WO2016075942A1 - Dynamic quantity sensor - Google Patents

Dynamic quantity sensor Download PDF

Info

Publication number
WO2016075942A1
WO2016075942A1 PCT/JP2015/005646 JP2015005646W WO2016075942A1 WO 2016075942 A1 WO2016075942 A1 WO 2016075942A1 JP 2015005646 W JP2015005646 W JP 2015005646W WO 2016075942 A1 WO2016075942 A1 WO 2016075942A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric
driving
detection
lower electrode
upper electrode
Prior art date
Application number
PCT/JP2015/005646
Other languages
French (fr)
Japanese (ja)
Inventor
酒井 峰一
知也 城森
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2016075942A1 publication Critical patent/WO2016075942A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • G01C19/5769Manufacturing; Mounting; Housings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals

Definitions

  • the present disclosure relates to a mechanical quantity sensor that converts strain generated by application of inertial force into an electric signal.
  • an angular velocity sensor element in which an internal drive unit, an external drive unit, and a detection unit are formed on a vibrating body is known.
  • the vibrating body has two arms and a connecting portion that connects one end of each of the two arms.
  • An internal drive unit, an external drive unit, and a detection unit are formed in each of the two arms, and the two arms are vibrated in opposite phases by the internal drive unit and the external drive unit.
  • an internal drive unit, an external drive unit, and a detection unit are formed on the arm.
  • the detection unit is divided into a detection region for detecting the distortion generated in the arm due to the Coriolis force and a wiring region for transmitting an electric signal detected in the detection region to an external processing circuit.
  • the detection region and the wiring region have the same structure, and have a detection lower electrode, a detection piezoelectric thin film, and a detection upper electrode that are sequentially stacked on the arm. Therefore, when the arm is distorted by the Coriolis force described above, an electric signal (charge) corresponding to the distortion is generated not only in the detection region but also in the wiring region, which may reduce the angular velocity detection accuracy.
  • Patent Document 1 since the wiring region is located between the internal drive unit and the external drive unit, distortion due to vibrations of the internal drive unit and the external drive unit is more likely to occur in the wiring region than in the detection region. Therefore, a charge corresponding to the distortion caused by the vibration is also generated in the wiring region, and there is a possibility that the detection accuracy of the angular velocity is further lowered by this charge.
  • This disclosure is intended to provide a mechanical quantity sensor in which a decrease in accuracy of detecting inertial force as angular velocity is suppressed.
  • the mechanical quantity sensor includes a fixed portion fixed to the upper surface of the substrate, a floating portion positioned above the substrate and supported by the fixed portion, and the inertial force applied by the inertial force sensor.
  • a detection piezoelectric part that converts the distortion of the floating part into an electric signal, a detection pad formed on the fixed part, and a plurality of detection wirings that electrically connect the detection piezoelectric part and the detection pad And having.
  • An insulating film is formed on the upper surface of the floating portion.
  • the detection piezoelectric portion includes a lower electrode, a piezoelectric material, and an upper electrode that are sequentially stacked on the insulating film. A part of the plurality of detection wires extends from the lower electrode.
  • the remainder of the plurality of detection wirings is electrically connected to a first connection portion made of the same material as the upper electrode extending from the upper electrode along the side surface of the piezoelectric material to the insulating film side. ing.
  • the plurality of detection wirings are provided on the insulating film and are made of the same material as the lower electrode.
  • the yield stress of the lower electrode forming material is 70 MPa to 800 MPa.
  • the detection wiring for connecting the detection piezoelectric portion and the detection pad is provided on the insulating film of the floating portion.
  • the detection wiring is made of the same material as the lower electrode. According to this, even if the floating portion is distorted by the application of inertia force, unlike the configuration in which the detection wiring has the same structure as the detection piezoelectric portion, no charge is generated in the detection wiring. Therefore, a decrease in inertial force detection accuracy is suppressed as compared with the comparative configuration.
  • the detection wiring is made of the same material as that of the lower electrode as described above, the degree of adhesion between the detection wiring and the insulating film and the lower electrode are different from the configuration in which the detection wiring is made of a material different from that of the lower electrode. And the insulating film become equal in degree of adhesion. Therefore, even though the lower electrode and the insulating film are in close contact with each other, peeling of the detection wiring from the insulating film is suppressed. Furthermore, since the yield stress of the material for forming the lower electrode is 70 MPa to 800 MPa, even if the floating portion vibrates, the vibration suppresses the lower electrode and the detection wiring from being separated from the insulating film. Thereby, the lifetime reduction of the mechanical quantity sensor is suppressed.
  • the upper electrode and the lower electrode of the detection piezoelectric part may be made of different materials.
  • the lower electrode is made of a material having higher adhesion to the insulating film than the upper electrode. According to this, unlike the structure in which the lower electrode is made of a material having lower adhesion to the insulating film than the upper electrode, the detection wiring is suppressed from being peeled off from the insulating film. Thereby, the lifetime reduction of the mechanical quantity sensor is suppressed.
  • FIG. 1 is a top view illustrating a schematic configuration of a mechanical quantity sensor according to the first embodiment.
  • FIG. 2 is a sectional view taken along line II-II in FIG.
  • FIG. 3 is an enlarged top view of a region A surrounded by a broken line in FIG.
  • FIG. 4 is a sectional view taken along line IV-IV in FIG.
  • FIG. 5 is a cross-sectional view taken along line VV in FIG.
  • FIG. 6 is an enlarged top view of a region B surrounded by a broken line in FIG.
  • FIG. 7 is a conceptual diagram for explaining the vibration state of the mechanical quantity sensor.
  • FIG. 1 is a top view illustrating a schematic configuration of a mechanical quantity sensor according to the first embodiment.
  • FIG. 2 is a sectional view taken along line II-II in FIG.
  • FIG. 3 is an enlarged top view of a region A surrounded by a broken line in FIG.
  • FIG. 4 is a sectional view taken along line IV-IV in
  • FIG. 8 is a conceptual diagram for explaining the vibration state of the mechanical quantity sensor.
  • FIG. 9 is a conceptual diagram for explaining a state in which an angular velocity is applied to the mechanical sensor in the vibration state shown in FIG.
  • FIG. 10 is a cross-sectional view showing a wiring configuration of the mechanical quantity sensor according to the second embodiment.
  • FIG. 11 is a top view for explaining the wiring structure of the driving piezoelectric portion according to the second embodiment.
  • 12 is a cross-sectional view taken along line XII-XII in FIG. 13 is a cross-sectional view taken along line XIII-XIII in FIG.
  • FIG. 14 is a top view for explaining the detecting piezoelectric portion according to the second embodiment.
  • FIG. 14 is a top view for explaining the detecting piezoelectric portion according to the second embodiment.
  • FIG. 15 is a conceptual diagram for explaining the vibration state of the mechanical quantity sensor according to the third embodiment.
  • FIG. 16 is a conceptual diagram for explaining the vibration state of the mechanical quantity sensor according to the third embodiment.
  • FIG. 17 is a conceptual diagram for explaining a state in which an angular velocity is applied to the mechanical sensor in the vibration state shown in FIG.
  • FIG. 18 is an enlarged top view for explaining a connection configuration of the driving piezoelectric portion shown in FIGS.
  • FIG. 19 is an enlarged top view for explaining the slit formed in the fixed portion
  • 20 is a cross-sectional view taken along line XX-XX in FIG.
  • a plane defined by the x direction and the y direction is an xy plane
  • a plane defined by the y direction and the z direction is a yz plane
  • a plane defined by the z direction and the x direction is zx. Shown as a plane.
  • a mechanical quantity sensor 100 shown in FIG. 1 is a micro electromechanical (MEMS) formed by etching so as to form a fine structure on the SOI substrate 10.
  • the SOI substrate 10 includes a first substrate 11, a second substrate 12 positioned above the first substrate 11, and an insulating layer that mechanically connects the first substrate 11 and the second substrate 12. 13.
  • the substrates 11 and 12 are each made of silicon, and the insulating layer 13 is made of silicon oxide.
  • the second substrate 12 and the insulating layer 13 are etched into a predetermined shape, whereby the fixing portion 20 fixed to the first substrate 11 via the insulating layer 13 and the first substrate without the insulating layer 13 being interposed.
  • the floating part 30 located on 11 is formed.
  • the fixed portion 20 is immovable with respect to the first substrate 11, and the floating portion 30 is movable with respect to the first substrate 11, and each is formed by the second substrate 12.
  • the fixing portion 20 has a rectangular shape in the xy plane, and the insulating layer 13 is connected to the lower surface of the central portion 21 indicated by a broken line.
  • An annular edge 22 that is located outside the central portion 21 and is not connected to the insulating layer 13 is continuously connected to the floating portion 30.
  • the floating part 30 has a frame part 31 and a support beam 32.
  • the frame portion 31 has an annular shape in the xy plane, and the fixing portion 20 is located in a region surrounded by the inner ring surface of the frame portion 31.
  • the support beam 32 extends from the inner ring surface of the frame portion 31 toward the side surface of the fixed portion 20 and functions to mechanically connect the both.
  • the frame portion 31 has a rectangular ring shape in the xy plane, and includes two drive beams 33 having a shape extending in the x direction and two connecting beams 34 having a shape extending in the y direction.
  • a mass part 35 having a locally wide width in the y direction is formed in each central part of the two drive beams 33, and the two mass parts 35 are arranged along the y direction via the fixing part 20.
  • the frame portion 31 vibrates, the two mass portions 35 mainly vibrate, and when an angular velocity is applied, a Coriolis force is generated in these.
  • the support beam 32 has a shape extending in the x direction, and the two support beams 32 are connected to the fixed portion 20 and the frame portion 31. As shown in FIG. 1, one support beam 32 is connected to one connection beam 34, and the two support beams 32 are arranged in the x direction via the fixing portion 20. As described above, when the Coriolis force is generated in the mass portion 35, the support beam 32 is distorted. Therefore, the angular velocity can be detected by detecting this distortion.
  • one of the two driving beams 33 is referred to as a first driving beam 33a and the other is referred to as a second driving beam 33b.
  • the mass portion 35 formed on the first drive beam 33a is referred to as a first mass portion 35a
  • the mass portion 35 formed on the second drive beam 33b is referred to as a second mass portion 35b.
  • One of the two support beams 32 is a first support beam 32a
  • the other is a second support beam 32b
  • one of the two connection beams 34 is a first connection beam 34a
  • the other is a second connection beam 34b.
  • the piezoelectric part 40, the pad 60, and the wiring 70 are formed in the fixed part 20 and the floating part 30 shown above.
  • the insulating film 14 shown in FIG. 2 is formed on the upper surface of each of the fixed portion 20 and the floating portion 30, and the piezoelectric portion 40, the pad 60, and the wiring 70 are formed on the insulating film 14.
  • the insulating film 14 is silicon oxide or alumina.
  • the piezoelectric unit 40 includes a driving piezoelectric unit 41 and a detecting piezoelectric unit 42. As shown in FIGS. 3 to 6, the driving piezoelectric portion 41 and the detecting piezoelectric portion 42 have the same configuration, and the lower electrode 43, the piezoelectric material 44, and the upper electrode sequentially stacked on the insulating film 14, respectively. 45.
  • the electric axis indicating the polarization direction of the piezoelectric material 44 is directed from the upper electrode 45 to the lower electrode 43 along the z direction. Therefore, the piezoelectric material 44 expands when the upper electrode 45 has a higher potential than the lower electrode 43, and the piezoelectric material 44 contracts when the lower electrode 43 has a higher potential than the upper electrode 45.
  • each of the electrodes 43 and 45 and the piezoelectric material 44 has a shape extending in the x direction. Therefore, the expansion and contraction of the piezoelectric material 44 is increased in the x direction.
  • the lower electrode 43 and the upper electrode 45 are made of different conductive materials, and the lower electrode 43 is made of a material having higher adhesion to the insulating film 14 than the upper electrode 45.
  • the lower electrode 43 is made of a material having a higher yield stress than the upper electrode 45.
  • Al (aluminum) can be considered as the conductive material formed on the semiconductor substrate, but the yield stress of Al is about 15 MPa.
  • the vibration frequency of the frame portion 31 is 4 to 50 kHz as will be described later.
  • the material for forming the lower electrode 43 is changed from the insulating film 14. It has been confirmed by the present inventors that it peels off. Therefore, a material higher than the yield stress of Al is adopted as a material for forming the lower electrode 43.
  • a material higher than the yield stress of Al is adopted as a material for forming the lower electrode 43.
  • Au gold
  • Pt platinum
  • a single-layer conductive material but also a two-layer conductive material in which Au or Pt is laminated on Ti (titanium), for example, can be employed.
  • SRO frontium oxide
  • an SRO laminated on Pt can be used as the lower electrode 43.
  • the yield stress of Ti and SRO is about 800 MPa.
  • the material having a yield stress of 70 MPa to 800 MPa as described above is used as the material for forming the lower electrode 43, the material for forming the lower electrode 43 is peeled off from the insulating film 14 even if the frame 31 vibrates as described above. The inventor has confirmed that this is difficult.
  • the driving piezoelectric portion 41 is provided on the frame portion 31, and the detecting piezoelectric portion 42 is provided on the support beam 32.
  • the frame portion 31 is vibrated by the driving piezoelectric portion 41, and the distortion of the support beam 32 caused by the application of the Coriolis force to the mass portion 35 is detected by the detecting piezoelectric portion 42.
  • the piezoelectric part 40 of this embodiment has eight driving piezoelectric parts 41 and four detecting piezoelectric parts 42.
  • the first driving piezoelectric portion 41a to the eighth driving piezoelectric portion 41h, the first detection piezoelectric portion 41, Piezoelectric portion 42a to fourth detecting piezoelectric portion 42d The same applies to the drawings.
  • two drive piezoelectric portions 41a and 41b are provided at one end of the first drive beam 33a, and two drive piezoelectric portions 41c and 41d are provided at the other end of the first drive beam 33a.
  • the driving piezoelectric portions 41a and 41c are located farther from the fixed portion 20 than the driving piezoelectric portions 41b and 41d, respectively.
  • the driving piezoelectric portions 41a and 41b are electrically connected to each other in the y direction, and the driving piezoelectric portions 41c and 41d are electrically connected to each other in the y direction.
  • two driving piezoelectric portions 41e and 41f are provided at one end of the second driving beam 33b, and two driving piezoelectric portions 41g and 41h are provided at the other end of the second driving beam 33b.
  • the driving piezoelectric portions 41e and 41g are located farther from the fixed portion 20 than the driving piezoelectric portions 41f and 41h, respectively.
  • the driving piezoelectric portions 41e and 41f are electrically connected to each other in the y direction, and the driving piezoelectric portions 41g and 41h are electrically connected to each other in the y direction.
  • the two detection piezoelectric portions 42a and 42b are provided on the first support beam 32a, and the two detection piezoelectric portions 42c and 42d are provided on the second support beam 32b.
  • Each of the detection piezoelectric portions 42a and 42c is positioned closer to the first mass portion 35a than each of the detection piezoelectric portions 42b and 42d, and each of the detection piezoelectric portions 42b and 42d is second than each of the detection piezoelectric portions 42a and 42c. It is located on the mass part 35b side.
  • the pad 60 has a driving pad 61 and a detection pad 62, which are formed in the fixed portion 20.
  • the driving pad 61 and the detection pad 62 have the same configuration, and each includes a first wiring layer 63 and a second wiring layer 64 that are sequentially stacked on the insulating film 14.
  • the first wiring layer 63 is made of the same material as the lower electrode 43 and corresponds to the end of the wiring 70.
