WO2016074410A1 - 热管道温度测量套管 - Google Patents

热管道温度测量套管 Download PDF

Info

Publication number
WO2016074410A1
WO2016074410A1 PCT/CN2015/074998 CN2015074998W WO2016074410A1 WO 2016074410 A1 WO2016074410 A1 WO 2016074410A1 CN 2015074998 W CN2015074998 W CN 2015074998W WO 2016074410 A1 WO2016074410 A1 WO 2016074410A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat pipe
temperature measuring
measuring sleeve
pipe temperature
hole
Prior art date
Application number
PCT/CN2015/074998
Other languages
English (en)
French (fr)
Inventor
陈军
何向艳
宋磊
李冬生
周洲
蒋晓华
Original Assignee
中科华核电技术研究院有限公司
中国广核集团有限公司
中国广核电力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中科华核电技术研究院有限公司, 中国广核集团有限公司, 中国广核电力股份有限公司 filed Critical 中科华核电技术研究院有限公司
Priority to GB1605889.3A priority Critical patent/GB2534319B/en
Publication of WO2016074410A1 publication Critical patent/WO2016074410A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/02Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/08Protective devices, e.g. casings
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/02Devices or arrangements for monitoring coolant or moderator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the utility model relates to a monitoring device for a pressurized water reactor nuclear power plant, in particular to a heat pipe temperature measuring sleeve.
  • the hot pipe temperature measurement system monitors the operation of the nuclear reactor by measuring the water temperature of the high temperature water discharged through the hot pipe.
  • the hot pipe temperature measuring system generally comprises a heat pipe temperature measuring sleeve installed in the heat pipe and a temperature measuring device arranged in the inner hole of the heat pipe temperature measuring sleeve, and a water taking hole is formed in the heat pipe temperature measuring sleeve to be inside the heat pipe The water is directed into the inner bore of the heat pipe temperature measuring sleeve so that the temperature measuring device measures the temperature.
  • the water intake holes are perpendicular to the temperature of the heat pipe to measure the casing axis.
  • the water in the heat pipe enters the inner hole of the temperature measuring sleeve of the heat pipe through the water intake hole.
  • the high-speed water flow brings a strong impact on the temperature measuring sleeve of the heat pipe, which easily causes damage of the temperature measuring device, and on the other hand, the inside of the heat pipe
  • the water has thermal stratification, and the temperature measurer can only measure the temperature at the current location, resulting in inaccurate measurement results.
  • the purpose of the utility model is to provide a heat pipe temperature measuring sleeve which reduces the impact on the temperature measuring device on one hand, prolongs the life of the temperature measuring device, and improves the measuring precision on the other hand.
  • the utility model discloses a heat pipe temperature measuring sleeve which is installed on an inner wall of a reactor heat pipe, and the heat pipe temperature measuring sleeve is arranged perpendicular to the heat pipe axial direction; the heat pipe The temperature measuring sleeve is closed away from one end of the inner wall of the heat pipe, and the temperature of the heat pipe is measured a water intake hole is formed in a side of the flow pipe toward the flow direction of the heat pipe, and the water intake hole is communicated with the inner hole of the heat pipe temperature measuring sleeve; the water intake hole is measured along the heat pipe temperature measuring sleeve a plurality of axially arranged tubes, wherein the plurality of water intake holes are symmetrically arranged with respect to an axial middle portion of the heat pipe temperature measuring sleeve, and at least two of the water intake holes are oriented in a direction toward the inner hole
  • the hot pipe temperature is measured in the axial center of the casing.
  • the utility model provides a heat pipe temperature measuring sleeve, wherein a plurality of water intake holes are symmetrically arranged with respect to an axial middle portion of the heat pipe temperature measuring sleeve, and at least two water taking holes are arranged along the inner hole The direction is inclined to the axial center of the heat pipe temperature measuring sleeve.
  • the water in the heat pipe enters the inner hole through several water intake holes respectively: the distance between the water intake hole and the inner wall of the heat pipe is different, and the temperature of the multiple water flows entering the inner hole through different water intake holes is also slightly different; the water collecting hole is arranged in an oblique direction, The inflow direction of the multiple water flows entering the inner hole is at an angle, so that the impact occurs between the multiple water flows, so that the heat exchange of the temperature uneven water flows rapidly, so that the water temperature after the mixed flow tends to average. Values; several water intake holes are arranged symmetrically, so that the water after the mixed flow tends to be stable, so that the temperature measuring device disposed in the inner hole can measure the water temperature average value in a smooth water flow environment.
  • the heat pipe temperature measuring sleeve provided by the utility model can reduce the impact of the water flow entering the inner hole through the water intake hole on the inner hole wall of the heat pipe temperature measuring sleeve, and simultaneously convert the water flow impact force into multiple strands.
  • the mixing power of the water flow tends to be smooth after mixing, which reduces the impact on the temperature measuring device, prolongs the life of the temperature measuring device, and improves the measurement accuracy.
  • a plurality of the water intake holes are evenly arranged along the axial direction of the heat pipe temperature measuring sleeve.
  • the number of the water intake holes is five, and one of the water intake holes that are opened in the axial middle portion of the heat pipe temperature measuring sleeve is disposed perpendicular to the inner hole, and is opened in the heat.
  • the four water intake holes on both sides of the axial middle portion of the pipe temperature measuring sleeve are symmetrically arranged with respect to the axial middle portion of the heat pipe temperature measuring sleeve.
