WO2016074344A1 - 无磁水冷微波消融针制造方法 - Google Patents

无磁水冷微波消融针制造方法 Download PDF

Info

Publication number
WO2016074344A1
WO2016074344A1 PCT/CN2015/071280 CN2015071280W WO2016074344A1 WO 2016074344 A1 WO2016074344 A1 WO 2016074344A1 CN 2015071280 W CN2015071280 W CN 2015071280W WO 2016074344 A1 WO2016074344 A1 WO 2016074344A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
coaxial cable
water blocking
blocking shaft
zirconia
Prior art date
Application number
PCT/CN2015/071280
Other languages
English (en)
French (fr)
Inventor
杨婷
Original Assignee
南京维京九洲医疗器械研发中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京维京九洲医疗器械研发中心 filed Critical 南京维京九洲医疗器械研发中心
Priority to US15/512,464 priority Critical patent/US10874458B2/en
Priority to JP2017509041A priority patent/JP6231722B2/ja
Priority to EP15859080.2A priority patent/EP3165191B1/en
Publication of WO2016074344A1 publication Critical patent/WO2016074344A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21GMAKING NEEDLES, PINS OR NAILS OF METAL
    • B21G1/00Making needles used for performing operations
    • B21G1/003Needles for special purposes, e.g. knitting, crochet, hat-pins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/04Fixed joints
    • H01P1/045Coaxial joints
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P11/00Apparatus or processes specially adapted for manufacturing waveguides or resonators, lines, or other devices of the waveguide type
    • H01P11/001Manufacturing waveguides or transmission lines of the waveguide type
    • H01P11/005Manufacturing coaxial lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/06Coaxial lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R24/00Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure
    • H01R24/38Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure having concentrically or coaxially arranged contacts
    • H01R24/40Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure having concentrically or coaxially arranged contacts specially adapted for high frequency
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/02Soldered or welded connections
    • H01R4/023Soldered or welded connections between cables or wires and terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/02Soldered or welded connections
    • H01R4/029Welded connections
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00526Methods of manufacturing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • A61B2018/00011Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
    • A61B2018/00023Cooling or heating of the probe or tissue immediately surrounding the probe with fluids closed, i.e. without wound contact by the fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • A61B2018/1869Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves with an instrument interstitially inserted into the body, e.g. needles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/38Conductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/12Copper or alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R2103/00Two poles