  • the second wiring layer 64 is for increasing the rigidity of the pads 61 and 62, and for example, Al can be adopted. By the second wiring layer 64, damage to the pads 61 and 62 due to stress when connecting the wires to the pads 61 and 62 is suppressed.
  • the pad 60 has three driving pads 61 and six detection pads 62. These pads 61 and 62 are arranged in a matrix so as to form 3 rows and 3 columns in the xy plane. Three drive pads 61 are arranged in the second row, and three detections are performed in the first and third rows, respectively. Pads 62 are lined up. As shown in FIG. 1, the driving pad 61 is located at the center portion 21 of the fixing portion 20, and the detection pad 62 is located at the edge portion 22 of the fixing portion 20. In the following, the three driving pads 61 arranged from the first row to the third row are referred to as a first driving pad 61a to a third driving pad 61c.
  • the mechanical quantity sensor 100 has a symmetric shape through the first center line passing through the center of the second driving pad 61b located in the second row and second column in the x direction and the second center line passing through the y direction. It is made.
  • the second driving pad 61b is electrically connected to each of the eight driving piezoelectric portions 41a to 41h.
  • the first driving pad 61a is electrically connected to the driving piezoelectric portions 41a and 41g
  • the third driving pad 61c is electrically connected to the driving piezoelectric portions 41c and 41e.
  • a constant voltage is input as a drive signal to the second drive pad 61b
  • an in-phase pulse signal is input as the drive signal to the remaining two drive pads 61a and 61c.
  • the pulse period of this pulse signal is set based on the resonance frequency of the frame portion 31 and is 20 kHz in this embodiment.
  • the drive piezoelectric portions 41a to 41h expand and contract, and the frame portion 31 (mass portions 35a and 35b) vibrates at a frequency of 4 to 50 kHz and an amplitude of 1 to 50 ⁇ m.
  • the reason why the frequency and amplitude of the frame 31 have a width despite the pulse period being fixed at 20 kHz is that the Q value changes due to the mass and size of the frame 31. .
  • the second detection pad 62b located in the middle of the first row is electrically connected to each of the two detection piezoelectric portions 42a and 42c.
  • the first detection pad 62a is electrically connected to the first detection piezoelectric portion 42a
  • the third detection pad 62c is electrically connected to the third detection piezoelectric portion 42c.
  • the second detection pad 62b is connected to the ground, and an electric signal corresponding to the distortion of the support beams 32a and 32b is input to the remaining two detection pads 62a and 62c.
  • the second detection pad 62b is connected to the lower electrode 43 of each of the detection piezoelectric portions 42a and 42c.
  • the first detection pad 62a is connected to the upper electrode 45 of the first detection piezoelectric portion 42a
  • the third detection pad 62c is connected to the upper electrode 45 of the third detection piezoelectric portion 42c.
  • the connection relationship between the electrodes 43 and 45 and the detection pads 62a to 62c may be reversed.
  • the fifth detection pad 62e located in the middle of the third row is electrically connected to each of the two detection piezoelectric portions 42b and 42d.
  • the fourth detection pad 62d is electrically connected to the second detection piezoelectric portion 42b
  • the sixth detection pad 62f is electrically connected to the fourth detection piezoelectric portion 42d.
  • the fifth detection pad 62e is connected to the ground, and an electric signal corresponding to the distortion of the support beams 32a and 32b is input to the remaining two detection pads 62d and 62f.
  • the fifth detection pad 62e is connected to the lower electrode 43 of each of the detection piezoelectric portions 42b and 42d.
  • the fourth detection pad 62d is connected to the upper electrode 45 of the second detection piezoelectric portion 42b, and the sixth detection pad 62f is connected to the upper electrode 45 of the fourth detection piezoelectric portion 42d.
  • the connection relationship between the electrodes 43 and 45 and the detection pads 62d to 62f may be reversed.
  • the wiring 70 electrically connects the piezoelectric part 40 and the pad 60 and is made of the same material as the lower electrode 43 constituting the piezoelectric part 40. Therefore, the degree of adhesion between the wiring 70 and the insulating film 14 is equal to that of the lower electrode 43.
  • the wiring 70 includes a driving wiring 71 that electrically connects the driving piezoelectric portion 41 and the driving pad 61, and a detection wiring 72 that electrically connects the detecting piezoelectric portion 42 and the detection pad 62. Have. As shown in FIGS. 3 to 5, the end of the driving wiring 71 connected to the lower electrode 43 extends from the lower electrode 43, and the end connected to the upper electrode 45 extends from the upper electrode 45 to the piezoelectric material 44.
  • the detection wiring 72 has the same configuration. As shown in FIGS. 1 and 2, the ends of the wirings 71 and 72 that are electrically connected to the pads 60 are extended from the first wiring layer 63 of the pads 61 and 62.
  • the first wiring layer 63 and the wirings 71 and 72 of the pads 61 and 62 are made of the same material as the lower electrode 43 of the piezoelectric parts 41 and 42, respectively. Therefore, a material for forming the lower electrode 43 (hereinafter referred to as a lower material) is laminated on the insulating film 14, and then the first wiring layer 63, the wirings 71 and 72, and the lower electrode 43 are formed thereon. A resist is formed. Then, the lower material exposed to the outside from the resist is removed by etching.
  • the first wiring layer 63, the wirings 71 and 72, and the lower electrode 43 are formed.
  • the piezoelectric material 44 is laminated on the lower material constituting the lower electrode 43 and the ends of the wirings 71 and 72 electrically connected to the upper electrode 45.
  • a material for forming the upper electrode 45 is formed at the ends of the piezoelectric material 44 and the wirings 71 and 72 on which the piezoelectric material 44 is laminated, and etched into a predetermined shape. By doing so, the upper electrode 45 and the connecting portion 46 are formed, and the upper electrode 45 and the wirings 71 and 72 are electrically connected.
  • the second wiring layer 64 is formed on the first wiring layer 63 of the pads 61 and 62.
  • connection structure of two driving piezoelectric parts arranged in the y direction and electrically connected to each other is shown.
  • a driving wiring 71 is extended from the lower electrode 43c of the third driving piezoelectric portion 41c, and the driving wiring 71 is electrically connected to the upper electrode 45d of the fourth driving piezoelectric portion 41d. It is connected to the. As shown in FIG. 1, the driving wiring 71 is connected to the second driving pad 61b. Therefore, each of the lower electrode 43c and the upper electrode 45d is fixed to the ground potential. Further, as shown in FIGS. 3 and 5, a driving wiring 71 is extended from the lower electrode 43d of the fourth driving piezoelectric portion 41d, and the driving wiring 71 is electrically connected to the upper electrode 45c of the third driving piezoelectric portion 41c. Connected. As shown in FIGS.
  • the upper electrode 45 c is connected to the third driving pad 61 c via the driving wiring 71. Therefore, a pulse signal having a pulse period determined based on the resonance frequency of the frame portion 31 is input to each of the upper electrode 45c and the lower electrode 43d.
  • the voltage applied to the driving piezoelectric portions 41c and 41d is reversed with respect to the electric axis. Therefore, when one of the driving piezoelectric portions 41c and 41d is extended by the input of the pulse signal, the other is contracted.
  • the movement of the frame portion 31 causes distortion in the two support beams 32a and 32b, and distortion occurs in each of the detection piezoelectric portions 42a to 42d provided on the support beams 32a and 32b.
  • the Coriolis force indicated by hatching arrows in FIG. 9 occurring in the mass portions 35a and 35b
  • the first support beam 32a has a fulcrum at the end connected to the fixed portion 20.
  • the end connected to the connecting beam 34 moves upward in the drawing.
  • the second support beam 32b is moved downward in the drawing with the end connected to the fixed beam 20 as a fulcrum.
  • the wirings 71 and 72 are made of the same material as the lower electrode 43 and are provided on the insulating film 14 of the floating portion 30. According to this, even if the floating portion 30 is distorted by the application of inertial force, unlike the configuration in which the wiring has the same structure as the piezoelectric portion, no charges are generated in the wirings 71 and 72, respectively. Therefore, a decrease in angular velocity detection accuracy is suppressed as compared with the comparative configuration.
  • the drive wiring 71 is provided on the insulating film 14 of the frame portion 31 that functions as a vibrating body. According to this, unlike the above-described comparative configuration, the generation of charges in the drive wiring 71 due to the vibration of the frame portion 31 is suppressed, and the drive piezoelectric portion 41 is expanded and contracted by the generated charges. It is suppressed that the vibration state of the part 31 becomes unstable. This suppresses a decrease in angular velocity detection accuracy.
  • the wirings 71 and 72 are made of the same material as that of the lower electrode 43, the degree of adhesion between the wirings 71 and 72 and the insulating film 14 is different from the structure in which the wiring is made of a material different from that of the lower electrode.
  • the degree of adhesion between the lower electrode 43 and the insulating film 14 becomes equal. Accordingly, it is possible to suppress the wirings 71 and 72 from being separated from the insulating film 14 even though the lower electrode 43 and the insulating film 14 are in close contact with each other.
  • the yield stress of the material for forming the lower electrode 43 is 70 MPa to 800 MPa, the lower electrode 43 and the wirings 71 and 72 are prevented from being separated from the insulating film 14 due to the vibration of the floating portion 30. Thereby, the lifetime reduction of the mechanical quantity sensor 100 is suppressed.
  • the lower electrode 43 is made of a material having higher adhesion to the insulating film 14 than the upper electrode 45. According to this, unlike the structure in which the lower electrode is made of a material having lower adhesion to the insulating film than the upper electrode, the wirings 71 and 72 are suppressed from being peeled off from the insulating film 14. Thereby, the lifetime reduction of the mechanical quantity sensor 100 is suppressed.
  • the present embodiment is characterized in that the lower electrode 43 and the upper electrode 45 are made of the same conductive material.
  • the etching rate of the material for forming the lower electrode 43 and the material for forming the upper electrode 45 are the same. Therefore, in order to avoid etching the forming material of the lower electrode 43 when the forming material of the upper electrode 45 is etched, the forming material of the lower electrode 43 depends on the forming material of the upper electrode 45 as shown in FIGS. Covered.
  • the wirings 71 and 72 and the first wiring layer 63 of the pads 61 and 62 are each made of the forming material of the electrodes 43 and 45, and these two forming materials are provided on the insulating film 14. .
  • connection area between the wirings 71 and 72 and the respective insulating films 14 of the first wiring layer 63 is increased as compared with the configuration shown in the first embodiment, and the wirings 71 and 72 and the first wiring layer 63 are insulated. Peeling from the film 14 is suppressed.
  • the driving wiring 71 that electrically connects the lower electrode 43c and the upper electrode 45d has a portion extending from the lower electrode 43c depending on a portion extending from the upper electrode 45d. Consists of. Further, as shown in FIGS. 11 and 13, in the driving wiring 71 that electrically connects the lower electrode 43d and the upper electrode 45c, a portion extending from the lower electrode 43d is a portion extending from the upper electrode 45c. Covered by. The drive wiring 71 that electrically connects the upper electrode 45c and the third drive pad 61c is covered with a portion where the material for forming the lower electrode 43 extends from the upper electrode 45c. Further, as shown in FIG.
  • the detection wiring 72 that electrically connects the lower electrode 43 of the first detection piezoelectric portion 42a and the second detection pad 62b is connected to the lower electrode 43 of the first detection piezoelectric portion 42a.
  • the extended portion is covered with the material for forming the upper electrode 45.
  • the formation material of the electrodes 43 and 45 is the same as that of the first embodiment in order to prevent the electrode 43, the wirings 71 and 72, and the pads 61 and 62 from being separated from the insulating film 14 due to the vibration of the frame portion 31.
  • a material having a higher yield stress than Al (a material having a yield stress of 70 MPa to 800 MPa) is employed.
  • Au, Pt, and Ti laminated with Au or Pt, or Pt laminated with SRO can be adopted.
  • the present embodiment is characterized in that in the z direction, one of the two mass portions 35a, 35b vibrates so as to approach the first substrate 11 and the other away from the first substrate 11.
  • the driving piezoelectric portions 41a to 41d provided on the first driving beam 33a are extended and the second driving beam 33b is extended.
  • Each of the driving piezoelectric portions 41e to 41h provided in the slidable portion is contracted.
  • the driving piezoelectric portions 41a to 41d provided on the first driving beam 33a are contracted, and the driving piezoelectric portions 41e to 41h provided on the second driving beam 33b are extended.
  • connection structure of the driving piezoelectric portions 41a to 41h is different from that shown in the other embodiments.
  • driving wires 71 extending from the lower electrodes 43c and 43d of the driving piezoelectric portions 41c and 41d are electrically connected to each other, and the driving wires 71 are connected to the second driving pads. 61b. Accordingly, each of the lower electrodes 43c and 43d is fixed to the ground potential.
  • the upper electrodes 45c and 45d of the driving piezoelectric portions 41c and 41d are electrically connected via the driving wiring 71, and these are connected to the third driving pad 61c.
  • a pulse signal having a pulse period determined based on the resonance frequency of the frame portion 31 is input to each of the upper electrodes 45c and 45d.
  • each of the driving piezoelectric portions 41c and 41d is similarly expanded and contracted by the input of the pulse signal.
  • a pulse signal is input to the upper electrodes 45 of the driving piezoelectric portions 41c and 41d, and the driving piezoelectric portions 41a and 41a provided on the first driving beam 33a in the same manner as the driving piezoelectric portions 41c and 41d.
  • a pulse signal is also input to the upper electrode 45 of 41b.
  • a pulse signal is input to the lower electrode 43 of the driving piezoelectric portions 41e to 41h provided on the second driving beam 33b.
  • the mechanical quantity sensor 100 may detect acceleration.
  • the driving piezoelectric portions 41a to 41h, the driving pads 61a to 61c, and the driving wiring 71 are not necessary.
  • the acceleration detection direction is the y direction.
  • a slit 23 may be formed between the 20 edge portions 22.
  • the slit 23 described above may extend in the x direction and be positioned between the drive pad 61 and the detection pad 62. According to this, the distortion generated in one of the driving pad 61 and the detection pad 62 is suppressed from being transmitted to the other.
  • the electrical axis of the piezoelectric material 44 is directed from the upper electrode 45 toward the lower electrode 43 along the z direction.
  • the electric axis of the piezoelectric material 44 may be directed from the lower electrode 43 to the upper electrode 45 along the z direction.
  • each of the pads 61 and 62 includes the first wiring layer 63 and the second wiring layer 64 is shown.
  • each of the pads 61 and 62 may not have the second wiring layer 64.
  • adopted Al as a forming material of the 2nd wiring layer 64 was shown, it is not limited to this, What is necessary is just for raising the rigidity of the pads 61 and 62.
  • the pad 60 has three drive pads 61 and six detection pads 62, and the pads 61 and 62 are arranged in a matrix so as to form 3 rows and 3 columns.
  • the number and arrangement of the pads 61 and 62 are not limited to the above example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Gyroscopes (AREA)
  • Micromachines (AREA)

Abstract

A dynamic quantity sensor comprising a fixed part (20) fixed to a substrate (11), a floating part (30) supported on the fixed part, a detecting piezoelectric part (42a-42d) that converts strain in the floating part into electrical signals, a detecting pad (62a-62f) formed on the fixed part, and a plurality of detecting wires (72) that connect the detecting piezoelectric part with the detecting pad. The detecting piezoelectric part comprises a lower electrode (43), a piezoelectric material (44) and an upper electrode (45), laminated onto an insulation film (14) on the floating part. A portion of the detecting wires extends from the lower electrode, and the remainder is connected with a first connection site (46) which extends from the upper electrode along the side surface of the piezoelectric material to the insulation film-side and which is composed of the same material as the upper electrode. The detecting wires are provided on the insulation film and are composed of the same material as the lower electrode, the material having a yield stress of 70-800 MPa.