  • the axis of the two water intake holes which are located at the outermost axial direction of the heat pipe temperature measuring sleeve is at an angle of 35° to 45° with respect to the axis of the heat pipe;
  • Two water intake holes of the outer side of the axial direction of the sleeve, an angle of one of the inner wall of the heat pipe adjacent to the axis of the heat pipe is 22° to 26°, and the other side away from the inner wall of the heat pipe
  • the angle of the axis of the hot pipe is 20° ⁇ 25°; according to the angle range of the water intake hole provided by the technical solution, the water flow entering the inner hole through any two adjacent water intake holes is stirred, so that the water flow entering the water intake hole is rapidly exchanged.
  • the heat pipe temperature measuring sleeve is provided with a drain hole on a side opposite to the flow direction of the heat pipe, and the drain hole intersects the inner hole to form a first through hole, the first through hole a distance from a side of the opening away from the inner wall of the heat pipe to the inner wall of the heat pipe is a first distance; a water intake hole closest to the inner wall of the heat pipe intersects the inner hole to form a second through hole, a distance from a side of the second through hole adjacent to the inner wall of the heat pipe to the inner wall of the heat pipe is a second distance, the second distance is greater than the first distance; and the drain hole is used to mix the inner hole
  • the water is discharged from the inner hole so that the subsequent water flows through the water intake hole into the inner hole for mixing;
  • the first through hole is closer to the inner wall of the heat pipe than the second through hole, and the positions of the first through hole and the second through hole are such that Convection does not occur, so that the water flowing through the water intake hole into the
  • the drain hole is inclined toward the axial middle portion of the heat pipe temperature measuring sleeve in a direction away from the inner hole.
  • an angle between an axis of the drain hole and an axis of the heat pipe is 45°.
  • the distance between the heat pipe temperature measuring sleeve and the outlet section of the nuclear reactor pressure vessel is greater than 3 m.
  • Figure 1 is a schematic view showing the connection of a reactor pressure vessel and a heat pipe.
  • FIG. 2 is a schematic structural view of a heat pipe temperature measuring sleeve of the present invention.
  • the nuclear reactor includes a reactor pressure vessel 100 connected to the reactor pressure vessel 100 to discharge high temperature water absorbing nuclear heat energy from the reactor pressure vessel 100 for work. Its The water temperature state of the high temperature water discharged through the heat pipe 200 is an important parameter for monitoring the state of the nuclear reactor. Due to the uneven distribution of heat release from the reactor core, the temperature distribution of the water in the outlet of the reactor pressure vessel 100 and the heat pipe 200 is uneven. As the flow distance of water in the heat pipe 200 increases, the water in the heat pipe 200 undergoes heat exchange, and the temperature difference gradually decreases, and is gradually stabilized after being 3 m from the outlet section of the pressure reactor pressure vessel 100.
  • the heat pipe temperature measuring sleeve 300 provided by the present invention is a part of a preferred heat pipe temperature measuring system, and the heat pipe temperature measuring bushing 300 is disposed in an area 3 m away from the outlet section of the nuclear reactor pressure vessel 100, where the hot pipe
  • the water in 200 has been basically mixed, and the temperature is relatively stable, which can better reflect the operation of the nuclear power unit.
  • the heat pipe temperature measuring sleeve 300 provided by the present invention is installed on the inner wall of the reactor heat pipe 200, and the heat pipe temperature measuring bushing 300 is disposed perpendicular to the heat pipe 200 in the axial direction.
  • the heat pipe temperature measuring sleeve 300 is provided with a water intake hole 320 on one side of the heat pipe 200 in the flow direction, and the water in the heat pipe 200 enters the inner hole 310 of the heat pipe temperature measuring sleeve 300 through the water taking hole 320;
  • the system also includes a heat pipe temperature measurer 400, which may be a thermal resistor, or other temperature measuring device; the heat pipe temperature measurer 400 is coupled to the reactor heat pipe 200, and the heat pipe temperature gauge 400 A temperature measuring probe extends into the inner bore 310 to measure the temperature of the water in the inner bore 310. More specifically:
  • the heat pipe temperature measuring sleeve 300 provided by the utility model has the dimensions and specifications of the existing heat pipe temperature measuring sleeve.
  • the heat pipe temperature measuring sleeve 300 has a pipe length of 395 mm and an end diameter of 90 mm.
  • the water intake hole 320 is opened on one side of the heat pipe temperature measuring sleeve 300 toward the flow direction of the heat pipe 200, and the water receiving hole 320 communicates with the inner hole 310 of the heat pipe temperature measuring sleeve 300.
  • the water intake holes 320 are arranged along the axial direction of the heat pipe temperature measuring sleeve 300.
  • the plurality of water taking holes 320 are symmetrically arranged with respect to the axial middle portion of the heat pipe temperature measuring sleeve 300, and at least two water taking holes 320 are facing inward.
  • the direction of the hole 310 is inclined toward the axially middle portion of the heat pipe temperature measuring sleeve 300.
  • the opening direction of the water intake hole 320 can reduce the impact of the water flow entering the inner hole 310 through the water intake hole 320 on the inner hole wall of the heat pipe temperature measuring sleeve 300, and simultaneously convert the water flow impact force into the mixed power of the multiple water flow to accelerate the flow between the water flows.
  • Heat exchange which on the one hand reduces the impact on the temperature measurer 400, extends the life of the temperature measurer 400, and the other Improve the temperature measurement accuracy.
