WO2016075766A1 - Machine tool - Google Patents

Machine tool Download PDF

Info

Publication number
WO2016075766A1
WO2016075766A1 PCT/JP2014/079922 JP2014079922W WO2016075766A1 WO 2016075766 A1 WO2016075766 A1 WO 2016075766A1 JP 2014079922 W JP2014079922 W JP 2014079922W WO 2016075766 A1 WO2016075766 A1 WO 2016075766A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
main shaft
drive device
axis direction
tool
Prior art date
Application number
PCT/JP2014/079922
Other languages
French (fr)
Japanese (ja)
Inventor
長戸一義
鈴山惠史
古川和也
水田賢治
Original Assignee
富士機械製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士機械製造株式会社 filed Critical 富士機械製造株式会社
Priority to PCT/JP2014/079922 priority Critical patent/WO2016075766A1/en
Priority to JP2016558484A priority patent/JP6745725B2/en
Publication of WO2016075766A1 publication Critical patent/WO2016075766A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B3/00General-purpose turning-machines or devices, e.g. centre lathes with feed rod and lead screw; Sets of turning-machines
    • B23B3/06Turning-machines or devices characterised only by the special arrangement of constructional units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members

Definitions

  • the present invention relates to a machine tool having a small machine width dimension.
  • Patent Document 1 and Patent Document 2 disclose two-axis machine tools with reduced machine width dimensions.
  • All machine tools are configured such that the Z-axis direction, which is the axial direction of the main shaft, is horizontal and the front-rear direction toward the operator, and the X-axis direction orthogonal thereto is a vertical vertical direction.
  • side walls functioning as columns are provided on both sides in the width direction, feed guides are formed at the upper end portion and the front end portion of the side walls, and feed mechanisms are provided respectively.
  • the headstock is configured to move in the front-rear direction on the upper end portion of the side wall
  • the tool stand is configured to move in the up-down direction on the front end portion of the side wall.
  • the machine tool of Patent Document 2 is provided with a gate-shaped column having a support fixed on two pillars, and the main spindle is configured to move in the front-rear direction below the support. Is configured to move up and down on the front surface of the support.
  • the machine tool described above has a small machine width dimension by a horizontal Z-axis in the longitudinal direction and a vertical X-axis in the vertical direction.
  • the headstock is sandwiched from the left and right by the column, and the headstock moves in the Z-axis direction at that position, so that it can be held by the main spindle as much as the machine width is reduced.
  • the work that is, the work that can be processed has become smaller. Accordingly, the size of work that can be machined has been limited with the miniaturization of machine tools.
  • an object of the present invention is to provide a machine tool capable of processing a workpiece that is larger than the width of the machine in order to solve such a problem.
  • a machine tool includes a movable bed movable on the base in the front-rear direction, a spindle provided so that an axial direction thereof is a front-rear direction with respect to the spindle base fixed to the movable bed, A tool table that is located on the front side of the main shaft and includes a tool for machining a workpiece held on the main shaft, a Z-axis direction parallel to the axial direction of the main shaft, and a direction orthogonal to the Z-axis direction.
  • a drive device that moves the tool table in the X-axis direction that is the vertical direction, the drive device is installed on the movable bed, and is disposed above the main shaft, and the tool A Z-axis drive device that supports the base and moves in the Z-axis direction, and an X-axis drive that is disposed on one side in the left-right width direction of the main shaft and moves the Z-axis drive device in the X-axis direction above the main shaft Device.
  • the headstock having the main shaft is fixed to the movable bed, and the movement of the tool table with respect to the workpiece held on the main shaft is performed by the driving device installed on the movable bed.
  • the drive device the tool table supported by the Z-axis drive device is moved in the Z-axis direction by the Z-axis drive device arranged above the main shaft, and is arranged on one side in the left-right width direction of the main shaft.
  • the X-axis drive device moves the tool table in the X-axis direction together with the Z-axis drive device that moves above the main shaft. Therefore, since the drive device is configured to operate above the main shaft, it is possible to process a workpiece larger than the machine width dimension while reducing the machine width dimension.
  • FIG. 2 is a perspective view showing a relationship between a machining module, which is an internal structure of the machine tool, and a base. It is the perspective view which showed the process module. It is the figure which showed the left side surface seen from the front about the drive device of a process module. It is the front view which showed the inside of the cover of a machine tool. It is the figure which looked at the cover inside of the machine tool from the front, Comprising: It is the figure which showed the relationship between a workpiece
  • FIG. 1 is a perspective view showing a processing machine line configured by arranging a plurality of machine tools according to the present embodiment.
  • the six machine tools 5 are mounted on a base 2 serving as a base.
  • the six machine tools 5 are all NC lathes of the same type, and have the same outer shape and dimensions.
  • Each machine tool 5 is covered with an exterior cover 6, and a processing chamber closed for each machine tool 5 is formed inside the machine tool 5.
  • one work transfer chamber is constituted by the front cover 7, and a work transfer device for delivering the work to and from each machine tool 5 is installed therein.
  • FIG. 2 is a perspective view showing a processing module that is an internal structure of the machine tool 5.
  • a state where the processing module 10 is placed on the carriage 100 and pulled out to the rear of the base 2 is shown.
  • a processing module 10 is mounted on the base 2, and is covered with an exterior cover 6 as shown in FIG.
  • the base 2 is provided with two rails 201 according to the width of the processing module 10.
  • the processing module 10 is configured on a movable bed 16 having wheels, and is movable in the front-rear direction on the base 2 along the rail 201. Note that the machine tool 5 can move not only the processing module 10 but also the exterior cover 6 and the processing module 10 as one body.
  • the machine tool 5 is movable in the front-rear direction with respect to the base 2. Therefore, by moving the target machine tool 5 in the front-rear direction, operations such as maintenance and replacement can be performed without being affected by the adjacent machine tool 5.
  • FIG. 3 is a perspective view showing the processing module 10.
  • FIG. 4 is a view showing the left side surface of the driving device of the processing module 10 as viewed from the front of the machine tool 5.
  • the processing module 10 is a turret lathe including a tool base 131 on which a rotary tool such as an end mill or a drill or a cutting tool such as a cutting tool is mounted. Therefore, the machining module 10 includes a headstock 12 having a chuck 11 for holding and holding a workpiece W, a turret device 13 having a tool base 131, and a Z-axis drive for moving the turret device 13 along the Z-axis and the X-axis.
  • An apparatus, an X-axis drive device, a machining control device 15 for controlling each drive device, and the like are provided.
  • the Z-axis is a horizontal axis parallel to the rotation axis (main axis) of the headstock 12 that rotates the workpiece W.
  • the X axis is a movement axis that is orthogonal to the Z axis and moves the tool of the turret device 13 forward and backward with respect to the Z axis, and is a vertical vertical direction in this embodiment.