Description

力学量センサMechanical quantity sensor 関連出願の相互参照Cross-reference of related applications
 本出願は、2014年11月13日に出願された日本特許出願番号2014-230772号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2014-230772 filed on November 13, 2014, the contents of which are incorporated herein by reference.
 本開示は、慣性力の印加によって生じる歪を電気信号に変換する力学量センサに関するものである。 The present disclosure relates to a mechanical quantity sensor that converts strain generated by application of inertial force into an electric signal.
 特許文献1に示されるように、振動体に内部駆動部、外部駆動部、および、検知部の形成された角速度センサ素子が知られている。振動体は2つのアームと、これら2つのアームそれぞれの一端を接続する接続部を有する。この2つのアームそれぞれに内部駆動部、外部駆動部、および、検知部が形成され、内部駆動部と外部駆動部とによって2つのアームが逆位相で振動させられる。この振動方向に対して垂直な方向に角速度が印加されるとコリオリ力がアームに生じ、これによってアームに歪みが生じる。この歪みが検知部によって電気信号に変換される。 As shown in Patent Document 1, an angular velocity sensor element in which an internal drive unit, an external drive unit, and a detection unit are formed on a vibrating body is known. The vibrating body has two arms and a connecting portion that connects one end of each of the two arms. An internal drive unit, an external drive unit, and a detection unit are formed in each of the two arms, and the two arms are vibrated in opposite phases by the internal drive unit and the external drive unit. When an angular velocity is applied in a direction perpendicular to the vibration direction, a Coriolis force is generated in the arm, which causes distortion in the arm. This distortion is converted into an electric signal by the detection unit.
 上記したように特許文献1に示される角速度センサ素子では、アームに内部駆動部と外部駆動部、そして検知部が形成されている。この検知部は上記したコリオリ力によってアームに生じた歪みを検出するための検知領域と、この検知領域にて検知された電気信号を外部の処理回路に伝達するための配線領域とに分けられている。この検知領域と配線領域とは同一の構造となっており、アーム上に順次積層された検知下部電極、検知圧電薄膜、および、検知上部電極を有する。したがって上記したコリオリ力によってアームに歪みが生じると、その歪みに応じた電気信号(電荷)が検知領域だけではなく配線領域でも生じ、これによって角速度の検出精度が低下する虞がある。特に特許文献1では、配線領域が内部駆動部と外部駆動部との間に位置しているため、内部駆動部と外部駆動部の振動に起因する歪みが検知領域よりも配線領域で生じ易い。したがって配線領域には振動に起因する歪みに応じた電荷も生じることとなり、この電荷によって角速度の検出精度がさらに低下する虞がある。 As described above, in the angular velocity sensor element disclosed in Patent Document 1, an internal drive unit, an external drive unit, and a detection unit are formed on the arm. The detection unit is divided into a detection region for detecting the distortion generated in the arm due to the Coriolis force and a wiring region for transmitting an electric signal detected in the detection region to an external processing circuit. Yes. The detection region and the wiring region have the same structure, and have a detection lower electrode, a detection piezoelectric thin film, and a detection upper electrode that are sequentially stacked on the arm. Therefore, when the arm is distorted by the Coriolis force described above, an electric signal (charge) corresponding to the distortion is generated not only in the detection region but also in the wiring region, which may reduce the angular velocity detection accuracy. In particular, in Patent Document 1, since the wiring region is located between the internal drive unit and the external drive unit, distortion due to vibrations of the internal drive unit and the external drive unit is more likely to occur in the wiring region than in the detection region. Therefore, a charge corresponding to the distortion caused by the vibration is also generated in the wiring region, and there is a possibility that the detection accuracy of the angular velocity is further lowered by this charge.
特開2010-249713号公報JP 2010-249713 A
 本開示は、角速度としての慣性力の検出精度の低下が抑制された力学量センサを提供することを目的とする。 This disclosure is intended to provide a mechanical quantity sensor in which a decrease in accuracy of detecting inertial force as angular velocity is suppressed.
 本開示の第一の態様において、力学量センサは、基板の上面に固定された固定部と、前記基板の上方に位置し、前記固定部に支持された浮遊部と、慣性力の印加による前記浮遊部の歪を電気信号に変換する検出用圧電部と、前記固定部に形成された検出用パッドと、前記検出用圧電部と前記検出用パッドとを電気的に接続する複数の検出用配線と、を有する。前記浮遊部の上面には絶縁膜が形成されている。前記検出用圧電部は、前記絶縁膜上に順次積層された下部電極、圧電材料、および、上部電極を有する。複数の前記検出用配線の内の一部が前記下部電極から延設される。複数の前記検出用配線の内の残りが、前記上部電極から前記圧電材料の側面を伝って前記絶縁膜側へと延びた前記上部電極と同一材料から成る第1連結部位と電気的に接続されている。複数の前記検出用配線は前記絶縁膜上に設けられ、前記下部電極と同一材料から成る。前記下部電極の形成材料の降伏応力は70MPa~800MPaである。 In the first aspect of the present disclosure, the mechanical quantity sensor includes a fixed portion fixed to the upper surface of the substrate, a floating portion positioned above the substrate and supported by the fixed portion, and the inertial force applied by the inertial force sensor. A detection piezoelectric part that converts the distortion of the floating part into an electric signal, a detection pad formed on the fixed part, and a plurality of detection wirings that electrically connect the detection piezoelectric part and the detection pad And having. An insulating film is formed on the upper surface of the floating portion. The detection piezoelectric portion includes a lower electrode, a piezoelectric material, and an upper electrode that are sequentially stacked on the insulating film. A part of the plurality of detection wires extends from the lower electrode. The remainder of the plurality of detection wirings is electrically connected to a first connection portion made of the same material as the upper electrode extending from the upper electrode along the side surface of the piezoelectric material to the insulating film side. ing. The plurality of detection wirings are provided on the insulating film and are made of the same material as the lower electrode. The yield stress of the lower electrode forming material is 70 MPa to 800 MPa.
 上記のように、検出用圧電部と検出用パッドとを接続する検出用配線が浮遊部の絶縁膜上に設けられている。そして検出用配線は下部電極と同一材料から成る。これによれば慣性力の印加によって浮遊部に歪みが生じたとしても、検出用配線が検出用圧電部と同一構造である構成とは異なり、検出用配線に電荷が生じない。したがって上記比較構成と比べて慣性力の検出精度の低下が抑制される。 As described above, the detection wiring for connecting the detection piezoelectric portion and the detection pad is provided on the insulating film of the floating portion. The detection wiring is made of the same material as the lower electrode. According to this, even if the floating portion is distorted by the application of inertia force, unlike the configuration in which the detection wiring has the same structure as the detection piezoelectric portion, no charge is generated in the detection wiring. Therefore, a decrease in inertial force detection accuracy is suppressed as compared with the comparative configuration.
 また上記したように検出用配線が下部電極と同一の材料から成るので、検出用配線が下部電極とは異なる材料から成る構成とは異なり、検出用配線と絶縁膜との密着度と、下部電極と絶縁膜との密着度が等しくなる。したがって下部電極と絶縁膜とが密着しているにも関わらず、検出用配線が絶縁膜から剥離することが抑制される。さらに言えば下部電極の形成材料の降伏応力は70MPa~800MPaなので、浮遊部が振動したとしても、その振動によって下部電極と検出用配線それぞれが絶縁膜から剥離することが抑制される。これにより力学量センサの寿命の低下が抑制される。 Since the detection wiring is made of the same material as that of the lower electrode as described above, the degree of adhesion between the detection wiring and the insulating film and the lower electrode are different from the configuration in which the detection wiring is made of a material different from that of the lower electrode. And the insulating film become equal in degree of adhesion. Therefore, even though the lower electrode and the insulating film are in close contact with each other, peeling of the detection wiring from the insulating film is suppressed. Furthermore, since the yield stress of the material for forming the lower electrode is 70 MPa to 800 MPa, even if the floating portion vibrates, the vibration suppresses the lower electrode and the detection wiring from being separated from the insulating film. Thereby, the lifetime reduction of the mechanical quantity sensor is suppressed.
 代案として、前記検出用圧電部の前記上部電極と前記下部電極は異なる材料から成ってもよい。前記下部電極は前記上部電極よりも前記絶縁膜との密着性が高い材料から成る。これによれば下部電極が上部電極よりも絶縁膜との密着性の低い材料から成る構成とは異なり、検出用配線が絶縁膜から剥離することが抑制される。これにより力学量センサの寿命の低下が抑制される。 As an alternative, the upper electrode and the lower electrode of the detection piezoelectric part may be made of different materials. The lower electrode is made of a material having higher adhesion to the insulating film than the upper electrode. According to this, unlike the structure in which the lower electrode is made of a material having lower adhesion to the insulating film than the upper electrode, the detection wiring is suppressed from being peeled off from the insulating film. Thereby, the lifetime reduction of the mechanical quantity sensor is suppressed.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態に係る力学量センサの概略構成を示す上面図であり、 図2は、図1のII-II線に沿う断面図であり、 図3は、図1の破線で囲った領域Aの拡大上面図であり、 図4は、図3のIV-IV線に沿う断面図であり、 図5は、図3のV-V線に沿う断面図であり、 図6は、図1の破線で囲った領域Bの拡大上面図であり、 図7は、力学量センサの振動状態を説明するための概念図であり、 図8は、力学量センサの振動状態を説明するための概念図であり、 図9は、図7に示す振動状態の力学量センサに角速度が印加された状態を説明するための概念図であり、 図10は、第2実施形態に係る力学量センサの配線構成を示す断面図であり、 図11は、第2実施形態に係る駆動用圧電部の配線構造を説明するための上面図であり、 図12は、図11のXII-XII線に沿う断面図であり、 図13は、図11のXIII-XIII線に沿う断面図であり、 図14は、第2実施形態に係る検出用圧電部を説明するための上面図であり、 図15は、第3実施形態に係る力学量センサの振動状態を説明するための概念図であり、 図16は、第3実施形態に係る力学量センサの振動状態を説明するための概念図であり、 図17は、図15に示す振動状態の力学量センサに角速度が印加された状態を説明するための概念図であり、 図18は、図15~図17に示す駆動用圧電部の接続構成を説明するための拡大上面図であり、 図19は、固定部に形成されたスリットを説明するための拡大上面図であり、 図20は、図19のXX-XX線に沿う断面図である。
The above and other objects, features, and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
FIG. 1 is a top view illustrating a schematic configuration of a mechanical quantity sensor according to the first embodiment. FIG. 2 is a sectional view taken along line II-II in FIG. FIG. 3 is an enlarged top view of a region A surrounded by a broken line in FIG. FIG. 4 is a sectional view taken along line IV-IV in FIG. FIG. 5 is a cross-sectional view taken along line VV in FIG. FIG. 6 is an enlarged top view of a region B surrounded by a broken line in FIG. FIG. 7 is a conceptual diagram for explaining the vibration state of the mechanical quantity sensor. FIG. 8 is a conceptual diagram for explaining the vibration state of the mechanical quantity sensor. FIG. 9 is a conceptual diagram for explaining a state in which an angular velocity is applied to the mechanical sensor in the vibration state shown in FIG. FIG. 10 is a cross-sectional view showing a wiring configuration of the mechanical quantity sensor according to the second embodiment. FIG. 11 is a top view for explaining the wiring structure of the driving piezoelectric portion according to the second embodiment. 12 is a cross-sectional view taken along line XII-XII in FIG. 13 is a cross-sectional view taken along line XIII-XIII in FIG. FIG. 14 is a top view for explaining the detecting piezoelectric portion according to the second embodiment. FIG. 15 is a conceptual diagram for explaining the vibration state of the mechanical quantity sensor according to the third embodiment. FIG. 16 is a conceptual diagram for explaining the vibration state of the mechanical quantity sensor according to the third embodiment. FIG. 17 is a conceptual diagram for explaining a state in which an angular velocity is applied to the mechanical sensor in the vibration state shown in FIG. FIG. 18 is an enlarged top view for explaining a connection configuration of the driving piezoelectric portion shown in FIGS. FIG. 19 is an enlarged top view for explaining the slit formed in the fixed portion, 20 is a cross-sectional view taken along line XX-XX in FIG.
 以下、本開示に係る力学量センサを角速度センサに適用した場合の実施形態を図に基づいて説明する。
(第1実施形態)
 図1~図9に基づいて本実施形態に係る力学量センサを説明する。なお、図3および図6では構成を明りょうとするため外部に露出されていない構成部材の輪郭線を破線で示し、後述する連結部位46をハッチングで示している。そして図7~図9では力学量センサの振動状態を明示するため、振動と角速度の検出を説明するのに必要な符号のみを記載している。
Hereinafter, an embodiment in which a mechanical quantity sensor according to the present disclosure is applied to an angular velocity sensor will be described with reference to the drawings.
(First embodiment)
A mechanical quantity sensor according to this embodiment will be described with reference to FIGS. 3 and 6, for the sake of clarity, the outlines of the constituent members that are not exposed to the outside are indicated by broken lines, and the connecting portions 46 described later are indicated by hatching. 7 to 9 show only the symbols necessary for explaining the detection of vibration and angular velocity in order to clearly show the vibration state of the mechanical quantity sensor.
 以下においては互いに直交の関係にある3方向を、x方向、y方向、z方向と示す。そしてx方向とy方向とによって規定される平面をx-y平面、y方向とz方向とによって規定される平面をy-z平面、z方向とx方向とによって規定される平面をz-x平面と示す。 In the following, three directions that are orthogonal to each other are indicated as an x direction, a y direction, and a z direction. A plane defined by the x direction and the y direction is an xy plane, a plane defined by the y direction and the z direction is a yz plane, and a plane defined by the z direction and the x direction is zx. Shown as a plane.
 図1に示す力学量センサ100はSOI基板10に微細構造を形成するようにエッチングを施すことで成る微小電気機械(MEMS)である。図2に示すようにSOI基板10は、第1基板11と、第1基板11の上方に位置する第2基板12と、第1基板11と第2基板12とを機械的に接続する絶縁層13と、を有する。基板11,12はそれぞれシリコンから成り、絶縁層13は酸化シリコンから成る。この第2基板12と絶縁層13とが所定形状にエッチング加工されることで、絶縁層13を介して第1基板11に固定された固定部20と、絶縁層13を介さずに第1基板11上に位置する浮遊部30が形成される。固定部20は第1基板11に対して不動であり、浮遊部30は第1基板11に対して可動となっており、それぞれ第2基板12によって形成されている。 A mechanical quantity sensor 100 shown in FIG. 1 is a micro electromechanical (MEMS) formed by etching so as to form a fine structure on the SOI substrate 10. As shown in FIG. 2, the SOI substrate 10 includes a first substrate 11, a second substrate 12 positioned above the first substrate 11, and an insulating layer that mechanically connects the first substrate 11 and the second substrate 12. 13. The substrates 11 and 12 are each made of silicon, and the insulating layer 13 is made of silicon oxide. The second substrate 12 and the insulating layer 13 are etched into a predetermined shape, whereby the fixing portion 20 fixed to the first substrate 11 via the insulating layer 13 and the first substrate without the insulating layer 13 being interposed. The floating part 30 located on 11 is formed. The fixed portion 20 is immovable with respect to the first substrate 11, and the floating portion 30 is movable with respect to the first substrate 11, and each is formed by the second substrate 12.
 図1および図2に示すように固定部20はx-y平面において矩形状を成し、破線で示す中央部21の下面に絶縁層13が連結されている。そして中央部21の外側に位置し、絶縁層13と連結されていない環状の縁部22が浮遊部30と連続的に連結されている。 1 and 2, the fixing portion 20 has a rectangular shape in the xy plane, and the insulating layer 13 is connected to the lower surface of the central portion 21 indicated by a broken line. An annular edge 22 that is located outside the central portion 21 and is not connected to the insulating layer 13 is continuously connected to the floating portion 30.
 浮遊部30は枠部31と支持梁32を有する。図1に示すように枠部31はx-y平面において環状を成し、枠部31の内環面によって囲まれた領域に固定部20が位置している。支持梁32は枠部31の内環面から固定部20の側面に向かって延び、両者を機械的に連結する機能を果たしている。 The floating part 30 has a frame part 31 and a support beam 32. As shown in FIG. 1, the frame portion 31 has an annular shape in the xy plane, and the fixing portion 20 is located in a region surrounded by the inner ring surface of the frame portion 31. The support beam 32 extends from the inner ring surface of the frame portion 31 toward the side surface of the fixed portion 20 and functions to mechanically connect the both.
 枠部31はx-y平面において矩形の環状を成し、x方向に延びた形状を成す2つの駆動梁33と、y方向に延びた形状を成す2つの連結梁34と、を有する。2つの駆動梁33の中央部それぞれには局所的にy方向の幅の広がった質量部35が形成され、2つの質量部35が固定部20を介してy方向に沿って並んでいる。後述するように枠部31が振動する際、主として2つの質量部35が振動し、角速度が印加されるとこれらにコリオリ力が発生する。 The frame portion 31 has a rectangular ring shape in the xy plane, and includes two drive beams 33 having a shape extending in the x direction and two connecting beams 34 having a shape extending in the y direction. A mass part 35 having a locally wide width in the y direction is formed in each central part of the two drive beams 33, and the two mass parts 35 are arranged along the y direction via the fixing part 20. As will be described later, when the frame portion 31 vibrates, the two mass portions 35 mainly vibrate, and when an angular velocity is applied, a Coriolis force is generated in these.
