WO2016076595A1 - Waveguide slot array antenna - Google Patents

Waveguide slot array antenna Download PDF

Info

Publication number
WO2016076595A1
WO2016076595A1 PCT/KR2015/012036 KR2015012036W WO2016076595A1 WO 2016076595 A1 WO2016076595 A1 WO 2016076595A1 KR 2015012036 W KR2015012036 W KR 2015012036W WO 2016076595 A1 WO2016076595 A1 WO 2016076595A1
Authority
WO
WIPO (PCT)
Prior art keywords
slot
plate
radiating plate
polarization
excitation
Prior art date
Application number
PCT/KR2015/012036
Other languages
French (fr)
Korean (ko)
Inventor
문영찬
최창섭
유치백
서용원
Original Assignee
주식회사 케이엠더블유
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150077610A external-priority patent/KR102302466B1/en
Application filed by 주식회사 케이엠더블유 filed Critical 주식회사 케이엠더블유
Priority to CA2967279A priority Critical patent/CA2967279C/en
Priority to JP2017524441A priority patent/JP6386182B2/en
Priority to ES15858572T priority patent/ES2856056T3/en
Priority to EP15858572.9A priority patent/EP3220481B1/en
Priority to CN201580061383.6A priority patent/CN107210533B/en
Publication of WO2016076595A1 publication Critical patent/WO2016076595A1/en
Priority to US15/591,133 priority patent/US10622726B2/en
Priority to US16/799,837 priority patent/US10985472B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path