  • the left-right width direction of the processing module 10 orthogonal to the main axis is the Y-axis direction.
  • the front-rear direction of the machine tool 5 is the Z-axis direction
  • the width direction in which a plurality of machine tools 5 are arranged is the Y-axis direction.
  • the vertical vertical direction is the X-axis direction.
  • the processing module 10 is configured by the movable bed 16 movable on the base 2 as described above.
  • the movable bed 16 is a support base provided with wheels, and the headstock 12 is fixed on the movable bed 16.
  • the headstock 12 has a chuck 11 and a driven pulley 17 formed integrally with a main shaft that is rotatably supported.
  • a spindle servomotor 18 is disposed above the spindle stock 12 and a driving pulley 19 is fixed to the rotating shaft.
  • a V-belt 20 is stretched between the main pulley 19 and the driven pulley 17, and the rotation of the main shaft servomotor 18 is transmitted to the main shaft 12.
  • the turret device 13 is first configured integrally with the Z-axis slide 22 and mounted on the X-axis slide 32 together with the Z-axis slide 22. ing.
  • the Z-axis slide 22 is configured to be movable in the horizontal Z-axis direction by sliding in the Z-axis guide 21 fixed to the X-axis slide 32.
  • the Z-axis guide 21 and the Z-axis slide 22 are located above the headstock 12 and the spindle servomotor 18 and are disposed at positions that overlap when viewed in the vertical direction.
  • the Z-axis drive device employs a ball screw drive system that converts the rotation output of the Z-axis servomotor 23 into a straight motion.
  • a support frame 24 is fixed to the rear side of the Z-axis guide 21, and a screw shaft 25 is rotatably supported by a bearing 241 of the support frame 24.
  • the screw shaft 25 is screwed into a non-rotating nut provided in the Z-axis slide 22.
  • the Z-axis servomotor 23 is disposed above the bearing 241, and a V-belt 26 is stretched over the screw shaft 25 via a mutual pulley. Therefore, the Z-axis drive device is configured such that the screw shaft 25 is rotated by driving the Z-axis servomotor 23, the rotational motion is converted into the linear motion of the nut, and the Z-axis slide 22 is moved in the Z-axis direction. ing.
  • a column 31 disposed adjacent to the headstock 12 adjacent to the Y-axis direction is fixed to the movable bed 16.
  • the column 31 is a support member for the entire drive device including the Z-axis drive device.
  • the column 31 is integrally formed with the headstock 12 and is fixed on the movable bed 16.
  • the column 31 is provided with two guides 311 in the vertical direction on the headstock 12 side, and an X-axis slide 32 is slidably attached to the guide 311.
  • a ball screw drive system that converts the rotation output of the X-axis servomotor 33 into the up-and-down motion is also adopted in the X-axis drive device.
  • the column 31 supports a screw shaft 35 disposed in the vertical direction so as to be rotatable.
  • the upper and lower ends of the screw shaft 35 are supported by bearings 315 and 316, and a non-rotating nut provided in the X-axis slide 32 is screwed therebetween.
  • An X-axis servomotor 33 is fixed to the upper portion of the column 31, and a V-belt 36 is stretched around the screw shaft 35 via a pulley. Therefore, the X-axis drive device is configured such that the screw shaft 35 is rotated by driving the X-axis servomotor 33, the rotational motion is converted into the linear motion of the nut, and the X-axis slide 32 is moved up and down in the X-axis direction. ing.
  • FIG. 5 is a front view showing the inside of the cover of the machine tool 5.
  • the processing module 10 is covered with an exterior cover 6.
  • the turret device 13 including the tool base 131 and the chuck 11 that holds the workpiece W are positioned up and down.
  • the center of the chuck 11, that is, the rotation axis O of the main shaft is located substantially in the center as viewed in the width direction of the exterior cover 6.
  • a column 31 is arranged on the right side behind the chuck 11 and the turret device 13 and stands along the side wall of the exterior cover 6.
  • An X-axis servomotor 33 is provided above the column 31, and a bearing 315 (not shown) (see FIG. 4) is located inside the X-axis servomotor 33. Further, a Z-axis guide 21 is overlapped behind the turret device 13, and a Z-axis servomotor 23 is located above the Z-axis guide 21.
  • the workpiece W held on the chuck 11 is processed, for example, as follows.
  • the tool mounted on the tool table 131 is selected by the turning index of the turret device 13.
  • the X-axis servomotor 33 is driven to rotate the screw shaft 35, and the rotational motion is converted into the up-and-down motion of the X-axis slide 32 via the nut. Therefore, positioning in the X-axis direction is performed so that the tip of the cutting tool is aligned with the height of the processed portion of the workpiece W.
  • the Z-axis servomotor 23 is driven to rotate the screw shaft 25, and the rotational motion is converted into a horizontal linear motion of the Z-axis slide 22 via the nut.
  • the workpiece W is rotated by driving the spindle servomotor 18, and the position of the cutting tool is controlled in the Z-axis direction with respect to the workpiece W to perform boring or the like.
  • FIG. 6 is a front view showing the inside of the cover of the machine tool 5 and showing the relationship between the workpiece size and the machine width.
  • the machine width B1 of the machine tool 5 is the distance between the outer surfaces of the left and right side walls of the exterior cover 6.
  • the width dimension (B1) of the exterior cover 6 substantially matches the width dimension of the movable bed 16 on which the processing module 10 is mounted. It is formed in size. Therefore, in order to reduce the machine width B1 of the machine tool 5, it is necessary to reduce the width of the movable bed 16.
  • the dimension of the machine width B1 results in a smaller workable workpiece as in the conventional example.
  • the workpiece W shown in FIG. 5 has a maximum diameter that can be processed by the machine tool 5, and the workpiece diameter is B2.
  • the dimension of the machine width B1 is slightly less than 1.5 times the workpiece diameter B2.
  • the machine width B1 is about 445 mm, while the workpiece diameter B2 is 300 mm.
  • the dimension of the machine width B1 could be 1.5 times or less of the workpiece diameter B2. That is, the work W that can be processed was increased while the size of the machine width B1 of the machine tool 5 was reduced.
  • the headstock 12 is fixed to the movable bed 16, and the drive device that moves the tool relative to the work W is configured to operate above the headstock 12.
  • the column 31 which is the structural main body of the drive device is formed integrally with the head stock 12 and is disposed very close to the head stock 12 adjacent to the Y axis direction.
  • the headstock 12 and the column 31 are extremely close to each other, and further, that the headstock 12 and the column 31 are integrally configured and fixed to the movable bed 16 from the column 31. Since the distance to the tool is extremely short, even if the drive device has a cantilever support structure, the drive device has sufficient rigidity against the reaction force received during processing. In other words, since it is not necessary to provide an excessively strong structure in order to obtain rigidity, the machine width can be reduced in this respect as well. Furthermore, the machine tool 5 is extremely effective for operations such as maintenance and replacement because the machining module 10 is mounted on the movable bed 16 and moves back and forth on the base 2.
  • the headstock 12 and the column 31 are integrally configured, but may be configured to be separately fixed to the movable base 16 as long as the close positional relationship is maintained.
  • the machine tool is not limited to the turret lathe shown in the embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Machine Tool Units (AREA)
  • Turning (AREA)

