WO2016076537A1 - Method for producing coal bed gas - Google Patents

Method for producing coal bed gas Download PDF

Info

Publication number
WO2016076537A1
WO2016076537A1 PCT/KR2015/010659 KR2015010659W WO2016076537A1 WO 2016076537 A1 WO2016076537 A1 WO 2016076537A1 KR 2015010659 W KR2015010659 W KR 2015010659W WO 2016076537 A1 WO2016076537 A1 WO 2016076537A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
coal seam
water
coal
coal bed
Prior art date
Application number
PCT/KR2015/010659
Other languages
French (fr)
Korean (ko)
Inventor
이현찬
주우성
모용기
이지혜
백현선
이종열
이승록
Original Assignee
한국가스공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국가스공사 filed Critical 한국가스공사
Publication of WO2016076537A1 publication Critical patent/WO2016076537A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/18Repressuring or vacuum methods
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/20Displacing by water

Definitions

  • the present invention relates to a method for producing coal seam gas, and more particularly, to provide a method for separating CBM (coalbed methane) gas from the waste water generated in the coal seam gas production process.
  • CBM coalbed methane
  • Coal has a function of adsorbing gas due to its fine gap structure, and a large amount of hydrocarbon gas mainly containing methane gas is packed in coal layers in the ground. Since the main component of coal seam gas is methane, it is also commonly referred to as coal seam methane gas or coalbed methane (CBM). Coal seam methane (CBM) is generated during the course of the plant's transformation into coal during the geologic age and is present in the coal seam, either attached to coal molecules or freed in voids.
  • CBM coal seam methane
  • the technology that collects and develops methane gas present in the coal seam and utilizes it as a resource can not only minimize global warming and environmental problems, but also solve the global resource depletion problem. Its importance continues to grow.
  • coal seams suitable for CBM production are coal seams having a very close gap along the cleats or hot poles that occur naturally during carbonization. This is the path through which gas is desorbed and moved from the coal seam during CBM production.
  • CBM production is a process of recovering the groundwater in the coal seam, which depressurizes the gas adsorbed to the coal seam through the process of lowering the pressure, and the desorbed gas is free gas in the form of cracks. Process that is reached and produced.
  • CBM The most important issue in the development of CBM may be the process of desorbing the gas adsorbed on the coal seam by lowering the pressure in the coal seam.
  • This gas production can be carried out with relatively small equipment input compared to the traditional gas development. Cost savings can improve business economics.
  • the gas In the early stages of production, most of the groundwater is produced, but as time passes, the gas is desorbed from the coal seam due to the pressure drop in the coal seam, increasing the gas yield.
  • coal seam gas In this way, a significant amount of water is discharged with the gas and this water is dumped into the reservoir, which contains a significant amount of coal seam gas.
  • An object of the present invention is to provide a more economical coal seam gas production method by separating the coal seam gas contained in the discharge water generated in the coal seam gas production process.
  • the present invention to solve the above technical problem
  • a double-tubular drilling tube in communication with the coal seam and including an inner tube through which water moves and an outer tube surrounding the inner tube;
  • Sending the water discharged from the inner tube to the gas-liquid separator provides a coal seam gas production method comprising the step of separating and recovering the coal seam gas contained in the water.
  • the gas-liquid separator is provided with a demister, the coal seam gas is separated and discharged to the top, the water may be separated and discharged to the bottom.
  • the gas-liquid separator may be that the operation of the gas discharge unit is controlled according to the level of water separated from the gas (level).
  • the gas-liquid separator may be to maintain the process conditions of the water temperature of 30 °C to 60 °C, the operating pressure is 0.3 to 1.5 MPa.
  • the method may further include injecting a stimulus gas into the coal seam before the step of pumping water from the coal seam and detaching the water, and the stimulation gas may be recovered together in the water recovery step. have.
  • the irritant gas may be one or more selected from the group consisting of nitrogen, air, carbon dioxide, or water vapor.
  • the water discharged from the gas-liquid separator may be a gas is substantially removed.
  • the separated gas may include methane, nitrogen, oxygen, carbon dioxide, hydrogen sulfide or mixtures thereof.
  • the production well may be formed with a plurality of vertical and horizontal boreholes.
  • the coal seam gas produced may be compressed by a compressor and then subjected to a purification process.
  • the method according to the present invention is a method for capturing methane gas, sail gas, and natural gas buried in the basement layer, while securing gas as a fuel resource, and separating and reusing gas from the gas-containing process wastewater generated in the production process.
  • 1 is a schematic diagram illustrating the principle of a method of pumping water to produce coal seam gas.
  • FIG. 2 is a schematic diagram of a gas-liquid separator according to one embodiment of the present invention.
  • FIG. 3 is a schematic block diagram of an apparatus according to an embodiment of the present invention.
  • FIG. 4 is a process flow diagram in accordance with one embodiment of the present invention.
  • the gas production in the coal seam is calculated by considering the pressure gradient in the deep coal seam and the pressure gradient across the production facilities such as production pipes, wellheads, and separators, and changes according to the production system and their operating conditions. Done. In addition, in consideration of the inflow pressure and temperature conditions necessary for the production operation plan and the design of the refinery, the optimum operating pressure and temperature conditions for each production facility should be set individually for each mode.
  • a series of production systems from coal seam to refining facilities are represented as collection systems, and proper design and construction are essential core technologies in coal seam gas recovery business.
  • the methane gas recovery process also known as CBM or ECBM, generally extracts gas through a pipeline installed inside the coal seam, and the extracted gas is finally recycled through a collection and purification process.
  • the produced CBM contains nitrogen (N 2 ), oxygen (O 2 ), carbon dioxide (CO 2 ), water vapor (H 2 O), hydrogen sulfide (H 2 S), and the like.
  • N 2 nitrogen
  • O 2 oxygen
  • CO 2 carbon dioxide
  • H 2 O water vapor
  • the produced CBM is a mixture of various gas components can be selectively purified to obtain high efficiency methane gas.
  • by refining according to feed composition by varying the purification process according to the final target material, it can be converted into various energy resource forms.
  • a double-tubular drilling tube in communication with the coal seam and including an inner tube through which water moves and an outer tube surrounding the inner tube;
  • the drilling tube may be in the form of a double tube consisting of an inner tube of a tube shape in which water moves and an outer tube of a casing shape surrounding the outer tube tube.
  • the coal seam refers to a strata (coal layer) made of coal existing underground, and the kind thereof is not particularly limited.
  • the coal contained in the coal seam include bituminous coal, lignite coal, low quality coal, anthracite coal and the like.
  • the present invention as shown in Figure 1, by inserting the drilling tube 10 down the coal seam 2 is fixed CBM gas in the production well (1), the inner tube of the inserted drilling tube 10 ( By desorbing and recovering the water contained in the coal seam with the tube of 11) by the pump 20, the pressure of the coal seam is lowered, whereby the CBM gas (mainly methane gas) fixed to the coal seam can be desorbed.
  • the desorbed hydrocarbon gas may move from the coal seam in a manner that is diffused along the crack network of the coal seam having high permeability of the gas, and the CBM gas 18 is diffused and moved through the outer tube 13 to be recovered from the outlet 25. That's how it works.
  • the groundwater 16 which is separated and recovered from the coal seam may be sent to the gas-liquid separator (not shown) from the outlet 23 to separate residual gas such as CBM contained in the water.
  • the separated gas is mixed with the CBM gas recovered from the coal seam to the outer tube 13 to increase the gas yield, thereby improving production efficiency and process economics.
  • Desorption of CBM gas from the coal seam (2) can be controlled by the partial pressure of hydrocarbon gas rather than the pressure of the whole system. Accordingly, the water contained in the coal seam is desorbed by the pump 20 so that the pressure is reduced, so that the partial pressure of the hydrocarbon fixed to the coal seam is reduced, so that the hydrocarbon can be desorbed from the coal seam.
  • Hydrocarbon desorbed from the coal bed 2 is moved to the diffusion according to the difference in gas concentration along the crack network having a relatively high permeability among the cracks generated in the coal bed 2, and diffuses to the outer tube 13 of the drilling tube 10. It can be moved and recovered from the production wells.
  • the amount of methane (CBM) contained in the coal seam may vary depending on the degree of carbonization of the coal seam and the investment depth, and the higher the carbonization degree and the deeper the coal seam, the higher the gas content.
  • Desorption of the methane adsorbed to the coal seam is caused by a decrease in pressure of the coal seam, and it may be optimal to reduce the pressure to 15 psia or less for the desorption of the adsorbed methane.
  • a process of applying an artificial stimulus may be further performed in addition to the pressure lowering process by groundwater pumping for gas production of the coal well production.
  • the stimulation process may be a pressure application, a proppant insertion, a composite thermode opening method, etc. to increase the permeability of the coal seam, and accordingly, the drilling pipe for producing CBM gas has its location, spacing between the drilling pipes, and drilling Various conditions can vary, including protection against tube damage.
  • Preferred stimulation process according to the present invention can be carried out a pressure application method according to the injection of stimulation gas.
  • the stimulating gas is an inert gas which is very well adsorbed to or does not react with coal at the conditions of use, for example, nitrogen, helium, argon, air and water vapor or a mixture thereof may be selected. From an economic point of view, air containing 80% nitrogen may be more preferred.
  • the irritant gas is injected into the coal seam and recovered together with water or hydrocarbons during the desorption and recovery of water, thereby improving the pressure of hydrocarbons fixed in the coal seam and improving the permeability of the cracking network and smoothing the diffusion of the hydrocarbon gas. You can do it smoothly.
  • the irritant gas may be included in the hydrocarbon gas recovered and discharged.
  • a plurality of boreholes may be formed at a predetermined depth of the coal seam in one production well, and the borehole may be formed horizontally in the coal seam.
  • the multiple boreholes can increase the recovery of higher CBM gas.
  • This effect can result in fracture porosity due to the fracture of the coal seam, which can be created by the coal seam-specific cleat, which is to be formed of two cleats that are nearly perpendicular to each other.
  • the cleats may be divided into face cleats having good coal seam extension and butt cleats that vertically connect the face cleats.
  • FIG. 2 schematically illustrates a gas-liquid separator that may be used in one embodiment of the present invention.
  • the gas-liquid separator is connected to the outlet 23 of the inner tube 11 of the drilling tube shown in FIG.
  • the groundwater recovered to the inner tube 11 of the drilling pipe is sent to the gas separator connected to the outlet 23, the gas remaining in the groundwater can be separated, in the gas separator
  • the recovered residual gas may be recovered and used together with the CBM gas discharged from the coal seam.
  • the gas-liquid separator may be used as long as it is a device capable of separating the gas phase and the liquid phase.
  • the gas liquid separator may be a device that separates gas contained in water by separating natural gas from the upper part and water from the lower part.
  • the gas-liquid separator is provided with a demister (35), it is possible to separate the liquid phase and the gaseous phase from the flying droplets.
  • the water discharged from the inner tube 11 of the drilling tube is introduced into the droplet injector 31 of the gas-liquid separator equipped with the demister in the form of droplets, the sprayed droplet is the demister 35 Colliding with, causing organized wires and inertia collisions, the collided particles agglomerate with each other and grow into larger droplets, increasing in volume.
  • the droplet 39 having an increased volume may be separated by gravity to separate the gas phase and the liquid phase.
  • the gas-liquid separator may be controlled to operate the gas discharge unit 33 in accordance with the water level of the water separated and recovered from the gas (37).
  • the gas-liquid separator may further include a chamber connected to the outlet 40 through which the water from which the gas 37 has been removed is discharged, and a level switch (not shown) for measuring the level of the water discharged in the chamber.
  • the level switch is linked to the gas discharge unit 33 for moving and discharging the gas separated from the gas-liquid separator to control the operation of the gas discharge unit 33 in accordance with the water level measured by the level switch. Can be. That is, when the level of water in the chamber measured by the level switch is below a certain level, the control device may operate the gas discharge unit 33 to discharge the gas accumulated in the upper side of the chamber to the outside. .
  • the gas-liquid separator may be to maintain the process conditions of the water temperature of 30 °C to 60 °C, preferably 30 to 50 °C, the operating pressure is 0.3 to 1.5 MPa, preferably 0.5 to 0.9 MPa have.
  • a filter may be mounted to the outlet portion 40 of the water from which the gas is removed from the gas-liquid separator, and the water may be discharged out through the filter.
  • the water may contain various salts such as heavy metals included in the coal seam in the process of extracting a large amount of groundwater in the production of CBM gas.
  • the heavy metal salts may include, for example, chloride ions, heavy metal salts such as chromium, manganese, zinc, molybdenum, and the like as impurities. If the material such as heavy metal salts contained in the above groundwater is discharged as it may be a factor that can cause environmental problems.
  • the filtering process may be performed before the gas-liquid separator or after the gas-liquid separator, and the heavy metal salts as impurities obtained in the filtering process may be used as natural resources.
  • the filter may be a filtration filter packed with ceramic particles, but is not limited thereto.
  • FIG. 3 is a flowchart according to an embodiment of the present invention.
  • a plurality of gas-liquid separators may be provided.
  • the gas discharged from the outer tube of the borehole and the gas discharged from the first and second gas-liquid separators V-301 and V-302 may be compressed in the compressor C-401 and stored in the buffer tank.
  • the CBM gas stored in the gas may be a mixed gas further comprising nitrogen, oxygen, carbon dioxide, hydrogen sulfide, or a mixture thereof in addition to methane gas.
  • the CBM gas stored in the buffer tank may produce an optimized CBM gas through a purification device.
  • the method according to the present invention makes it possible to secure fuel resources by capturing methane gas, sail gas and natural gas buried in the basement layer, and also separating the gas from process wastewater containing gas generated in the production process. It is expected to be able to collect gas more economically and efficiently by providing a method of reusing it, and at the same time, it is possible to effectively solve the environmental problems caused by waste water, so that it can be effectively applied to actual processes.

