is shown but from a greater distance. During operation, when a user pushes neck 121 downward, constant force spring 7010 is elongated. When the user pulls neck 123 upward, constant force spring 7010 is retracted. The force exerted by constant force spring 7010 serves as a counterbalance to the weight of neck 123 itself as well as horizontal bars 110 and 210. This makes it easier for the user to adjust horizontal bar 110 to the correct height with minimal exertion and it also prevents horizontal bar 110 from dropping quickly when knobs 141 and 142 are pulled outward. [00201] With reference to Figure 74, neck 121 is shown with constant force spring 7010 partially elongated. Constant force spring 7010 attaches to vertical column 141 with attachment 7410 (which can be a pin, bolt, hook, etc.).
[00202] It is to be understood that the design of Figures 68 through 74 can be applied to any neck and any vertical column of the embodiments described herein, and that typically, a portable bar exercise device will contain such designs, if used at all, in all of its necks and vertical columns.
[00203] MATERIALS. The horizontal bars described above, such as horizontal bars 110,
210, 1010, 1210, and 1510, can be constructed of wood, plastic, metal, or other materials. The crossbars bars described above, such as crossbars 160, 1060, 1080, and 1560, can be constructed of wood, plastic, metal, or other materials. The floorboards described above, such as floorboards 150 and 1550, can be constructed of wood, plastic, metal, or other materials. The backboards describe above, such as backboards 230, 1220, and 1720, can be constructed of word, plastic, metal, or other materials. The backboards each can comprise a vacuum-formed back plate, a perforated metal back plate, a honeycomb plastic backboard, roto-molded plastic, or a fabric, lawn chair-type backboard. The mats described above, such as mats 610, 1110, and 1910, each can comprise a laminate plastic/rubber structure attached to a floorboard or backboard, the backboard, or each can be created using self-skinning foam. All other structures can be constructed of wood, plastic, metal, or other materials.
[00204] References to the present invention herein are not intended to limit the scope of any claim or claim term, but instead merely make reference to one or more features that may be covered by one or more of the claims. Materials, processes and numerical examples described above are exemplary only, and should not be deemed to limit the claims. It should be noted that, as used herein, the terms "over" and "on" both inclusively include "directly on" (no intermediate materials, elements or space disposed there between) and "indirectly on" (intermediate materials, elements or space disposed there between). Likewise, the term "adjacent" includes "directly adjacent" (no intermediate materials, elements or space disposed there between) and "indirectly adjacent" (intermediate materials, elements or space disposed there between). For example, forming an element "over a substrate" can include forming the element directly on the substrate with no intermediate materials/elements there between, as well as forming the element indirectly on the substrate with one or more intermediate materials/elements there between.

