WO2016075912A1 - Method of pyrolysis of organic substances, method for producing pyrolysate of organic substances, and furnace for pyrolysis of organic substances - Google Patents

Method of pyrolysis of organic substances, method for producing pyrolysate of organic substances, and furnace for pyrolysis of organic substances Download PDF

Info

Publication number
WO2016075912A1
WO2016075912A1 PCT/JP2015/005557 JP2015005557W WO2016075912A1 WO 2016075912 A1 WO2016075912 A1 WO 2016075912A1 JP 2015005557 W JP2015005557 W JP 2015005557W WO 2016075912 A1 WO2016075912 A1 WO 2016075912A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluidized bed
organic substance
pyrolysis
pyrolysis furnace
gas
Prior art date
Application number
PCT/JP2015/005557
Other languages
French (fr)
Japanese (ja)
Inventor
石井 純
▲高▼木 克彦
浩一 百野
稔 淺沼
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2016503253A priority Critical patent/JPWO2016075912A1/en
Publication of WO2016075912A1 publication Critical patent/WO2016075912A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/54Gasification of granular or pulverulent fuels by the Winkler technique, i.e. by fluidisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to a method and a pyrolysis furnace for efficiently pyrolyzing an organic substance such as a resin to produce a high calorific gas or oil.
  • Patent Document 1 discloses a method of thermally decomposing car shredder dust containing plastic with a kiln.
  • molten slag generated in a combustion melting furnace is introduced into the kiln together with car shredder dust in order to prevent adhesion and solidification of molten plastic inside the kiln.
  • the kiln method used in the method of Patent Document 1 has low heat transfer efficiency, and it is necessary to reduce the solid space factor in the furnace in order to stably convey the raw material. Further, since slag is contained in the solid, the space factor of the shredder dust itself is further lowered, and there is a problem that the apparatus must be enlarged to obtain a sufficient processing speed.
  • Patent Document 2 an organic substance is gasified by pyrolysis using a fluidized bed reactor, the carbon adhering to the fluidized medium is combusted in a combustion furnace, and the fluidized medium is returned to the fluidized bed as a heating medium. The process is shown.
  • the heat transfer rate to an organic substance is improved, and gasification can be efficiently performed at a low temperature.
  • the object of the present invention is to solve the above-mentioned problems of the prior art, and use a fluidized bed type pyrolysis furnace, and a pyrolysis method capable of efficiently pyrolyzing organic substances such as resins, It is in providing the manufacturing method and pyrolysis furnace of a pyrolysis product.
  • the fluidized media used in the fluidized bed have a certain particle size distribution (particle size width), although there are some differences depending on the type, and among them, fluidized media with a large particle size have poor fluidity and fluidity. It tends to stay in the lower region of the layer. For this reason, the fluidized medium does not function sufficiently as the whole fluidized bed.
  • Resins have a specific gravity smaller than that of fluid media (usually silica sand etc.), and are easily floated and separated on the upper part of the fluidized bed after being charged. The lower part of the fluidized bed is not effectively used for the pyrolysis gasification reaction.
  • the raw material charging port of the fluidized bed is likely to be clogged with molten resins.
  • the present inventors have studied a method for solving the above-mentioned problems and enabling efficient thermal decomposition treatment of resins.
  • the resins to be pyrolyzed are granulated by granulation, pulverization, classification, etc., and these granular resins are fed to the lower region of the fluidized bed through the blowing port provided in the fluidized bed type pyrolysis furnace.
  • the method of blowing obliquely downward is effective. That is, according to this method, the following effects (1) to (3) can be obtained with respect to the problems (i) to (iii) described above, so that efficient thermal decomposition treatment of resins can be achieved. I found it possible.
  • a method for thermally decomposing granular organic substances in a fluidized bed type pyrolysis furnace An organic material characterized in that the granular organic material to be pyrolyzed is blown obliquely downward into the lower region of the fluidized bed (3) through the blow port (2) provided on the lower side surface of the pyrolysis furnace (1).
  • Method for pyrolysis of substances [2]
  • the blowing direction of the granular organic material to the lower region of the fluidized bed (3) has an inclination angle of 25 to 45 ° downward with respect to the horizontal direction.
  • part or all of the carrier gas for the granular organic substance is composed of a gas that becomes a gasifying agent for the granular organic substance in the fluidized bed (3).
  • a method for thermally decomposing an organic substance is
  • the inner diameter D of the blowing port (2) provided in the pyrolysis furnace and the blowing port (2) from the lower end position of the fluidized bed (3) The organic material pyrolysis method is characterized in that the height h to the lower end position and the stationary height L of the fluid medium satisfy the following formula (1): 3D ⁇ h ⁇ L / 3 (1) [5] The method for pyrolyzing an organic substance according to any one of [1] to [4] above, wherein the fluidized medium is dust generated from a steel mill.
  • a method of pyrolyzing a granular organic substance in a fluidized bed type pyrolysis furnace to produce a pyrolysis product of the organic substance An organic material characterized in that the granular organic material to be pyrolyzed is blown obliquely downward into the lower region of the fluidized bed (3) through the blow port (2) provided on the lower side surface of the pyrolysis furnace (1).
  • a method for producing a thermal decomposition product of a substance [7] In the production method of [6], the blowing direction of the granular organic material into the lower region of the fluidized bed (3) has an inclination angle of 25 to 45 ° downward with respect to the horizontal direction.
  • a method for producing a thermal decomposition product of an organic substance In the production method of [6], the blowing direction of the granular organic material into the lower region of the fluidized bed (3) has an inclination angle of 25 to 45 ° downward with respect to the horizontal direction.
  • a part or all of the carrier gas for the granular organic substance is composed of a gas that becomes a gasifying agent for the granular organic substance in the fluidized bed (3).
  • the inner diameter D of the blowing port (2) provided in the pyrolysis furnace and the flow port (3) from the lower end position of the blowing port (2) A method for producing a thermal decomposition product of an organic substance, wherein the height h to the lower end position and the stationary height L of the fluid medium satisfy the following formula (1): 3D ⁇ h ⁇ L / 3 (1) [10] The method for producing a pyrolysis product of an organic substance according to any one of the above [6] to [9], wherein the fluidized medium is dust generated from a steel mill.
  • a fluidized bed type pyrolysis furnace for pyrolyzing organic substances An organic substance pyrolysis furnace characterized by having an inlet (2) for injecting granular organic substance obliquely downward into a lower region of a fluidized bed formed in the furnace on a lower side surface of the furnace body.
  • the blowing direction of the granular organic material from the blowing port (2) to the lower region of the fluidized bed has an inclination angle of 25 to 45 ° downward with respect to the horizontal direction.
  • An organic material pyrolysis furnace characterized by that.
  • a blowing pipe (8) is connected to the blowing port (2), and the blowing pipe (8) is used for gas transportation of particulate organic substances.
  • a pyrolysis furnace for organic substances characterized in that a supply pipe (9) is connected.
  • the following effects (1) to (3) can be obtained in combination, whereby organic substances such as resins can be obtained. Pyrolysis can be efficiently performed.
  • (1) By blowing granular organic material obliquely downward with respect to the lower region of the fluidized bed, the fluidized state of the fluidized medium in the lower region of the fluidized bed is activated, and the flow having a large particle size in the lower region of the fluidized bed It is possible to prevent the medium from staying. For this reason, the fluidized medium functions sufficiently in the entire fluidized bed, and the heat transfer rate to the organic substance and the reaction rate of thermal decomposition can be greatly improved.
  • FIG. 1 is an explanatory view showing an example of a fluidized bed type pyrolysis furnace used in the present invention and an embodiment of the method of the present invention using the same.
  • FIG. 2 is a partially enlarged view of a lower region of the pyrolysis furnace of FIG.
  • FIG. 3 is an explanatory diagram showing an outline of the fluidized bed gasification test apparatus used in the examples.
  • the organic substance (solid) there is no particular restriction on the organic substance (solid) to be thermally decomposed, but a high molecular weight organic substance is suitable, for example, resins (usually waste plastic), biomass, etc.
  • resins include polyolefins such as PE (Poly Ethylene) and PP (Polypropylene), thermoplastic polyesters such as PA (Polyamide) and PET (Poly Ethylene Terephthalate), elastomers such as PS (Poly Styrene), Examples thereof include, but are not limited to, thermosetting resins, synthetic rubbers and foamed polystyrene.
  • biomass examples include, but are not limited to, sewage sludge, paper, wood (for example, construction waste wood, packaging / transport waste wood, thinned wood, etc.). These organic substances are used in a granular form for gas conveyance and blowing into the fluidized bed. In order to granulate the organic substance, pretreatment such as granulation, pulverization and classification is appropriately performed.
  • FIG. 1 is an explanatory view showing an example of a pyrolysis furnace used in the present invention and an embodiment of the method of the present invention using the same