Definitions

  • the present invention relates to ultra-high frequency transmit and receive antennas, and more particularly to waveguide slot array antennas.
  • Ultra-high frequency transceiver antennas include parabolic antennas, microstrip antennas and waveguide slot array antennas. Among these antennas, a microstrip array antenna or a waveguide slot array antenna is mainly used for miniaturization by reducing thickness.
  • the microstrip array antenna has a microstrip patch array structure using a dielectric substrate, and according to the dielectric loss factor of the dielectric substrate, the loss of the signal transmitted or received is large, the resistance loss of the conductor occurs, and especially the frequency As the loss increases, the loss is avoided in the ultra-high frequency band.
  • the waveguide slot array antenna has a structure in which a slot-shaped hole is formed in a general waveguide without using such a dielectric substrate.
  • the waveguide is a hollow metal tube, a kind of highpass filter.
  • the mode of the tube has a constant cutoff wavelength, and the basic mode is determined by the size of the waveguide.
  • waveguides have the advantage of low attenuation compared to parallel two-wire lines or coaxial cables, and thus have been mainly used for high power in microwave transmission lines.
  • the waveguide has various cross-sectional shapes, and is divided into a circular waveguide, a rectangular waveguide, an elliptical waveguide, and the like according to the cross-sectional shape.
  • Korean patent application No. 2006-18147 name: “stacked slot array antenna”, Applicant: Monetix, Inventor: Cho Tae-gwan, etc., filed date: 2006 Feb. 24, 2013, or domestic patent application No. 2007-7000182 (name: “Planar antenna module, triple plate type flat array antenna and triple plate line-waveguide transducer”), Applicant: Hitachi Kasei Kogyo Co., Ltd. , Inventor: Ota Masahiko et al., Filing date: January 04, 2007).
  • a conventional waveguide slot array antenna includes a feed plate 11 having an input feed slot 112 formed therein; A distribution plate 12 installed on the power feeding plate 11 and having a distribution portion and a coupling slot 122; A main radiating plate 13 installed on the distribution plate 12 and having a cavity structure and an excitation slot 132 (or a radiating slot) formed thereon; It is installed on the main radiating plate 13, it can be configured to include an auxiliary radiating plate 14 formed with a polarization slot 142 for generating a polarized inclination of 45 degrees polarized surface.
  • the input signal When a signal is input from the feed slot 112 of the feed plate 11, the input signal is distributed through the distribution plate 12, for example, at an equal ratio, and the divided signals are respectively coupled to the coupling slot 122.
  • the distribution plate 12 Through each of the cavities formed in the main radiating plate (13).
  • the signal transmitted to the cavity of the main radiating plate 13 is distributed and radiated at the same rate through the excitation slots 132 which are formed for each of four cavities, for example.
  • These excitation slots 132 are arranged to have a predetermined interval and arrangement between each other according to the operating frequency.
  • polarization slots 142 are formed in a one-to-one correspondence with each excitation slot 132 of the main radiating plate 13, and a polarization is formed.
  • the signal transmitted to the slot 142 is rotated by 45 degrees compared to the case where the polarization plane is emitted from the excitation slot 132 is radiated into the space. That is, the secondary radiating plate 14 generates 45 degree polarization relative to the vertical and horizontal.
  • the slot shape of the excitation slot 142 is, for example, a substantially rectangular shape, it may be formed in an upright position based on the vertical / horizontal direction, the polarization slot 142
  • the slot shape may have a rectangular shape similar to the slot shape of the approximately rectangular excitation slot 132, but the rectangular shape is mechanically rotated 45 degrees relative to the vertical / horizontal shape compared to the slot shape of the excitation slot 132. Having a structure formed in a posture, it can be formed similarly to a rhombus shape as a whole.
  • This structure may be regarded as a structure in which one radiation slot is formed by the combination of the excitation slot 132 and the polarization slot 142.
  • the auxiliary radiation plate 14 is used to operate the conventional waveguide slot array antenna with vertical / horizontal polarization, and the polarization slot 142 of the auxiliary radiation plate 14 is a signal radiated from the excitation slot 132. It may have a rectangular shape rotated 45 degrees relative to the excitation slot 132 to rotate the polarization plane of 45 degrees.
  • This structure has the advantage that the side lobe component is significantly suppressed by the total length of the horizontal and vertical surfaces.
  • the rectangular polarization slot 142 formed in the auxiliary radiating plate 14 is formed in a shape rotated 45 degrees from the vertical / horizontal plane to have a shape similar to a rhombus shape, the polarization slot in the vertical / horizontal plane ( The spacing between arrays 142 does not meet the appropriate distance criteria required when considering the wavelength of the operating frequency. That is, as indicated by the interval 'a' in FIG. 1A, in particular, a distance between the polarization slots 142 positioned diagonally from each other increases. Such a structure can generate a grating lobe.
  • a constant radiation angle at which the phase of the emitted signal in each radiation slot is the same is generated.
  • the lobe that occurs at this time is called a grating lobe and is a kind of main lobe.
  • the grating lobe is generated by the phase of the array element in the array antenna, whose phase is governed by the distance between the elements.
  • FIG. 1B shows the generation state of the main lobe and the grating lobe at positions P1 and P2 of two polarization slots diagonally positioned (distance d) in FIG. 1A, for example.
  • a grating lobe occurs when the difference between the main lobe and the phase of the two paths at a rotation angle by ⁇ therefrom is one wavelength ⁇ .
  • the generated angle can be simply expressed by the following equation.
  • the grating lobe Due to the grating lobe, the grating lobe does not satisfy the limitation of the Radiation Pattern Envelope (RPE) standard. Therefore, there is a need for a way to suppress such grating lobes.
  • RPE Radiation Pattern Envelope
  • the excitation slots are arranged to have a large number of excitation slots arranged in the same antenna area, it is possible to consider a method of suppressing the grating lobe, but in the conventional structure, depending on the cavity structure in which signals are distributed in the distribution plate and the main radiating plate. Since the number of excitation slots is increased by a power of two, there are limitations in the layout design of the excitation slots.
  • the present invention has been proposed to solve the above problems, and to provide a waveguide slot array antenna for generating a polarization while suppressing the grating lobe more effectively.
  • Another object of the present invention is to provide a waveguide slot array antenna for increasing the degree of freedom in designing a slot array so that the overall antenna structure can be more freely implemented.
  • a waveguide slot array antenna having an excitation slot array for emitting a signal corresponding to an operating frequency in the main radiating plate;
  • a first auxiliary radiating plate installed on the main radiating plate, the first auxiliary radiating plate rotating a polarization plane of a signal radiated in an excitation slot arrangement of the main radiating plate; It is installed on the first auxiliary radiating plate, characterized in that it comprises a second auxiliary radiating plate for distributing and radiating a signal whose polarization surface is rotated in the first auxiliary radiating plate.
  • the first auxiliary radiating plate is formed with an array of first polarization slots formed in a structure corresponding to the excitation slot arrangement of the main radiating plate;
  • the first polarization slot may have a structure for rotating the polarization plane of the signal radiated from the corresponding excitation slot.
  • the second auxiliary radiating plate has an arrangement of a plurality of second polarization slots corresponding to each of the first polarization slots of the first auxiliary radiating plate;
  • a distribution structure may be formed for distributing signals radiated for each of the first polarization slots of the first auxiliary radiating plate to a plurality of corresponding second polarization slots.
  • a feed plate forming at least a portion of the waveguide for receiving an input signal; And a distribution plate having a distribution waveguide structure coupled to the feeder plate for distributing the input signal to a plurality of coupling slots, wherein the main radiating plate is installed on the distribution plate, each couple of distribution plates.
  • a plurality of cavity structures may be provided for distributing the signals input through the ring slots at the same ratio and for exciting the divided signals through the excitation slot arrangement.
  • a waveguide slot array antenna A distribution plate having a distribution waveguide structure for distributing an input signal to the plurality of coupling slots; A plurality of coupling slots installed on the distribution plate for distributing the signals input through the plurality of coupling slots of the distribution plate at the same rate and for exciting the distributed signals through a plurality of excitation slot arrangements, respectively.
  • a radiation plate having a plurality of cavity structures configured correspondingly thereto; Each of the plurality of cavity structures is designed to be divided into four areas for distributing signals provided to corresponding coupling slots of the distribution plate into four parts, and a plurality of excitation slots are formed in each of the four areas. It is done.
  • the waveguide slot array antenna can generate a polarization while suppressing the grating lobe more effectively, thereby reducing the influence on the adjacent equipment in the adjacent fixed communication device.
  • the waveguide slot array antenna can increase the degree of freedom in designing the slot array, so that the overall antenna structure can be more freely implemented. As a result, unnecessary antenna size increase can be prevented, and the proper alignment level can be maintained to reduce the processing complexity, thereby reducing the cost of time.
  • 1A is a partially cut away perspective view of each layer of a conventional exemplary waveguide slot array antenna
  • FIG. 1B is an exemplary view showing a grating lobe generation state in the waveguide slot array antenna of FIG. 1A
  • FIG. 2 is a partially cut perspective view of each layer of the waveguide slot array antenna according to the first embodiment of the present invention.
  • FIG. 3 is a perspective view of one side of the second auxiliary radiating plate of FIG.
  • FIG. 4 is another perspective view of the second auxiliary radiating plate of FIG. 2;
  • FIG. 5 is a perspective view illustrating a connection relationship between a second polarization slot of a second auxiliary radiation plate and a first polarization slot of a first auxiliary radiation plate in FIG. 2.
  • FIG. 6 is a side structure diagram illustrating a connection relationship between a second polarization slot of a second auxiliary radiation plate and a first polarization slot of a first auxiliary radiation plate in FIG. 2;
  • FIG. 7 is a side view illustrating a connection relationship according to a modified structure of a second polarization slot of a second auxiliary radiating plate and a first polarization slot of a first auxiliary radiating plate in FIG.
  • FIG. 8 is a perspective view of one side of the first auxiliary radiating plate of FIG. 2; FIG.
  • FIG. 9 is a perspective view of one side direction of the radiating plate of FIG.
  • FIG. 10 is a perspective view of the other side of the radiation plate in FIG.
  • FIG. 11 is a perspective view of one side direction of the distribution plate of FIG. 2; FIG.
  • FIG. 12 is a perspective view of the other side of the distribution plate in FIG.
  • FIG. 13 is a plan view of the feeder plate of FIG. 2.
  • FIG. 14 is a structural diagram of an internal signal waveguide path of the waveguide slot array antenna according to the first embodiment of the present invention.
  • 15 is a graph illustrating grating lobe characteristics of the waveguide slot array antenna of FIG. 14.
  • 16 is a graph illustrating cross polarization characteristics of the waveguide slot array antenna of FIG. 14.
  • 17 is a perspective view of an essential part of a waveguide slot array antenna for comparison with embodiments of the present invention.
  • FIG. 18 is a structural diagram of an internal signal waveguide path of the waveguide slot array antenna of FIG. 17.
  • FIG. 19 is a perspective view of an essential part of a waveguide slot array antenna according to a second embodiment of the present invention.
  • 20 is a structural diagram of an internal signal waveguide path of the waveguide slot array antenna of FIG.
  • 21 is a perspective view of an essential part of a waveguide slot array antenna according to a third embodiment of the present invention.
  • FIG. 22 is a structural diagram of an internal signal waveguide path of the waveguide slot array antenna of FIG. 21.
  • Figure 23 is an exploded perspective view of one side view of the main part of the waveguide slot array antenna according to the fourth embodiment of the present invention.
  • FIG. 24 is an exploded perspective view of the other side of the waveguide slot array antenna of FIG. 23.
  • FIG. 25 is a perspective view of one side view of the radiating plate of FIG. 23; FIG.
  • FIG. 26 is a perspective view of the other side of the radiation plate in FIG.
  • FIG. 27 is a perspective view of one side view of the distribution plate of FIG. 23; FIG.
  • FIG. 28 is a perspective view of the other side of the distribution plate in FIG.
  • 29 is a perspective view of an essential part of a waveguide slot array antenna according to a fifth embodiment of the present invention.
  • FIG. 30 is a perspective view of an essential part of a waveguide slot array antenna according to a sixth embodiment of the present invention.
  • the waveguide slot array antenna according to the first embodiment of the present invention may include a feed plate 11 having an input feed slot 112, similar to the conventional art; A distribution plate 12 installed on the power feeding plate 11 and having a distribution portion and a coupling slot 122; The main radiating plate 13 may be basically provided on the distribution plate 12 and provided with a cavity structure and an excitation slot 132 (or a spinning slot).
  • the first auxiliary radiating plate (installed on the main radiating plate 13, the first auxiliary radiating plate (142) having a first polarization slot 142 for generating a polarization inclined 45 degrees polarization plane ( 14); And a second auxiliary radiating plate 15 provided on the first auxiliary radiating plate 14 and having a second polarization slot 152 for distributing and radiating the polarization generated by the first auxiliary radiating plate 14. Equipped.
  • each distributed signal is mainly transmitted through the coupling slots 122. It is delivered to each cavity formed in the radiation plate 13.
  • the signal transmitted to the cavity of the main radiating plate 13 is distributed and radiated in an equal ratio, for example, through the excitation slots 132 formed for each of four cavities, for example.
  • These excitation slots 132 are arranged to have a predetermined interval and arrangement between each other according to the operating frequency.
  • the first auxiliary radiating plate 14 provided on the main radiating plate 13 has a first polarization slot in a structure corresponding to one-to-one correspondence with each of the excitation slots 132 of the main radiating plate 13 as in the related art. 142 are formed.
  • the first polarization slot 142 has a structure in which an approximately (rectangular) rectangular slot is mechanically rotated by 45 degrees relative to the excitation slot 132.
  • the signal transmitted to the first polarization slot 142 through this structure generates a polarization signal that is rotated by 45 degrees compared to the case where the polarization plane is radiated from the excitation slot 132.
  • each of the first polarization slots of the first auxiliary radiation plate 14 may be provided in the second auxiliary radiation plate 15 installed on the first auxiliary radiation plate 14.
  • Each of the second polarization slots 152 formed to correspond to the plurality of second polarization slots 152 and the plurality of second polarization slots 152 corresponding to each of the first polarization slots 142.
  • a dispensing structure for dispensing is formed. The shape (and posture) of the first polarization slot 142 and the plurality of second polarization slots 152 may be the same. Through this structure, the second polarization slots 152 are distributed and radiated through the second polarization slot 152 generated in the first polarization slot 142.
  • the first auxiliary radiating plate 14 and the second auxiliary radiating plate 15 generally have a structure for rotating the signal excited from the excitation slot 132 of the main radiating plate 13 so that the polarization plane is inclined at 45 degrees. It can be seen that the additional slot array structure using the electric field or the magnetic field signal distribution structure is additionally formed.
  • FIG. 3 is a perspective view of an upper side of the second auxiliary radiating plate 15 (eg, the front side based on the signal emission direction), and FIG. 4 is a lower side of the second auxiliary radiating plate 15 (eg, signal radiation).
  • 5 and 6 are views of the second polarization slot 152 of the second auxiliary radiating plate 15 and the first polarization slot 142 of the first auxiliary radiating plate 14.
  • a perspective view and a side view showing a connection relationship. 3 to 6, the configuration and operation of the second auxiliary radiating plate 15 and the second polarization slot 152 will be described in more detail.
  • the signal transmitted from the excitation slot 132 of the main radiating plate 13 will be described.
  • the electric field of is fixed after 45 degrees rotation in the first polarization slot 142 of the first auxiliary radiating plate 14 is transmitted to the second polarization slot 152 side of the second auxiliary radiating plate 15.
  • the signal transmitted to the second auxiliary radiating plate 15 is distributed through a distribution structure formed under the second polarization slots 152 and is provided to the plurality of second polarization slots 152, respectively.
  • This distribution structure may have a distribution structure that branches in the vertical or horizontal direction to the electric field plane.
  • the signal distributed and provided to the second polarization slot 152 may be radiated into a space, and may be represented by the radiation pattern of the entire antenna.
  • the arrangement interval of the second polarization slots 152 is the arrangement interval of the first polarization slots 152 of the first auxiliary radiating plate 14 according to the branched surface. In comparison, for example, they may be arranged at half intervals. That is, by this structure, the arrangement interval in the vertical / horizontal plane of the second polarization slot 152 formed in the second auxiliary radiating plate 15 can satisfactorily satisfy within one wavelength of the operating frequency, and the grating lobe Is sufficiently suppressed.
  • FIG. 7 illustrates a modified structure of the second polarization slot 152 of the second auxiliary radiating plate 15 and the first polarization slot 142 of the first auxiliary radiating plate 14 in FIG. 2.
  • the second auxiliary radiating plate 15 is similarly formed with the second polarization slot 152-1, but the distribution structure is not formed under the second polarization slot 152.
  • This distribution structure is formed on the upper side of the first polarization slot 142-1 of the first auxiliary radiating plate 14. That is, in the modified structure shown in FIG. 7, only the second polarization slot 152-1 is formed in the second auxiliary radiation plate 15, and the first auxiliary radiation plate 14 is the first polarization slot 142-1. ) And a distribution structure formed on the upper side thereof.
  • the first auxiliary radiating plate 14 and the second auxiliary radiating plate 15 are coupled to each other, the first auxiliary radiating plate 14 and the second auxiliary radiating plate 15 are formed by the first polarization slot 142-1, the distribution structure, and the second polarization slot 152-1.
  • the shape of the waveguide path through which the internal signal is transmitted is substantially the same as that of the waveguide path formed by the structure shown in FIGS. 2 to 6, and the signal transmission characteristics are the same.
  • FIG. 8 is a perspective view of one side of the first auxiliary radiating plate 14 of FIG. 2
  • FIG. 9 is a perspective view of an upper side of the radiating plate 13 of FIG. 2 (eg, a front side based on a signal emission direction).
  • 10 is a perspective view of the lower side of the radiation plate 13 in FIG. 2 (for example, a rear side based on a signal emission direction)
  • FIGS. 11 and 12 are perspective views of the upper side and one side of the distribution plate 12 in FIG.
  • FIG. 13 is a plan view of the feed plate 11 in FIG. 2.
  • 8 to 12 the basic configuration and operation of the waveguide slot array antenna will be described in more detail. 8 to 12 are shown in the order in which the plates are installed on the lower side, the following description will be described based on the signal input and the waveguide path.
  • a waveguide for guiding a signal input through an input connector (not shown) may be formed in an appropriate shape on one side based on the bottom surface of the feed plate 11.
  • the bottom surface of the feed plate 11 may be formed, for example, from several millimeters to ten millimeters or less.
  • the feed slot 112 is formed at the end of the waveguide of the feed plate 11, the feed slot 112 is composed of a plurality of stages to achieve matching according to the size of the distribution waveguide formed in the corresponding distribution plate 12. May be
  • the back of the feed plate 11 may be machined holes or tabs corresponding to the fastening portion of the normalized waveguide flange.
  • the distribution plate 12 connected to the feed plate 11 has a distribution waveguide structure for distributing a signal input through the feed slot 112 of the feed plate 11 to the plurality of coupling slots 122. .
  • the number of the last branched branches of this distribution waveguide structure has a structure distributed by the number of squares of 2, and has a vertical symmetry structure.
  • Such a distribution waveguide structure may have an electric field or a magnetic field distribution structure.
  • the electric field or the magnetic field distribution structure may further have an iris and septum structure in consideration of matching characteristics.
  • Coupling slots 122 are formed at the ends of each branched final branch in the distribution waveguide structure.
  • the coupling slot 122 is offset from the center of the waveguide structure at the ends of the final branches of the distribution waveguide structure so as to be biased to one side to cause strong coupling.
  • the main radiating plate 13 connected to the distribution plate 12 distributes the signals input through the coupling slots 122 of the distribution plate 12 at an equal or unequal ratio and distributes the distributed signals. It has a cavity structure for exciting through the excitation slot 132.
  • Each coupling slot 122 of the distribution plate 12 is designed to be located in the center of each corresponding cavity of the main radiating plate 13.
  • Each cavity may be configured such that, for example, four excitation slots 132 are formed.
  • a partition wall having a predetermined length perpendicular to each side of the cavity may be formed. Is formed.
  • the feed plate 11, the distribution plate 12, the main radiating plate 13 can be designed, corresponding to the first auxiliary radiating plate 14 and the second auxiliary radiating plate 15 is designed.
  • the feed plate 11, the distribution plate 12, the main spin plate 13, the first subsidiary spin plate 14 and the second subsidiary spin plate 15 are aligned to each other and designed to be coupled to each other.
  • the coupling method of each plate may be a screw fastening method, a soldering method or a high frequency welding method using a screw.
  • FIG. 14 is a structural diagram of a part of an internal signal waveguide path of a waveguide slot array antenna according to a first embodiment of the present invention.
  • the structure according to some embodiments of the present invention is illustrated in FIG. In Fig. 14A, for comparison, an internal signal waveguide path (or part thereof) corresponding to a conventional waveguide slot array antenna, as shown in Fig. 1, is shown.
  • FIG. 15 is a graph illustrating grating lobe characteristics of the waveguide slot array antenna of FIG. 14, and
  • FIG. 16 is a graph illustrating cross polarization characteristics of the waveguide slot array antenna of FIG. 14.
  • a characteristic graph according to the first embodiment of the present invention is shown in (b), and FIG. 16 (a) corresponds to a conventional waveguide slot array antenna as shown in FIG. 1 for comparison.
  • a characteristic graph is shown.
  • the waveguide slotted array antenna according to the present invention can be regarded as a structure in which a second auxiliary radiating plate 15 is added, compared to the conventional one, and a single layer (plate) is physically The stacked structure, but the overall height of the antenna can be implemented as in the prior art. That is, as shown in Figure 14, the total height h1 of the conventional antenna and the total height h2 of the antenna according to the present invention can be designed to be the same. Even in this design, as shown in FIG. 15, the size of the primary and secondary side lobes is similar to the conventional one, but it can be seen that the grating lobe characteristic of the antenna according to the present invention is further improved.
  • the determining factor of the cross polarization is dominantly determined by the height of the radiation slot at the end.
  • the height h21 of the radiation slot (second polarization slot) at the last stage of the antenna according to the present invention is more than the height h11 of the radiation slot (first polarization slot) at the conventional antenna end stage. It can be seen that the design is low. This is a result of designing the overall height of the antenna according to the present invention as in the prior art, as shown in Figure 16, it can be seen that there is no deterioration of the cross-polarization characteristics even in such a design.
  • the antenna according to the present invention can be seen that the cross-polarization characteristic is significantly improved.
  • the present invention can be designed to optimize the height of the radiation slot of the last end of the antenna.
  • FIG. 17 is a perspective view of an essential part of a waveguide slot array antenna for comparison with embodiments of the present invention
  • FIG. 18 is a structural diagram of an internal signal waveguide path of the waveguide slot array antenna of FIG. 17.
  • the waveguide slot array antenna shown in FIGS. 17 and 18 has a structure in which the feeder plate 21, the distribution plate 22, and the radiating plate 23 are stacked in this order as in the structure of the first embodiment shown in FIG. You can basically have
  • auxiliary radiating plate (s) for polarization generation may be additionally installed on the radiating plate 23 similarly to the structure shown in FIG. 2.
  • the structure shown in Figure 2, etc. discloses a structure in which an input signal is provided through the feed slot of the feed plate, for example, in Figure 17 and 18, for example, the signal input to one side of the distribution plate 22 It illustrates a structure in which an input signal is provided through a feed waveguide 212 in which an opening is formed for the purpose.
  • the distribution plate 22 forms an empty area of the distribution waveguide structure for distributing the signal input through the feed waveguide 212 and the feed waveguide 212, and the feed plate 21 is simply a flat plate. It can be configured as.
  • each of the divided signals is formed on the radiating plate 23. It is delivered to each cavity 230.
  • the signal transmitted to the cavity 230 of the radiating plate 23 is distributed and radiated in an equal ratio through, for example, the excitation slots 232 formed by four, for example, for each cavity 230.
  • These excitation slots 232 are arranged to have a predetermined interval and arrangement between each other according to the operating frequency.
  • the input signal at the distribution plate 22 is distributed evenly, for example, in powers of two.
  • the excitation slot 232 is a 2x2, 4x4 array, etc. They are arranged in powers.
  • the radiating plate 22 illustrated in FIGS. 17 and 18 four signals input from one coupling slot of the distribution plate 22 and transmitted to one cavity of the radiating plate 23 are formed per cavity. Is configured to radiate through the excitation slot 232. Accordingly, it can be seen that the structure of the excitation slot 232 has a total arrangement of 4x4, 8x8, 16x16, and the like.
  • the signal distribution structure generally uses a H-junction structure to implement a symmetrical and efficient feeder network structure.
  • this structure due to this structure, there is a limitation of horizontal and vertical beam patterns, it is difficult to design a flexible gain and may have a volume more than necessary.
  • the structure of the radiation plate shown in Figs. 17 and 18, the interval of the arrangement of the excitation slot can be narrower than the other embodiments shown in Fig. 2, etc., in some cases, shown in Fig.
  • the grating lobe can be suppressed without providing a second auxiliary spin plate or the like above.
  • FIG. 19 is a perspective view of an essential part of a waveguide slot array antenna according to a second embodiment of the present invention
  • FIG. 20 is a structural diagram of an internal signal waveguide path of the waveguide slot array antenna of FIG. 19, wherein an excitation slot is a minimum arrangement unit (for example, 4x2) shows an example of a basic structure.
  • an excitation slot is a minimum arrangement unit (for example, 4x2) shows an example of a basic structure.
  • the waveguide slot array antenna according to the second embodiment of the present invention is similar to the structure shown in Figs.
  • the feed plate 31 It is installed to be stacked on the feed plate 31, the waveguide structure for transmitting a signal input through the feed waveguide 312 and the feed waveguide 312 to the radiating plate 33 through a coupling slot (not shown)
  • a distribution plate 32 having; It is installed to be stacked on the distribution plate 32, a plurality of excitation slots (332: 332-1, 332-2, 332-3, 332-4, 332-5, 332-6. 332-7, 332- And a radiation plate 33 having a cavity structure 330 for distributing the signal input through the coupling slot of the distribution plate 32 and exciting it through the excitation slots 332. It is composed.
  • the auxiliary radiation plate (s) for polarization generation may be additionally installed on the radiation plate 33.
  • the cavity structure 330 of the radiating plate 33 has four regions (a) for equally distributing the signal provided from the distribution plate 32 into four parts, for example. , b, c, and d), and thus, partition walls of a predetermined length are formed in each direction of the cavity in a vertical direction.
  • two excitation slots are formed in the four areas a, b, c, and d of the cavity structure 330, unlike the structures shown in FIGS. 17 and 18.
  • first and second excitation slots 332-1 and 332-2 are formed in the first region a in the cavity structure 330, and the first and second excitation slots 332-1 and 332 are formed.
  • excitation slots 332-3 and 332-4 are formed in the second region b, and fifth and sixth excitation slots 332-5 and 332-are formed in the third region c. 6) is formed, and the seventh and eighth excitation slots 332-7 and 332-8 are formed in the fourth region d.
  • the distribution plate 32 transmits the signal input through the feed waveguide 312 to the radiating plate 33 through one coupling slot as it is without distribution. It can be seen that the structure having. This is because the excitation slot arrangement structure shown in Figs. 19 and 20 is shown as having a minimum arrangement unit of, for example, 4x2 (width x length) for convenience of description. It will be appreciated that in the case of constructing such a minimum arrangement unit structure redundantly, the distribution plate 32 may have a configuration of distributing the input signal in the overlapping arrangement of the minimum arrangement unit structure.
  • FIG. 21 is a perspective view of an essential part of a waveguide slot array antenna according to a third embodiment of the present invention
  • FIG. 22 is a structural diagram of an internal signal waveguide path of the waveguide slot array antenna of FIG. 21, wherein an excitation slot is a minimum arrangement unit (for example, 6x2) shows an example of a basic structure.
  • an excitation slot is a minimum arrangement unit (for example, 6x2) shows an example of a basic structure. 21 and 22, the waveguide slot array antenna according to the third embodiment of the present invention is similar to the structure according to the second embodiment shown in Figs.
  • the feed plate 41 It is installed to be stacked on the feed plate 41, a waveguide structure for transmitting a signal input through the feed waveguide 412 and the feed waveguide 412 to the radiating plate 43 through a coupling slot (not shown)
  • a distribution plate 42 having; It is installed to be stacked on the distribution plate 42, a plurality of excitation slots (432: 432-1, 432-2, 432-3, 432-4, 432-5, 432-6, 432-7, 432- 8, 432-9, 432-10, 432-11, and 432-12 are formed, and the signal inputted through the coupling slot of the distribution plate 42 is distributed to excite through the excitation slots 432.
  • a radiation plate 43 having a cavity structure 430.
  • auxiliary radiating plate (s) (not shown) for generating a polarization may be additionally installed.
  • the cavity structure 430 of the radiating plate 43 is divided into four regions (a) for equally distributing the signal provided from the distribution plate 42 into four parts, for example. , b, c, and d), and thus, partition walls of a predetermined length are formed in each direction of the cavity in a vertical direction.
  • three excitation slots are formed in the four areas a, b, c, and d of the cavity structure 430, unlike the structures shown in FIGS. 19 and 20. That is, in the cavity structure 430, first to third excitation slots 432-1, 432-2, and 432-3 are formed in the first region a, and the first to third excitation slots 432-1 are formed.
  • fourth to sixth excitation slots 432-4, 432-5, and 432-6 are formed in the second region b, and seventh and ninth excitation slots 432- are formed in the third region c. 7, 432-8, and 432-9 are formed, and the tenth and twelfth excitation slots 432-10, 432-11, and 432-12 are formed in the fourth region d.
  • the excitation slots of the radiating plate are arranged in comparison to the structure of a power of two, which is a general scheme. This will provide more flexibility in structural design.
  • the overall antenna structure can implement the maximum directory at any size, and the overall thin structure can be maintained.
  • FIG. 23 is an exploded perspective view of one side (eg, upper side) view of a main part of the waveguide slot array antenna according to the fourth embodiment of the present invention
  • FIG. 24 is the other side (eg, of the waveguide slot array antenna of FIG. 23).
  • 25 and 26 are perspective views of one side and the other side of the radiating plate 53 of FIG. 23, and
  • FIGS. 27 and 28 are one side and the other side views of the distribution plate 52 of FIG. 23.
  • the excitation slot has an arrangement structure of, for example, 10x4 (vertical x horizontal).
  • the waveguide slot array antenna according to the fourth embodiment of the present invention, similar to the structure of the other embodiments, the feed plate 51; It is installed to be stacked on the feed plate 51, and the signal input through the feed waveguide 512 and the feed waveguide 512 is, for example, through a plurality of coupling slots 522 designed to be the square root of two.
  • a distribution plate 52 having a distribution waveguide structure for distributing it evenly or evenly to the radiation plate 53; Cavity is installed on the distribution plate 52, excitation slots are formed, the cavity for distributing the signal input through the plurality of coupling slots 522 of the distribution plate 52 to excite through the excitation slots It is configured to include a spin plate 53 having a structure.
  • auxiliary radiation plate (s) (not shown) for the generation of polarization may be additionally installed.
  • the radiating plate 53 according to the fourth embodiment of the present invention is actually properly arranged and connected by using the structure of the radiating plate according to the previous other embodiments in duplicate It can be seen that it is a structure.
  • the radiating plate 53 of the 10x4 arrangement actually has a 4x2 minimum array unit structure according to the second embodiment shown in FIGS. 19 and 20. It is applied to two places (for example, a 4x4 arrangement structure is formed), and the 6x2 minimum arrangement unit structure according to the third embodiment shown in FIGS. 21 and 22 is applied to two places of the b area and the d area. (Thus forming a 6x4 array structure, for example).
  • the radiating plate 53 illustrated in FIG. 23 is implemented by applying a total of four minimum array unit structures, each having two minimum array unit structures according to the second and fourth embodiments.
  • FIG. 29 is a perspective view of an essential part of a waveguide slot array antenna according to a fifth embodiment of the present invention, in which an excitation slot has an arrangement structure of, for example, 8x4 (vertical x horizontal).
  • the waveguide slot array antenna according to the fifth embodiment of the present invention has a feed plate 61 similar to the structure of the fourth embodiment shown in FIGS. 23 to 28;
  • the distribution plate 62 and the radiating plate 63 are laminated.
  • the radiating plate 63 of the 8x4 array structure may be interconnected using four 4x2 minimum array unit structures according to the second embodiment shown in FIGS. 19 and 20. Can be.
  • FIG. 30 is a perspective view of an essential part of a waveguide slot array antenna according to a sixth embodiment of the present invention, in which an excitation slot has an arrangement structure of, for example, 10x8 (vertical x horizontal).
  • the waveguide slot array antenna according to the sixth embodiment of the present invention has a feed plate 71 similar to the structure of the fourth embodiment shown in FIGS. 23 to 28;
  • the distribution plate 72 and the radiating plate 73 are laminated.
  • the radiation plate 63 of the 10x8 arrangement shown in FIG. 30 has a 4x2 minimum arrangement unit structure according to the second embodiment shown in FIGS. 19 and 20, and the third shown in FIGS. 21 and 22.
  • the 6x2 minimum array unit structure according to the embodiment and four of each can be implemented to be interconnected.
  • the auxiliary radiating plate (s) of the present invention can also be applied to waveguide slot array antennas of various structures having a radiating slot arrangement. That is, in the waveguide slot array antenna having various structures, in order to generate polarization, as in the structure according to the first embodiment of the present invention, the first polarization slot and the second polarization slot are formed corresponding to the corresponding radiation slot arrangement. It may be possible to configure the first and second auxiliary radiating plate to be installed.
  • the feed waveguide is formed on the distribution plate, but the structure in which the feed slot is formed on the feed plate is adopted in the same manner as the structure of the first embodiment. Of course you can.