  • the size of the water intake hole 320 is still the same as that of the existing heat pipe temperature measurement sleeve: the number of the water intake holes 320 is 5, the inlet diameter of the water intake hole 320 is 8 mm, and the inlet of the water intake hole 320 is 3*45. °Chamfering; the water intake holes 320 are arranged symmetrically. Specifically, the five water intake holes 320 are arranged along the axial direction of the heat pipe temperature measuring sleeve 300.
  • the five water intake holes 320 may be evenly arranged along the axial direction of the heat pipe temperature measuring sleeve 300; A water intake hole 320 located in the middle is arranged perpendicular to the inner hole 310 of the heat pipe temperature measuring sleeve 300; two water intake holes 320 are formed in the axial inner side of the heat pipe temperature measuring sleeve 300, and one near the inner wall of the heat pipe 200
  • the angle between the axis of the heat pipe 200 and the axis of the heat pipe 200 is 22° to 26°, and the angle of the other from the inner wall of the heat pipe 200 to the axis of the heat pipe 200 is 20° to 25°, that is, the casing 300 is measured along the heat pipe temperature.
  • the axial direction of the self-heating pipe temperature measuring sleeve 300 and the inner wall of the heat pipe 200 is away from the inner wall of the heat pipe 200, and the angle between the second water receiving hole 320 and the axis of the heat pipe 200 is 22° to 26°.
  • the fourth water intake hole 320 and the axis of the heat pipe 200 are at an angle of 20° to 25°; the two water intake holes 320 are formed at the outermost axial direction of the heat pipe temperature measuring sleeve 300, that is, the casing is measured along the heat pipe temperature.
  • the axial direction of the casing 300 is measured along the heat pipe temperature, and the connection end of the heat pipe temperature measuring sleeve 300 and the inner wall of the heat pipe 200 is away from the inner wall of the heat pipe 200, and the first water is taken.
  • the distance between the hole 320 and the inner wall of the heat pipe 200 is 32 to 36 mm, and 35 mm is optimal; the distance between the second water intake hole 320 and the inner wall of the heat pipe 200 is 75 to 85 mm, and the distance between the third water intake hole 320 and the inner wall of the heat pipe 200 is 120 to 130 mm, the distance between the fourth water intake hole 320 and the inner wall of the heat pipe 200 is 165 to 175 mm, and the distance between the fifth water intake hole 320 and the inner wall of the heat pipe 200 is 210 to 230 mm.
  • the temperature of the water intake hole 320 in the direction of the inner hole 310 is measured toward the heat pipe.
  • the axial center of the sleeve 300 is inclined such that the water entering the inner hole 310 through the water intake hole 320 flows to the heat pipe.
  • the middle portion of the temperature measuring sleeve 300 flows; the end of the heat pipe temperature measuring sleeve 300 away from the inner wall of the heat pipe 200 is closed, and the end of the heat pipe temperature measuring sleeve 300 near the inner wall of the heat pipe 200 is provided with a drain hole 330.
  • the position of the drain hole 330 is specifically: the drain hole 330 and the inner hole 310 intersect to form a first through hole 331, and the distance of the first through hole 331 away from the inner wall of the heat pipe 200 and the inner wall of the heat pipe 200 is a first distance;
  • a water intake hole 320 of the inner wall of the pipe 200 intersects with the inner hole 310 to form a second through hole 321 .
  • the distance between the side of the second through hole 321 adjacent to the inner wall of the heat pipe 200 and the inner wall of the heat pipe 200 is a second distance, and the second distance is greater than the second distance.
  • the drainage hole 330 is used to discharge the mixed water in the inner hole 310 out of the inner hole 310, so that the subsequent water flows through the water intake hole 320 into the inner hole 310 for mixing and heat exchange.
  • the temperature measuring probe of the heat pipe temperature measuring device 400 protrudes above the first through opening 331, and the temperature of the smooth water flowing in the inner hole after sufficient agitation and heat exchange flows out of the drain hole 330.
  • the drain hole 330 is inclined away from the inner wall 310 in a direction away from the inner wall of the heat pipe 200, and the axis of the drain hole 330 is at an angle of 45° with the axis of the heat pipe 200; the water discharged into the heat pipe 200 through the drain hole 330 The inner wall of the heat pipe 200 is not washed, and the impact on the equipment is reduced.
  • the drain hole 330 may not be opened, and the drain port may be opened at the position corresponding to the inner hole 310 in the inner wall of the heat pipe 200, so that the water in the inner hole 310 is mixed and exchanged after the heat exchange. 310.
  • the hot pipe temperature measuring sleeve 300 has a plurality of water intake holes 320 symmetrically arranged with respect to the axial middle portion of the heat pipe temperature measuring sleeve 300, and at least two water intake holes 320 are along the inner hole.
  • the direction of 310 is inclined toward the axially middle portion of the heat pipe temperature measuring sleeve 300.
  • the water in the heat pipe 200 enters the inner hole 310 through the plurality of water intake holes 320 respectively: the distance between the water intake hole 320 and the inner wall of the heat pipe 200 is different, and the temperature of the plurality of water flows entering the inner hole 310 through the different water intake holes 320 is also different;
  • the water intake hole 320 is disposed in an oblique direction, and the inflow direction of the plurality of water flows entering the inner hole 310 through the water intake hole 320 is at an angle, so that the multiple water flows are rapidly mixed, thereby causing rapid heat generation of the temperature uneven water flow.
  • the exchange makes the water temperature after the mixed flow tend to average; the plurality of water intake holes 320 are arranged symmetrically, so that the water after the mixing is stabilized, so that the temperature measuring device 400 disposed in the inner hole 310 can be in a smooth water flow environment.
  • the average water temperature was measured.
  • the hot pipe temperature measuring sleeve 300 provided by the utility model reduces the opening direction of the water taking hole 320 to reduce the entry of the water collecting hole 320 into the inner hole 310.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Measuring Volume Flow (AREA)