  • FIG. 2 is a partially enlarged view of a lower region of the pyrolysis furnace of FIG. 1 is a fluidized bed type pyrolysis furnace
  • 3 is a fluidized bed.
  • a flowing gas gasification agent
  • a fluidized bed 3 made of a fluidized medium is formed above the substrate.
  • the organic substance put into the pyrolysis furnace 1 is pyrolyzed in the fluidized bed 3 to become a gas product.
  • the fluid medium and the ash content of the organic substance scattered in the gas are collected by a dust collector (not shown).
  • the lower side surface of the pyrolysis furnace 1 is provided with a blowing port 2 for blowing the gas-carrying granular organic substance into the furnace.
  • the gas-carrying granular material is fed through the blowing port 2.
  • the organic material is blown obliquely downward with respect to the lower region of the fluidized bed 3.
  • the principle of the present invention will be described by taking as an example the case where the granular organic material to be thermally decomposed is a resin.
  • Resins are basically low in specific gravity, and therefore easily float when charged into the fluidized bed 3. Therefore, the present inventors have thought that by supplying resins to the lower region of the fluidized bed 3, it is possible to advance the reaction efficiently during the ascent process.
  • the lower region of the fluidized bed 3 needs to be equal to or higher than the thermal decomposition temperature of the resin, it is difficult to apply a normal charging method using a feeder or the like because the possibility of clogging at the charging port is high. Therefore, in the present invention, granular resins are blown into the lower region of the fluidized bed 3 with the carrier gas.
  • the fluidized medium is basically in a fluidized state and has a high porosity, so that the granular resin can be blown at a lower blowing gas flow rate than when blown into the packed bed.
  • the fluidized medium used in the fluidized bed has a certain particle size distribution (width of the particle size), although there are some differences depending on the type of the fluidized medium.
  • the granular resin is inclined obliquely downward with respect to the lower region of the fluidized bed 3.
  • the fluidized state of the fluidized medium in the lower region of the fluidized bed 3 is activated, and it is possible to prevent the fluidized medium having a large particle size from staying in the lower region of the fluidized bed 3.
  • a fluid medium fully functions in the fluidized bed as a whole, and the heat transfer rate to the resins and the reaction rate of thermal decomposition can be greatly improved.
  • the resins are charged at a high rate into the fluidized bed at a constant solid-gas ratio. There is almost no fear that the raw material charging port (blowing port 2) is blocked by the melted resins. As described above, in the present invention, it is possible to efficiently perform thermal decomposition of organic substances such as resins.
  • a blowing pipe 8 (blowing lance) is connected to the blowing port 2, and the particulate organic material that has been conveyed by the supply pipe 9 flows from the blowing port 2 through the blowing pipe 8. Blown into layer 3;
  • the blowing ports 2 may be provided at a plurality of locations in the furnace circumferential direction.
  • the blowing angle (downward blowing angle) of the particulate organic material from the blowing port 2 is 0 degree (horizontal) or more. From the viewpoint of prevention of clogging, about 25 to 45 ° is preferable.
  • the blowing direction of the granular organic material has an inclination angle ⁇ of 25 to 45 ° downward with respect to the horizontal direction.
  • the inclination angle ⁇ is less than 25 °, the effect of blowing the granular organic material obliquely downward with respect to the lower region of the fluidized bed 3 is reduced, and the flow into the blowing pipe 8 is stopped when the blowing of the granular organic material is stopped.
  • the medium may easily enter, and the air inlet 2 and the air pipe 8 may be clogged.
  • the inclination angle ⁇ exceeds 45 °, the flow rate of the carrier gas at the tip of the blowing pipe 8 (blowing port 2) is lowered, and the carrying property of the granular organic substance is likely to be lowered.
  • the internal diameter D of the blowing inlet 2 and the height h from the lower end position of the fluidized bed 3 to the lower end position of the inlet 2 and the stationary height L of the fluidized medium are as follows ( 1) It is preferable to satisfy the formula.
  • fluidized gas gasifying agent supplied to the fluidized bed 3
  • a known fluidized gas for example, a mixed gas (generated in a metallurgical furnace) disclosed in JP 2014-37524 A
  • a mixed gas containing hydrogen and carbon dioxide gas generated by the shift reaction and water vapor not consumed in the shift reaction can be used.
  • the kind of carrier gas (injection gas) for the particulate organic substance is not particularly limited, and for example, a gas containing one or more of N 2 , CO 2 and the like can be used.
  • a part or all of the carrier gas is a gas (reacts with the organic substance that becomes a gasifying agent for the particulate organic substance in the fluidized bed 3). And a gas that promotes the decomposition thereof.
  • the gas to be such a gasifying agent include CO 2.
  • the carrier gas is preferably a CO 2 -containing gas, particularly a gas having a relatively high CO 2 concentration.
  • combustion exhaust gas from a blast furnace hot stove contains about 25% of CO 2 and is suitable as a carrier gas.
  • the carrier gas preferably has a gas temperature of 50 ° C. or lower and does not contain oxygen in order to ensure the transportability of the organic substance.
  • the carrier gas needs to have a flow velocity so that a space called a raceway is created in the fluidized bed 3 by blowing. If the raceway is not possible, the particulate organic substance cannot enter the fluidized bed, and clogging may occur in the blowing pipe 8. Since the limit flow velocity for generating the raceway is greatly influenced by the inner diameter of the air inlet 2, the particle size, shape, porosity, and flow state of the fluid medium, it is preferable to obtain in advance by a model experiment that allows internal observation.
  • the fluid medium is preferably a metal powder that also functions as an organic substance decomposition catalyst.
  • a known Ni-based reforming catalyst, Ni-based hydrogenation catalyst, or the like can be used. Dusts generated in each step of the steel mill because of its high catalytic activity because it contains a lot of iron, it is suitable as a fluid medium because it is fine particles, and it is available in large quantities and is inexpensive. That is, ironworks generated dust is preferable.
  • a typical example of dust generated in a steel mill includes, but is not limited to, converter dust. Among the dust generated in steelworks, converter dust is most suitable as a fluid medium having a catalytic function because of its high iron component ratio and very high thermal conductivity. Converter dust is iron-containing dust generated in a steelmaking process performed using a converter. Examples of the steel making process include, but are not limited to, a dephosphorization process, a decarburization process, and a stainless steel refining process.
  • a gasification test was conducted in which waste plastic particles were gasified at 600 ° C.
  • the diameter of the fluidized bed 3 (fluidized bed gasifier) was 66 mm, and converter dust was used as the fluidized medium.
  • the height L of the fluid medium at rest was 198 mm.
  • a flowing gas gasifying agent
  • a mixed gas of H 2 , N 2 , CO 2 , and H 2 O was supplied at 4 L / min.
  • the granular waste plastics those obtained by freezing and pulverizing waste plastic particles molded to about 6 mm ⁇ ⁇ 15 mm by a ring die molding machine and sieving them with a sieve having an opening of 2.0 mm were used.
  • the average diameter in the fixed direction was about 1 mm.
  • the waste plastic particles put into the hopper 10a are cut out by the table feeder 11a (cutting speed 300 g / h), and the waste plastic particles cut out by this fixed amount are composed of CO 2 : 25 vol% and N 2 : 75 vol%.
  • a blow-in port provided by a carrier gas (a carrier gas supplied from the gas cylinders 12 and 13 through a gas supply pipe 14) and provided at a height h of 30 mm from the lower end (distribution plate 5) of the fluidized bed 3 2 (inner diameter D: 10 mm) was blown into the fluidized bed 3 at an inclination angle ⁇ of 30 °.
  • a hopper 10b is also provided on the upper part of the fluidized bed 3, so that waste plastic particles can be quantitatively cut out by the table feeder 11b and supplied from the upper part of the fluidized bed 3. .
  • the waste plastic particles put in the hopper 10b were cut out by the table feeder 11b (cutting speed 300 g / h), and the waste plastic particles cut out by this fixed amount were dropped into the fluidized bed 3 and charged.
  • the gas in the fluidized bed 3 is taken out through the discharge pipe 7 and cooled by the gas cooler 15 (18 is a gas trap), then the gas flow rate is continuously measured by the mass flow meter 16, and further the gas is chromatographed by the gas chromatography 17. The composition was measured.
  • Table 1 shows the results of calculating the lower gas calorific value and the gasification rate from the gas generation amount and the gas composition for the inventive example and the comparative example.
  • the gasification rate is obtained by the following equation, and the “gasification raw material” is waste plastic particles.
  • F (G ⁇ C2) / (M ⁇ C1) ⁇ 100 Where F: Gasification rate (%) M: Gasification raw material supply amount (kg / h) G: Amount of generated gas (kg / h) C1: Carbon concentration in gasification raw material (%) C2: Carbon concentration in product gas (%)
  • the temperature near the supply port was As the melted waste plastic closed the supply port, the vicinity of the waste plastic supply port of the upper flange was cooled with a blower, enabling continuous supply.
  • the calorific value of the product gas was 3870 kcal / Nm 3 and the gasification rate was 41%.
  • the calorific value and gasification rate of the product gas increased, and the calorific value was 4950 kcal / Nm 3. The gasification rate was 68%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

