WO2016076138A1 - Solid-state imaging element, manufacturing method, and electronic device - Google Patents

Solid-state imaging element, manufacturing method, and electronic device Download PDF

Info

Publication number
WO2016076138A1
WO2016076138A1 PCT/JP2015/080664 JP2015080664W WO2016076138A1 WO 2016076138 A1 WO2016076138 A1 WO 2016076138A1 JP 2015080664 W JP2015080664 W JP 2015080664W WO 2016076138 A1 WO2016076138 A1 WO 2016076138A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
state imaging
photoelectric conversion
doped layer
imaging device
Prior art date
Application number
PCT/JP2015/080664
Other languages
French (fr)
Japanese (ja)
Inventor
鹿野 博司
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2016076138A1 publication Critical patent/WO2016076138A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

The present disclosure relates to a solid-state imaging element, a manufacturing method, and an electronic device which enable an increase in shot noise to be suppressed. A solid-state imaging element of one aspect of the present disclosure is a stacked solid-state imaging element configured by bonding a compound semiconductor substrate including a photoelectric conversion part and a Si substrate including a circuit part for processing photoelectrons produced by the photoelectric conversion part. The compound semiconductor substrate is provided with a first highly doped layer stacked on the photoelectric conversion part, the Si substrate is provided with a Si plug, and the photoelectrons produced by the photoelectric conversion part are transferred to the circuit part via the first highly doped layer and the Si plug. The present disclosure is applicable to a stacked CMOS image sensor.