Abstract

一种热管道温度测量套管(300),安装于反应堆热管道(200)的内壁,垂直于所述热管道(200)轴向布置;所述热管道温度测量套管(300)远离所述热管道(200)内壁的一端封闭,所述热管道温度测量套管(300)朝所述热管道(200)进水方向的一侧开设有取水孔(320),所述取水孔(320)与所述热管道温度测量套管(300)的内孔(310)相连通;所述取水孔(320)沿所述热管道温度测量套管(300)的轴向布置有若干个,若干所述取水孔(320)相对所述热管道温度测量套管(300)的轴向中部呈对称布置,且至少两所述取水孔(320)沿朝所述内孔(310)的方向上向所述热管道温度测量套管(300)的轴向中部倾斜。该热管道温度测量套管一方面减少了冷却剂水对温度测量装置的冲击,延长了和温度测量装置的寿命,另一方面提高了温度测量精度。

Description

热管道温度测量套管 技术领域
本实用新型涉及一种压水堆核电站监测设备,尤其涉及一种热管道温度测量套管。
背景技术
热管道温度测量系统通过测量经热管道排出的高温水的水温,从而监测核反应堆的运行情况。热管道温度测量系统通常包括安装于热管道内的热管道温度测量套管和布置于热管道温度测量套管内孔中的温度测量器,于热管道温度测量套管上开设取水孔以将热管道内的水引至热管道温度测量套管的内孔中,以便温度测量器测量温度。
核电站目前在运的机组中,取水孔均垂直于热管道温度测量套管轴线的开设。热管道内的水经取水孔进入热管道温度测量套管的内孔,其一方面高速水流对热管道温度测量套管带来强力的冲击,容易造成温度测量器损坏,另一方面,热管道内的水存在热分层,温度测量器仅能测量当前位置点的温度,导致测量结果不准确。
因此,亟需一种新的热管道温度测量套管,其一方面减少对温度测量器的冲击,延长温度测量器的寿命,另一方面提高测量精度。
实用新型内容
本实用新型的目的是提供一种热管道温度测量套管,其一方面减少对温度测量器的冲击,延长温度测量器的寿命,另一方面提高测量精度。
为了实现上述目的,本实用新型公开了一种热管道温度测量套管,安装于反应堆热管道的内壁,且所述热管道温度测量套管垂直于所述热管道轴向布置;所述热管道温度测量套管远离所述热管道内壁的一端封闭,所述热管道温度测 量套管朝所述热管道来流方向的一侧开设有取水孔,所述取水孔与所述热管道温度测量套管的内孔相连通;所述取水孔沿所述热管道温度测量套管的轴向布置有若干个,若干所述取水孔相对所述热管道温度测量套管的轴向中部呈对称布置,且至少两所述取水孔沿朝所述内孔的方向上向所述热管道温度测量套管的轴向中部倾斜。
与现有技术相比,本实用新型提供的热管道温度测量套管,若干个取水孔相对所述热管道温度测量套管的轴向中部呈对称布置,且至少两取水孔沿朝内孔的方向上向热管道温度测量套管的轴向中部倾斜。热管道内的水经若干个取水孔分别进入内孔:取水孔与热管道内壁距离不同,导致经不同取水孔进入内孔的多股水流的温度亦稍有不同;取水孔呈倾斜方向设置,经取水孔进入内孔的多股水流的入流方向呈一定夹角,使得多股水流之间发生冲击产生搅混,从而使得温度不均的多股水流发生快速的热交换使得混流后的水温趋于平均值;若干个取水孔呈对称布置,使得混流后的水趋于平稳,从而使得布置于内孔中的温度测量装置得以在平稳的水流环境下测量水温平均值。本实用新型提供的热管道温度测量套管,取水孔的开设方向可减少经取水孔进入内孔的水流对热管道温度测量套管的内孔壁的冲击,同时使得水流冲击力转换为多股水流的搅混动力,混流后的水趋于平稳,一方面减少对温度测量器的冲击,延长温度测量器的寿命,另一方面提高测量精度。
较佳的,若干所述取水孔沿所述热管道温度测量套管的轴向均匀布置。
较佳的,所述取水孔的数量为5个,开设于所述热管道温度测量套管的轴向中部的一所述取水孔呈垂直于所述内孔的方向设置,开设于所述热管道温度测量套管轴向中部的两侧的四个所述取水孔相对所述热管道温度测量套管的轴向中部呈对称的设置。
较佳的,开设于所述热管道温度测量套管轴向最外侧的两所述取水孔的轴线与所述热管道轴线的夹角为35°~45°;开设于所述热管道温度测量套管轴向次外侧的两所述取水孔,靠近所述热管道内壁的一者与所述热管道轴线的夹角为22°~26°,远离所述热管道内壁的另一者与所述热管道轴线的夹角为20° ~25°;根据本技术方案提供的取水孔的角度范围,使得经任两相邻的取水孔进入内孔的水流均发生搅混,从而使得进入取水孔的水流快速发生热交换。