In the present invention, particulate organic substances are blown diagonally downward into a lower region of a bed 3 through an inlet 2 provided on a lower side face of a pyrolysis furnace 1. This action allows the following effects to be achieved in combination: (i) the bed material in the lower region of the bed will become fluidized such that the bed material throughout the entire bed will function sufficiently, since bed material with large particle sizes can be prevented from settling in the lower regions of the bed; (ii) the particulate organic substances blown into the lower region of the bed will move (float) from the lower region of the bed to an upper region and in the process can cause a pyrolytic gasification reaction, allowing the entire bed to be effectively used for the pyrolytic gasification reaction; and (iii) the particulate organic substances will be loaded into the bed at high speed at a constant solid/gas ratio so that a feedstock loading inlet will not be blocked up for example by molten resins. The above effects allow organic substances such as resins to be efficiently pyrolyzed.

Description

有機物質の熱分解方法、有機物質の熱分解生成物の製造方法及び有機物質の熱分解炉Organic substance thermal decomposition method, organic substance thermal decomposition product manufacturing method, and organic substance thermal decomposition furnace
 本発明は、樹脂類などの有機物質を効率的に熱分解し、高発熱量のガスや油分を製造するための方法および熱分解炉に関する。 The present invention relates to a method and a pyrolysis furnace for efficiently pyrolyzing an organic substance such as a resin to produce a high calorific gas or oil.
 近年、エネルギー問題が大きな課題となっており、これを解決するための一つのアプローチとして、有機物質が有する潜熱を有効に活用する方法が考えられている。特に、廃プラスチックを初めとする樹脂系廃棄物は発熱量が高く、化石燃料代替の燃料として有効に活用できる可能性がある。しかしながら、樹脂系廃棄物は熱伝導性が悪く昇温に時間がかかるため、燃焼速度が非常に遅く、固体のままでは燃料代替として用いることが難しい。そこで、樹脂類を分解し、ガスや油分に変換してから燃料として用いる手法が考えられている。 In recent years, the energy problem has become a major issue, and as an approach to solve this problem, a method of effectively utilizing the latent heat of an organic substance is considered. In particular, resin waste such as waste plastics has a high calorific value, and may be effectively used as a fuel to replace fossil fuels. However, since resin waste has poor thermal conductivity and takes a long time to increase its temperature, the combustion speed is very slow, and it is difficult to use it as a fuel substitute if it remains solid. Therefore, a method has been considered in which resins are decomposed and converted into gas or oil before being used as fuel.
 例えば、特許文献1には、プラスチックを含むカーシュレッダーダストをキルンによって熱分解する方法が示されている。この方法では、溶融プラスチックのキルン内部への付着・固化を防止するために、燃焼溶融炉で生成した溶融スラグを、カーシュレッダーダストとともにキルンに投入している。
 しかし、特許文献1の方法で用いるキルン方式は、伝熱効率が低く、また原料を安定して搬送するためには炉内の固体占積率を低くする必要がある。さらに、固体中にはスラグが含まれるため、シュレッダーダスト自体の占積率はさらに低くなり、十分な処理速度を得ようとすると装置を大型化しなければならない問題がある。
For example, Patent Document 1 discloses a method of thermally decomposing car shredder dust containing plastic with a kiln. In this method, molten slag generated in a combustion melting furnace is introduced into the kiln together with car shredder dust in order to prevent adhesion and solidification of molten plastic inside the kiln.
However, the kiln method used in the method of Patent Document 1 has low heat transfer efficiency, and it is necessary to reduce the solid space factor in the furnace in order to stably convey the raw material. Further, since slag is contained in the solid, the space factor of the shredder dust itself is further lowered, and there is a problem that the apparatus must be enlarged to obtain a sufficient processing speed.
 一方、特許文献2には、流動層型反応炉を用いて有機物質を熱分解によりガス化し、流動媒体に付着した炭素分を燃焼炉で燃焼させて、流動媒体を熱媒として流動層へ戻すプロセスが示されている。この特許文献2の方法では、流動層を用いることにより、有機物質への伝熱速度が向上し、低温で効率よくガス化を行うことが可能となる。 On the other hand, in Patent Document 2, an organic substance is gasified by pyrolysis using a fluidized bed reactor, the carbon adhering to the fluidized medium is combusted in a combustion furnace, and the fluidized medium is returned to the fluidized bed as a heating medium. The process is shown. In the method of Patent Document 2, by using a fluidized bed, the heat transfer rate to an organic substance is improved, and gasification can be efficiently performed at a low temperature.
特開2012-237549号公報JP 2012-237549 A 国際公開第2008/107928International Publication No. 2008/107928
 しかし、特許文献2の方法において廃プラスチック等の樹脂類を熱分解の対象とした場合、樹脂類の熱分解に流動層全体が効率的に利用できない、溶融した樹脂により流動層の原料装入口が閉塞しやすい、などの問題があり、樹脂類の効率的な熱分解処理が難しいことが判った。
 したがって本発明の目的は、以上のような従来技術の課題を解決し、流動層式の熱分解炉を用い、樹脂類などの有機物質を効率的に熱分解処理することができる熱分解方法、熱分解生成物の製造方法及び熱分解炉を提供することにある。
However, in the method of Patent Document 2, when resins such as waste plastics are subjected to thermal decomposition, the entire fluidized bed cannot be efficiently used for the thermal decomposition of the resins. It has been found that it is difficult to perform efficient thermal decomposition of resins due to problems such as easy clogging.
Therefore, the object of the present invention is to solve the above-mentioned problems of the prior art, and use a fluidized bed type pyrolysis furnace, and a pyrolysis method capable of efficiently pyrolyzing organic substances such as resins, It is in providing the manufacturing method and pyrolysis furnace of a pyrolysis product.
 本発明者らは、流動層式の熱分解炉で樹脂類を熱分解する場合の問題点について詳細な検討を行った結果、効率的な熱分解処理が阻害される要因が以下のような点にあることを突き止めた。
 (i)流動層に用いられる流動媒体には、その種類によって多少の違いはあるものの一定の粒度分布(粒度の幅)があり、そのなかで粒径の大きい流動媒体は流動性が悪く、流動層の下部領域に滞留しやすい。このため、流動層全体として流動媒体が十分に機能していない。
 (ii)樹脂類は流動媒体(通常、珪砂などが用いられる)よりも比重が小さく、装入された後に流動層上部に浮上して分離されやすいため、流動層上部のみで熱分解ガス化反応が進行し、流動層下部が熱分解ガス化反応に有効に利用されていない。
 (iii)溶融した樹脂類により流動層の原料装入口が閉塞しやすい。
As a result of detailed investigations on problems in the case of thermally decomposing resins in a fluidized bed type pyrolysis furnace, the present inventors have found that the factors that hinder efficient pyrolysis treatment are as follows. I found out.
(I) The fluidized media used in the fluidized bed have a certain particle size distribution (particle size width), although there are some differences depending on the type, and among them, fluidized media with a large particle size have poor fluidity and fluidity. It tends to stay in the lower region of the layer. For this reason, the fluidized medium does not function sufficiently as the whole fluidized bed.
(Ii) Resins have a specific gravity smaller than that of fluid media (usually silica sand etc.), and are easily floated and separated on the upper part of the fluidized bed after being charged. The lower part of the fluidized bed is not effectively used for the pyrolysis gasification reaction.
(Iii) The raw material charging port of the fluidized bed is likely to be clogged with molten resins.
 本発明者らは、上記のような問題点を解消し、樹脂類の効率的な熱分解処理を可能とする方法について検討を行った。その結果、熱分解すべき樹脂類を造粒や粉砕・分級などで粒状化し、この粒状樹脂類を、流動層式の熱分解炉に設けられた吹込み口を通じて流動層の下部領域に対して斜め下向きに吹き込む方法が有効であることを見出した。すなわち、この方法によれば、上記(i)~(iii)の問題に対して下記(1)~(3)のような作用効果が得られ、このため樹脂類の効率的な熱分解処理が可能となることが判った。 The present inventors have studied a method for solving the above-mentioned problems and enabling efficient thermal decomposition treatment of resins. As a result, the resins to be pyrolyzed are granulated by granulation, pulverization, classification, etc., and these granular resins are fed to the lower region of the fluidized bed through the blowing port provided in the fluidized bed type pyrolysis furnace. We found that the method of blowing obliquely downward is effective. That is, according to this method, the following effects (1) to (3) can be obtained with respect to the problems (i) to (iii) described above, so that efficient thermal decomposition treatment of resins can be achieved. I found it possible.