Landscapes

  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

The present invention relates to a method for producing a coal bed gas, comprising: a step of identifying the location of a coal bed having gas fixed to coal; a step of installing at least one production well which communicates with the coal bed; a step of installing, in the production well, a double pipe type boring pipe which communicates with the coal bed and consists of an inner pipe through which water moves and an outer pipe surrounding the inner pipe; a step of withdrawing water contained in the coal bed by connecting a pump to the inner pipe of the boring pipe, and discharging the water through the inner pipe; a step of enabling the coal bed gas desorbed from the coal bed due to a pressure drop caused by the withdrawal of the water from the coal bed to be diffused and move, thereby discharging the coal bed gas to the outer pipe; and a step of sending the water discharged from the inner pipe to a vapor liquid separator so as to separate and recover the coal bed gas contained in the water. The present invention can collect gas more economically and efficiently, and can resolve environment problems caused by waste water at the same time, and thus the present invention can be effectively applied to actual processes.

Description

탄층 가스 생산 방법Coal seam gas production method
본 발명은 탄층가스를 생산하기 위한 방법에 관한 것으로서, 보다 자세하게는 탄층가스 생산공정시 발생하는 폐수로부터 CBM(coalbed methane) 가스를 분리하는 방법을 제공한다.The present invention relates to a method for producing coal seam gas, and more particularly, to provide a method for separating CBM (coalbed methane) gas from the waste water generated in the coal seam gas production process.
석탄은 그 미세한 빈틈 구조에 의해 기체를 흡착 하는 작용이 있어, 지중의 석탄층에는 통상, 메탄가스를 주성분으로 하는 탄화수소계 가스가 다량으로 포장 되고 있다. 탄층 가스의 주성분이 메탄이기 때문에, 일반적으로 탄층 메탄가스 또는 석탄층 메탄가스(CBM: coalbed methane) 라고도 불린다. 석탄층 메탄가스(CBM)는 식물이 지질시대 동안 석탄으로 변화되는 과정에서 발생되어 석탄분자에 부착되거나 공극 내에 유리된 상태로 탄층 내에 존재하게 된다.Coal has a function of adsorbing gas due to its fine gap structure, and a large amount of hydrocarbon gas mainly containing methane gas is packed in coal layers in the ground. Since the main component of coal seam gas is methane, it is also commonly referred to as coal seam methane gas or coalbed methane (CBM). Coal seam methane (CBM) is generated during the course of the plant's transformation into coal during the geologic age and is present in the coal seam, either attached to coal molecules or freed in voids.
석탄층에 존재하는 메탄가스를 포집 및 개발하여 자원으로 활용하는 기술은, 지구온난화 및 환경 분야에서의 문제점을 최소화할 뿐만 아니라, 전 세계적으로도 이슈가 되고 있는 자원고갈문제를 해결할 수 있는 방법으로, 그 중요성은 계속 커지고 있다.The technology that collects and develops methane gas present in the coal seam and utilizes it as a resource can not only minimize global warming and environmental problems, but also solve the global resource depletion problem. Its importance continues to grow.
이에 석탄층에 존재하는 메탄가스를 회수하기 위한 방법 중 하나로서 물을 석탄층에서 펌핑하는 공정으로서 석탄층의 압력을 낮춰주는 공정이 널리 알려져 있다.As a method of recovering methane gas present in the coal seam, a process of lowering the pressure of the coal seam as a process of pumping water from the coal seam is widely known.
CBM 개발의 핵심기술은 석탄층 내 미세공극 속에 흡착되어 있는 메탄을 효과적으로 탈착시켜 회수하여 생산하는 것이다. 일반적으로 CBM 생산에 적합한 석탄층은 탄화과정에서 자연적으로 나타나는 결(cleats) 또는 열극을 따라 매우 촘촘한 간격을 유지하는 형태의 탄층이 대상이다. 이러한 결은 CBM 생산시 가스가 석탄층에서 탈착되어 이동하는 경로가 된다.The core technology of CBM development is to effectively desorb and recover the methane adsorbed in the micropores in the coal seam. In general, coal seams suitable for CBM production are coal seams having a very close gap along the cleats or hot poles that occur naturally during carbonization. This is the path through which gas is desorbed and moved from the coal seam during CBM production.
CBM 생산은 석탄층 내 지층수를 회수하는 공정으로 압력을 낮춰주는 공정을 통해 석탄층에 흡착된 가스를 탈착시키고, 탈착된 가스는 균열대에 유리된 가스(free gas) 형태로 열과 열개를 통해 가스정에 도달되어 생산되는 공정을 포함한다.CBM production is a process of recovering the groundwater in the coal seam, which depressurizes the gas adsorbed to the coal seam through the process of lowering the pressure, and the desorbed gas is free gas in the form of cracks. Process that is reached and produced.
이러한 CBM 개발에 있어서 가장 중요한 이슈는 석탄 층 내 압력을 낮춰 석탄층에 흡착된 가스를 탈착시키는 공정일 수 있으며, 이러한 가스 생산은 전통적 가스개발에 비해 상대적으로 소규모 장비 투입으로 작업을 진행 할 수 있어 개발비용 절감을 통해 사업 경제성을 향상을 시킬 수 있다. 생산초기에는 대부분 지층수만 생산되지만 시간이 경과하면서 석탄층내의 압력저하로 가스가 석탄층에서 탈착되어 가스 생산량이 증가된다. 이와 같은 방법으로 탄층 가스를 생산할 때 상당량의 물이 가스와 함께 배출되고 이 물은 유수지로 버려지고 있는데 상기 물에는 상당량의 탄층 가스가 함유되어 있다. The most important issue in the development of CBM may be the process of desorbing the gas adsorbed on the coal seam by lowering the pressure in the coal seam. This gas production can be carried out with relatively small equipment input compared to the traditional gas development. Cost savings can improve business economics. In the early stages of production, most of the groundwater is produced, but as time passes, the gas is desorbed from the coal seam due to the pressure drop in the coal seam, increasing the gas yield. When producing coal seam gas in this way, a significant amount of water is discharged with the gas and this water is dumped into the reservoir, which contains a significant amount of coal seam gas.
본 발명의 과제는, 탄층 가스 생산 공정시 발생하는 배출수에 함유된 탄층 가스를 분리함으로써, 보다 경제적인 탄층 가스 생산 방법을 제공하고자 한다.An object of the present invention is to provide a more economical coal seam gas production method by separating the coal seam gas contained in the discharge water generated in the coal seam gas production process.
본 발명은 상기 기술적 과제를 해결하기 위하여,The present invention to solve the above technical problem,
탄에 고정된 가스를 갖는 탄층의 위치를 파악하는 단계;Determining the position of the coal seam having the gas fixed to the coal;
상기 탄층과 소통하는 적어도 하나의 생산정(production well)을 설치하는 단계;Installing at least one production well in communication with the coal seam;
상기 생산정에 상기 탄층과 소통하며, 물이 이동하는 내부관 및 상기 내부관 둘러싸는 외부관으로 이루어진 이중관형 시추관을 설치하는 단계;Installing a double-tubular drilling tube in communication with the coal seam and including an inner tube through which water moves and an outer tube surrounding the inner tube;