Description

固体撮像素子、製造方法、および電子装置Solid-state imaging device, manufacturing method, and electronic apparatus
 本開示は、固体撮像素子、製造方法、および電子装置に関し、特に、光電変換部にて生成された光電子が回路部に転送されるまでの経路におけるショットノイズを低減できるようにした固体撮像素子、製造方法、および電子装置に関する。 The present disclosure relates to a solid-state imaging device, a manufacturing method, and an electronic device, and in particular, a solid-state imaging device capable of reducing shot noise in a path until photoelectrons generated in a photoelectric conversion unit are transferred to a circuit unit, The present invention relates to a manufacturing method and an electronic device.
 従来、特に赤外光を検出する用途に用いるCMOSイメージセンサなどの固体撮像素子において、その光電変換部をInGaAsなどの化合物半導体基板上に設けることによって高感度化を実現する方法が知られている(例えば、特許文献1参照)。 Conventionally, in a solid-state imaging device such as a CMOS image sensor particularly used for detecting infrared light, a method for realizing high sensitivity by providing a photoelectric conversion portion on a compound semiconductor substrate such as InGaAs has been known. (For example, refer to Patent Document 1).
 一方、固体撮像素子において、光電変換部にて生成された光電子を保持したり、後段に出力したりする回路部は、特性やコストなどの観点からSi基板上に設けることが多い。 On the other hand, in a solid-state imaging device, a circuit unit that holds photoelectrons generated by a photoelectric conversion unit or outputs it to a subsequent stage is often provided on a Si substrate from the viewpoint of characteristics and cost.
 したがって、光電変換部を含む化合物半導体基板と、回路部を含むSi基板とにより固体撮像素子を構成する場合、両者を何らかの手段によって電気的に接続する必要がある。 Therefore, when a solid-state imaging device is constituted by a compound semiconductor substrate including a photoelectric conversion unit and a Si substrate including a circuit unit, it is necessary to electrically connect both by some means.
 図1は、光電変換部を含む化合物半導体基板と、回路部を含むSi基板から成る固体撮像素子の従来の構成の一例を示している。 FIG. 1 shows an example of a conventional configuration of a solid-state imaging device including a compound semiconductor substrate including a photoelectric conversion unit and a Si substrate including a circuit unit.
 図1に示される固体撮像素子10は、Si基板11と、化合物半導体基板15が張り合わされて構成される。Si基板11には、MEM,FD,Vdd,TRX,TG,RSTなどの回路部12が形成されており、化合物半導体基板15と張り合わされる面には絶縁体層13が設けられている。また、Si基板11にはnSiプラグ20が縦方向に設けられている。 The solid-state imaging device 10 shown in FIG. 1 is configured by bonding a Si substrate 11 and a compound semiconductor substrate 15 together. A circuit portion 12 such as MEM, FD, Vdd, TRX, TG, and RST is formed on the Si substrate 11, and an insulator layer 13 is provided on the surface to be bonded to the compound semiconductor substrate 15. In addition, nSi plugs 20 are provided in the vertical direction on the Si substrate 11.
 一方、化合物半導体基板15には、光電変換部16(p-化合物半導体16Aおよびn-化合物半導体16Bからなるp-n接合構造のフォトダイオード)が形成されており、光電変換部16の上層側(受光面側)には上部透明電極18が、下層側には金属層19が設けられている。また、化合物半導体基板15には金属層19に繋がる金属プラグ22が縦方向に設けられている。 On the other hand, on the compound semiconductor substrate 15, a photoelectric conversion unit 16 (a photodiode having a pn junction structure made of a p-compound semiconductor 16A and an n-compound semiconductor 16B) is formed. An upper transparent electrode 18 is provided on the light receiving surface side, and a metal layer 19 is provided on the lower layer side. The compound semiconductor substrate 15 is provided with a metal plug 22 connected to the metal layer 19 in the vertical direction.
 Si基板11と化合物半導体基板15との接続は、Si基板11に設けられたnSiプラグ20と、化合物半導体基板15に設けた金属プラグ22とをn+Si層21を介して接続することにより実現される。すなわち、化合物半導体基板15の光電変換部16で生成された光電子は、金属層19、金属プラグ22、n+Si層21、およびnSiプラグ20を介して、Si基板11の回路部12に転送されることになる。 The connection between the Si substrate 11 and the compound semiconductor substrate 15 is realized by connecting the nSi plug 20 provided on the Si substrate 11 and the metal plug 22 provided on the compound semiconductor substrate 15 via the n + Si layer 21. . That is, photoelectrons generated in the photoelectric conversion unit 16 of the compound semiconductor substrate 15 are transferred to the circuit unit 12 of the Si substrate 11 through the metal layer 19, the metal plug 22, the n + Si layer 21, and the nSi plug 20. become.
特開2007-123720号公報JP 2007-123720 A
 図1に示された従来の構成例の場合、光電変換部16で生成された光電子が回路部12に転送されるまでの経路に自由電子濃度の高い金属が存在し、多くの自由電子が存在するので、該自由電子の数に依存するショットノイズが増大してしまう要因となっていた。 In the case of the conventional configuration example shown in FIG. 1, there is a metal having a high free electron concentration in the path until the photoelectrons generated by the photoelectric conversion unit 16 are transferred to the circuit unit 12, and there are many free electrons. As a result, the shot noise depending on the number of free electrons increases.
 本開示はこのような状況に鑑みてなされたものであり、固体撮像素子におけるショットノイズの増大を抑止できるようにするものである。 The present disclosure has been made in view of such a situation, and is intended to suppress an increase in shot noise in a solid-state imaging device.
 本開示の第1の側面である固体撮像素子は、光電変換部を含む化合物半導体基板と、前記光電変換部により生成された光電子を処理するための回路部を含むSi基板とが張り合わされて構成される積層型の固体撮像素子において、前記化合物半導体基板は、前記光電変換部と積層された第1の高濃度ドープ層を備え、前記Si基板には、Siプラグを備え、前記光電変換部により生成された光電子は、前記第1の高濃度ドープ層および前記Siプラグを介して前記回路部に転送される。 A solid-state imaging device according to the first aspect of the present disclosure includes a compound semiconductor substrate including a photoelectric conversion unit and a Si substrate including a circuit unit for processing photoelectrons generated by the photoelectric conversion unit. In the stacked solid-state imaging device, the compound semiconductor substrate includes a first highly doped layer stacked with the photoelectric conversion unit, the Si substrate includes a Si plug, and the photoelectric conversion unit The generated photoelectrons are transferred to the circuit section through the first highly doped layer and the Si plug.
 前記光電変換部により生成された光電子は、前記第1の高濃度ドープ層、前記第1の高濃度ドープ層の側面に接する第2の高濃度ドープ層、および前記Siプラグを介して前記回路部に転送されるようにすることができる。 The photoelectrons generated by the photoelectric conversion unit are connected to the circuit unit via the first heavily doped layer, the second heavily doped layer in contact with a side surface of the first heavily doped layer, and the Si plug. Can be transferred to.
 前記第2の高濃度ドープ層は、Si層が前記第1の高濃度ドープ層と同じ半導体型で高濃度にドープされたものとすることができる。 The second high-concentration doped layer may be one in which the Si layer is highly doped with the same semiconductor type as the first high-concentration doped layer.
 前記光電変換部により生成された光電子は、前記第1の高濃度ドープ層、前記第1の高濃度ドープ層の側面に接する第2の高濃度ドープ層、前記Siプラグをエピタキシャル成長させたSiプラグエピタキシャル層、および前記Siプラグを介して前記回路部に転送されるようにすることができる。 The photoelectrons generated by the photoelectric conversion unit are the first heavily doped layer, the second heavily doped layer in contact with the side surface of the first heavily doped layer, and the Si plug epitaxial obtained by epitaxially growing the Si plug. It can be transferred to the circuit section through the layer and the Si plug.
 前記光電変換部は、化合物半導体がp-n接合またはp-i-n接合されたフォトダイオードからなるようにすることができる。 The photoelectric conversion unit may be formed of a photodiode in which a compound semiconductor is a pn junction or a pin junction.
 前記フォトダイオードをなすp-化合物半導体には、Zn,Mg,Be,Cのうち一種がドーピングされているInGaAs、III-V系化合物、またはII-VI系化合物が採用され、n-化合物半導体には、Si,S,Se,Teのうち一種がドーピングされているInGaAs、III-V系化合物、またはII-VI系化合物が採用されているようにすることができる。 As the p-compound semiconductor forming the photodiode, InGaAs, III-V compound, or II-VI compound doped with one of Zn, Mg, Be, and C is adopted. May be made of InGaAs, III-V compound, or II-VI compound doped with one of Si, S, Se, and Te.
 前記化合物半導体基板は、前記光電変換部を1画素毎に分離するための画素分離部をさらに備えることができる。 The compound semiconductor substrate may further include a pixel separation unit for separating the photoelectric conversion unit for each pixel.