 支持梁32はx方向に延びた形状を成し、2つの支持梁32が固定部20と枠部31とに連結されている。図1に示すように1つの連結梁34につき1つの支持梁32が連結され、2つの支持梁32が固定部20を介してx方向に並んでいる。上記したように質量部35にコリオリ力が生じると支持梁32に歪みが生じる。したがってこの歪みを検出することで角速度を検出することができる。 The support beam 32 has a shape extending in the x direction, and the two support beams 32 are connected to the fixed portion 20 and the frame portion 31. As shown in FIG. 1, one support beam 32 is connected to one connection beam 34, and the two support beams 32 are arranged in the x direction via the fixing portion 20. As described above, when the Coriolis force is generated in the mass portion 35, the support beam 32 is distorted. Therefore, the angular velocity can be detected by detecting this distortion.
 以下においては構成を明りょうとするために、2つの駆動梁33の内の一方を第1駆動梁33a、他方を第2駆動梁33bと示す。そして第1駆動梁33aに形成された質量部35を第1質量部35a、第2駆動梁33bに形成された質量部35を第2質量部35bと示す。また2つの支持梁32の内の一方を第1支持梁32a、他方を第2支持梁32b、2つの連結梁34の内の一方を第1連結梁34a、他方を第2連結梁34bと示す。図面においても同様である。 Hereinafter, in order to clarify the configuration, one of the two driving beams 33 is referred to as a first driving beam 33a and the other is referred to as a second driving beam 33b. The mass portion 35 formed on the first drive beam 33a is referred to as a first mass portion 35a, and the mass portion 35 formed on the second drive beam 33b is referred to as a second mass portion 35b. One of the two support beams 32 is a first support beam 32a, the other is a second support beam 32b, one of the two connection beams 34 is a first connection beam 34a, and the other is a second connection beam 34b. . The same applies to the drawings.
 以上に示した固定部20と浮遊部30に圧電部40、パッド60、および、配線70が形成されている。固定部20と浮遊部30それぞれの上面には図2に示す絶縁膜14が形成され、この絶縁膜14上に圧電部40、パッド60、および、配線70が形成されている。絶縁膜14は酸化シリコンやアルミナである。 The piezoelectric part 40, the pad 60, and the wiring 70 are formed in the fixed part 20 and the floating part 30 shown above. The insulating film 14 shown in FIG. 2 is formed on the upper surface of each of the fixed portion 20 and the floating portion 30, and the piezoelectric portion 40, the pad 60, and the wiring 70 are formed on the insulating film 14. The insulating film 14 is silicon oxide or alumina.
 圧電部40は駆動用圧電部41と検出用圧電部42を有する。図3~図6に示すように駆動用圧電部41と検出用圧電部42は同一構成となっており、それぞれ絶縁膜14上に順次積層された下部電極43、圧電材料44、および、上部電極45を有する。圧電材料44の分極方向を示す電気軸はz方向に沿って上部電極45から下部電極43へと向かっている。そのため上部電極45が下部電極43よりも高電位の場合に圧電材料44は伸び、下部電極43が上部電極45よりも高電位の場合に圧電材料44は縮む。そして歪みのために圧電材料44が伸びると上部電極45から下部電極43へと電流が流れ、圧電材料44が縮むと下部電極43から上部電極45へと電流が流れる。こういう性質を有する圧電材料44としては、例えばPZT膜やScAlN膜を採用することができる。なお図1に示すように電極43,45と圧電材料44それぞれはx方向に延びた形状を成している。そのために圧電材料44の伸縮がx方向において大きくなっている。 The piezoelectric unit 40 includes a driving piezoelectric unit 41 and a detecting piezoelectric unit 42. As shown in FIGS. 3 to 6, the driving piezoelectric portion 41 and the detecting piezoelectric portion 42 have the same configuration, and the lower electrode 43, the piezoelectric material 44, and the upper electrode sequentially stacked on the insulating film 14, respectively. 45. The electric axis indicating the polarization direction of the piezoelectric material 44 is directed from the upper electrode 45 to the lower electrode 43 along the z direction. Therefore, the piezoelectric material 44 expands when the upper electrode 45 has a higher potential than the lower electrode 43, and the piezoelectric material 44 contracts when the lower electrode 43 has a higher potential than the upper electrode 45. When the piezoelectric material 44 extends due to distortion, a current flows from the upper electrode 45 to the lower electrode 43, and when the piezoelectric material 44 contracts, a current flows from the lower electrode 43 to the upper electrode 45. As the piezoelectric material 44 having such properties, for example, a PZT film or a ScAlN film can be employed. As shown in FIG. 1, each of the electrodes 43 and 45 and the piezoelectric material 44 has a shape extending in the x direction. Therefore, the expansion and contraction of the piezoelectric material 44 is increased in the x direction.
 本実施形態では下部電極43と上部電極45が異なる導電材料から成り、下部電極43は上部電極45よりも絶縁膜14との密着性が高い材料から成る。換言すれば、下部電極43は上部電極45よりも降伏応力の高い材料から成る。上記したように枠部31は振動するが、その振動によって枠部31上に位置する下部電極43は変形する。したがって下部電極43の降伏応力が低いと上記の変形時に不可逆変化が起き、枠部31が元に戻ろうとしたとしても、下部電極43が元に戻らず、これによって下部電極43が枠部31から剥がれる虞がある。 In this embodiment, the lower electrode 43 and the upper electrode 45 are made of different conductive materials, and the lower electrode 43 is made of a material having higher adhesion to the insulating film 14 than the upper electrode 45. In other words, the lower electrode 43 is made of a material having a higher yield stress than the upper electrode 45. As described above, the frame portion 31 vibrates, but the lower electrode 43 located on the frame portion 31 is deformed by the vibration. Therefore, if the yield stress of the lower electrode 43 is low, an irreversible change occurs during the above deformation, and even if the frame portion 31 tries to return to its original state, the lower electrode 43 does not return to its original state. There is a risk of peeling.
 半導体基板に形成する導電材料としてはAl(アルミニウム)を考えることができるが、Alの降伏応力は15MPa程度である。枠部31の振動周波数は後述するように4~50kHzであり、このように枠部31が振動する場合、下部電極43の材料としてAlを採用すると、下部電極43の形成材料が絶縁膜14から剥離することが本発明者によって確認されている。したがって下部電極43の形成材料としてはAlの降伏応力よりも高い材料が採用される。このような材料としては、例えばAu(金)やプラチナ(Pt)などを採用することができる。Auの降伏応力は100MPa程度、Ptの降伏応力は70MPa程度である。また単層の導電材料だけではなく、例えばTi(チタン)にAuやPtの積層された二層の導電材料を採用することができる。特に上部電極45としてはSRO(酸化ストロンチウム)を採用することができ、下部電極43としてはPtにSROが積層されたものを採用することもできる。TiとSROの降伏応力は800MPa程度である。以上に示した、降伏応力が70MPa~800MPaの材料を下部電極43の形成材料として採用した場合、上記したように枠部31が振動したとしても、下部電極43の形成材料が絶縁膜14から剥離し難いことが本発明者によって確認されている。 Al (aluminum) can be considered as the conductive material formed on the semiconductor substrate, but the yield stress of Al is about 15 MPa. The vibration frequency of the frame portion 31 is 4 to 50 kHz as will be described later. When the frame portion 31 vibrates in this way, when Al is used as the material of the lower electrode 43, the material for forming the lower electrode 43 is changed from the insulating film 14. It has been confirmed by the present inventors that it peels off. Therefore, a material higher than the yield stress of Al is adopted as a material for forming the lower electrode 43. As such a material, for example, Au (gold) or platinum (Pt) can be employed. The yield stress of Au is about 100 MPa, and the yield stress of Pt is about 70 MPa. Further, not only a single-layer conductive material but also a two-layer conductive material in which Au or Pt is laminated on Ti (titanium), for example, can be employed. In particular, SRO (strontium oxide) can be used as the upper electrode 45, and an SRO laminated on Pt can be used as the lower electrode 43. The yield stress of Ti and SRO is about 800 MPa. When the material having a yield stress of 70 MPa to 800 MPa as described above is used as the material for forming the lower electrode 43, the material for forming the lower electrode 43 is peeled off from the insulating film 14 even if the frame 31 vibrates as described above. The inventor has confirmed that this is difficult.
 図1に示すように駆動用圧電部41は枠部31に設けられ、検出用圧電部42は支持梁32に設けられている。駆動用圧電部41によって枠部31が振動させられ、質量部35へのコリオリ力の印加によって生じた支持梁32の歪が検出用圧電部42によって検出される。 As shown in FIG. 1, the driving piezoelectric portion 41 is provided on the frame portion 31, and the detecting piezoelectric portion 42 is provided on the support beam 32. The frame portion 31 is vibrated by the driving piezoelectric portion 41, and the distortion of the support beam 32 caused by the application of the Coriolis force to the mass portion 35 is detected by the detecting piezoelectric portion 42.
 本実施形態の圧電部40は駆動用圧電部41を8つ有し、検出用圧電部42を4つ有する。以下においてはこれら8つの駆動用圧電部41の違いと4つの検出用圧電部42の違いそれぞれを明りょうとするため、第1駆動用圧電部41a~第8駆動用圧電部41h、第1検出用圧電部42a~第4検出用圧電部42dと示す。図面においても同様である。 The piezoelectric part 40 of this embodiment has eight driving piezoelectric parts 41 and four detecting piezoelectric parts 42. In the following, in order to clarify the difference between the eight driving piezoelectric portions 41 and the four detecting piezoelectric portions 42, the first driving piezoelectric portion 41a to the eighth driving piezoelectric portion 41h, the first detection piezoelectric portion 41, Piezoelectric portion 42a to fourth detecting piezoelectric portion 42d. The same applies to the drawings.
 図1に示すように2つの駆動用圧電部41a,41bが第1駆動梁33aの一端に設けられ、2つの駆動用圧電部41c,41dが第1駆動梁33aの他端に設けられている。そして駆動用圧電部41a,41cそれぞれが駆動用圧電部41b,41dそれぞれよりも固定部20から離れて位置している。また駆動用圧電部41a,41bはy方向に並んで互いに電気的に接続され、駆動用圧電部41c,41dはy方向に並んで互いに電気的に接続されている。 As shown in FIG. 1, two drive piezoelectric portions 41a and 41b are provided at one end of the first drive beam 33a, and two drive piezoelectric portions 41c and 41d are provided at the other end of the first drive beam 33a. . The driving piezoelectric portions 41a and 41c are located farther from the fixed portion 20 than the driving piezoelectric portions 41b and 41d, respectively. The driving piezoelectric portions 41a and 41b are electrically connected to each other in the y direction, and the driving piezoelectric portions 41c and 41d are electrically connected to each other in the y direction.
 同様にして、2つの駆動用圧電部41e,41fが第2駆動梁33bの一端に設けられ、2つの駆動用圧電部41g,41hが第2駆動梁33bの他端に設けられている。そして駆動用圧電部41e,41gそれぞれが駆動用圧電部41f,41hそれぞれよりも固定部20から離れて位置している。また駆動用圧電部41e,41fはy方向に並んで互いに電気的に接続され、駆動用圧電部41g,41hはy方向に並んで互いに電気的に接続されている。 Similarly, two driving piezoelectric portions 41e and 41f are provided at one end of the second driving beam 33b, and two driving piezoelectric portions 41g and 41h are provided at the other end of the second driving beam 33b. The driving piezoelectric portions 41e and 41g are located farther from the fixed portion 20 than the driving piezoelectric portions 41f and 41h, respectively. The driving piezoelectric portions 41e and 41f are electrically connected to each other in the y direction, and the driving piezoelectric portions 41g and 41h are electrically connected to each other in the y direction.
 そして図1に示すように2つの検出用圧電部42a,42bは第1支持梁32aに設けられ、2つの検出用圧電部42c,42dは第2支持梁32bに設けられている。検出用圧電部42a,42cそれぞれは検出用圧電部42b,42dそれぞれよりも第1質量部35a側に位置し、検出用圧電部42b,42dそれぞれは検出用圧電部42a,42cそれぞれよりも第2質量部35b側に位置している。 As shown in FIG. 1, the two detection piezoelectric portions 42a and 42b are provided on the first support beam 32a, and the two detection piezoelectric portions 42c and 42d are provided on the second support beam 32b. Each of the detection piezoelectric portions 42a and 42c is positioned closer to the first mass portion 35a than each of the detection piezoelectric portions 42b and 42d, and each of the detection piezoelectric portions 42b and 42d is second than each of the detection piezoelectric portions 42a and 42c. It is located on the mass part 35b side.
 パッド60は駆動用パッド61と検出用パッド62を有し、これらが固定部20に形成されている。図2に示すように駆動用パッド61と検出用パッド62は同一構成となっており、それぞれ絶縁膜14上に順次積層された第1配線層63と第2配線層64を有する。第1配線層63は下部電極43と同一材料から成り、配線70の端部に相当する。第2配線層64はパッド61,62の剛性を高めるためのものであり、例えばAlを採用することができる。この第2配線層64によって、パッド61,62にワイヤを接続する際の応力によるパッド61,62の損傷が抑制される。 The pad 60 has a driving pad 61 and a detection pad 62, which are formed in the fixed portion 20. As shown in FIG. 2, the driving pad 61 and the detection pad 62 have the same configuration, and each includes a first wiring layer 63 and a second wiring layer 64 that are sequentially stacked on the insulating film 14. The first wiring layer 63 is made of the same material as the lower electrode 43 and corresponds to the end of the wiring 70. The second wiring layer 64 is for increasing the rigidity of the pads 61 and 62, and for example, Al can be adopted. By the second wiring layer 64, damage to the pads 61 and 62 due to stress when connecting the wires to the pads 61 and 62 is suppressed.
 図1に示すようにパッド60は駆動用パッド61を3つ有し、検出用パッド62を6つ有している。これらパッド61,62はx-y平面において3行3列を成すようにマトリックス配置されており、2行目に3つの駆動用パッド61が並び、1行目と3行目それぞれに3つの検出用パッド62が並んでいる。そして図1に示すように駆動用パッド61は固定部20の中央部21に位置し、検出用パッド62は固定部20の縁部22に位置している。以下においては第1列から第3列に向かって並ぶ3つの駆動用パッド61を第1駆動用パッド61a~第3駆動用パッド61cと示す。そして第1行目において第1列から第3列に向かって並ぶ3つの検出用パッド62を第1検出用パッド62a~第3検出用パッド62c、第3行目において第1列から第3列に向かって並ぶ3つの検出用パッド62を第4検出用パッド62d~第6検出用パッド62fと示す。図面でも同様である。なお力学量センサ100は、2行2列目に位置する第2駆動用パッド61bの中心をx方向に貫く第1中心線、および、y方向に貫く第2中心線それぞれを介して対称形状を成している。 As shown in FIG. 1, the pad 60 has three driving pads 61 and six detection pads 62. These pads 61 and 62 are arranged in a matrix so as to form 3 rows and 3 columns in the xy plane. Three drive pads 61 are arranged in the second row, and three detections are performed in the first and third rows, respectively. Pads 62 are lined up. As shown in FIG. 1, the driving pad 61 is located at the center portion 21 of the fixing portion 20, and the detection pad 62 is located at the edge portion 22 of the fixing portion 20. In the following, the three driving pads 61 arranged from the first row to the third row are referred to as a first driving pad 61a to a third driving pad 61c. In the first row, three detection pads 62 arranged from the first column to the third column are arranged as the first detection pad 62a to the third detection pad 62c, and in the third row, the first to third columns. The three detection pads 62 lined up toward are indicated as a fourth detection pad 62d to a sixth detection pad 62f. The same applies to the drawings. The mechanical quantity sensor 100 has a symmetric shape through the first center line passing through the center of the second driving pad 61b located in the second row and second column in the x direction and the second center line passing through the y direction. It is made.
 図1に示すように第2駆動用パッド61bは8つの駆動用圧電部41a~41hそれぞれと電気的に接続されている。そして第1駆動用パッド61aは駆動用圧電部41a,41gと電気的に接続され、第3駆動用パッド61cは駆動用圧電部41c,41eと電気的に接続されている。第2駆動用パッド61bには駆動信号として一定電圧が入力され、残り2つの駆動用パッド61a,61cには駆動信号として同相のパルス信号が入力される。このパルス信号のパルス周期は枠部31の共振周波数に基づいて設定され、本実施形態では20kHzになっている。上記の駆動信号の入力によって駆動用圧電部41a~41hが伸び縮みし、枠部31(質量部35a,35b)が周波数4~50kHz、振幅1~50μmで振動する。なお、このようにパルス周期が20kHzに固定されているにも関わらず枠部31の周波数と振幅に幅があるのは、枠部31の質量とサイズのためにQ値が変化するためである。 As shown in FIG. 1, the second driving pad 61b is electrically connected to each of the eight driving piezoelectric portions 41a to 41h. The first driving pad 61a is electrically connected to the driving piezoelectric portions 41a and 41g, and the third driving pad 61c is electrically connected to the driving piezoelectric portions 41c and 41e. A constant voltage is input as a drive signal to the second drive pad 61b, and an in-phase pulse signal is input as the drive signal to the remaining two drive pads 61a and 61c. The pulse period of this pulse signal is set based on the resonance frequency of the frame portion 31 and is 20 kHz in this embodiment. Due to the input of the drive signal, the drive piezoelectric portions 41a to 41h expand and contract, and the frame portion 31 ( mass portions 35a and 35b) vibrates at a frequency of 4 to 50 kHz and an amplitude of 1 to 50 μm. The reason why the frequency and amplitude of the frame 31 have a width despite the pulse period being fixed at 20 kHz is that the Q value changes due to the mass and size of the frame 31. .
 また図1に示すように1行目の真ん中に位置する第2検出用パッド62bは2つの検出用圧電部42a,42cそれぞれと電気的に接続されている。そして第1検出用パッド62aは第1検出用圧電部42aと電気的に接続され、第3検出用パッド62cは第3検出用圧電部42cと電気的に接続されている。第2検出用パッド62bはグランドに接続され、残り2つの検出用パッド62a,62cには支持梁32a,32bの歪みに応じた電気信号が入力される。本実施形態では第2検出用パッド62bが検出用圧電部42a,42cそれぞれの下部電極43に接続されている。そして第1検出用パッド62aが第1検出用圧電部42aの上部電極45に接続され、第3検出用パッド62cが第3検出用圧電部42cの上部電極45に接続されている。なお上記の電極43,45と検出用パッド62a~62cの接続関係を逆転させてもよい。 Further, as shown in FIG. 1, the second detection pad 62b located in the middle of the first row is electrically connected to each of the two detection piezoelectric portions 42a and 42c. The first detection pad 62a is electrically connected to the first detection piezoelectric portion 42a, and the third detection pad 62c is electrically connected to the third detection piezoelectric portion 42c. The second detection pad 62b is connected to the ground, and an electric signal corresponding to the distortion of the support beams 32a and 32b is input to the remaining two detection pads 62a and 62c. In the present embodiment, the second detection pad 62b is connected to the lower electrode 43 of each of the detection piezoelectric portions 42a and 42c. The first detection pad 62a is connected to the upper electrode 45 of the first detection piezoelectric portion 42a, and the third detection pad 62c is connected to the upper electrode 45 of the third detection piezoelectric portion 42c. The connection relationship between the electrodes 43 and 45 and the detection pads 62a to 62c may be reversed.