상기 시추관의 내부관에 펌프를 연결하여 탄층에 함유된 물을 탈리시켜 상기 내부관을 통해 배출시키는 단계;Connecting a pump to the inner tube of the drilling tube to desorb water contained in the coal seam to discharge through the inner tube;
상기 탄층으로부터 물이 탈리됨으로 인한 압력저하로 탄층에서 탈착된 탄층 가스가 확산이동하여 상기 외부관으로 배출되는 단계; 및 Discharging the coal seam gas desorbed from the coal seam by the pressure drop due to desorption of water from the coal seam to be discharged to the outer tube; And
상기 내부관으로부터 배출된 물을 기액분리기로 보내어 물에 함유된 탄층 가스를 분리하여 회수하는 단계를 포함하는 탄층 가스 생산 방법을 제공한다.Sending the water discharged from the inner tube to the gas-liquid separator provides a coal seam gas production method comprising the step of separating and recovering the coal seam gas contained in the water.
일 구현예에 따르면, 상기 기액분리기는 데미스터(demister)를 구비하며, 상부로는 탄층 가스가 분리되어 배출되고, 하단으로는 물이 분리되어 배출되는 것일 수 있다.According to one embodiment, the gas-liquid separator is provided with a demister, the coal seam gas is separated and discharged to the top, the water may be separated and discharged to the bottom.
일 구현예에 따르면, 상기 기액분리기는 가스와 분리된 물의 수위(level)에 따라 가스배출부의 작동이 제어되는 것일 수 있다.According to one embodiment, the gas-liquid separator may be that the operation of the gas discharge unit is controlled according to the level of water separated from the gas (level).
일 구현예에 따르면, 상기 기액분리기는 물의 온도가 30℃ 내지 60℃, 운전압력은 0.3 내지 1.5 MPa인 공정 조건을 유지하는 것일 수 있다.According to one embodiment, the gas-liquid separator may be to maintain the process conditions of the water temperature of 30 ℃ to 60 ℃, the operating pressure is 0.3 to 1.5 MPa.
일 구현예에 따르면, 상기 탄층으로부터 물을 펌핑하여 탈리시키는 단계 이전에 탄층내부에 자극가스를 주입하는 단계를 더 포함할 수 있으며, 상기 물이 회수되는 단계에서 상기 자극가스가 함께 회수되는 것일 수 있다.According to an embodiment, the method may further include injecting a stimulus gas into the coal seam before the step of pumping water from the coal seam and detaching the water, and the stimulation gas may be recovered together in the water recovery step. have.
일 구현예에 따르면, 상기 자극가스가 질소, 공기, 이산화탄소, 또는 수증기로 이루어진 군에서 선택되는 하나 이상일 수 있다.According to one embodiment, the irritant gas may be one or more selected from the group consisting of nitrogen, air, carbon dioxide, or water vapor.
일 구현예에 따르면, 상기 기액분리기로부터 배출된 물은 가스가 실질적으로 제거된 것일 수 있다.According to one embodiment, the water discharged from the gas-liquid separator may be a gas is substantially removed.
일 구현예에 따르면, 상기 분리된 가스는 메탄, 질소, 산소, 이산화탄소, 황화수소 또는 이들의 혼합물을 포함할 수 있다.According to one embodiment, the separated gas may include methane, nitrogen, oxygen, carbon dioxide, hydrogen sulfide or mixtures thereof.
일 구현예에 따르면, 상기 생산정은 수직과 수평의 시추공이 여러 개 형성되어 있을 수 있다.According to one embodiment, the production well may be formed with a plurality of vertical and horizontal boreholes.
일 구현예에 따르면, 상기 생산된 탄층 가스는 컴프레셔에 의해 압축된 후 정제공정을 거칠 수 있다. According to one embodiment, the coal seam gas produced may be compressed by a compressor and then subjected to a purification process.
본 발명에 따른 방법은, 지하층에 매장된 메탄가스, 세일가스, 천연가스를 포집하는 방법으로서 연료자원으로 확보할 수 있도록 해주면서 상기 생산공정에서 발생하는 가스 함유 공정폐수로부터 가스를 분리하여 재사용하는 방법을 제공함으로써, 보다 경제적이고 효율적으로 가스를 포집할 수 있으며, 동시에 폐수에 의한 환경문제도 함께 해결할 수 있어 실제공정에 효과적으로 적용할 수 있다.The method according to the present invention is a method for capturing methane gas, sail gas, and natural gas buried in the basement layer, while securing gas as a fuel resource, and separating and reusing gas from the gas-containing process wastewater generated in the production process. By providing the gas, it is possible to collect the gas more economically and efficiently, and at the same time, it is possible to solve the environmental problems caused by the waste water, which can be effectively applied to the actual process.
도 1은 물을 펌핑하여 탄층 가스를 생산하는 방법의 원리를 설명하는 개략도이다.1 is a schematic diagram illustrating the principle of a method of pumping water to produce coal seam gas.
도 2는 본 발명의 일 실시예에 따른 기액분리기의 개략도이다.2 is a schematic diagram of a gas-liquid separator according to one embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 개략적인 장치 구성도이다.3 is a schematic block diagram of an apparatus according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 공정 흐름도이다.4 is a process flow diagram in accordance with one embodiment of the present invention.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예들을 가질 수 있는바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.As the present invention allows for various changes and numerous embodiments, particular embodiments will be illustrated in the drawings and described in detail in the written description. However, this is not intended to limit the present invention to the specific embodiments, it should be understood as all transformations, equivalents, and substitutes included in the spirit and technical scope of the present invention. In the following description of the present invention, if it is determined that the detailed description of the related known technology may obscure the gist of the present invention, the detailed description thereof will be omitted.
이하, 본 발명에 대하여 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.
석탄층 내 가스 생산량은 심부 탄층 내 압력구배와 생산관, 웰헤드(wellhead), 분리기 등의 생산시설 전반에 걸친 압력구배를 총체적으로 고려하여 산출되는 값으로서 생산설비 시스템 및 이들의 운전조건에 따라서 변화하게 된다. 또한 생산운영계획, 정제시설의 설계에 필요한 유입압력과 온도 조건을 고려하여 생산설비 별 최적 운영압력·온도조건이 개별적으로 각 모드 별로 설정되어야 한다. 이러한 탄층에서부터 정제시설까지의 일련의 생산시스템을 포집시스템으로 표현하며 이를 적절하게 설계·시공하는 것은 탄층 가스 회수 사업에 있어 필수적인 핵심기술이다. The gas production in the coal seam is calculated by considering the pressure gradient in the deep coal seam and the pressure gradient across the production facilities such as production pipes, wellheads, and separators, and changes according to the production system and their operating conditions. Done. In addition, in consideration of the inflow pressure and temperature conditions necessary for the production operation plan and the design of the refinery, the optimum operating pressure and temperature conditions for each production facility should be set individually for each mode. A series of production systems from coal seam to refining facilities are represented as collection systems, and proper design and construction are essential core technologies in coal seam gas recovery business.