 前記第2の高濃度ドープ層は、1画素毎に分離された前記光電変換部の外側の側面に接するように形成されているようにすることができる。 The second high-concentration doped layer can be formed so as to be in contact with the outer side surface of the photoelectric conversion unit separated for each pixel.
 前記第2の高濃度ドープ層は、1画素毎に分離された前記光電変換部の内側中央付近の側面に接するように形成されているようにすることができる。 The second high-concentration doped layer may be formed so as to be in contact with the side surface near the inner center of the photoelectric conversion unit separated for each pixel.
 前記第1の高濃度ドープ層は、不純物濃度が1016/cm以上5×1017/cm以下とすることができる。 The first heavily doped layer may have an impurity concentration of 10 16 / cm 3 or more and 5 × 10 17 / cm 3 or less.
 前記第1の高濃度ドープ層の厚さは、20nm以下とすることができる。 The thickness of the first heavily doped layer can be 20 nm or less.
 前記第2の高濃度ドープ層の厚さは、前記第1の高濃度ドープ層の厚さと同程度とすることができる。 The thickness of the second heavily doped layer can be approximately the same as the thickness of the first heavily doped layer.
 前記化合物半導体基板と前記Si基板は、プラズマ接合処理、高温処理、または薬液処理によって張り合わされているようにすることができる。 The compound semiconductor substrate and the Si substrate can be bonded to each other by plasma bonding processing, high temperature processing, or chemical processing.
 前記化合物半導体基板と前記Si基板との貼り合わせ面には、絶縁体層が形成されているようにすることができる。 An insulator layer may be formed on the bonding surface between the compound semiconductor substrate and the Si substrate.
 前記絶縁体層は、Si,Al,Ta、またはTiの酸化膜または窒化膜からなるようにすることができる。 The insulator layer can be made of an oxide film or nitride film of Si, Al, Ta, or Ti.
 本開示の第2の側面である製造方法は、固体撮像素子の製造方法において、光電変換部、第1の高濃度ドープ層、および絶縁体層が順に積層された化合物半導体基板と、前記光電変換部により生成された光電子を処理するための回路部を含み、縦方向にSiプラグが形成され、表面に絶縁体層が形成されたSi基板との前記絶縁体層どうしを張り合わせ、前記第第1の高濃度ドープ層と前記Siプラグとを第2の高濃度ドープ層を介して電気的に接続するステップを含む。 The manufacturing method according to the second aspect of the present disclosure includes a compound semiconductor substrate in which a photoelectric conversion unit, a first highly doped layer, and an insulator layer are sequentially stacked in the method for manufacturing a solid-state imaging device, and the photoelectric conversion. Including a circuit unit for processing the photoelectrons generated by the unit, the Si plug formed in the vertical direction, and the insulator layer and the Si substrate having the insulator layer formed on the surface are bonded together, and the first Electrically connecting the heavily doped layer and the Si plug through a second heavily doped layer.
 本開示の第3の側面である電子装置は、固体撮像素子が搭載された電子装置において、前記固体撮像素子は、光電変換部を含む化合物半導体基板と、前記光電変換部により生成された光電子を処理するための回路部を含むSi基板とが張り合わされて構成され、前記化合物半導体基板は、前記光電変換部と積層された第1の高濃度ドープ層を備え、前記Si基板には、Siプラグを備え、前記光電変換部により生成された光電子は、前記第1の高濃度ドープ層および前記Siプラグを介して前記回路部に転送される。 An electronic device according to a third aspect of the present disclosure is an electronic device in which a solid-state imaging element is mounted, wherein the solid-state imaging element includes a compound semiconductor substrate including a photoelectric conversion unit and photoelectrons generated by the photoelectric conversion unit. The compound semiconductor substrate includes a first heavily doped layer laminated with the photoelectric conversion unit, and the Si substrate includes a Si plug. The Si substrate including a circuit unit for processing is bonded to the Si substrate. The photoelectrons generated by the photoelectric conversion unit are transferred to the circuit unit via the first highly doped layer and the Si plug.
 本開示の第1乃至第3の側面においては、固体撮像素子において化合物半導体基板に含まれる光電変換部により生成された光電子は、第1の高濃度ドープ層およびSiプラグを介してSi基板に含まれる回路部に転送される。 In the first to third aspects of the present disclosure, the photoelectrons generated by the photoelectric conversion unit included in the compound semiconductor substrate in the solid-state imaging device are included in the Si substrate via the first highly doped layer and the Si plug. Is transferred to the circuit unit.
 本開示の第1乃至3の側面によれば、固体撮像素子におけるショットノイズの増大を抑止することができる。 According to the first to third aspects of the present disclosure, an increase in shot noise in the solid-state imaging device can be suppressed.
固体撮像素子の従来の構成の一例を示す断面図である。It is sectional drawing which shows an example of the conventional structure of a solid-state image sensor. 本開示を適用した固体撮像素子の第1の構成例を示す断面図である。It is sectional drawing which shows the 1st structural example of the solid-state image sensor to which this indication is applied. 図2の固体撮像素子の上面図である。It is a top view of the solid-state image sensor of FIG. 本開示を適用した固体撮像素子の第2の構成例を示す断面図である。It is sectional drawing which shows the 2nd structural example of the solid-state image sensor to which this indication is applied. 図4の固体撮像素子の上面図である。It is a top view of the solid-state image sensor of FIG. 図2の固体撮像素子の製造工程を説明するための図である。It is a figure for demonstrating the manufacturing process of the solid-state image sensor of FIG. 図2の固体撮像素子の製造工程を説明するための図である。It is a figure for demonstrating the manufacturing process of the solid-state image sensor of FIG. 図2の固体撮像素子の製造工程を説明するための図である。It is a figure for demonstrating the manufacturing process of the solid-state image sensor of FIG. 本開示を適用した固体撮像素子の使用例を示す図である。It is a figure which shows the usage example of the solid-state image sensor to which this indication is applied.
 以下、本開示を実施するための最良の形態(以下、実施の形態と称する)について、図面を参照しながら詳細に説明する。 Hereinafter, the best mode for carrying out the present disclosure (hereinafter referred to as an embodiment) will be described in detail with reference to the drawings.
 <本開示の実施の形態である固体撮像素子の第1の構成例>
 図2は、本開示の実施の形態である固体撮像素子の第1の構成例を示す断面図である。図3は、図2に示される固体撮像素子の受光面側の上面図である。
<First Configuration Example of Solid-State Imaging Device according to Embodiment of Present Disclosure>
FIG. 2 is a cross-sectional view illustrating a first configuration example of the solid-state imaging element according to the embodiment of the present disclosure. FIG. 3 is a top view of the light receiving surface side of the solid-state imaging device shown in FIG.
 本開示の実施の形態である固体撮像素子30の第1の構成例は、図1に示された従来の固体撮像素子10と同様、回路部32を含むSi基板31と、光電変換部35を含む化合物半導体基板34が張り合わされて構成される、いわゆる、積層型の固体撮像素子である。 The first configuration example of the solid-state imaging device 30 according to the embodiment of the present disclosure includes the Si substrate 31 including the circuit unit 32 and the photoelectric conversion unit 35 as in the conventional solid-state imaging device 10 illustrated in FIG. This is a so-called stacked type solid-state image pickup device in which the compound semiconductor substrate 34 including the substrate is laminated.
 Si基板31には、MEM,FD,Vdd,TRX,TG,RSTなどの回路部32が形成されており、化合物半導体基板34と張り合わされる表面には絶縁体層33が設けられている。また、Si基板11には、画素毎にSiプラグ40が縦方向に設けられている。 The Si substrate 31 is formed with circuit portions 32 such as MEM, FD, Vdd, TRX, TG, and RST, and an insulator layer 33 is provided on the surface to be bonded to the compound semiconductor substrate 34. The Si substrate 11 is provided with Si plugs 40 in the vertical direction for each pixel.
 一方、化合物半導体基板34には、光電変換部35(p-化合物半導体35Aおよびn-化合物半導体35Bからなるp-n接合構造のフォトダイオード)が形成されており、光電変換部35は、絶縁体層42から成る画素分離部51により画素毎に分離されている。光電変換部35の下層側には、不純物濃度が1016/cm以上5×1017/cm以下にドープ(dope)された厚さ20nm以下のn+化合物半導体36を介して絶縁体層37が、上層側(受光面側)には上部透明電極38が設けられている。 On the other hand, the compound semiconductor substrate 34 is formed with a photoelectric conversion part 35 (a photodiode having a pn junction structure made of a p-compound semiconductor 35A and an n-compound semiconductor 35B). Each pixel is separated by a pixel separation unit 51 formed of the layer 42. On the lower layer side of the photoelectric conversion unit 35, an insulator layer 37 is interposed via an n + compound semiconductor 36 having a thickness of 20 nm or less doped with an impurity concentration of 10 16 / cm 3 or more and 5 × 10 17 / cm 3 or less. However, the upper transparent electrode 38 is provided on the upper layer side (light receiving surface side).