Abstract

The present invention provides a waveguide slot array antenna having an excitation slot arrangement radiating a signal corresponding to an operating frequency in a radiation plate, the waveguide slot array antenna comprising: a first auxiliary radiation plate installed on a main radiation plate and rotating a polarization plane of a signal radiated from the excitation slot arrangement of the main radiation plate; and a second auxiliary radiation plate installed on the first auxiliary radiation plate and distributing and radiating the signal, the polarization plane of which has been rotated in the first auxiliary radiation plate.

Description

도파관 슬롯 어레이 안테나Waveguide Slot Array Antenna
본 발명은 초고주파용 송수신 안테나에 관한 것으로서, 특히 도파관 슬롯 어레이 안테나에 관한 것이다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to ultra-high frequency transmit and receive antennas, and more particularly to waveguide slot array antennas.
초고주파용 송수신 안테나로는 파라볼릭 타입의 안테나, 마이크로 스트립 안테나 및 도파관 슬롯 어레이 안테나 등이 있다. 이러한 안테나들 중에서 두께를 줄여 소형화하기 위한 목적으로 주로 마이크로스트립 어레이 안테나 또는 도파관 슬롯 어레이 안테나가 사용되고 있다. Ultra-high frequency transceiver antennas include parabolic antennas, microstrip antennas and waveguide slot array antennas. Among these antennas, a microstrip array antenna or a waveguide slot array antenna is mainly used for miniaturization by reducing thickness.
마이크로스트립 어레이 안테나는 유전체 기판을 이용한 마이크로 스트립 패치 어레이 구조를 갖는데, 유전체 기판의 특성에 의한 유전체의 손실계수에 따라, 송신 또는 수신되는 신호의 손실이 크며, 도체의 저항 손실이 발생하고, 특히 주파수가 높아짐에 따라 손실이 커지므로 초고주파 대역에서는 지양되고 있다. The microstrip array antenna has a microstrip patch array structure using a dielectric substrate, and according to the dielectric loss factor of the dielectric substrate, the loss of the signal transmitted or received is large, the resistance loss of the conductor occurs, and especially the frequency As the loss increases, the loss is avoided in the ultra-high frequency band.
도파관 슬롯 어레이 안테나는 이러한 유전체 기판 등을 사용하지 않고 일반적인 도파관에 슬롯 형태의 구멍을 형성하는 구조를 가진다. 일반적으로 도파관은 속이 빈 금속관으로 일종의 고역통과 필터로 관내 모드는 일정한 차단 파장을 가지며, 기본 모드는 도파관의 크기에 의해 결정된다. 또한 도파관은 평행 2선식 선로나 동축케이블 등에 비해 감쇠가 적은 이점이 있어 마이크로파 전송선로에 있어서 주로 고출력용으로 사용되어 왔다. 도파관은 여러 가지 단면의 형상을 가지며, 이러한 단면 형상에 따라 원형 도파관, 사각형 도파관, 타원형 도파관 등으로 나뉜다. The waveguide slot array antenna has a structure in which a slot-shaped hole is formed in a general waveguide without using such a dielectric substrate. In general, the waveguide is a hollow metal tube, a kind of highpass filter. The mode of the tube has a constant cutoff wavelength, and the basic mode is determined by the size of the waveguide. In addition, waveguides have the advantage of low attenuation compared to parallel two-wire lines or coaxial cables, and thus have been mainly used for high power in microwave transmission lines. The waveguide has various cross-sectional shapes, and is divided into a circular waveguide, a rectangular waveguide, an elliptical waveguide, and the like according to the cross-sectional shape.
이와 같은 도파관 슬롯 어레이 안테나에 관한 기술로는, 국내 선출원된 특허 출원번호 제2006-18147호(명칭: “적층형 슬롯배열안테나”, 출원인: (주)모토닉스, 발명자: 조태관 등, 출원일: 2006년02월24일), 또는 국내 선출원된 특허 출원번호 제2007-7000182호(명칭: “평면 안테나 모듈, 트리플 플레이트형 평면 어레이 안테나 및 트리플 플레이트 선로-도파관 변환기”, 출원인: 히다치 가세고교 가부시끼가이샤, 발명자: 오오따 마사히꼬 등, 출원일: 2007년01월04일)에 개시된 바를 예로 들 수 있다. As a technology related to such a waveguide slot array antenna, Korean patent application No. 2006-18147 (name: "stacked slot array antenna", Applicant: Monetix, Inventor: Cho Tae-gwan, etc., filed date: 2006 Feb. 24, 2013, or domestic patent application No. 2007-7000182 (name: “Planar antenna module, triple plate type flat array antenna and triple plate line-waveguide transducer”), Applicant: Hitachi Kasei Kogyo Co., Ltd. , Inventor: Ota Masahiko et al., Filing date: January 04, 2007).
도 1a는 종래의 일 예시 도파관 슬롯 어레이 안테나의 각 층별로 일부 절단된 사시도로서, 적층형 다중 구조를 갖는 도파관 슬롯 어레이 안테나 구조를 개시한다. 도 1a를 참조하면, 종래의 도파관 슬롯 어레이 안테나는 입력 급전 슬롯(112)이 형성된 급전판(11)과; 급전판(11) 상에 설치되며, 분배부와 커플링 슬롯(122)이 형성된 분배판(12)과; 분배판(12) 상에 설치되며, 캐비티 구조와 여기(excitation) 슬롯(132)(또는 방사슬롯)이 형성된 주 방사판(13)과; 주 방사판(13) 상에 설치되며, 편파면이 45도 기울어진 편파를 발생하기 위한 편파슬롯(142)이 형성된 보조 방사판(14)을 포함하여 구성할 수 있다. 1A is a perspective view partially cut in each layer of a conventional example waveguide slot array antenna, and discloses a waveguide slot array antenna structure having a stacked multi-layer structure. Referring to FIG. 1A, a conventional waveguide slot array antenna includes a feed plate 11 having an input feed slot 112 formed therein; A distribution plate 12 installed on the power feeding plate 11 and having a distribution portion and a coupling slot 122; A main radiating plate 13 installed on the distribution plate 12 and having a cavity structure and an excitation slot 132 (or a radiating slot) formed thereon; It is installed on the main radiating plate 13, it can be configured to include an auxiliary radiating plate 14 formed with a polarization slot 142 for generating a polarized inclination of 45 degrees polarized surface.
급전판(11)의 급전슬롯(112)으로부터 신호가 입력되면, 입력된 신호는 분배판(12)을 통하여 예를 들어, 균등한 비율로 분배되며, 각각 분배된 신호는 커플링 슬롯(122)들을 통해 주 방사판(13)에 형성된 각 캐비티로 전달된다. 주 방사판(13)의 캐비티로 전달된 신호는 각 캐비티 별로 예를 들어, 각각 4개씩 형성되는 여기슬롯(132)들을 통해 동일 비율로 분배되어 방사된다. 이러한 여기슬롯(132)들은 동작주파수에 따라 서로간에 미리 설정된 간격 및 배치를 가지도록 배열된다. When a signal is input from the feed slot 112 of the feed plate 11, the input signal is distributed through the distribution plate 12, for example, at an equal ratio, and the divided signals are respectively coupled to the coupling slot 122. Through each of the cavities formed in the main radiating plate (13). The signal transmitted to the cavity of the main radiating plate 13 is distributed and radiated at the same rate through the excitation slots 132 which are formed for each of four cavities, for example. These excitation slots 132 are arranged to have a predetermined interval and arrangement between each other according to the operating frequency.
이때, 주 방사판(13) 상에 설치되는 보조 방사판(14)에는 주 방사판(13)의 각각의 여기슬롯(132)과 일대일로 대응되는 형태로 편파슬롯(142)들이 형성되며, 편파슬롯(142)으로 전달된 신호는 편파면이 여기슬롯(132)에서 방사되는 경우와 비교하여 45도 회전되어 공간으로 방사된다. 즉, 이러한 보조 방사판(14)에 의해 수직/수평 대비 45도 편파를 발생한다. 여기슬롯(132)의 슬롯 형상을 살펴보면, 여기슬롯(142)의 슬롯 형상은 예를 들어, 대략 직사각형 형상이며, 수직/수평 방향을 기준으로 직립한 자세로 형성될 수 있으며, 편파슬롯(142)의 슬롯 형상은 이러한 대략 직사각형 형태의 여기슬롯(132)과 슬롯 형상 유사하게 직사각형 형상을 가질 수 있으나, 여기슬롯(132)의 슬롯 형상에 비해 직사각형 형상이 수직/수평 대비 기구적으로 45도 회전된 자세로 형성되는 구조를 가져서, 전체적으로 마름모 형상과 유사하게 형성될 수 있다. 이러한 구조는 여기슬롯(132)과 편파슬롯(142)의 조합에 의해 하나의 방사슬롯을 형성하는 구조로 간주할 수 있다. At this time, in the auxiliary radiating plate 14 installed on the main radiating plate 13, polarization slots 142 are formed in a one-to-one correspondence with each excitation slot 132 of the main radiating plate 13, and a polarization is formed. The signal transmitted to the slot 142 is rotated by 45 degrees compared to the case where the polarization plane is emitted from the excitation slot 132 is radiated into the space. That is, the secondary radiating plate 14 generates 45 degree polarization relative to the vertical and horizontal. Looking at the slot shape of the excitation slot 132, the slot shape of the excitation slot 142 is, for example, a substantially rectangular shape, it may be formed in an upright position based on the vertical / horizontal direction, the polarization slot 142 The slot shape may have a rectangular shape similar to the slot shape of the approximately rectangular excitation slot 132, but the rectangular shape is mechanically rotated 45 degrees relative to the vertical / horizontal shape compared to the slot shape of the excitation slot 132. Having a structure formed in a posture, it can be formed similarly to a rhombus shape as a whole. This structure may be regarded as a structure in which one radiation slot is formed by the combination of the excitation slot 132 and the polarization slot 142.
이와 같이, 종래 도파관 슬롯 어레이 안테나를 수직/수평 편파로 동작시키기 위해서는 보조 방사판(14)이 사용되며, 이때 보조 방사판(14)의 편파슬롯(142)은 여기슬롯(132)에서 방사되는 신호의 편파면을 45도 회전시키기 위해 여기슬롯(132)에 비해 45도 회전된 직사각형 형상을 가질 수 있다. 이러한 구조에 의해, 수평/수직면의 총 길이에 의해 사이드 로브 성분이 상당히 억압되는 장점이 있다. As such, the auxiliary radiation plate 14 is used to operate the conventional waveguide slot array antenna with vertical / horizontal polarization, and the polarization slot 142 of the auxiliary radiation plate 14 is a signal radiated from the excitation slot 132. It may have a rectangular shape rotated 45 degrees relative to the excitation slot 132 to rotate the polarization plane of 45 degrees. This structure has the advantage that the side lobe component is significantly suppressed by the total length of the horizontal and vertical surfaces.
그런데, 보조 방사판(14)에 형성되는 직사각형 형상의 편파슬롯(142)이 마름모 형태와 유사한 형상을 가지도록 수직/수평 대비 45도 회전된 모양으로 형성됨에 따라, 수직/수평면에서의 편파슬롯(142) 사이의 배열 간격이 동작주파수의 파장을 고려할 경우에 요구되는 적절한 거리 기준을 만족하지 못할 경우가 발생한다. 즉, 도 1a에서 ‘a’ 간격으로 표시한 바와 같이, 특히, 서로 대각선상에 위치한 편파슬롯(142)들 간의 거리가 멀어지게 되는 경우가 발생한다. 이러한 구조는 그레이팅 로브(grating lobe)를 발생시킬 수 있다. However, as the rectangular polarization slot 142 formed in the auxiliary radiating plate 14 is formed in a shape rotated 45 degrees from the vertical / horizontal plane to have a shape similar to a rhombus shape, the polarization slot in the vertical / horizontal plane ( The spacing between arrays 142 does not meet the appropriate distance criteria required when considering the wavelength of the operating frequency. That is, as indicated by the interval 'a' in FIG. 1A, in particular, a distance between the polarization slots 142 positioned diagonally from each other increases. Such a structure can generate a grating lobe.
보다 상세히 설명하면, 배열 안테나에서 각 배열 간 거리가 한 파장을 넘어가면 각 방사슬롯에서의 방사된 신호의 위상이 동일해지는 일정 방사각도가 발생한다. 이때 발생하는 로브(lobe)를 그레이팅 로브라고 하며 일종의 메인 로브이다. 그레이팅 로브는 배열 안테나에서의 배열 소자의 위상에 의하여 발생되며, 그 위상은 소자간 거리에 지배를 받는다. In more detail, when the distance between the arrays in the array antenna exceeds one wavelength, a constant radiation angle at which the phase of the emitted signal in each radiation slot is the same is generated. The lobe that occurs at this time is called a grating lobe and is a kind of main lobe. The grating lobe is generated by the phase of the array element in the array antenna, whose phase is governed by the distance between the elements.
도 1b는 예를 들어, 도 1a에서 서로 대각선상에 위치한(거리: d) 두 편파슬롯의 위치(P1, P2)에서 메인 로브와 그레이팅 로브의 발생 상태를 나타내고 있다. 도 1b를 참조하면, 메인 로브와 그로부터 θ만큼 회전각도에서 두 경로의 위상의 차이가 한 파장(λ)일 때 그레이팅 로브가 발생한다. 발생한 각도는 아래 식으로 간단히 나타낼 수 있다. FIG. 1B shows the generation state of the main lobe and the grating lobe at positions P1 and P2 of two polarization slots diagonally positioned (distance d) in FIG. 1A, for example. Referring to FIG. 1B, a grating lobe occurs when the difference between the main lobe and the phase of the two paths at a rotation angle by θ therefrom is one wavelength λ. The generated angle can be simply expressed by the following equation.
이러한, 그레이팅 로브로 인하여 해당 국가에서 제한하고 있는 RPE(Radiation Pattern envelope)규격을 만족하지 못하게 된다. 따라서, 이러한 그레이팅 로브를 억제할 방안이 요구된다. Due to the grating lobe, the grating lobe does not satisfy the limitation of the Radiation Pattern Envelope (RPE) standard. Therefore, there is a need for a way to suppress such grating lobes.
또한, 이외에도 여기슬롯의 배열 간격을 좁혀서 동일한 안테나 면적에 다수의 여기슬롯을 배치시키므로 그레이팅 로브를 억제하는 방안을 고려할 여지도있으나 기존의 구조에서는 분배판 및 주 방사판에서 신호를 분배하는 캐비티 구조에 따라 여기슬롯이 2의 거듭제곱으로 배열수가 증가하므로 여기슬롯의 배치 설계에 있어서 제한점이 있다.In addition, since the excitation slots are arranged to have a large number of excitation slots arranged in the same antenna area, it is possible to consider a method of suppressing the grating lobe, but in the conventional structure, depending on the cavity structure in which signals are distributed in the distribution plate and the main radiating plate. Since the number of excitation slots is increased by a power of two, there are limitations in the layout design of the excitation slots.
본 발명은 상기와 같은 문제점을 해결하기 위하여 제안된 것으로, 그레이팅 로브를 보다 효과적으로 억제하면서, 편파를 발생시킬 수 있도록 하기 위한 도파관 슬롯 어레이 안테나를 제공함에 있다. The present invention has been proposed to solve the above problems, and to provide a waveguide slot array antenna for generating a polarization while suppressing the grating lobe more effectively.
본 발명의 다른 목적은 슬롯 배열의 설계 자유도를 높일 수 있어서 전체적인 안테나 구조를 보다 자유롭게 구현할 수 있도록 하기 위한 도파관 슬롯 어레이 안테나를 제공함에 있다. Another object of the present invention is to provide a waveguide slot array antenna for increasing the degree of freedom in designing a slot array so that the overall antenna structure can be more freely implemented.
상기한 목적을 달성하기 위하여 본 발명의 일 특징에 따르면 주 방사판에서 동작주파수에 대응되는 신호를 방사하는 여기(excitation) 슬롯 배열을 갖는 도파관 슬롯 어레이 안테나에 있어서; 상기 주 방사판 상에 설치되며, 상기 주 방사판의 여기슬롯 배열에서 방사되는 신호의 편파면을 회전시키는 제1보조 방사판과; 상기 제1보조 방사판 상에 설치되며, 상기 제1보조 방사판에서 편파면이 회전된 신호를 분배하여 방사하는 제2보조 방사판을 포함함을 특징으로 한다. According to an aspect of the present invention to achieve the above object, a waveguide slot array antenna having an excitation slot array for emitting a signal corresponding to an operating frequency in the main radiating plate; A first auxiliary radiating plate installed on the main radiating plate, the first auxiliary radiating plate rotating a polarization plane of a signal radiated in an excitation slot arrangement of the main radiating plate; It is installed on the first auxiliary radiating plate, characterized in that it comprises a second auxiliary radiating plate for distributing and radiating a signal whose polarization surface is rotated in the first auxiliary radiating plate.
상기 제1보조 방사판은, 상기 주 방사판의 상기 여기슬롯 배열과 대응되는 구조로 형성되는 제1편파슬롯의 배열이 형성되며; 상기 제1편파슬롯은 대응되는 여기슬롯에서 방사되는 신호의 편파면을 회전시키는 구조를 가질 수 있다. The first auxiliary radiating plate is formed with an array of first polarization slots formed in a structure corresponding to the excitation slot arrangement of the main radiating plate; The first polarization slot may have a structure for rotating the polarization plane of the signal radiated from the corresponding excitation slot.
상기 제2보조 방사판은, 상기 제1보조 방사판의 제1편파슬롯별로 각각 복수개 대응되게 형성된 제2편파슬롯의 배열을 가지며; 상기 제1보조 방사판의 제1편파슬롯별로 각각 방사되는 신호를 각각 대응되는 복수개의 상기 제2편파슬롯으로 분배하는 분배 구조가 형성될 수 있다. The second auxiliary radiating plate has an arrangement of a plurality of second polarization slots corresponding to each of the first polarization slots of the first auxiliary radiating plate; A distribution structure may be formed for distributing signals radiated for each of the first polarization slots of the first auxiliary radiating plate to a plurality of corresponding second polarization slots.
상기에서, 입력 신호 제공받기 위한 도파관의 적어도 일부를 형성하는 급전판과; 상기 급전판과 결합되어 상기 입력 신호를 다수의 커플링 슬롯으로 분배하기 위한 분배 도파관 구조를 갖는 분배판을 더 포함하고, 상기 주 방사판은 상기 분배판 상에 설치되며, 상기 분배판의 각 커플링 슬롯을 통해 입력된 신호를 동일 비율로 분배하고 분배한 신호를 각각 상기 여기슬롯 배열을 통해 여기시키기 위한 다수의 캐비티 구조를 가질 수 있다. A feed plate forming at least a portion of the waveguide for receiving an input signal; And a distribution plate having a distribution waveguide structure coupled to the feeder plate for distributing the input signal to a plurality of coupling slots, wherein the main radiating plate is installed on the distribution plate, each couple of distribution plates. A plurality of cavity structures may be provided for distributing the signals input through the ring slots at the same ratio and for exciting the divided signals through the excitation slot arrangement.
본 발명의 다른 특징에 따르면, 도파관 슬롯 어레이 안테나에 있어서; 입력 신호를 다수의 커플링 슬롯으로 분배하기 위한 분배 도파관 구조를 갖는 분배판과; 상기 분배판 상에 설치되며, 상기 분배판의 상기 다수의 커플링 슬롯을 통해 입력된 신호를 동일 비율로 분배하고 분배한 신호를 각각 다수의 여기슬롯 배열을 통해 여기시키기 위해 상기 다수의 커플링 슬롯 당 대응되게 구성되는 다수의 캐비티 구조를 가지는 방사판을 포함하며; 상기 다수의 캐비티 구조는 각각, 상기 분배판의 대응되는 커플링 슬롯으로 제공된 신호를 4 부분으로 분배하기 위한 4개의 영역으로 구분되게 설계되며, 상기 4개의 영역 각각에 복수개의 여기슬롯이 형성됨을 특징으로 한다. According to another aspect of the invention, a waveguide slot array antenna; A distribution plate having a distribution waveguide structure for distributing an input signal to the plurality of coupling slots; A plurality of coupling slots installed on the distribution plate for distributing the signals input through the plurality of coupling slots of the distribution plate at the same rate and for exciting the distributed signals through a plurality of excitation slot arrangements, respectively. A radiation plate having a plurality of cavity structures configured correspondingly thereto; Each of the plurality of cavity structures is designed to be divided into four areas for distributing signals provided to corresponding coupling slots of the distribution plate into four parts, and a plurality of excitation slots are formed in each of the four areas. It is done.
상기한 바와 같이, 본 발명의 일부 실시예들에 따른 도파관 슬롯 어레이 안테나는 그레이팅 로브를 보다 효과적으로 억제하면서, 편파를 발생시킬 수 있도록 하며, 그에 따라 인접 고정형 통신 장치에서 인접 장비에 영향을 줄일 수 있다. As described above, the waveguide slot array antenna according to some embodiments of the present invention can generate a polarization while suppressing the grating lobe more effectively, thereby reducing the influence on the adjacent equipment in the adjacent fixed communication device. .
또한, 본 발명의 일부 실시예들에 따른 도파관 슬롯 어레이 안테나는 슬롯 배열의 설계 자유도를 높일 수 있어서 전체적인 안테나 구조를 보다 자유롭게 구현할 수 있다. 이에 따라서 불필요한 안테나 크기의 증가를 막을 수 있고, 적정 배열 수준을 유지하여 가공 복잡성을 완화하여 시간 비용의 손실을 줄일 수 있다.In addition, the waveguide slot array antenna according to some embodiments of the present invention can increase the degree of freedom in designing the slot array, so that the overall antenna structure can be more freely implemented. As a result, unnecessary antenna size increase can be prevented, and the proper alignment level can be maintained to reduce the processing complexity, thereby reducing the cost of time.