 同様にして、3行目の真ん中に位置する第5検出用パッド62eは2つの検出用圧電部42b,42dそれぞれと電気的に接続されている。そして第4検出用パッド62dは第2検出用圧電部42bと電気的に接続され、第6検出用パッド62fは第4検出用圧電部42dと電気的に接続されている。第5検出用パッド62eはグランドに接続され、残り2つの検出用パッド62d,62fには支持梁32a,32bの歪みに応じた電気信号が入力される。本実施形態では第5検出用パッド62eが検出用圧電部42b,42dそれぞれの下部電極43に接続されている。そして第4検出用パッド62dが第2検出用圧電部42bの上部電極45に接続され、第6検出用パッド62fが第4検出用圧電部42dの上部電極45に接続されている。なお上記の電極43,45と検出用パッド62d~62fの接続関係を逆転させてもよい。 Similarly, the fifth detection pad 62e located in the middle of the third row is electrically connected to each of the two detection piezoelectric portions 42b and 42d. The fourth detection pad 62d is electrically connected to the second detection piezoelectric portion 42b, and the sixth detection pad 62f is electrically connected to the fourth detection piezoelectric portion 42d. The fifth detection pad 62e is connected to the ground, and an electric signal corresponding to the distortion of the support beams 32a and 32b is input to the remaining two detection pads 62d and 62f. In the present embodiment, the fifth detection pad 62e is connected to the lower electrode 43 of each of the detection piezoelectric portions 42b and 42d. The fourth detection pad 62d is connected to the upper electrode 45 of the second detection piezoelectric portion 42b, and the sixth detection pad 62f is connected to the upper electrode 45 of the fourth detection piezoelectric portion 42d. The connection relationship between the electrodes 43 and 45 and the detection pads 62d to 62f may be reversed.
 配線70は圧電部40とパッド60とを電気的に接続するものであり、圧電部40を構成する下部電極43と同一材料から成る。したがって配線70と絶縁膜14との密着度が下部電極43と等しくなっている。配線70としては、駆動用圧電部41と駆動用パッド61とを電気的に接続する駆動用配線71と、検出用圧電部42と検出用パッド62とを電気的に接続する検出用配線72と、を有する。図3~図5に示すように駆動用配線71における下部電極43と接続される端部は下部電極43から延設され、上部電極45と接続される端部は上部電極45から圧電材料44の側面を伝って絶縁膜14側へと延びた連結部位46と電気的に接続されている。図6に示すように検出用配線72においても同様の構成である。また図1および図2に示すように配線71,72におけるパッド60と電気的に接続される端部はパッド61,62の第1配線層63から延設されている。 The wiring 70 electrically connects the piezoelectric part 40 and the pad 60 and is made of the same material as the lower electrode 43 constituting the piezoelectric part 40. Therefore, the degree of adhesion between the wiring 70 and the insulating film 14 is equal to that of the lower electrode 43. The wiring 70 includes a driving wiring 71 that electrically connects the driving piezoelectric portion 41 and the driving pad 61, and a detection wiring 72 that electrically connects the detecting piezoelectric portion 42 and the detection pad 62. Have. As shown in FIGS. 3 to 5, the end of the driving wiring 71 connected to the lower electrode 43 extends from the lower electrode 43, and the end connected to the upper electrode 45 extends from the upper electrode 45 to the piezoelectric material 44. It is electrically connected to a connecting portion 46 extending to the insulating film 14 side through the side surface. As shown in FIG. 6, the detection wiring 72 has the same configuration. As shown in FIGS. 1 and 2, the ends of the wirings 71 and 72 that are electrically connected to the pads 60 are extended from the first wiring layer 63 of the pads 61 and 62.
 次に、圧電部41,42、パッド61,62、および、配線71,72の形成方法を簡単に説明する。上記したようにパッド61,62の第1配線層63と配線71,72それぞれは圧電部41,42の下部電極43と同一材料から成る。したがって絶縁膜14上に下部電極43の形成材料(以下、下部材料と示す)を積層した後、その上に上記の第1配線層63、配線71,72、および、下部電極43を形作るためのレジストを形成する。そしてレジストから外部に露出された下部材料をエッチングして除去する。こうすることで第1配線層63、配線71,72、および、下部電極43それぞれを形成する。次いで、下部電極43を構成する下部材料、および、上部電極45と電気的に接続される配線71,72の端部それぞれに圧電材料44を積層する。その後、圧電材料44および圧電材料44の積層された配線71,72の端部に上部電極45の形成材料を形成し、所定形状にエッチングする。こうすることで上部電極45と上記の連結部位46とを形成し、上部電極45と配線71,72を電気的に接続する。最後にパッド61,62の第1配線層63に第2配線層64を形成する。以上により圧電部41,42、パッド61,62、および、配線71,72が形成される。 Next, a method for forming the piezoelectric portions 41 and 42, the pads 61 and 62, and the wirings 71 and 72 will be briefly described. As described above, the first wiring layer 63 and the wirings 71 and 72 of the pads 61 and 62 are made of the same material as the lower electrode 43 of the piezoelectric parts 41 and 42, respectively. Therefore, a material for forming the lower electrode 43 (hereinafter referred to as a lower material) is laminated on the insulating film 14, and then the first wiring layer 63, the wirings 71 and 72, and the lower electrode 43 are formed thereon. A resist is formed. Then, the lower material exposed to the outside from the resist is removed by etching. Thus, the first wiring layer 63, the wirings 71 and 72, and the lower electrode 43 are formed. Next, the piezoelectric material 44 is laminated on the lower material constituting the lower electrode 43 and the ends of the wirings 71 and 72 electrically connected to the upper electrode 45. Thereafter, a material for forming the upper electrode 45 is formed at the ends of the piezoelectric material 44 and the wirings 71 and 72 on which the piezoelectric material 44 is laminated, and etched into a predetermined shape. By doing so, the upper electrode 45 and the connecting portion 46 are formed, and the upper electrode 45 and the wirings 71 and 72 are electrically connected. Finally, the second wiring layer 64 is formed on the first wiring layer 63 of the pads 61 and 62. Thus, the piezoelectric portions 41 and 42, the pads 61 and 62, and the wirings 71 and 72 are formed.
 次に、y方向において並び、互いに電気的に接続された2つの駆動用圧電部の接続構造を示す。この2つの駆動用圧電部は合計4つあるが、これらの接続構造は同一なので、その代表として駆動用圧電部41c,41dの接続構造を図3~図5に基づいて説明する。なお、駆動用圧電部41c,41dの構成材料43~45それぞれを区別するために、43c~45c,43d~45dと図3~図5では記載している。 Next, a connection structure of two driving piezoelectric parts arranged in the y direction and electrically connected to each other is shown. There are a total of four of these two drive piezoelectric parts, but since these connection structures are the same, the connection structure of the drive piezoelectric parts 41c and 41d will be described with reference to FIGS. 3 to 5 and 43c to 45c and 43d to 45d are shown in order to distinguish the constituent materials 43 to 45 of the driving piezoelectric portions 41c and 41d.
 図3および図4に示すように第3駆動用圧電部41cの下部電極43cから駆動用配線71が延設され、その駆動用配線71が第4駆動用圧電部41dの上部電極45dと電気的に接続されている。そして図1に示すようにこの駆動用配線71が第2駆動用パッド61bに接続されている。したがって下部電極43cと上部電極45dそれぞれはグランド電位に固定されている。また図3および図5に示すように第4駆動用圧電部41dの下部電極43dから駆動用配線71が延設され、その駆動用配線71が第3駆動用圧電部41cの上部電極45cと電気的に接続されている。そして図1および図3に示すように上部電極45cが駆動用配線71を介して第3駆動用パッド61cに接続されている。したがって上部電極45cと下部電極43dそれぞれに、枠部31の共振周波数に基づいてパルス周期の決定されたパルス信号が入力される。以上の接続構成により、駆動用圧電部41c,41dに印加される電圧が電気軸に対して逆転している。そのために上記のパルス信号の入力によって駆動用圧電部41c,41dの一方が伸びる場合、他方が縮むようになっている。 As shown in FIGS. 3 and 4, a driving wiring 71 is extended from the lower electrode 43c of the third driving piezoelectric portion 41c, and the driving wiring 71 is electrically connected to the upper electrode 45d of the fourth driving piezoelectric portion 41d. It is connected to the. As shown in FIG. 1, the driving wiring 71 is connected to the second driving pad 61b. Therefore, each of the lower electrode 43c and the upper electrode 45d is fixed to the ground potential. Further, as shown in FIGS. 3 and 5, a driving wiring 71 is extended from the lower electrode 43d of the fourth driving piezoelectric portion 41d, and the driving wiring 71 is electrically connected to the upper electrode 45c of the third driving piezoelectric portion 41c. Connected. As shown in FIGS. 1 and 3, the upper electrode 45 c is connected to the third driving pad 61 c via the driving wiring 71. Therefore, a pulse signal having a pulse period determined based on the resonance frequency of the frame portion 31 is input to each of the upper electrode 45c and the lower electrode 43d. With the above connection configuration, the voltage applied to the driving piezoelectric portions 41c and 41d is reversed with respect to the electric axis. Therefore, when one of the driving piezoelectric portions 41c and 41d is extended by the input of the pulse signal, the other is contracted.
 次に、図7および図8に基づいて枠部31の運動を説明する。上記したように駆動用圧電部41c,41dの一方が伸びる場合、他方が縮むが、この関係は、駆動用圧電部41a,41b、駆動用圧電部41e,41f、駆動用圧電部41g,41hそれぞれにおいても成立する。すなわち固定部20から離れて位置する駆動用圧電部41a,41c,41e,41gそれぞれが伸びる場合、固定部20側に位置する駆動用圧電部41b,41d,41f,41hそれぞれが縮む。これとは反対に、駆動用圧電部41a,41c,41e,41gそれぞれが縮む場合、駆動用圧電部41b,41d,41f,41hそれぞれが伸びる。 Next, the movement of the frame 31 will be described with reference to FIGS. As described above, when one of the driving piezoelectric portions 41c and 41d expands, the other contracts, but this relationship relates to the driving piezoelectric portions 41a and 41b, the driving piezoelectric portions 41e and 41f, and the driving piezoelectric portions 41g and 41h, respectively. Also holds. That is, when each of the driving piezoelectric portions 41a, 41c, 41e, and 41g located away from the fixed portion 20 extends, each of the driving piezoelectric portions 41b, 41d, 41f, and 41h positioned on the fixed portion 20 side contracts. On the other hand, when each of the driving piezoelectric portions 41a, 41c, 41e, and 41g contracts, each of the driving piezoelectric portions 41b, 41d, 41f, and 41h extends.
 したがって図7に白抜き矢印で示すように、駆動信号の入力によって駆動用圧電部41a,41c,41e,41gが伸び、駆動用圧電部41b,41d,41f,41hが縮まる電流が流れた場合、2つの質量部35a,35bそれぞれは固定部20へと向かって変位する。そして図8に白抜き矢印で示すように駆動用圧電部41a,41c,41e,41gが縮み、駆動用圧電部41b,41d,41f,41hが伸びる電流が流れた場合、2つの質量部35a,35bそれぞれは固定部20から離れるように変位する。以上示したように、駆動信号の入力によって2つの質量部35a,35bはy方向において互いに近寄ったり互いに遠ざかったりするように振動する。 Therefore, as shown by the white arrow in FIG. 7, when a drive signal is input, a current that causes the drive piezoelectric portions 41a, 41c, 41e, and 41g to extend and the drive piezoelectric portions 41b, 41d, 41f, and 41h to contract flows. Each of the two mass parts 35 a and 35 b is displaced toward the fixed part 20. When the driving piezoelectric portions 41a, 41c, 41e, and 41g contract as shown by white arrows in FIG. 8 and the driving piezoelectric portions 41b, 41d, 41f, and 41h extend, two mass portions 35a, Each of 35b is displaced away from the fixing portion 20. As described above, the input of the drive signal causes the two mass portions 35a and 35b to vibrate so as to approach each other and move away from each other in the y direction.
 次に、図7に示す振動状態の質量部35a,35bに角速度が印加された際に生じるコリオリ力を図9に基づいて説明する。上記したようにy方向において2つの質量部35a,35bが互いに近寄ったり互いに遠ざかったりするように振動している際に、z方向に沿う角速度が印加されると、2つの質量部35a,35bにはx方向に沿うコリオリ力が逆向きに発生する。この結果、枠部31は固定部20の中心(第2駆動用パッド61bの中心)をz方向に貫く軸周りにx-y平面において回転しようとする。この枠部31の運動により2つの支持梁32a,32bに歪みが生じ、支持梁32a,32bに設けられた検出用圧電部42a~42dそれぞれに歪みが生じる。図9にハッチング矢印で示すコリオリ力が質量部35a,35bに発生した結果、枠部31が時計回りに回転しようとした場合、第1支持梁32aは固定部20に接続された端部を支点として、連結梁34に接続された端部が紙面上方に移動する。これとは反対に第2支持梁32bは固定部20に接続された端部を支点として、連結梁34に接続された端部が紙面下方に移動する。これにより図9にハッチング矢印で示すように検出用圧電部42a,42dに縮む歪みが生じ、検出用圧電部42b,42cに伸びる歪みが生じる。この結果、検出用圧電部42a,42dに接続された検出用パッド62a,62fと、検出用圧電部42b,42cに接続された検出用パッド62c,62dとに逆向きの電流が流れる。この検出用パッド62a,62c,62d,62fに流れる電流がワイヤを介して外部装置に出力され、外部装置にて信号処理されることで角速度が検出される。なお図示しないが、枠部31が反時計回りに回転しようとした場合、第1支持梁32aにおける連結梁34に接続された端部が紙面下方に移動し、第2支持梁32bにおける連結梁34に接続された端部が紙面上方に移動する。これにより検出用圧電部42a,42dに伸びる歪みが生じ、検出用圧電部42b,42cに縮む歪みが生じる。 Next, the Coriolis force generated when the angular velocity is applied to the mass portions 35a and 35b in the vibration state shown in FIG. 7 will be described with reference to FIG. As described above, when the two mass parts 35a and 35b vibrate so as to approach each other or move away from each other in the y direction, if an angular velocity along the z direction is applied, the two mass parts 35a and 35b are applied to the two mass parts 35a and 35b. The Coriolis force along the x direction is generated in the opposite direction. As a result, the frame portion 31 tends to rotate in the xy plane around an axis that penetrates the center of the fixed portion 20 (the center of the second driving pad 61b) in the z direction. The movement of the frame portion 31 causes distortion in the two support beams 32a and 32b, and distortion occurs in each of the detection piezoelectric portions 42a to 42d provided on the support beams 32a and 32b. As a result of the Coriolis force indicated by hatching arrows in FIG. 9 occurring in the mass portions 35a and 35b, when the frame portion 31 attempts to rotate clockwise, the first support beam 32a has a fulcrum at the end connected to the fixed portion 20. As a result, the end connected to the connecting beam 34 moves upward in the drawing. On the other hand, the second support beam 32b is moved downward in the drawing with the end connected to the fixed beam 20 as a fulcrum. As a result, as shown by hatching arrows in FIG. 9, distortion that contracts in the detection piezoelectric portions 42 a and 42 d occurs, and distortion that extends in the detection piezoelectric portions 42 b and 42 c occurs. As a result, reverse currents flow through the detection pads 62a and 62f connected to the detection piezoelectric portions 42a and 42d and the detection pads 62c and 62d connected to the detection piezoelectric portions 42b and 42c. The current flowing through the detection pads 62a, 62c, 62d, and 62f is output to an external device via a wire, and the angular velocity is detected by performing signal processing on the external device. Although not shown, when the frame portion 31 attempts to rotate counterclockwise, the end portion of the first support beam 32a connected to the connection beam 34 moves downward in the drawing, and the connection beam 34 of the second support beam 32b. The end part connected to is moved upward in the drawing. As a result, distortion that expands in the detection piezoelectric portions 42a and 42d occurs, and distortion that contracts in the detection piezoelectric portions 42b and 42c occurs.
 次に、本実施形態に係る力学量センサ100の作用効果を説明する。上記したように、配線71,72はそれぞれ下部電極43と同一材料から成り、浮遊部30の絶縁膜14上に設けられている。これによれば慣性力の印加によって浮遊部30に歪みが生じたとしても、配線が圧電部と同一構造である構成とは異なり、配線71,72それぞれに電荷が生じない。したがって上記比較構成と比べて角速度の検出精度の低下が抑制される。 Next, functions and effects of the mechanical quantity sensor 100 according to the present embodiment will be described. As described above, the wirings 71 and 72 are made of the same material as the lower electrode 43 and are provided on the insulating film 14 of the floating portion 30. According to this, even if the floating portion 30 is distorted by the application of inertial force, unlike the configuration in which the wiring has the same structure as the piezoelectric portion, no charges are generated in the wirings 71 and 72, respectively. Therefore, a decrease in angular velocity detection accuracy is suppressed as compared with the comparative configuration.
 特に本実施形態では振動体としての機能を果たす枠部31の絶縁膜14上に駆動用配線71が設けられている。これによれば上記した比較構成とは異なり、枠部31の振動のために駆動用配線71に電荷が生じることが抑制され、その生じた電荷によって駆動用圧電部41が伸び縮みした結果、枠部31の振動状態が不安定となることが抑制される。これにより角速度の検出精度の低下が抑制される。 Particularly in this embodiment, the drive wiring 71 is provided on the insulating film 14 of the frame portion 31 that functions as a vibrating body. According to this, unlike the above-described comparative configuration, the generation of charges in the drive wiring 71 due to the vibration of the frame portion 31 is suppressed, and the drive piezoelectric portion 41 is expanded and contracted by the generated charges. It is suppressed that the vibration state of the part 31 becomes unstable. This suppresses a decrease in angular velocity detection accuracy.
 また上記したように配線71,72はそれぞれ下部電極43と同一材料から成るので、配線が下部電極とは異なる材料から成る構成とは異なり、配線71,72それぞれと絶縁膜14との密着度と、下部電極43と絶縁膜14との密着度が等しくなる。したがって下部電極43と絶縁膜14とが密着しているにも関わらず、配線71,72が絶縁膜14から剥離することが抑制される。さらに言えば下部電極43の形成材料の降伏応力は70MPa~800MPaなので、浮遊部30の振動によって下部電極43と配線71,72それぞれが絶縁膜14から剥離することが抑制される。これにより力学量センサ100の寿命の低下が抑制される。 Further, as described above, since the wirings 71 and 72 are made of the same material as that of the lower electrode 43, the degree of adhesion between the wirings 71 and 72 and the insulating film 14 is different from the structure in which the wiring is made of a material different from that of the lower electrode. The degree of adhesion between the lower electrode 43 and the insulating film 14 becomes equal. Accordingly, it is possible to suppress the wirings 71 and 72 from being separated from the insulating film 14 even though the lower electrode 43 and the insulating film 14 are in close contact with each other. Furthermore, since the yield stress of the material for forming the lower electrode 43 is 70 MPa to 800 MPa, the lower electrode 43 and the wirings 71 and 72 are prevented from being separated from the insulating film 14 due to the vibration of the floating portion 30. Thereby, the lifetime reduction of the mechanical quantity sensor 100 is suppressed.