 Si基板31と化合物半導体基板34とは、Si基板31の絶縁体層33と化合物半導体基板34の絶縁体層37が対向するように張り合わされている。 The Si substrate 31 and the compound semiconductor substrate 34 are bonded together so that the insulator layer 33 of the Si substrate 31 and the insulator layer 37 of the compound semiconductor substrate 34 face each other.
 Si基板31と化合物半導体基板34とは、Si基板31の画素毎に縦方向に設けられるSiプラグ40が絶縁体層33および37を貫いて形成されるエピタキシャル成長部分(Siプラグエピタキシャル層41)と、化合物半導体基板34のn+化合物半導体36の横方向に連なって形成された、n+化合物半導体36とほぼ同じ厚さの薄いn+Si層43とが接続されることにより電気的な接続が実現される。 The Si substrate 31 and the compound semiconductor substrate 34 include an epitaxially grown portion (Si plug epitaxial layer 41) in which an Si plug 40 provided in the vertical direction for each pixel of the Si substrate 31 is formed through the insulator layers 33 and 37; An electrical connection is realized by connecting a thin n + Si layer 43 having a thickness substantially the same as that of the n + compound semiconductor 36 formed continuously in the lateral direction of the n + compound semiconductor 36 of the compound semiconductor substrate 34.
 固体撮像素子30を構成する各部の具体例について説明する。Si基板31の上部表面に形成する絶縁体層33には、Si,Al,Ta,Tiなどの酸化膜、窒化膜などを採用できる。また、異なる材料の組み合わせを採用することもできる。さらに、界面準位の生成とその影響を抑制するために、Si基板31と絶縁体層33の間に高濃度にドープされたSi層を挿入することも可能である。 Specific examples of each part constituting the solid-state imaging device 30 will be described. For the insulator layer 33 formed on the upper surface of the Si substrate 31, an oxide film such as Si, Al, Ta, or Ti, a nitride film, or the like can be employed. Also, a combination of different materials can be employed. Further, a highly doped Si layer can be inserted between the Si substrate 31 and the insulator layer 33 in order to suppress the generation of interface states and its influence.
 化合物半導体34の下部表面に形成する絶縁体層37には、Si,Al,Ta,Tiなどの酸化膜、窒化膜などを採用できる。n+化合物半導体36と絶縁体層37の間に、界面準位の生成とその影響を抑制する化合物材料、Ga,Inなどの酸化膜や窒化膜を挿入することも可能である。 For the insulator layer 37 formed on the lower surface of the compound semiconductor 34, an oxide film such as Si, Al, Ta, Ti, a nitride film, or the like can be employed. Between the n + compound semiconductor 36 and the insulator layer 37, it is also possible to insert a compound material that suppresses the generation of the interface state and its influence, an oxide film such as Ga, In, or a nitride film.
 Si基板31に設けるSiプラグ40の半導体極性は、本実施の形態ではn型としている。ただし、Siプラグ40の半導体極性はその周囲の構成の半導体極性に応じて決まるので、Siプラグ40の半導体極性をp型とする場合もあり得る。 The semiconductor polarity of the Si plug 40 provided on the Si substrate 31 is n-type in this embodiment. However, since the semiconductor polarity of the Si plug 40 is determined according to the semiconductor polarity of the surrounding configuration, the semiconductor polarity of the Si plug 40 may be p-type.
 p-化合物半導体35AにはZnがドーピングされているInGaAsを採用することができ、n-化合物半導体35BにはSiがドーピングされているInGaAsを採用することができる。これらの他、化合物半導体には、Al,Ga,Inのリン化物、ヒ化物、窒化物、アンチモン化物などのIII-V系化合物、Zn,Cd,Teなどの硫化物、セレン化物、テルル化物などのII-VI系化合物などを採用することができる。 InGaAs doped with Zn can be used for the p-compound semiconductor 35A, and InGaAs doped with Si can be used for the n-compound semiconductor 35B. In addition to these, compound semiconductors include phosphides, arsenides, nitrides, antimonides, and other III-V compounds, sulfides such as Zn, Cd, Te, selenides, tellurides, etc. II-VI compounds and the like can be employed.
 また、光電変換部35には、p-n接合構造のフォトダイオードの代わりに、イントリンジック半導体層を挟んだp-i-n接合構造のフォトダイオードを採用してもよい。 Further, the photoelectric conversion unit 35 may employ a photodiode having a pin junction structure with an intrinsic semiconductor layer interposed therebetween, instead of the photodiode having a pn junction structure.
 固体撮像素子30においては、化合物半導体基板34の光電変換部35にて生成された光電子が、n+化合物半導体36、n+Si層43、nSiプラグエピタキシャル層41、およびnSiプラグ40を転送路として、Si基板31の回路部32に転送され、電荷信号として後段に出力される。 In the solid-state imaging device 30, photoelectrons generated in the photoelectric conversion unit 35 of the compound semiconductor substrate 34 are transferred to the Si substrate using the n + compound semiconductor 36, the n + Si layer 43, the nSi plug epitaxial layer 41, and the nSi plug 40 as transfer paths. 31 is transferred to the circuit unit 32 and output to the subsequent stage as a charge signal.
 固体撮像素子30の場合、光電子の転送路に薄い高濃度半導体(n+化合物半導体36)が存在するので、その部分での自由電子によるショットノイズが発生する。ただし、導体(図1の金属層19および金属プラグ22)と半導体(図2のn+化合物半導体36)とのキャリア濃度は10程度以上異なり、ショットノイズはその平方根に比例して低減する。よって、固体撮像素子30は、光電子の転送路で発生するショットノイズを固体撮像素子10に比較して削減することができる。 In the case of the solid-state imaging device 30, since a thin high-concentration semiconductor (n + compound semiconductor 36) is present in the photoelectron transfer path, shot noise due to free electrons occurs in that portion. However, the conductor carrier concentration (Figure 1 of the metal layer 19 and metal plug 22) and the semiconductor (n + compound semiconductor 36 in FIG. 2) is different than the order of 10 5, shot noise is reduced in proportion to the square root. Therefore, the solid-state imaging device 30 can reduce shot noise generated in the photoelectron transfer path compared to the solid-state imaging device 10.
 また、自由電子数は、高濃度半導体(n+化合物半導体36)および高濃度Si層(n+Si層43)の体積に比例するため、これらの厚さは両者間で光電子を転送できる範囲で可能な限り薄いことが望ましい。 Moreover, since the number of free electrons is proportional to the volume of the high concentration semiconductor (n + compound semiconductor 36) and the high concentration Si layer (n + Si layer 43), these thicknesses are within the range where photoelectrons can be transferred between them. Thin is desirable.
 <本開示の実施の形態である固体撮像素子の第2の構成例>
 次に、図4は、本開示の実施の形態である固体撮像素子の第2の構成例を示す断面図である。図5は、図4に示される固体撮像素子の受光面側の上面図である。なお、図2および図3に示された第1の構成例と共通する構成要素に対しては同一の符号を付しているので、その説明は適宜省略する。
<Second Configuration Example of Solid-State Imaging Device according to Embodiment of Present Disclosure>
Next, FIG. 4 is a cross-sectional view illustrating a second configuration example of the solid-state imaging element according to the embodiment of the present disclosure. FIG. 5 is a top view of the light receiving surface side of the solid-state imaging device shown in FIG. Note that the same reference numerals are given to the components common to the first configuration example shown in FIGS. 2 and 3, and the description thereof will be omitted as appropriate.
 本開示の実施の形態である固体撮像素子30の第2の構成例は、光電子を転送するためのSiプラグ40を各画素の中央付近に配置したものである。この場合、Siプラグ40を各画素の端に配置していた第1の構成例に比較し、光電子の転送路の横方向の距離が短くなるため、転送中に再結合してしまい電荷信号に変換されない光電子の数を減少させることができる。よって、光電子の転送効率を向上させることができる。 In the second configuration example of the solid-state imaging device 30 according to the embodiment of the present disclosure, the Si plug 40 for transferring photoelectrons is arranged near the center of each pixel. In this case, compared to the first configuration example in which the Si plug 40 is arranged at the end of each pixel, the lateral distance of the photoelectron transfer path is shortened, so that recombination occurs during transfer and the charge signal is generated. The number of unconverted photoelectrons can be reduced. Therefore, photoelectron transfer efficiency can be improved.
 <本開示の実施の形態である固体撮像素子の製造方法>
 次に、図6乃至図8は、本開示の実施の形態である固体撮像素子30の第1の構成例の製造工程を示している。
<Method for Producing Solid-State Imaging Device According to Embodiment of Present Disclosure>