도 1a는 종래의 일 예시 도파관 슬롯 어레이 안테나의 각 층별로 일부 절단된 사시도 1A is a partially cut away perspective view of each layer of a conventional exemplary waveguide slot array antenna
도 1b는 도 1a의 도파관 슬롯 어레이 안테나에서 그레이팅 로브 발생 상태를 나타낸 예시도 FIG. 1B is an exemplary view showing a grating lobe generation state in the waveguide slot array antenna of FIG. 1A
도 2는 본 발명의 제1 실시예에 따른 도파관 슬롯 어레이 안테나의 각 층별로 일부 절단된 사시도 2 is a partially cut perspective view of each layer of the waveguide slot array antenna according to the first embodiment of the present invention.
도 3은 도 2 중 제2보조 방사판의 일측 사시도 3 is a perspective view of one side of the second auxiliary radiating plate of FIG.
도 4는 도 2 중 제2보조 방사판의 타측 사시도 4 is another perspective view of the second auxiliary radiating plate of FIG. 2;
도 5는 도 2 중 제2보조 방사판의 제2편파슬롯 및 제1보조 방사판의 제1편파슬롯의 연결 관계를 나타낸 사시도 FIG. 5 is a perspective view illustrating a connection relationship between a second polarization slot of a second auxiliary radiation plate and a first polarization slot of a first auxiliary radiation plate in FIG. 2.
도 6은 도 2 중 제2보조 방사판의 제2편파슬롯 및 제1보조 방사판의 제1편파슬롯의 연결 관계를 나타낸 측면 구조도 FIG. 6 is a side structure diagram illustrating a connection relationship between a second polarization slot of a second auxiliary radiation plate and a first polarization slot of a first auxiliary radiation plate in FIG. 2; FIG.
도 7은 도 2 중 제2보조 방사판의 제2편파슬롯 및 제1보조 방사판의 제1편파슬롯의 변형 구조에 따른 연결 관계를 나타낸 측면 구조도 FIG. 7 is a side view illustrating a connection relationship according to a modified structure of a second polarization slot of a second auxiliary radiating plate and a first polarization slot of a first auxiliary radiating plate in FIG.
도 8은 도 2 중 제1보조 방사판의 일측 사시도 FIG. 8 is a perspective view of one side of the first auxiliary radiating plate of FIG. 2; FIG.
도 9는 도 2 중 방사판의 일측 방향의 사시도 9 is a perspective view of one side direction of the radiating plate of FIG.
도 10은 도 2 중 방사판의 타측 방향의 사시도 10 is a perspective view of the other side of the radiation plate in FIG.
도 11은 도 2 중 분배판의 일측 방향의 사시도 FIG. 11 is a perspective view of one side direction of the distribution plate of FIG. 2; FIG.
도 12는 도 2 중 분배판의 타측 방향의 사시도 12 is a perspective view of the other side of the distribution plate in FIG.
도 13은 도 2 중 급전판의 평면도 FIG. 13 is a plan view of the feeder plate of FIG. 2.
도 14는 본 발명의 제1 실시예에 따른 도파관 슬롯 어레이 안테나의 내부 신호 도파 경로의 구조도 14 is a structural diagram of an internal signal waveguide path of the waveguide slot array antenna according to the first embodiment of the present invention.
도 15는 도 14의 도파관 슬롯 어레이 안테나의 그레이팅 로브 특성을 나타낸 그래프 15 is a graph illustrating grating lobe characteristics of the waveguide slot array antenna of FIG. 14.
도 16은 도 14의 도파관 슬롯 어레이 안테나의 교차편파 특성을 나타낸 그래프 16 is a graph illustrating cross polarization characteristics of the waveguide slot array antenna of FIG. 14.
도 17은 본 발명의 실시예들과 비교하기 위한 도파관 슬롯 어레이 안테나의 주요부 사시도 17 is a perspective view of an essential part of a waveguide slot array antenna for comparison with embodiments of the present invention.
도 18은 도 17의 도파관 슬롯 어레이 안테나의 내부 신호 도파 경로의 구조도 18 is a structural diagram of an internal signal waveguide path of the waveguide slot array antenna of FIG. 17.
도 19는 본 발명의 제2 실시예에 따른 도파관 슬롯 어레이 안테나의 주요부 사시도 19 is a perspective view of an essential part of a waveguide slot array antenna according to a second embodiment of the present invention.
도 20은 도 19의 도파관 슬롯 어레이 안테나의 내부 신호 도파 경로의 구조도 20 is a structural diagram of an internal signal waveguide path of the waveguide slot array antenna of FIG.
도 21은 본 발명의 제3 실시예에 따른 도파관 슬롯 어레이 안테나의 주요부 사시도 21 is a perspective view of an essential part of a waveguide slot array antenna according to a third embodiment of the present invention.
도 22는 도 21의 도파관 슬롯 어레이 안테나의 내부 신호 도파 경로의 구조도 FIG. 22 is a structural diagram of an internal signal waveguide path of the waveguide slot array antenna of FIG. 21.
도 23은 본 발명의 제4 실시예에 따른 도파관 슬롯 어레이 안테나의 주요부의 일측 시점의 분리 사시도 Figure 23 is an exploded perspective view of one side view of the main part of the waveguide slot array antenna according to the fourth embodiment of the present invention.
도 24는 도 23의 도파관 슬롯 어레이 안테나의 타측 시점의 분리 사시도 24 is an exploded perspective view of the other side of the waveguide slot array antenna of FIG. 23.
도 25는 도 23 중 방사판의 일측 시점의 사시도 FIG. 25 is a perspective view of one side view of the radiating plate of FIG. 23; FIG.
도 26은 도 23 중 방사판의 타측 시점의 사시도 26 is a perspective view of the other side of the radiation plate in FIG.
도 27은 도 23 중 분배판의 일측 시점의 사시도 FIG. 27 is a perspective view of one side view of the distribution plate of FIG. 23; FIG.
도 28은 도 23 중 분배판의 타측 시점의 사시도 28 is a perspective view of the other side of the distribution plate in FIG.
도 29는 본 발명의 제5 실시예에 따른 도파관 슬롯 어레이 안테나의 주요부 사시도 29 is a perspective view of an essential part of a waveguide slot array antenna according to a fifth embodiment of the present invention.
도 30은 본 발명의 제6 실시예에 따른 도파관 슬롯 어레이 안테나의 주요부 사시도 30 is a perspective view of an essential part of a waveguide slot array antenna according to a sixth embodiment of the present invention;
이하 본 발명에 따른 바람직한 실시예를 첨부한 도면을 참조하여 상세히 설명한다. 하기 설명에서는 구체적인 구성 소자 등과 같은 특정 사항들이 나타나고 있는데 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐 이러한 특정 사항들이 본 발명의 범위 내에서 소정의 변형이나 혹은 변경이 이루어질 수 있음은 이 기술분야에서 통상의 지식을 가진 자에게는 자명하다 할 것이다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the following description, specific details such as specific components are shown, which are provided to help a more general understanding of the present invention, and it is understood that these specific details may be changed or changed within the scope of the present invention. It is self-evident to those of ordinary knowledge in Esau.
도 2는 본 발명의 제1 실시예에 따른 도파관 슬롯 어레이 안테나의 각 층별로 일부 절단된 사시도로서, 적층형 다중 구조를 갖는 도파관 슬롯 어레이 안테나 구조를 개시한다. 도 2를 참조하면, 본 발명의 제1 실시예에 따른 도파관 슬롯 어레이 안테나는 종래와 유사하게, 입력 급전슬롯(112)이 형성된 급전판(11)과; 급전판(11) 상에 설치되며, 분배부와 커플링 슬롯(122)이 형성된 분배판(12)과; 분배판(12) 상에 설치되며, 캐비티 구조와 여기(excitation) 슬롯(132)(또는 방사슬롯)이 형성된 주 방사판(13)을 기본적으로 구비할 수 있다. 또한, 이와 더불어, 본 발명의 특징에 따라, 주 방사판(13) 상에 설치되며, 편파면이 45도 기울어진 편파를 발생하기 위한 제1편파슬롯(142)이 형성된 제1보조 방사판(14)과; 및 제1보조 방사판(14) 상에 설치되며, 제1보조 방사판(14)에서 발생된 편파를 분배하여 방사하기 위한 제2편파슬롯(152)이 형성된 제2보조 방사판(15)을 구비한다. 2 is a perspective view partially cut in each layer of the waveguide slot array antenna according to the first embodiment of the present invention, and discloses a waveguide slot array antenna structure having a stacked multi-layer structure. Referring to FIG. 2, the waveguide slot array antenna according to the first embodiment of the present invention may include a feed plate 11 having an input feed slot 112, similar to the conventional art; A distribution plate 12 installed on the power feeding plate 11 and having a distribution portion and a coupling slot 122; The main radiating plate 13 may be basically provided on the distribution plate 12 and provided with a cavity structure and an excitation slot 132 (or a spinning slot). In addition, according to the features of the present invention, the first auxiliary radiating plate (installed on the main radiating plate 13, the first auxiliary radiating plate (142) having a first polarization slot 142 for generating a polarization inclined 45 degrees polarization plane ( 14); And a second auxiliary radiating plate 15 provided on the first auxiliary radiating plate 14 and having a second polarization slot 152 for distributing and radiating the polarization generated by the first auxiliary radiating plate 14. Equipped.
또한, 종래와 마찬가지로, 급전판(11)의 급전슬롯(112)으로부터 신호가 입력되면, 이는 분배판(12)을 통하여 동일한 비율로 분배되며 각각 분배된 신호는 커플링 슬롯(122)들을 통해 주 방사판(13)에 형성된 각 캐비티로 전달된다. 주 방사판(13)의 캐비티로 전달된 신호는 각 캐비티 별로 예를 들어, 각각 4개씩 형성되는 여기슬롯(132)들을 통해 예를 들어, 균등한 비율로 분배되어 방사된다. 이러한 여기슬롯(132)들은 동작주파수에 따라 서로간에 미리 설정된 간격 및 배치를 가지도록 배열된다. In addition, as in the prior art, when a signal is input from the feed slot 112 of the feed plate 11, it is distributed at the same rate through the distribution plate 12, and each distributed signal is mainly transmitted through the coupling slots 122. It is delivered to each cavity formed in the radiation plate 13. The signal transmitted to the cavity of the main radiating plate 13 is distributed and radiated in an equal ratio, for example, through the excitation slots 132 formed for each of four cavities, for example. These excitation slots 132 are arranged to have a predetermined interval and arrangement between each other according to the operating frequency.
상기 주 방사판(13) 상에 설치되는 제1보조 방사판(14)에는, 종래와 마찬가지로, 주 방사판(13)의 각각의 여기슬롯(132)과 일대일로 대응되는 구조로 제1편파슬롯(142)들이 형성된다. 제1편파슬롯(142)은 대략 (직)사각형 형상의 슬롯이 여기슬롯(132)에 비해 기구적으로 45도 회전되는 자세로 형성되는 구조를 가진다. 이러한 구조를 통해 제1편파슬롯(142)으로 전달된 신호는 편파면이 여기슬롯(132)에서 방사되는 경우와 비교하여 45도 회전되는 편파 신호가 발생된다. The first auxiliary radiating plate 14 provided on the main radiating plate 13 has a first polarization slot in a structure corresponding to one-to-one correspondence with each of the excitation slots 132 of the main radiating plate 13 as in the related art. 142 are formed. The first polarization slot 142 has a structure in which an approximately (rectangular) rectangular slot is mechanically rotated by 45 degrees relative to the excitation slot 132. The signal transmitted to the first polarization slot 142 through this structure generates a polarization signal that is rotated by 45 degrees compared to the case where the polarization plane is radiated from the excitation slot 132.
이때, 본 발명의 제1 실시예에 따라, 상기 제1보조 방사판(14) 상에 설치되는 제2보조 방사판(15)에는 제1보조 방사판(14)의 각각의 제1편파슬롯(142)별로 각각 복수개(예를 들어, 2개)씩 대응되게 형성되는 제2편파슬롯(152)들과, 제1편파슬롯(142)별로 신호를 대응되는 복수개의 제2편파슬롯(152)으로 분배하기 위한 분배 구조가 형성된다. 제1편파슬롯(142)과 복수의 제2편파슬롯(152)의 형상(및 자세)은 서로 동일할 수 있다. 이러한 구조를 통해서, 제2편파슬롯(152)들은 제1편파슬롯(142)에서 발생된 편파는 제2편파슬롯(152)을 통해 분배되어 방사된다. In this case, according to the first exemplary embodiment of the present invention, each of the first polarization slots of the first auxiliary radiation plate 14 may be provided in the second auxiliary radiation plate 15 installed on the first auxiliary radiation plate 14. Each of the second polarization slots 152 formed to correspond to the plurality of second polarization slots 152 and the plurality of second polarization slots 152 corresponding to each of the first polarization slots 142. A dispensing structure for dispensing is formed. The shape (and posture) of the first polarization slot 142 and the plurality of second polarization slots 152 may be the same. Through this structure, the second polarization slots 152 are distributed and radiated through the second polarization slot 152 generated in the first polarization slot 142.
상기 제1보조 방사판(14) 및 제2보조 방사판(15)은 전체적으로, 주 방사판(13)의 여기슬롯(132)으로부터 여기된 신호를 편파면이 45도 기울어지게 회전시키는 구조와, 전계면 혹은 자계면 신호 분배구조를 이용한 확장된 슬롯 배열 구조를 추가로 형성하는 것임을 알 수 있다. The first auxiliary radiating plate 14 and the second auxiliary radiating plate 15 generally have a structure for rotating the signal excited from the excitation slot 132 of the main radiating plate 13 so that the polarization plane is inclined at 45 degrees. It can be seen that the additional slot array structure using the electric field or the magnetic field signal distribution structure is additionally formed.
도 3은 제2보조 방사판(15)의 상측(예를 들어, 신호 방사 방향을 기준으로 전방측) 사시도이며, 도 4는 제2보조 방사판(15)의 하측(예를 들어, 신호 방사 방향을 기준으로 후방측) 사시도이고, 도 5 및 도 6은 제2보조 방사판(15)의 제2편파슬롯(152) 및 제1보조 방사판(14)의 제1편파슬롯(142)의 연결 관계를 나타낸 사시도 및 측면도이다. 도 3 내지 도 6을 참조하여, 제2보조 방사판(15) 및 제2편파슬롯(152)의 구성 및 동작을 보다 상세히 살펴보면, 주 방사판(13)의 여기슬롯(132)에서 전달된 신호의 전계는 제1보조 방사판(14)의 제1편파슬롯(142)에서 45도 회전 후 고정되어 상기 제2보조 방사판(15)의 제2편파슬롯(152) 측으로 전달된다. 3 is a perspective view of an upper side of the second auxiliary radiating plate 15 (eg, the front side based on the signal emission direction), and FIG. 4 is a lower side of the second auxiliary radiating plate 15 (eg, signal radiation). 5 and 6 are views of the second polarization slot 152 of the second auxiliary radiating plate 15 and the first polarization slot 142 of the first auxiliary radiating plate 14. A perspective view and a side view showing a connection relationship. 3 to 6, the configuration and operation of the second auxiliary radiating plate 15 and the second polarization slot 152 will be described in more detail. The signal transmitted from the excitation slot 132 of the main radiating plate 13 will be described. The electric field of is fixed after 45 degrees rotation in the first polarization slot 142 of the first auxiliary radiating plate 14 is transmitted to the second polarization slot 152 side of the second auxiliary radiating plate 15.
이때, 제2보조 방사판(15)으로 전달된 신호는 제2편파슬롯(152)들의 하측에 형성된 분배구조를 통하여 분배가 되어 각각 복수의 제2편파슬롯(152)으로 제공된다. 이러한 분배구조는 전계면에 수직 또는 수평방향으로 분기되는 분배구조를 가질 수 있다. 상기 제2편파슬롯(152)으로 분배되어 제공된 신호는 공간으로 방사되며, 전체적인 안테나의 방사패턴으로 표현될 수 있다. At this time, the signal transmitted to the second auxiliary radiating plate 15 is distributed through a distribution structure formed under the second polarization slots 152 and is provided to the plurality of second polarization slots 152, respectively. This distribution structure may have a distribution structure that branches in the vertical or horizontal direction to the electric field plane. The signal distributed and provided to the second polarization slot 152 may be radiated into a space, and may be represented by the radiation pattern of the entire antenna.
제2보조 방사판(15)의 상측에서 볼 때, 제2편파슬롯(152)의 배열 간격은, 분기된 면에 따라서 제1보조 방사판(14)의 제1편파슬롯(152)의 배열 간격과 비교하여, 예를 들어, 절반 간격으로 배열될 수 있다. 즉, 이러한 구조에 의해, 제2보조 방사판(15)에 형성되는 제2편파슬롯(152)의 수직/수평면에서의 배열 간격이 동작주파수 대비 한 파장 이내를 충분히 만족시킬 수 있게 되며, 그레이팅 로브가 충분히 억제된다. When viewed from the upper side of the second auxiliary radiating plate 15, the arrangement interval of the second polarization slots 152 is the arrangement interval of the first polarization slots 152 of the first auxiliary radiating plate 14 according to the branched surface. In comparison, for example, they may be arranged at half intervals. That is, by this structure, the arrangement interval in the vertical / horizontal plane of the second polarization slot 152 formed in the second auxiliary radiating plate 15 can satisfactorily satisfy within one wavelength of the operating frequency, and the grating lobe Is sufficiently suppressed.
도 7은 도 2 중 제2보조 방사판(15)의 제2편파슬롯(152) 및 제1보조 방사판(14)의 제1편파슬롯(142)의 변형 구조에 개시하고 있다. 도 7에 도시된 변형 구조를 살펴보면, 제2보조 방사판(15)에는 제2편파슬롯(152-1)이 마찬가지로 형성되나, 제2편파슬롯(152)의 하측에 분배 구조가 형성되지 않고, 이러한 분배 구조는 제1보조 방사판(14)의 제1편파슬롯(142-1)의 상측에 형성된다. 즉, 도7에 도시된 변형 구조에서는, 제2보조 방사판(15)에는 제2편파슬롯(152-1)만 형성되고, 제1보조 방사판(14)은 제1편파슬롯(142-1) 및 이의 상측에 형성되는 분배 구조를 가진다. FIG. 7 illustrates a modified structure of the second polarization slot 152 of the second auxiliary radiating plate 15 and the first polarization slot 142 of the first auxiliary radiating plate 14 in FIG. 2. Referring to the modified structure shown in FIG. 7, the second auxiliary radiating plate 15 is similarly formed with the second polarization slot 152-1, but the distribution structure is not formed under the second polarization slot 152. This distribution structure is formed on the upper side of the first polarization slot 142-1 of the first auxiliary radiating plate 14. That is, in the modified structure shown in FIG. 7, only the second polarization slot 152-1 is formed in the second auxiliary radiation plate 15, and the first auxiliary radiation plate 14 is the first polarization slot 142-1. ) And a distribution structure formed on the upper side thereof.
제1보조 방사판(14) 및 제2보조 방사판(15)은 서로 결합될 경우에, 제1편파슬롯(142-1), 분배 구조 및 제2편파슬롯(152-1)에 의해 형성되는 내부 신호가 전달되는 도파 경로의 형상은 상기 도2 내지 도 6에 도시된 구조에 의해 형성되는 도파 경로의 형상과 실질적으로 동일하며, 신호의 전달 특성은 동일하다. When the first auxiliary radiating plate 14 and the second auxiliary radiating plate 15 are coupled to each other, the first auxiliary radiating plate 14 and the second auxiliary radiating plate 15 are formed by the first polarization slot 142-1, the distribution structure, and the second polarization slot 152-1. The shape of the waveguide path through which the internal signal is transmitted is substantially the same as that of the waveguide path formed by the structure shown in FIGS. 2 to 6, and the signal transmission characteristics are the same.
도 8은 도 2 중 제1보조 방사판(14)의 일측 사시도이며, 도 9는 도 2 중 방사판(13)의 상측(예를 들어, 신호 방사 방향을 기준으로 전방측) 사시도이며, 도 10은 도 2 중 방사판(13)의 하측(예를 들어, 신호 방사 방향을 기준으로 후방측) 사시도이며, 도 11 및 도 12는 도 2 중 분배판(12)의 상측 및 일측 사시도이며, 도 13은 도 2 중 급전판(11)의 평편도이다. 도 8 내지 도 12를 참조하여, 도파관 슬롯 어레이 안테나의 기본적인 구성 및 동작을 보다 상세히 설명하기로 한다. 도 8 내지 도 12는 상측에 하측으로 각 판들이 설치된 순서에 따라 도시하였으나, 하기 설명에서는 신호 입력 및 도파 경로를 기준으로 설명하기로 한다. FIG. 8 is a perspective view of one side of the first auxiliary radiating plate 14 of FIG. 2, and FIG. 9 is a perspective view of an upper side of the radiating plate 13 of FIG. 2 (eg, a front side based on a signal emission direction). 10 is a perspective view of the lower side of the radiation plate 13 in FIG. 2 (for example, a rear side based on a signal emission direction), and FIGS. 11 and 12 are perspective views of the upper side and one side of the distribution plate 12 in FIG. FIG. 13 is a plan view of the feed plate 11 in FIG. 2. 8 to 12, the basic configuration and operation of the waveguide slot array antenna will be described in more detail. 8 to 12 are shown in the order in which the plates are installed on the lower side, the following description will be described based on the signal input and the waveguide path.