Abstract

The tool is provided with: a movable bed (16) capable of moving in the longitudinal direction on a base (2); a main shaft arranged such that the axial direction thereof with respect to a main shaft stage (12) fastened to the movable bed (16) is the longitudinal direction; a tool stage (131) located to the front side of the main shaft and provided with a tool for machining a workpiece (W) held by the main shaft; a Z-axis direction drive device (21, 22, 23 … ) which has a drive device for moving the tool stage (131) in a Z-axis direction parallel to the axial direction of the main shaft, and in an X-axis direction which is a vertical direction and orthogonal to the Z-axis direction, the drive device beng installed on the movable bed (16), and which is arranged above the main shaft and supports and moves the tool stage (131) in the Z-axis direction; and an X-axis drive device (31, 32, 33 … ) arranged to one side of the main shaft in the lateral widthwise direction, for moving the Z-axis direction drive device in the X-axis direction above the main shaft.

Description

工作機械Machine Tools
 本発明は、機械幅の寸法が小さい工作機械に関する。 The present invention relates to a machine tool having a small machine width dimension.
 工作機械には幅方向の寸法を抑えたコンパクトなものが種々提案されており、下記の特許文献1及び特許文献2には、機械幅の寸法を小さくした2軸の工作機械が開示されている。いずれの工作機械も、主軸の軸線方向であるZ軸方向が水平方向で且つ作業者に向かって前後方向になるように構成され、それに直交するX軸方向が鉛直な上下方向になるように構成されている。特許文献1の工作機械は、コラムとして機能する側壁が幅方向両側に設けられており、側壁の上端部及び前端部に送りガイドが形成され、それぞれに送り機構が設けられている。そのため、主軸台が側壁の上端部を前後方向へ移動するように構成され、工具台などが側壁の前端部を上下方向に移動するように構成されている。一方、特許文献2の工作機械は、2つの支柱の上に支持体が固定された門型のコラムが設けられ、主軸台が支持体の下部を前後方向へ移動するように構成され、工具台が支持体の前面部を上下方向に移動するように構成されている。 Various compact machine tools with reduced dimensions in the width direction have been proposed, and the following Patent Document 1 and Patent Document 2 disclose two-axis machine tools with reduced machine width dimensions. . All machine tools are configured such that the Z-axis direction, which is the axial direction of the main shaft, is horizontal and the front-rear direction toward the operator, and the X-axis direction orthogonal thereto is a vertical vertical direction. Has been. In the machine tool of Patent Document 1, side walls functioning as columns are provided on both sides in the width direction, feed guides are formed at the upper end portion and the front end portion of the side walls, and feed mechanisms are provided respectively. Therefore, the headstock is configured to move in the front-rear direction on the upper end portion of the side wall, and the tool stand is configured to move in the up-down direction on the front end portion of the side wall. On the other hand, the machine tool of Patent Document 2 is provided with a gate-shaped column having a support fixed on two pillars, and the main spindle is configured to move in the front-rear direction below the support. Is configured to move up and down on the front surface of the support.
特開2007-144529号公報JP 2007-144529 A 特開2010-179418号公報JP 2010-179418 A
 前述した工作機械は、水平な前後方向のZ軸と鉛直な上下方向のX軸とによって、その機械幅の寸法が小さく構成されている。しかし従来の工作機械は、主軸台がコラムによって左右から挟み込まれ、その位置で主軸台がZ軸方向に移動する構成であるため、機械幅が小さくなった分だけ主軸によって保持することが可能なワーク、すなわち加工可能なワークが小さくなってしまっている。従って、工作機械が小型化されたことに伴って加工可能なワークのサイズが制限されてしまっていた。 The machine tool described above has a small machine width dimension by a horizontal Z-axis in the longitudinal direction and a vertical X-axis in the vertical direction. However, in the conventional machine tool, the headstock is sandwiched from the left and right by the column, and the headstock moves in the Z-axis direction at that position, so that it can be held by the main spindle as much as the machine width is reduced. The work, that is, the work that can be processed has become smaller. Accordingly, the size of work that can be machined has been limited with the miniaturization of machine tools.
 そこで、本発明は、かかる課題を解決すべく、機械幅の寸法に比して大きなワークの加工が可能な工作機械を提供することを目的とする。 Therefore, an object of the present invention is to provide a machine tool capable of processing a workpiece that is larger than the width of the machine in order to solve such a problem.
 本発明の一態様における工作機械は、ベース上を前後方向に移動可能な可動ベッドと、前記可動ベッドに固定された主軸台に対して軸線方向が前後方向になるように設けられた主軸と、前記主軸の前方側に位置し、前記主軸に保持されたワークを加工するための工具を備えた工具台と、前記主軸の軸線方向と平行なZ軸方向と、そのZ軸方向に直交して且つ上下方向であるX軸方向とに前記工具台を移動させる駆動装置とを有し、前記駆動装置は、前記可動ベッド上に設置されたものであり、前記主軸の上方に配置され、前記工具台を支持してZ軸方向に移動させるZ軸駆動装置と、前記主軸の左右幅方向の一方側に配置され、前記主軸の上方で前記Z軸駆動装置をX軸方向に移動させるX軸駆動装置とを備えたものである。 A machine tool according to an aspect of the present invention includes a movable bed movable on the base in the front-rear direction, a spindle provided so that an axial direction thereof is a front-rear direction with respect to the spindle base fixed to the movable bed, A tool table that is located on the front side of the main shaft and includes a tool for machining a workpiece held on the main shaft, a Z-axis direction parallel to the axial direction of the main shaft, and a direction orthogonal to the Z-axis direction. And a drive device that moves the tool table in the X-axis direction that is the vertical direction, the drive device is installed on the movable bed, and is disposed above the main shaft, and the tool A Z-axis drive device that supports the base and moves in the Z-axis direction, and an X-axis drive that is disposed on one side in the left-right width direction of the main shaft and moves the Z-axis drive device in the X-axis direction above the main shaft Device.