Next, FIGS. 6 to 8 illustrate a manufacturing process of the first configuration example of the solid-state imaging element 30 according to the embodiment of the present disclosure.
 始めに、従来のCMOSイメージセンサの製造方法と同様の方法により、図6のAに示す回路部32およびSiプラグ40を含むSi基板31を形成し、その表面に絶縁体層33を形成する。Siプラグ40は、例えばイオン注入等によって形成することができる。 First, the Si substrate 31 including the circuit portion 32 and the Si plug 40 shown in FIG. 6A is formed by the same method as the conventional CMOS image sensor manufacturing method, and the insulator layer 33 is formed on the surface thereof. The Si plug 40 can be formed, for example, by ion implantation.
 次に、図6のBに示すように、化合物半導体基板34上に光電変換部35、n+化合物半導体36、および絶縁体層37を形成する。化合物半導体基板34には、例えばInP基板の他、GaAs基板、GaP基板、InSb基板、InAs基板などを用いることができる。光電変換部35を成すp-化合物半導体35Aおよびn-化合物半導体35Bの成膜にはMOCVD装置の他、MBE装置、LPE装置などを用いることができる。 Next, as shown in FIG. 6B, a photoelectric conversion portion 35, an n + compound semiconductor 36, and an insulator layer 37 are formed on the compound semiconductor substrate 34. As the compound semiconductor substrate 34, for example, a GaAs substrate, a GaP substrate, an InSb substrate, an InAs substrate, or the like can be used in addition to the InP substrate. In addition to the MOCVD apparatus, an MBE apparatus, an LPE apparatus, or the like can be used for forming the p-compound semiconductor 35A and the n-compound semiconductor 35B forming the photoelectric conversion unit 35.
 絶縁体層33および絶縁体層37の成膜には、ALD装置の他、スパッタ装置、蒸着装置などを用いることができる。 In addition to the ALD apparatus, a sputtering apparatus, a vapor deposition apparatus, or the like can be used for forming the insulator layer 33 and the insulator layer 37.
 このようにして形成されたSi基板31と化合物半導体基板34は、図6のCに示されるように、それぞれの絶縁体層33と絶縁体層37が貼り合わせ面となって接合される。この接合には、プラズマ接合の他、高温処理や薬液処理等を用いた直接接合などを用いることができる。 The Si substrate 31 and the compound semiconductor substrate 34 formed in this way are bonded to each other with the insulator layers 33 and the insulator layers 37 bonded together as shown in FIG. 6C. For this bonding, in addition to plasma bonding, direct bonding using high-temperature treatment, chemical solution treatment, or the like can be used.
 次に、図7のAに示されるように、化合物半導体基板34の受光面側の化合物半導体34Aを機械研磨と薬液によるエッチングで除去した後、化合物半導体34A上にハードマスク61を成膜する。さらに、フォトリソグラフィにより、1画素分の光電変換部35に対応する領域以外のハードマスク61を除去した後に、化合物半導体34A、p-化合物半導体35A、n-化合物半導体35B、およびn+化合物半導体36のエッチングを行う。これにより、図7のBに示されるように、ハードマスク61の下層側にのみ化合物半導体34A、p-化合物半導体35A、n-化合物半導体35B、およびn+化合物半導体36が残り、その周囲には画素分離部51となる空間が形成される。 Next, as shown in FIG. 7A, the compound semiconductor 34A on the light receiving surface side of the compound semiconductor substrate 34 is removed by mechanical polishing and chemical etching, and then a hard mask 61 is formed on the compound semiconductor 34A. Further, after removing the hard mask 61 other than the region corresponding to the photoelectric conversion unit 35 for one pixel by photolithography, the compound semiconductor 34A, the p-compound semiconductor 35A, the n-compound semiconductor 35B, and the n + compound semiconductor 36 Etching is performed. As a result, as shown in FIG. 7B, the compound semiconductor 34A, the p-compound semiconductor 35A, the n-compound semiconductor 35B, and the n + compound semiconductor 36 remain only on the lower layer side of the hard mask 61, and a pixel is formed around the compound semiconductor 34A. A space to be the separation part 51 is formed.
 そして、図7のCに示されるように、画素分離部51となる空間から、エッチングにより、絶縁体層37および絶縁体層33を貫いてSiプラグ40に達する接続孔62が形成される。続いて、図8のAに示されるように、Siプラグエピタキシャル層41とn+Si層43を接続孔62の位置に選択的にエピタキシャル成長させる。このとき、n+Si層43とn+化合物半導体層4の断面位置が一致し、電気的に接続されるようにSiプラグエピタキシャル層41の厚さを調整する。 Then, as shown in FIG. 7C, a connection hole 62 that reaches the Si plug 40 through the insulator layer 37 and the insulator layer 33 is formed by etching from the space that becomes the pixel separation portion 51. Subsequently, as shown in FIG. 8A, the Si plug epitaxial layer 41 and the n + Si layer 43 are selectively epitaxially grown at the position of the connection hole 62. At this time, the thickness of the Si plug epitaxial layer 41 is adjusted so that the cross-sectional positions of the n + Si layer 43 and the n + compound semiconductor layer 4 coincide and are electrically connected.
 最後に、ハードマスク61を除去した後、画素分離部51の空間を埋めるように絶縁体層13を成膜し、p-化合物半導体35Aの表面が出るまで平面研磨を行い、その上に上部透明電極38を成膜する。上部透明電極38は、フォトリソグラフィとエッチングによって所望のパターンに加工する。以上のようにして固体撮像素子30の第1の構成例は製造される。なお、固体撮像素子30の第2の構成例についても同様の工程によって製造できる。 Finally, after removing the hard mask 61, the insulator layer 13 is formed so as to fill the space of the pixel separation portion 51, and planar polishing is performed until the surface of the p-compound semiconductor 35A comes out. An electrode 38 is formed. The upper transparent electrode 38 is processed into a desired pattern by photolithography and etching. As described above, the first configuration example of the solid-state imaging device 30 is manufactured. Note that the second configuration example of the solid-state imaging element 30 can be manufactured by the same process.
 <固体撮像素子30の使用例>
 次に、図9は固体撮像素子30の使用例を示している。
<Use Example of Solid-State Image Sensor 30>
Next, FIG. 9 shows an example of use of the solid-state imaging device 30.
 上述したイメージセンサは、例えば、以下のように、可視光や、赤外光、紫外光、X線等の光をセンシングする様々なケースに使用することができる。 The image sensor described above can be used in various cases for sensing light such as visible light, infrared light, ultraviolet light, and X-ray as follows.
 ・ディジタルカメラや、カメラ機能付きの携帯機器等の、鑑賞の用に供される画像を撮影する装置
 ・自動停止等の安全運転や、運転者の状態の認識等のために、自動車の前方や後方、周囲、車内等を撮影する車載用センサ、走行車両や道路を監視する監視カメラ、車両間等の測距を行う測距センサ等の、交通の用に供される装置
 ・ユーザのジェスチャを撮影して、そのジェスチャに従った機器操作を行うために、TVや、冷蔵庫、エアーコンディショナ等の家電に供される装置
 ・内視鏡や、赤外光の受光による血管撮影を行う装置等の、医療やヘルスケアの用に供される装置
 ・防犯用途の監視カメラや、人物認証用途のカメラ等の、セキュリティの用に供される装置
 ・肌を撮影する肌測定器や、頭皮を撮影するマイクロスコープ等の、美容の用に供される装置
 ・スポーツ用途等向けのアクションカメラやウェアラブルカメラ等の、スポーツの用に供される装置
 ・畑や作物の状態を監視するためのカメラ等の、農業の用に供される装置
・ Devices for taking images for viewing, such as digital cameras and mobile devices with camera functions ・ For safe driving such as automatic stop and recognition of the driver's condition, Devices used for traffic, such as in-vehicle sensors that capture the back, surroundings, and interiors of vehicles, surveillance cameras that monitor traveling vehicles and roads, and ranging sensors that measure distances between vehicles, etc. Equipment used for home appliances such as TVs, refrigerators, air conditioners, etc. to take pictures and operate the equipment according to the gestures ・ Endoscopes, equipment that performs blood vessel photography by receiving infrared light, etc. Equipment used for medical and health care ・ Security equipment such as security surveillance cameras and personal authentication cameras ・ Skin measuring instrument for photographing skin and scalp photography Such as a microscope to do beauty Equipment used for sports-Equipment used for sports such as action cameras and wearable cameras for sports applications-Used for agriculture such as cameras for monitoring the condition of fields and crops apparatus
 なお、本開示の実施の形態は、上述した実施の形態に限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更が可能である。 Note that the embodiments of the present disclosure are not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present disclosure.
 本開示は以下のような構成も取ることができる。
(1)
 光電変換部を含む化合物半導体基板と、前記光電変換部により生成された光電子を処理するための回路部を含むSi基板とが張り合わされて構成される積層型の固体撮像素子において、
 前記化合物半導体基板は、前記光電変換部と積層された第1の高濃度ドープ層を備え、
 前記Si基板には、Siプラグを備え、
 前記光電変換部により生成された光電子は、前記第1の高濃度ドープ層および前記Siプラグを介して前記回路部に転送される
 固体撮像素子。
(2)
