WO2016076434A1 - 歯髄由来多能性幹細胞を含有する筋ジストロフィー治療剤 - Google Patents

歯髄由来多能性幹細胞を含有する筋ジストロフィー治療剤 Download PDF

Info

Publication number
WO2016076434A1
WO2016076434A1 PCT/JP2015/082045 JP2015082045W WO2016076434A1 WO 2016076434 A1 WO2016076434 A1 WO 2016076434A1 JP 2015082045 W JP2015082045 W JP 2015082045W WO 2016076434 A1 WO2016076434 A1 WO 2016076434A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
muscular dystrophy
dental pulp
therapeutic agent
cell
Prior art date
Application number
PCT/JP2015/082045
Other languages
English (en)
French (fr)
Inventor
尚巳 岡田
優子 笠原
究 今川
Original Assignee
Jcrファーマ株式会社
学校法人日本医科大学
国立研究開発法人国立精神・神経医療研究センター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jcrファーマ株式会社, 学校法人日本医科大学, 国立研究開発法人国立精神・神経医療研究センター filed Critical Jcrファーマ株式会社
Priority to JP2016559128A priority Critical patent/JP6644702B2/ja
Priority to US15/526,370 priority patent/US20170327791A1/en
Priority to EP15859662.7A priority patent/EP3219322A4/en
Publication of WO2016076434A1 publication Critical patent/WO2016076434A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/48Reproductive organs
    • A61K35/54Ovaries; Ova; Ovules; Embryos; Foetal cells; Germ cells
    • A61K35/545Embryonic stem cells; Pluripotent stem cells; Induced pluripotent stem cells; Uncharacterised stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • C12N5/0664Dental pulp stem cells, Dental follicle stem cells
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New breeds of animals
    • A01K67/027New breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/32Bones; Osteocytes; Osteoblasts; Tendons; Tenocytes; Teeth; Odontoblasts; Cartilage; Chondrocytes; Synovial membrane
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0607Non-embryonic pluripotent stem cells, e.g. MASC
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • A01K2267/0306Animal model for genetic diseases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2502/00Coculture with; Conditioned medium produced by
    • C12N2502/13Coculture with; Conditioned medium produced by connective tissue cells; generic mesenchyme cells, e.g. so-called "embryonic fibroblasts"
    • C12N2502/1323Adult fibroblasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/50Proteins
    • C12N2533/52Fibronectin; Laminin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/50Proteins
    • C12N2533/54Collagen; Gelatin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2535/00Supports or coatings for cell culture characterised by topography
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor

Definitions

  • the present invention relates to a therapeutic agent for muscular dystrophy using pluripotent stem cells obtained from dental pulp, and more particularly to a therapeutic agent for muscular dystrophy using dental pulp-derived pluripotent stem cells obtained by culturing cells obtained from dental pulp.
  • DMD Duchenne Muscular Dystrophy
  • BMD Becker Muscular Dystrophy
  • an antisense oligonucleotide having a sequence complementary to muscular dystrophin mRNA and capable of binding complementary to mRNA is used to skip exons including abnormal sites of muscular dystrophin gene.
  • Treatment methods have been proposed that induce splicing and reduce muscular strength in patients by expressing partially functional dystrophin, although the function is reduced compared to normal dystrophin (Patent Documents 1 to 3, Patent Documents 2 and 3).
  • Patent Documents 1 to 3, Patent Documents 2 and 3 Patent Documents 1 to 3, Patent Documents 2 and 3
  • the therapeutic method using such antisense oligonucleotide has not been put into practical use yet.
  • Human mesenchymal stem cells are stem cells present in mesenchymal tissue and have the ability to differentiate into many cells such as bone cells, cardiomyocytes, and adipocytes. It is known that mesenchymal stem cells can be obtained from tissues such as bone marrow, adipocytes, placental tissue or umbilical cord tissue, and dental pulp (Patent Documents 4 to 7). Focusing on this differentiation ability of human mesenchymal stem cells, attempts have been made using DMD model mice to repair skeletal muscle at the lesion site using human mesenchymal stem cells (Non-patent Document 4). And based on such knowledge, the feasibility of DMD treatment using human mesenchymal stem cells has been discussed (Non-Patent Document 5). The feasibility of DMD treatment using myogenic cells obtained by differentiating human mesenchymal stem cells in vitro has also been examined (Non-patent Document 6).
  • the pulp is a fibrillar connective tissue that fills the dental pulp cavity of the tooth, and is classified into a crown pulp and a root pulp according to the location of the pulp.
  • mesenchymal stem cells in the dental pulp which is a mesenchymal tissue
  • stem cells derived from dental pulp do not differentiate into adipocytes, suggesting the presence of stem cells other than mesenchymal stem cells (Patent Document 8).
  • Stem cells obtained from the dental pulp of the deciduous tooth have a higher proliferative capacity and higher expression of FGF2, TGF- ⁇ , collagen I and collagen III than those obtained from the dental pulp of the permanent tooth. It has also been reported that the properties differ from those of stem cells present in the dental pulp (Patent Document 9).
  • pluripotent stem cells derived from dental pulp have been reported to have different properties from bone marrow-derived mesenchymal stem cells with respect to induction of differentiation into osteoblasts (Patent Document 10).
  • Patent Document 11 As a method for obtaining stem cells from dental pulp, for example, a method for obtaining mesenchymal stem cells from dental pulp, the following has been reported (Patent Document 11). That is, the tissue obtained by crushing the extracted tooth is treated with type I collagenase and dispase, passed through a filter to remove cell clumps, and a cell suspension is obtained. Cells are then grown in culture flasks using DMEM medium containing 20% FBS. Cells that have adhered to the inner surface of the culture flask and proliferated are removed by trypsinization and collected. The cells thus collected are considered to be mesenchymal stem cells.
  • pulp suspension obtained by crushing teeth is passed through feeder cells in a feeder cell culture container containing feeder cells with suppressed cell proliferation ability. Culturing without direct contact with the feeder cells on the membrane having micropores that can block the bottom surface of the membrane so that the lower surface is not in contact with the feeder cells; A method of collecting cells grown on the membrane as stem cells has been reported (Patent Document 12). There is also a report about a serum-free medium for culturing mesenchymal stem cells derived from dental pulp (Patent Document 13).
  • an object of the present invention is to provide a therapeutic agent for muscular dystrophy using pluripotent stem cells obtained from dental pulp.
  • the present inventors have found that the motor function of the model animal can be improved by intravenously injecting pluripotent stem cells obtained from dental pulp into the muscular dystrophy model animal.
  • the present invention has been completed. That is, the present invention provides the following. (1) A therapeutic agent for muscular dystrophy comprising pluripotent stem cell-enriched human dental pulp-derived cells as an active ingredient. (2) The therapeutic agent for muscular dystrophy according to 1 above, which suppresses muscle inflammation associated with muscular dystrophy.
  • the recovered cell is a membrane having micropores capable of preventing passage of the supporting cells in a second culture vessel containing supporting cells with suppressed cell proliferation ability, the lower surface of which is the On the membrane that is supported in the second culture vessel so as not to come into contact with the feeder cells, the cells cultured without being brought into direct contact with the feeder cells and then grown on the membrane are allowed to grow. Recovering as stem cell-rich human dental pulp-derived cells. (5) The therapeutic agent for muscular dystrophy according to 4 above, wherein the step (c) is repeated at least once.
  • the culture is performed using Dulbecco's modified Eagle medium containing 10 to 25% fetal bovine serum and 3 to 5 mM L-alanyl-L-glutamine, and having a glucose concentration of 5 to 7 mM. 9.
  • the therapeutic agent for muscular dystrophy according to any one of 3 to 8 above.
  • the culture is carried out using Dulbecco's modified Eagle medium containing 20% fetal bovine serum and 4 mM L-alanyl-L-glutamine, wherein the glucose concentration is 5.5 to 5.7 mM.
  • the production method adds the cells collected as the pluripotent stem cell-enriched human dental pulp-derived cells to a new culture container at a density of 1 ⁇ 10 3 to 2 ⁇ 10 4 cells / cm 2 , 11.
  • the production method adds the cells collected as the pluripotent stem cell-enriched human dental pulp-derived cells to a new culture container at a density of 5 ⁇ 10 3 to 1 ⁇ 10 4 cells / cm 2 , 11.
  • the pluripotent stem cell-enriched human dental pulp-derived cells have positive surface antigen markers CD29, CD44, CD73, CD90, CD105 and CD166, and negative CD34 and CD45. 12.
  • the above 1 to 13 wherein the pluripotent stem cell-enriched human dental pulp-derived cells have the ability to differentiate into chondrocytes and the ability to differentiate into osteoblasts, and have the ability to suppress T cell proliferation.
  • the therapeutic agent for muscular dystrophy according to any one of the above.
  • the pluripotent stem cell-enriched human dental pulp-derived cell is administered at 5 ⁇ 10 5 to 2 ⁇ 10 7 per kg of body weight per administration, The therapeutic agent for muscular dystrophy described in 1.
  • the therapeutic agent for muscular dystrophy as described in 15 above which is administered at least twice at intervals of 3 to 21 days.
  • the therapeutic agent for muscular dystrophy according to 15 above which is administered at least twice at intervals of 5 to 14 days.
  • the therapeutic agent for muscular dystrophy as described in 15 above which is administered at least twice every week.
  • a therapeutic agent for muscular dystrophy containing pluripotent stem cells derived from dental pulp having a stable trait particularly a therapeutic agent for Duchenne muscular dystrophy, can be provided.
  • the term “dental pulp” is composed of a connective tissue including blood vessels, nerves and lymphatic vessels, and an odontoblast layer capable of depositing and repairing from the inside of the dentin at the margin, It refers to the fibrillar connective tissue that fills the dental pulp cavity of a tooth. Further, the pulp can be classified into a crown pulp and a root pulp according to the site of existence, but the term pulp in the present invention means one containing at least either the crown pulp or the root pulp.
  • the tooth extraction body for acquiring the pulp is preferably within 24 hours after extraction, more preferably within 12 hours after extraction.
  • the dental pulp taken out from the extracted tooth is shredded using a scissors or the like and then treated with a proteolytic enzyme.
  • the proteolytic enzyme used at this time is preferably a mixed solution of collagenase type II and dispase, and the concentrations thereof are preferably 1 to 2 mg / mL and 3000 to 7000 kg / mL, more preferably about 1.5 mg / mL, respectively. mL and about 5000 units / mL.
  • the treatment temperature with the proteolytic enzyme is preferably 35 to 37 ° C., and the treatment time is 1 to 3 hours.
  • a pulp suspension is obtained by loosening the pulp after the proteolytic enzyme treatment by pipetting or the like.
  • the pulp suspension is preferably centrifuged once to precipitate cells and the like.
  • the precipitated cells are resuspended in the medium after removing the supernatant.
  • the pulp suspension obtained in this way includes pulp tissue as well as cells released from the pulp.
  • pulp-derived cells in dental pulp suspension refers to cells released from dental pulp and contained in dental pulp suspension together with tissue fragments of dental pulp.
  • pluripotent stem cell-enriched human dental pulp-derived cells are cells derived from human dental pulp, and the proportion of pluripotent stem cells (number of cells) compared to cells directly collected from human dental pulp. This is a collection of cells derived from human dental pulp with an increased ratio, and includes isolated pluripotent stem cells finally obtained from human dental pulp through selection by culture or the like.
  • the term "supporting cell” refers to another cell used for promoting the proliferation of cells contained in the dental pulp when the dental pulp is cultured.
  • Supporting cells have a function of promoting proliferation of pluripotent stem cells by supplementing nutrients or special growth factors that are insufficient in the medium.
  • Supporting cells are treated in advance so that their cell proliferation ability is suppressed.
  • treatment methods include treatment with an agent that inhibits DNA replication in cells and X-ray irradiation. Mitomycin C can be suitably used as a drug that inhibits DNA replication in cells.
  • the cells that can be used as feeder cells are not particularly limited as long as they can promote the proliferation of pluripotent stem cells contained in the dental pulp, but are NIH3T3 cells, BALB / 3T3 cells, Swiss3T3, mesenchymal stem cells, and pulp derived Pluripotent stem cells are preferred, and NIH3T3 cells are particularly preferred.
  • mesenchymal stem cells are used as supporting cells, human bone marrow-derived mesenchymal stem cells obtained by the technique disclosed in US Pat. No. 5,486,359 are preferably used.
  • Mesenchymal stem cells derived from adipose tissue, dental pulp tissue, placental tissue, umbilical cord tissue, umbilical cord blood, and peripheral blood are also preferably used.
  • the culture container (support cell culture container) used for culturing feeder cells is not particularly limited as long as it can culture mammals, but is preferably one that allows cells to adhere and culture.
  • the support cells added to the culture vessel (support cell culture vessel) adhere to the bottom surface of the vessel.
  • the shape of the feeder cell culture vessel is not particularly limited, but a flat-bottomed dish is preferable. Examples of such flat-bottomed dish-type culture containers include commercially available 24-plates, 12-well plates, and 6-well plates.
  • the bottom surface of the support cell culture container is made of fibronectin, collagen (collagen type I, type IV, etc.), cell-adhesive glycoproteins such as laminin, or cells of these cell-adhesive glycoproteins so that the cells can be easily fixed. It is preferably coated with a peptide containing an adhesion active site (RGD sequence).
  • a membrane having micropores and capable of preventing the passage of feeder cells is attached to the inside of the feeder cell culture vessel.
  • the membrane is attached to the inside of the support cell culture vessel so that a culture space for the support cells can be secured below the bottom surface of the culture vessel, and the lower side thereof is not in contact with the support cells.
  • As the material of the film polyethylene terephthalate and polycarbonate are preferable, and polyethylene terephthalate is particularly preferable.
  • the micropores of this membrane are of a pore size that prevents the passage of feeder cells (and preferably more pluripotent stem cells) but allows the liquid component contained as a solute in the medium to pass through.
  • the pore diameter of the fine holes is preferably 0.1 to 1.5 ⁇ m, more preferably 0.2 to 1.2 ⁇ m, and still more preferably 0.4 to 1.0 ⁇ m.
  • Supporting cells and pluripotent stem cells
  • the component passes through the membrane.
  • the membrane is preferably coated beforehand with fibronectin, collagen (collagen type I, type IV, etc.), laminin or the like.
  • Cultivation is performed by adding the above pulp suspension onto the membrane.
  • the medium is added to the container as necessary so that the cells contained in the pulp suspension added on the membrane are completely covered with the medium. That is, culturing is performed with supporting cells on the lower side of the membrane (but not in contact with the membrane) and pulp suspension on the upper side.
  • components such as growth factors derived from supporting cells are also supplied to the upper side of the membrane through the micropores of the membrane.
  • components secreted from the tissue pieces contained in the pulp suspension are also supplied to the medium.
  • the medium used for dental pulp culture is preferably Dulbecco's modified Eagle medium containing 10-25% fetal calf serum, 3-5 mM L-alanyl-L-glutamine and 5-7 mM D-glucose, more preferably Is Dulbecco's modified Eagle medium containing 20% fetal calf serum, 4 mM L-alanyl-L-glutamine and 5.5-5.7 mM D-glucose.
  • Table 1 shows an example of the detailed composition of the medium. Each component can be replaced by its equivalent (eg, its salt).
  • the culture started by adding the above-described dental pulp suspension onto the membrane attached to the inside of the support cell culture vessel is referred to as primary culture (P0 culture) of dental pulp-derived cells.
  • P0 culture is preferably performed until a colony formed by cell growth on the membrane can be visually observed.
  • the supporting cells do not have to be the same, and may be performed while exchanging the supporting cells, for example, by transferring the above-mentioned membrane together with the cells and tissue pieces to a new supporting cell culture vessel. . It is preferable to perform such transfer when the feeder cells come off from the bottom surface of the feeder cell culture vessel during the culture.
  • the membrane is washed (with a suitable medium that is the same as or different from that used for the culture or with a washing solution such as a buffer solution that does not cause adverse effects on the cells) to remove floating cells and tissue fragments.
  • a suitable medium that is the same as or different from that used for the culture or with a washing solution such as a buffer solution that does not cause adverse effects on the cells
  • the colonized cells are detached from the surface of the membrane and collected.
  • Cell recovery is performed in the same manner as in the general recovery of cultured cells that adhere to containers. In other words, trypsin or other proteolytic enzyme is added, and the colonized cells are detached from the membrane and suspended. It can be performed by stopping the enzyme reaction by a conventional method.
  • the collected cells are added to the membrane and cultured again in a support cell culture vessel under the same conditions as in P0 culture (but not including dental pulp tissue fragments). In this specification, this culture is referred to as “pre-expansion culture” of dental pulp-derived cells.
  • pluripotent stem cells proliferate on the membrane most actively among dental pulp-derived cells. Therefore, by collecting the cells grown on the membrane, the pluripotent stem cell enrichment, which is a collection of cells in which the proportion of pluripotent stem cells is significantly increased compared to other cells originally contained in human dental pulp Human dental pulp-derived cells can be obtained.
  • the proportion of pluripotent stem cells in the recovered pluripotent stem cell-enriched human dental pulp-derived cells each time the pre-expansion culture is repeated is performed. Since the number of cells increases rapidly due to the speed of the cell, cells enriched with pluripotent stem cells can be obtained through the number of cultures.
  • the cell suspension obtained by recovering colonies formed on the membrane in the previous pre-culture is added to the new membrane in a new feeder cell culture vessel. Done.
  • the number of pre-expansion cultures performed Since it is only necessary to obtain pluripotent stem cell-enriched human dental pulp-derived cells that can be used only for expansion culture, which will be described later, the number of pre-expansion cultures is generally 2-5 times, even if they are performed multiple times. .
  • pluripotent stem cell-enriched human dental pulp-derived cells Once sufficient pluripotent stem cell-enriched human dental pulp-derived cells have been secured, they can be subjected to expanded culture, which can be performed using pluripotent stem cell-enriched human dental pulp with the required number of cells. It can be repeated until the derived cells are secured.
  • expanded culture refers to culture performed in the absence of supporting cells in order to increase the number of pluripotent stem cell-enriched human dental pulp-derived cells (particularly pluripotent stem cells).
  • pluripotent stem cells are actively proliferated even in the absence of supporting cells when the density of the cells in the culture container at the start of cell culture is above a certain level.
  • Such cell density is often at least 500 cells / cm 2 , preferably 1000 cells / cm 2 or more, more preferably 3000 cells / cm 2 or more, and even more preferably 5000 cells / cm 2 or more.
  • the cell density referred to here can be obtained by dividing the number of viable cells contained in the cell suspension seeded in the culture vessel at the start of expansion culture by the bottom area of the culture vessel.
  • the culture vessel used for expansion culture can be cultured with mammals fixed, and its bottom surface is made of fibronectin, collagen (collagen type I, type IV, etc.), laminin, etc. so that cells can be fixed easily. It is preferably coated with a cell adhesion glycoprotein or a peptide containing a cell adhesion active site (RGD sequence) of these cell adhesion glycoproteins.