 本発明によれば、主軸を備えた主軸台が可動ベッドに固定され、その主軸に保持されたワークに対する工具台の移動が、可動ベッド上に設置された駆動装置によって行われる。その駆動装置によれば、Z軸駆動装置に支持された工具台が、主軸の上方に配置された当該Z軸駆動装置によりZ軸方向に移動し、主軸の左右幅方向の一方側に配置されたX軸駆動装置により、主軸の上方で移動するZ軸駆動装置とともに工具台がX軸方向に移動する。よって、駆動装置が主軸の上方で作動する構成であるため、機械幅の寸法を小さくしつつ、その機械幅の寸法に比して大きなワークを加工できる。 According to the present invention, the headstock having the main shaft is fixed to the movable bed, and the movement of the tool table with respect to the workpiece held on the main shaft is performed by the driving device installed on the movable bed. According to the drive device, the tool table supported by the Z-axis drive device is moved in the Z-axis direction by the Z-axis drive device arranged above the main shaft, and is arranged on one side in the left-right width direction of the main shaft. The X-axis drive device moves the tool table in the X-axis direction together with the Z-axis drive device that moves above the main shaft. Therefore, since the drive device is configured to operate above the main shaft, it is possible to process a workpiece larger than the machine width dimension while reducing the machine width dimension.
複数の工作機械からなる加工機械ラインを示した斜視図である。It is the perspective view which showed the processing machine line which consists of a some machine tool. 工作機械の一実施形態であって、その内部構造である加工モジュールとベースとの関係を示した斜視図である。FIG. 2 is a perspective view showing a relationship between a machining module, which is an internal structure of the machine tool, and a base. 加工モジュールを示した斜視図である。It is the perspective view which showed the process module. 加工モジュールの駆動装置について、正面から見た左側側面を示した図である。It is the figure which showed the left side surface seen from the front about the drive device of a process module. 工作機械のカバー内部を示した正面図である。It is the front view which showed the inside of the cover of a machine tool. 工作機械のカバー内部を正面から見た図であって、ワークサイズと機械幅との関係を示した図である。It is the figure which looked at the cover inside of the machine tool from the front, Comprising: It is the figure which showed the relationship between a workpiece | work size and a machine width.
 次に、本発明に係る工作機械の一実施形態について図面を参照しながら以下に説明する。図1は、本実施形態の工作機械を複数並べて構成された加工機械ラインを示した斜視図である。加工機械ライン1は、基礎となるベース2の上に6台の工作機械5が搭載されている。6台の工作機械5はいずれも同じ型のNC旋盤であり、外形形状や寸法が揃えられている。各工作機械5は、外装カバー6によって覆われ、その内部には工作機械5ごとに閉じられた加工室が構成されている。そして前方には、前カバー7によって一つのワーク搬送室が構成され、その中には、各工作機械5とワークの受渡しを行うワーク搬送装置が設置されている。 Next, an embodiment of a machine tool according to the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view showing a processing machine line configured by arranging a plurality of machine tools according to the present embodiment. In the processing machine line 1, six machine tools 5 are mounted on a base 2 serving as a base. The six machine tools 5 are all NC lathes of the same type, and have the same outer shape and dimensions. Each machine tool 5 is covered with an exterior cover 6, and a processing chamber closed for each machine tool 5 is formed inside the machine tool 5. In the front, one work transfer chamber is constituted by the front cover 7, and a work transfer device for delivering the work to and from each machine tool 5 is installed therein.
 図2は、工作機械5の内部構造である加工モジュールを示した斜視図である。この図では、加工モジュール10が台車100に載せられてベース2の後方へ引き出された状態が示されている。工作機械5は、ベース2の上に加工モジュール10が搭載され、図1に示すように外装カバー6によって覆われている。図2では、1台の加工モジュール10しか示されていないが、ベース2は、2台の加工モジュール10が搭載可能である。そのためベース2は、加工モジュール10の幅に合わせてレール201が2本ずつ設けられている。加工モジュール10は、車輪を備えた可動ベッド16上に構成され、レール201に沿ってベース2上を前後方向に移動可能である。なお、工作機械5は、加工モジュール10だけではなく、外装カバー6と加工モジュール10とが一体となった移動も可能である。 FIG. 2 is a perspective view showing a processing module that is an internal structure of the machine tool 5. In this figure, a state where the processing module 10 is placed on the carriage 100 and pulled out to the rear of the base 2 is shown. In the machine tool 5, a processing module 10 is mounted on the base 2, and is covered with an exterior cover 6 as shown in FIG. Although only one processing module 10 is shown in FIG. 2, two processing modules 10 can be mounted on the base 2. Therefore, the base 2 is provided with two rails 201 according to the width of the processing module 10. The processing module 10 is configured on a movable bed 16 having wheels, and is movable in the front-rear direction on the base 2 along the rail 201. Note that the machine tool 5 can move not only the processing module 10 but also the exterior cover 6 and the processing module 10 as one body.