 前記光電変換部により生成された光電子は、前記第1の高濃度ドープ層、前記第1の高濃度ドープ層の側面に接する第2の高濃度ドープ層、および前記Siプラグを介して前記回路部に転送される
 前記(1)に記載の固体撮像素子。
(3)
 前記第2の高濃度ドープ層は、Si層が前記第1の高濃度ドープ層と同じ半導体型で高濃度にドープされたものである
 前記(2)に記載の固体撮像素子。
(4)
 前記光電変換部により生成された光電子は、前記第1の高濃度ドープ層、前記第1の高濃度ドープ層の側面に接する第2の高濃度ドープ層、前記Siプラグをエピタキシャル成長させたSiプラグエピタキシャル層、および前記Siプラグを介して前記回路部に転送される
 前記(1)から(3)のいずれかに記載の固体撮像素子。
(5)
 前記光電変換部は、化合物半導体がp-n接合またはp-i-n接合されたフォトダイオードからなる
 前記(1)から(4)のいずれかに記載の固体撮像素子。
(6)
 前記フォトダイオードをなすp-化合物半導体には、Zn,Mg,Be,Cのうち一種がドーピングされているInGaAs、III-V系化合物、またはII-VI系化合物が採用され、n-化合物半導体には、Si,S,Se,Teのうち一種がドーピングされているInGaAs、III-V系化合物、またはII-VI系化合物が採用されている
 前記(5)に記載の固体撮像素子。
(7)
 前記化合物半導体基板は、前記光電変換部を1画素毎に分離するための画素分離部を
 さらに備える前記(1)から(6)のいずれかに記載の固体撮像素子。
(8)
 前記第2の高濃度ドープ層は、1画素毎に分離された前記光電変換部の外側の側面に接するように形成されている
 前記(7)に記載の固体撮像素子。
(9)
 前記第2の高濃度ドープ層は、1画素毎に分離された前記光電変換部の内側中央付近の側面に接するように形成されている
 前記(7)に記載の固体撮像素子。
(10)
 前記第1の高濃度ドープ層は、不純物濃度が1016/cm以上5×1017/cm以下である
 前記(1)から(9)のいずれかに記載の固体撮像素子。
(11)
 前記第1の高濃度ドープ層の厚さは、20nm以下である
 前記(1)から(10)のいずれかに記載の固体撮像素子。
(12)
 前記第2の高濃度ドープ層の厚さは、前記第1の高濃度ドープ層の厚さと同程度である
 前記(11)に記載の固体撮像素子。
(13)
 前記化合物半導体基板と前記Si基板は、プラズマ接合処理、高温処理、または薬液処理によって張り合わされている
 前記(1)から(12)のいずれかに記載の固体撮像素子。
(14)
 前記化合物半導体基板と前記Si基板との貼り合わせ面には、絶縁体層が形成されている
 前記(1)から(13)のいずれかに記載の固体撮像素子。
(15)
 前記絶縁体層は、Si,Al,Ta、またはTiの酸化膜または窒化膜からなる
 前記(14)に記載の固体撮像素子。
(16)
 固体撮像素子の製造方法において、
 光電変換部、第1の高濃度ドープ層、および絶縁体層が順に積層された化合物半導体基板と、前記光電変換部により生成された光電子を処理するための回路部を含み、縦方向にSiプラグが形成され、表面に絶縁体層が形成されたSi基板との前記絶縁体層どうしを張り合わせ、
 前記第第1の高濃度ドープ層と前記Siプラグとを第2の高濃度ドープ層を介して電気的に接続する
 ステップを含む製造方法。
(17)
 固体撮像素子が搭載された電子装置において、
 前記固体撮像素子は、
  光電変換部を含む化合物半導体基板と、前記光電変換部により生成された光電子を処理するための回路部を含むSi基板とが張り合わされて構成され、
  前記化合物半導体基板は、前記光電変換部と積層された第1の高濃度ドープ層を備え、
  前記Si基板には、Siプラグを備え、
  前記光電変換部により生成された光電子は、前記第1の高濃度ドープ層および前記Siプラグを介して前記回路部に転送される
 電子装置。
This indication can also take the following composition.
(1)
In a stacked solid-state imaging device configured by bonding a compound semiconductor substrate including a photoelectric conversion unit and an Si substrate including a circuit unit for processing photoelectrons generated by the photoelectric conversion unit,
The compound semiconductor substrate includes a first highly doped layer stacked with the photoelectric conversion unit,
The Si substrate includes a Si plug,
Photoelectrons generated by the photoelectric conversion unit are transferred to the circuit unit via the first highly doped layer and the Si plug.
(2)
The photoelectrons generated by the photoelectric conversion unit are connected to the circuit unit via the first heavily doped layer, the second heavily doped layer in contact with a side surface of the first heavily doped layer, and the Si plug. The solid-state imaging device according to (1).
(3)
The solid-state imaging device according to (2), wherein the second highly doped layer is a Si layer having the same semiconductor type as that of the first heavily doped layer and highly doped.
(4)
The photoelectrons generated by the photoelectric conversion unit are the first heavily doped layer, the second heavily doped layer in contact with the side surface of the first heavily doped layer, and the Si plug epitaxial obtained by epitaxially growing the Si plug. The solid-state imaging device according to any one of (1) to (3), wherein the solid-state imaging device is transferred to the circuit unit via a layer and the Si plug.
(5)
The solid-state imaging device according to any one of (1) to (4), wherein the photoelectric conversion unit includes a photodiode in which a compound semiconductor is a pn junction or a pin junction.
(6)
As the p-compound semiconductor forming the photodiode, InGaAs, III-V compound, or II-VI compound doped with one of Zn, Mg, Be, and C is adopted. The solid-state imaging device according to (5), wherein InGaAs, III-V compound, or II-VI compound doped with one of Si, S, Se, and Te is employed.
(7)
The solid-state imaging device according to any one of (1) to (6), wherein the compound semiconductor substrate further includes a pixel separation unit for separating the photoelectric conversion unit for each pixel.
(8)
The solid-state imaging device according to (7), wherein the second high-concentration doped layer is formed in contact with an outer side surface of the photoelectric conversion unit separated for each pixel.
(9)
The solid-state imaging device according to (7), wherein the second high-concentration doped layer is formed so as to be in contact with a side surface near an inner center of the photoelectric conversion unit separated for each pixel.
(10)
The solid-state imaging device according to any one of (1) to (9), wherein the first heavily doped layer has an impurity concentration of 10 16 / cm 3 or more and 5 × 10 17 / cm 3 or less.
(11)
The thickness of the first heavily doped layer is 20 nm or less. The solid-state imaging device according to any one of (1) to (10).
(12)
The thickness of the second highly doped layer is approximately the same as the thickness of the first heavily doped layer. The solid-state imaging device according to (11).
(13)
The solid-state imaging device according to any one of (1) to (12), wherein the compound semiconductor substrate and the Si substrate are bonded together by a plasma bonding process, a high temperature process, or a chemical process.
(14)
The solid-state imaging device according to any one of (1) to (13), wherein an insulating layer is formed on a bonding surface between the compound semiconductor substrate and the Si substrate.
(15)
The solid-state imaging device according to (14), wherein the insulator layer is made of an oxide film or a nitride film of Si, Al, Ta, or Ti.
(16)
In the method for manufacturing a solid-state imaging device,
A compound semiconductor substrate in which a photoelectric conversion unit, a first high-concentration doped layer, and an insulator layer are sequentially stacked, and a circuit unit for processing photoelectrons generated by the photoelectric conversion unit, including a Si plug in a vertical direction And the insulator layers with the Si substrate having the insulator layer formed on the surface are bonded together,
A manufacturing method including the step of electrically connecting the first heavily doped layer and the Si plug via a second heavily doped layer.
(17)
In an electronic device equipped with a solid-state image sensor,
The solid-state imaging device is
A compound semiconductor substrate including a photoelectric conversion unit and a Si substrate including a circuit unit for processing photoelectrons generated by the photoelectric conversion unit are bonded to each other.
The compound semiconductor substrate includes a first highly doped layer stacked with the photoelectric conversion unit,
The Si substrate includes a Si plug,
The photoelectron generated by the photoelectric conversion unit is transferred to the circuit unit via the first highly doped layer and the Si plug.
 30 固体撮像素子, 31 Si基板, 32 回路部, 33 絶縁体層, 34 化合物半導体基板, 35 光電変換部, 35A p-化合物半導体, 35B n-化合物半導体, 36 n+化合物半導体, 37 絶縁体層, 38 上部透明電極, 40 Siプラグ, 41 Siプラグエピタキシャル層, 42 絶縁体層, 43 n+Si層, 51 画素分離部, 52 画素境界 30 solid-state imaging device, 31 Si substrate, 32 circuit part, 33 insulator layer, 34 compound semiconductor substrate, 35 photoelectric conversion part, 35A p-compound semiconductor, 35B n-compound semiconductor, 36 n + compound semiconductor, 37 insulator layer, 38 upper transparent electrode, 40 Si plug, 41 Si plug epitaxial layer, 42 insulator layer, 43 n + Si layer, 51 pixel separation part, 52 pixel boundary