Claims

What Is Claimed Is:
1. A portable exercise device, comprising:
a first horizontal bar with a first end and second end;
a first neck attached to the first end;
a second neck attached to the second end;
a first vertical column for receiving the first neck, wherein the first neck is movable within the first vertical column to alter the vertical height of the first horizontal bar;
a second vertical column for receiving the second neck, wherein the second neck is movable within the second vertical column to alter the vertical height of the first horizontal bar; a first front leg and a first back leg attached to the first vertical column; and
a second front leg and a second back leg attached to the second vertical column;
wherein the first front leg and the first back leg and the second front leg and the second back leg are removable to enable the device to be mounted on a wall.
2. The device of claim 1, further comprising:
a second horizontal bar attached to the first vertical column and second vertical column; a third horizontal bar attached to the first vertical column and second vertical column; a backboard attached to the second horizontal bar and the third horizontal bar; and a floorboard attached to the backboard.
3. The device of claim 1, wherein the first neck comprises a first plurality of wheels for engaging with walls or wall segments within the first vertical column and the second neck comprises a second plurality of wheels for engaging with walls or wall segments within the second vertical column.
4. The device of claim 3, further comprising a first constant force spring attached to the first vertical column for exerting force against the first neck and a second constant force spring attached to the second vertical column for exerting force against the second neck.
5. A portable exercise device, comprising:
a first unit comprising:
a first horizontal bar with a first end and second end;
a first neck attached to the first end;
a second neck attached to the second end; a first vertical column for receiving the first neck, wherein the first neck is movable within the first vertical column to alter the vertical height of the first horizontal bar;
a second vertical column for receiving the second neck, wherein the second neck is movable within the second vertical column to alter the vertical height of the first horizontal bar;
a first front leg attached to the first vertical column; and
a second front leg attached to the second vertical column;
a second unit identical to the first unit;
wherein the first unit and second unit can be coupled together in a back-to-back configuration and can be decoupled to enable the first unit and the second unit to be mounted to a wall.
6. The device of claim 5, wherein the first unit and second each further comprises: a second horizontal bar attached to the first vertical column and second vertical column; a third horizontal bar attached to the first vertical column and second vertical column; a backboard attached to the second horizontal bar and the third horizontal bar; and a floorboard attached to the backboard.
7. The device of claim 5, wherein the first neck comprises a first plurality of wheels for engaging with walls or wall segments within the first vertical column and the second neck comprises a second plurality of wheels for engaging with walls or wall segments within the second vertical column.
8. The device of claim 7, further comprising a first constant force spring attached to the first vertical column for exerting force against the first neck and a second constant force spring attached to the second vertical column for exerting force against the second neck.
9. A portable exercise device, comprising:
a first unit comprising:
a first horizontal bar with a first end and second end;
a first neck attached to the first end;
a second neck attached to the second end; a first vertical column for receiving the first neck, wherein the first neck is movable within the first vertical column to alter the vertical height of the first horizontal bar;
a second vertical column for receiving the second neck, wherein the second neck is movable within the second vertical column to alter the vertical height of the first horizontal bar;
a first front leg and a first back leg attached to the first vertical column; and
a second front leg and a second back leg attached to the second vertical column;
a second unit identical to the first unit;
wherein the first unit and second unit can operate as separate stand-alone units or can be coupled together in a back-to-back configuration with the first back leg and second back leg removed from each unit to operate as a combined stand-alone unit.
10. The device of claim 9, wherein the first neck comprises a first plurality of wheels for engaging with walls or wall segments within the first vertical column and the second neck comprises a second plurality of wheels for engaging with walls or wall segments within the second vertical column.
11. The device of claim 10, further comprising a first constant force spring attached to the first vertical column for exerting force against the first neck and a second constant force spring attached to the second vertical column for exerting force against the second neck.
12. A portable exercise device, comprising:
a first horizontal bar with a first end and second end;
a first neck attached to the first end;
a second neck attached to the second end;
a first vertical column for receiving the first neck, wherein the first neck is movable within the first vertical column to alter the vertical height of the first horizontal bar;
a second vertical column for receiving the second neck, wherein the second neck is movable within the second vertical column to alter the vertical height of the first horizontal bar; a first front leg attached to a first bracket attached to the vertical column and a first back leg attached to a second bracket attached to the first vertical column, the first bracket limiting the motion of the first front leg and the second bracket limiting the motion of the first back leg; a second front leg attached to a third bracket attached to the second vertical column and a second back leg attached to a fourth bracket attached to the second vertical column, the third bracket limiting the motion of the second front leg and the fourth bracket limiting the motion of the second back leg.
13. The device of claim 12, further comprising:
a second horizontal bar attached to the first vertical column and second vertical column; a third horizontal bar attached to the first vertical column and second vertical column; a backboard attached to the second horizontal bar and the third horizontal bar; and a floorboard attached to the backboard.
14. The device of claim 12, wherein the first front leg is attached to the first bracket by a first pin, the first back leg is attached to the second bracket by a second pin, the second front leg is attached to the third bracket by a third pin, and the second back leg is attached to the fourth bracket by a fourth pin.
15. The device of claim 12, wherein the distance between the bottom of the first vertical column and the floor is at least 1.80 inches and the distance between the bottom of the second vertical column and the floor is at least 1.80 inches.
16. A portable exercise device, comprising:
a first horizontal bar with a first end and second end;
a first neck attached to the first end;
a second neck attached to the second end;
a first vertical column for receiving the first neck, wherein the first neck is secured to the first vertical column with a first T-shaped knob and the first neck can be moved vertically when the T-shaped knob is pulled away from the first vertical column;
a second vertical column for receiving the second neck, wherein the second neck is secured to the second vertical column with a second T-shaped knob and the second neck can be moved vertically when the T-shaped knob is pulled away from the second vertical column;
one or more legs attached to the first vertical column; and
one or more legs attached to the second vertical column.
17. The device of claim 16, further comprising:
a second horizontal bar attached to the first vertical column and second vertical column; a third horizontal bar attached to the first vertical column and second vertical column; a backboard attached to the second horizontal bar and the third horizontal bar; and a floorboard attached to the backboard.