 さらに本実施形態では下部電極43が上部電極45よりも絶縁膜14との密着性が高い材料から成る。これによれば下部電極が上部電極よりも絶縁膜との密着性の低い材料から成る構成とは異なり、配線71,72が絶縁膜14から剥離することが抑制される。これにより力学量センサ100の寿命の低下が抑制される。 Furthermore, in this embodiment, the lower electrode 43 is made of a material having higher adhesion to the insulating film 14 than the upper electrode 45. According to this, unlike the structure in which the lower electrode is made of a material having lower adhesion to the insulating film than the upper electrode, the wirings 71 and 72 are suppressed from being peeled off from the insulating film 14. Thereby, the lifetime reduction of the mechanical quantity sensor 100 is suppressed.
 (第2実施形態)
 次に、本開示の第2実施形態を図10~図14に基づいて説明する。第2実施形態に係る力学量センサは上記した実施形態によるものと共通点が多い。そのため以下においては共通部分の説明を省略し、異なる部分を重点的に説明する。また以下においては上記した実施形態で示した要素と同一の要素には同一の符号を付与する。
(Second Embodiment)
Next, a second embodiment of the present disclosure will be described based on FIGS. 10 to 14. The mechanical quantity sensor according to the second embodiment has much in common with the above-described embodiment. Therefore, in the following description, description of common parts is omitted, and different parts are mainly described. In the following description, the same reference numerals are given to the same elements as those described in the above embodiment.
 第1実施形態では下部電極43と上部電極45が異なる導電材料から成る例を示した。これに対し本実施形態では下部電極43と上部電極45が同一の導電材料から成る点を特徴とする。 In the first embodiment, an example in which the lower electrode 43 and the upper electrode 45 are made of different conductive materials is shown. In contrast, the present embodiment is characterized in that the lower electrode 43 and the upper electrode 45 are made of the same conductive material.
 この場合、下部電極43の形成材料と上部電極45の形成材料それぞれのエッチングレートが同一になる。したがって上部電極45の形成材料をエッチングする際に下部電極43の形成材料がエッチングされることを避けるため、図10~図14に示すように下部電極43の形成材料は上部電極45の形成材料によって覆われる。例えば図10に示すように配線71,72およびパッド61,62の第1配線層63それぞれは電極43,45の形成材料から成り、これら2つの形成材料それぞれが絶縁膜14上に設けられている。これにより配線71,72と第1配線層63それぞれの絶縁膜14との接続面積が、第1実施形態で示した構成と比べて増大し、配線71,72と第1配線層63それぞれが絶縁膜14から剥離することが抑制される。 In this case, the etching rate of the material for forming the lower electrode 43 and the material for forming the upper electrode 45 are the same. Therefore, in order to avoid etching the forming material of the lower electrode 43 when the forming material of the upper electrode 45 is etched, the forming material of the lower electrode 43 depends on the forming material of the upper electrode 45 as shown in FIGS. Covered. For example, as shown in FIG. 10, the wirings 71 and 72 and the first wiring layer 63 of the pads 61 and 62 are each made of the forming material of the electrodes 43 and 45, and these two forming materials are provided on the insulating film 14. . As a result, the connection area between the wirings 71 and 72 and the respective insulating films 14 of the first wiring layer 63 is increased as compared with the configuration shown in the first embodiment, and the wirings 71 and 72 and the first wiring layer 63 are insulated. Peeling from the film 14 is suppressed.
 なお図11および図12に示すように下部電極43cと上部電極45dとを電気的に接続する駆動用配線71は、下部電極43cから延設された部位が上部電極45dから延設された部位によって覆われて成る。また図11および図13に示すように下部電極43dと上部電極45cとを電気的に接続する駆動用配線71は、下部電極43dから延設された部位が、上部電極45cから延設された部位によって覆われて成る。そして上部電極45cと第3駆動用パッド61cとを電気的に接続する駆動用配線71は、下部電極43の形成材料が上部電極45cから延設された部位によって覆われて成る。さらに図14に示すように第1検出用圧電部42aの下部電極43と第2検出用パッド62bとを電気的に接続する検出用配線72は、第1検出用圧電部42aの下部電極43から延設された部位が、上部電極45の形成材料によって覆われて成る。 As shown in FIGS. 11 and 12, the driving wiring 71 that electrically connects the lower electrode 43c and the upper electrode 45d has a portion extending from the lower electrode 43c depending on a portion extending from the upper electrode 45d. Consists of. Further, as shown in FIGS. 11 and 13, in the driving wiring 71 that electrically connects the lower electrode 43d and the upper electrode 45c, a portion extending from the lower electrode 43d is a portion extending from the upper electrode 45c. Covered by. The drive wiring 71 that electrically connects the upper electrode 45c and the third drive pad 61c is covered with a portion where the material for forming the lower electrode 43 extends from the upper electrode 45c. Further, as shown in FIG. 14, the detection wiring 72 that electrically connects the lower electrode 43 of the first detection piezoelectric portion 42a and the second detection pad 62b is connected to the lower electrode 43 of the first detection piezoelectric portion 42a. The extended portion is covered with the material for forming the upper electrode 45.
 電極43,45の形成材料は、枠部31の振動によって電極43、配線71,72、パッド61,62それぞれが絶縁膜14から剥離することを抑制するために、第1実施形態と同様にしてAlの降伏応力よりも高い材料(降伏応力が70MPa~800MPaの材料)が採用される。このような材料としては、第1実施形態で示したように、Au、Pt、そしてTiにAuやPtの積層されたものや、PtにSROが積層されたものを採用することができる。 The formation material of the electrodes 43 and 45 is the same as that of the first embodiment in order to prevent the electrode 43, the wirings 71 and 72, and the pads 61 and 62 from being separated from the insulating film 14 due to the vibration of the frame portion 31. A material having a higher yield stress than Al (a material having a yield stress of 70 MPa to 800 MPa) is employed. As such a material, as shown in the first embodiment, Au, Pt, and Ti laminated with Au or Pt, or Pt laminated with SRO can be adopted.
 (第3実施形態)
 次に、本開示の第3実施形態を図15~図18に基づいて説明する。第3実施形態に係る力学量センサは上記した実施形態によるものと共通点が多い。そのため以下においては共通部分の説明を省略し、異なる部分を重点的に説明する。また以下においては上記した実施形態で示した要素と同一の要素には同一の符号を付与する。
(Third embodiment)
Next, a third embodiment of the present disclosure will be described based on FIGS. 15 to 18. The mechanical quantity sensor according to the third embodiment has much in common with the above-described embodiment. Therefore, in the following description, description of common parts is omitted, and different parts are mainly described. In the following description, the same reference numerals are given to the same elements as those described in the above embodiment.
 第1実施形態ではy方向において2つの質量部35a,35bが互いに近寄ったり互いに遠ざかったりするように振動する例を示した。これに対し本実施形態ではz方向において2つの質量部35a,35bの内の一方が第1基板11に近寄り、他方が第1基板11から遠ざかるように振動することを特徴とする。 In the first embodiment, an example in which the two mass portions 35a and 35b vibrate so as to approach each other or move away from each other in the y direction has been described. On the other hand, the present embodiment is characterized in that in the z direction, one of the two mass portions 35a, 35b vibrates so as to approach the first substrate 11 and the other away from the first substrate 11.
 上記のように質量部35a,35bをz方向に振動させるためには、図15に示すように第1駆動梁33aに設けられた駆動用圧電部41a~41dそれぞれを伸ばし、第2駆動梁33bに設けられた駆動用圧電部41e~41hそれぞれを縮ませる。そして図16に示すように第1駆動梁33aに設けられた駆動用圧電部41a~41dそれぞれを縮ませ、第2駆動梁33bに設けられた駆動用圧電部41e~41hそれぞれを伸ばす。このように駆動用圧電部41a~41hを伸縮させることで、z方向において2つの質量部35a,35bの内の一方が第1基板11に近寄り、他方が第1基板11から遠ざかるように振動する。この振動状態において図17に示すようにy方向に沿う角速度が印加されると、2つの質量部35a,35bにx方向に沿うコリオリ力が逆向きに発生する。この結果、枠部31は固定部20の中心をz方向に貫く軸周りにx-y平面において回転しようとする。この回転により2つの支持梁32に歪みが生じ、支持梁32に設けられた検出用圧電部42a~42dそれぞれにおいて歪みに応じた電流が流れる。 In order to vibrate the mass portions 35a and 35b in the z direction as described above, as shown in FIG. 15, the driving piezoelectric portions 41a to 41d provided on the first driving beam 33a are extended and the second driving beam 33b is extended. Each of the driving piezoelectric portions 41e to 41h provided in the slidable portion is contracted. Then, as shown in FIG. 16, the driving piezoelectric portions 41a to 41d provided on the first driving beam 33a are contracted, and the driving piezoelectric portions 41e to 41h provided on the second driving beam 33b are extended. By extending and contracting the driving piezoelectric portions 41a to 41h in this way, vibration is performed so that one of the two mass portions 35a and 35b is closer to the first substrate 11 and the other is away from the first substrate 11 in the z direction. . When an angular velocity along the y direction is applied as shown in FIG. 17 in this vibration state, a Coriolis force along the x direction is generated in the opposite direction in the two mass portions 35a and 35b. As a result, the frame portion 31 tends to rotate in the xy plane around an axis penetrating the center of the fixed portion 20 in the z direction. Due to this rotation, distortion occurs in the two support beams 32, and currents corresponding to the distortion flow in the detection piezoelectric portions 42 a to 42 d provided on the support beams 32.
 なお図15~図17に示すように質量部35a,35bを振動させる場合、駆動用圧電部41a~41hの接続構造は他の実施形態で示した場合とは異なる。例えば図18に示すように、駆動用圧電部41c,41dそれぞれの下部電極43c,43dから延設された駆動用配線71が互いに電気的に接続され、この駆動用配線71が第2駆動用パッド61bに接続される。したがって下部電極43c,43dそれぞれがグランド電位に固定される。また駆動用圧電部41c,41dそれぞれの上部電極45c,45dが駆動用配線71を介して電気的に接続され、これらが第3駆動用パッド61cに接続される。したがって上部電極45c,45dそれぞれに、枠部31の共振周波数に基づいてパルス周期の決定されたパルス信号が入力される。以上の接続構成により、パルス信号の入力によって駆動用圧電部41c,41dそれぞれが同様にして伸び縮みする。 When the mass portions 35a and 35b are vibrated as shown in FIGS. 15 to 17, the connection structure of the driving piezoelectric portions 41a to 41h is different from that shown in the other embodiments. For example, as shown in FIG. 18, driving wires 71 extending from the lower electrodes 43c and 43d of the driving piezoelectric portions 41c and 41d are electrically connected to each other, and the driving wires 71 are connected to the second driving pads. 61b. Accordingly, each of the lower electrodes 43c and 43d is fixed to the ground potential. The upper electrodes 45c and 45d of the driving piezoelectric portions 41c and 41d are electrically connected via the driving wiring 71, and these are connected to the third driving pad 61c. Accordingly, a pulse signal having a pulse period determined based on the resonance frequency of the frame portion 31 is input to each of the upper electrodes 45c and 45d. With the above connection configuration, each of the driving piezoelectric portions 41c and 41d is similarly expanded and contracted by the input of the pulse signal.
 上記のように駆動用圧電部41c,41dの上部電極45にパルス信号が入力されるが、駆動用圧電部41c,41dと同様にして第1駆動梁33aに設けられた駆動用圧電部41a,41bの上部電極45にもパルス信号が入力される。しかしながら上記したように第1駆動梁33aに設けられた駆動用圧電部41a~41dそれぞれを伸ばした場合、第2駆動梁33bに設けられた駆動用圧電部41e~41hそれぞれを縮ませる。そのため、第2駆動梁33bに設けられた駆動用圧電部41e~41hの下部電極43にパルス信号が入力される。これにより第1駆動梁33aに設けられた駆動用圧電部41a~41dと、第2駆動梁33bに設けられた駆動用圧電部41e~41hの伸縮方向が逆向きの関係となり、質量部35a,35bがz方向で振動する。 As described above, a pulse signal is input to the upper electrodes 45 of the driving piezoelectric portions 41c and 41d, and the driving piezoelectric portions 41a and 41a provided on the first driving beam 33a in the same manner as the driving piezoelectric portions 41c and 41d. A pulse signal is also input to the upper electrode 45 of 41b. However, as described above, when each of the driving piezoelectric portions 41a to 41d provided on the first driving beam 33a is extended, each of the driving piezoelectric portions 41e to 41h provided on the second driving beam 33b is contracted. Therefore, a pulse signal is input to the lower electrode 43 of the driving piezoelectric portions 41e to 41h provided on the second driving beam 33b. As a result, the expansion and contraction directions of the driving piezoelectric portions 41a to 41d provided on the first driving beam 33a and the driving piezoelectric portions 41e to 41h provided on the second driving beam 33b are reversed, and the mass portions 35a, 35b vibrates in the z direction.
 以上、本開示の好ましい実施形態について説明したが、本開示は上記した実施形態になんら制限されることなく、本開示の主旨を逸脱しない範囲において、種々変形して実施することが可能である。 The preferred embodiments of the present disclosure have been described above. However, the present disclosure is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present disclosure.
 各実施形態では力学量センサ100が角速度を検出する例を示した。しかしながら力学量センサ100は加速度を検出してもよい。この場合、駆動用圧電部41a~41h、駆動用パッド61a~61c、および、駆動用配線71は不要となる。そして加速度の検出方向は、y方向になる。y方向に印加された加速に起因する慣性力によって質量部35a,35bそれぞれがy方向において同一方向に変位すると、それによって支持梁32a,32bに歪みが生じる。この歪みに応じた電流が検出用圧電部42a~42dにて生成される。 In each embodiment, an example in which the mechanical quantity sensor 100 detects the angular velocity is shown. However, the mechanical quantity sensor 100 may detect acceleration. In this case, the driving piezoelectric portions 41a to 41h, the driving pads 61a to 61c, and the driving wiring 71 are not necessary. The acceleration detection direction is the y direction. When each of the mass portions 35a and 35b is displaced in the same direction in the y direction due to the inertial force caused by the acceleration applied in the y direction, the support beams 32a and 32b are distorted thereby. Current corresponding to the distortion is generated in the detection piezoelectric portions 42a to 42d.
 各実施形態では特に述べなかったが、例えば図19および図20に示すように、絶縁層13が下面に連結された固定部20の中央部21と絶縁層13が下面に連結されていない固定部20の縁部22との間にスリット23を形成してもよい。これによれば例えば第1基板11の変形に起因する応力が固定部20の縁部22を介して浮遊部30に伝達されることが抑制される。そのため上記の振動によって枠部31の振動状態が変化することが抑制されるとともに、枠部31に歪みが生じることも抑制される。このため角速度の検出精度が低下することが抑制される。特に図19および図20に示すように、上記したスリット23はx方向に延びて駆動用パッド61と検出用パッド62との間に位置するとよい。これによれば駆動用パッド61と検出用パッド62の一方に生じた歪みが他方に伝達されることが抑制される。 Although not specifically described in each embodiment, for example, as shown in FIGS. 19 and 20, a central portion 21 of the fixing portion 20 in which the insulating layer 13 is connected to the lower surface and a fixing portion in which the insulating layer 13 is not connected to the lower surface. A slit 23 may be formed between the 20 edge portions 22. According to this, for example, stress due to deformation of the first substrate 11 is suppressed from being transmitted to the floating portion 30 via the edge portion 22 of the fixed portion 20. Therefore, a change in the vibration state of the frame portion 31 due to the vibration is suppressed, and distortion of the frame portion 31 is also suppressed. For this reason, it is suppressed that the detection accuracy of angular velocity falls. In particular, as shown in FIGS. 19 and 20, the slit 23 described above may extend in the x direction and be positioned between the drive pad 61 and the detection pad 62. According to this, the distortion generated in one of the driving pad 61 and the detection pad 62 is suppressed from being transmitted to the other.
 各実施形態では圧電材料44の電気軸がz方向に沿って上部電極45から下部電極43へと向かっている例を示した。しかしながら圧電材料44の電気軸がz方向に沿って下部電極43から上部電極45へと向かっていてもよい。 In each embodiment, an example in which the electrical axis of the piezoelectric material 44 is directed from the upper electrode 45 toward the lower electrode 43 along the z direction is shown. However, the electric axis of the piezoelectric material 44 may be directed from the lower electrode 43 to the upper electrode 45 along the z direction.
 各実施形態ではパッド61,62それぞれが第1配線層63と第2配線層64を有する例を示した。しかしながらパッド61,62それぞれは第2配線層64を有していなくともよい。また第2配線層64の形成材料としてAlを採用した例を示したが、これに限定されず、パッド61,62の剛性を高めるためのものであればよい。 In each embodiment, an example in which each of the pads 61 and 62 includes the first wiring layer 63 and the second wiring layer 64 is shown. However, each of the pads 61 and 62 may not have the second wiring layer 64. Moreover, although the example which employ | adopted Al as a forming material of the 2nd wiring layer 64 was shown, it is not limited to this, What is necessary is just for raising the rigidity of the pads 61 and 62. FIG.
 各実施形態ではパッド60が駆動用パッド61を3つ有し、検出用パッド62を6つ有し、これらパッド61,62が3行3列を成すようにマトリックス配置された例を示した。しかしながらパッド61,62の個数と配置とは上記例に限定されない。 In each embodiment, the pad 60 has three drive pads 61 and six detection pads 62, and the pads 61 and 62 are arranged in a matrix so as to form 3 rows and 3 columns. However, the number and arrangement of the pads 61 and 62 are not limited to the above example.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (11)