  • a commercially available container for animal cell culture can be used.
  • the shape of the culture vessel used in the expansion culture is not particularly limited as long as the cells can be cultured with the cells fixed, and a flat-bottom dish type is preferable, but a roller bottle type may also be used.
  • the cells should have a cell density at the start of culture of preferably 1000 to 20000 cells / cm 2 , preferably 3000 to 15000 cells / cm 2 , more preferably 5000 to 10,000 cells / cm 2. It is seeded in a culture vessel and cultured until the proportion of cells on the bottom of the culture vessel is preferably 70 to 100%, more preferably 80 to 100%, still more preferably 90 to 100%, or preferably Is cultured for 5 to 10 days, more preferably 6 to 8 days, and even more preferably 7 days. The cultured cells are collected from the culture vessel by treating with trypsin or the like, and repeatedly cultured by expansion culture until the number of collected cells reaches a desired amount.
  • pluripotent stem cells proliferate most actively, and as a result, cells obtained by expanded culture are substantially composed only of pluripotent stem cells.
  • the pluripotent stem cells obtained by expansion culture preferably exhibit a homogeneous spindle-like shape when observed in a state where they adhere to the culture vessel.
  • human dental pulp-derived pluripotent stem cells can be divided more than 40 times from the beginning of the culture. Therefore, for example, it is theoretically possible to obtain about 1 ⁇ 10 12 or more cells from one pluripotent stem cell.
  • pluripotent stem cells having high mitotic potential may be relatively easy to obtain a tooth extraction body as a material.
  • pluripotent stem cells such as bone marrow-derived mesenchymal stem cells, It is a powerful source of sex stem cells.
  • the number of expansion cultures is preferably 12 times or less, More preferably, it is stopped 10 times or less, most preferably 5 times or less (for example, 4 or 5 times).
  • the pluripotent stem cell thus obtained preferably has a division ability of 40 times or more, more preferably has a division ability of 30 times or more, for example, has a division ability of 30 to 35 times. .
  • the term “pluripotent stem cell” refers to a cell that has proliferative ability and has the ability to differentiate into at least two types of cells.
  • the human dental pulp-derived pluripotent stem cells obtained by the present invention preferably have the ability to differentiate into chondrocytes and osteoblasts.
  • the human dental pulp-derived pluripotent stem cells obtained by the present invention are generally positive for CD29, CD44, CD73, CD90, CD105, and CD166 in the expression pattern of surface antigen markers, similar to human mesenchymal stem cells.
  • CD34 and CD45 are negative.
  • the therapeutic agent for muscular dystrophy of the present invention is intravenously infused or locally injected in a state where pluripotent stem cell-enriched human dental pulp-derived cells are suspended.
  • the pluripotent stem cell-enriched human dental pulp-derived cells in the present invention can be produced in large quantities using a plurality of tooth extraction bodies obtained from a plurality of providers and stored frozen.
  • a manufacturer such as a pharmaceutical company manufactures these cells in large quantities and stores them as a raw material or as a preparation and frozen as a preparation, and supplies it as a therapeutic drug upon request from a medical institution.
  • Frozen pluripotent stem cell-enriched human dental pulp-derived cells are thawed in a medical institution and administered to a patient.
  • the therapeutic agent for muscular dystrophy of the present invention contains pluripotent stem cell-enriched human dental pulp-derived cells (including finally isolated human dental pulp-derived pluripotent stem cells), for example, human serum albumin and dimethyl sulfoxide Suspended in bicarbonate Ringer's solution is formulated in a container that allows the contents to be frozen.
  • the bicarbonate Ringer solution refers to an infusion solution (Ringer solution) that is a type of electrolyte solution containing bicarbonate ions.
  • the bicarbonate Ringer's solution used at this time preferably contains bicarbonate ion, sodium ion, potassium ion, calcium ion, and chlorine ion as an electrolyte, the sodium ion concentration is 130 to 145 mEq, and the osmotic pressure ratio with respect to physiological saline is 0.9.
  • the bicarbonate Ringer's solution may further contain magnesium ions and citrate ions.
  • the preferable magnesium ion concentration at that time is 0.9 to 1.1 mEq / L, and the preferable citrate ion concentration is 4.5. ⁇ 5.5 mEq / L.
  • bicarbonate Ringer's solution 135 mEq / L sodium ion, 4 mEq / L potassium ion, 3 mEq / L calcium ion, 113 mEq / L chloride ion, and 1 mEq / L magnesium And ions containing 5 mEq / L citrate ions.
  • bicarbonate Ringer's solution is diluted with human serum albumin, dimethyl sulfoxide and pluripotent stem cell-enriched human dental pulp-derived cells, so the concentration of these ions in the formulation is determined by the dilution rate. It will be a response.
  • the concentration of human serum albumin in the preparation at this time is preferably 0.1 to 10 W / V%, more preferably 3 to 8 W / V%.
  • the concentration of dimethyl sulfoxide in the preparation at this time is preferably 8 to 12 W / V%.
  • the density of pluripotent stem cell-enriched human dental pulp-derived cells in the preparation is preferably 1 ⁇ 10 5 to 1 ⁇ 10 8 cells / mL, more preferably 1 ⁇ 10 6 to 1 ⁇ 10 6. 7 / mL.
  • pluripotent stem cell-enriched human dental pulp-derived cells are placed in bicarbonate Ringer's solution containing human serum albumin and dimethyl sulfoxide.
  • the therapeutic agent for muscular dystrophy formulated by sealing the suspension in a container that allows freezing of the contents is stored in liquid nitrogen or its vaporized atmosphere, and in order to order, in liquid nitrogen or its vaporized atmosphere It is transported to a medical institution in a state where it is placed on. The therapeutic agent is then thawed in a medical institution and then administered to a patient by intravenous injection either directly or added to an infusion.
  • the therapeutic agent for muscular dystrophy of the present invention can be used as a therapeutic agent for both Duchenne muscular dystrophy and Becker muscular dystrophy, and is particularly used as a therapeutic agent for Duchenne muscular dystrophy.
  • the therapeutic agent for muscular dystrophy of the present invention can also be used prophylactically for genetic carriers who have not developed muscular dystrophy in order to prevent the occurrence of muscle inflammation associated with muscular dystrophy.
  • the therapeutic agent for muscular dystrophy of the present invention is particularly used as a drug for suppressing muscle inflammation observed in patients with muscular dystrophy.
  • muscular inflammation is thought to induce muscular tissue degeneration in muscular dystrophy
  • muscular dystrophy therapeutic agent of the present invention it is possible to suppress muscular weakness caused by muscular tissue degeneration in muscular dystrophy patients.
  • Muscle here means mainly skeletal muscle, myocardium and respiratory muscle.
  • the muscular strength of the muscular dystrophy patient can be maintained, and the decline in walking ability can be suppressed.
  • cardiopulmonary ability of muscular dystrophy patients can be maintained by suppressing inflammation of myocardium and respiratory muscle.
  • the therapeutic agent for muscular dystrophy of the present invention is such that pluripotent stem cell-enriched human dental pulp-derived cells are administered per kg of human body weight per administration, preferably 5 ⁇ 10 5 to 2 ⁇ 10 7. More preferably, 1 ⁇ 10 6 to 1 ⁇ 10 7 doses are administered, more preferably 4 ⁇ 10 6 doses.
  • the therapeutic agent for muscular dystrophy of the present invention is preferably administered at least twice at intervals of 3 to 21 days, more preferably at least twice at intervals of 5 to 14 days, Preferably, it is administered at least twice every week. In general, dosing continues until the patient's symptoms are in remission.
  • Example 1 Preparation of pluripotent stem cell-enriched human dental pulp-derived cells (1) Preparation of feeder cells DMEM Low Glucose (Invitrogen) and FBS (Invitrogen) and L-alanyl-L-glutamine at final concentrations of 10% and 4 mM, respectively. This was added to make DMEM (10% FBS) medium. Mitomycin C (SIGMA) was dissolved in water for injection to a concentration of 0.2 mg / mL, and this was used as a mitomycin C solution.
  • DMEM Low Glucose Invitrogen
  • FBS Invitrogen
  • L-alanyl-L-glutamine L-alanyl-L-glutamine
  • FMEM Invitrogen
  • L-alanyl-L-glutamine was added to DMEM Low Glucose (Invitrogen) to a final concentration of 20% and 4 mM, respectively, and this was used as DMEM (20% FBS) medium. .
  • NIH3T3 cells cryopreserved in liquid nitrogen were removed and thawed in a thermostat set at 37 ° C.
  • DMEM (10% FBS) medium was added to suspend the cells and centrifuged (1500 rpm, 5 minutes). Discard the supernatant, suspend the cells in DMEM (10% FBS) medium, seed them in a 75 cm 2 culture flask, and in the presence of 5% CO 2 at 37 ° C until the cell density reaches 80-90%. In culture.
  • DMEM Dulbecco's phosphate buffer
  • mitomycin C solution 9.6 mL of DMEM (10% FBS) medium plus 0.4 mL of mitomycin C solution was added to the culture flask and 5% CO2. 2 in the presence of 37 ° C. After removing the medium, the cells were washed with D-PBS, 1 mL of 0.25% trypsin-EDTA solution was added, and the cells were allowed to stand at 37 ° C. for 5 to 10 minutes. After confirming cell detachment, DMEM (10% FBS ) The medium was added to stop the reaction, the cells were suspended, and the number of viable cells was counted with a hemocytometer.
  • the feeder cells were taken out of liquid nitrogen, thawed, added with DMEM (20% FBS) medium and suspended, and then centrifuged (1500 rpm, 10 minutes) to precipitate.
  • the support cells were then suspended in DMEM (20% FBS) medium at a concentration of 4 ⁇ 10 4 cells / mL, and 1 well was added to the bottom well of a cell culture insert companion plate 12 well (12 well companion plate, BD Biosciences). Each time, 500 ⁇ L was added to fix the cells to the bottom of the well.
  • the tooth extraction body obtained by obtaining informed consent was lightly washed with Ringer's solution and then transferred to a 10 cm petri dish. Saline was added to the petri dish to wash the tooth extraction body, then 0.5% chlorhexidine solution was added and shaken to sterilize the surface of the tooth extraction body.
  • the extracted tooth was then placed in a sterile environment and washed with sterile saline until 0.5% chlorhexidine was sufficiently removed. After removing the physiological saline, the extracted tooth was divided using a sterilized dental pliers and tweezers to expose the pulp. The dental pulp was excised with surgical scissors, transferred to a centrifuge tube, and further cut into pieces using surgical scissors. Next, after adding 150 ⁇ L each of dispase solution and collagenase solution to the centrifuge tube, the tissue was sufficiently loosened by pipetting and left at 37 ° C. for 1 to 2 hours.
  • DMEM (20% FBS) medium was added to stop the enzyme reaction, and the cells were precipitated by centrifugation (1500 rpm, 10 minutes). The supernatant was removed, 5 mL of DMEM (20% FBS) medium was added to the resulting precipitate to suspend the cells, etc., and centrifuged again (1500 rpm, 10 minutes) to precipitate the cells. To the precipitate, 500 ⁇ L of DMEM (20% FBS) medium was added and sufficiently suspended by pipetting to obtain a suspension of dental pulp-derived cells containing tissue fragments.
  • Fibronectin is 1 ⁇ g / cm 2 on a porous membrane of a 12-well insert (BD Falcon Cell Culture Insert, BD Biosciences) having a polyethylene terephthalate porous membrane with 0.4 ⁇ m pores on the bottom (track etched membrane). And left at 37 ° C. for more than 30 minutes, and the porous membrane was coated with fibronectin. Fibronectin was prepared using the method described in Horwitz B. et al., Preparation of fibronectin for therapeutic administration. In: Mosher DF, editor. New York Academic Press Inc 441-445 (1989).
  • the 12-well insert whose colonies were visually confirmed was transferred to another companion plate, and 1 mL of PBS was added thereto to wash the cells adhering to the 12-well insert, and floating cells, tissue sections, and the like were removed.
  • 500 ⁇ L of a 0.25% trypsin-EDTA solution was added to the 12-well insert, and allowed to stand at 37 ° C. for 5 to 10 minutes to detach the cells fixed on the porous membrane of the 12-well insert.
  • 300 ⁇ L of DMEM (20% FBS) medium was added to stop the reaction and the cells were suspended, and the cell suspension was collected in a centrifuge tube.
  • DMEM (20% FBS) medium was added to the 12-well insert to suspend the remaining cells, which were collected in the previous centrifuge tube.
  • the collected cells were centrifuged (1500 rpm, 5 minutes) to precipitate, the supernatant was removed, and 1 mL of DMEM (20% FBS) medium was added to suspend the cells to obtain a cell suspension.
  • Pre-expansion culture of dental pulp-derived cells Prepare a 6-well companion plate with support cells added to the bottom well, and leave a 6-well insert coated with fibronectin on this 6-well insert.
  • the cell suspension was added, and pre-expansion culture was started at 37 ° C. in the presence of 5% CO 2 . Cultivation was continued until colonies were visually confirmed on the 6-well inserts, changing the DMEM (20% FBS) medium every 3-4 days.
  • DMEM (20% FBS) medium every 3-4 days.
  • DMEM (20% FBS) medium every 3-4 days.
  • a 6-well companion plate with the supporting cells fixed to the bottom of the bottom well is newly prepared, and a 6-well insert is added thereto. The culture was continued.
  • the cells were washed with PBS, and 500 ⁇ L of a 0.25% trypsin-EDTA solution was added. Allow to stand at 37 ° C for 5-10 minutes. After confirming cell detachment, add 500 ⁇ L of DMEM (20% FBS) medium to stop the reaction and suspend the cells. Transfer the cell suspension to a centrifuge tube. It was collected. Furthermore, the 6-well insert was washed with 500 ⁇ L of DMEM (20% FBS) medium, and the washing solution was collected in the centrifuge tube. The collected cells were centrifuged (1500 rpm, 5 minutes) to precipitate, the supernatant was removed, and 500 ⁇ L of DMEM (20% FBS) medium was added to suspend the cells.
  • DMEM (10% FBS) medium was added to stop the reaction and the cells were suspended, and the cells were collected in a 15 mL centrifuge tube. The collected cells were centrifuged (1500 rpm, 5 minutes) to precipitate, the supernatant was removed, and DMEM (10% FBS) medium was added to suspend the cells.
  • BICELL was suspended in FBS solution containing 10% (v / v) DMSO at a density of 1 ⁇ 10 6 cells / mL, dispensed 0.5-2 mL into cryotubes, and refrigerated at 4 ° C in advance. (Japan freezer) and frozen at -80 ° C. About 24 hours after freezing, the cells were transferred to gas phase liquid nitrogen and stored. The cells were used in the following experiments as pluripotent stem cell-enriched human dental pulp-derived cells.
  • Example 2 Preparation of DMD model animals As DMD model animals, sperm of golden retriever-muscular dystrophy dogs were artificially inseminated into pure beagle dogs, and carrier dogs carrying heterozygous dystrophin gene abnormalities were created. Next, this carrier dog and a pure beagle dog are naturally mated over at least 5 generations to create a DMD model animal that is approximately the same size as the beagle dog, and this is designated as a muscular dystrophy model dog (hereinafter referred to as “muscle diz dog”). , Used in the following experiment. It is known that muscular dysdogs have a single base substitution in the 3 ′ splice-consensus sequence of intron 6 of the dystrophin gene (Sharp NJH.
  • Example 3 Administration of pluripotent stem cell-enriched human dental pulp-derived cells to DMD model animals Prepare two 6-week-old littermate dogs as the first course, 7-week-old, 8-week-old, 9-week-old and 10-week-old At that time, one dog (cell-administered dog) was intravenously injected with pluripotent stem cell-enriched human dental pulp-derived cells to 4 ⁇ 10 6 cells / kg (body weight), and the other dog The same volume of physiological saline was intravenously administered to the (control dog) in the same manner.
  • one dog (cell administration dog) is 4 ⁇ 10 6 / kg (body weight)
  • pluripotent stem cell-enriched human dental pulp-derived cells were intravenously injected. Since the control dog died at the age of 14 weeks, the second course could not be administered.
  • first cell administration just before the first cell or saline administration
  • fourth cell or saline administration fourth cell or saline administration
  • Example 5 Evaluation of motor function We also compared the motor function of the cell-administered dog and the control dog by measuring the time required to travel 15 meters.
  • the motor function of the control dog was measured at the age of 11 weeks after the end of the first course, a decrease in motor function was observed compared to immediately before the start of the first cell administration.
  • improvement in motor function was observed at 11 weeks after the end of the first course and at 22 weeks after the end of the second period, compared to immediately before the start of the first cell administration.
  • DMD model animals (dogs) used for experiments tend to have lower motor functions with age, as do control dogs. From these results, it was suggested that administration of pluripotent stem cell-enriched human dental pulp-derived cells can suppress a decrease in motor function or maintain motor function in DMD model animals.
  • Example 6 Evaluation of cardiac function In addition, at 27 weeks after the end of the second course, ultrasound imaging (using Vivid S6, GE Healthcare) was used to evaluate the cardiac function between cell-treated dogs and normal non-DMD dogs. ) By comparing left ventricular ejection fraction. As a result, the left ventricular ejection fraction for normal dogs and cell-treated dogs was 70.7% and 61.5%, respectively. At 27 weeks of age, the left ventricular ejection fraction for cell-treated dogs was the same as that for normal dogs. It was found to be maintained at about 87%. The left ventricular ejection fraction of severe DMD model animals at 27 weeks of age is more likely to be lower than that of normal dogs. Compared with the administration of pluripotent stem cell-enriched human dental pulp-derived cells, the cardiac function of DMD model animals These results suggest that the decrease in aging can be suppressed.
  • pluripotent stem cell-enriched human dental pulp-derived cells suppress muscle degeneration by suppressing the progression of muscle inflammation associated with muscular dystrophy, and suppress the decline in motor function and cardiac function in muscular dystrophy It is thought that it has the effect to do.
  • a new therapeutic agent for muscular dystrophy which mainly contains dental pulp-derived pluripotent stem cells.