18. The device of claim 16, wherein the first T-shaped knob comprises a rubber exterior and the second T-shaped knob comprises a rubber exterior.
19. The device of claim 16, wherein the first neck and the second neck can be extended upward and secured by the first T-shaped knob and the second T-shaped knob so that the first horizontal bar is located at least 28 inches from the floor.
20. A portable exercise device, comprising:
a first horizontal bar with a first end and second end;
a first neck attached to the first end;
a second neck attached to the second end;
a first vertical column for receiving the first neck, wherein the first neck is movable within the first vertical column to alter the vertical height of the first horizontal bar;
a second vertical column for receiving the second neck, wherein the second neck is movable within the second vertical column to alter the vertical height of the first horizontal bar; one or more legs attached to the first vertical column; and
one or more legs attached to the second vertical column;
wherein the one or more legs attached to the first vertical column and the one or more legs attached to the second vertical column each comprise an adjustable foot mechanism for supporting the leg on the floor.
21. The device of claim 20, further comprising:
a second horizontal bar attached to the first vertical column and second vertical column; a third horizontal bar attached to the first vertical column and second vertical column; a backboard attached to the second horizontal bar and the third horizontal bar; and a floorboard attached to the backboard.
22. The device of claim 20, wherein each adjustable foot mechanism comprises: a foot, a knob for locking the foot, and a lever for releasing the foot.
23. A portable exercise device, comprising:
a first horizontal bar with a first end and second end;
a first neck attached to the first end;
a second neck attached to the second end; a first vertical column for receiving the first neck, wherein the first neck is movable within the first vertical column to alter the vertical height of the first horizontal bar;
a second vertical column for receiving the second neck, wherein the second neck is movable within the second vertical column to alter the vertical height of the first horizontal bar; a second horizontal bar attached to the first vertical column and second vertical column; a third horizontal bar attached to the first vertical column and second vertical column; a backboard attached to the second horizontal bar and the third horizontal bar;
a floorboard attached to a hinge;
a backboard attached to the hinge;
wherein the hinge is movable in the vertical direction, wherein when the floorboard is folded inward the floorboard does not touch the floor and when the floorboard is extended outward the floorboard can be pushed onto the floor by a user.
24. The device of claim 23, wherein the hinge is spring-loaded.
25. A portable exercise device, comprising:
a first horizontal bar with a first end and second end;
a first neck attached to the first end;
a second neck attached to the second end;
a first vertical column for receiving the first neck, wherein the first neck is movable within the first vertical column to alter the vertical height of the first horizontal bar;
a second vertical column for receiving the second neck, wherein the second neck is movable within the second vertical column to alter the vertical height of the first horizontal bar; a second horizontal bar attached to the first vertical column and second vertical column; a third horizontal bar attached to the first vertical column and second vertical column; a backboard attached to the second horizontal bar and the third horizontal bar;
a floorboard attached to a hinge;
a backboard attached to the hinge;
a first leg attached to the first vertical column;
a second leg attached to the second vertical column;
wherein the floorboard comprises a first magnet that attracts the first leg with magnetic force when the first leg is folded inward, and a second magnet that attracts the second leg with magnetic force when the second leg is folded inward.
26. The device of claim 25, wherein the first magnet is embedded in a first bore in the floorboard and the second magnet is embedded in a second bore in the floorboard.
27. A portable exercise device, comprising:
a first horizontal bar with a first end and second end;
a first neck attached to the first end;
a second neck attached to the second end;
a first vertical column for receiving the first neck, wherein the first neck is movable within the first vertical column to alter the vertical height of the first horizontal bar;
a second vertical column for receiving the second neck, wherein the second neck is movable within the second vertical column to alter the vertical height of the first horizontal bar; a second horizontal bar attached to the first vertical column and second vertical column; a third horizontal bar attached to the first vertical column and second vertical column; a backboard attached to the second horizontal bar and the third horizontal bar;
a floorboard attached to a hinge;
a backboard attached to the hinge;
a first leg attached to the first vertical column;
a second leg attached to the second vertical column; and
a mat comprising a pocket to receive the floorboard.
28. The device of claim 27, wherein the mat covers the backboard and attaches to the third horizontal bar with one or more straps.
29. A portable exercise device, comprising:
a first horizontal bar with a first end and second end;
a first neck attached to the first end by a first clamping device comprising:
a first band wrapped around the first horizontal bar and secured by a first bolt; and a first screw embedded in the first horizontal bar through the first band;
a second neck attached to the second end by a second clamping device comprising:
a second band wrapped around the first horizontal bar and secured by a second bolt; and
a second screw embedded in the first horizontal bar through the second band; a first vertical column for receiving the first neck, wherein the first neck is movable within the first vertical column to alter the vertical height of the first horizontal bar; and
a second vertical column for receiving the second neck, wherein the second neck is movable within the second vertical column to alter the vertical height of the first horizontal bar.
30. A portable exercise device, comprising:
a first horizontal bar with a first end and second end;
a first neck attached to the first end;
a second neck attached to the second end;
a first vertical column for receiving the first neck, wherein the first neck is movable within the first vertical column to alter the vertical height of the first horizontal bar;
a second vertical column for receiving the second neck, wherein the second neck is movable within the second vertical column to alter the vertical height of the first horizontal bar; a second horizontal bar attached to the first vertical column and second vertical column; a third horizontal bar attached to the first vertical column and second vertical column; a backboard attached to the second horizontal bar and the third horizontal bar;
a floorboard attached to a hinge;
a backboard attached to the hinge;
a first leg attached to the first vertical column; and
a second leg attached to the second vertical column.
31. The device of claim 30, wherein the first leg comprises a hook and the second leg comprises a connector, wherein the hook can attach to the connector to hold the first leg and second leg in a folded position.
32. The device of claim 30, further comprising: a first velcro patch on the first leg, a second velcro patch on the second leg, and a third velcro patch on the floor board, wherein the third velcro patch is aligned with the first velcro patch and second velcro patch to hold the first leg and the second leg in a folded position.
33. The device of claim 30, further comprising: a first strap attached to the floorboard for holding the first leg in a folded position and a second strap attached to the floorboard for holding the second leg in a folded position.
34. The device of claim 30, further comprising: a strap to attach to the first leg and the second leg to hold the first leg and second leg in a folded position.