먼저, 입력 커넥터(미도시) 등을 통해 입력된 신호를 안내하기 위한 도파관(미도시)이 급전판(11)의 바닥면을 기준으로 일측에 적절한 형태로 형성될 수 있다. 상기 급전판(11)의 바닥면은 예를 들어, 수 밀리미터 이상에서 십수 밀리미터 이하로 형성될 수 있다. 이러한 급전판(11)의 도파관의 말단에는 급전슬롯(112)이 형성되는데, 급전슬롯(112)은 대응되는 분배판(12)에 형성되는 분배 도파관의 크기에 따라 정합을 이루어주기 위하여 다단으로 구성될 수도 있다. 급전판(11) 배면은 정규화된 도파관 플렌지의 체결부분에 대응되는 홀 또는 탭이 가공될 수 있다. First, a waveguide (not shown) for guiding a signal input through an input connector (not shown) may be formed in an appropriate shape on one side based on the bottom surface of the feed plate 11. The bottom surface of the feed plate 11 may be formed, for example, from several millimeters to ten millimeters or less. The feed slot 112 is formed at the end of the waveguide of the feed plate 11, the feed slot 112 is composed of a plurality of stages to achieve matching according to the size of the distribution waveguide formed in the corresponding distribution plate 12. May be The back of the feed plate 11 may be machined holes or tabs corresponding to the fastening portion of the normalized waveguide flange.
상기 급전판(11)과 연결되는 분배판(12)은 상기 급전판(11)의 급전슬롯(112)을 통해 입력된 신호를 다수의 커플링 슬롯(122)으로 분배하기 위한 분배 도파관 구조를 가진다. 이러한 분배 도파관 구조의 최종 분기되는 가지들의 수는 2의 제곱의 수로 분배되는 구조를 가지며, 상하 좌우 대칭 구조를 가진다. 이러한 분배 도파관 구조는 전계 또는 자계 분배구조를 가질 수 있다. 또한 전계 또는 자계 분배구조는 정합특성을 고려하여 조리개(iris)와 격벽(septum) 구조를 추가로 가질 수 있다. 분배 도파관 구조에서 각 분기된 최종 가지들의 말단에는 각각 커플링 슬롯(122)이 형성된다. 이때, 커플링 슬롯(122)은 분배 도파관 구조의 최종 가지들의 말단의 도파관 구조의 중심에서 오프셋되어 일측으로 치우치게 위치하여 강한 커플링을 일으키게 한다. 상기 분배판(12)과 연결되는 주 방사판(13)은 상기 분배판(12)의 각 커플링 슬롯(122)을 통해 입력된 신호를 균등 또는 비균등한 비율로 분배하며 분배한 신호를 각각 여기슬롯(132)을 통해 여기시키기 위한 캐비티 구조를 가진다. 분배판(12)의 각 커플링 슬롯(122)은 주 방사판(13)의 각각의 대응되는 캐비티의 중앙에 위치하도록 설계된다. 각 캐비티는 예를 들어 4개의 여기슬롯(132)이 형성되도록 구성될 수 있으며, 4개의 여기슬롯(132) 각각의 공진 조건을 적절히 형성하기 위하여 캐비티의 각 면에 수직 방향으로 일정 길이의 격벽이 형성된다. The distribution plate 12 connected to the feed plate 11 has a distribution waveguide structure for distributing a signal input through the feed slot 112 of the feed plate 11 to the plurality of coupling slots 122. . The number of the last branched branches of this distribution waveguide structure has a structure distributed by the number of squares of 2, and has a vertical symmetry structure. Such a distribution waveguide structure may have an electric field or a magnetic field distribution structure. In addition, the electric field or the magnetic field distribution structure may further have an iris and septum structure in consideration of matching characteristics. Coupling slots 122 are formed at the ends of each branched final branch in the distribution waveguide structure. At this time, the coupling slot 122 is offset from the center of the waveguide structure at the ends of the final branches of the distribution waveguide structure so as to be biased to one side to cause strong coupling. The main radiating plate 13 connected to the distribution plate 12 distributes the signals input through the coupling slots 122 of the distribution plate 12 at an equal or unequal ratio and distributes the distributed signals. It has a cavity structure for exciting through the excitation slot 132. Each coupling slot 122 of the distribution plate 12 is designed to be located in the center of each corresponding cavity of the main radiating plate 13. Each cavity may be configured such that, for example, four excitation slots 132 are formed. In order to properly form a resonance condition of each of the four excitation slots 132, a partition wall having a predetermined length perpendicular to each side of the cavity may be formed. Is formed.
상기 도 8 내지 도 12와 같이, 급전판(11), 분배판(12), 주 방사판(13)이 설계될 수 있으며, 이와 대응되게 제1보조 방사판(14) 및 제2보조 방사판(15)이 설계된다. 또한, 급전판(11), 분배판(12), 주 방사판(13), 제1보조 방사판(14) 및 제2보조 방사판(15)은 설계 구조에 맞게 정렬되어 상호 결합된다. 이때 각 판들의 결합 방식은 스크류를 이용한 나사 체결 방식이나, 솔더링 방식 또는 고주파 용접 방식을 적용할 수 있다. 8 to 12, the feed plate 11, the distribution plate 12, the main radiating plate 13 can be designed, corresponding to the first auxiliary radiating plate 14 and the second auxiliary radiating plate 15 is designed. In addition, the feed plate 11, the distribution plate 12, the main spin plate 13, the first subsidiary spin plate 14 and the second subsidiary spin plate 15 are aligned to each other and designed to be coupled to each other. At this time, the coupling method of each plate may be a screw fastening method, a soldering method or a high frequency welding method using a screw.
도 14는 본 발명의 제1 실시예에 따른 도파관 슬롯 어레이 안테나의 내부 신호 도파 경로(중 일부)의 구조도로서, 본 발명의 일부 실시예에 따른 구조는 도 14의 (b)에 도시하였으며, 도 14의 (a)에는 비교를 위해, 도 1에 도시된 바와 같은, 종래의 도파관 슬롯 어레이 안테나에 해당하는 내부 신호 도파 경로 (또는 그 일부)를 나타내었다. 도 15는 도 14의 도파관 슬롯 어레이 안테나의 그레이팅 로브 특성을 나타낸 그래프이며, 도 16은 도 14의 도파관 슬롯 어레이 안테나의 교차편파 특성을 나타낸 그래프이다. 도 16에서, 본 발명의 제1 실시예에 따른 특성 그래프는 (b)에 도시하였으며, 도 16의 (a)에는 비교를 위해, 도 1에 도시된 바와 같은, 종래의 도파관 슬롯 어레이 안테나에 해당하는 특성 그래프를 도시하였다. FIG. 14 is a structural diagram of a part of an internal signal waveguide path of a waveguide slot array antenna according to a first embodiment of the present invention. The structure according to some embodiments of the present invention is illustrated in FIG. In Fig. 14A, for comparison, an internal signal waveguide path (or part thereof) corresponding to a conventional waveguide slot array antenna, as shown in Fig. 1, is shown. FIG. 15 is a graph illustrating grating lobe characteristics of the waveguide slot array antenna of FIG. 14, and FIG. 16 is a graph illustrating cross polarization characteristics of the waveguide slot array antenna of FIG. 14. In FIG. 16, a characteristic graph according to the first embodiment of the present invention is shown in (b), and FIG. 16 (a) corresponds to a conventional waveguide slot array antenna as shown in FIG. 1 for comparison. A characteristic graph is shown.
도 14 내지 도 16을 참조하면, 본 발명에 따른 도파관 슬롯 어레이 안테나는 종래와 비교하여, 제2보조 방사판(15)이 추가되는 구조로 간주할 수 있으며, 물리적으로 하나의 층(판)이 더 적층되는 구조이나, 안테나의 전체적인 높이는 종래와 동일하게 구현할 수 있다. 즉, 도 14에 도시된 바와 같이, 종래의 안테나의 전체 높이 h1과 본 발명에 따른 안테나의 전체 높이 h2는 동일하게 설계할 수 있다. 이러한 설계시에도, 도 15에 도시된 바와 같이, 1차 및 2차 사이드 로브의 크기는 기존과 유사하나 본 발명에 따른 안테나의 그레이팅 로브 특성이 더 개선됨을 알 수 있다. 14 to 16, the waveguide slotted array antenna according to the present invention can be regarded as a structure in which a second auxiliary radiating plate 15 is added, compared to the conventional one, and a single layer (plate) is physically The stacked structure, but the overall height of the antenna can be implemented as in the prior art. That is, as shown in Figure 14, the total height h1 of the conventional antenna and the total height h2 of the antenna according to the present invention can be designed to be the same. Even in this design, as shown in FIG. 15, the size of the primary and secondary side lobes is similar to the conventional one, but it can be seen that the grating lobe characteristic of the antenna according to the present invention is further improved.
또한, 도파관 슬롯 어레이 안테나에서, 교차 편파의 결정 요인은 최종단의 방사 슬롯의 높이가 지배적으로 작용한다. 도 14에 도시된 바와 같이, 종래의 안테나 최종단의 방사 슬롯(제1편파슬롯)의 높이 h11에 비해, 본 발명에 따른 안테나의 최종단의 방사 슬롯(제2편파슬롯)의 높이 h21이 좀더 낮게 설계됨을 알 수 있다. 이는 본 발명에 따른 안테나의 전체 높이를 종래와 동일하게 설계함에 따른 결과인데, 도 16에 도시된 바와 같이, 그러한 설계시에도 교차 편파 특성의 열화 현상은 없음을 확인할 수 있다. 더욱이, 일반적으로 주편파와 교차 편차의 차이가 클수록 성능이 우수한 것으로 간주할 수 있는데, 도 16에서와 같이, 본 발명에 따른 안테나는 오히려 교차 편파 특성이 대폭 개선됨을 확인할 수 있다. 이와 같이, 본 발명에서는 안테나의 최종단의 방사 슬롯의 높이를 최적화되게 설계할 수 있다. In addition, in the waveguide slot array antenna, the determining factor of the cross polarization is dominantly determined by the height of the radiation slot at the end. As shown in Fig. 14, the height h21 of the radiation slot (second polarization slot) at the last stage of the antenna according to the present invention is more than the height h11 of the radiation slot (first polarization slot) at the conventional antenna end stage. It can be seen that the design is low. This is a result of designing the overall height of the antenna according to the present invention as in the prior art, as shown in Figure 16, it can be seen that there is no deterioration of the cross-polarization characteristics even in such a design. Moreover, in general, the greater the difference between the principal polarization and the cross deviation, it can be regarded as excellent performance, as shown in Figure 16, the antenna according to the present invention can be seen that the cross-polarization characteristic is significantly improved. As described above, the present invention can be designed to optimize the height of the radiation slot of the last end of the antenna.
도 17은 본 발명의 실시예들과 비교하기 위한 도파관 슬롯 어레이 안테나의 주요부 사시도이며, 도 18은 도 17의 도파관 슬롯 어레이 안테나의 내부 신호 도파 경로의 구조도이다. 도 17 및 도 18에 도시된 도파관 슬롯 어레이 안테나는 상기 도 2 등에 도시된 제1 실시예의 구조와 마찬가지로 급전판(21)과, 분배판(22) 및 방사판(23)이 순서대로 적층된 구조를 기본적으로 가질 수 있다. 또한, 도 17 및 도 18에는 도시하지 않았으나, 방사판(23) 상에는 도 2 등에 도시된 구조와 유사하게 편파 발생을 위한 보조 방사판(들)이 추가로 설치될 수도 있다. 17 is a perspective view of an essential part of a waveguide slot array antenna for comparison with embodiments of the present invention, and FIG. 18 is a structural diagram of an internal signal waveguide path of the waveguide slot array antenna of FIG. 17. The waveguide slot array antenna shown in FIGS. 17 and 18 has a structure in which the feeder plate 21, the distribution plate 22, and the radiating plate 23 are stacked in this order as in the structure of the first embodiment shown in FIG. You can basically have In addition, although not shown in FIGS. 17 and 18, auxiliary radiating plate (s) for polarization generation may be additionally installed on the radiating plate 23 similarly to the structure shown in FIG. 2.
한편, 도 2 등에 도시된 구조에서는 급전판의 급전슬롯을 통해 입력 신호가 제공되는 구조를 예로써 개시하고 있으나, 도 17 및 도 18에서는 예를 들어, 분배판(22)의 일측면에 신호 입력을 위한 개구간이 형성되는 급전 도파관(212)을 통해 입력 신호가 제공되는 구조를 도시하고 있다. 이때, 분배판(22)은 이러한 급전 도파관(212) 및 해당 급전 도파관(212)을 통해 입력된 신호를 분배하기 위한 분배 도파관 구조의 빈 영역을 형성하며, 상기 급전판(21)은 단순히 평판 형태로 구성될 수 있다. On the other hand, the structure shown in Figure 2, etc. discloses a structure in which an input signal is provided through the feed slot of the feed plate, for example, in Figure 17 and 18, for example, the signal input to one side of the distribution plate 22 It illustrates a structure in which an input signal is provided through a feed waveguide 212 in which an opening is formed for the purpose. In this case, the distribution plate 22 forms an empty area of the distribution waveguide structure for distributing the signal input through the feed waveguide 212 and the feed waveguide 212, and the feed plate 21 is simply a flat plate. It can be configured as.
상기 도 17 및 도 18에 도시된 상기한 구조에서, 급전 도파관(212)으로 신호가 입력되면, 이는 분배판(22)을 통하여 동일한 비율로 분배되며 각각 분배된 신호는 방사판(23)에 형성된 각 캐비티(230)로 전달된다. 방사판(23)의 캐비티(230)로 전달된 신호는 각 캐비티(230) 별로 예를 들어, 각각 4개씩 형성되는 여기슬롯(232)들을 통해 예를 들어, 균등한 비율로 분배되어 방사된다. 이러한 여기슬롯(232)들은 동작주파수에 따라 서로간에 미리 설정된 간격 및 배치를 가지도록 배열된다. In the above-described structure shown in FIGS. 17 and 18, when a signal is input to the feed waveguide 212, it is distributed at the same rate through the distribution plate 22, and each of the divided signals is formed on the radiating plate 23. It is delivered to each cavity 230. The signal transmitted to the cavity 230 of the radiating plate 23 is distributed and radiated in an equal ratio through, for example, the excitation slots 232 formed by four, for example, for each cavity 230. These excitation slots 232 are arranged to have a predetermined interval and arrangement between each other according to the operating frequency.
한편, 도 17 및 도 18에 도시된 바와 같이, 일반적으로 도파관 슬롯 어레이 안테나(및 이를 비롯한 여타의 평면형 안테나)에서는, 분배판(22)에서 입력신호가 2의 거듭제곱으로 예를 들어 균등하게 분배되며, 방사판(23)에서 분배되어 최종 방사되는 여기슬롯(232)을 통해 방사되는 신호가 2의 거듭제곱의 수로 분배되는 구조를 가지므로, 여기슬롯(232)은 2x2, 4x4 배열 등 2의 거듭제곱의 꼴로 배열되어진다. 예를 들어, 도 17 및 도 18에 도시된 방사판(22에서는 분배판(22)의 하나의 커플링 슬롯에서 입력되어 방사판(23)의 하나의 캐비티로 전달된 신호는 캐비티 별로 4개씩 형성되는 여기슬롯(232)을 통해 방사되도록 구성된다. 따라서, 이러한 구조는 여기슬롯(232)의 배열이 총 4x4, 8x8, 16x16 등의 배열을 가지게 됨을 알 수 있다. On the other hand, as shown in FIGS. 17 and 18, in general, in a waveguide slotted array antenna (and other planar antennas including this), the input signal at the distribution plate 22 is distributed evenly, for example, in powers of two. In addition, since the signal distributed through the excitation slot 232 that is distributed in the radiating plate 23 and finally radiated has a structure in which the power is divided by a power of 2, the excitation slot 232 is a 2x2, 4x4 array, etc. They are arranged in powers. For example, in the radiating plate 22 illustrated in FIGS. 17 and 18, four signals input from one coupling slot of the distribution plate 22 and transmitted to one cavity of the radiating plate 23 are formed per cavity. Is configured to radiate through the excitation slot 232. Accordingly, it can be seen that the structure of the excitation slot 232 has a total arrangement of 4x4, 8x8, 16x16, and the like.
이와 같이, 일반적으로 도파관 슬롯 배열 안테나에서는 신호 분배 구조가 H-정션(junction) 구조를 사용하여 대칭적이며 효율적인 급전망 구조를 구현할 수 있게 된다. 하지만 이러한 구조로 인하여 수평, 수직 빔패턴의 제한이 있으며, 이득에 대한 유연한 설계가 어려워지고, 필요이상의 부피를 가질 수 있다. 또한, 경우에 따라서 비대칭 구조의 배열 설계의 경우 이러한 H-정션 구조를 채용하기가 어려우며, 원하는 구조의 배열을 구현하기 위해서는 별도의 추가 층이 필요할 수 있어서 전체적인 두께가 두꺼워지게 되어 박형구조(low profile) 설계에 제한점을 갖는다. As described above, in the waveguide slotted array antenna, the signal distribution structure generally uses a H-junction structure to implement a symmetrical and efficient feeder network structure. However, due to this structure, there is a limitation of horizontal and vertical beam patterns, it is difficult to design a flexible gain and may have a volume more than necessary. In addition, in some cases, it is difficult to adopt the H-junction structure in the case of an asymmetrical arrangement design, and an additional layer may be required to implement the desired arrangement, resulting in a thick overall thickness. ) Has a design limitation.
또한, 상기 도 17 및 및 도 18에 도시된 방사판의 구조는, 여기슬롯의 배열 간격이 상기 도 2 등에 도시된 다른 실시예들보다 보다 좁힐 수 있어서, 경우에 따라서는, 도 2에 도시된 바와 같은 제1보조 방사판을 구비할 경우에, 그 상측에 별도의 제2보조 방사판 등을 구비하지 않고서도 그레이팅 로브가 억제될 수 있다.In addition, the structure of the radiation plate shown in Figs. 17 and 18, the interval of the arrangement of the excitation slot can be narrower than the other embodiments shown in Fig. 2, etc., in some cases, shown in Fig. In the case of providing the first auxiliary spin plate as described above, the grating lobe can be suppressed without providing a second auxiliary spin plate or the like above.
도 19는 본 발명의 제2 실시예에 따른 도파관 슬롯 어레이 안테나의 주요부 사시도이며, 도 20은 도 19의 도파관 슬롯 어레이 안테나의 내부 신호 도파 경로의 구조도로서, 여기슬롯이 최소 배열단위(예를 들어, 4x2)로 배열되는 기본 구조의 일 예를 도시하고 있다. 도 19 및 도 20을 참조하면, 본 발명의 제2 실시예에 따른 도파관 슬롯 어레이 안테나는 상기 도 17 및 도 18에 도시된 구조와 유사하게, 급전판(31)과; 급전판(31) 상에 적층되게 설치되며, 급전 도파관(312) 및 급전 도파관(312)을 통해 입력된 신호를 커플링 슬롯(미도시)을 통해 방사판(33)으로 전달하기 위한 도파관 구조를 갖는 분배판(32)과; 상기 분배판(32) 상에 적층되게 설치되며, 다수의 여기슬롯(332: 332-1, 332-2, 332-3, 332-4, 332-5, 332-6. 332-7, 332-8)이 형성되며, 상기 분배판(32)의 커플링 슬롯을 통해 입력된 신호를 분배하여 상기 여기슬롯들(332)을 통해 여기시키는 캐비티 구조(330)를 갖는 방사판(33)을 포함하여 구성된다. 또한, 도 18 및 도 19에는 도시하지 않았으나, 방사판(33) 상에는 편파 발생을 위한 보조 방사판(들)이 추가로 설치될 수도 있다. 19 is a perspective view of an essential part of a waveguide slot array antenna according to a second embodiment of the present invention, and FIG. 20 is a structural diagram of an internal signal waveguide path of the waveguide slot array antenna of FIG. 19, wherein an excitation slot is a minimum arrangement unit (for example, 4x2) shows an example of a basic structure. 19 and 20, the waveguide slot array antenna according to the second embodiment of the present invention is similar to the structure shown in Figs. 17 and 18, the feed plate 31; It is installed to be stacked on the feed plate 31, the waveguide structure for transmitting a signal input through the feed waveguide 312 and the feed waveguide 312 to the radiating plate 33 through a coupling slot (not shown) A distribution plate 32 having; It is installed to be stacked on the distribution plate 32, a plurality of excitation slots (332: 332-1, 332-2, 332-3, 332-4, 332-5, 332-6. 332-7, 332- And a radiation plate 33 having a cavity structure 330 for distributing the signal input through the coupling slot of the distribution plate 32 and exciting it through the excitation slots 332. It is composed. In addition, although not shown in FIGS. 18 and 19, the auxiliary radiation plate (s) for polarization generation may be additionally installed on the radiation plate 33.