Abstract

 歯髄から得られる多能性幹細胞を用いた筋ジストロフィー治療剤及びその製造方法が開示されている。当該筋ジストロフィー治療剤は,多能性幹細胞富化ヒト歯髄由来細胞を有効成分として含有してなり,且つ該多能性幹細胞富化ヒト歯髄由来細胞が,次のステップを含む製造方法により製造されるものである:(a)歯髄懸濁物中の歯髄由来細胞を,細胞増殖能が抑制された支持細胞を含んだ培養容器中で,該支持細胞の通過を阻止できる微細孔を有する膜であって下側面が該支持細胞と接触しないように該容器内に支持されたものである膜の上に加え該膜上で,該支持細胞と直接接触させることなく培養するステップ,及び(b)該膜上で増殖した細胞を,該多能性幹細胞富化ヒト歯髄由来細胞として回収するステップ。

Description

歯髄由来多能性幹細胞を含有する筋ジストロフィー治療剤
 本発明は,歯髄から得られる多能性幹細胞を用いた筋ジストロフィー治療剤に関し,より詳しくは,歯髄から得られた細胞の培養により得られる歯髄由来多能性幹細胞を用いた筋ジストロフィー治療剤に関する。
 筋ジストロフィーは,デュシェンヌ型筋ジストロフィー(DMD:Duchenne Muscular Dystrophy)とベッカー型筋ジストロフィー(BMD:Becker Muscular Dystrophy)とに大別される。DMDは,最も頻度の高い遺伝子性筋疾患の1つであり,出生男子3,500人に1人の割合で発症する。本症の患者は,幼児期に筋力低下症状を現し,その後一貫して筋萎縮が進行して,20歳前後で死に至る。現在,DMDに対する有効な治療薬はなく,全世界の患者から治療薬の開発が強く求められている。BMDでは,その発症年齢は概ね成人期であり,発症後に軽度の筋力低下は見られるものの,その患者は,DMDと比較して長期の生存が可能である。DMDとBMDともにジストロフィン遺伝子の遺伝子異常により引き起こされることが,その原因遺伝子であるジストロフィン遺伝子が単離されたことから明らかになっている(非特許文献1)。
 DMDの治療法としては,筋ジストロフィンのmRNAと相補的な配列を有し,mRNAと相補的に結合し得るアンチセンスオリゴヌクレオチドを用いて,筋ジストロフィン遺伝子の異常部位を含むエキソンをスキップするようなスプライシングを誘導し,正常のジストロフィンと比較して機能は落ちるものの,部分的に機能を有するジストロフィンを発現させて患者の筋力低下を阻止する治療法が提案されている(特許文献1~3,非特許文献2,3)。しかしながら,このようなアンチセンスオリヌクレオチドを用いた治療法は未だ実用化されていない。
 ヒト間葉系幹細胞は,間葉系組織に存在する幹細胞であり,骨細胞,心筋細胞,脂肪細胞等多くの細胞への分化能を有する。間葉系幹細胞は,骨髄,脂肪細胞,胎盤組織又は臍帯組織,歯髄等の組織から取得できることが知られている(特許文献4~7)。ヒト間葉系幹細胞が持つこの分化能に着目して,ヒト間葉系幹細胞により病変部位の骨格筋を修復する試みが,DMDモデルマウスを用いて行われている(非特許文献4)。そして,このような知見に基づき,ヒト間葉系幹細胞を用いたDMD治療の実施可能性が議論されている(非特許文献5)。また,ヒト間葉系幹細胞をin vitroで分化させた筋原細胞を用いたDMD治療についても,その実施可能性が検討されている(非特許文献6)。
 歯髄は,歯の歯髄腔を満たす疎繊維性結合組織であり,存在部位により冠部歯髄と根部歯髄に区分される。間葉系組織である歯髄には,間葉系幹細胞が存在するが,歯髄由来の幹細胞は,脂肪細胞に分化しないとの報告もあり,間葉系幹細胞以外の幹細胞の存在も示唆されている(特許文献8)。また,乳歯の歯髄から取得される幹細胞は,永久歯の歯髄から取得されるものと比較して,高い増殖能を有し,FGF2,TGF-β,コラーゲンI及びコラーゲンIIIを高発現する等,永久歯の歯髄に存在する幹細胞とは性状が異なることも報告されている(特許文献9)。その他,歯髄由来の多能性幹細胞は,骨芽細胞への分化誘導に関し,骨髄由来の間葉系幹細胞と性質が異なることを示す報告もある(特許文献10)。
 歯髄から幹細胞を取得する方法,例えば歯髄から間葉系幹細胞を取得する方法としては,以下のものが報告されている(特許文献11)。即ち,抜歯体を破砕して得られた組織をI型コラゲナーゼとディスパーゼで処理し,フィルターに通して細胞塊を除去し,細胞の懸濁液を得る。次いで細胞を20%FBSを含むDMEM培地を用いて培養フラスコ内で増殖させる。培養フラスコの内面に固着して増殖した細胞を,トリプシン処理して剥がし,これを回収する。こうして回収された細胞が間葉系幹細胞であるとされている。また,歯髄から幹細胞を取得する別の方法として,歯を破砕して得た歯髄懸濁物を,細胞増殖能が抑制された支持細胞を含んだ支持細胞培養用容器中で,支持細胞の通過を阻止できる微細孔を有する膜であって下側面が支持細胞と接触しないように支持細胞培養容器内に支持されたものである膜の上で,支持細胞と直接接触させることなく培養し,次いでその膜上で増殖した細胞を幹細胞として回収するという方法が報告されている(特許文献12)。 また,歯髄由来の間葉系幹細胞を培養するための無血清培地についての報告もある(特許文献13)。
 このような歯髄由来の幹細胞を用いたDMD治療についても,その実施可能性が検討されており,DMDモデル動物に歯髄由来の幹細胞を投与することにより,症状が安定することが示されている(非特許文献7)。
特開2000-325085 特開2002-010790 特開2002-325582 米国特許第5486359 特開2004-129549 特開2004-210713 特開2010-252778 WO2002/007679 特開2010-268715 特開2004-201612 特開2010-268715 WO2013/146992 特開2011-177140
Koenig M. et al., Cell. 50: 509-517 (1987) van Deutekom JC. et al., N Engl J Med. 357: 2677-86 (2007) Goemans NM. et al., N Engl J Med. 364: 1513-22 (2011) DE Bari C. et al., J Cell Biol. 160: 909-18 (2003) Markert CD. et al., PM R. 1: 547-59 (2009) Nitahara-Kasahara Y. et al., Mol Ther. 20: 168-77 (2012) Kerkis I. et al., J Transl Med. 6: 35 (2008)
 上記背景の下で,本発明の目的は,歯髄から得られる多能性幹細胞を用いた筋ジストロフィー治療剤を提供することである。
 上記目的に向けた研究において,本発明者らは鋭意検討を重ねた結果,歯髄から得られる多能性幹細胞を筋ジストロフィーモデル動物に静脈注射することにより,当該モデル動物の運動機能が改善できることを見出し,本発明を完成した。すなわち,本発明は以下を提供する。
 (1)多能性幹細胞富化ヒト歯髄由来細胞を有効成分として含有してなる,筋ジストロフィー治療剤。
 (2)筋ジストロフィーに伴う筋肉の炎症を抑制するものである,上記1に記載の筋ジストロフィー治療剤。
 (3)該多能性幹細胞富化ヒト歯髄由来細胞が,次のステップを含む製造方法により製造されるものである,上記1又は2に記載の筋ジストロフィー治療剤:
 (a)歯髄懸濁物中の歯髄由来細胞を,細胞増殖能が抑制された支持細胞を含んだ培養容器中で,該支持細胞の通過を阻止できる微細孔を有する膜であって下側面が該支持細胞と接触しないように該容器内に支持されたものである膜の上に加え該膜上で,該支持細胞と直接接触させることなく培養するステップ,及び
 (b)該膜上で増殖した細胞を,該多能性幹細胞富化ヒト歯髄由来細胞として回収するステップ。
 (4)該多能性幹細胞富化ヒト歯髄由来細胞が,次のステップを含む製造方法により製造されるものである,上記1又は2に記載の筋ジストロフィー治療剤:
 (a)歯髄懸濁物中の歯髄由来細胞を,細胞増殖能が抑制された支持細胞を含んだ第1の培養容器中で,該支持細胞の通過を阻止できる微細孔を有する膜であって下側面が該支持細胞と接触しないように該第1の培養容器内に支持されたものである膜の上に加え該膜上で,該支持細胞と直接接触させることなく培養するステップと,
 (b)該膜上で増殖した細胞を回収するステップと,
 (c)該回収された細胞を,細胞増殖能が抑制された支持細胞を含んだ第2の培養容器中で,該支持細胞の通過を阻止できる微細孔を有する膜であって下側面が該支持細胞と接触しないように該第2の培養容器内に支持されたものである膜の上で,該支持細胞と直接接触させることなく培養し,次いで該膜上で増殖した細胞を,該多能性幹細胞富化ヒト歯髄由来細胞として回収するステップ。
 (5)該(c)のステップが,少なくとも1回繰り返されるものである,上記4に記載の筋ジストロフィー治療剤。
 (6)該膜が,フィブロネクチン又はコラーゲンでコートされたものである,上記3乃至5のいずれかに記載の筋ジストロフィー治療剤。
 (7)該支持細胞が,マイトマイシンCによって細胞増殖能が抑制された哺乳動物細胞である,上記3乃至6のいずれかに記載の筋ジストロフィー治療剤。
 (8)該哺乳動物細胞が,NIH3T3細胞である,上記7に記載の筋ジストロフィー治療剤。
 (9)該培養が,10~25%ウシ胎児血清及び3~5mMのL-アラニル-L-グルタミンを含むダルベッコの修正イーグル培地であって,グルコース濃度が5~7mMである培地を用いて行われるものである,上記3乃至8のいずれかに記載の筋ジストロフィー治療剤。
 (10)該培養が,20%ウシ胎児血清及び4mMのL-アラニル-L-グルタミンを含むダルベッコの修正イーグル培地であって,グルコース濃度が5.5~5.7mMである培地を用いて行われるものである,上記3乃至8のいずれかに記載の筋ジストロフィー治療剤。
 (11)該製造方法が,該多能性幹細胞富化ヒト歯髄由来細胞として回収された細胞を,1×10~2×10細胞/cmの密度で新たな培養容器に加え,該新たな培養容器の底面における該細胞の占める割合が70~100%となるまで培養するステップを更に含むものである,上記3乃至10のいずれかに記載の筋ジストロフィー治療剤。
 (12)該製造方法が,該多能性幹細胞富化ヒト歯髄由来細胞として回収された細胞を,5×10~1×10細胞/cmの密度で新たな培養容器に加え,該新たな培養容器の底面における該細胞の占める割合が90~100%となるまで培養するステップを更に含むものである,上記3乃至10のいずれかに記載の筋ジストロフィー治療剤。
 (13)該多能性幹細胞富化ヒト歯髄由来細胞が,その表面抗原マーカーが,CD29,CD44,CD73,CD90,CD105及びCD166が陽性であり,且つCD34及びCD45が陰性である,上記1乃至12のいずれかに記載の筋ジストロフィー治療剤。
 (14)該多能性幹細胞富化ヒト歯髄由来細胞が,軟骨細胞への分化能及び骨芽細胞への分化能を有し,且つT細胞増殖抑制能を有するものである,上記1乃至13のいずれかに記載の筋ジストロフィー治療剤。
 (15)該多能性幹細胞富化ヒト歯髄由来細胞が,1回の投与につき,体重1kg当たり,5×10~2×10個投与されるものである,上記1乃至14のいずれかに記載の筋ジストロフィー治療剤。
 (16)3~21日の間隔で,少なくとも2回投与されるものである,上記15に記載の筋ジストロフィー治療剤。
 (17)5~14日の間隔で,少なくとも2回投与されるものである,上記15に記載の筋ジストロフィー治療剤。
 (18)1週間毎に,少なくとも2回投与されるものである,上記15に記載の筋ジストロフィー治療剤。
 本発明によれば,安定した形質を有する歯髄由来の多能性幹細胞を含有する筋ジストロフィー治療剤,特にデュシェンヌ型筋ジストロフィーを対象疾患とする治療剤を提供できる。
 本明細書において,「歯髄」というときは,血管,神経及びリンパ管を含む結合組織と,辺縁部において,象牙質の内側からの沈積と修復を行う能力のある象牙芽細胞層からなる,歯の歯髄腔を満たす疎繊維性結合組織のことをいう。また歯髄は,存在部位により冠部歯髄と根部歯髄に区分することができるが,本発明において歯髄というときは,少なくとも冠部歯髄又は根部歯髄の何れか一方を含むものをいう。
 本明細書において,歯髄を取得するための抜歯体としては,好ましくは抜歯後24時間以内,より好ましくは抜歯後12時間以内のものが用いられる。抜歯体から取り出された歯髄は,ハサミ等の器具を用いて細断された後,タンパク質分解酵素により処理される。このとき用いられるタンパク質分解酵素は,好ましくは,コラゲナーゼタイプIIとディスパーゼの混合液であり,その濃度はそれぞれ,好ましくは1~2mg/mLと3000~7000 単位/mL,より好ましくは約1.5mg/mLと約5000単位/mLである。また,タンパク質分解酵素による処理温度は,好ましくは35~37℃,処理時間は1~3時間である。次いで,タンパク質分解酵素処理後の歯髄をピペッティング等によりほぐすことによって,歯髄懸濁物を得る。歯髄懸濁物は,タンパク質分解酵素を上清とともに除去するため,一旦遠心して細胞等を沈殿させることが好ましい。沈殿させた細胞等は,上清を除去した後,培地に再び懸濁される。このようにして得られる歯髄懸濁物には,歯髄から遊離した細胞に加え,歯髄の組織片も含まれる。本発明において,「歯髄懸濁物中の歯髄由来細胞」というときは,歯髄から遊離した細胞であって,歯髄の組織片と共に歯髄懸濁物に含まれているものをいう。
 本明細書において,「多能性幹細胞富化ヒト歯髄由来細胞」とは,ヒト歯髄由来の細胞であって,ヒト歯髄から直接採取される細胞に比して多能性幹細胞の占める割合(個数割合)を高めた,ヒト歯髄由来の細胞の集合をいい,ヒト歯髄から培養等による選択を経て最終的に得られる単離された多能性幹細胞を包含する。
 本発明において,支持細胞というときは,歯髄を培養する際に,歯髄に含まれる細胞の増殖を促進するために用いられる別の細胞のことをいう。支持細胞は,培地中に不足する栄養分や特殊な成長因子を補給等することにより,多能性幹細胞の増殖を促進する機能を有する。支持細胞は,使用に際して,予めその細胞増殖能が抑制されるように処理される。このような処理の方法としては,細胞内におけるDNAの複製を阻害する薬剤による処理やX線照射等がある。細胞内におけるDNAの複製を阻害する薬剤としては,マイトマイシンCが好適に使用できる。支持細胞として使用できる細胞としては,歯髄に含まれる多能性幹細胞の増殖を促進できるものである限り,特に制限はないが,NIH3T3細胞,BALB/3T3細胞,Swiss3T3,間葉系幹細胞,歯髄由来の多能性幹細胞等が好適であり,NIH3T3細胞が特に好適である。間葉系幹細胞を支持細胞として使用する場合,米国特許公報第5486359号に開示されている手法等で得られるヒト骨髄由来の間葉系幹細胞が好適に用いられるが,これに限らず,ヒトの脂肪組織,歯髄組織,胎盤組織,臍帯組織,臍帯血,末梢血に由来する間葉系幹細胞も好適に用いられる。
 本発明において,支持細胞を培養するために用いられる培養容器(支持細胞培養用容器)は,哺乳動物を培養できるものである限り特に制限はないが,細胞を固着させて培養できるものが好ましい。支持細胞としてNIH3T3細胞,間葉系幹細胞,歯髄由来の多能性幹細胞間等を用いる場合,培養容器(支持細胞培養用容器)に加えられた支持細胞は,当該容器の底面に固着する。支持細胞培養用容器の形状は,特に限定はないが,平底の皿型のものが好適である。このような平底の皿型の培養容器としては,例えば,市販の24プレート,12ウェルプレート,6ウェルプレート等がある。また,支持細胞培養用容器の底面は,細胞が固着し易いように,フィブロネクチン,コラーゲン(コラーゲンI型,IV型等),ラミニン等の細胞接着性糖タンパク質,又はこれら細胞接着性糖タンパク質の細胞接着活性部位(RGD配列)を含むペプチドでコーティングされていることが好ましい。
 支持細胞培養用容器の内部には,微細孔を有し且つ支持細胞の通過を阻止することができる膜が取り付けられる。この膜は,支持細胞培養用容器の内部に,培養容器の底面と概ね水平に,その下方に支持細胞の培養スペースを確保でき且つその下側面が支持細胞と接触しないように取り付けられる。この膜の材質としては,ポリエチレンテレフタレート及びポリカーボネートが好適であり,ポリエチレンテレフタレートが特に好適である。この膜が有する微細孔は,支持細胞の(及び好ましくは更に多能性幹細胞の)通過は阻止するが,培地に溶質として含まれる液性成分は通過することができる孔径のものである。微細孔の孔径は,好ましくは,0.1~1.5μm,より好ましくは0.2~1.2μm,更に好ましくは0.4~1.0μmである。支持細胞は(及び多能性幹細胞も)これらの孔径を大きく超えるサイズであるため,浮遊するものがあっても膜を通過できないが,培地,及び支持細胞から分泌される成長因子等の液性成分は,膜を通過する。また,この膜は,予めフィブロネクチン,コラーゲン(コラーゲンI型,IV型等),ラミニン等でコートしておくことが好ましい。
 培養は,この膜上に上記の歯髄懸濁物を添加して行われる。培養時には,膜上に添加された歯髄懸濁物に含まれる細胞が培地に完全に覆われるよう,必要に応じて培地が容器に加えられる。すなわち,当該膜を挟んで下側に支持細胞(但し,膜とは非接触である),上側に歯髄懸濁物が存在する状態で培養が行われる。培養中,支持細胞に由来する成長因子等の成分が,膜の微細孔を通して,膜の上側にも供給される。また,歯髄懸濁物に含まれる組織片から分泌される成分も培地に供給される。従って,歯髄懸濁物を調製するとき,先行技術文献,例えば,特許文献7,11等に開示されているように,歯の懸濁物をメッシュ等に通過させて組織片を除去することは好ましくない。何故なら,組織片も,培地中に不足する栄養分や特殊な成長因子を補給し得るからである。
 歯髄の培養に用いられる培地は,好ましくは10~25%ウシ胎児血清,3~5mMのL-アラニル-L-グルタミン及び5~7mMのD-グルコースを含むダルベッコの修正イーグル培地であり,より好ましくは20%ウシ胎児血清,4mMのL-アラニル-L-グルタミン及び5.5~5.7mMのD-グルコースを含むダルベッコの修正イーグル培地である。表1は該培地の詳細な組成の一例を示す。各成分は,その等化物(例えばその塩)に置換可能である。
Figure JPOXMLDOC01-appb-T000001
 