35. The device of claim 30, wherein the first leg is attached to the first vertical column with a first friction bushing mechanism and the second leg is attached to the second vertical column with a second friction bushing mechanism, the first friction bushing mechanism inhibiting movement of the first leg and the second friction bushing mechanism inhibiting movement of the second leg.
36. The device of claim 30, wherein the first leg is attached to the first vertical column with a first spring loaded ball plunger mechanism and the second leg is attached to the second vertical column with a second spring loaded ball plunger mechanism, the first spring loaded ball plunger mechanism keeping the first leg in a folded position and the second spring loaded ball plunger mechanism keeping the second leg in a folded position.
37. The device of claim 30, further comprising: a first zippered pocket attached to the floorboard for holding the first leg in a folded position and a second zippered pocket attached to the floorboard for holding the second leg in a folded position.
38. The device of claim 30, further comprising a first pin for keeping the first leg in a closed position and a second pin for keeping the second leg in a closed position, wherein the first leg can be lifted over the first pin into an open position and the second leg can be lifted over the second pin into an open position.
39. The device of claim 30, wherein the first neck is secured to the first vertical column with a first collar mechanism, and the second neck is secured to the second vertical column with a second collar mechanism.
40. The device of claim 30, wherein the first neck is secured to the first vertical column with a first cam lock pawl mechanism, and the second neck is secured to the second vertical column with a second cam lock pawl mechanism.
41. The device of claim 30, wherein the first neck is secured to the first vertical column with a first spring loaded pin mechanism, and the second neck is secured to the second vertical column with a second spring loaded pin mechanism.
42. The device of claim 30, wherein the first neck is secured to the first vertical column with a first push button side lock mechanism, and the second neck is secured to the second vertical column with a second push button side lock mechanism.
43. The device of claim 30, wherein the first neck is attached to the first horizontal bar with a first joint and the second neck is attached to the first horizontal bar with a second joint.
44. The device of claim 30, further comprising: a first screw jack mechanism for adjusting the vertical position of the first neck and a second screw jack mechanism for adjusting the vertical position of the second neck.
45. The device of claim 30, further comprising: a cable lift mechanism for adjusting the vertical height of the first horizontal bar.
46. The device of claim 30, further comprising: a first gas cylinder lift for adjusting the vertical position of the first neck and a second gas cylinder lift for adjusting the vertical position of the second neck.
47. The device of claim 30, further comprising: a foot pump lift for adjusting the vertical position of the first horizontal bar.
48. The device of claim 30, further comprising: a spring lift mechanism for adjusting the vertical position of the first horizontal bar.
49. The device of claim 30, further comprising: a foot lift mechanism for adjusting the vertical position of the first horizontal bar.
50. The device of claim 30, further comprising: a center lift mechanism for adjusting the vertical position of the first horizontal bar.
51. The device of claim 30, further comprising: a plurality of horizontal bars attached to the first vertical column and the second vertical column.
52. The device of claim 30, further comprising: a first joint between the first neck and the first horizontal bar and a second joint between the second neck and the first horizontal bar, wherein the first horizontal bar can rotate around the first joint and second joint.
53. The device of claim 30, further comprising: a plurality of slots in the first neck and a plurality of slots in the second neck, where each slot can receive the first horizontal bar.
54. The device of claim 30, further comprising:
a first support member for supporting the first vertical column and a second support member for supporting the second vertical column;
the first support member comprising: a first piece comprising a first end and a second end, the first end of the first piece attached to the first vertical column;
a second piece comprising a first end and a second end, the first end of the second piece attached to the first vertical column;
wherein the height of the first vertical column is increased when the second end of the first piece is moved toward the second end of the second piece; and
the second support member comprising:
a third piece comprising a first end and a second end, the first end of the third piece attached to the second vertical column;
a fourth piece comprising a first end and a second end, the first end of the fourth piece attached to the second vertical column;
wherein the height of the second vertical column is increased when the second end of the third piece is moved toward the second end of the fourth piece.
55. The device of claim 30, further comprising: a first damping grease mechanism for supporting the first neck and a second damping grease mechanism for supporting the second neck.
56. The device of claim 30, wherein the first neck is slidably embedded in the first vertical column and the second neck is slidably embedded in the second vertical column.
57. The device of claim 30, wherein the first vertical column comprises rollers for engaging with the first neck and the second vertical column comprises rollers for engaging with the second neck.
58. The device of claim 30, further comprising: a first carriage coupled to the first neck for sliding vertically on the first vertical column and a second carriage coupled to the second neck for sliding vertically on the second vertical column.
59. The device of claim 30, further comprising: a first supporting member attached to the first horizontal bar and slidable horizontally within the first neck and a second supporting member attached to the first horizontal bar and slidable horizontally within the second neck.
60. The device of claim 30, wherein the first horizontal bar is removable using a spring mechanism.
61. The device of claim 30, wherein the first leg is attached in a fixed position to the first vertical column and the second leg is attached in a fixed position to the second vertical column.
62. The device of claim 30, wherein the first leg can be folded vertically toward the first vertical column and the second leg can be folded vertically toward the second vertical column.
63. The device of claim 30, further comprising a first support member for holding the floorboard in a fixed position and a second support member for holding the floorboard in a fixed position.
64. The device of claim 30, further comprising: a first foldable support member attached to the floorboard and a second foldable support member attached to the floorboard.
65. The device of claim 30, wherein the first leg and the second leg extend over the floorboard when the first leg, second leg, and floorboard are in the extended position.
66. The device of claim 30, further comprising: a first retractable wheel coupled to the first leg and a second retractable when coupled to the second leg.
67. The device of claim 30, further comprising: one or more wheels attached to the first vertical column that enables the device to be rolled when a user lifts the second vertical column.
68. The device of claim 30, wherein the first leg is attached to the first vertical column with a first angled bracket and the second leg is attached to the second vertical column with a second angled bracket.
69. The device of claim 30, wherein the first neck and the second neck are mounted to the underside of the first horizontal bar.
70. The device of claim 30, wherein the first neck and the second neck are mounted to the axis of the first horizontal bar.
71. The device of claim 30, wherein the first end of the horizontal bar is covered by the first neck and the second end of the horizontal bar is covered by the second neck.
PCT/US2015/060408 2014-11-14 2015-11-12 Modular portable ballet bar exercise device WO2016077600A1 (en)