较佳的,所述热管道温度测量套管在所述热管道来流反方向的一侧开设有排水孔,所述排水孔与所述内孔相交成第一贯穿口,所述第一贯穿口远离所述热管道内壁的一侧与所述热管道内壁的距离为第一距离;距离所述热管道内壁最近的一所述取水孔与所述内孔相交成第二贯穿口,所述第二贯穿口靠近所述热管道内壁的一侧与所述热管道内壁的距离为第二距离,所述第二距离大于所述第一距离;所述排水孔用于将内孔中混流后的水排出内孔,以使后续水流经取水孔进入内孔进行搅混;第一贯穿口较第二贯穿口更靠近热管道内壁,且第一贯穿口和第二贯穿口的位置使得两者间不会发生对流,使得经取水孔进入内孔的水流进行搅混时不会经排水孔排出,而是直至搅混热交换结束、温度测量器测温后才经排水孔排出。
具体地,所述排水孔沿远离所述内孔的方向上向所述热管道温度测量套管的轴向中部倾斜。
具体地,所述排水孔的轴线与所述热管道轴线的夹角为45°。
较佳的,所述热管道温度测量套管与所述核反应堆压力容器的出口截面间的距离大于3m。
附图说明
图1为反应堆压力容器与热管道的连接示意图。
图2为本实用新型热管道温度测量套管的结构示意图。
具体实施方式
为详细说明本实用新型的技术内容、构造特征、所实现目的及效果,以下结合实施方式并配合附图详予说明。
如图1所示,核反应堆包括反应堆压力容器100,热管道200连接于反应堆压力容器100以将吸收核热能的高温水排出反应堆压力容器100进行做功。其 中,经热管道200排出的高温水的水温状态是监测核反应堆状态的重要参数。由于反应堆堆芯释热分布不均,导致反应堆压力容器100出口和热管道200内水的温度分布不均。随着水在热管道200内流动距离的增加,热管道200内的水发生热交换,温差逐渐减小,在距压反应堆压力容器100出口截面3m以后逐渐稳定。本实用新型提供的热管道温度测量套管300为优选的热管道温度测量系统的一部分,将热管道温度测量套管300布置于距核反应堆压力容器100的出口截面3m以后的区域,此处热管道200内的水已基本完成搅混,温度较平稳,更能反映核电机组的运行情况。
如图2所示,本实用新型提供的热管道温度测量套管300,安装于反应堆热管道200的内壁,且热管道温度测量套管300垂直于热管道200轴向布置。热管道温度测量套管300朝热管道200来流方向的一侧开设有取水孔320,热管道200中的水经取水孔320进入热管道温度测量套管300的内孔310;热管道温度测量系统还包括热管道温度测量器400,该热管道温度测量器400可以为热电阻,亦可以为其他温度测量装置;热管道温度测量器400连接于反应堆热管道200,且热管道温度测量器400的温度测量探头伸入至内孔310中,以测量内孔310中的水温。更具体地:
本实用新型提供的热管道温度测量套管300,其尺寸规格沿用现有热管道温度测量套管的部分结构尺寸:热管道温度测量套管300的管长395mm,端部直径90mm。
取水孔320开设于热管道温度测量套管300朝热管道200来流方向的一侧,且取水孔320与热管道温度测量套管300的内孔310相连通。取水孔320沿热管道温度测量套管300的轴向布置有若干个,若干取水孔320相对所述热管道温度测量套管300的轴向中部呈对称布置,且至少两取水孔320沿朝内孔310的方向上向热管道温度测量套管300的轴向中部倾斜。取水孔320的开设方向可减少经取水孔320进入内孔310的水流对热管道温度测量套管300的内孔壁的冲击,同时使得水流冲击力转换为多股水流的搅混动力加速水流间的热交换,其一方面减少对温度测量器400的冲击,延长温度测量器400的寿命,另一方 面提高温度测量精度。