 (1)粒状樹脂類を流動層の下部領域に対して斜め下向きに吹き込むことにより、流動
層の下部領域での流動媒体の流動状態が活性化され、流動層の下部領域に粒径の大きい流動媒体が滞留することを防止できる。このため、流動層全体で流動媒体が十分に機能し、樹脂類への伝熱速度や熱分解の反応速度を大幅に改善することができる。
 (2)流動層の下部領域に吹き込まれた粒状樹脂類は、流動層の下部領域から上部領域
まで移動(浮上)するので、その過程で熱分解ガス化反応を生じさせることができ、このため、流動層の全領域を熱分解ガス化反応に有効に用いることができ、ガス化率が大幅に向上する。
 (3)樹脂類は一定の固気比で流動層内に高速で装入されるため、溶融した樹脂類により原料装入口が閉塞する恐れがほとんどない。
(1) By blowing granular resins obliquely downward to the lower region of the fluidized bed, the fluidized state of the fluidized medium in the lower region of the fluidized bed is activated, and the flow having a large particle size in the lower region of the fluidized bed It is possible to prevent the medium from staying. For this reason, a fluid medium fully functions in the fluidized bed as a whole, and the heat transfer rate to the resins and the reaction rate of thermal decomposition can be greatly improved.
(2) Since the granular resins blown into the lower region of the fluidized bed move (float) from the lower region to the upper region of the fluidized bed, a pyrolytic gasification reaction can occur in the process, The entire region of the fluidized bed can be used effectively for the pyrolysis gasification reaction, and the gasification rate is greatly improved.
(3) Since the resins are charged into the fluidized bed at a constant solid-gas ratio at high speed, there is almost no risk that the raw material charging port will be clogged by the molten resins.
 本発明は、このような知見に基づきなされたもので、以下を要旨とするものである。
[1]流動層式の熱分解炉において粒状の有機物質を熱分解する方法であって、
 熱分解すべき粒状有機物質を、熱分解炉(1)の下部側面に設けられた吹き込み口(2)を通じて、流動層(3)の下部領域に対して斜め下向きに吹き込むことを特徴とする有機物質の熱分解方法。
[2]上記[1]の熱分解方法において、流動層(3)の下部領域に対する粒状有機物質の吹き込み方向は、水平方向に対して下向きに25~45°の傾斜角を有することを特徴とする有機物質の熱分解方法。
The present invention has been made on the basis of such knowledge and has the following gist.
[1] A method for thermally decomposing granular organic substances in a fluidized bed type pyrolysis furnace,
An organic material characterized in that the granular organic material to be pyrolyzed is blown obliquely downward into the lower region of the fluidized bed (3) through the blow port (2) provided on the lower side surface of the pyrolysis furnace (1). Method for pyrolysis of substances.
[2] In the thermal decomposition method of [1], the blowing direction of the granular organic material to the lower region of the fluidized bed (3) has an inclination angle of 25 to 45 ° downward with respect to the horizontal direction. Method for thermal decomposition of organic substances.
[3]上記[1]又は[2]の熱分解方法において、粒状有機物質の搬送ガスの一部又は全
部は、流動層(3)内で粒状有機物質のガス化剤となるガスからなることを特徴とする有機物質の熱分解方法。
[4]上記[1]~[3]のいずれかの熱分解方法において、熱分解炉に設けられた吹き込み口(2)の内径Dと、流動層(3)下端位置から吹き込み口(2)の下端位置までの高さhと、流動媒体静止高さLが、下記(1)式を満足することを特徴とする有機物質の熱分解方法。
 3D≦h≦L/3  …(1)
[5]上記[1]~[4]のいずれかの熱分解方法において、流動媒体が製鉄所発生ダストからなることを特徴とする有機物質の熱分解方法。
[6]流動層式の熱分解炉において粒状の有機物質を熱分解し、有機物質の熱分解生成物を製造する方法であって、
 熱分解すべき粒状有機物質を、熱分解炉(1)の下部側面に設けられた吹き込み口(2)を通じて、流動層(3)の下部領域に対して斜め下向きに吹き込むことを特徴とする有機物質の熱分解生成物の製造方法。
[7]上記[6]の製造方法において、流動層(3)の下部領域に対する粒状有機物質の吹き込み方向は、水平方向に対して下向きに25~45°の傾斜角を有することを特徴とする有機物質の熱分解生成物の製造方法。
[8]上記[6]又は[7]の製造方法において、粒状有機物質の搬送ガスの一部又は全部は、流動層(3)内で粒状有機物質のガス化剤となるガスからなることを特徴とする有機物質の熱分解生成物の製造方法。
[9]上記[6]~[8]のいずれかの製造方法において、熱分解炉に設けられた吹き込み口(2)の内径Dと、流動層(3)下端位置から吹き込み口(2)の下端位置までの高さhと、流動媒体静止高さLが、下記(1)式を満足することを特徴とする有機物質の熱分解生成物の製造方法。
 3D≦h≦L/3  …(1)
[10]上記[6]~[9]のいずれかの製造方法において、流動媒体が製鉄所発生ダストからなることを特徴とする有機物質の熱分解生成物の製造方法。
[11]有機物質を熱分解するための流動層式の熱分解炉であって、
 炉体の下部側面に、炉内に形成される流動層の下部領域に対して粒状有機物質を斜め下向きに吹き込む吹き込み口(2)を有することを特徴とする有機物質の熱分解炉。
[12]上記[11]の熱分解炉において、吹き込み口(2)からの流動層の下部領域に対する粒状有機物質の吹き込み方向は、水平方向に対して下向きに25~45°の傾斜角を有することを特徴とする有機物質の熱分解炉。
[13]上記[11]又は[12]の熱分解炉において、吹込み口(2)に吹込み管(8)が接続され、該吹込み管(8)に粒状有機物質の気体搬送用の供給管(9)が接続されていることを特徴とする有機物質の熱分解炉。
[14]上記[11]~[13]のいずれかの熱分解炉において、吹き込み口(2)の内径Dと、流動層の下端位置から吹き込み口(2)の下端位置までの高さhと、流動媒体静止高さLが、下記(1)式を満足することを特徴とする有機物質の熱分解炉。
 3D≦h≦L/3  …(1)
[3] In the thermal decomposition method of [1] or [2] above, part or all of the carrier gas for the granular organic substance is composed of a gas that becomes a gasifying agent for the granular organic substance in the fluidized bed (3). A method for thermally decomposing an organic substance.
[4] In the thermal decomposition method of any one of [1] to [3] above, the inner diameter D of the blowing port (2) provided in the pyrolysis furnace and the blowing port (2) from the lower end position of the fluidized bed (3) The organic material pyrolysis method is characterized in that the height h to the lower end position and the stationary height L of the fluid medium satisfy the following formula (1):
3D ≦ h ≦ L / 3 (1)
[5] The method for pyrolyzing an organic substance according to any one of [1] to [4] above, wherein the fluidized medium is dust generated from a steel mill.
[6] A method of pyrolyzing a granular organic substance in a fluidized bed type pyrolysis furnace to produce a pyrolysis product of the organic substance,
An organic material characterized in that the granular organic material to be pyrolyzed is blown obliquely downward into the lower region of the fluidized bed (3) through the blow port (2) provided on the lower side surface of the pyrolysis furnace (1). A method for producing a thermal decomposition product of a substance.
[7] In the production method of [6], the blowing direction of the granular organic material into the lower region of the fluidized bed (3) has an inclination angle of 25 to 45 ° downward with respect to the horizontal direction. A method for producing a thermal decomposition product of an organic substance.
[8] In the production method of [6] or [7] above, a part or all of the carrier gas for the granular organic substance is composed of a gas that becomes a gasifying agent for the granular organic substance in the fluidized bed (3). A method for producing a thermal decomposition product of an organic substance.
[9] In the manufacturing method of any one of [6] to [8] above, the inner diameter D of the blowing port (2) provided in the pyrolysis furnace and the flow port (3) from the lower end position of the blowing port (2) A method for producing a thermal decomposition product of an organic substance, wherein the height h to the lower end position and the stationary height L of the fluid medium satisfy the following formula (1):
3D ≦ h ≦ L / 3 (1)
[10] The method for producing a pyrolysis product of an organic substance according to any one of the above [6] to [9], wherein the fluidized medium is dust generated from a steel mill.
[11] A fluidized bed type pyrolysis furnace for pyrolyzing organic substances,
An organic substance pyrolysis furnace characterized by having an inlet (2) for injecting granular organic substance obliquely downward into a lower region of a fluidized bed formed in the furnace on a lower side surface of the furnace body.
[12] In the pyrolysis furnace of [11] above, the blowing direction of the granular organic material from the blowing port (2) to the lower region of the fluidized bed has an inclination angle of 25 to 45 ° downward with respect to the horizontal direction. An organic material pyrolysis furnace characterized by that.
[13] In the pyrolysis furnace of [11] or [12] above, a blowing pipe (8) is connected to the blowing port (2), and the blowing pipe (8) is used for gas transportation of particulate organic substances. A pyrolysis furnace for organic substances, characterized in that a supply pipe (9) is connected.