Priority Applications (15)

Application Number Priority Date Filing Date Title
BR112017009856-3A BR112017009856B1 (en) 2014-11-14 2015-11-12 PORTABLE EXERCISE DEVICES
CN201580073479.4A CN107427708B (en) 2014-11-14 2015-11-12 Portable ballet barre exercise device of modularization
CA2967360A CA2967360C (en) 2014-11-14 2015-11-12 Modular portable ballet bar exercise device
MX2017006208A MX2017006208A (en) 2014-11-14 2015-11-12 Modular portable ballet bar exercise device.
KR1020197019240A KR102028310B1 (en) 2014-11-14 2015-11-12 Portable ballet bar exercise device
ES15858235T ES2920386T3 (en) 2014-11-14 2015-11-12 Modular Portable Ballet Bar Exercise Device
RU2017120804A RU2667298C1 (en) 2014-11-14 2015-11-12 Portable ballet barre for exercises
AU2015346257A AU2015346257B2 (en) 2014-11-14 2015-11-12 Portable ballet bar exercise device
KR1020177016207A KR20170091635A (en) 2014-11-14 2015-11-12 Modular portable ballet bar exercise device
JP2017544841A JP2017537756A (en) 2014-11-14 2015-11-12 Modular portable ballet bar exercise equipment
NZ732172A NZ732172A (en) 2014-11-14 2015-11-12 Portable ballet bar exercise device
EP15858235.3A EP3218071B1 (en) 2014-11-14 2015-11-12 Modular portable ballet bar exercise device
TW104137568A TWI593445B (en) 2014-11-14 2015-11-13 Modular portable ballet bar exercise device
TW106117661A TWI632940B (en) 2014-11-14 2015-11-13 Portable exercise device
HK18107114.6A HK1247585A1 (en) 2014-11-14 2018-05-31 Modular portable ballet bar exercise device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/542,061 2014-11-14
US14/542,061 US10010735B2 (en) 2014-11-14 2014-11-14 Modular portable ballet bar exercise device

Publications (1)

Publication Number Publication Date
WO2016077600A1 true WO2016077600A1 (en) 2016-05-19

Family

ID=55955059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2015/060408 WO2016077600A1 (en) 2014-11-14 2015-11-12 Modular portable ballet bar exercise device

Country Status (15)