Claims (17)

  1.  光電変換部を含む化合物半導体基板と、前記光電変換部により生成された光電子を処理するための回路部を含むSi基板とが張り合わされて構成される積層型の固体撮像素子において、
     前記化合物半導体基板は、前記光電変換部と積層された第1の高濃度ドープ層を備え、
     前記Si基板には、Siプラグを備え、
     前記光電変換部により生成された光電子は、前記第1の高濃度ドープ層および前記Siプラグを介して前記回路部に転送される
     固体撮像素子。
    In a stacked solid-state imaging device configured by bonding a compound semiconductor substrate including a photoelectric conversion unit and an Si substrate including a circuit unit for processing photoelectrons generated by the photoelectric conversion unit,
    The compound semiconductor substrate includes a first highly doped layer stacked with the photoelectric conversion unit,
    The Si substrate includes a Si plug,
    Photoelectrons generated by the photoelectric conversion unit are transferred to the circuit unit via the first highly doped layer and the Si plug.
  2.  前記光電変換部により生成された光電子は、前記第1の高濃度ドープ層、前記第1の高濃度ドープ層の側面に接する第2の高濃度ドープ層、および前記Siプラグを介して前記回路部に転送される
     請求項1に記載の固体撮像素子。
    The photoelectrons generated by the photoelectric conversion unit are connected to the circuit unit via the first heavily doped layer, the second heavily doped layer in contact with a side surface of the first heavily doped layer, and the Si plug. The solid-state imaging device according to claim 1.
  3.  前記第2の高濃度ドープ層は、Si層が前記第1の高濃度ドープ層と同じ半導体型で高濃度にドープされたものである
     請求項2に記載の固体撮像素子。
    3. The solid-state imaging device according to claim 2, wherein the second highly doped layer is formed by doping a Si layer with the same semiconductor type as the first heavily doped layer to a high concentration.
  4.  前記光電変換部により生成された光電子は、前記第1の高濃度ドープ層、前記第1の高濃度ドープ層の側面に接する第2の高濃度ドープ層、前記Siプラグをエピタキシャル成長させたSiプラグエピタキシャル層、および前記Siプラグを介して前記回路部に転送される
     請求項2に記載の固体撮像素子。
    The photoelectrons generated by the photoelectric conversion unit are the first heavily doped layer, the second heavily doped layer in contact with the side surface of the first heavily doped layer, and the Si plug epitaxial obtained by epitaxially growing the Si plug. The solid-state imaging device according to claim 2, wherein the layer is transferred to the circuit unit via the Si plug.
  5.  前記光電変換部は、化合物半導体がp-n接合またはp-i-n接合されたフォトダイオードからなる
     請求項2に記載の固体撮像素子。
    The solid-state imaging device according to claim 2, wherein the photoelectric conversion unit includes a photodiode in which a compound semiconductor is a pn junction or a pin junction.
  6.  前記フォトダイオードをなすp-化合物半導体には、Zn,Mg,Be,Cのうち一種がドーピングされているInGaAs、III-V系化合物、またはII-VI系化合物が採用され、n-化合物半導体には、Si,S,Se,Teのうち一種がドーピングされているInGaAs、III-V系化合物、またはII-VI系化合物が採用されている
     請求項2に記載の固体撮像素子。
    As the p-compound semiconductor forming the photodiode, InGaAs, III-V compound, or II-VI compound doped with one of Zn, Mg, Be, and C is adopted. The solid-state imaging device according to claim 2, wherein InGaAs, III-V compound, or II-VI compound doped with one of Si, S, Se, and Te is employed.
  7.  前記化合物半導体基板は、前記光電変換部を1画素毎に分離するための画素分離部を
     さらに備える請求項2に記載の固体撮像素子。
    The solid-state imaging device according to claim 2, wherein the compound semiconductor substrate further includes a pixel separation unit for separating the photoelectric conversion unit for each pixel.
  8.  前記第2の高濃度ドープ層は、1画素毎に分離された前記光電変換部の外側の側面に接するように形成されている
     請求項2に記載の固体撮像素子。
    The solid-state imaging element according to claim 2, wherein the second high-concentration doped layer is formed so as to contact an outer side surface of the photoelectric conversion unit separated for each pixel.
  9.  前記第2の高濃度ドープ層は、1画素毎に分離された前記光電変換部の内側中央付近の側面に接するように形成されている
     請求項2に記載の固体撮像素子。
    The solid-state imaging device according to claim 2, wherein the second high-concentration doped layer is formed so as to be in contact with a side surface near an inner center of the photoelectric conversion unit separated for each pixel.
  10.  前記第1の高濃度ドープ層は、不純物濃度が1016/cm以上5×1017/cm以下である
     請求項2に記載の固体撮像素子。
    The solid-state imaging device according to claim 2, wherein the first highly doped layer has an impurity concentration of 10 16 / cm 3 or more and 5 × 10 17 / cm 3 or less.
  11.  前記第1の高濃度ドープ層の厚さは、20nm以下である
     請求項2に記載の固体撮像素子。
    The solid-state imaging device according to claim 2, wherein a thickness of the first highly doped layer is 20 nm or less.
  12.  前記第2の高濃度ドープ層の厚さは、前記第1の高濃度ドープ層の厚さと同程度である
     請求項11に記載の固体撮像素子。
    The solid-state imaging device according to claim 11, wherein a thickness of the second heavily doped layer is approximately the same as a thickness of the first heavily doped layer.
  13.  前記化合物半導体基板と前記Si基板は、プラズマ接合処理、高温処理、または薬液処理によって張り合わされている
     請求項2に記載の固体撮像素子。
    The solid-state imaging device according to claim 2, wherein the compound semiconductor substrate and the Si substrate are bonded together by a plasma bonding process, a high temperature process, or a chemical process.
  14.  前記化合物半導体基板と前記Si基板との貼り合わせ面には、絶縁体層が形成されている
     請求項2に記載の固体撮像素子。
    The solid-state imaging device according to claim 2, wherein an insulator layer is formed on a bonding surface between the compound semiconductor substrate and the Si substrate.
  15.  前記絶縁体層は、Si,Al,Ta、またはTiの酸化膜または窒化膜からなる
     請求項14に記載の固体撮像素子。
    The solid-state imaging device according to claim 14, wherein the insulator layer is made of an oxide film or a nitride film of Si, Al, Ta, or Ti.
  16.  固体撮像素子の製造方法において、
     光電変換部、第1の高濃度ドープ層、および絶縁体層が順に積層された化合物半導体基板と、前記光電変換部により生成された光電子を処理するための回路部を含み、縦方向にSiプラグが形成され、表面に絶縁体層が形成されたSi基板との前記絶縁体層どうしを張り合わせ、
     前記第第1の高濃度ドープ層と前記Siプラグとを第2の高濃度ドープ層を介して電気的に接続する
     ステップを含む製造方法。
    In the method for manufacturing a solid-state imaging device,
    A compound semiconductor substrate in which a photoelectric conversion unit, a first high-concentration doped layer, and an insulator layer are sequentially stacked, and a circuit unit for processing photoelectrons generated by the photoelectric conversion unit, including a Si plug in a vertical direction And the insulator layers with the Si substrate having the insulator layer formed on the surface are bonded together,
    A manufacturing method including the step of electrically connecting the first heavily doped layer and the Si plug via a second heavily doped layer.
  17.  固体撮像素子が搭載された電子装置において、
     前記固体撮像素子は、
      光電変換部を含む化合物半導体基板と、前記光電変換部により生成された光電子を処理するための回路部を含むSi基板とが張り合わされて構成され、
      前記化合物半導体基板は、前記光電変換部と積層された第1の高濃度ドープ層を備え、
      前記Si基板には、Siプラグを備え、
      前記光電変換部により生成された光電子は、前記第1の高濃度ドープ層および前記Siプラグを介して前記回路部に転送される
     電子装置。
    In an electronic device equipped with a solid-state image sensor,
    The solid-state imaging device is
    A compound semiconductor substrate including a photoelectric conversion unit and a Si substrate including a circuit unit for processing photoelectrons generated by the photoelectric conversion unit are bonded to each other.
    The compound semiconductor substrate includes a first highly doped layer stacked with the photoelectric conversion unit,
    The Si substrate includes a Si plug,
    The photoelectron generated by the photoelectric conversion unit is transferred to the circuit unit via the first highly doped layer and the Si plug.
PCT/JP2015/080664 2014-11-14 2015-10-30 Solid-state imaging element, manufacturing method, and electronic device WO2016076138A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-231255 2014-11-14
JP2014231255A JP2016096233A (en) 2014-11-14 2014-11-14 Solid state imaging device, manufacturing method, and electronic device