상기 방사판(33)의 구조를 보다 상세히 살펴보면, 방사판(33)의 캐비티 구조(330)는 분배판(32)으로부터 제공된 신호를 4 부분으로 예를 들어, 균등 분배하기 위해 4개의 영역(a, b, c, d)으로 구분되게 설계되며, 이에 따라, 캐비티의 각 면에 수직 방향으로 일정 길이의 격벽들이 형성된다. 이때, 캐비티 구조(330)의 4개의 각 영역(a, b, c, d)에는, 상기 도 17 및 도 18에 도시된 구조와는 달리, 각각 2개의 여기슬롯이 형성된다. 예를 들어, 캐비티 구조(330)에서 제1영역(a)에는 제1 및 제2 여기슬롯(332-1, 332-2)이 형성되는데, 제1 및 제2 여기슬롯(332-1, 332-2)은 배열 기준 축(예를 들어, 세로 축)에 비해 그 중심이 서로 상반되게 오프셋되도록 설계된다. 이러한 여기슬롯들의 배치 구조는 각 여기슬롯들로 제공되는 신호 세기가 가능한 강하고, 균등하게 분배되도록 하기 위한 것이다. 마찬가지로, 제2영역(b)에는 제3 및 제4 여기슬롯(332-3, 332-4)이 형성되며, 제3영역(c)에는 제5 및 제6 여기슬롯(332-5, 332-6)이 형성되며, 제4영역(d)에는 제7 및 제8 여기슬롯(332-7, 332-8)이 형성된다. Looking at the structure of the radiating plate 33 in more detail, the cavity structure 330 of the radiating plate 33 has four regions (a) for equally distributing the signal provided from the distribution plate 32 into four parts, for example. , b, c, and d), and thus, partition walls of a predetermined length are formed in each direction of the cavity in a vertical direction. In this case, two excitation slots are formed in the four areas a, b, c, and d of the cavity structure 330, unlike the structures shown in FIGS. 17 and 18. For example, first and second excitation slots 332-1 and 332-2 are formed in the first region a in the cavity structure 330, and the first and second excitation slots 332-1 and 332 are formed. -2) is designed such that its centers are offset from each other relative to the array reference axis (e.g., the longitudinal axis). The arrangement of these excitation slots is to ensure that the signal strength provided to each of the excitation slots is as strong and evenly distributed as possible. Similarly, third and fourth excitation slots 332-3 and 332-4 are formed in the second region b, and fifth and sixth excitation slots 332-5 and 332-are formed in the third region c. 6) is formed, and the seventh and eighth excitation slots 332-7 and 332-8 are formed in the fourth region d.
한편, 상기 도 19 및 도 20에 도시된 구조에서, 분배판(32)은 급전 도파관(312)을 통해 입력된 신호를 실제로는 분배없이 그대로 하나의 커플링 슬롯을 통해 방사판(33)으로 전달하는 구조를 가짐을 알 수 있다. 이는, 도 19 및 도 20에 도시된 여기 슬롯 배치 구조가 설명의 편의를 위해, 예를 들어 4x2(가로x세로)의 최소 배열단위를 가진 것으로 도시한 것에 따른 것이다. 이러한 최소 배열단위 구조를 중복적으로 구성할 경우에, 상기 분배판(32)은 중복 구성되는 최소 배열단위 구조들로 입력 신호를 분배하는 구성을 가질 수 있음을 이해할 것이다. Meanwhile, in the structure shown in FIGS. 19 and 20, the distribution plate 32 transmits the signal input through the feed waveguide 312 to the radiating plate 33 through one coupling slot as it is without distribution. It can be seen that the structure having. This is because the excitation slot arrangement structure shown in Figs. 19 and 20 is shown as having a minimum arrangement unit of, for example, 4x2 (width x length) for convenience of description. It will be appreciated that in the case of constructing such a minimum arrangement unit structure redundantly, the distribution plate 32 may have a configuration of distributing the input signal in the overlapping arrangement of the minimum arrangement unit structure.
도 21은 본 발명의 제3 실시예에 따른 도파관 슬롯 어레이 안테나의 주요부 사시도이며, 도 22는 도 21의 도파관 슬롯 어레이 안테나의 내부 신호 도파 경로의 구조도로서, 여기슬롯이 최소 배열단위(예를 들어, 6x2)로 배열되는 기본 구조의 일 예를 도시하고 있다. 도 21 및 도 22를 참조하면, 본 발명의 제3 실시예에 따른 도파관 슬롯 어레이 안테나는 상기 도 19 및 도 21에 도시된 제2 실시예에 따른 구조와 유사하게, 급전판(41)과; 급전판(41) 상에 적층되게 설치되며, 급전 도파관(412) 및 급전 도파관(412)을 통해 입력된 신호를 커플링 슬롯(미도시)을 통해 방사판(43)으로 전달하기 위한 도파관 구조를 갖는 분배판(42)과; 상기 분배판(42) 상에 적층되게 설치되며, 다수의 여기슬롯(432: 432-1, 432-2, 432-3, 432-4, 432-5, 432-6. 432-7, 432-8, 432-9, 432-10, 432-11, 432-12)이 형성되며, 상기 분배판(42)의 커플링 슬롯을 통해 입력된 신호를 분배하여 상기 여기슬롯들(432)을 통해 여기시키는 캐비티 구조(430)를 갖는 방사판(43)을 포함하여 구성된다. 또한, 이외에도, 방사판(43) 상에는 편파 발생을 위한 보조 방사판(들)(미도시)이 추가로 설치될 수도 있다. FIG. 21 is a perspective view of an essential part of a waveguide slot array antenna according to a third embodiment of the present invention, and FIG. 22 is a structural diagram of an internal signal waveguide path of the waveguide slot array antenna of FIG. 21, wherein an excitation slot is a minimum arrangement unit (for example, 6x2) shows an example of a basic structure. 21 and 22, the waveguide slot array antenna according to the third embodiment of the present invention is similar to the structure according to the second embodiment shown in Figs. 19 and 21, the feed plate 41; It is installed to be stacked on the feed plate 41, a waveguide structure for transmitting a signal input through the feed waveguide 412 and the feed waveguide 412 to the radiating plate 43 through a coupling slot (not shown) A distribution plate 42 having; It is installed to be stacked on the distribution plate 42, a plurality of excitation slots (432: 432-1, 432-2, 432-3, 432-4, 432-5, 432-6, 432-7, 432- 8, 432-9, 432-10, 432-11, and 432-12 are formed, and the signal inputted through the coupling slot of the distribution plate 42 is distributed to excite through the excitation slots 432. And a radiation plate 43 having a cavity structure 430. In addition, in addition to the radiating plate 43, auxiliary radiating plate (s) (not shown) for generating a polarization may be additionally installed.
상기 방사판(43)의 구조를 보다 상세히 살펴보면, 방사판(43)의 캐비티 구조(430)는 분배판(42)으로부터 제공된 신호를 4 부분으로 예를 들어, 균등 분배하기 위해 4개의 영역(a, b, c, d)으로 구분되게 설계되며, 이에 따라, 캐비티의 각 면에 수직 방향으로 일정 길이의 격벽들이 형성된다. 이때, 캐비티 구조(430)의 4개의 각 영역(a, b, c, d)에는, 상기 도 19 및 도 20에 도시된 구조와는 달리, 각각 3개의 여기슬롯이 형성된다. 즉, 캐비티 구조(430)에서 제1영역(a)에는 제1 내지 제3 여기슬롯(432-1, 432-2, 432-3)이 형성되는데, 제1 내지 제3 여기슬롯(432-1, 432-2, 432-3)은 배열 기준 축(예를 들어, 세로 축)에 비해 그 중심이 서로 인접한 여기슬롯에 비해 상반되게 오프셋되도록 설계된다. 물론, 이러한 여기슬롯들의 배치 구조는 각 여기슬롯들로 제공되는 신호 세기가 가능한 강하고, 균등하게 분배되도록 하기 위한 것이다. 마찬가지로, 제2영역(b)에는 제4 내지 제6 여기슬롯(432-4, 432-5, 432-6)이 형성되며, 제3영역(c)에는 제7 및 제9 여기슬롯(432-7, 432-8, 432-9)이 형성되며, 제4영역(d)에는 제10 및 제12 여기슬롯(432-10, 432-11, 432-12)이 형성된다. Looking at the structure of the radiating plate 43 in more detail, the cavity structure 430 of the radiating plate 43 is divided into four regions (a) for equally distributing the signal provided from the distribution plate 42 into four parts, for example. , b, c, and d), and thus, partition walls of a predetermined length are formed in each direction of the cavity in a vertical direction. In this case, three excitation slots are formed in the four areas a, b, c, and d of the cavity structure 430, unlike the structures shown in FIGS. 19 and 20. That is, in the cavity structure 430, first to third excitation slots 432-1, 432-2, and 432-3 are formed in the first region a, and the first to third excitation slots 432-1 are formed. , 432-2, 432-3 are designed such that their centers are offset opposite to the excitation slots adjacent to one another relative to the array reference axis (e.g., the vertical axis). Of course, the arrangement of these excitation slots is such that the signal strength provided to each excitation slot is as strong and evenly distributed as possible. Similarly, fourth to sixth excitation slots 432-4, 432-5, and 432-6 are formed in the second region b, and seventh and ninth excitation slots 432- are formed in the third region c. 7, 432-8, and 432-9 are formed, and the tenth and twelfth excitation slots 432-10, 432-11, and 432-12 are formed in the fourth region d.
상기 도 19 내지 도 22에 도시된 바와 같이, 본 발명의 제2 및 제3 실시예에 따른 도파관 슬롯 어레이 안테나에서는, 일반적인 방식인 2의 거듭제곱 꼴로 배열되는 구조에 비해 방사판의 여기슬롯의 배열 구조 설계에 보다 유연성을 제공할 수 있게 된다. 또한, 이에 따라, 전체적인 안테나 구조가 임의의 크기에서 최대 디렉티비티를 구현할 수 있으며, 전체적으로 박형 구조를 유지할 수 있다. 특히, 이러한 제2 및 제3 실시예에 따른 구조를 적절히 병행하여 적용함으로써, 다양한 배열 구조를 갖는 도파관 슬롯 어레이 안테나를 손쉽게 구현할 수 있다. As shown in FIG. 19 to FIG. 22, in the waveguide slot array antennas according to the second and third embodiments of the present invention, the excitation slots of the radiating plate are arranged in comparison to the structure of a power of two, which is a general scheme. This will provide more flexibility in structural design. In addition, according to this, the overall antenna structure can implement the maximum directory at any size, and the overall thin structure can be maintained. In particular, by appropriately applying the structures according to the second and third embodiments in parallel, it is possible to easily implement a waveguide slot array antenna having a variety of arrangement structure.
도 23은 본 발명의 제4 실시예에 따른 도파관 슬롯 어레이 안테나의 주요부의 일측(예를 들어, 상측) 시점의 분리 사시도이며, 도 24는 도 23의 도파관 슬롯 어레이 안테나의 타측(예를 들어, 하측) 시점의 분리 사시도이고, 도 25 및 도 26은 도 23 중 방사판(53)의 일측 및 타측 시점의 사시도이며, 도 27 및 도 28은 도 23 중 분배판(52)의 일측 및 타측 시점 사시도로서, 여기슬롯이 예를 들어, 10x4(세로x가로)의 배열 구조를 갖는 것이 도시되고 있다. FIG. 23 is an exploded perspective view of one side (eg, upper side) view of a main part of the waveguide slot array antenna according to the fourth embodiment of the present invention, and FIG. 24 is the other side (eg, of the waveguide slot array antenna of FIG. 23). 25 and 26 are perspective views of one side and the other side of the radiating plate 53 of FIG. 23, and FIGS. 27 and 28 are one side and the other side views of the distribution plate 52 of FIG. 23. As a perspective view, it is shown that the excitation slot has an arrangement structure of, for example, 10x4 (vertical x horizontal).
도 23 내지 도 28을 참조하면, 본 발명의 제4 실시예에 따른 도파관 슬롯 어레이 안테나는 다른 실시예들의 구조와 유사하게, 급전판(51)과; 급전판(51) 상에 적층되게 설치되며, 급전 도파관(512) 및 급전 도파관(512)을 통해 입력된 신호를 예를 들어, 2의 제곱근의 수로 설계되는 다수의 커플링 슬롯(522)을 통해 균등 또는 비균등하게 분배하여 방사판(53)으로 전달하기 위한 분배 도파관 구조를 갖는 분배판(52)과; 상기 분배판(52) 상에 적층되게 설치되며, 여기슬롯들이 형성되며, 상기 분배판(52)의 다수의 커플링 슬롯(522)을 통해 입력된 신호를 분배하여 상기 여기슬롯들을 통해 여기시키는 캐비티 구조를 갖는 방사판(53)을 포함하여 구성된다. 또한, 이외에도, 방사판(53) 상에는 편파 발생을 위한 보조 방사판(들)(미도시)이 추가로 설치될 수도 있다. 23 to 28, the waveguide slot array antenna according to the fourth embodiment of the present invention, similar to the structure of the other embodiments, the feed plate 51; It is installed to be stacked on the feed plate 51, and the signal input through the feed waveguide 512 and the feed waveguide 512 is, for example, through a plurality of coupling slots 522 designed to be the square root of two. A distribution plate 52 having a distribution waveguide structure for distributing it evenly or evenly to the radiation plate 53; Cavity is installed on the distribution plate 52, excitation slots are formed, the cavity for distributing the signal input through the plurality of coupling slots 522 of the distribution plate 52 to excite through the excitation slots It is configured to include a spin plate 53 having a structure. In addition, in addition to the radiation plate 53, auxiliary radiation plate (s) (not shown) for the generation of polarization may be additionally installed.
상기 방사판(53)의 구조를 보다 상세히 살펴보면, 본 발명의 제4 실시예에 따른 방사판(53)은 실제로 이전 다른 실시예들에 따른 방사판들의 구조를 중복적으로 사용하여 적절히 배치 및 연결한 구조임을 알 수 있다. 예를 들어, 도 23에 도시된 바와 같이, 실제로 10x4 배열 구조의 방사판(53)은 상기 도 19 및 도 20에 도시된 제2 실시예에 따른 4x2 최소 배열단위 구조가 a 영역 및 c 영역의 2개소에 적용(이에 따라, 예를 들어 4x4 배열 구조가 형성)되며, 상기 도 21 및 도 22에 도시된 제3 실시예에 따른 6x2 최소 배열단위 구조가 b 영역 및 d 영역의 2개소에 적용(이에 따라, 예를 들어 6x4 배열 구조를 형성)된다. 즉, 도 23에서 도시된 방사판(53)은 제2 및 제4 실시예에 따른 최소 배열단위 구조가 각각 2개씩, 총 4개의 최소 배열단위 구조를 적용하여 구현한 것으로서, 이때 분배판(52)은 이러한 4개의 최소 배열단위 구조 각각으로 입력 신호를 균등 또는 비균등하게 분배하는 구조를 가진다. Looking at the structure of the radiating plate 53 in more detail, the radiating plate 53 according to the fourth embodiment of the present invention is actually properly arranged and connected by using the structure of the radiating plate according to the previous other embodiments in duplicate It can be seen that it is a structure. For example, as shown in FIG. 23, the radiating plate 53 of the 10x4 arrangement actually has a 4x2 minimum array unit structure according to the second embodiment shown in FIGS. 19 and 20. It is applied to two places (for example, a 4x4 arrangement structure is formed), and the 6x2 minimum arrangement unit structure according to the third embodiment shown in FIGS. 21 and 22 is applied to two places of the b area and the d area. (Thus forming a 6x4 array structure, for example). That is, the radiating plate 53 illustrated in FIG. 23 is implemented by applying a total of four minimum array unit structures, each having two minimum array unit structures according to the second and fourth embodiments. ) Has a structure that distributes the input signal equally or unequally to each of these four minimum array unit structures.
도 29는 본 발명의 제5 실시예에 따른 도파관 슬롯 어레이 안테나의 주요부 사시도로서, 여기슬롯이 예를 들어, 8x4(세로x가로)의 배열 구조를 갖는 것이 도시되고 있다. 도 29를 참조하면, 본 발명의 제5 실시예에 따른 도파관 슬롯 어레이 안테나는 상기 도 23 내지 도 28에 도시된 제4 실시예의 구조와 유사하게, 급전판(61)과; 분배판(62) 및 상기 방사판(63)이 적층되는 구조를 가진다. 29 is a perspective view of an essential part of a waveguide slot array antenna according to a fifth embodiment of the present invention, in which an excitation slot has an arrangement structure of, for example, 8x4 (vertical x horizontal). Referring to FIG. 29, the waveguide slot array antenna according to the fifth embodiment of the present invention has a feed plate 61 similar to the structure of the fourth embodiment shown in FIGS. 23 to 28; The distribution plate 62 and the radiating plate 63 are laminated.
이때, 도 29에 도시된 바와 같이, 실제로 8x4 배열 구조의 방사판(63)은 상기 도 19 및 도 20에 도시된 제2 실시예에 따른 4x2 최소 배열단위 구조를 4개 사용하여 상호 연결하여 구현할 수 있다. At this time, as shown in FIG. 29, the radiating plate 63 of the 8x4 array structure may be interconnected using four 4x2 minimum array unit structures according to the second embodiment shown in FIGS. 19 and 20. Can be.
도 30은 본 발명의 제6 실시예에 따른 도파관 슬롯 어레이 안테나의 주요부 사시도로서, 여기슬롯이 예를 들어, 10x8(세로x가로)의 배열 구조를 갖는 것이 도시되고 있다. 도 30을 참조하면, 본 발명의 제6 실시예에 따른 도파관 슬롯 어레이 안테나는 상기 도 23 내지 도 28에 도시된 제4 실시예의 구조와 유사하게, 급전판(71)과; 분배판(72) 및 상기 방사판(73)이 적층되는 구조를 가진다. 30 is a perspective view of an essential part of a waveguide slot array antenna according to a sixth embodiment of the present invention, in which an excitation slot has an arrangement structure of, for example, 10x8 (vertical x horizontal). Referring to FIG. 30, the waveguide slot array antenna according to the sixth embodiment of the present invention has a feed plate 71 similar to the structure of the fourth embodiment shown in FIGS. 23 to 28; The distribution plate 72 and the radiating plate 73 are laminated.
이때, 도 30에 도시된 10x8 배열 구조의 방사판(63)은 상기 도 19 및 도 20에 도시된 제2 실시예에 따른 4x2 최소 배열단위 구조와, 상기 도 21 및 도 22에 도시된 제3 실시예에 따른 6x2 최소 배열단위 구조와, 각각 4개씩 사용하여 상호 연결하여 구현할 수 있다. At this time, the radiation plate 63 of the 10x8 arrangement shown in FIG. 30 has a 4x2 minimum arrangement unit structure according to the second embodiment shown in FIGS. 19 and 20, and the third shown in FIGS. 21 and 22. The 6x2 minimum array unit structure according to the embodiment and four of each can be implemented to be interconnected.
상기와 같이 본 발명의 실시예들에 따른 도파관 슬롯 어레이 안테나의 구성 및 동작이 이루어질 수 있으며, 한편 상기한 본 발명의 설명에서는 구체적인 실시예에 관해 설명하였으나 여러 가지 변형이 본 발명의 범위를 벗어나지 않고 실시될 수 있다. As described above, the configuration and operation of the waveguide slot array antenna according to the embodiments of the present invention can be made. Meanwhile, in the above description of the present invention, specific embodiments have been described, but various modifications can be made without departing from the scope of the present invention. Can be implemented.
예를 들어, 상기의 설명에서는 제1 실시예에 따른 보조 방사판(들)이 적용되는, 급전판(11), 분배판(12), 주 방사판(13)의 구체적인 구조에 대해 설명하였으나, 이러한 구조 외에도, 방사슬롯 배열을 갖는 다양한 구조의 도파관 슬롯 어레이 안테나에서도 본 발명의 보조 방사판(들)이 적용될 수 있다. 즉, 다양한 구조를 갖는 도파관 슬롯 어레이 안테나에서, 본 발명의 제1실시예에 따른 구조에서와 같이, 편파를 발생하기 위하여, 해당 방사슬롯 배열에 대응되게 제1편파슬롯 및 제2편파슬롯이 형성되는 제1 및 제2보조 방사판을 설치하는 구성이 가능할 수 있다. For example, in the above description, the specific structures of the feeder plate 11, the distribution plate 12, and the main radiation plate 13 to which the auxiliary radiation plate (s) according to the first embodiment are applied have been described. In addition to this structure, the auxiliary radiating plate (s) of the present invention can also be applied to waveguide slot array antennas of various structures having a radiating slot arrangement. That is, in the waveguide slot array antenna having various structures, in order to generate polarization, as in the structure according to the first embodiment of the present invention, the first polarization slot and the second polarization slot are formed corresponding to the corresponding radiation slot arrangement. It may be possible to configure the first and second auxiliary radiating plate to be installed.
또한, 상기의 설명에서는, 제2 및 제3 실시예에 따른 최소 배열 단위 구조를 복수개 사용하여 제4 내지 제6 실시예에서와 같이 확장된 배열 구조를 가지는 것을 일부 예로써 설명하였는데, 이외에도 상기 제2 및 제3 실시예에 따른 최소 배열 단위 구조를 복수개 사용하여 다른 임의의 배열 구조를 적절히 구현할 수 있다. In addition, in the above description, it has been described as an example to have an extended arrangement structure as in the fourth to sixth embodiments by using a plurality of minimum arrangement unit structures according to the second and third embodiments. By using a plurality of minimum array unit structures according to the second and third embodiments, other arbitrary arrangement structures can be appropriately implemented.
또한, 상기 제2 내지 제6 실시예의 구조에서는, 예를 들어, 분배판에 급전 도파관이 형성되는 것을 예로 들었으나, 이외에도 제1 실시예의 구조와 마찬가지로, 급전판에 급전슬롯이 형성되는 구조를 채용할 수도 있음은 물론이다. In addition, in the structures of the second to sixth embodiments, for example, the feed waveguide is formed on the distribution plate, but the structure in which the feed slot is formed on the feed plate is adopted in the same manner as the structure of the first embodiment. Of course you can.
이와 같이, 본 발명의 다양한 변형이 있을 수 있으며, 따라서 본 발명의 범위는 설명된 실시예에 의하여 정할 것이 아니고 청구범위와 청구범위의 균등한 것에 의하여 정하여져야 할 것이다. As such, there may be various modifications of the present invention, and therefore the scope of the present invention should be determined not by the described embodiments but by the claims and equivalents thereof.