Country Link
US (1) US10010735B2 (en)
EP (1) EP3218071B1 (en)
JP (2) JP2017537756A (en)
KR (2) KR20170091635A (en)
CN (1) CN107427708B (en)
AU (1) AU2015346257B2 (en)
BR (1) BR112017009856B1 (en)
CA (1) CA2967360C (en)
ES (1) ES2920386T3 (en)
HK (1) HK1247585A1 (en)
MX (1) MX2017006208A (en)
NZ (1) NZ732172A (en)
RU (1) RU2667298C1 (en)
TW (2) TWI593445B (en)
WO (1) WO2016077600A1 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3334502A4 (en) * 2015-08-10 2019-01-23 Hall, Marlene Exercise system and method
US10207142B2 (en) * 2016-08-27 2019-02-19 Khanh Trinh Le Nguyen Collapsible free standing exercise apparatus
US10549146B2 (en) * 2017-06-04 2020-02-04 Ivy House, LLC Jumpboard and ballet bar reformer accessory
US10777092B2 (en) * 2018-04-18 2020-09-15 Tamara Mudarra Compact portable ballet training station
CN108853926A (en) * 2018-07-08 2018-11-23 滨州学院 A kind of liftable leg pressing rod of Dancing Teaching
US10821313B2 (en) * 2018-10-11 2020-11-03 Jeff Tuller Portable barre exercise device
US11697044B2 (en) 2019-02-27 2023-07-11 Shon L Harker Group exercise device
USD926270S1 (en) * 2019-04-03 2021-07-27 Allison Catalani Mobile barre apparatus
CN109908568B (en) * 2019-04-24 2020-12-18 重庆第二师范学院 Team cooperation training and physical training instrument
USD1007622S1 (en) * 2019-06-07 2023-12-12 Anthony Lett Pilates equipment
US10726749B1 (en) * 2019-08-13 2020-07-28 Gregg Narcisse Trifold presentation board assembly
CN110585676A (en) * 2019-09-04 2019-12-20 许昌学院 A physical training device for dance
DE202020101156U1 (en) * 2020-03-03 2021-06-07 Siegfried Eiden Sports equipment system and locking system
KR102363153B1 (en) * 2020-05-28 2022-02-15 주식회사 건강한형제들 Fitness exercise equipment
US20220257989A1 (en) * 2021-02-12 2022-08-18 ALR Life, LLC Systems and methods for providing a ballet barre
USD961025S1 (en) * 2021-02-24 2022-08-16 Gerry Chen Foldable horizontal bar
IL284614A (en) * 2021-07-05 2023-02-01 Hararri Daniel A universal gym facility
CN113521639B (en) * 2021-07-19 2022-07-22 汤桃发 Sports is with multi-functional training aid list pole
US20230096295A1 (en) * 2021-09-30 2023-03-30 Angel Sanders Collapsible and Transportable Parallel Bar Assembly
KR102694520B1 (en) * 2021-12-29 2024-08-13 이진식 A 365 ball apparatus maintaing folded and unfolded status of a table top
KR102694515B1 (en) * 2021-12-29 2024-08-13 이진식 A ball apparatus having a convex table top
US20230285833A1 (en) * 2022-03-11 2023-09-14 Posi-Trak, Inc. Modular Training System
US11872431B1 (en) * 2023-01-18 2024-01-16 Yanshan Fitting Sport Equipment Manufacturing co., Ltd Foldable exercise bar device

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3803012A (en) * 1972-03-09 1974-04-09 American Smelting Refining Cathodic protection anode clamp assembly
US4126307A (en) * 1976-09-13 1978-11-21 Stevenson William F Portable ballet bar with adjustable bracing means
US4696470A (en) * 1986-01-13 1987-09-29 Fenner Edwin H Portable platform assembly for dancers and the like
US4905990A (en) * 1989-03-08 1990-03-06 Desantis Gabriel J Exercise mat
GB2354435A (en) * 1999-09-23 2001-03-28 Eric Wilfred Horton Lightweight folding table
US6743152B2 (en) 2000-09-19 2004-06-01 Fluidity Enterprises, Inc. Adjustable ballet bar exercise device
US20060035750A1 (en) * 2004-08-16 2006-02-16 Fluidity Enterprise, Inc. Free standing ballet bar exercise device
US20130035217A1 (en) * 2011-08-02 2013-02-07 Dynamic Sports Products, LLC Muscle stretching and massaging apparatus
US20130237394A1 (en) * 2012-03-12 2013-09-12 Douglas Fowler Portable Adjustable Multi-Purpose Exercise Device
US20130331232A1 (en) 2012-04-26 2013-12-12 Fluidity Enterprises, Inc. Portable ballet bar exercise device
US20130345026A1 (en) * 2012-06-20 2013-12-26 Kelly Eberflus Adjustable ballet bar
WO2014013011A1 (en) * 2012-07-19 2014-01-23 Beaverfit Limited Functional training rig kit