 図1の加工機械ライン1は、3台のベース2が幅方向に近接して並べられ、その上に搭載された工作機械5も隣同士が極めて近接して配置されている。従って、図1に示す状態では、外装カバー6内の加工モジュール10のメンテナンスなどが困難である。しかし、前述したように本実施形態では工作機械5がベース2に対して前後方向に移動可能である。そのため、対象となる工作機械5を前後方向に移動させることで、隣の工作機械5の影響を受けずにメンテナンスや交換などの作業を行うことができる。 In the processing machine line 1 in FIG. 1, three bases 2 are arranged close to each other in the width direction, and machine tools 5 mounted thereon are also arranged very close to each other. Therefore, in the state shown in FIG. 1, it is difficult to maintain the processing module 10 in the exterior cover 6. However, as described above, in this embodiment, the machine tool 5 is movable in the front-rear direction with respect to the base 2. Therefore, by moving the target machine tool 5 in the front-rear direction, operations such as maintenance and replacement can be performed without being affected by the adjacent machine tool 5.
 図3は、加工モジュール10を示した斜視図である。また、図4は、加工モジュール10の駆動装置について、工作機械5の正面から見た左側側面を示した図である。この加工モジュール10は、エンドミルやドリルなどの回転工具、或いはバイトなどの切削工具を装着した工具台131を備えるタレット旋盤である。そのため加工モジュール10は、ワークWを掴んで保持するチャック11を備えた主軸台12、工具台131を備えたタレット装置13、そのタレット装置13をZ軸やX軸に沿って移動させるZ軸駆動装置やX軸駆動装置および、各駆動装置を制御するための加工制御装置15などを備えている。 FIG. 3 is a perspective view showing the processing module 10. FIG. 4 is a view showing the left side surface of the driving device of the processing module 10 as viewed from the front of the machine tool 5. The processing module 10 is a turret lathe including a tool base 131 on which a rotary tool such as an end mill or a drill or a cutting tool such as a cutting tool is mounted. Therefore, the machining module 10 includes a headstock 12 having a chuck 11 for holding and holding a workpiece W, a turret device 13 having a tool base 131, and a Z-axis drive for moving the turret device 13 along the Z-axis and the X-axis. An apparatus, an X-axis drive device, a machining control device 15 for controlling each drive device, and the like are provided.
 ここで、Z軸は、ワークWを回転させる主軸台12の回転軸(主軸)と平行な水平軸である。また、X軸は、Z軸に対して直交し、タレット装置13の工具をZ軸に対して進退させる移動軸であり、本実施形態では鉛直な上下方向である。そして、主軸に直交する加工モジュール10の左右幅方向がY軸方向である。図1に対応させてみれば、工作機械5の前後方向がZ軸方向であり、工作機械5が複数並んだ幅方向がY軸方向である。そして鉛直な上下方向がX軸方向である。 Here, the Z-axis is a horizontal axis parallel to the rotation axis (main axis) of the headstock 12 that rotates the workpiece W. The X axis is a movement axis that is orthogonal to the Z axis and moves the tool of the turret device 13 forward and backward with respect to the Z axis, and is a vertical vertical direction in this embodiment. And the left-right width direction of the processing module 10 orthogonal to the main axis is the Y-axis direction. When corresponding to FIG. 1, the front-rear direction of the machine tool 5 is the Z-axis direction, and the width direction in which a plurality of machine tools 5 are arranged is the Y-axis direction. The vertical vertical direction is the X-axis direction.
 加工モジュール10は、前述したようにベース2の上を移動可能な可動ベッド16に構成されている。可動ベッド16は車輪を備えた支持台であり、その可動ベッド16上に主軸台12が固定されている。主軸台12は、回転自在に支持された主軸に対してチャック11と従動プーリ17とが一体に形成されている。その主軸台12の上方位置には主軸用サーボモータ18が配置され、その回転軸に主動プーリ19が固定されている。そして、主動プーリ19と従動プーリ17とにVベルト20が掛け渡され、主軸用サーボモータ18の回転が主軸台12へと伝達されるようになっている。 The processing module 10 is configured by the movable bed 16 movable on the base 2 as described above. The movable bed 16 is a support base provided with wheels, and the headstock 12 is fixed on the movable bed 16. The headstock 12 has a chuck 11 and a driven pulley 17 formed integrally with a main shaft that is rotatably supported. A spindle servomotor 18 is disposed above the spindle stock 12 and a driving pulley 19 is fixed to the rotating shaft. A V-belt 20 is stretched between the main pulley 19 and the driven pulley 17, and the rotation of the main shaft servomotor 18 is transmitted to the main shaft 12.
 次に、工具をZ軸方向及びX軸方向に移動させる駆動装置は、先ずタレット装置13がZ軸スライド22に対して一体的に構成され、そのZ軸スライド22とともにX軸スライド32に搭載されている。Z軸スライド22は、X軸スライド32に固定されたZ軸ガイド21内を摺動することにより、水平なZ軸方向に移動自在な構成となっている。そのZ軸ガイド21およびZ軸スライド22は、主軸台12及び主軸用サーボモータ18の上方にあり、上下方向に見た場合に重なる位置に配置されている。そして、Z軸駆動装置は、Z軸スライド22をZ軸方向に移動させるため、Z軸用サーボモータ23の回転出力を直進運動に変換するボールネジ駆動方式が採用されている。 Next, in the drive device for moving the tool in the Z-axis direction and the X-axis direction, the turret device 13 is first configured integrally with the Z-axis slide 22 and mounted on the X-axis slide 32 together with the Z-axis slide 22. ing. The Z-axis slide 22 is configured to be movable in the horizontal Z-axis direction by sliding in the Z-axis guide 21 fixed to the X-axis slide 32. The Z-axis guide 21 and the Z-axis slide 22 are located above the headstock 12 and the spindle servomotor 18 and are disposed at positions that overlap when viewed in the vertical direction. In order to move the Z-axis slide 22 in the Z-axis direction, the Z-axis drive device employs a ball screw drive system that converts the rotation output of the Z-axis servomotor 23 into a straight motion.