CBM 또는 ECBM 으로 알려져 있는 메탄가스 회수 공정은 일반적으로 석탄층 내부에 설치된 파이프라인을 통하여 가스를 추출하며, 추출된 가스는 포집 및 정제공정을 통하여 최종적으로 자원화가 된다. 생산된 CBM은 질소(N2), 산소(O2), 이산화탄소(CO2), 수증기(H2O), 황화수소(H2S) 등을 포함하고 있다. 이를 자원화하기 위해서는 증진기술, 포집기술 및 정제기술과 같은 엔지니어링 기술이 절실히 필요하다. 즉, 생산된 CBM은 여러 가지 가스성분이 혼합되어 있어 이를 선택적으로 정제함으로써 고효율 메탄가스를 얻을 수가 있다. 또한 최종 목표물질에 따라 정제공정을 달리하여 Feed 조성에 맞게 정제함으로써 여러 가지 에너지자원 형태로 전환이 가능하다. The methane gas recovery process, also known as CBM or ECBM, generally extracts gas through a pipeline installed inside the coal seam, and the extracted gas is finally recycled through a collection and purification process. The produced CBM contains nitrogen (N 2 ), oxygen (O 2 ), carbon dioxide (CO 2 ), water vapor (H 2 O), hydrogen sulfide (H 2 S), and the like. In order to make this resource, engineering skills such as promotion technology, collection technology, and refining technology are urgently needed. In other words, the produced CBM is a mixture of various gas components can be selectively purified to obtain high efficiency methane gas. In addition, by refining according to feed composition by varying the purification process according to the final target material, it can be converted into various energy resource forms.
본 발명에 따른 탄층 가스 생산 방법은,Coal seam gas production method according to the present invention,
탄에 고정된 가스를 갖는 탄층의 위치를 파악하는 단계;Determining the position of the coal seam having the gas fixed to the coal;
상기 생산정에 상기 탄층과 소통하며, 물이 이동하는 내부관 및 상기 내부관 둘러싸는 외부관으로 이루어진 이중관형 시추관을 설치하는 단계;Installing a double-tubular drilling tube in communication with the coal seam and including an inner tube through which water moves and an outer tube surrounding the inner tube;
상기 시추관의 내부관에 펌프를 연결하여 탄층에 함유된 물을 탈리시켜 상기 내부관을 통해 배출시키는 단계;Connecting a pump to the inner tube of the drilling tube to desorb water contained in the coal seam to discharge through the inner tube;
상기 탄층으로부터 물이 탈리됨으로 인한 압력저하로 탄층에서 탈착된 탄층 가스가 확산이동하여 상기 외부관으로 배출되는 단계; 및 Discharging the coal seam gas desorbed from the coal seam by the pressure drop due to desorption of water from the coal seam to be discharged to the outer tube; And
상기 내부관으로부터 배출된 물을 기액분리기로 보내어 물에 함유된 탄층 가스를 분리하여 회수하는 단계를 포함한다. Sending the water discharged from the inner tube to the gas-liquid separator to separate and recover the coal seam gas contained in the water.
상기 시추관은 물이 이동하는 튜브 형태의 내부관 및 상기 튜브관의 외곽을 둘러싸는 케이싱(casing) 형태의 외부관으로 이루어진 이중관 형태일 수 있다. The drilling tube may be in the form of a double tube consisting of an inner tube of a tube shape in which water moves and an outer tube of a casing shape surrounding the outer tube tube.
본 발명에서 탄층이란, 지하에 존재하는 석탄으로 이루어진 지층(석탄층)을 말해, 그 종류는 특히 한정되지 않는다. 탄층에 함유된 탄으로는, 역청탄, 갈탄, 질 낮은 석탄, 무연탄 등을 들 수 있다. In the present invention, the coal seam refers to a strata (coal layer) made of coal existing underground, and the kind thereof is not particularly limited. Examples of the coal contained in the coal seam include bituminous coal, lignite coal, low quality coal, anthracite coal and the like.
본 발명은 도 1에 도시된 바와 같이, 생산정(1)에서 CBM가스가 고정된 탄층(2)의 아래로 시추관(10)을 삽입하여, 상기 삽입된 시추관(10)의 내부관(11)의 튜브로 탄층에 함유된 물을 펌프(20)로 탈리 및 회수함으로써, 탄층의 압력이 저하됨으로써, 탄층에 고정되어있던 CBM가스(주로 메탄가스)가 탈착될 수 있다. 상기 탈착된 탄화수소 가스는 가스의 투과도가 높은 탄층의 균열망을 따라 확산되는 방식으로 탄층으로부터 이동할 수 있으며, 상기 외부관(13)을 통해 CBM가스(18)가 확산이동되어 배출구(25)로부터 회수되는 방식이다. 이때, 탄층으로부터 탈리되어 회수된 지층수(16)는 배출구(23)로부터 기액분리기(미도시)로 보내어져 물 중에 함유된 CBM 등의 잔류가스를 분리할 수 있다. 분리된 가스는 탄층에서 외부관(13)으로 회수된 CBM 가스와 혼합되어 가스 생산량을 증대시킴으로써, 생산 효율 및 공정의 경제성을 향상시킬 수 있다.The present invention, as shown in Figure 1, by inserting the drilling tube 10 down the coal seam 2 is fixed CBM gas in the production well (1), the inner tube of the inserted drilling tube 10 ( By desorbing and recovering the water contained in the coal seam with the tube of 11) by the pump 20, the pressure of the coal seam is lowered, whereby the CBM gas (mainly methane gas) fixed to the coal seam can be desorbed. The desorbed hydrocarbon gas may move from the coal seam in a manner that is diffused along the crack network of the coal seam having high permeability of the gas, and the CBM gas 18 is diffused and moved through the outer tube 13 to be recovered from the outlet 25. That's how it works. At this time, the groundwater 16 which is separated and recovered from the coal seam may be sent to the gas-liquid separator (not shown) from the outlet 23 to separate residual gas such as CBM contained in the water. The separated gas is mixed with the CBM gas recovered from the coal seam to the outer tube 13 to increase the gas yield, thereby improving production efficiency and process economics.
상기 탄층(2)으로부터 CBM 가스의 탈착은 전체 시스템의 압력보다는 탄화수소 가스의 부분압에 의해 제어될 수 있으며. 따라서, 펌프(20)에 의해 탄층에 함유된 물이 탈리되어 압력이 감소함으로써 이에 따라 탄층에 고정된 탄화수소의 부분압력이 감소함으로써 탄화수소가 탄층에서 탈착될 수 있다.Desorption of CBM gas from the coal seam (2) can be controlled by the partial pressure of hydrocarbon gas rather than the pressure of the whole system. Accordingly, the water contained in the coal seam is desorbed by the pump 20 so that the pressure is reduced, so that the partial pressure of the hydrocarbon fixed to the coal seam is reduced, so that the hydrocarbon can be desorbed from the coal seam.
상기 탄층(2)으로부터 탈착된 탄화수소는 탄층에 생성된 균열 중 비교적 투과도가 높은 균열망을 따라 가스농도의 차이에 따른 확산으로 이동하게 되며, 상기 시추관(10)의 외부관(13)으로 확산이동하여 생산정에서 회수될 수 있다.Hydrocarbon desorbed from the coal bed 2 is moved to the diffusion according to the difference in gas concentration along the crack network having a relatively high permeability among the cracks generated in the coal bed 2, and diffuses to the outer tube 13 of the drilling tube 10. It can be moved and recovered from the production wells.
상기 탄층 내에 함유된 메탄(CBM)의 양은 탄층의 탄화 정도, 매몰심도에 따라 그 함량이 다를 수 있으며, 탄층의 탄화 정도가 높고 심도가 깊을수록 가스함유량은 증가할 수 있다. 상기 탄층에 흡착된 메탄의 탈리는 탄층의 압력 감소에 의해 일어나며, 이때 흡착된 메탄의 탈리를 위해서는 일반적으로 15psia 이하로 압력이 감소되는 것이 최적일 수 있다.The amount of methane (CBM) contained in the coal seam may vary depending on the degree of carbonization of the coal seam and the investment depth, and the higher the carbonization degree and the deeper the coal seam, the higher the gas content. Desorption of the methane adsorbed to the coal seam is caused by a decrease in pressure of the coal seam, and it may be optimal to reduce the pressure to 15 psia or less for the desorption of the adsorbed methane.