 
 本明細書において,上記の歯髄懸濁物を,支持細胞培養用容器の内部に取り付けた膜上に添加して開始される培養を,歯髄由来細胞の初代培養(P0培養)という。P0培養は,好ましくは,膜上で細胞増殖により形成されたコロニーを目視により観察できるようになるまで行われる。P0培養中,支持細胞は同一である必要はなく,支持細胞を交換しつつ,例えば,上記膜を膜上の細胞及び組織片ごと新たな支持細胞培養用容器に移し替えつつ,行ってもよい。培養中に支持細胞が支持細胞培養用容器の底面から剥離するようになった場合には,そのような移し替えを行うのが好ましい。
 膜上にコロニー形成を確認した場合,膜を(培養に用いたのと同じ若しくは異なる適宜の培地又は細胞に悪影響を及ぼす懸念のない緩衝液等の洗浄液で)洗浄して浮遊細胞及び組織片を取り除いた後,コロニー形成した細胞を膜の表面から剥離して回収する。細胞の回収は,容器に接着する培養細胞一般の回収の場合と同様,慣用の方法で,すなわちトリプシン等のタンパク質分解酵素を添加し,コロニーを形成した細胞を膜から剥離して懸濁させると共に酵素反応を常法により停止させることにより行うことができる。回収した細胞は,支持細胞培養用容器中で,P0培養と同様の条件で(但し,歯髄の組織片は含めずに),再度膜上に添加して培養される。本明細書において,この培養を歯髄由来細胞の「プレ拡大培養」という。プレ拡大培養は少なくとも1回行うことが好ましい。
 P0培養及びプレ拡大培養において,歯髄由来の細胞のうち多能性幹細胞が最も活発に膜上で増殖する。そのため,膜上で増殖した細胞を回収することにより,ヒト歯髄に元々含まれる他の細胞に比べ,多能性幹細胞の占める割合が大幅に増大した細胞の集合である,多能性幹細胞富化ヒト歯髄由来細胞を得ることができる。
 また,プレ拡大培養を反復する(又は後述の拡大培養を行う)度に,回収される多能性幹細胞富化ヒト歯髄由来細胞における多能性幹細胞の占める割合は,多能性幹細胞の増殖速度の速さのため急速に増大するから,培養回数を経ることで,多能性幹細胞が更に富化された細胞を得ることができる。
 プレ拡大培養を複数回行う場合,直前のプレ培養で膜上に形成されたコロニーを回収して得られる細胞懸濁液を,新たな支持細胞培養用容器中で,新たな膜上に添加して行われる。プレ拡大培養の実施回数に特に上限はない。後述の拡大培養に用いるだけの多能性幹細胞富化ヒト歯髄由来細胞が取得できればよいから,プレ拡大培養の回数は,複数回行う場合でも,一般には,2回~5回程度で十分である。
 十分な細胞数の多能性幹細胞富化ヒト歯髄由来細胞が確保された後は,これを拡大培養に付すことができ,拡大培養は,必要とする細胞数の多能性幹細胞富化ヒト歯髄由来細胞が確保されるまで繰り返すことができる。
 本明細書において,「拡大培養」とは,多能性幹細胞富化ヒト歯髄由来細胞(特に,多能性幹細胞)の細胞数を増やすために支持細胞不存在下で行う培養をいう。多能性幹細胞は,一般に,細胞培養の開始時点における細胞の培養容器中での密度が,ある一定以上の場合に,支持細胞不存在下でも増殖が活発となる。そのような細胞密度は,多くの場合少なくとも500細胞/cm,好ましくは1000細胞/cm以上であり,より好ましくは3000細胞/cm以上,更に好ましくは5000細胞/cm以上である。なお,ここでいう細胞の密度は,拡大培養の開始時に培養容器に播種される細胞懸濁液に含まれる生細胞数を,培養容器の底面積で除することにより,求められる。
 拡大培養においては,多能性幹細胞は培養容器に固着して増殖させる。従って,拡大培養で用いる培養容器は,哺乳動物を固着させて培養できるものであり,その底面は,細胞が固着し易いように,フィブロネクチン,コラーゲン(コラーゲンI型,IV型等),ラミニン等の細胞接着性糖タンパク質,又はこれら細胞接着性糖タンパク質の細胞接着活性部位(RGD配列)を含むペプチドでコーティングされていることが好ましい。そのような容器として,動物細胞の培養容器として市販されているものを用いることができる。拡大培養で用いる培養容器の形状は,細胞を固着させて培養できるものである限り特に限定はなく,平底の皿型のものが好適であるが,ローラーボトルタイプのものでもよい。
 拡大培養において,細胞は,培養開始時の細胞の密度が,好ましくは1000~20000細胞/cm2,好ましくは3000~15000細胞/cm2,より好ましくは5000~10000細胞/cm2となるように培養容器に播種され,培養容器の底面において細胞の占める割合が,好ましくは70~100%,より好ましくは80~100%,更に好ましくは90~100%となるまで培養されるか,若しくは,好ましくは5~10日間,より好ましくは6~8日間,更に好ましくは7日間培養される。培養後の細胞は,トリプシン等により処理することにより培養容器から回収され,回収された細胞数が所望の量に達するまで,拡大培養により繰り返して培養される。拡大培養においても,多能性幹細胞が最も活発に増殖することから,拡大培養により得られる細胞は,結果として,実質的に多能性幹細胞のみにより構成される。拡大培養により得られる多能性幹細胞は,培養容器に固着した状態で観察したとき,好ましくは均質な紡錘状の形状を呈する。
 また,拡大培養において,ヒト歯髄由来の多能性幹細胞は培養開始時から40回以上分裂させることができる。従って,例えば,1個の多能性幹細胞から,理論上,約1×1012以上の細胞を得ることが可能である。このような高い分裂能を有する多能性幹細胞は,材料となる抜歯体の入手が比較的容易なこともあり,骨髄由来の間葉系幹細胞等の多能性幹細胞と比較して,多能性幹細胞の供給源として有力である。但し,多能性幹細胞の増殖能は,分裂を繰り返すに従って低下することから,特に高い増殖能を有する多能性幹細胞を必要とする場合には,拡大培養の回数は,好ましくは12回以下,更に好ましくは10回以下,最も好ましくは5回以下(例えば,4又は5回)に止められる。このようにして得られる多能性幹細胞は,好ましくは40回以上の分裂能を有し,より好ましくは30回以上の分裂能を有し,例えば30~35回の分裂能を有するものである。
 本発明において「多能性幹細胞」というときは,増殖能を有し,且つ少なくとも2種以上の細胞への分化能を有する細胞のことをいう。本発明により得られるヒト歯髄由来の多能性幹細胞は,好ましくは,軟骨細胞及び骨芽細胞への分化能を有する。また,本発明により得られるヒト歯髄由来の多能性幹細胞は,表面抗原マーカーの発現パターンが,ヒト間葉系幹細胞と同様に,概ねCD29,CD44,CD73,CD90,CD105及びCD166が陽性であり,且つCD34及びCD45が陰性である。
 本発明の筋ジストロフィー治療剤は,多能性幹細胞富化ヒト歯髄由来細胞を懸濁させた状態で,点滴静注されるか,又は局所に注入される。また,歯髄の提供者である本人に自家投与ができるのみならず,歯髄の提供者以外の他人に他家投与することも可能である。
 他家投与を想定する場合,本発明における多能性幹細胞富化ヒト歯髄由来細胞は,複数の提供者から得た複数の抜歯体を用いて大量に製造して凍結貯蔵しておくことができる。この場合,製薬会社等の製造業者が,それらの細胞を大量に製造して原体として又は製剤化して製剤として凍結貯蔵し,これを治療薬として,医療機関からの要望に応じて供給することが可能となる。凍結された多能性幹細胞富化ヒト歯髄由来細胞は,医療機関において解凍されて患者に投与される。
 本発明の筋ジストロフィー治療剤は,多能性幹細胞富化ヒト歯髄由来細胞(最終的に単離されたヒト歯髄由来多能性幹細胞を含む)を,例えば,ヒト血清アルブミンとジメチルスルホキシドとを含有する重炭酸リンゲル液中に懸濁させたものを,内容物の凍結を許容する容器に密封して製剤化される。ここで,重炭酸リンゲル液とは,重炭酸イオンを含有するタイプの電解質液たる輸液(リンゲル液)のことをいう。
 このとき用いられる重炭酸リンゲル液は,好ましくは電解質として重炭酸イオン,ナトリウムイオン,カリウムイオン,カルシウムイオン,及び塩素イオンを含み,ナトリウムイオン濃度が130~145mEq,生理食塩水に対する浸透圧比が0.9~1.1であり,そしてpHが6.8~7.8のものであり,より好ましくは,22~28mEq/Lの重炭酸イオンと,120~150mEq/Lのナトリウムイオンと,3.6~4.4mEq/Lのカリウムイオンと,2.7~3.3mEq/Lのカルシウムイオンと,100~125mEq/Lの塩素イオンを含み,生理食塩水に対する浸透圧比が0.9~1.1であり,そしてpHが6.8~7.8のものである。上記重炭酸リンゲル液は,更に,マグネシウムイオン及びクエン酸イオンを含んでもよく,そのときの好ましいマグネシウムイオンの濃度は0.9~1.1mEq/Lであり,好ましいクエン酸イオンの濃度は4.5~5.5mEq/Lである。
 そのような重炭酸リンゲル液の好ましい一具体例として,135mEq/Lのナトリウムイオンと,4mEq/Lのカリウムイオンと,3mEq/Lのカルシウムイオンと,113mEq/Lの塩素イオンと,1mEq/Lのマグネシウムイオンと,5mEq/Lのクエン酸イオンを含有するものが挙げられる。製剤化の過程で,重炭酸リンゲル液は,ヒト血清アルブミン,ジメチルスルホキシド及び多能性幹細胞富化ヒト歯髄由来細胞により希釈されることになるので,製剤中におけるこれらイオンの濃度は,その希釈率に応じたものとなる。
 また,このときの製剤中におけるヒト血清アルブミンの濃度は,好ましくは0.1~10W/V%であり,より好ましくは3~8W/V%である。また,このときの製剤中におけるジメチルスルホキシドの濃度は,好ましくは8~12W/V%である。
 また,このときの製剤中における多能性幹細胞富化ヒト歯髄由来細胞の密度は,好ましくは1×105~1×108個/mLであり,より好ましくは1×106~1×107個/mLである。
 上記のようにして,多能性幹細胞富化ヒト歯髄由来細胞(最終的に単離されたヒト歯髄由来多能性幹細胞を含む)をヒト血清アルブミンとジメチルスルホキシドとを含有する重炭酸リンゲル液中に懸濁させたものを,内容物の凍結を許容する容器に密封して製剤化した筋ジストロフィー治療剤は,液体窒素又はその気化雰囲気中で保存され,注文に応じて,液体窒素又はその気化雰囲気中に置かれた状態で医療機関にまで搬送される。次いで,当該治療剤は,医療機関において解凍された後,直接又は点滴液に添加して,静脈内注射により患者に投与される。
 本発明の筋ジストロフィー治療剤は,デュシェンヌ型筋ジストロフィーとベッカー型筋ジストロフィーのいずれの治療剤としても使用できるが,特にデュシェンヌ型筋ジストロフィーの治療剤として用いられる。本発明の筋ジストロフィー治療剤は,筋ジストロフィーを発症していない遺伝的保因者に対して,筋ジストロフィーに伴う筋肉の炎症の発生を未然に防ぐために,予防的に用いることもできる。また,本発明の筋ジストロフィー治療剤は,特に,筋ジストロフィーの患者で認められる筋肉の炎症を抑制する薬剤として用いられる。筋肉の炎症は,筋ジストロフィーにおける筋組織の変性を誘発すると考えられることから,筋肉の炎症を本発明の筋ジストロフィー治療剤で抑制することにより,筋ジストロフィー患者における筋組織の変性に起因する筋力低下を抑制することが可能となる。ここでいう「筋肉」とは,主に,骨格筋,心筋及び呼吸筋のことをいう。このように,骨格筋の炎症を抑制することにより,筋ジストロフィー患者の筋力を維持し,歩行能力の低下を抑制できる。また,心筋及び呼吸筋の炎症を抑制することにより,筋ジストロフィー患者の心肺能力を維持することができる。
 本発明の筋ジストロフィー治療剤は,該多能性幹細胞富化ヒト歯髄由来細胞が,1回の投与につき,ヒトの体重1kg当たり,好ましくは5×10~2×10個投与されるものであり,より好ましくは1×10~1×10個投与されるものであり,更にこのましくは,4×10個投与されるものである。また,本発明の筋ジストロフィー治療剤は,好ましくは3~21日の間隔で少なくとも2回投与されるものであり,より好ましくは5~14日の間隔で少なくとも2回投与されるものであり,更に好ましくは1週間毎に,少なくとも2回投与されるものである。一般に,投与は,患者の症状が寛解するまで継続される。
 以下,実施例を参照して本発明を更に詳細に説明するが,本発明が実施例に限定されることは意図しない。
〔実施例1〕
多能性幹細胞富化ヒト歯髄由来細胞の調製
(1)支持細胞の準備
 DMEM Low Glucose(Invitrogen社)にFBS(Invitrogen社)とL-アラニル-L-グルタミンを各々終濃度が10%と4mMとなるように添加し,これをDMEM(10%FBS)培地とした。マイトマイシンC(SIGMA社)を注射用水で0.2mg/mLの濃度となるように溶解し,これをマイトマイシンC溶液とした。また,DMEM Low Glucose(Invitrogen社)にFBS(Invitrogen社)とL-アラニル-L-グルタミンを各々終濃度が20%と4mMとなるように添加し,これをDMEM(20%FBS)培地とした。
 液体窒素中で凍結保存されたNIH3T3細胞を取り出し,37℃に設定した恒温槽で解凍した。次いで,DMEM(10%FBS)培地を加えて細胞を懸濁し,遠心(1500rpm, 5分)した。上清を捨て,細胞をDMEM(10%FBS)培地で懸濁し,これを75cm2培養フラスコに播種し,細胞の密度が80~90%に到達するまで,5%CO2存在下,37℃で培養した。細胞をダルベッコリン酸緩衝液(D-PBS,Invitrogen社)で洗浄し,次いで9.6mLのDMEM(10%FBS)培地に0.4mLのマイトマイシンC溶液を添加した培地を培養フラスコに加え,5%CO2存在下,37℃で静置した。培地を除去した後,細胞をD-PBSで洗浄し,次いで0.25%トリプシン-EDTA溶液を1mL添加し,37℃に5~10分間静置し細胞の剥離を確認した後,DMEM(10%FBS)培地を添加して反応を停止させ,細胞を懸濁させた後,血球計算盤にて生細胞数をカウントした。細胞を15mL遠沈管に回収し,遠心(1500rpm, 5分)して細胞を沈殿させ,次いで10%(v/v)DMSOを含む血清溶液で細胞濃度を1×106個/mLとなるように懸濁し,これを2mLずつ細胞凍結保存用チューブに分注した後,-80℃で凍結した。細胞を,-80℃に24時間以上置いた後,液体窒素中に移して保存した。これを支持細胞とした。