 Z軸ガイド21には後方側に支持フレーム24が固定され、ネジ軸25が、その支持フレーム24の軸受241に回転支持されている。また、ネジ軸25は、Z軸スライド22内に設けられた非回転のナットに螺合している。Z軸サーボモータ23は、軸受241の上方に配置され、ネジ軸25に対し互いのプーリを介してVベルト26が掛け渡されている。従って、Z軸駆動装置は、Z軸用サーボモータ23の駆動によりネジ軸25が回転し、その回転運動がナットの直線運動に変換され、Z軸スライド22がZ軸方向に移動するよう構成されている。 A support frame 24 is fixed to the rear side of the Z-axis guide 21, and a screw shaft 25 is rotatably supported by a bearing 241 of the support frame 24. The screw shaft 25 is screwed into a non-rotating nut provided in the Z-axis slide 22. The Z-axis servomotor 23 is disposed above the bearing 241, and a V-belt 26 is stretched over the screw shaft 25 via a mutual pulley. Therefore, the Z-axis drive device is configured such that the screw shaft 25 is rotated by driving the Z-axis servomotor 23, the rotational motion is converted into the linear motion of the nut, and the Z-axis slide 22 is moved in the Z-axis direction. ing.
 次に、X軸駆動装置は、主軸台12のY軸方向の隣に近接して配置されたコラム31が可動ベッド16に対して固定されている。このコラム31は、前記Z軸駆動装置を含む駆動装置全体の支持部材であり、特に本実施形態では主軸台12と一体的に構成され、可動ベッド16上に固定されている。そのコラム31には主軸台12側に2本のガイド311が上下方向に設けられ、そのガイド311に対してX軸スライド32が摺動自在に取り付けられている。そして、X軸スライド32をガイド311に沿った鉛直方向に昇降させるため、X軸駆動装置にもX軸用サーボモータ33の回転出力を昇降運動に変換するボールネジ駆動方式が採用されている。 Next, in the X-axis drive device, a column 31 disposed adjacent to the headstock 12 adjacent to the Y-axis direction is fixed to the movable bed 16. The column 31 is a support member for the entire drive device including the Z-axis drive device. In particular, in this embodiment, the column 31 is integrally formed with the headstock 12 and is fixed on the movable bed 16. The column 31 is provided with two guides 311 in the vertical direction on the headstock 12 side, and an X-axis slide 32 is slidably attached to the guide 311. In order to raise and lower the X-axis slide 32 in the vertical direction along the guide 311, a ball screw drive system that converts the rotation output of the X-axis servomotor 33 into the up-and-down motion is also adopted in the X-axis drive device.
 コラム31には、鉛直方向に配置されたネジ軸35が回転可能に支持されている。ネジ軸35は、上下の両端部が軸受315,316に支持され、その間にはX軸スライド32内に設けられた非回転のナットが螺合している。コラム31の上部にはX軸用サーボモータ33が固定され、ネジ軸35に対し互いのプーリを介してVベルト36が掛け渡されている。従って、X軸駆動装置は、X軸用サーボモータ33の駆動によりネジ軸35が回転し、その回転運動がナットの直線運動に変換され、X軸スライド32がX軸方向に昇降するよう構成されている。 The column 31 supports a screw shaft 35 disposed in the vertical direction so as to be rotatable. The upper and lower ends of the screw shaft 35 are supported by bearings 315 and 316, and a non-rotating nut provided in the X-axis slide 32 is screwed therebetween. An X-axis servomotor 33 is fixed to the upper portion of the column 31, and a V-belt 36 is stretched around the screw shaft 35 via a pulley. Therefore, the X-axis drive device is configured such that the screw shaft 35 is rotated by driving the X-axis servomotor 33, the rotational motion is converted into the linear motion of the nut, and the X-axis slide 32 is moved up and down in the X-axis direction. ing.
 次に図5は、工作機械5のカバー内部を示した正面図である。工作機械5は、加工モジュール10が外装カバー6によって覆われている。図示するように、正面側から見た場合、外装カバー6の手前側には、工具台131を備えたタレット装置13と、ワークWを保持するチャック11が上下に位置している。チャック11の中心すなわち主軸の回転軸Oは、外装カバー6の幅方向見てほぼ中央に位置している。そして、チャック11やタレット装置13の後方には右側にコラム31が配置され、外装カバー6の側壁に沿って起立している。コラム31の上部にはX軸用サーボモータ33があり、その内側には不図示の軸受315(図4参照)が位置している。更に、タレット装置13の後方にはZ軸ガイド21が重なっており、Z軸ガイド21の奥には上方にZ軸サーボモータ23が位置している。 Next, FIG. 5 is a front view showing the inside of the cover of the machine tool 5. In the machine tool 5, the processing module 10 is covered with an exterior cover 6. As shown in the figure, when viewed from the front side, on the front side of the exterior cover 6, the turret device 13 including the tool base 131 and the chuck 11 that holds the workpiece W are positioned up and down. The center of the chuck 11, that is, the rotation axis O of the main shaft is located substantially in the center as viewed in the width direction of the exterior cover 6. A column 31 is arranged on the right side behind the chuck 11 and the turret device 13 and stands along the side wall of the exterior cover 6. An X-axis servomotor 33 is provided above the column 31, and a bearing 315 (not shown) (see FIG. 4) is located inside the X-axis servomotor 33. Further, a Z-axis guide 21 is overlapped behind the turret device 13, and a Z-axis servomotor 23 is located above the Z-axis guide 21.
 本実施形態の工作機械5では、チャック11に保持されたワークWに対して、例えば次のようにして加工が行われる。先ず、タレット装置13の旋回割出しによって工具台131に装着された工具が選択される。そして、X軸用サーボモータ33が駆動してネジ軸35が回転し、その回転運動がナットを介してX軸スライド32の昇降運動に変換される。よって、切削工具の先端がワークWの加工部の高さに揃うようにX軸方向の位置決めが行われる。次に、Z軸用サーボモータ23が駆動してネジ軸25が回転し、その回転運動がナットを介してZ軸スライド22の水平な直線運動に変換される。そして、ワークWは、主軸用サーボモータ18の駆動によって回転し、そのワークWに対して切削工具がZ軸方向に位置制御され、中ぐり加工などが行われる。 In the machine tool 5 of the present embodiment, the workpiece W held on the chuck 11 is processed, for example, as follows. First, the tool mounted on the tool table 131 is selected by the turning index of the turret device 13. Then, the X-axis servomotor 33 is driven to rotate the screw shaft 35, and the rotational motion is converted into the up-and-down motion of the X-axis slide 32 via the nut. Therefore, positioning in the X-axis direction is performed so that the tip of the cutting tool is aligned with the height of the processed portion of the workpiece W. Next, the Z-axis servomotor 23 is driven to rotate the screw shaft 25, and the rotational motion is converted into a horizontal linear motion of the Z-axis slide 22 via the nut. Then, the workpiece W is rotated by driving the spindle servomotor 18, and the position of the cutting tool is controlled in the Z-axis direction with respect to the workpiece W to perform boring or the like.