取水孔320的尺寸规格亦仍沿用现有热管道温度测量套管的部分结构尺寸:取水孔320的数量为5个,取水孔320入口直径8mm,取水孔320的入口处均开有3*45°倒角;取水孔320呈对称布置。具体地:5个取水孔320沿热管道温度测量套管300的轴向布置,在一实施例中,5个取水孔320亦可以沿热管道温度测量套管300的轴向均匀布置;其中,位于中间的一取水孔320呈垂直于热管道温度测量套管300的内孔310的方向布置;开设于热管道温度测量套管300轴向内侧的两取水孔320,靠近热管道200内壁的一者与热管道200轴线的夹角为22°~26°,远离热管道200内壁的另一者与热管道200轴线的夹角为20°~25°,即,沿热管道温度测量套管300的轴向,自热管道温度测量套管300与热管道200内壁的连接端向远离热管道200内壁的方向上,第二个取水孔320与热管道200轴线的夹角为22°~26°,第四个取水孔320与热管道200轴线的夹角为20°~25°;开设于热管道温度测量套管300轴向最外侧的两取水孔320,即,沿热管道温度测量套管300的轴向,自热管道温度测量套管300与热管道200内壁的连接端向远离热管道200内壁的方向上,第1个取水孔320和第5个取水孔320的轴线与热管道200轴线的夹角为35°~45°。根据上述角度范围设置的5个取水孔320,经任两相邻的取水孔320进入内孔310的水流之间均发生冲击进而搅混,从而使得进入取水孔320的水流快速发生热交换。
在一较佳实施例中,沿热管道温度测量套管300的轴向,自热管道温度测量套管300与热管道200内壁的连接端向远离热管道200内壁的方向上,第1个取水孔320与热管道200内壁的距离为32~36mm,35mm最优;第2个取水孔320与热管道200内壁的距离为75~85mm,第3个取水孔320与热管道200内壁的距离为120~130mm,第4个取水孔320与热管道200内壁的距离为165~175mm,第5个取水孔320与热管道200内壁的距离为210~230mm。
为便于排水孔330内的水流搅混,并在水充分搅混和热交换之前不至流出内孔310,请参阅图2所示:取水孔320的沿朝内孔310的方向上向热管道温度测量套管300的轴向中部倾斜,使得经取水孔320进入内孔310的水流向热管 道温度测量套管300的中部流动;热管道温度测量套管300远离热管道200的内壁的一端呈封闭,热管道温度测量套管300靠近热管道200内壁的一端开设有排水孔330。排水孔330的位置具体为:排水孔330与内孔310相交成第一贯穿口331,第一贯穿口331远离热管道200内壁的一侧与热管道200内壁的距离为第一距离;靠近热管道200内壁的一取水孔320与内孔310相交成第二贯穿口321,第二贯穿口321靠近热管道200内壁的一侧与热管道200内壁的距离为第二距离,第二距离大于第一距离;排水孔330用于将内孔310中混流后的水排出内孔310,以使后续水流经取水孔320进入内孔310进行搅混和热交换。热管道温度测量器400的温度测量探头伸出至第一贯穿口331的上方,在内孔中经充分搅混和热交换后的平稳水流流出排水孔330前,测量其温度。排水孔330沿远离内孔310的方向上向远离热管道200内壁的方向倾斜,排水孔330的轴线与热管道200轴线的夹角为45°;经排水孔330排出至热管道200中的水不会冲刷热管道200的内壁,减少设备受到的冲击。
在不同于上述实施例的其他实施例中,亦可不开设排水孔330,而于热管道200内壁对应内孔310的位置开设排水口,从而将内孔310中搅混热交换后的水排出内孔310。
与现有技术相比,本实用新型提供的热管道温度测量套管300,若干个取水孔320相对热管道温度测量套管300的轴向中部对称布置,且至少两取水孔320沿朝内孔310的方向上向热管道温度测量套管300的轴向中部倾斜。热管道200内的水经若干个取水孔320分别进入内孔310:取水孔320与热管道200内壁距离不同,导致经不同取水孔320进入内孔310的多股水流的温度亦少有不同;取水孔320呈倾斜方向设置,经取水孔320进入内孔310的多股水流的入流方向呈一定夹角,使得多股水流发生急速的搅混,从而使得温度不均的多股水流发生快速的热交换使得混流后的水温趋于平均值;若干个取水孔320呈对称的布置,使得搅混后的水趋于平稳,从而使得设置于内孔310中的温度测量器400得以在平稳的水流环境下测得水温平均值。本实用新型提供的热管道温度测量套管300,通过改变取水孔320的开设方向,减少经取水孔320进入内孔310的 水流对热管道温度测量套管300的内孔310壁的冲击,同时使得水流冲击力转换为多股水流的搅混动力,其一方面减少对温度测量器400的冲击,延长温度测量器400的寿命,另一方面提高温度测量精度。
以上所揭露的仅为本实用新型的优选实施例而已,当然不能以此来限定本实用新型之权利范围,因此依本实用新型申请专利范围所作的等同变化,仍属本实用新型所涵盖的范围。