Claims (11)

  1. 주 방사판에서 동작주파수에 대응되는 신호를 방사하는 여기(excitation) 슬롯 배열을 갖는 도파관 슬롯 어레이 안테나에 있어서, A waveguide slot array antenna having an excitation slot array for radiating a signal corresponding to an operating frequency in a main radiating plate,
    상기 주 방사판 상에 설치되며, 상기 주 방사판의 여기슬롯 배열에서 방사되는 신호의 편파면을 회전시키는 제1보조 방사판과; A first auxiliary radiating plate installed on the main radiating plate, the first auxiliary radiating plate rotating a polarization plane of a signal radiated in an excitation slot arrangement of the main radiating plate;
    상기 제1보조 방사판 상에 설치되며, 상기 제1보조 방사판에서 편파면이 회전된 신호를 분배하여 방사하는 제2보조 방사판을 포함함을 특징으로 하는 도파관 슬롯 어레이 안테나. And a second auxiliary radiating plate disposed on the first auxiliary radiating plate and distributing and radiating a signal in which the polarization plane is rotated in the first auxiliary radiating plate.
  2. 제1항에 있어서, The method of claim 1,
    상기 제1보조 방사판은, 상기 주 방사판의 상기 여기슬롯 배열과 대응되는 구조로 형성되는 제1편파슬롯의 배열이 형성되며; The first auxiliary radiating plate is formed with an array of first polarization slots formed in a structure corresponding to the excitation slot arrangement of the main radiating plate;
    상기 제1편파슬롯은 대응되는 여기슬롯에서 방사되는 신호의 편파면을 회전시키는 구조를 가짐을 특징으로 하는 도파관 슬롯 어레이 안테나. And the first polarization slot has a structure for rotating a polarization plane of a signal emitted from a corresponding excitation slot.
  3. 제2항에 있어서, The method of claim 2,
    상기 제1편파슬롯은 상기 여기슬롯과 유사한 슬롯 형상을 가지며, 상기 제1편사슬롯의 슬롯 형상은 상기 여기슬롯의 슬롯 형상에 비해 수직/수평 대비 45도 회전된 자세로 형성된 것을 특징으로 하는 도파관 슬롯 어레이 안테나. The first polarization slot has a slot shape similar to that of the excitation slot, and the slot shape of the first polarization slot is formed in a posture rotated by 45 degrees relative to the vertical / horizontal angle compared to the slot shape of the excitation slot. Array antenna.
  4. 제2항에 있어서, The method of claim 2,
    상기 제2보조 방사판은, 상기 제1보조 방사판의 제1편파슬롯별로 각각 복수개 대응되게 형성된 제2편파슬롯의 배열을 가지며; The second auxiliary radiating plate has an arrangement of a plurality of second polarization slots corresponding to each of the first polarization slots of the first auxiliary radiating plate;
    상기 제1보조 방사판의 제1편파슬롯별로 각각 방사되는 신호를 각각 대응되는 복수개의 상기 제2편파슬롯으로 분배하는 분배 구조가 형성됨을 특징으로 하는 도파관 슬롯 어레이 안테나. And a distribution structure for distributing signals radiated for each of the first polarization slots of the first auxiliary radiating plate to a plurality of corresponding second polarization slots, respectively.
  5. 제3항에 있어서, The method of claim 3,
    상기 제1편파슬롯과 상기 제2편파슬롯의 형상은 서로 동일함을 특징으로 하는 도파관 슬롯 어레이 안테나. And the first polarization slot and the second polarization slot have the same shape.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서, The method according to any one of claims 1 to 5,
    입력 신호 제공받기 위한 도파관의 적어도 일부를 형성하는 급전판과; A feed plate forming at least a portion of the waveguide for receiving an input signal;
    상기 급전판과 결합되어 상기 입력 신호를 다수의 커플링 슬롯으로 분배하기 위한 분배 도파관 구조를 갖는 분배판을 더 포함하고, A distribution plate coupled to the feed plate and having a distribution waveguide structure for distributing the input signal into a plurality of coupling slots,
    상기 주 방사판은 상기 분배판 상에 설치되며, 상기 분배판의 각 커플링 슬롯을 통해 입력된 신호를 동일 비율로 분배하고 분배한 신호를 각각 상기 여기슬롯 배열을 통해 여기시키기 위한 다수의 캐비티 구조를 가짐을 특징으로 하는 도파관 슬롯 어레이 안테나.The main radiating plate is provided on the distribution plate, and has a plurality of cavity structures for distributing the signals input through each coupling slot of the distribution plate at the same ratio and for exciting the distributed signals through the excitation slot arrangement. Waveguide slot array antenna characterized in that it has a.
  7. 제6항에 있어서, The method of claim 6,
    상기 주 방사판의 상기 다수의 캐비티 구조는 상기 분배판의 대응되는 커플링 슬롯으로 제공된 신호를 4 부분으로 분배하기 위한 4개의 영역으로 구분되게 설계되며, 상기 4개의 영역 각각에 복수개의 여기슬롯이 형성됨을 특징으로 하는 도파관 슬롯 어레이 안테나. The plurality of cavity structures of the main radiating plate are designed to be divided into four areas for distributing the signals provided to corresponding coupling slots of the distribution plate into four parts, each of which has a plurality of excitation slots. Waveguide slot array antennas, characterized in that formed.
  8. 도파관 슬롯 어레이 안테나에 있어서, A waveguide slot array antenna,
    입력 신호를 다수의 커플링 슬롯으로 분배하기 위한 분배 도파관 구조를 갖는 분배판과; A distribution plate having a distribution waveguide structure for distributing an input signal to the plurality of coupling slots;
    상기 분배판 상에 설치되며, 상기 분배판의 상기 다수의 커플링 슬롯을 통해 입력된 신호를 동일 비율로 분배하고 분배한 신호를 각각 다수의 여기슬롯 배열을 통해 여기시키기 위해 상기 다수의 커플링 슬롯 당 대응되게 구성되는 다수의 캐비티 구조를 가지는 방사판을 포함하며; A plurality of coupling slots installed on the distribution plate for distributing the signals input through the plurality of coupling slots of the distribution plate at the same rate and for exciting the distributed signals through a plurality of excitation slot arrangements, respectively. A radiation plate having a plurality of cavity structures configured correspondingly thereto;
    상기 다수의 캐비티 구조는 각각, 상기 분배판의 대응되는 커플링 슬롯으로 제공된 신호를 4 부분으로 분배하기 위한 4개의 영역으로 구분되게 설계되며, 상기 4개의 영역 각각에 복수개의 여기슬롯이 형성됨을 특징으로 하는 도파관 슬롯 어레이 안테나. Each of the plurality of cavity structures is designed to be divided into four areas for distributing signals provided to corresponding coupling slots of the distribution plate into four parts, and a plurality of excitation slots are formed in each of the four areas. A waveguide slot array antenna.
  9. 제8항에 있어서, The method of claim 8,
    상기 캐비티 구조의 상기 4개의 영역 각각에 형성되는 상기 복수의 여기슬롯은 배열 기준 축에 비해 그 중심이 서로 인접한 여기슬롯에 비해 상반되게 오프셋됨을 특징으로 하는 도파관 슬롯 어레이 안테나. And the plurality of excitation slots formed in each of the four regions of the cavity structure are offset from each other relative to an excitation slot adjacent to each other relative to an array reference axis.
  10. 제8항에 있어서, The method of claim 8,
    상기 캐비티 구조의 상기 4개의 영역 각각에 형성되는 상기 복수의 여기슬롯은 상기 4개의 영역 각각 당 2개 또는 3개가 형성됨을 특징으로 하는 슬롯 어레이 안테나. And a plurality of excitation slots formed in each of the four regions of the cavity structure, wherein two or three excitation slots are formed in each of the four regions.
  11. 제8항 내지 제10항 중 어느 한 항에 있어서, The method according to any one of claims 8 to 10,
    상기 방사판 상에 설치되며, 상기 방사판의 상기 여기슬롯 배열에서 방사되는 신호의 편파면을 회전시키는 제1보조 방사판과; A first auxiliary radiating plate disposed on the radiating plate, the first auxiliary radiating plate rotating a polarization plane of a signal radiated from the excitation slot arrangement of the radiating plate;
    상기 제1보조 방사판 상에 설치되며, 상기 제1보조 방사판에서 편파면이 회전된 신호를 분배하여 방사하는 제2보조 방사판을 포함함을 특징으로 하는 도파관 슬롯 어레이 안테나. And a second auxiliary radiating plate disposed on the first auxiliary radiating plate and distributing and radiating a signal in which the polarization plane is rotated in the first auxiliary radiating plate.
PCT/KR2015/012036 2014-11-11 2015-11-10 Waveguide slot array antenna WO2016076595A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA2967279A CA2967279C (en) 2014-11-11 2015-11-10 Waveguide slot array antenna
JP2017524441A JP6386182B2 (en) 2014-11-11 2015-11-10 Waveguide slot array antenna
ES15858572T ES2856056T3 (en) 2014-11-11 2015-11-10 Waveguide slot array antenna
EP15858572.9A EP3220481B1 (en) 2014-11-11 2015-11-10 Waveguide slot array antenna
CN201580061383.6A CN107210533B (en) 2014-11-11 2015-11-10 Waveguide slot array antenna
US15/591,133 US10622726B2 (en) 2014-11-11 2017-05-10 Waveguide slot array antenna
US16/799,837 US10985472B2 (en) 2014-11-11 2020-02-25 Waveguide slot array antenna