[14] In the pyrolysis furnace according to any one of [11] to [13], the inner diameter D of the blowing port (2) and the height h from the lower end position of the fluidized bed to the lower end position of the blowing port (2); The pyrolysis furnace for organic substances, wherein the stationary height L of the fluid medium satisfies the following formula (1):
3D ≦ h ≦ L / 3 (1)
 本発明によれば、流動層式の熱分解炉を用いた有機物質の熱分解において、下記(1)~(3)の作用効果が複合的に得られることにより、樹脂類などの有機物質を効率的に熱分解処理することができる。
 (1)粒状有機物質を流動層の下部領域に対して斜め下向きに吹き込むことにより、流動層の下部領域での流動媒体の流動状態が活性化され、流動層の下部領域に粒径の大きい流動媒体が滞留することを防止できる。このため、流動層全体で流動媒体が十分に機能し、有機物質への伝熱速度や熱分解の反応速度を大幅に改善することができる。
 (2)流動層の下部領域に吹き込まれた粒状有機物質は、流動層の下部領域から上部領域まで移動(浮上)するので、その過程で熱分解ガス化反応を生じさせることができ、このため、流動層の全領域を熱分解ガス化反応に有効に用いることができ、ガス化率が大幅に向上する。
 (3)粒状有機物質は一定の固気比で流動層内に高速で装入されるため、溶融した樹脂類などにより原料装入口が閉塞するような恐れはほとんどない。
According to the present invention, in the pyrolysis of an organic substance using a fluidized bed type pyrolysis furnace, the following effects (1) to (3) can be obtained in combination, whereby organic substances such as resins can be obtained. Pyrolysis can be efficiently performed.
(1) By blowing granular organic material obliquely downward with respect to the lower region of the fluidized bed, the fluidized state of the fluidized medium in the lower region of the fluidized bed is activated, and the flow having a large particle size in the lower region of the fluidized bed It is possible to prevent the medium from staying. For this reason, the fluidized medium functions sufficiently in the entire fluidized bed, and the heat transfer rate to the organic substance and the reaction rate of thermal decomposition can be greatly improved.
(2) Since the granular organic material blown into the lower region of the fluidized bed moves (floats) from the lower region to the upper region of the fluidized bed, a pyrolysis gasification reaction can occur in the process. The entire region of the fluidized bed can be used effectively for the pyrolysis gasification reaction, and the gasification rate is greatly improved.
(3) Since the granular organic material is charged into the fluidized bed at a constant solid-gas ratio at high speed, there is almost no risk that the raw material charging port will be clogged with molten resins.
図1は、本発明で使用する流動層式の熱分解炉の一例と、これを用いた本発明法の一実施形態を示す説明図である。FIG. 1 is an explanatory view showing an example of a fluidized bed type pyrolysis furnace used in the present invention and an embodiment of the method of the present invention using the same. 図2は、図1の熱分解炉の下部領域の部分拡大図である。FIG. 2 is a partially enlarged view of a lower region of the pyrolysis furnace of FIG. 図3は、実施例で用いた流動層式ガス化試験装置の概要を示す説明図である。FIG. 3 is an explanatory diagram showing an outline of the fluidized bed gasification test apparatus used in the examples.
 本発明において、熱分解の対象となる有機物質(固体)に特別な制限はないが、高分子量の有機物質が好適であり、例えば、樹脂類(通常、廃プラスチック)、バイオマスなどが挙げられ、これらの1種以上を対象とすることができる。
 樹脂類としては、例えば、PE(Poly Ethylene)やPP(Polypropylene)などのポリオレフィン類、PA(Polyamide)やPET(Poly Ethylene Terephthalate)などの熱可塑性ポリエステル類、PS(Poly Styrene)などのエラストマー類、熱硬化性樹脂類、合成ゴム類や発砲スチロールなどが挙げられるが、これらに限定されるものではない。
 また、バイオマスとしては、例えば、下水汚泥、紙、木材(例えば、建設廃木材、梱包・運送廃木材、間伐材など)などが挙げられるが、これらに限定されるものではない。
 これらの有機物質は、気体搬送して流動層に吹き込むために粒状のものを用いる。有機物質を粒状化するため、造粒、粉砕・分級などの事前処理が適宜行われる。
In the present invention, there is no particular restriction on the organic substance (solid) to be thermally decomposed, but a high molecular weight organic substance is suitable, for example, resins (usually waste plastic), biomass, etc. One or more of these can be targeted.
Examples of resins include polyolefins such as PE (Poly Ethylene) and PP (Polypropylene), thermoplastic polyesters such as PA (Polyamide) and PET (Poly Ethylene Terephthalate), elastomers such as PS (Poly Styrene), Examples thereof include, but are not limited to, thermosetting resins, synthetic rubbers and foamed polystyrene.
Examples of biomass include, but are not limited to, sewage sludge, paper, wood (for example, construction waste wood, packaging / transport waste wood, thinned wood, etc.).
These organic substances are used in a granular form for gas conveyance and blowing into the fluidized bed. In order to granulate the organic substance, pretreatment such as granulation, pulverization and classification is appropriately performed.
 図1は、本発明で使用する熱分解炉の一例とこれを用いた本発明法の一実施形態を示す説明図、図2は図1の熱分解炉の下部領域の部分拡大図であり、1は流動層式の熱分解炉、3は流動層である。
 この熱分解炉1では、ガス供給管4を通じて分散板5の下側の風箱部6に流動ガス(ガス化剤)が導入され、この流動ガスが分散板5から吹き出すことにより、分散板5の上方に流動媒体による流動層3が形成される。熱分解炉1に投入された有機物質は、この流動層3内で熱分解され、気体生成物となる。この気体生成物を含むガスは、排出管7を通じて排出された後、集塵機(図示せす)でガス中に飛散した流動媒体や有機物質の灰分が捕集される。
 熱分解炉1の下部側面には、気体搬送された粒状有機物質を炉内に吹き込むための吹込み口2が設けられており、本発明では、この吹込み口2を通じて、気体搬送された粒状有機物質を流動層3の下部領域に対して斜め下向きに吹き込むものである。
FIG. 1 is an explanatory view showing an example of a pyrolysis furnace used in the present invention and an embodiment of the method of the present invention using the same, and FIG. 2 is a partially enlarged view of a lower region of the pyrolysis furnace of FIG. 1 is a fluidized bed type pyrolysis furnace, and 3 is a fluidized bed.
In this pyrolysis furnace 1, a flowing gas (gasification agent) is introduced into the wind box portion 6 below the dispersion plate 5 through the gas supply pipe 4, and the flowing gas is blown out from the dispersion plate 5, whereby the dispersion plate 5. A fluidized bed 3 made of a fluidized medium is formed above the substrate. The organic substance put into the pyrolysis furnace 1 is pyrolyzed in the fluidized bed 3 to become a gas product. After the gas containing the gas product is discharged through the discharge pipe 7, the fluid medium and the ash content of the organic substance scattered in the gas are collected by a dust collector (not shown).
The lower side surface of the pyrolysis furnace 1 is provided with a blowing port 2 for blowing the gas-carrying granular organic substance into the furnace. In the present invention, the gas-carrying granular material is fed through the blowing port 2. The organic material is blown obliquely downward with respect to the lower region of the fluidized bed 3.
 以下、本発明の原理を、熱分解すべき粒状有機物質が樹脂類である場合を例に説明する。樹脂類は基本的に比重が小さいため、流動層3に装入した際に浮上しやすい。そこで本発明者らは、樹脂類を流動層3の下部領域に供給することにより、浮上の過程で効率よく反応を進めることが可能であると考えた。しかしながら、流動層3の下部領域は樹脂の熱分解温度以上とする必要があるため、フィーダー等を用いた通常の装入方法の適用は、装入口で閉塞する可能性が高いため困難である。そこで本発明では、粒状の樹脂類を流動層3の下部領域に搬送ガスで吹き込むようにした。吹き込まれた粒状樹脂類は流動層3の下部領域から上部領域まで移動(浮上)するので、その過程で熱分解ガス化反応を生じさせることができ、このため、流動層3の全領域を熱分解ガス化反応に有効に用いることができる。流動層3は、基本的に流動媒体が流動状態にあり、空隙率が高いため、充填層に吹き込む場合よりも低い吹き込み用ガス流速で粒状樹脂類を吹き込むことが可能である。 Hereinafter, the principle of the present invention will be described by taking as an example the case where the granular organic material to be thermally decomposed is a resin. Resins are basically low in specific gravity, and therefore easily float when charged into the fluidized bed 3. Therefore, the present inventors have thought that by supplying resins to the lower region of the fluidized bed 3, it is possible to advance the reaction efficiently during the ascent process. However, since the lower region of the fluidized bed 3 needs to be equal to or higher than the thermal decomposition temperature of the resin, it is difficult to apply a normal charging method using a feeder or the like because the possibility of clogging at the charging port is high. Therefore, in the present invention, granular resins are blown into the lower region of the fluidized bed 3 with the carrier gas. Since the blown granular resin moves (floats) from the lower region to the upper region of the fluidized bed 3, a pyrolysis gasification reaction can be caused in the process, and thus the entire region of the fluidized bed 3 is heated. It can be used effectively for cracking gasification reaction. In the fluidized bed 3, the fluidized medium is basically in a fluidized state and has a high porosity, so that the granular resin can be blown at a lower blowing gas flow rate than when blown into the packed bed.