Claims (8)

  1. 一种热管道温度测量套管,安装于反应堆热管道的内壁,且所述热管道温度测量套管垂直于所述热管道轴向布置;所述热管道温度测量套管远离所述热管道内壁的一端封闭,所述热管道温度测量套管朝所述热管道来流方向的一侧开设有取水孔,所述取水孔与所述热管道温度测量套管的内孔相连通,其特征在于:所述取水孔沿所述热管道温度测量套管的轴向布置有若干个,若干所述取水孔相对所述热管道温度测量套管的轴向中部呈对称布置,且至少两所述取水孔沿朝所述内孔的方向上向所述热管道温度测量套管的轴向中部倾斜。
  2. 如权利要求1所述的热管道温度测量套管,其特征在于:若干所述取水孔沿所述热管道温度测量套管的轴向均匀布置。
  3. 如权利要求1所述的热管道温度测量套管,其特征在于:所述取水孔的数量为5个,开设于所述热管道温度测量套管的轴向中部的一所述取水孔垂直于所述内孔的方向布置,开设于所述热管道温度测量套管轴向中部的两侧的四个所述取水孔相对所述热管道温度测量套管的轴向中部呈对称布置。
  4. 如权利要求3所述的热管道温度测量套管,其特征在于:开设于所述热管道温度测量套管轴向最外侧的两所述取水孔的轴线与所述热管道轴线的夹角为35°~45°;开设于所述热管道温度测量套管轴向次外侧的两所述取水孔,靠近所述热管道内壁的一者与所述热管道轴线的夹角为22°~26°,远离所述热管道内壁的另一者与所述热管道轴线的夹角为20°~25°。
  5. 如权利要求1所述的热管道温度测量套管,其特征在于:所述热管道温度测量套管朝所述热管道出水方向的一侧开设有排水孔,所述排水孔与所述内孔相交成第一贯穿口,所述第一贯穿口远离所述热管道内壁的一侧与所述热管道内壁 的距离为第一距离;距离所述热管道内壁最近的一所述取水孔与所述内孔相交成第二贯穿口,所述第二贯穿口靠近所述热管道内壁的一侧与所述热管道内壁的距离为第二距离,所述第二距离大于所述第一距离。
  6. 如权利要求5所述的热管道温度测量套管,其特征在于:所述排水孔沿远离所述内孔的方向向所述热管道温度测量套管的轴向中部倾斜。
  7. 如权利要求6所述的热管道温度测量套管,其特征在于:所述排水孔的轴线与所述热管道轴线的夹角为45°。
  8. 如权利要求1所述的热管道温度测量套管,其特征在于:所述热管道温度测量套管与所述核反应堆压力容器的出口截面间的距离大于3m。
PCT/CN2015/074998 2014-11-11 2015-03-25 热管道温度测量套管 WO2016074410A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB1605889.3A GB2534319B (en) 2014-11-11 2015-03-25 Temperature measuring casing for hot-water pipe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201420669402.6 2014-11-11
CN201420669402.6U CN204242603U (zh) 2014-11-11 2014-11-11 热管道温度测量套管

Publications (1)

Publication Number Publication Date
WO2016074410A1 true WO2016074410A1 (zh) 2016-05-19

Family

ID=52772065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/074998 WO2016074410A1 (zh) 2014-11-11 2015-03-25 热管道温度测量套管

Country Status (3)