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20140156116 2014-11-11
KR10-2014-0156116 2014-11-11
KR10-2015-0077610 2015-06-01
KR1020150077610A KR102302466B1 (en) 2014-11-11 2015-06-01 Waveguide slotted array antenna

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/591,133 Continuation US10622726B2 (en) 2014-11-11 2017-05-10 Waveguide slot array antenna

Publications (1)

Publication Number Publication Date
WO2016076595A1 true WO2016076595A1 (en) 2016-05-19

Family

ID=55954618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/012036 WO2016076595A1 (en) 2014-11-11 2015-11-10 Waveguide slot array antenna

Country Status (1)

Country Link
WO (1) WO2016076595A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109643856A (en) * 2016-07-11 2019-04-16 伟摩有限责任公司 Radar antenna array with the parasitic antenna by surface wave excitation
JP2021507579A (en) * 2017-12-14 2021-02-22 ウェイモ エルエルシー Adaptive polarimetric radar architecture for autonomous driving

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100721871B1 (en) * 2006-05-23 2007-05-25 위월드 주식회사 Waveguide slot array antenna for receiving random polarized satellite signal
KR20090083458A (en) * 2006-12-01 2009-08-03 미쓰비시덴키 가부시키가이샤 Coaxial line slot array antenna and method for manufacturing the same
KR101092846B1 (en) * 2010-09-30 2011-12-14 서울대학교산학협력단 A series slot array antenna
KR20130099309A (en) * 2012-02-29 2013-09-06 삼성탈레스 주식회사 Waveguide slot array antenna including slots having different width
JP2014170989A (en) * 2013-03-01 2014-09-18 Tokyo Institute Of Technology Slot array antenna, design method and manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100721871B1 (en) * 2006-05-23 2007-05-25 위월드 주식회사 Waveguide slot array antenna for receiving random polarized satellite signal
KR20090083458A (en) * 2006-12-01 2009-08-03 미쓰비시덴키 가부시키가이샤 Coaxial line slot array antenna and method for manufacturing the same
KR101092846B1 (en) * 2010-09-30 2011-12-14 서울대학교산학협력단 A series slot array antenna
KR20130099309A (en) * 2012-02-29 2013-09-06 삼성탈레스 주식회사 Waveguide slot array antenna including slots having different width
JP2014170989A (en) * 2013-03-01 2014-09-18 Tokyo Institute Of Technology Slot array antenna, design method and manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109643856A (en) * 2016-07-11 2019-04-16 伟摩有限责任公司 Radar antenna array with the parasitic antenna by surface wave excitation
CN109643856B (en) * 2016-07-11 2021-11-09 伟摩有限责任公司 Radar antenna array with parasitic elements excited by surface waves
JP2021507579A (en) * 2017-12-14 2021-02-22 ウェイモ エルエルシー Adaptive polarimetric radar architecture for autonomous driving
JP7076550B2 (en) 2017-12-14 2022-05-27 ウェイモ エルエルシー Adaptive polarimetric radar architecture for autonomous driving

Similar Documents

Publication Publication Date Title
KR102302466B1 (en) Waveguide slotted array antenna
US5268701A (en) Radio frequency antenna
WO2018217061A1 (en) Antenna and wireless communication device including antenna
RU2295809C2 (en) Printing antenna powered by commutation field of electronic board
CN107331974B (en) Circular polarized antenna based on ridge gap waveguide
US5506589A (en) Monopulse array system with air-stripline multi-port network
US20030122724A1 (en) Planar array antenna
WO2015190675A1 (en) Omnidirectional mimo antenna using electro-polarization
WO2016027997A1 (en) Omnidirectional antenna for mobile communication service
KR20070093107A (en) Array antenna including a monolithic antenna feed assembly and related methods
JP2018536362A (en) Dual-polarized broadband radiator with a single planar stripline feed
WO2020231077A1 (en) Base station antenna radiator having function for suppressing unwanted resonances
WO2014129782A1 (en) Planar horn array antenna
WO2012118312A2 (en) Multi-array antenna
WO2019156281A1 (en) Array antenna
WO2016076595A1 (en) Waveguide slot array antenna
JPH0449802B2 (en)
WO2012096544A2 (en) Antenna comprising an unplated emitter
WO2016056715A1 (en) Directional mimo antenna using electro-polarization
WO2023080529A1 (en) High-output slot waveguide array antenna
WO2017069358A1 (en) Dipole antenna and dipole antenna array for radiation gain enhancement
WO2018135831A1 (en) Phase shift module and communication device comprising same
KR20200132618A (en) Dual Polarization Antenna Using Shift Series Feed
WO2020214015A1 (en) Dual-polarized base station antenna radiator
WO2020231045A1 (en) Dual polarized antenna using shift series feed

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15858572

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017524441

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2967279

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015858572

Country of ref document: EP