 使用前に支持細胞を液体窒素中から取り出して解凍し,DMEM(20%FBS)培地を添加して懸濁させた後,遠心(1500rpm, 10分)して沈殿させた。次いで支持細胞をDMEM(20%FBS)培地に4×104個/mLの濃度で懸濁させ,セルカルチャーインサートコンパニオンプレート 12ウェル(12ウェルコンパニオンプレート,BD Biosciences社)のボトムウェルに,1ウェル当たり,500μLずつ添加し,ウェルの底面に細胞を固着させた。
(2)歯髄の単離
 4mLのD-PBSに,12mgのコラゲナーゼタイプII(CALBIOCHEM社)を加えて混和した後,0.22μmフィルターに通し,これをコラゲナーゼ溶液とした。1mLのD-PBSに,10000 単位のディスパーゼ(合同酒精)を加えて混和した後,0.22μmフィルターに通し,これをディスパーゼ溶液とした。
 インフォームドコンセントを得て取得した抜歯体を,リンゲル液で軽く洗浄した後,10cmシャーレに移した。シャーレに生理食塩水を加えて抜歯体を洗浄し,次いで0.5%クロルヘキシジン溶液を加えて振とうし,抜歯体の表面を殺菌した。次いで,抜歯体を無菌環境下におき,0.5%クロルヘキシジンが十分に除去されるまで滅菌した生理食塩水で洗浄した。生理食塩水を除いてから,滅菌した歯科用ペンチ及びピンセットを用いて抜歯体を分割して歯髄を暴露させた。歯髄を,手術用ハサミで切除し,これを遠沈管に移し,更に手術用ハサミを用いて細かく切断した。次いで,遠沈管にディスパーゼ溶液及びコラゲナーゼ溶液をそれぞれ150μLずつ添加した後,ピペッティングにより組織を十分にほぐし,37℃下で1~2時間放置した。
 次いで,DMEM(20%FBS)培地を5mL添加して酵素反応を停止させ,遠心(1500rpm, 10分)して細胞等を沈殿させた。上清を除去し,得られた沈殿物にDMEM(20%FBS)培地を5mL添加して細胞等を懸濁させ,再度遠心(1500rpm, 10分)して細胞等を沈殿させた。沈殿物に,500μLのDMEM(20%FBS)培地を添加し,ピペッティングで十分に懸濁させて,組織片を含む歯髄由来細胞の懸濁液を得た。
(3)歯髄由来細胞の初代培養(P0培養)
 0.4μm径の孔を有するポリエチレンテレフタレート製の多孔性膜(track etched membrane)を底面に有する12ウェルインサート(BD Falcon Cell Culture Insert, BD Biosciences社)の多孔性膜にフィブロネクチンを1μg/cm2になるように添加し,37℃で30分以上静置し,多孔性膜をフィブロネクチンでコーティングした。フィブロネクチンは,Horwitz B. et al., Preparation of fibronectin for therapeutic administration. In: Mosher DF, editor.New York Academic Press Inc 441-445 (1989)に記載された方法を用いて調製した。
 先に調製した,ボトムウェルに支持細胞を添加した12ウェルコンパニオンプレートに,フィブロネクチンでコーティングした12ウェルインサートを静置し,この12ウェルインサートに,歯髄の懸濁液(約500μL)を添加し,更に,細胞が全て培地で覆われるまでDMEM(20%FBS)培地を添加し,5%CO2存在下,37℃で初代培養(P0培養)を開始した。培地を3~4日毎に交換しながら,12ウェルインサート上にコロニーが目視により確認されるまで,培養を継続した。この間に,ボトムウェルの支持細胞が,顕著にボトムウェルの底面から剥離するようになった場合は,ボトムウェルの底面に支持細胞を固着させた12ウェルコンパニオンプレートを新たに準備し,これに12ウェルインサートを移して培養を継続した。
 コロニーが目視により確認された12ウェルインサートを,別のコンパニオンプレートに移し,これに1mLのPBSを添加して12ウェルインサートに固着した細胞を洗浄するとともに,浮遊細胞,組織切片等を除去した。次いで12ウェルインサートに0.25% トリプシン-EDTA溶液を500μL添加し,37℃で5~10分間静置して,12ウェルインサートの多孔性膜上に固着した細胞を剥離させた。次いで,DMEM(20%FBS)培地を300μL添加して反応を停止するとともに細胞を懸濁させ,細胞懸濁液を遠沈管に回収した。更に12ウェルインサートに300μLのDMEM(20%FBS)培地を添加して残存した細胞を懸濁させ,これを先の遠沈管に回収した。回収した細胞を遠心(1500rpm, 5分)して沈殿させ,上清を除去し,DMEM(20%FBS)培地を1mL添加し細胞を懸濁させて細胞懸濁液とした。
(4)歯髄由来細胞のプレ拡大培養
 ボトムウェルに支持細胞を添加した6ウェルコンパニオンプレートを準備し,これにフィブロネクチンコートした6ウェルインサートを静置し,この6ウェルインサートに,P0培養で得られた細胞懸濁液を添加して,5%CO2存在下,37℃でプレ拡大培養を開始した。DMEM(20%FBS)培地を3~4日毎に交換しながら,6ウェルインサート上にコロニーが目視により確認されるまで,培養を継続した。この間に,ボトムウェルの支持細胞が,顕著にボトムウェルから剥離するようになった場合は,ボトムウェルの底面に支持細胞を固着させた6ウェルコンパニオンプレートを新たに準備し,これに6ウェルインサートを移して培養を継続した。
 コロニーが目視により確認された6ウェルインサートを別のコンパニオンプレートに移した後,PBSで細胞を洗浄し,0.25% トリプシン-EDTA溶液を500μL添加した。37℃で5~10分間静置し,細胞の剥離を確認した後,DMEM(20%FBS)培地を500μL添加して反応を停止するとともに細胞を懸濁させ,細胞懸濁液を遠沈管に回収した。更に500μLのDMEM(20%FBS)培地で6ウェルインサートを洗浄して,洗液を先の遠沈管に回収した。回収した細胞を遠心(1500rpm, 5分)して沈殿させ,上清を除去し,DMEM(20%FBS)培地を500μL添加して細胞を懸濁させた。
(5)歯髄由来細胞の拡大培養
 上記の細胞の懸濁液に含まれる生細胞数を血球計算盤で測定した後,5×103~1×104細胞/cm2の密度となるように,培養フラスコに細胞を播種してDMEM(10%FBS)培地を用いて拡大培養を開始した。但し,生細胞数が少なく拡大培養が開始できない場合は,拡大培養を開始するために必要な数の細胞が得られるまでプレ拡大培養を繰り返した。拡大培養開始時に,培養フラスコに播種した細胞を観察したところ,ほぼ全ての細胞が培養フラスコの底面に固着して紡錘状の形状を示し,均質な細胞が分離されたことが分かった。
 細胞が90~100%コンフルエントになるまでDMEM(10%FBS)培地で培養した後,PBSで細胞を洗浄し,0.25%トリプシン-EDTAを添加し,37℃に5~10分間静置して細胞を剥離させた。DMEM(10%FBS)培地を添加して反応を停止させるとともに細胞を懸濁し,15mL遠沈管に細胞を回収した。回収した細胞を遠心(1500rpm, 5分)して沈殿させ,上清を除去し,DMEM(10%FBS)培地を添加して細胞を懸濁した。血球計算盤にて生細胞数を計測した後,5×103~1×104細胞/cm2の密度となるように,培養フラスコに細胞を播種し,細胞が90~100%コンフルエントになるまで培養した。拡大培養を16回繰り返し,継代培養終了時毎に細胞数を測定して,細胞の分裂回数を算出した。なお,90~100%コンフルエントに達しない場合であっても,拡大培養を開始してから7日経過した場合は,細胞を回収し次の拡大培養に供した。4回目の拡大培養以降は,細胞の増殖速度が徐々に低下し,拡大培養を開始してから7日経過後も90~100%コンフルエントに達することはなかった。
(6)歯髄由来細胞の凍結保存
 第2回拡大培養において,90~100%コンフルエントになるまで培養した細胞の一部を,下記の手法により凍結保存した。PBSで細胞を洗浄した後,0.25%トリプシン-EDTAを添加し,37℃に5~10分間静置して細胞を剥離させた。DMEM(10%FBS)培地を添加して反応を停止させるとともに細胞を懸濁し,15mL遠沈管に細胞を回収した。回収した細胞を遠心(1500rpm, 5分)して沈殿させ,上清を除去した。10%(v/v)DMSOを含むFBS溶液で細胞を1×106個/mLの密度で懸濁し,0.5~2mLずつクライオチューブに分注した後,予め4℃で冷蔵しておいたBICELL(日本フリーザー)に入れ,-80℃にて凍結した。凍結約24時間後に,細胞を気相式液体窒素に移し保管した。この細胞を,多能性幹細胞富化ヒト歯髄由来細胞として以下の実験で使用した。
〔実施例2〕
DMDモデル動物の準備
 DMDモデル動物としてゴールデン・レトリバー-筋ジストロフィー犬の精子を純系ビーグル犬に人工授精させて,ジストロフィン遺伝子異常をヘテロで保有するキャリア犬を作出した。次いで,このキャリア犬と純系ビーグル犬を少なくとも5代に亘って自然交配させて,ほぼビーグル犬と同じ大きさのDMDモデル動物を作出し,これを筋ジストロフィーモデル犬(以下「筋ジス犬」)として,以下の実験で使用した。なお,筋ジス犬は,ジストロフィン遺伝子のイントロン6の3’側スプライス-コンセンサス配列に一塩基置換を有することが知られている(Sharp NJH. Genomics. 13: 115-21 (1991))。この置換により,ジストロフィン遺伝子のmRNAがスプライシングされる過程でエキソン7がスキップされ,ジストロフィン遺伝子のmRNAが翻訳されたときに,エキソン8でフレームシフトが起こり,翻訳が終止する。その結果,本来の機能を有さない不完全なジストロフィンが生じ,筋ジス犬はヒトのDMDと同様の症状を発症する。
〔実施例3〕
DMDモデル動物への多能性幹細胞富化ヒト歯髄由来細胞の投与
 6週齢の同腹の犬を2匹準備し,第1クールとして,7週齢,8週齢,9週齢及び10週齢となった時点で,1匹の犬(細胞投与犬)には,4×106個/kg(体重)となるように多能性幹細胞富化ヒト歯髄由来細胞を静注し,他方の犬(コントロール犬)には同じ容量の生理食塩水を同様にして静注した。次いで,第2クールとして,18週齢,19週齢,20週齢及び22週齢となった時点で,1匹の犬(細胞投与犬)には,4×106個/kg(体重)となるように多能性幹細胞富化ヒト歯髄由来細胞を静注した。コントロール犬は14週齢で死亡したので,第2クールの投与は行うことができなかった。
〔実施例4〕
筋肉の炎症の評価
 3.0-Tesla MRI, Magnetom Trio(Siemens Medical Solutions社)を用いたMRI画像診断により,細胞投与犬とコントロール犬の下腿部の断面画像(脂肪抑制T2強調画像)を,第1クールにおいて,初回の細胞又は生理食塩水の投与(「初回の細胞の投与」)を開始する直前と,4回目の細胞又は生理食塩水の投与(「4回目の細胞の投与」)が終了してから7日後に撮影した。初回の細胞の投与を開始する前では,細胞投与犬とコントロール犬の下腿部の断面画像に,炎症を示すシグナルが広範に認められた。4回目の細胞の投与が終了してから7日後には,コントロール犬の下腿部の断面画像では,炎症を示すシグナルが全体に強くなり,筋ジストロフィーに伴う筋肉の炎症が進行していた。一方,細胞投与犬では,炎症を示すシグナルが全体に強くなったものの,その程度は,コントロール犬と比較して弱かった。この結果から,多能性幹細胞富化ヒト歯髄由来細胞の投与により,DMDモデル動物における筋肉の炎症の進行が抑制されたことが示唆された。
〔実施例5〕
運動機能の評価
 また,15メートル走行の所要時間を測定することにより,細胞投与犬とコントロール犬の運動機能を比較した。第1クール終了後の11週齢で,コントロール犬の運動機能を測定したところ,初回の細胞の投与を開始する直前と比較して,運動機能の低下が認められた。一方,細胞投与犬では,初回の細胞の投与を開始する直前と比較して,第1クール終了後の11週齢及び第2クール終了後の22週齢で運動機能の改善が認められた。一般に,実験に供したDMDモデル動物(犬)では,コントロール犬と同様に,加齢とともに運動機能が低下する傾向にある。この結果から,多能性幹細胞富化ヒト歯髄由来細胞の投与により,DMDモデル動物の運動機能の低下の抑制又は運動機能の維持を図ることができることが示唆された。
〔実施例6〕
心機能の評価
 また,第2クール終了後の27週齢で,細胞投与犬と,細胞投与犬と同腹のDMDでない正常犬との心機能を,超音波画像診断(Vivid S6, GE Healthcareを使用)により,左室駆出率を測定することにより比較した。その結果,正常犬と細胞投与犬の左室駆出率は,それぞれ70.7%と61.5%であり,27週齢の時点で,細胞投与犬の左室駆出率が,正常犬での値の約87%に維持されていることが判明した。27週齢の時点での重症のDMDモデル動物の左室駆出率は,正常犬に対する低下傾向が強く,それに較べて多能性幹細胞富化ヒト歯髄由来細胞の投与によりDMDモデル動物の心機能の低下が抑制できることを,これらの結果は示唆している。
 以上の結果から,多能性幹細胞富化ヒト歯髄由来細胞は,筋ジストロフィーに伴う筋肉の炎症の進行を抑制することにより筋肉の変性を抑制し,筋ジストロフィーにおける運動機能の低下及び心機能の低下を抑制する効果を有すると考えられる。
 本発明によれば,歯髄由来の多能性幹細胞を主剤とする,新たな筋ジストロフィー治療剤を提供することができる。