Publications (1)

Publication Number Publication Date
WO2016076138A1 true WO2016076138A1 (en) 2016-05-19

Family

ID=55954230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080664 WO2016076138A1 (en) 2014-11-14 2015-10-30 Solid-state imaging element, manufacturing method, and electronic device

Country Status (2)

Country Link
JP (1) JP2016096233A (en)
WO (1) WO2016076138A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110291636A (en) * 2017-02-21 2019-09-27 索尼半导体解决方案公司 Image device and electronic device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021005656A (en) * 2019-06-26 2021-01-14 ソニーセミコンダクタソリューションズ株式会社 Semiconductor device and manufacturing method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0982932A (en) * 1995-09-20 1997-03-28 Hitachi Ltd Solid state image sensing element
JP2000133792A (en) * 1998-10-19 2000-05-12 Hewlett Packard Co <Hp> Active pixel sensor including mutual connection construction
JP2011096921A (en) * 2009-10-30 2011-05-12 Sumitomo Electric Ind Ltd Detector, sensor, and method of manufacturing the detector and the sensor
JP2011138927A (en) * 2009-12-28 2011-07-14 Sony Corp Solid-state image pickup device, method of manufacturing the same, and electronic apparatus
JP2012079979A (en) * 2010-10-04 2012-04-19 Sony Corp Solid-state imaging device, method for manufacturing the same, and electronic apparatus
JP2013012556A (en) * 2011-06-28 2013-01-17 Sony Corp Solid-state image pickup device, manufacturing method of the same and electronic apparatus
JP2013135122A (en) * 2011-12-27 2013-07-08 Sony Corp Semiconductor element, semiconductor element manufacturing method, solid state image pickup device, and electronic apparatus
WO2013168836A1 (en) * 2012-05-07 2013-11-14 (주)실리콘화일 Chip-stacked image sensor having heterogeneous junction structure and method for manufacturing same
US20140231887A1 (en) * 2013-02-18 2014-08-21 Taiwan Semiconductor Manufacturing Company, Ltd. Method and Apparatus for Image Sensor Packaging

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0982932A (en) * 1995-09-20 1997-03-28 Hitachi Ltd Solid state image sensing element
JP2000133792A (en) * 1998-10-19 2000-05-12 Hewlett Packard Co <Hp> Active pixel sensor including mutual connection construction
JP2011096921A (en) * 2009-10-30 2011-05-12 Sumitomo Electric Ind Ltd Detector, sensor, and method of manufacturing the detector and the sensor
JP2011138927A (en) * 2009-12-28 2011-07-14 Sony Corp Solid-state image pickup device, method of manufacturing the same, and electronic apparatus
JP2012079979A (en) * 2010-10-04 2012-04-19 Sony Corp Solid-state imaging device, method for manufacturing the same, and electronic apparatus
JP2013012556A (en) * 2011-06-28 2013-01-17 Sony Corp Solid-state image pickup device, manufacturing method of the same and electronic apparatus
JP2013135122A (en) * 2011-12-27 2013-07-08 Sony Corp Semiconductor element, semiconductor element manufacturing method, solid state image pickup device, and electronic apparatus
WO2013168836A1 (en) * 2012-05-07 2013-11-14 (주)실리콘화일 Chip-stacked image sensor having heterogeneous junction structure and method for manufacturing same
US20140231887A1 (en) * 2013-02-18 2014-08-21 Taiwan Semiconductor Manufacturing Company, Ltd. Method and Apparatus for Image Sensor Packaging

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110291636A (en) * 2017-02-21 2019-09-27 索尼半导体解决方案公司 Image device and electronic device

Also Published As

Publication number Publication date
JP2016096233A (en) 2016-05-26

Similar Documents

Publication Publication Date Title
US11894408B2 (en) Dual facing BSI image sensors with wafer level stacking
US11139330B2 (en) Photoelectric conversion apparatus, camera, and moving body
CN104882460B (en) Imaging sensor and its manufacturing method with the deep trench for including negative electrical charge material
CN104995734B (en) Solid imaging element, the manufacturing method of solid imaging element and electronic device
JP6725231B2 (en) Solid-state image sensor and electronic device
KR102180102B1 (en) Image Sensor and Method of Fabricating the Same
US20180277587A1 (en) Image pickup device and image pickup apparatus
US20180240847A1 (en) Imaging element and method of manufacturing the same, and electronic apparatus
KR102524146B1 (en) Solid-state imaging device, manufacturing method therefor, and electronic device
TWI736892B (en) A capping structure to reduce dark current in image sensors
TWI702718B (en) Back-injection solid-state imaging device
WO2017061273A1 (en) Imaging device, manufacturing method
KR102510580B1 (en) Solid-state imaging element and electronic device
US20230282678A1 (en) Imaging device
JP2016167530A (en) Solid-state image pickup device, manufacturing method for the same and electronic equipment
US10531020B2 (en) Solid-state image pickup device, manufacturing method therefor, and electronic apparatus
WO2016076138A1 (en) Solid-state imaging element, manufacturing method, and electronic device
US10692915B2 (en) Imaging device and method of manufacturing imaging device
CN107851648A (en) Solid-state image pickup, manufacture method and electronic installation
JP7126826B2 (en) Solid-state image sensor, method for manufacturing solid-state image sensor, and electronic device
US20190326345A1 (en) Solid-state imaging device and method for producing the same, and electronic device
US20240038811A1 (en) Photoelectric conversion apparatus and equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15859806

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15859806

Country of ref document: EP

Kind code of ref document: A1