본 발명의 다른 구현예에 따르면, 탄층의 생산정의 가스생산을 위해 지하수 펌핑에 의한 압력저하 공정 이외에 인공적인 자극을 가하는 공정이 더 수행될 수 있다. 상기 자극공정은 탄층의 투수율을 높이기 위한 압력적용, 프로판트 삽입, 복합열극개설 방법 등이 사용될 수 있으며, 이에 따라, CBM가스를 생산하기 위한 시추관은 그것의 위치, 시추관 사이의 간격, 시추관 손상으로부터의 보호 등 여러 가지 조건이 달라질 수 있다. According to another embodiment of the present invention, a process of applying an artificial stimulus may be further performed in addition to the pressure lowering process by groundwater pumping for gas production of the coal well production. The stimulation process may be a pressure application, a proppant insertion, a composite thermode opening method, etc. to increase the permeability of the coal seam, and accordingly, the drilling pipe for producing CBM gas has its location, spacing between the drilling pipes, and drilling Various conditions can vary, including protection against tube damage.
본 발명에 따른 바람직한 자극공정은 자극가스를 주입에 따른 압력적용 방법이 시행될 수 있다. 상기 자극가스로는 사용의 조건에서 석탄에 매우 잘 흡착되거나 석탄과 반응하지 않는 비활성 가스로서, 예를 들면, 질소, 헬륨, 아르곤, 공기 및 수증기 또는 이들이 혼합물로 이루어진 군에서 선택되는 것일 수 있다. 경제적인 관점에서 80%의 질소를 포함하는 공기가 보다 바람직할 수 있다. Preferred stimulation process according to the present invention can be carried out a pressure application method according to the injection of stimulation gas. The stimulating gas is an inert gas which is very well adsorbed to or does not react with coal at the conditions of use, for example, nitrogen, helium, argon, air and water vapor or a mixture thereof may be selected. From an economic point of view, air containing 80% nitrogen may be more preferred.
상기 자극가스는 탄층에 주입된 뒤 물의 탈리 및 회수과정에서 물 또는 탄화수소와 함께 회수됨으로써, 탄층에 고정된 탄화수소의 압력감소 및 균열망의 투과도를 개선시키고 탄화수소 가스의 확산을 원활하게 함으로써 가스 회수공정을 원활하게 할 수 있다. 또한, 상기 자극가스는 회수되는 탄화수소가스에 포함되어 배출될 수 있다.The irritant gas is injected into the coal seam and recovered together with water or hydrocarbons during the desorption and recovery of water, thereby improving the pressure of hydrocarbons fixed in the coal seam and improving the permeability of the cracking network and smoothing the diffusion of the hydrocarbon gas. You can do it smoothly. In addition, the irritant gas may be included in the hydrocarbon gas recovered and discharged.
본 발명에 따르면, 상기 탄층으로부터 CBM가스를 탈리하고 생산하기 위해 하나의 생산정에서 탄층의 일정한 깊이에 대해 여러 개의 시추공을 형성할 수 있으며, 상기 시추공은 탄층에 수평하게 형성될 수도 있다. 상기 다각적인 시추공은 더 높은 CBM가스의 회수율을 증가 시킬 수 있다. According to the present invention, in order to detach and produce CBM gas from the coal seam, a plurality of boreholes may be formed at a predetermined depth of the coal seam in one production well, and the borehole may be formed horizontally in the coal seam. The multiple boreholes can increase the recovery of higher CBM gas.
이와 같은 효과는, 탄층의 깨짐에 의해 공극성(fracture porosity)이 생길 수 있으며, 이는 탄층 고유의 클리트(cleat)에 의해 생성될 수 있으며, 상기 클리트는 서로 거의 수직을 이루는 두 개의 클리트로 형성될 수 있다. 상기 클리트들은 탄층의 연장성이 좋은 페이스 클리트(face cleat)와 상기 페이스 클리트 사이를 수직으로 연결시키는 버트 클리트(butt cleat)로 나눌 수 있다. 상기 연장성이 양호한 페이스 클리트(face cleat)에 의해 CBM가스 생산 공정시 시추관을 수직으로 형성하는 것에 비해 수평으로 형성하였을 경우 그 시추관의 형성공정이 보다 효율적일 수 있으며, 탈리된 CBM 가스가 자연스럽게 이동하는 방향과 일치함으로써, 그 생산성이 향상 될 수 있다.This effect can result in fracture porosity due to the fracture of the coal seam, which can be created by the coal seam-specific cleat, which is to be formed of two cleats that are nearly perpendicular to each other. Can be. The cleats may be divided into face cleats having good coal seam extension and butt cleats that vertically connect the face cleats. When the horizontally formed drilling tube is vertically formed in the CBM gas production process by a face cleat having good extension, the forming process of the drilling tube may be more efficient, and the detached CBM gas is naturally By coinciding with the moving direction, the productivity can be improved.
도 2는 본 발명의 일 구현예에서 사용될 수 있는 기액분리기를 개략적으로 도시한다. 기액분리기는 도 1에 도시된 시추관의 내부관(11) 배출구(23)에 연결된다. 2 schematically illustrates a gas-liquid separator that may be used in one embodiment of the present invention. The gas-liquid separator is connected to the outlet 23 of the inner tube 11 of the drilling tube shown in FIG.
도 1 및 도 2에 따르면, 시추관의 내부관(11)으로 회수된 지층수는 배출구(23)에 연결된 가스분리기로 보내어져 상기 지층수에 잔류된 가스가 분리될 수 있으며, 상기 가스분리기에서 회수된 잔류가스는 탄층에서 배출된 CBM 가스와 함께 회수되어 사용될 수 있다. 상기 기액분리기는 기상과 액상을 분리시킬 수 있는 장치라면 한정되지 않고 사용가능하며, 상부로는 천연가스가 분리되고, 하단으로는 물이 분리되어 물에 함유된 가스를 분리하는 장치일 수 있다.1 and 2, the groundwater recovered to the inner tube 11 of the drilling pipe is sent to the gas separator connected to the outlet 23, the gas remaining in the groundwater can be separated, in the gas separator The recovered residual gas may be recovered and used together with the CBM gas discharged from the coal seam. The gas-liquid separator may be used as long as it is a device capable of separating the gas phase and the liquid phase. The gas liquid separator may be a device that separates gas contained in water by separating natural gas from the upper part and water from the lower part.
일 구현예에 따르면, 상기 기액분리기는 데미스터(demister)(35)를 구비하여, 비산하는 액적으로부터 액상과 기상을 분리시킬 수 있다. According to one embodiment, the gas-liquid separator is provided with a demister (35), it is possible to separate the liquid phase and the gaseous phase from the flying droplets.
일 구현예에 따르면, 상기 시추관의 내부관(11)에서 배출된 물이 액적의 형태로 데미스터가 장착된 기액분리기의 액적 분사기(31)로 유입되며, 분사된 물방울이 데미스터(35)와 충돌하면서 조직화된 와이어와 관성충돌을 일으키며, 상기 충돌된 입자는 서로 응집되어 더 큰 물방울로 성장하게 되어 체적이 증가한다. 체적이 증가된 물방울(39)은 중력에 의해 아래로 떨어져 회수되는 원리로 기상과 액상이 분리될 수 있다.According to one embodiment, the water discharged from the inner tube 11 of the drilling tube is introduced into the droplet injector 31 of the gas-liquid separator equipped with the demister in the form of droplets, the sprayed droplet is the demister 35 Colliding with, causing organized wires and inertia collisions, the collided particles agglomerate with each other and grow into larger droplets, increasing in volume. The droplet 39 having an increased volume may be separated by gravity to separate the gas phase and the liquid phase.