 ここで図6は、工作機械5のカバー内部を示した正面図であって、ワークサイズと機械幅との関係を示した図である。工作機械5の機械幅B1は、外装カバー6の左右両側壁の外側面の距離である。ただ、工作機械5は機械幅B1を小さくしたコンパクト化を目的としたものであるため、外装カバー6の幅寸法(B1)は、加工モジュール10を搭載した可動ベッド16の幅寸法にほぼ一致する大きさで形成されている。したがって、工作機械5の機械幅B1を小さくするためには、可動ベッド16の幅を小さくする必要がある。 Here, FIG. 6 is a front view showing the inside of the cover of the machine tool 5 and showing the relationship between the workpiece size and the machine width. The machine width B1 of the machine tool 5 is the distance between the outer surfaces of the left and right side walls of the exterior cover 6. However, since the machine tool 5 is for the purpose of making the machine width B1 smaller, the width dimension (B1) of the exterior cover 6 substantially matches the width dimension of the movable bed 16 on which the processing module 10 is mounted. It is formed in size. Therefore, in order to reduce the machine width B1 of the machine tool 5, it is necessary to reduce the width of the movable bed 16.
 その一方で、単に機械幅B1の寸法を小さくするだけでは従来例のように、加工可能なワークが小さくなってしまう。この点、本実施形態では、機械幅B1を小さくしながらも、加工可能なワークWの径を大きくすることができた。図5に示すワークWは、工作機械5において加工が可能な最大径のものであり、そのワーク径をB2とする。そうした場合、本実施形態の工作機械5では、機械幅B1の寸法がワーク径B2の1.5倍弱であった。具体的には、機械幅B1が約445mmであるのに対し、ワーク径B2は300mmである。 On the other hand, simply reducing the dimension of the machine width B1 results in a smaller workable workpiece as in the conventional example. In this respect, in the present embodiment, it is possible to increase the diameter of the work W that can be processed while reducing the machine width B1. The workpiece W shown in FIG. 5 has a maximum diameter that can be processed by the machine tool 5, and the workpiece diameter is B2. In such a case, in the machine tool 5 of the present embodiment, the dimension of the machine width B1 is slightly less than 1.5 times the workpiece diameter B2. Specifically, the machine width B1 is about 445 mm, while the workpiece diameter B2 is 300 mm.
 よって、本実施形態では、機械幅B1の寸法をワーク径B2の1.5倍以下にすることができた。つまり、工作機械5の機械幅B1の寸法を小さくしながらも、加工可能なワークWを大きくすることができた。このような効果は、工作機械5の次のような構成によって得られる。すなわち、可動ベッド16に対して主軸台12が固定され、ワークWに対して工具を移動させる駆動装置が、主軸台12の上方で作動するよう構成されている点である。更に好ましいのは、駆動装置の構造本体であるコラム31が主軸台12と一体的に構成され、しかも主軸台12のY軸方向隣の極めて近くに配置されている点である。 Therefore, in this embodiment, the dimension of the machine width B1 could be 1.5 times or less of the workpiece diameter B2. That is, the work W that can be processed was increased while the size of the machine width B1 of the machine tool 5 was reduced. Such an effect is obtained by the following configuration of the machine tool 5. In other words, the headstock 12 is fixed to the movable bed 16, and the drive device that moves the tool relative to the work W is configured to operate above the headstock 12. More preferably, the column 31 which is the structural main body of the drive device is formed integrally with the head stock 12 and is disposed very close to the head stock 12 adjacent to the Y axis direction.
 また、主軸台12とコラム31とが極めて近い構成であること、更には主軸台12とコラム31とが一体的に構成されて可動ベッド16に固定されている構成であることは、コラム31から工具までの距離が極めて近くなるため、駆動装置が片持ち支持構造であっても、加工時に受ける反力に対して十分な剛性を有している。すなわち、剛性を得るため過度に堅牢な構造とする必要がないため、この点でも機械幅の寸法を小さくすることを可能にしている。更に工作機械5は、加工モジュール10が可動ベッド16に搭載され、ベース2上を前後に移動するため、メンテナンスや交換などの作業に極めて有効である。 Further, the fact that the headstock 12 and the column 31 are extremely close to each other, and further, that the headstock 12 and the column 31 are integrally configured and fixed to the movable bed 16 from the column 31. Since the distance to the tool is extremely short, even if the drive device has a cantilever support structure, the drive device has sufficient rigidity against the reaction force received during processing. In other words, since it is not necessary to provide an excessively strong structure in order to obtain rigidity, the machine width can be reduced in this respect as well. Furthermore, the machine tool 5 is extremely effective for operations such as maintenance and replacement because the machining module 10 is mounted on the movable bed 16 and moves back and forth on the base 2.
 以上、本発明の一実施形態について説明したが、本発明はこれらに限定されるものではなく、その趣旨を逸脱しない範囲で様々な変更が可能である。
 例えば、前記実施形態では、主軸台12とコラム31とが一体的に構成されているが、近接した位置関係が保たれていれば、別々に可動ベース16へ固定する構成であってもよい。また、工作機械は、前記実施形態で示したタレット旋盤に限るものではない。
As mentioned above, although one Embodiment of this invention was described, this invention is not limited to these, A various change is possible in the range which does not deviate from the meaning.
For example, in the above-described embodiment, the headstock 12 and the column 31 are integrally configured, but may be configured to be separately fixed to the movable base 16 as long as the close positional relationship is maintained. Further, the machine tool is not limited to the turret lathe shown in the embodiment.
1…加工機械ライン 2…ベース 5…工作機械 6…外装カバー 7…前カバー 10…加工モジュール 11…チャック 12…主軸台 13…タレット装置 16…可動ベッド 18…主軸用サーボモータ 21…Z軸ガイド 22…Z軸スライド 23…Z軸用サーボモータ 31…コラム 32…X軸スライド 33…X軸用サーボモータ W…ワーク
 