  1.  基板(11)の上面に固定された固定部(20)と、
     前記基板の上方に位置し、前記固定部に支持された浮遊部(30)と、
     慣性力の印加による前記浮遊部の歪を電気信号に変換する検出用圧電部(42a~42d)と、
     前記固定部に形成された検出用パッド(62a~62f)と、
     前記検出用圧電部と前記検出用パッドとを電気的に接続する複数の検出用配線(72)と、を有し、
     前記浮遊部の上面には絶縁膜(14)が形成されており、
     前記検出用圧電部は、前記絶縁膜上に順次積層された下部電極(43)、圧電材料(44)、および、上部電極(45)を有し、
     複数の前記検出用配線の内の一部が前記下部電極から延設され、
     複数の前記検出用配線の内の残りが、前記上部電極から前記圧電材料の側面を伝って前記絶縁膜側へと延びた前記上部電極と同一材料から成る第1連結部位(46)と電気的に接続されており、
     複数の前記検出用配線は前記絶縁膜上に設けられ、前記下部電極と同一材料から成り、
     前記下部電極の形成材料の降伏応力は70MPa~800MPaである力学量センサ。
    A fixing part (20) fixed to the upper surface of the substrate (11);
    A floating part (30) located above the substrate and supported by the fixed part;
    A detecting piezoelectric part (42a to 42d) for converting the distortion of the floating part by application of inertial force into an electric signal;
    Detection pads (62a to 62f) formed on the fixed portion;
    A plurality of detection wirings (72) for electrically connecting the detection piezoelectric portion and the detection pad;
    An insulating film (14) is formed on the upper surface of the floating portion,
    The detection piezoelectric portion includes a lower electrode (43), a piezoelectric material (44), and an upper electrode (45) sequentially stacked on the insulating film,
    A part of the plurality of detection wires extends from the lower electrode,
    The remainder of the plurality of detection wirings is electrically connected to the first connection portion (46) made of the same material as the upper electrode extending from the upper electrode to the insulating film side through the side surface of the piezoelectric material. Connected to
    The plurality of detection wirings are provided on the insulating film and are made of the same material as the lower electrode,
    A mechanical quantity sensor in which a yield stress of a material for forming the lower electrode is 70 MPa to 800 MPa.
  2.  前記検出用圧電部の前記上部電極と前記下部電極は異なる材料から成り、
     前記下部電極は前記上部電極よりも前記絶縁膜との密着性が高い材料から成る請求項1に記載の力学量センサ。
    The upper electrode and the lower electrode of the detection piezoelectric portion are made of different materials,
    The mechanical sensor according to claim 1, wherein the lower electrode is made of a material having higher adhesion to the insulating film than the upper electrode.
  3.  前記検出用圧電部の前記上部電極と前記下部電極は同一材料から成る請求項1に記載の力学量センサ。 The mechanical quantity sensor according to claim 1, wherein the upper electrode and the lower electrode of the detection piezoelectric portion are made of the same material.
  4.  前記浮遊部は、枠形状を成す枠部(31)と、前記枠部と前記固定部とを連結する支持梁(32a,32b)を有し、
     前記枠部の内環面によって囲まれた領域に前記固定部が位置し、
     前記支持梁は前記枠部の前記内環面から前記固定部の側面に向かって延びた形状を成し、
     前記検出用圧電部は前記支持梁に設けられている請求項1~3いずれか1項に記載の力学量センサ。
    The floating portion includes a frame portion (31) having a frame shape, and support beams (32a, 32b) that connect the frame portion and the fixed portion,
    The fixing portion is located in a region surrounded by the inner ring surface of the frame portion;
    The support beam has a shape extending from the inner ring surface of the frame portion toward the side surface of the fixed portion,
    The mechanical quantity sensor according to any one of claims 1 to 3, wherein the detection piezoelectric portion is provided on the support beam.
  5.  前記固定部には前記検出用パッドの他に駆動用パッド(61a~61c)が形成されており、
     前記枠部に設けられ、前記枠部を振動させる駆動用圧電部(41a~41h)と、
     前記駆動用圧電部と前記駆動用パッドとを電気的に接続する複数の駆動用配線(71)と、をさらに有し、
     前記駆動用圧電部は、前記絶縁膜上に順次積層された下部電極(43)、圧電材料(44)、および、上部電極(45)を有し、
     複数の前記駆動用配線(71)の各々の端部の1つは、前記駆動用圧電部の前記下部電極から延設されて前記検出用圧電部の前記下部電極と電気的に接続される、若しくは、前記駆動用圧電部の前記上部電極から前記圧電材料の側面を伝って前記絶縁膜側へと延びた、前記検出用圧電部の前記上部電極と同一材料から成る第2連結部位(46)と電気的に接続されており、
     複数の前記駆動用配線(71)は前記絶縁膜上に設けられ、前記下部電極と同一材料から成る請求項4に記載の力学量センサ。
    In addition to the detection pads, driving pads (61a to 61c) are formed on the fixed portion,
    A driving piezoelectric portion (41a to 41h) provided on the frame portion and vibrating the frame portion;
    A plurality of driving wirings (71) for electrically connecting the driving piezoelectric portion and the driving pad;
    The driving piezoelectric portion includes a lower electrode (43), a piezoelectric material (44), and an upper electrode (45) sequentially stacked on the insulating film,
    One end of each of the plurality of driving wirings (71) extends from the lower electrode of the driving piezoelectric portion and is electrically connected to the lower electrode of the detecting piezoelectric portion. Alternatively, the second connecting portion (46) made of the same material as the upper electrode of the detecting piezoelectric portion extends from the upper electrode of the driving piezoelectric portion to the insulating film side through the side surface of the piezoelectric material. Is electrically connected to
    The mechanical quantity sensor according to claim 4, wherein the plurality of drive wirings (71) are provided on the insulating film and are made of the same material as the lower electrode.
  6.  前記駆動用圧電部の前記上部電極と前記駆動用圧電部の前記下部電極は異なる材料から成り、
     前記駆動用圧電部の前記下部電極は前記駆動用圧電部の前記上部電極よりも前記絶縁膜との密着性が高い材料から成る請求項5に記載の力学量センサ。
    The upper electrode of the driving piezoelectric portion and the lower electrode of the driving piezoelectric portion are made of different materials,
    The mechanical quantity sensor according to claim 5, wherein the lower electrode of the driving piezoelectric portion is made of a material having higher adhesion to the insulating film than the upper electrode of the driving piezoelectric portion.
  7.  前記駆動用圧電部の前記上部電極と前記駆動用圧電部の前記下部電極は同一材料から成る請求項5に記載の力学量センサ。 The mechanical quantity sensor according to claim 5, wherein the upper electrode of the driving piezoelectric portion and the lower electrode of the driving piezoelectric portion are made of the same material.
  8.  前記枠部には局所的に幅の広がった2つの質量部(35a,35b)が形成され、
     2つの前記質量部は前記固定部を介して、前記基板の上面に沿う第一方向に並んでおり、
     前記駆動用圧電部は、前記第一方向において2つの前記質量部が互いに近寄ったり互いに遠ざかったりするように前記枠部を振動させる、若しくは、前記基板の上面に直交する第二方向において、2つの前記質量部の内の一方が前記基板の上面に近寄り、他方が前記基板の上面から遠ざかるように前記枠部を振動させる請求項5~7いずれか1項に記載の力学量センサ。
    Two mass parts (35a, 35b) having a locally widened width are formed in the frame part,
    The two mass parts are arranged in the first direction along the upper surface of the substrate via the fixing part,
    The driving piezoelectric portion vibrates the frame portion so that the two mass portions approach each other or move away from each other in the first direction, or two piezoelectric portions in the second direction orthogonal to the upper surface of the substrate. The mechanical quantity sensor according to any one of claims 5 to 7, wherein the frame portion is vibrated so that one of the mass portions approaches the upper surface of the substrate and the other moves away from the upper surface of the substrate.
  9.  前記基板の前記上面に沿いつつ前記第一方向に直交する方向を第三方向とすると、
     前記枠部は前記第三方向と前記第一方向とによって規定される平面における形状が矩形の枠形状を成し、前記第三方向に延びた形状を成す2つの駆動梁(33a,33b)、および、前記第一方向に延びた形状を成す2つの連結梁(34)を有し、
     1つの前記駆動梁につき1つの前記質量部が形成され、2つの前記質量部が前記固定部を介して前記第一方向において並んでおり、
     前記浮遊部は前記支持梁を2つ有し、
     2つの前記支持梁それぞれは前記第三方向に延びた形状を成しており、
     1つの前記連結梁につき1つの前記支持梁が連結され、2つの前記支持梁が前記固定部を介して前記第三方向にて連結されている請求項8に記載の力学量センサ。
    When the direction orthogonal to the first direction is the third direction along the upper surface of the substrate,
    The frame portion has a rectangular frame shape in a plane defined by the third direction and the first direction, and two drive beams (33a, 33b) having a shape extending in the third direction, And two connecting beams (34) having a shape extending in the first direction,
    One mass part is formed per one driving beam, and the two mass parts are arranged in the first direction via the fixing part,
    The floating portion has the two support beams,
    Each of the two support beams has a shape extending in the third direction,
    The mechanical quantity sensor according to claim 8, wherein one support beam is connected to one connection beam, and two support beams are connected in the third direction via the fixing portion.
  10.  前記固定部における前記検出用パッドと前記駆動用パッドとの間にスリットが形成されている請求項5~9いずれか1項に記載の力学量センサ。 10. The mechanical quantity sensor according to claim 5, wherein a slit is formed between the detection pad and the driving pad in the fixed portion.
  11.  前記固定部は絶縁層(13)を介して前記基板に固定されており、
     前記固定部の上面における前記駆動用パッドの形成された領域の裏面に、前記絶縁層が連結されている請求項10に記載の力学量センサ。
     