Country Link
CN (1) CN204242603U (zh)
GB (1) GB2534319B (zh)
WO (1) WO2016074410A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104376882B (zh) * 2014-11-11 2017-03-22 中广核研究院有限公司 热管道
CN106918409B (zh) * 2017-03-27 2020-04-28 北京航空航天大学 一种多孔紧邻的总温探针
CN106940230B (zh) * 2017-03-28 2021-04-20 北京航空航天大学 一种九孔总温测量探针
CN107131975B (zh) * 2017-06-19 2023-11-10 广东新菱空调科技有限公司 填料测温量杯及其使用方法
CN107887041A (zh) * 2017-11-07 2018-04-06 深圳中广核工程设计有限公司 核电站主管道测温装置
CN111180093A (zh) * 2018-11-13 2020-05-19 华龙国际核电技术有限公司 一种温度测量装置及反应堆冷却剂系统
CN110763278A (zh) * 2019-11-14 2020-02-07 上海权宥环保科技有限公司 一种测量管道内流体介质参数的测量方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6243528A (ja) * 1985-08-21 1987-02-25 Mitsubishi Atom Power Ind Inc 混合型流体温度測定装置
JPH0875558A (ja) * 1994-09-09 1996-03-22 Mitsubishi Materials Corp 溶体の温度計測装置
JP2000292269A (ja) * 1999-04-02 2000-10-20 Ishikawajima Harima Heavy Ind Co Ltd ターボ機械の流体温度計測装置
US20070058690A1 (en) * 2005-09-09 2007-03-15 Feldmeier Robert H Temperature gauge for use with sanitary conduit
CN201653587U (zh) * 2010-04-26 2010-11-24 湖南精城特种陶瓷有限公司 一种基于耐磨陶瓷的测温棒
CN201772262U (zh) * 2010-09-07 2011-03-23 南京科强科技实业有限公司 管道内介质温度测量装置
CN201852643U (zh) * 2010-11-16 2011-06-01 李世强 温度计盲肠
CN202382901U (zh) * 2011-12-29 2012-08-15 新疆石油勘察设计研究院(有限公司) 高压温压管路介质测量装置
CN202494527U (zh) * 2012-03-25 2012-10-17 辽宁赛尔暖通设备制造有限公司 用于换热管道的测温装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06243528A (ja) * 1993-02-19 1994-09-02 Ricoh Co Ltd 光情報記録再生装置
JP2007508690A (ja) * 2003-10-09 2007-04-05 エスエヌティー コーポレーション,リミティッド 無焼結窒化アルミニウム静電チャックおよびその製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6243528A (ja) * 1985-08-21 1987-02-25 Mitsubishi Atom Power Ind Inc 混合型流体温度測定装置
JPH0875558A (ja) * 1994-09-09 1996-03-22 Mitsubishi Materials Corp 溶体の温度計測装置
JP2000292269A (ja) * 1999-04-02 2000-10-20 Ishikawajima Harima Heavy Ind Co Ltd ターボ機械の流体温度計測装置
US20070058690A1 (en) * 2005-09-09 2007-03-15 Feldmeier Robert H Temperature gauge for use with sanitary conduit
CN201653587U (zh) * 2010-04-26 2010-11-24 湖南精城特种陶瓷有限公司 一种基于耐磨陶瓷的测温棒
CN201772262U (zh) * 2010-09-07 2011-03-23 南京科强科技实业有限公司 管道内介质温度测量装置
CN201852643U (zh) * 2010-11-16 2011-06-01 李世强 温度计盲肠
CN202382901U (zh) * 2011-12-29 2012-08-15 新疆石油勘察设计研究院(有限公司) 高压温压管路介质测量装置
CN202494527U (zh) * 2012-03-25 2012-10-17 辽宁赛尔暖通设备制造有限公司 用于换热管道的测温装置

Also Published As

Publication number Publication date
CN204242603U (zh) 2015-04-01
GB2534319A (en) 2016-07-20
GB2534319B (en) 2020-09-23

Similar Documents

Publication Publication Date Title
WO2016074410A1 (zh) 热管道温度测量套管
CN203432741U (zh) 压力探针
CN206056350U (zh) 内置螺旋扭片的套管式换热器
CN107393608A (zh) 核电站松脱部件监测系统
WO2016074436A1 (zh) 热管道
CN103674130B (zh) 一种文丘里管
CN206146696U (zh) 纯度仪及其气体取样结构及其导热缓冲接头
CN104538067B (zh) 可拆式破口模拟件及其安装方法及破口模拟系统
CN204202846U (zh) 一种总压测量耙
CN203642969U (zh) 一种文丘里管
CN203616038U (zh) 一种高温压力容器测压装置
CN205722817U (zh) 中子温度测量通道吊耳安装的辅助工具
CN107887041A (zh) 核电站主管道测温装置
CN215178263U (zh) 一种温度计在线比对检定装置
CN207779478U (zh) 一种大口径管道水流量测量装置
CN105222838B (zh) 流量计壳体及流量计
CN208860494U (zh) 一种用于小口径管道的y型温度测点装置
CN105953945A (zh) 用于测量管道流体介质温度的取样管
CN206192415U (zh) 一种带有导向鳍片的皮托管
CN209858232U (zh) 一种换热器性能测定实验装置
CN206990008U (zh) 气体旋进旋涡流量计
CN207799476U (zh) 一种用于抽水试验流量控制与测量的装置
CN216482891U (zh) 一种喷嘴性能试验工装
CN201203441Y (zh) 圆丘流量计
CN202275112U (zh) 微波功率测量用混合器

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 201605889

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20150325

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15858401

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29/09/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15858401

Country of ref document: EP

Kind code of ref document: A1