 さらに、流動層に用いられる流動媒体には、その種類によって多少の違いはあるものの一定の粒度分布(粒度の幅)があり、そのなかで粒径の大きい流動媒体は流動性が悪く、流動層の下部領域に滞留しやすいため、流動層全体として流動媒体が十分に機能しない問題があるが、この問題に対して本発明では、粒状樹脂類を流動層3の下部領域に対して斜め下向きに吹き込むことにより、流動層3の下部領域での流動媒体の流動状態が活性化され、流動層3の下部領域に粒径の大きい流動媒体が滞留することを防止できる。このため、流動層全体で流動媒体が十分に機能し、樹脂類への伝熱速度や熱分解の反応速度を大幅に改善することができる。また、溶融した樹脂類により流動層の原料装入口が閉塞してしまうという問題に対しては、本発明では、樹脂類は一定の固気比で流動層内に高速で装入されるため、溶融した樹脂類により原料装入口(吹き込み口2)が閉塞するような恐れはほとんどない。
 以上により、本発明では、樹脂類などの有機物質の熱分解を効率的に行うことができる。
Furthermore, the fluidized medium used in the fluidized bed has a certain particle size distribution (width of the particle size), although there are some differences depending on the type of the fluidized medium. However, in the present invention, the granular resin is inclined obliquely downward with respect to the lower region of the fluidized bed 3. By blowing, the fluidized state of the fluidized medium in the lower region of the fluidized bed 3 is activated, and it is possible to prevent the fluidized medium having a large particle size from staying in the lower region of the fluidized bed 3. For this reason, a fluid medium fully functions in the fluidized bed as a whole, and the heat transfer rate to the resins and the reaction rate of thermal decomposition can be greatly improved. In addition, for the problem that the raw material inlet of the fluidized bed is blocked by the molten resin, in the present invention, the resins are charged at a high rate into the fluidized bed at a constant solid-gas ratio. There is almost no fear that the raw material charging port (blowing port 2) is blocked by the melted resins.
As described above, in the present invention, it is possible to efficiently perform thermal decomposition of organic substances such as resins.
 図1において、吹込み口2には吹込み管8(吹込み用ランス)が接続され、供給管9で気体搬送されてきた粒状有機物質が、吹込み管8を経て吹込み口2から流動層3内に吹き込まれる。なお、吹込み口2は炉周方向の複数個所に設けてもよい。
 本発明において、吹込み口2からの粒状有機物質の吹込み角度(下向きの吹込み角度)は0度(水平)以上であれば特に制限はないが、発明の作用効果や吹込み口2の詰まり防止などの観点から25~45°程度が好ましい。すなわち、粒状有機物質の吹き込み方向は、水平方向に対して下向きに25~45°の傾斜角θを有することが好ましい。傾斜角θが25°未満では、粒状有機物質を流動層3の下部領域に対して斜め下向きに吹き込むことによる効果が小さくなるとともに、粒状有機物質の吹込み停止時に、吹込み管8内に流動媒体が入り込みやすくなり、吹込み口2や吹込み管8が詰まりを生じる場合がある。一方、傾斜角θが45°超では、吹込み管8の先端(吹き込み口2)での搬送ガス流速が低下し、粒状有機物質の搬送性が低下しやすい。
In FIG. 1, a blowing pipe 8 (blowing lance) is connected to the blowing port 2, and the particulate organic material that has been conveyed by the supply pipe 9 flows from the blowing port 2 through the blowing pipe 8. Blown into layer 3; Note that the blowing ports 2 may be provided at a plurality of locations in the furnace circumferential direction.
In the present invention, there is no particular limitation as long as the blowing angle (downward blowing angle) of the particulate organic material from the blowing port 2 is 0 degree (horizontal) or more. From the viewpoint of prevention of clogging, about 25 to 45 ° is preferable. That is, it is preferable that the blowing direction of the granular organic material has an inclination angle θ of 25 to 45 ° downward with respect to the horizontal direction. When the inclination angle θ is less than 25 °, the effect of blowing the granular organic material obliquely downward with respect to the lower region of the fluidized bed 3 is reduced, and the flow into the blowing pipe 8 is stopped when the blowing of the granular organic material is stopped. The medium may easily enter, and the air inlet 2 and the air pipe 8 may be clogged. On the other hand, when the inclination angle θ exceeds 45 °, the flow rate of the carrier gas at the tip of the blowing pipe 8 (blowing port 2) is lowered, and the carrying property of the granular organic substance is likely to be lowered.
 吹込み口2を設ける高さ位置に特に制限はないが、吹込み口2を通じて、粒状有機物質を流動層3の下部領域に対して斜め下向きに吹き込むために、吹込み口2の内径Dと、流動層3下端位置から吹込み口2の下端位置までの高さhと、流動媒体静止高さL(流動ガスを供給していない静止状態での流動媒体の高さL)が、下記(1)式を満足することが好ましい。
 3D≦h≦L/3  …(1)
 h>L/3では、吹込み口2の位置が高すぎるため、粒状有機物質を流動層3の下部領域に対して吹き込みにくくなる。一方、3D>hでは、吹込み口2の位置が低すぎるため、吹込みガスが流動層下端のガス分散部まで届き、吹込みガスが分解ガス流入口に逆流するおそれがある。
Although there is no restriction | limiting in particular in the height position which provides the blowing inlet 2, In order to blow a granular organic substance diagonally downward with respect to the lower area | region of the fluidized bed 3 through the blowing outlet 2, the internal diameter D of the blowing inlet 2 and The height h from the lower end position of the fluidized bed 3 to the lower end position of the inlet 2 and the stationary height L of the fluidized medium (the height L of the fluidized medium in a stationary state where no fluid gas is supplied) are as follows ( 1) It is preferable to satisfy the formula.
3D ≦ h ≦ L / 3 (1)
When h> L / 3, the position of the blowing port 2 is too high, so that it becomes difficult to blow the particulate organic material into the lower region of the fluidized bed 3. On the other hand, when 3D> h, since the position of the blowing port 2 is too low, the blowing gas reaches the gas dispersion portion at the lower end of the fluidized bed, and the blowing gas may flow backward to the cracked gas inlet.
 流動層3に供給する流動ガス(ガス化剤)の種類は特に制限はなく、公知の流動ガス(ガス化剤)、例えば、特開2014-37524号に示される混合ガス(冶金炉で発生した一酸化炭素を含有する排ガスに過剰の水蒸気を添加してシフト反応を行わせることで、シフト反応で生成した水素および炭酸ガスと、シフト反応に消費されなかった水蒸気とを含む混合ガス)などを用いることができる。
 粒状有機物質の搬送ガス(吹き込み用ガス)の種類は特に制限はなく、例えば、N、COなどの1種以上を含むガスを用いることができる。流動層3での粒状有機物質の熱分解反応を促進するという観点からは、搬送ガスの一部又は全部は、流動層3内で粒状有機物質のガス化剤となるガス(有機物質と反応し、その分解を促進するガス)からなることが好ましい。そのようなガス化剤となるガスとしてはCOが挙げられる。したがって、搬送ガスとしては、CO含有ガス、特にCO濃度が比較的高いガスが好ましい。例えば、高炉用熱風炉の燃焼排ガスはCOを25%程度含んでおり、搬送ガスとして適している。
There is no particular limitation on the type of fluidized gas (gasifying agent) supplied to the fluidized bed 3, and a known fluidized gas (gasifying agent), for example, a mixed gas (generated in a metallurgical furnace) disclosed in JP 2014-37524 A By adding excess water vapor to the exhaust gas containing carbon monoxide and causing the shift reaction to occur, a mixed gas containing hydrogen and carbon dioxide gas generated by the shift reaction and water vapor not consumed in the shift reaction) Can be used.
The kind of carrier gas (injection gas) for the particulate organic substance is not particularly limited, and for example, a gas containing one or more of N 2 , CO 2 and the like can be used. From the viewpoint of accelerating the thermal decomposition reaction of the granular organic substance in the fluidized bed 3, a part or all of the carrier gas is a gas (reacts with the organic substance that becomes a gasifying agent for the particulate organic substance in the fluidized bed 3). And a gas that promotes the decomposition thereof. As the gas to be such a gasifying agent include CO 2. Accordingly, the carrier gas is preferably a CO 2 -containing gas, particularly a gas having a relatively high CO 2 concentration. For example, combustion exhaust gas from a blast furnace hot stove contains about 25% of CO 2 and is suitable as a carrier gas.
 搬送ガスは、有機物質の搬送性を確保するためガス温度を50℃以下とし、酸素を含まないことが好ましい。
 搬送ガスは、その吹込みにより流動層3内にレースウェーと呼ばれる空間ができるような流速にする必要がある。レースウェーができないと、粒状有機物質が流動層内部に侵入できず、吹込み管8内で詰まりを生じる可能性がある。レースウェー生成の限界流速は吹込み口2の内径、流動媒体の粒度、形状、空隙率、流動状態によって大きく影響を受けるため、内部観測が可能な模型実験で予め求めておくことが好ましい。