Claims (18)

  1.  多能性幹細胞富化ヒト歯髄由来細胞を有効成分として含有してなる,筋ジストロフィー治療剤。
  2.  筋ジストロフィーに伴う筋肉の炎症を抑制するものである,請求項1に記載の筋ジストロフィー治療剤。
  3.  該多能性幹細胞富化ヒト歯髄由来細胞が,次のステップを含む製造方法により製造されるものである,請求項1又は2に記載の筋ジストロフィー治療剤:
     (a)歯髄懸濁物中の歯髄由来細胞を,細胞増殖能が抑制された支持細胞を含んだ培養容器中で,該支持細胞の通過を阻止できる微細孔を有する膜であって下側面が該支持細胞と接触しないように該容器内に支持されたものである膜の上に加え該膜上で,該支持細胞と直接接触させることなく培養するステップ,及び
     (b)該膜上で増殖した細胞を,該多能性幹細胞富化ヒト歯髄由来細胞として回収するステップ。
  4.  該多能性幹細胞富化ヒト歯髄由来細胞が,次のステップを含む製造方法により製造されるものである,請求項1又は2に記載の筋ジストロフィー治療剤:
     (a)歯髄懸濁物中の歯髄由来細胞を,細胞増殖能が抑制された支持細胞を含んだ第1の培養容器中で,該支持細胞の通過を阻止できる微細孔を有する膜であって下側面が該支持細胞と接触しないように該第1の培養容器内に支持されたものである膜の上に加え該膜上で,該支持細胞と直接接触させることなく培養するステップと,
     (b)該膜上で増殖した細胞を回収するステップと,
     (c)該回収された細胞を,細胞増殖能が抑制された支持細胞を含んだ第2の培養容器中で,該支持細胞の通過を阻止できる微細孔を有する膜であって下側面が該支持細胞と接触しないように該第2の培養容器内に支持されたものである膜の上で,該支持細胞と直接接触させることなく培養し,次いで該膜上で増殖した細胞を,該多能性幹細胞富化ヒト歯髄由来細胞として回収するステップ。
  5.  該(c)のステップが,少なくとも1回繰り返されるものである,請求項4に記載の筋ジストロフィー治療剤。
  6.  該膜が,フィブロネクチン又はコラーゲンでコートされたものである,請求項3乃至5のいずれかに記載の筋ジストロフィー治療剤。
  7.  該支持細胞が,マイトマイシンCによって細胞増殖能が抑制された哺乳動物細胞である,請求項3乃至6のいずれかに記載の筋ジストロフィー治療剤。
  8.  該哺乳動物細胞が,NIH3T3細胞である,請求項7に記載の筋ジストロフィー治療剤。
  9.  該培養が,10~25%ウシ胎児血清及び3~5mMのL-アラニル-L-グルタミンを含むダルベッコの修正イーグル培地であって,グルコース濃度が5~7mMである培地を用いて行われるものである,請求項3乃至8のいずれかに記載の筋ジストロフィー治療剤。
  10.  該培養が,20%ウシ胎児血清及び4mMのL-アラニル-L-グルタミンを含むダルベッコの修正イーグル培地であって,グルコース濃度が5.5~5.7mMである培地を用いて行われるものである,請求項3乃至8のいずれかに記載の筋ジストロフィー治療剤。
  11.  該製造方法が,該多能性幹細胞富化ヒト歯髄由来細胞として回収された細胞を,1×10~2×10細胞/cmの密度で新たな培養容器に加え,該新たな培養容器の底面における該細胞の占める割合が70~100%となるまで培養するステップを更に含むものである,請求項3乃至10のいずれかに記載の筋ジストロフィー治療剤。
  12.  該製造方法が,該多能性幹細胞富化ヒト歯髄由来細胞として回収された細胞を,5×10~1×10細胞/cmの密度で新たな培養容器に加え,該新たな培養容器の底面における該細胞の占める割合が90~100%となるまで培養するステップを更に含むものである,請求項3乃至10のいずれかに記載の筋ジストロフィー治療剤。
  13.  該多能性幹細胞富化ヒト歯髄由来細胞が,その表面抗原マーカーが,CD29,CD44,CD73,CD90,CD105及びCD166が陽性であり,且つCD34及びCD45が陰性である,請求項1乃至12のいずれかに記載の筋ジストロフィー治療剤。
  14.  該多能性幹細胞富化ヒト歯髄由来細胞が,軟骨細胞への分化能及び骨芽細胞への分化能を有し,且つT細胞増殖抑制能を有するものである,請求項1乃至13のいずれかに記載の筋ジストロフィー治療剤。
  15.  該多能性幹細胞富化ヒト歯髄由来細胞が,1回の投与につき,体重1kg当たり,5×10~2×10個投与されるものである,請求項1乃至14のいずれかに記載の筋ジストロフィー治療剤。
  16.  3~21日の間隔で,少なくとも2回投与されるものである,請求項15に記載の筋ジストロフィー治療剤。
  17.  5~14日の間隔で,少なくとも2回投与されるものである,請求項15に記載の筋ジストロフィー治療剤。
  18.  1週間毎に,少なくとも2回投与されるものである,請求項15に記載の筋ジストロフィー治療剤。
PCT/JP2015/082045 2014-11-14 2015-11-13 歯髄由来多能性幹細胞を含有する筋ジストロフィー治療剤 WO2016076434A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016559128A JP6644702B2 (ja) 2014-11-14 2015-11-13 歯髄由来多能性幹細胞を含有する筋ジストロフィー治療剤
US15/526,370 US20170327791A1 (en) 2014-11-14 2015-11-13 Muscular dystrophy therapeutic agent containing pluripotent stem cells derived from dental pulp
EP15859662.7A EP3219322A4 (en) 2014-11-14 2015-11-13 Muscular dystrophy therapeutic agent containing pluripotent stem cells derived from dental pulp