    The fixing part is fixed to the substrate via an insulating layer (13),
    The mechanical quantity sensor according to claim 10, wherein the insulating layer is connected to a back surface of a region where the driving pad is formed on an upper surface of the fixing portion.
PCT/JP2015/005646 2014-11-13 2015-11-12 Dynamic quantity sensor WO2016075942A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-230772 2014-11-13
JP2014230772A JP6471467B2 (en) 2014-11-13 2014-11-13 Mechanical quantity sensor

Publications (1)

Publication Number Publication Date
WO2016075942A1 true WO2016075942A1 (en) 2016-05-19

Family

ID=55954044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005646 WO2016075942A1 (en) 2014-11-13 2015-11-12 Dynamic quantity sensor

Country Status (2)

Country Link
JP (1) JP6471467B2 (en)
WO (1) WO2016075942A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09127148A (en) * 1995-11-01 1997-05-16 Murata Mfg Co Ltd Angular speed sensor
JPH11281372A (en) * 1997-11-04 1999-10-15 Ngk Insulators Ltd Vibrator, vibration gyroscope, linear accelerator, and method for measuring rotary angular velocity
JP2000299512A (en) * 1999-04-15 2000-10-24 Seiko Epson Corp Piezoelectric body element, ink jet type recording head, their manufacture, and printer
JP2003185441A (en) * 2001-10-09 2003-07-03 Fujitsu Ltd Angular velocity sensor
JP2004085361A (en) * 2002-08-27 2004-03-18 Ngk Insulators Ltd Physical quantity measuring device
JP2010078391A (en) * 2008-09-25 2010-04-08 Sony Corp Angular velocity sensor element, method for manufacturing angular velocity sensor element, angular velocity sensor, and electronic device
WO2012081457A1 (en) * 2010-12-15 2012-06-21 株式会社村田製作所 Vibrating gyroscope
JP2013104855A (en) * 2011-11-16 2013-05-30 Seiko Epson Corp Vibrator, vibration device and electronic apparatus
JP2013219252A (en) * 2012-04-10 2013-10-24 Seiko Epson Corp Vibrating piece, vibrating device, and electronic apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5685719B2 (en) * 2010-10-01 2015-03-18 パナソニックIpマネジメント株式会社 Vibration power generation element and vibration power generation apparatus using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09127148A (en) * 1995-11-01 1997-05-16 Murata Mfg Co Ltd Angular speed sensor
JPH11281372A (en) * 1997-11-04 1999-10-15 Ngk Insulators Ltd Vibrator, vibration gyroscope, linear accelerator, and method for measuring rotary angular velocity
JP2000299512A (en) * 1999-04-15 2000-10-24 Seiko Epson Corp Piezoelectric body element, ink jet type recording head, their manufacture, and printer
JP2003185441A (en) * 2001-10-09 2003-07-03 Fujitsu Ltd Angular velocity sensor
JP2004085361A (en) * 2002-08-27 2004-03-18 Ngk Insulators Ltd Physical quantity measuring device
JP2010078391A (en) * 2008-09-25 2010-04-08 Sony Corp Angular velocity sensor element, method for manufacturing angular velocity sensor element, angular velocity sensor, and electronic device
WO2012081457A1 (en) * 2010-12-15 2012-06-21 株式会社村田製作所 Vibrating gyroscope
JP2013104855A (en) * 2011-11-16 2013-05-30 Seiko Epson Corp Vibrator, vibration device and electronic apparatus
JP2013219252A (en) * 2012-04-10 2013-10-24 Seiko Epson Corp Vibrating piece, vibrating device, and electronic apparatus

Also Published As

Publication number Publication date
JP2016095201A (en) 2016-05-26
JP6471467B2 (en) 2019-02-20

Similar Documents

Publication Publication Date Title
US9809444B2 (en) System and method for a differential comb drive MEMS
JP4724501B2 (en) Ultrasonic transducer and manufacturing method thereof
JP2010171422A (en) Mems sensor and method of manufacturing the same
US10352700B2 (en) Gyro sensor and electronic apparatus
JP2008241547A (en) Acceleration sensor and electronic equipment
US9668064B2 (en) Microelectromechanical system microphone
JP4839466B2 (en) Inertial force sensor and manufacturing method thereof
JP2010147285A (en) Mems, vibration gyroscope, and method of manufacturing mems
JP6424405B2 (en) Pressure sensor, tactile sensor, and method of manufacturing pressure sensor
JP2010107521A (en) Micro electromechanical device
WO2016075942A1 (en) Dynamic quantity sensor
JP2018081176A (en) MEMS device
US20150082884A1 (en) Piezoelectric actuator module, method of manufacturing the same, and mems sensor having the same
US20150188029A1 (en) Piezoelectric actuator module, method of manufacturing the same, and mems sensor having the same
US20130167633A1 (en) Inertial sensor and method of manufacturing the same
JP4736420B2 (en) Micro electromechanical device
JP2008233029A (en) Acceleration sensor and electronic device
KR20130077393A (en) Inertial sensor and method of manufacturing the same
EP2978033A1 (en) Angular velocity sensor
US20190064509A1 (en) Variable focus mirror and optical scanning device
US20220080461A1 (en) Micromechanical component for a sound transducer and corresponding production method
JP4611005B2 (en) Sensor element
JP2006214963A (en) Acceleration sensor, electronic equipment, and manufacturing method for acceleration sensor
JPH11271351A (en) Piezoelectric detecting element
CN110998265A (en) Torque detector and method for manufacturing torque detector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15858631

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15858631

Country of ref document: EP

Kind code of ref document: A1