The carrier gas preferably has a gas temperature of 50 ° C. or lower and does not contain oxygen in order to ensure the transportability of the organic substance.
The carrier gas needs to have a flow velocity so that a space called a raceway is created in the fluidized bed 3 by blowing. If the raceway is not possible, the particulate organic substance cannot enter the fluidized bed, and clogging may occur in the blowing pipe 8. Since the limit flow velocity for generating the raceway is greatly influenced by the inner diameter of the air inlet 2, the particle size, shape, porosity, and flow state of the fluid medium, it is preferable to obtain in advance by a model experiment that allows internal observation.
 流動媒体は、有機物質分解触媒としても機能する金属系粉粒体が好ましい。そのような粉粒体としては、公知のNi系改質触媒やNi系水素化触媒などを用いることができる。鉄分を多く含むため触媒活性が高いこと、微細粒子であるため流動媒体として好適であること、大量入手可能で且つ安価であること、などの理由から、製鉄所の各工程で発生するダスト類、すなわち製鉄所発生ダストが好ましい。製鉄所発生ダストの代表例としては、転炉ダストが挙げられるが、これに限定されない。製鉄所発生ダストのなかでも、転炉ダストは鉄の成分比率が高く、熱伝導率が非常に高いため、触媒機能を有する流動媒体として最も適している。転炉ダストとは、転炉を用いて行われる製鋼工程で発生する鉄含有ダストである。製鋼工程としては、例えば、脱燐工程、脱炭工程、ステンレス鋼の精錬工程などが挙げられるが、これらに限定されるものではない。 The fluid medium is preferably a metal powder that also functions as an organic substance decomposition catalyst. As such a granular material, a known Ni-based reforming catalyst, Ni-based hydrogenation catalyst, or the like can be used. Dusts generated in each step of the steel mill because of its high catalytic activity because it contains a lot of iron, it is suitable as a fluid medium because it is fine particles, and it is available in large quantities and is inexpensive. That is, ironworks generated dust is preferable. A typical example of dust generated in a steel mill includes, but is not limited to, converter dust. Among the dust generated in steelworks, converter dust is most suitable as a fluid medium having a catalytic function because of its high iron component ratio and very high thermal conductivity. Converter dust is iron-containing dust generated in a steelmaking process performed using a converter. Examples of the steel making process include, but are not limited to, a dephosphorization process, a decarburization process, and a stainless steel refining process.
 図3に示す流動層ガス化試験装置を用い、廃プラスチック粒を600℃にてガス化するガス化試験を行った。流動層3(流動層ガス化炉)の管径は66mmとし、流動媒体としては転炉ダストを使用した。流動媒体の静止時の高さLは198mmとした。流動ガス(ガス化剤)としては、H、N、CO、HOの混合ガスを4L/min供給した。粒状の廃プラスチックとしては、リングダイ成型機によって約6mmφ×15mmに成型された廃プラスチック粒を冷凍粉砕し、目開き2.0mmの篩で篩分けした後篩下を回収したものを使用した。定方向最大径の平均径は約1mmであった。 Using a fluidized bed gasification test apparatus shown in FIG. 3, a gasification test was conducted in which waste plastic particles were gasified at 600 ° C. The diameter of the fluidized bed 3 (fluidized bed gasifier) was 66 mm, and converter dust was used as the fluidized medium. The height L of the fluid medium at rest was 198 mm. As a flowing gas (gasifying agent), a mixed gas of H 2 , N 2 , CO 2 , and H 2 O was supplied at 4 L / min. As the granular waste plastics, those obtained by freezing and pulverizing waste plastic particles molded to about 6 mmφ × 15 mm by a ring die molding machine and sieving them with a sieve having an opening of 2.0 mm were used. The average diameter in the fixed direction was about 1 mm.
 本発明例では、ホッパー10aに入れた廃プラスチック粒をテーブルフィーダー11aで切り出し(切り出し速度300g/h)、この定量で切り出された廃プラスチック粒をCO:25vol%、N:75vol%からなる搬送ガス(ガスボンベ12,13からガス供給管14により供給される搬送ガス)により気送搬送し、流動層3の下端(分散板5)から高さh:30mmの位置に設けられた吹込み口2(内径D:10mm)から、傾斜角θ:30°で流動層3内に吹き込み装入した。 In the example of the present invention, the waste plastic particles put into the hopper 10a are cut out by the table feeder 11a (cutting speed 300 g / h), and the waste plastic particles cut out by this fixed amount are composed of CO 2 : 25 vol% and N 2 : 75 vol%. A blow-in port provided by a carrier gas (a carrier gas supplied from the gas cylinders 12 and 13 through a gas supply pipe 14) and provided at a height h of 30 mm from the lower end (distribution plate 5) of the fluidized bed 3 2 (inner diameter D: 10 mm) was blown into the fluidized bed 3 at an inclination angle θ of 30 °.
 装置上部から廃プラスチックを供給する場合と比較するため、流動層3の上部にもホッパー10bを設け、廃プラスチック粒をテーブルフィーダー11bで定量的に切り出し、流動層3の上部から供給できるようにした。比較例では、ホッパー10bに入れた廃プラスチック粒をテーブルフィーダー11bで切り出し(切り出し速度300g/h)、この定量で切り出された廃プラスチック粒を流動層3内に落下させることで装入した。
 流動層3内のガスは、排出管7を通じて取り出し、ガス冷却機15で冷却した後(18はガストラップ)、マスフローメーター16でガス流量を連続的に測定し、さらに、ガスクロマトグラフィー17でガス組成を測定した。
In order to compare with the case where waste plastic is supplied from the upper part of the apparatus, a hopper 10b is also provided on the upper part of the fluidized bed 3, so that waste plastic particles can be quantitatively cut out by the table feeder 11b and supplied from the upper part of the fluidized bed 3. . In the comparative example, the waste plastic particles put in the hopper 10b were cut out by the table feeder 11b (cutting speed 300 g / h), and the waste plastic particles cut out by this fixed amount were dropped into the fluidized bed 3 and charged.
The gas in the fluidized bed 3 is taken out through the discharge pipe 7 and cooled by the gas cooler 15 (18 is a gas trap), then the gas flow rate is continuously measured by the mass flow meter 16, and further the gas is chromatographed by the gas chromatography 17. The composition was measured.
 本発明例と比較例について、ガス発生量とガス組成からガス低位発熱量、ガス化率を算出した結果を表1に示す。なお、ガス化率は下式で求められるものであり、「ガス化原料」とは廃プラスチック粒である。
 F=(G×C2)/(M×C1)×100
  ここで F:ガス化率(%)
      M:ガス化原料供給量(kg/h)
      G:生成ガス量(kg/h)
      C1:ガス化原料中カーボン濃度(%)
      C2:生成ガス中カーボン濃度(%)
Table 1 shows the results of calculating the lower gas calorific value and the gasification rate from the gas generation amount and the gas composition for the inventive example and the comparative example. The gasification rate is obtained by the following equation, and the “gasification raw material” is waste plastic particles.
F = (G × C2) / (M × C1) × 100
Where F: Gasification rate (%)
M: Gasification raw material supply amount (kg / h)
G: Amount of generated gas (kg / h)
C1: Carbon concentration in gasification raw material (%)
C2: Carbon concentration in product gas (%)
 廃プラスチック粒を流動層の下部領域に吹き込む本発明例では、問題なく廃プラスチック粒の連続供給が可能であったが、廃プラスチック粒を流動層上部から供給する比較例では、供給口付近の温度が上昇し、溶融した廃プラスチックが供給口を閉塞したため、上部フランジの廃プラスチック供給口付近をブロワーで空冷した結果、連続供給が可能となった。
 比較例では、生成ガスの発熱量は3870kcal/Nm、ガス化率は41%であったが、本発明例では、生成ガスの発熱量、ガス化率ともに上昇し、発熱量4950kcal/Nm、ガス化率68%であった。
In the example of the present invention in which waste plastic particles were blown into the lower region of the fluidized bed, it was possible to continuously supply the waste plastic particles without any problem, but in the comparative example in which waste plastic particles were fed from the upper part of the fluidized bed, the temperature near the supply port was As the melted waste plastic closed the supply port, the vicinity of the waste plastic supply port of the upper flange was cooled with a blower, enabling continuous supply.
In the comparative example, the calorific value of the product gas was 3870 kcal / Nm 3 and the gasification rate was 41%. However, in the inventive example, the calorific value and gasification rate of the product gas increased, and the calorific value was 4950 kcal / Nm 3. The gasification rate was 68%.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 1 熱分解炉
 2 吹込み口
 3 流動層
 4 ガス供給管
 5 分散板
 6 風箱部
 7 排出管
 8 吹込み管
 9 供給管
 10a ホッパー
 10b ホッパー
 11a テーブルフィーダー
 11b テーブルフィーダー
 12 ガスボンベ
 13 ガスボンベ
 14 ガス供給管
 15 ガス冷却機
 16 マスフローメーター
 17 ガスクロマトグラフィー
 18 ガストラップ
 