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US860517A (en) * 1907-05-18 1907-07-16 George C Berglund Gymnasium apparatus.
US2932510A (en) 1958-06-09 1960-04-12 Kravitz Allan Portable ballet bar
US3800338A (en) 1972-08-21 1974-04-02 Bard Inc C R Release mechanism for back rest support
US4008892A (en) 1973-03-05 1977-02-22 Nissen Corporation Apparatus for rebound running
US3944219A (en) 1975-04-11 1976-03-16 Samuel Peskin Multipositionable portable and collapsible horizontal bar exercising apparatus
US4111414A (en) 1976-10-12 1978-09-05 Roberts Edward A Exercising device for assisting a person to perform pullups
JPS5570157A (en) 1978-11-22 1980-05-27 Hitachi Ltd Reset call system
US4815732A (en) 1987-11-02 1989-03-28 Pascal Mahvi Exercising chair
US5046722A (en) 1989-10-16 1991-09-10 Antoon John M Exercising device
RU2011389C1 (en) * 1990-12-27 1994-04-30 Гарбаж Иосиф Львович Universal training apparatus
US5080352A (en) 1991-04-22 1992-01-14 Freed Mark L Multi-purpose exercise machine
US5156580A (en) 1991-05-02 1992-10-20 Robert A. Holland Therapeutic traction apparatus and method
US5306217A (en) 1993-02-03 1994-04-26 Bracone Monica G Swimming pool ballet bar
US5389055A (en) 1993-10-20 1995-02-14 Gangloff; Robert B. Portable exercise bar device
US5662556A (en) * 1993-10-20 1997-09-02 Gangloff; Robert B. Portable exercise bar device
US5405306A (en) 1994-02-25 1995-04-11 Goldsmith; Daniel S. Stretching apparatus
US5501647A (en) 1994-09-08 1996-03-26 Snyder; Marnie Freestanding hand bar
USD372059S (en) 1994-09-26 1996-07-23 Solomon Taylor Exercise stand
US5697875A (en) 1995-10-16 1997-12-16 Stan; William Collapsible high-low push up exerciser
US5776037A (en) 1997-02-10 1998-07-07 Millington; Donald B. Isometric exercise device
USD410050S (en) 1997-03-03 1999-05-18 Jean-Claude Matte Ballet barre
US6248047B1 (en) 1998-01-13 2001-06-19 John S. Abdo Exercise device
US6415723B1 (en) 1999-05-28 2002-07-09 Krueger International, Inc. Training table with wire management
US6402670B1 (en) * 2000-09-18 2002-06-11 Thomas Anagnostou Line and pole, travel size fitness device, for upper and lower body weightlifting type physical exercises, utilizing a human's own bodyweight
US6336414B1 (en) 2001-01-31 2002-01-08 Steelcase Development Corp Table configured for utilities, ganging and storage
US6699162B2 (en) 2002-03-26 2004-03-02 Philip Chen Exercise apparatus
US6652419B1 (en) 2002-05-20 2003-11-25 James Eugene Rota Integrated exercise and conditioning system for the human body
US7275273B2 (en) 2002-09-12 2007-10-02 Banning Gray Lary Expandable elevating bolster
US20050130814A1 (en) 2003-10-07 2005-06-16 Nautilus, Inc. Exercise apparatus with reconfigurable frame, resistance system, and platform
RU36242U1 (en) * 2003-12-22 2004-03-10 Маркичев Алексей Львович CHILDREN'S SPORTS COMPLEX (OPTIONS)
TWM268074U (en) 2004-10-08 2005-06-21 Keen Neek Co Ltd Multi-functional exercise structure
US20060122044A1 (en) 2004-12-07 2006-06-08 Wei-Teh Ho Folding collapsible exercising apparatus
TWM281657U (en) 2005-08-18 2005-12-01 Guan-Cheng Pu Foldable massager for spine and circulation of body
US7494454B2 (en) 2006-05-18 2009-02-24 Todd Sheets Abdominator: abdomen and obliques exercise machine
US7699756B2 (en) * 2006-05-23 2010-04-20 Bvp Holding, Inc. Arrangement for attaching an exercise device to a ladder-like frame of an exercise machine
US7878954B2 (en) 2007-10-12 2011-02-01 Stamina Products, Inc. Portable workout apparatus having a pivotally mounted exercise bar
US20090111657A1 (en) 2007-10-26 2009-04-30 Lifting Up Life, Lp Rehabilitation and exercise apparatus
US20130225372A1 (en) * 2008-08-16 2013-08-29 Timothy S. Rochford Apparatus for Performing Body Exercises Having Pivotally Mounted Stabilizers
US20100190612A1 (en) 2009-01-23 2010-07-29 Sidney Cook Exercising Device
US7896786B1 (en) * 2009-08-31 2011-03-01 Windell Osbourne Portable modular exercise apparatus for multiple users
US8181919B1 (en) * 2009-12-30 2012-05-22 Blum Alvin S Film bag holder
USD633962S1 (en) 2010-08-26 2011-03-08 Stacey Richard J Exercise apparatus
US20120077655A1 (en) 2010-09-24 2012-03-29 Meghan Wilson Free-Standing Tap Barre Practice and Exercise Device
CN201969236U (en) 2010-12-13 2011-09-14 宁波奇胜运动器材有限公司 Pull-up trainer
US8602953B2 (en) 2011-02-04 2013-12-10 Amy Christine Jordan Reformer apparatus having integral ergonomic purchase translatable into deployed and stowed positions
CN201997062U (en) * 2011-05-04 2011-10-05 王舒媛 Multi-step lifting type bar for dance practicing
TWM425695U (en) 2011-10-24 2012-04-01 Euro American Ind Corp Golf wedge trainer
US8834327B1 (en) * 2011-11-23 2014-09-16 Victor I. George, Jr. Stationary exercise apparatus
JP3173589U (en) 2011-11-30 2012-02-09 チャコット株式会社 Ballet stand
CN202568556U (en) * 2012-02-22 2012-12-05 牛晓晔 Body shape training holding rod capable of correcting leg shape
US9333387B2 (en) * 2014-04-09 2016-05-10 PRX Performance, Inc. Retractable wall mounted exercise rack system