 
 
 
 

 
DESCRIPTION OF SYMBOLS 1 ... Processing machine line 2 ... Base 5 ... Machine tool 6 ... Exterior cover 7 ... Front cover 10 ... Processing module 11 ... Chuck 12 ... Spindle base 13 ... Turret device 16 ... Movable bed 18 ... Servo motor for spindle 21 ... Z-axis guide 22 ... Z-axis slide 23 ... Z-axis servo motor 31 ... Column 32 ... X-axis slide 33 ... X-axis servo motor W ... Workpiece





Claims (4)

  1.  ベース上を前後方向に移動可能な可動ベッドと、
     前記可動ベッドに固定された主軸台に対して軸線方向が前後方向になるように設けられた主軸と、
     前記主軸の前方側に位置し、前記主軸に保持されたワークを加工するための工具を備えた工具台と、
     前記主軸の軸線方向と平行なZ軸方向と、そのZ軸方向に直交して且つ上下方向であるX軸方向とに前記工具台を移動させる駆動装置とを有し、
    前記駆動装置は、前記可動ベッド上に設置されたものであり、
     前記主軸の上方に配置され、前記工具台を支持してZ軸方向に移動させるZ軸駆動装置と、
     前記主軸の左右幅方向の一方側に配置され、前記主軸の上方で前記Z軸駆動装置をX軸方向に移動させるX軸駆動装置と
    を備えたものであることを特徴とする工作機械。
    A movable bed that can be moved back and forth on the base;
    A main shaft provided such that an axial direction thereof is a front-rear direction with respect to the main shaft base fixed to the movable bed;
    A tool table that is located on the front side of the spindle and includes a tool for machining a workpiece held by the spindle;
    A drive unit that moves the tool table in a Z-axis direction parallel to the axial direction of the main shaft and an X-axis direction that is perpendicular to the Z-axis direction and that is the vertical direction;
    The drive device is installed on the movable bed,
    A Z-axis driving device disposed above the main shaft and supporting the tool table and moving in the Z-axis direction;
    A machine tool, comprising: an X-axis drive device disposed on one side of the main shaft in the left-right width direction and moving the Z-axis drive device in the X-axis direction above the main shaft.
  2.  前記Z軸駆動装置は、前記工具台を保持したスライダと、前記スライダをZ軸方向に案内するガイドと、前記スライダをZ軸方向に移動させるZ軸移動機構とを備え、
     前記X軸駆動装置は、前記主軸に近接してコラムが前記可動ベッドに固定され、前記コラムに沿って前記Z軸駆動装置及び前記工具台を上下させるスライド機構と、前記スライド機構にX軸方向の移動を与えるX軸移動機構とを備えることを特徴とする請求項1に記載の工作機械。
    The Z-axis drive device includes a slider that holds the tool rest, a guide that guides the slider in the Z-axis direction, and a Z-axis movement mechanism that moves the slider in the Z-axis direction,
    The X-axis drive device has a column fixed to the movable bed in the vicinity of the main shaft, a slide mechanism that moves the Z-axis drive device and the tool table up and down along the column, and an X-axis direction to the slide mechanism. The machine tool according to claim 1, further comprising: an X-axis moving mechanism that provides movement of
  3.  前記コラムは、前記主軸を回転支持する主軸台と一体的になって前記可動ベッドに固定されたものであることを特徴とする請求項2に記載の工作機械。 3. The machine tool according to claim 2, wherein the column is fixed to the movable bed integrally with a headstock that rotatably supports the spindle.
  4.  前記X軸駆動装置が前記可動ベッドの幅方向の内側に収まるように配置され、前記可動ベッドの幅寸法が、前記主軸に保持されるワークの最大径の1.5倍以下であることを特徴とする請求項1乃至請求項3のいずれかに記載の工作機械。
     
     
     
     
     
     
     
     
     
     

     
    The X-axis drive device is disposed so as to be accommodated in the width direction of the movable bed, and the width dimension of the movable bed is 1.5 times or less of the maximum diameter of the work held by the main shaft. A machine tool according to any one of claims 1 to 3.











PCT/JP2014/079922 2014-11-12 2014-11-12 Machine tool WO2016075766A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2014/079922 WO2016075766A1 (en) 2014-11-12 2014-11-12 Machine tool
JP2016558484A JP6745725B2 (en) 2014-11-12 2014-11-12 Machine Tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/079922 WO2016075766A1 (en) 2014-11-12 2014-11-12 Machine tool

Publications (1)

Publication Number Publication Date
WO2016075766A1 true WO2016075766A1 (en) 2016-05-19

Family

ID=55953879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/079922 WO2016075766A1 (en) 2014-11-12 2014-11-12 Machine tool

Country Status (2)

Country Link
JP (1) JP6745725B2 (en)
WO (1) WO2016075766A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH068001A (en) * 1992-06-25 1994-01-18 Okuma Mach Works Ltd Numerically controlled lathe
JP2003071663A (en) * 2001-08-31 2003-03-12 Nippei Toyama Corp Machining center, and machining line
JP2004268204A (en) * 2003-03-10 2004-09-30 Seiko Instruments Inc Miniaturized machine tool and miniaturized production line system using this machine tool
US20110158758A1 (en) * 2009-12-30 2011-06-30 Rexon Industrial Corp., Ltd. Lifting Machine Base Assembly for a Machine Tool

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62282801A (en) * 1986-05-31 1987-12-08 Tsugami Corp Complex processing lathe
JP4789103B2 (en) * 2004-08-06 2011-10-12 セイコーインスツル株式会社 Production line
JP4958300B2 (en) * 2007-11-08 2012-06-20 株式会社森精機製作所 Machine Tools

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH068001A (en) * 1992-06-25 1994-01-18 Okuma Mach Works Ltd Numerically controlled lathe
JP2003071663A (en) * 2001-08-31 2003-03-12 Nippei Toyama Corp Machining center, and machining line
JP2004268204A (en) * 2003-03-10 2004-09-30 Seiko Instruments Inc Miniaturized machine tool and miniaturized production line system using this machine tool
US20110158758A1 (en) * 2009-12-30 2011-06-30 Rexon Industrial Corp., Ltd. Lifting Machine Base Assembly for a Machine Tool

Also Published As

Publication number Publication date
JPWO2016075766A1 (en) 2017-08-24
JP6745725B2 (en) 2020-08-26

Similar Documents

Publication Publication Date Title
US9162289B2 (en) Machine tool apparatus and method
JP6438937B2 (en) Articulated robot arm
JP5940433B2 (en) Machine tool with Y axis
JP2009113170A (en) Machining tool
JP2005028482A (en) Lathe
WO2016129137A1 (en) Machine tool
JP2008279541A (en) Machine tool
JP2014065133A (en) Parallel two-axis composite machine tool
JP2018039072A (en) Machine tool
JP2012152894A (en) Machining center
KR101713439B1 (en) Machining center for multi-spindle
JP2010064228A (en) Machine tool with rest apparatus and machining method using the rest apparatus
JP6484494B2 (en) Electric machining equipment with linear guide
JP2000084712A (en) Machine tool equipped with two tool spindle heads
JP5361563B2 (en) lathe
JP2014034073A (en) Composite machine tool
JP2013244582A (en) Y-axis feed base, and turning machine
JPH10315077A (en) Horizontal type machining center
WO2016075766A1 (en) Machine tool
JP2007301647A (en) Precision roll lathe
RU185996U1 (en) CNC Grinding Machine Layout
JP7546068B2 (en) Multi-tasking machine
WO2018042832A1 (en) Machine tool
JP2007061937A (en) Two-spindle three-turret lathe
JP6979124B2 (en) Mobile work module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14905801

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016558484

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14905801

Country of ref document: EP

Kind code of ref document: A1