DESCRIPTION OF SYMBOLS 1 Pyrolysis furnace 2 Blowing inlet 3 Fluidized bed 4 Gas supply pipe 5 Dispersion plate 6 Wind box part 7 Discharge pipe 8 Blow pipe 9 Supply pipe 10a Hopper 10b Hopper 11a Table feeder 11b Table feeder 12 Gas cylinder 13 Gas cylinder 14 Gas supply pipe 15 Gas Cooler 16 Mass Flow Meter 17 Gas Chromatography 18 Gas Trap

Claims (14)

  1.  流動層式の熱分解炉において粒状の有機物質を熱分解する方法であって、
     熱分解すべき粒状有機物質を、熱分解炉(1)の下部側面に設けられた吹き込み口(2)を通じて、流動層(3)の下部領域に対して斜め下向きに吹き込むことを特徴とする有機物質の熱分解方法。
    A method of thermally decomposing particulate organic substances in a fluidized bed type pyrolysis furnace,
    An organic material characterized in that the granular organic material to be pyrolyzed is blown obliquely downward into the lower region of the fluidized bed (3) through the blow port (2) provided on the lower side surface of the pyrolysis furnace (1). Method for pyrolysis of substances.
  2.  流動層(3)の下部領域に対する粒状有機物質の吹き込み方向は、水平方向に対して下向きに25~45°の傾斜角を有することを特徴とする請求項1に記載の有機物質の熱分解方法。 2. The method for thermally decomposing an organic material according to claim 1, wherein the blowing direction of the granular organic material into the lower region of the fluidized bed (3) has an inclination angle of 25 to 45 ° downward with respect to the horizontal direction. .
  3.  粒状有機物質の搬送ガスの一部又は全部は、流動層(3)内で粒状有機物質のガス化剤となるガスからなることを特徴とする請求項1又は2に記載の有機物質の熱分解方法。 The pyrolysis of the organic substance according to claim 1 or 2, characterized in that a part or all of the carrier gas for the particulate organic substance is composed of a gas that becomes a gasifying agent for the particulate organic substance in the fluidized bed (3). Method.
  4.  熱分解炉に設けられた吹き込み口(2)の内径Dと、流動層(3)下端位置から吹き込み口(2)の下端位置までの高さhと、流動媒体静止高さLが、下記(1)式を満足することを特徴とする請求項1~3のいずれかに記載の有機物質の熱分解方法。
     3D≦h≦L/3  …(1)
    The inner diameter D of the blowing port (2) provided in the pyrolysis furnace, the height h from the lower end position of the fluidized bed (3) to the lower end position of the blowing port (2), and the stationary height L of the fluid medium are as follows ( The method for pyrolyzing an organic substance according to any one of claims 1 to 3, wherein the formula (1) is satisfied.
    3D ≦ h ≦ L / 3 (1)
  5.  流動媒体が製鉄所発生ダストからなることを特徴とする請求項1~4のいずれかに記載の有機物質の熱分解方法。 The method for thermally decomposing an organic substance according to any one of claims 1 to 4, wherein the fluid medium is dust generated from a steel mill.
  6.  流動層式の熱分解炉において粒状の有機物質を熱分解し、有機物質の熱分解生成物を製造する方法であって、
     熱分解すべき粒状有機物質を、熱分解炉(1)の下部側面に設けられた吹き込み口(2)を通じて、流動層(3)の下部領域に対して斜め下向きに吹き込むことを特徴とする有機物質の熱分解生成物の製造方法。
    A method of pyrolyzing a granular organic substance in a fluidized bed type pyrolysis furnace to produce a pyrolysis product of the organic substance,
    An organic material characterized in that the granular organic material to be pyrolyzed is blown obliquely downward into the lower region of the fluidized bed (3) through the blow port (2) provided on the lower side surface of the pyrolysis furnace (1). A method for producing a thermal decomposition product of a substance.
  7.  流動層(3)の下部領域に対する粒状有機物質の吹き込み方向は、水平方向に対して下向きに25~45°の傾斜角を有することを特徴とする請求項6に記載の有機物質の熱分解生成物の製造方法。 The pyrolytic production of organic substances according to claim 6, characterized in that the blowing direction of the granular organic substances into the lower region of the fluidized bed (3) has an inclination angle of 25-45 ° downward with respect to the horizontal direction. Manufacturing method.
  8.  粒状有機物質の搬送ガスの一部又は全部は、流動層(3)内で粒状有機物質のガス化剤となるガスからなることを特徴とする請求項6又は7に記載の有機物質の熱分解生成物の製造方法。 The pyrolysis of an organic substance according to claim 6 or 7, characterized in that part or all of the carrier gas for the granular organic substance comprises a gas that becomes a gasifying agent for the granular organic substance in the fluidized bed (3). Product manufacturing method.
  9.  熱分解炉に設けられた吹き込み口(2)の内径Dと、流動層(3)下端位置から吹き込み口(2)の下端位置までの高さhと、流動媒体静止高さLが、下記(1)式を満足することを特徴とする請求項6~8のいずれかに記載の有機物質の熱分解生成物の製造方法。
     3D≦h≦L/3  …(1)
    The inner diameter D of the blowing port (2) provided in the pyrolysis furnace, the height h from the lower end position of the fluidized bed (3) to the lower end position of the blowing port (2), and the stationary height L of the fluid medium are as follows ( The method for producing a thermal decomposition product of an organic substance according to any one of claims 6 to 8, wherein the formula (1) is satisfied.
    3D ≦ h ≦ L / 3 (1)
  10.  流動媒体が製鉄所発生ダストからなることを特徴とする請求項6~9のいずれかに記載の有機物質の熱分解生成物の製造方法。 The method for producing a thermal decomposition product of an organic substance according to any one of claims 6 to 9, wherein the fluid medium is dust generated from a steel mill.
  11.  有機物質を熱分解するための流動層式の熱分解炉であって、
     炉体の下部側面に、炉内に形成される流動層の下部領域に対して粒状有機物質を斜め下向きに吹き込む吹き込み口(2)を有することを特徴とする有機物質の熱分解炉。
    A fluidized bed type pyrolysis furnace for pyrolyzing organic substances,
    An organic substance pyrolysis furnace characterized by having an inlet (2) for injecting granular organic substance obliquely downward into a lower region of a fluidized bed formed in the furnace on a lower side surface of the furnace body.
  12.  吹き込み口(2)からの流動層の下部領域に対する粒状有機物質の吹き込み方向は、水平方向に対して下向きに25~45°の傾斜角を有することを特徴とする請求項11に記載の有機物質の熱分解炉。 The organic substance according to claim 11, wherein the blowing direction of the granular organic substance from the blowing port (2) to the lower region of the fluidized bed has an inclination angle of 25 to 45 ° downward with respect to the horizontal direction. Pyrolysis furnace.
  13.  吹込み口(2)に吹込み管(8)が接続され、該吹込み管(8)に粒状有機物質の気体搬送用の供給管(9)が接続されていることを特徴とする請求項11又は12に記載の有機物質の熱分解炉。 A blow pipe (8) is connected to the blow inlet (2), and a supply pipe (9) for gas transportation of particulate organic substances is connected to the blow pipe (8). A pyrolysis furnace for organic substances according to 11 or 12.
  14.  吹き込み口(2)の内径Dと、流動層の下端位置から吹き込み口(2)の下端位置までの高さhと、流動媒体静止高さLが、下記(1)式を満足することを特徴とする請求項11~13のいずれかに記載の有機物質の熱分解炉。
     3D≦h≦L/3  …(1)
    The inner diameter D of the blowing port (2), the height h from the lower end position of the fluidized bed to the lower end position of the blowing port (2), and the fluid medium stationary height L satisfy the following formula (1). The organic substance pyrolysis furnace according to any one of claims 11 to 13.
    3D ≦ h ≦ L / 3 (1)
PCT/JP2015/005557 2014-11-11 2015-11-05 Method of pyrolysis of organic substances, method for producing pyrolysate of organic substances, and furnace for pyrolysis of organic substances WO2016075912A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016503253A JPWO2016075912A1 (en) 2014-11-11 2015-11-05 Organic substance thermal decomposition method, organic substance thermal decomposition product manufacturing method, and organic substance thermal decomposition furnace

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-229349 2014-11-11
JP2014229349 2014-11-11

Publications (1)

Publication Number Publication Date
WO2016075912A1 true WO2016075912A1 (en) 2016-05-19

Family

ID=55954015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005557 WO2016075912A1 (en) 2014-11-11 2015-11-05 Method of pyrolysis of organic substances, method for producing pyrolysate of organic substances, and furnace for pyrolysis of organic substances

Country Status (3)

Country Link
JP (1) JPWO2016075912A1 (en)
TW (1) TW201623390A (en)
WO (1) WO2016075912A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020037679A (en) * 2018-08-30 2020-03-12 Jfeスチール株式会社 Thermal decomposing method of organic material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05295372A (en) * 1992-04-17 1993-11-09 Mitsui Eng & Shipbuild Co Ltd Thermal cracking of coal
JPH06240266A (en) * 1993-02-17 1994-08-30 Ishikawajima Harima Heavy Ind Co Ltd Gasifier
JP2006131820A (en) * 2004-11-09 2006-05-25 Ishikawajima Harima Heavy Ind Co Ltd Fluidized bed gasifying method and apparatus
JP2008208259A (en) * 2007-02-27 2008-09-11 Ihi Corp Fuel gasification apparatus
WO2010021010A1 (en) * 2008-08-20 2010-02-25 株式会社Ihi Fuel gasification system
JP2014037524A (en) * 2012-07-18 2014-02-27 Jfe Steel Corp Method for reducing molecule of organic substance

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05295372A (en) * 1992-04-17 1993-11-09 Mitsui Eng & Shipbuild Co Ltd Thermal cracking of coal
JPH06240266A (en) * 1993-02-17 1994-08-30 Ishikawajima Harima Heavy Ind Co Ltd Gasifier
JP2006131820A (en) * 2004-11-09 2006-05-25 Ishikawajima Harima Heavy Ind Co Ltd Fluidized bed gasifying method and apparatus
JP2008208259A (en) * 2007-02-27 2008-09-11 Ihi Corp Fuel gasification apparatus
WO2010021010A1 (en) * 2008-08-20 2010-02-25 株式会社Ihi Fuel gasification system
JP2014037524A (en) * 2012-07-18 2014-02-27 Jfe Steel Corp Method for reducing molecule of organic substance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020037679A (en) * 2018-08-30 2020-03-12 Jfeスチール株式会社 Thermal decomposing method of organic material

Also Published As

Publication number Publication date
JPWO2016075912A1 (en) 2017-04-27
TW201623390A (en) 2016-07-01

Similar Documents

Publication Publication Date Title
CN102212398B (en) Method for endothermic coal-gasification
JP6227293B2 (en) Method for reducing the molecular weight of organic substances
US8518134B2 (en) Method and device for the entrained-flow gasification of solid fuels under pressure
KR102203125B1 (en) Second stage gasifier in staged gasification
AU2006201957B2 (en) Process and plant for producing char and fuel gas
KR102054353B1 (en) Process and device for fixed-bed pressure gasification of solid fuels
JP5999114B2 (en) Method and system for reducing the molecular weight of organic substances
JP6070580B2 (en) Method and system for reducing the molecular weight of organic substances
AU2008252051B2 (en) Process and plant for producing char and fuel gas
CN101845326B (en) Spiral-flow melting pond gasifier
JP6172532B2 (en) Low molecular weight treatment of organic substances and waste treatment method
JP5598423B2 (en) Method for producing pre-reduced agglomerates
JP6237788B2 (en) Method for thermally decomposing organic substance and method for producing pyrolyzed product of organic substance
JP2023541204A (en) Methods, processes, and systems for producing hydrogen from waste, biological waste, and biomass
WO2016075912A1 (en) Method of pyrolysis of organic substances, method for producing pyrolysate of organic substances, and furnace for pyrolysis of organic substances
JP2000319671A (en) Operation control method of two-stage waste gasification system waste
KR102328389B1 (en) Apparatus for manufacturing molten irons and method for manufacturing the same
JPH08209155A (en) Process for gasifying hardly slurriable solid carbonaceous material by simultaneous gasification by dry-and wet-feed systems
JP6809493B2 (en) Pyrolysis method and equipment for organic substances
JP2018039989A (en) Method for manufacturing organic material low molecule and system for making organic material low molecule
JP3941196B2 (en) Waste gasification method and apparatus
JP5929491B2 (en) Effective utilization of oil palm core
AU2015101614A4 (en) Device for fixed-bed gasification of solid fuels
WO2018043343A1 (en) Method for reducing molecular weight of organic substance, and system for reducing molecular weight of organic substance
JP2012145272A (en) Waste gasification melting treatment method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016503253

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15858542

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15858542

Country of ref document: EP

Kind code of ref document: A1