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-231379 2014-11-14
JP2014231379 2014-11-14

Publications (1)

Publication Number Publication Date
WO2016076434A1 true WO2016076434A1 (ja) 2016-05-19

Family

ID=55954509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/082045 WO2016076434A1 (ja) 2014-11-14 2015-11-13 歯髄由来多能性幹細胞を含有する筋ジストロフィー治療剤

Country Status (4)

Country Link
US (1) US20170327791A1 (ja)
EP (1) EP3219322A4 (ja)
JP (1) JP6644702B2 (ja)
WO (1) WO2016076434A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021153719A1 (ja) * 2020-01-30 2021-08-05 Jcrファーマ株式会社 歯髄由来細胞を含む医薬組成物
JPWO2020027163A1 (ja) * 2018-07-31 2021-09-24 Jcrファーマ株式会社 歯髄由来細胞の製造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013146992A1 (ja) * 2012-03-29 2013-10-03 日本ケミカルリサーチ株式会社 歯髄由来の多能性幹細胞の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010151733A1 (en) * 2009-06-25 2010-12-29 The Trustees Of Columbia University In The City Of New York Dental stem cell reprogramming
US20120164731A1 (en) * 2009-07-09 2012-06-28 Kyoto University Method of inducing differentiation from pluripotent stem cells to skeletal muscle progenitor cells
WO2013086008A1 (en) * 2011-12-05 2013-06-13 Factor Bioscience Inc. Methods and products for transfecting cells

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013146992A1 (ja) * 2012-03-29 2013-10-03 日本ケミカルリサーチ株式会社 歯髄由来の多能性幹細胞の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KERKIS, I. ET AL.: "Stem Cells in Dental Pulp of Deciduous Teeth", TISSUE ENGINEERING PART B REVIEWS, vol. 18, no. 2, 2012, pages 129 - 138, XP055284903 *
See also references of EP3219322A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020027163A1 (ja) * 2018-07-31 2021-09-24 Jcrファーマ株式会社 歯髄由来細胞の製造方法
WO2021153719A1 (ja) * 2020-01-30 2021-08-05 Jcrファーマ株式会社 歯髄由来細胞を含む医薬組成物

Also Published As

Publication number Publication date
US20170327791A1 (en) 2017-11-16
JPWO2016076434A1 (ja) 2017-10-05
EP3219322A1 (en) 2017-09-20
EP3219322A4 (en) 2018-06-20
JP6644702B2 (ja) 2020-02-12

Similar Documents

Publication Publication Date Title
US20230313136A1 (en) Abcb5 positive mesenchymal stem cells as immunomodulators
ES2237089T3 (es) Usos para celulas madre mesenquimatosas humanas no autologas.
ES2613930T3 (es) Procedimiento de cultivo de células procedentes de tejido adiposo y sus aplicaciones
US10041039B2 (en) Method for producing pluripotent stem cells derived from dental pulp
JP2007507202A (ja) 脂肪由来前駆細胞の細胞分化
EP2840133B1 (en) Method for manufacturing stem cell having appropriate size for intravascular administration
WO2014046417A1 (en) Method for preparing mesenchymal stem cell aggregates
CN111500578A (zh) 调控ADSCs成骨分化及组织再生Circ RNA-FTO及其应用
JP6644702B2 (ja) 歯髄由来多能性幹細胞を含有する筋ジストロフィー治療剤
WO2014201986A1 (zh) 建立单克隆间充质干细胞的方法及其应用
WO2013123448A1 (en) Micro-tissue particles and methods for their use in cell therapy
WO2020190672A1 (en) Cardiomyocyte-derived exosomes inducing regeneration of damaged heart tissue
JP2009065854A (ja) 細胞増殖方法ならびに組織の修復および再生のための医薬
JP7444267B2 (ja) 中枢神経疾患の治療用組成物、中枢神経疾患の治療用組成物の製造方法および中枢神経疾患の治療用製剤の製造方法
JP2017222581A (ja) 肝臓組織再生用組成物
WO2021060460A1 (ja) 生体組織損傷の修復剤の製造方法および生体組織損傷の修復剤
JP2009065884A (ja) 細胞増殖方法ならびに組織の修復および再生のための医薬
JP6654323B2 (ja) 重層上皮組織形成能を有する細胞、及びその製造方法
Godoy et al. SENESCENCE STATE OF MESENCHYMAL STEM CELLS IN LOW CULTURE PASSAGES: IMPLICATIONS FOR CLINICAL USE
JP2024024327A (ja) 細胞の投与液
AU2013204421B2 (en) ABCB5 positive mesenchymal stem cells as immunomodulators

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15859662

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016559128

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15526370

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015859662

Country of ref document: EP