또한, 상기 기액분리기는 가스(37)와 분리되어 회수된 물의 수위에 따라 가스배출부(33)의 작동이 제어될 수 있다. 예를 들면, 기액분리기는 가스(37)가 제거된 물이 유출되는 유출부(40)와 연결된 챔버와 상기 챔버 내에 위치하여 유출된 물의 수위를 측정하는 레벨스위치(미도시)를 더 포함할 수 있으며, 상기 레벨스위치는 기액분리기에서 분리된 가스를 이동시켜 배출하는 가스배출부(33)와 연동되어 상기 레벨스위치에 의해 측정된 상기 물의 수위에 따라 상기 가스배출부(33)의 작동이 제어될 수 있다. 즉, 상기 레벨스위치에 의해 측정된 상기 챔버 내의 물의 수위가 일정 수위 이하인 경우 상기 제어장치가 상기 가스배출부(33)를 작동시켜 상기 챔버 내부 상측에 축적된 가스를 외부로 배출하는 방식일 수 있다.In addition, the gas-liquid separator may be controlled to operate the gas discharge unit 33 in accordance with the water level of the water separated and recovered from the gas (37). For example, the gas-liquid separator may further include a chamber connected to the outlet 40 through which the water from which the gas 37 has been removed is discharged, and a level switch (not shown) for measuring the level of the water discharged in the chamber. In addition, the level switch is linked to the gas discharge unit 33 for moving and discharging the gas separated from the gas-liquid separator to control the operation of the gas discharge unit 33 in accordance with the water level measured by the level switch. Can be. That is, when the level of water in the chamber measured by the level switch is below a certain level, the control device may operate the gas discharge unit 33 to discharge the gas accumulated in the upper side of the chamber to the outside. .
일 구현예에 따르면, 상기 기액분리기는 물의 온도가 30℃ 내지 60℃, 바람직하게는 30 내지 50℃, 운전압력은 0.3 내지 1.5 MPa, 바람직하게는 0.5 내지 0.9 MPa인 공정 조건을 유지하는 것일 수 있다.According to one embodiment, the gas-liquid separator may be to maintain the process conditions of the water temperature of 30 ℃ to 60 ℃, preferably 30 to 50 ℃, the operating pressure is 0.3 to 1.5 MPa, preferably 0.5 to 0.9 MPa have.
한편, 상기 기액분리기로부터 가스가 제거된 물의 유출부(40)에는 필터가 장착되어 있을 수 있으며, 상기 물은 필터를 거쳐 밖으로 배출되는 것일 수 있다. 상기 물에는 CBM가스의 생산시 대량의 지층수를 취출하는 과정에 있어서 탄층에 포함된 중금속 등의 다양한 염류가 포함되어 있을 수 있다. 상기 중금속 염들은, 예를 들면 불순물로서 염화물 이온이나 크롬, 망간, 아연, 몰리브덴 등의 중금속 염류 등을 포함하고 있을 수 있다. 상기와 같은 지층수에 포함된 중금속 염등의 물질이 그대로 배출될 경우 환경적으로 문제를 일으킬 수 있는 요인이 될 수 있다. On the other hand, a filter may be mounted to the outlet portion 40 of the water from which the gas is removed from the gas-liquid separator, and the water may be discharged out through the filter. The water may contain various salts such as heavy metals included in the coal seam in the process of extracting a large amount of groundwater in the production of CBM gas. The heavy metal salts may include, for example, chloride ions, heavy metal salts such as chromium, manganese, zinc, molybdenum, and the like as impurities. If the material such as heavy metal salts contained in the above groundwater is discharged as it may be a factor that can cause environmental problems.
따라서, 상기 탄층으로부터 취출한 지층수로부터 이러한 환경문제를 일으키는 중금속 염 등을 제거할 수 있도록 필터를 설치하여 제거함과 동시에 지층수에 포함된 잔류가스를 제거함으로써, 탄층 가스 생산공정에서 생성되는 폐수의 효율적인 처리를 가능하게 할 수 있다. Therefore, by installing and removing a filter to remove heavy metal salts causing such environmental problems from the groundwater extracted from the coal seam, and removing residual gas contained in the groundwater, the wastewater generated in the coal seam gas production process Efficient processing can be enabled.
상기 필터과정은 기액분리기를 거치기 이전 또는 기액분리기를 거친 이후에 진행될 수 있으며, 필터과정에서 수득된 불순물로서의 중금속 염들은 천연자원으로 사용이 가능할 수 있다. 상기 필터는 세라믹 입자들이 패킹된 여과필터일 수 있으나, 이에 한정되는 것은 아니다.The filtering process may be performed before the gas-liquid separator or after the gas-liquid separator, and the heavy metal salts as impurities obtained in the filtering process may be used as natural resources. The filter may be a filtration filter packed with ceramic particles, but is not limited thereto.
도 3은 본 발명의 일 구현예에 따른 공정도이다. 도 3에 도시된 바와 같이 기액 분리기는 복수개 설치하는 것도 가능하다. 시추공의 외부관에서 배출된 가스와 제1 및 제2 기액분리기(V-301, V-302)에서 배출된 가스는 컴프레셔(C-401)에서 압축시켜 버퍼 탱크에 저장될 수 있으며, 상기 버퍼 탱크에 저장된 CBM 가스는 메탄가스 이외에도 질소, 산소, 이산화탄소, 황화수소 또는 이들의 혼합물을 더 포함하는 혼합가스일 수 있다. 상기 버퍼탱크에 저장된 CBM 가스는 정제장치를 거쳐 최적화된 CBM 가스를 생산할 수 있다.3 is a flowchart according to an embodiment of the present invention. As shown in FIG. 3, a plurality of gas-liquid separators may be provided. The gas discharged from the outer tube of the borehole and the gas discharged from the first and second gas-liquid separators V-301 and V-302 may be compressed in the compressor C-401 and stored in the buffer tank. The CBM gas stored in the gas may be a mixed gas further comprising nitrogen, oxygen, carbon dioxide, hydrogen sulfide, or a mixture thereof in addition to methane gas. The CBM gas stored in the buffer tank may produce an optimized CBM gas through a purification device.
본 발명에 따른 방법은 지하층에 매장된 메탄가스, 세일가스, 천연가스를 포집함으로써 연료자원을 확보할 수 있도록 해주며, 또한, 상기 생산공정에서 발생하는 가스를 함유한 공정폐수로부터 상기 가스를 분리하여 재사용하는 방법을 제공함으로써 보다 경제적이고 효율적으로 가스를 포집할 수 있으며, 동시에 폐수에 의한 환경문제도 함께 해결할 수 있어 실제공정에 효과적으로 적용할 수 있을 것으로 기대된다.The method according to the present invention makes it possible to secure fuel resources by capturing methane gas, sail gas and natural gas buried in the basement layer, and also separating the gas from process wastewater containing gas generated in the production process. It is expected to be able to collect gas more economically and efficiently by providing a method of reusing it, and at the same time, it is possible to effectively solve the environmental problems caused by waste water, so that it can be effectively applied to actual processes.
*부호의 설명* Description of the sign
1 : 생산정1: production tablet
2 : 탄층2: coal seam
10 : 시추관10: drilling tube
11 : 시추관의 내부관(튜브관)11: inner tube of the drilling tube (tube tube)
13 : 시추관의 외부관(케이싱)13: Outer tube of casing pipe (casing)
16 : 지층수의 흐름16: flow of groundwater
18 : CBM가스의 확산18: Diffusion of CBM Gas
20 : 펌프20: pump
23 : 지층수 배출구23: groundwater discharge port
25 : CBM가스 배출구25: CBM gas outlet
31 : 액적 분사기31: droplet injector
33 : 가스배출부33: gas discharge unit
35 : 데미스터35: Demister
37 : 데미스터에서 분리된 잔류가스37: residual gas separated from the demister
39 : 물방울39: water drop
40 : 잔류가스가 제거된 물의 유출부40: outlet portion of water from which residual gas is removed
C-401 : 컴프레셔C-401: Compressor
V-301 : 제1기액분리기V-301: First Gas Liquid Separator
V-302 : 제2기액분리기V-302: Second Gas Liquid Separator