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3803012A (en) * 1972-03-09 1974-04-09 American Smelting Refining Cathodic protection anode clamp assembly
US4126307A (en) * 1976-09-13 1978-11-21 Stevenson William F Portable ballet bar with adjustable bracing means
US4696470A (en) * 1986-01-13 1987-09-29 Fenner Edwin H Portable platform assembly for dancers and the like
US4905990A (en) * 1989-03-08 1990-03-06 Desantis Gabriel J Exercise mat
GB2354435A (en) * 1999-09-23 2001-03-28 Eric Wilfred Horton Lightweight folding table
US6743152B2 (en) 2000-09-19 2004-06-01 Fluidity Enterprises, Inc. Adjustable ballet bar exercise device
US20060035750A1 (en) * 2004-08-16 2006-02-16 Fluidity Enterprise, Inc. Free standing ballet bar exercise device
US7608029B2 (en) 2004-08-16 2009-10-27 Fluidity Enterprises, Inc. Free standing ballet bar exercise device
US20130035217A1 (en) * 2011-08-02 2013-02-07 Dynamic Sports Products, LLC Muscle stretching and massaging apparatus
US20130237394A1 (en) * 2012-03-12 2013-09-12 Douglas Fowler Portable Adjustable Multi-Purpose Exercise Device
US20130331232A1 (en) 2012-04-26 2013-12-12 Fluidity Enterprises, Inc. Portable ballet bar exercise device
US20130345026A1 (en) * 2012-06-20 2013-12-26 Kelly Eberflus Adjustable ballet bar
WO2014013011A1 (en) * 2012-07-19 2014-01-23 Beaverfit Limited Functional training rig kit

Also Published As

Publication number Publication date
ES2920386T3 (en) 2022-08-03
CA2967360C (en) 2023-03-14
BR112017009856A2 (en) 2018-04-17
JP2017537756A (en) 2017-12-21
MX2017006208A (en) 2018-01-11
RU2667298C1 (en) 2018-09-18
BR112017009856B1 (en) 2021-12-28
EP3218071A1 (en) 2017-09-20
CA2967360A1 (en) 2016-05-19
TW201733636A (en) 2017-10-01
JP6999732B2 (en) 2022-01-19
JP2020114474A (en) 2020-07-30
AU2015346257B2 (en) 2018-03-22
NZ732172A (en) 2018-06-29
HK1247585A1 (en) 2018-09-28
CN107427708A (en) 2017-12-01
TW201620581A (en) 2016-06-16
KR102028310B1 (en) 2019-10-02
TWI593445B (en) 2017-08-01
US10010735B2 (en) 2018-07-03
US20160136472A1 (en) 2016-05-19
KR20170091635A (en) 2017-08-09
TWI632940B (en) 2018-08-21
KR20190083001A (en) 2019-07-10
EP3218071A4 (en) 2018-09-05
EP3218071B1 (en) 2022-04-06
AU2015346257A1 (en) 2017-06-15
CN107427708B (en) 2021-12-31

Similar Documents

Publication Publication Date Title
CA2967360C (en) Modular portable ballet bar exercise device
US11794050B2 (en) Portable barre exercise device
EP1789144B1 (en) Free standing ballet bar exercise device
US11850462B2 (en) Workout apparatus with telescoping legs
US9295866B2 (en) Portable ballet bar exercise device
US20080220949A1 (en) Adjustable heavy bag/speed bag frame with piston assist
US10744051B2 (en) Mobility device
US20230173319A1 (en) Folding Exercise Rack

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15858235

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2967360

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/006208

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2017544841

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017009856

Country of ref document: BR

REEP Request for entry into the european phase

Ref document number: 2015858235

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177016207

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017120804

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015346257

Country of ref document: AU

Date of ref document: 20151112

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112017009856

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017009856

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170510