Claims (9)

  1. 탄에 고정된 가스를 갖는 탄층의 위치를 파악하는 단계;Determining the position of the coal seam having the gas fixed to the coal;
    상기 탄층과 소통하는 적어도 하나의 생산정(production well)을 설치하는 단계;Installing at least one production well in communication with the coal seam;
    상기 생산정에 상기 탄층과 소통하며, 물이 이동하는 내부관 및 상기 내부관 둘러싸는 외부관으로 이루어진 이중관형 시추관을 설치하는 단계;Installing a double-tubular drilling tube in communication with the coal seam and including an inner tube through which water moves and an outer tube surrounding the inner tube;
    상기 시추관의 내부관에 펌프를 연결하여 탄층에 함유된 물을 탈리시켜 상기 내부관을 통해 배출시키는 단계;Connecting a pump to the inner tube of the drilling tube to desorb water contained in the coal seam to discharge through the inner tube;
    상기 탄층으로부터 물이 탈리됨으로 인한 압력저하로 탄층에서 탈착된 탄층 가스가 확산이동하여 상기 외부관으로 배출되는 단계; 및 Discharging the coal seam gas desorbed from the coal seam by the pressure drop due to desorption of water from the coal seam to be discharged to the outer tube; And
    상기 내부관으로부터 배출된 물을 기액분리기로 보내어 물에 함유된 탄층 가스를 분리하여 회수하는 단계를 포함하는 탄층 가스 생산 방법.Sending the water discharged from the inner tube to the gas-liquid separator to separate and recover the coal seam gas contained in the water.
  2. 제1항에 있어서,The method of claim 1,
    상기 기액분리기는 데미스터(demister)가 장착되어 있으며, 상부로는 가스가 배출되고, 하단으로는 물이 배출되어 물에 함유된 가스가 분리되는 것인 탄층 가스 생산 방법.The gas-liquid separator is equipped with a demister, the gas is discharged to the top, the water is discharged to the bottom of the coal seam gas production method that is separated.
  3. 제1항에 있어서,The method of claim 1,
    상기 기액분리기는 가스와 분리되어 회수된 물의 수위에 따라 분리된 가스의 가스배출부의 작동이 제어되는 것인 탄층 가스 생산 방법. The gas-liquid separator is coal seam gas production method in which the operation of the gas discharge portion of the separated gas is controlled in accordance with the level of water recovered by separating the gas.
  4. 제1항에 있어서,The method of claim 1,
    상기 기액분리기는 물의 온도가 30℃ 내지 60℃, 운전압력은 0.3 내지 1.5 MPa인 공정 조건에서 운전되는 것인 탄층 가스 생산 방법.The gas-liquid separator is a coal bed gas production method that is operated under the process conditions of the water temperature of 30 ℃ to 60 ℃, the operating pressure is 0.3 to 1.5 MPa.
  5. 제1항에 있어서,The method of claim 1,
    상기 탄층으로부터 물을 펌핑하여 탈리시키는 단계 이전에 탄층내부에 자극가스를 주입하는 단계를 더 포함할 수 있으며, 상기 물이 회수되는 단계에서 상기 자극가스가 함께 회수되는 것인 탄층 가스 생산 방법.And a step of injecting a stimulus gas into the coal seam before the step of pumping water from the coal seam and detaching the coal seam gas, wherein the stimulus gas is recovered together with the water.
  6. 제1항에 있어서,The method of claim 1,
    상기 자극가스가 질소, 공기, 이산화탄소, 또는 수증기로 이루어진 군에서 선택되는 하나 이상인 탄층 가스 생산 방법.The method of claim 1, wherein the stimulation gas is at least one selected from the group consisting of nitrogen, air, carbon dioxide, or water vapor.
  7. 제1항에 있어서,The method of claim 1,
    상기 분리되어 포집된 가스는 메탄가스, 질소, 산소, 이산화탄소, 황화수소 또는 이들의 혼합물을 포함하는 가스인 탄층 가스 생산 방법. The separated and collected gas is a gas containing coal methane, nitrogen, oxygen, carbon dioxide, hydrogen sulfide or a mixture thereof.
  8. 제1항에 있어서,The method of claim 1,
    상기 생산정은 수직과 수평의 시추공이 여러 개 형성된 것인 탄층 가스 생산 방법.The production well is coal seam gas production method is formed with a plurality of vertical and horizontal boreholes.
  9. 제1항에 있어서,The method of claim 1,
    상기 생산된 탄층 가스는 컴프레셔에 의해 압축된 후 정제공정을 거쳐 사용되는 것인 탄층 가스 생산 방법.The produced coal seam gas is compressed by a compressor and then used through a refining process.
PCT/KR2015/010659 2014-11-10 2015-10-08 Method for producing coal bed gas WO2016076537A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0155670 2014-11-10
KR1020140155670A KR20160055628A (en) 2014-11-10 2014-11-10 Coalbed gas production process

Publications (1)

Publication Number Publication Date
WO2016076537A1 true WO2016076537A1 (en) 2016-05-19

Family

ID=55954583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/010659 WO2016076537A1 (en) 2014-11-10 2015-10-08 Method for producing coal bed gas

Country Status (2)

Country Link
KR (1) KR20160055628A (en)
WO (1) WO2016076537A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019205577A1 (en) * 2018-04-28 2019-10-31 中国矿业大学 Simulation test system for gas extraction from tectonically-deformed coal seam in-situ by depressurizing horizontal well cavity
WO2019205578A1 (en) * 2018-04-28 2019-10-31 中国矿业大学 Simulation test system for gas extraction from tectonically-deformed coal seam in-situ by depressurizing horizontal well cavity

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5462116A (en) * 1994-10-26 1995-10-31 Carroll; Walter D. Method of producing methane gas from a coal seam
JP2003214082A (en) * 2002-01-18 2003-07-30 Tobishima Corp Gas hydrate drilling and collecting method and its device
US6745815B1 (en) * 2000-03-15 2004-06-08 Corley P. Senyard, Sr. Method and apparatus for producing an oil, water, and/or gas well
JP2005213824A (en) * 2004-01-28 2005-08-11 Univ Akita Integrated provision having facility for natural gas production from methane hydrate sedimentary layer and power generation facility
KR20120139922A (en) * 2011-06-20 2012-12-28 한국에너지기술연구원 Gas-liquid separating apparatus using the baffle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5462116A (en) * 1994-10-26 1995-10-31 Carroll; Walter D. Method of producing methane gas from a coal seam
US6745815B1 (en) * 2000-03-15 2004-06-08 Corley P. Senyard, Sr. Method and apparatus for producing an oil, water, and/or gas well
JP2003214082A (en) * 2002-01-18 2003-07-30 Tobishima Corp Gas hydrate drilling and collecting method and its device
JP2005213824A (en) * 2004-01-28 2005-08-11 Univ Akita Integrated provision having facility for natural gas production from methane hydrate sedimentary layer and power generation facility
KR20120139922A (en) * 2011-06-20 2012-12-28 한국에너지기술연구원 Gas-liquid separating apparatus using the baffle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019205577A1 (en) * 2018-04-28 2019-10-31 中国矿业大学 Simulation test system for gas extraction from tectonically-deformed coal seam in-situ by depressurizing horizontal well cavity
WO2019205578A1 (en) * 2018-04-28 2019-10-31 中国矿业大学 Simulation test system for gas extraction from tectonically-deformed coal seam in-situ by depressurizing horizontal well cavity
AU2018420472B2 (en) * 2018-04-28 2021-04-01 Anhui University of Science and Technology Simulation test method for gas extraction from tectonically-deformed coal seam in-situ by depressurizing horizontal well cavity
US10995572B2 (en) 2018-04-28 2021-05-04 China University Of Mining And Technology Simulation test method for gas extraction from tectonically-deformed coal seam in-situ by depressurizing horizontal well cavity
US11035228B2 (en) 2018-04-28 2021-06-15 China University Of Mining And Technology Simulation test system for gas extraction from tectonically-deformed coal seam in-situ by depressurizing horizontal well cavity

Also Published As

Publication number Publication date
KR20160055628A (en) 2016-05-18

Similar Documents

Publication Publication Date Title
DK178723B1 (en) A method of mining and processing seabed sediment
US5860476A (en) Method and apparatus for separating a well stream
CN105041271B (en) A kind of buck exploiting ocean natural gas hydrates method and sub-sea production systems
CN104564072B (en) Complete non-coal-pillar continuous depressurized mining method for close-distance coal seam groups
CN108868706B (en) Method for exploiting natural gas hydrate by directional drilling supercritical carbon dioxide fracturing and displacement
US20070014634A1 (en) Systems and methods for underground storage of biogas
RU2689452C2 (en) Modular installation for processing flow of composition of reverse inflow and methods for processing it
CN109519211B (en) Method for extracting gas in mining area by using pre-extraction coal bed gas ground well
CN104533368B (en) Application and system of a kind of combustion in situ flue gas in oil reservoir exploitation
WO2016076537A1 (en) Method for producing coal bed gas
CN106522914A (en) Underground gasifier quenching and burnt-out area restoration treatment method for coal underground gasification process
US4117886A (en) Oil shale retorting and off-gas purification
US8783371B2 (en) Subsurface capture of carbon dioxide
CN207210018U (en) Three layer of four tower adsorption system that COD is adsorbed in a kind of coal chemical industrial waste water
US3871451A (en) Production of crude oil facilitated by injection of carbon dioxide
CN105114045A (en) CCUS system for extracting oil based on gas lifting method and application thereof
CN205840859U (en) The device of power-plant flue gas efficiently extracting natural gas hydrate
CA2176588C (en) Method for disposing carbon dioxide in a coalbed and simultaneously recovering methane from the coalbed
KR101304944B1 (en) Device for carbon dioxide solidification
CN217431329U (en) A device that is used for CCUS oil field associated gas carbon dioxide and lighter hydrocarbons to retrieve
KR20160078319A (en) Coalbed gas production process
CN115559700A (en) With CO 2 Underground coal gasification method for high geothermal abnormal region by combining geological sequestration technology
CN113803049B (en) Treatment method of oilfield fireflood produced gas
KR20180047764A (en) Improved coalbed gas production system
CN202745851U (en) Natural gas and drilling gas recycling equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15858293

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15858293

Country of ref document: EP

Kind code of ref document: A1