Definitions

  • the invention relates to a method for manufacturing a non-magnetic water-cooled microwave ablation needle, and the obtained ablation needle is particularly suitable for performing interventional treatment in a nuclear magnetic resonance environment.
  • Microwave tumor ablation is the use of microwave energy to act on the tissue to produce a thermal effect. In a few minutes to ten minutes, the temperature of the thermal field can reach above 100 °C, and the tumor tissue is coagulated and inactivated at an instant high temperature to reach the tumor.
  • Microwave tumor ablation is a method in which a microwave ablation needle is inserted into a human body tissue, and the microwave energy is continuously emitted from the front end to perform surgery. Because of its high efficiency, the window is small, and the depth and range of the tissue can be controlled. Ablation surgery of whole body solid tumors.
  • Microwave ablation surgery is an imaging-guided minimally invasive procedure that is currently practiced in an ultrasound imaging environment.
  • the technical problem to be solved by the present invention is to overcome the above disadvantages of the prior art, and to provide a method for manufacturing a non-magnetic water-cooled microwave ablation needle, and an ablation needle obtained according to the method.
  • the method for manufacturing a non-magnetic water-cooled microwave ablation needle comprises the following steps:
  • the copper water blocking shaft and the water conduit are sequentially sleeved on the coaxial cable, and the head of the water blocking shaft is pressed against the rear end surface of the zirconia thorn head, and the tail of the water blocking shaft is sealed and welded with the outer conductor of the coaxial cable.
  • the front end of the water conduit is sleeved on the outer circumference of the lifting shoulder of the water blocking shaft, and is welded and fixed with the water blocking shaft, and no welding is required;
  • the front end of the copper needle bar is set on the outer circumference of the zirconia thorn head, and the needle bar is fixed with the zirconia thorn head and the water blocking shaft by using epoxy resin glue, and riveted;
  • the present invention also has the following further features:
  • step S3 the method of dry bonding is to naturally dry in air for 2-4 hours, followed by heating in a drying oven for 2-4 hours, and the temperature in the drying oven is 93 °C.
  • step S5 the epoxy resin glue is respectively applied on the outer surface of the water-blocking shaft surface and the rear shaft of the zirconia thorn head, and the needle rod is pushed to the tail surface of the thorn head, and no gap is required, and the ablation needle is placed.
  • the drying oven is heated for 25-35 minutes and the temperature in the drying oven is 140-160 °C.
  • the front part of the inlet pipe is a sloped surface, and a water outlet hole is formed in the back.
  • the water blocking shaft is of two stages, the inner diameters of the two sections are the same, and the outer diameter of the coaxial cable is adapted to the outer diameter of the front section and the needle. Rod inner diameter is appropriate
  • the outer diameter of the rear end portion is smaller than the inner diameter of the needle bar, and the outer diameter of the lifting shoulder is formed.
  • the front end of the inclined surface of the water inlet pipe is welded and fixed to the outer circumference of the water blocking shaft lifting shoulder.
  • the outer diameter of the outer circumference of the zirconia thorn head is equal to the outer diameter of the front portion of the water blocking shaft.
  • the present invention also protects the main body member of the ablation needle or ablation needle obtained by the above manufacturing method.
  • the ablation needle mainly comprises: a zirconia thorn head, a pole core, a coaxial cable, a water blocking shaft, a water guiding pipe, a needle bar, the pole core is inserted into the center hole of the thorn head, and the rear end of the polar core is coaxial with the semi-rigid
  • the inner conductor of the cable is cold-pressed and fixed, and the water-blocking bushing is sleeved on the coaxial cable, the head of the cable is pressed against the rear end surface of the zirconia thorn, the tail is sealed with the outer conductor of the coaxial cable, and the front end of the water conduit is sleeved on the water blocking shaft.
  • the front end of the needle bar is set on the outer circle of the zirconia thorn head, and the needle bar is bonded and fixed with the zirconia thorn head and the water blocking shaft by using epoxy resin;
  • the coaxial connector is soldered to the tail of the coaxial cable.
  • the microwave ablation needle of the invention is produced by using non-magnetic material and is suitable for microwave tumor ablation surgery in a nuclear magnetic resonance imaging environment, which helps the treating doctor to clearly determine the location of the tumor, improve the precision of the puncture, and has better performance for the whole surgical procedure. Control, improve the success rate of surgery, under the premise of effectively inactivating tumors, reduce the damage to surrounding normal tissue as much as possible, reduce the pain of patients and shorten the recovery cycle.
  • the invention proposes a corresponding manufacturing scheme, the process is reasonable, the assembly quality is good, and the cost rate is high.
  • the ablation needle of the invention has a simple structure, the components are optimized and reduced to a certain extent, and the assembly efficiency and quality are improved. Tests have shown that the quality of the assembled product meets the design requirements.
  • FIG. 2 is a schematic view showing the overall structure of the non-magnetic water-cooling ablation needle of the present invention.
  • the numbers in the figure are as follows: 1-zirconia thorn, 2-pole core, 3-coaxial cable, 4-blocking water shaft, 5-water conduit, 6-needle rod, 7-inner conductor, 8-outer conductor, 9-media layer, 10-water outlet, 11-inlet chamber, 12-water nozzle, 13-water barrier, 14-sleeve.
  • the non-magnetic water-cooled microwave ablation needle to be manufactured mainly comprises: zirconia thorn head 1, pole core 2, coaxial cable 3, water blocking shaft 4, water conduit 5 , the needle bar 6, the pole core 2 is inserted into the central hole of the lancet, the rear end of the pole core 2 is cold-pressed and fixed to the inner conductor 7 of the semi-rigid coaxial cable 3, and the water blocking shaft 4 is sleeved on the coaxial cable 3, The head is pressed against the rear end surface of the zirconia thorn head 1, and the tail portion is sealed and welded with the outer conductor 8 of the coaxial cable 3.
  • the front end of the water conduit 5 is sleeved on the outer circumference of the water blocking shaft 4, and is welded and fixed to the water blocking shaft 4, the needle bar 6
  • the front end is set on the outer circumference of the zirconia thorn head 1, and the needle bar 6 is bonded and fixed with the zirconia thorn head 1 and the water blocking shaft 4 by using epoxy resin glue; the RF coaxial connector and the coaxial cable 3
  • the tail is welded.
  • the front part of the inlet pipe is inclined, and a water hole is opened in the back.
  • the water blocking shaft 4 is of two stages, the inner diameters of the two sections are the same, and are compatible with the outer conductor 8 of the coaxial cable 3, and the front part is
  • the outer diameter is adapted to the inner diameter of the needle bar 6, the outer diameter of the rear end portion is smaller than the inner diameter of the needle bar 6, and the outer diameter of the lifting shoulder is formed.
  • the front end of the inclined surface of the water inlet pipe is welded and fixed to the outer circumference of the water blocking shaft 4.
  • the outer diameter of the outer circumference of the tail of the zirconia lance 1 is equal to the outer diameter of the front portion of the water blocking shaft 4.
  • 13 is a water barrier and 14 is a fixed sleeve.
  • the outer conductor 8 of the first end of the coaxial cable 3 is peeled off, the dielectric layer 9 is exposed, and then the front section of the bare dielectric layer 9 is peeled off to expose the inner conductor 7; the outer conductor 8 and the inner conductor 7 of the coaxial cable 3 are both Copper material.
  • the copper core 2 and the inner conductor 7 of the coaxial cable 3 are cold-deformed and firmly connected, and the pole core 2 is concentric with the coaxial cable 3 after being connected.
  • the dry bonding method is to naturally dry in air for 2-4 hours, followed by heating in a drying oven for 2-4 hours, and the temperature in the drying oven is 93 °C.
  • the copper water blocking shaft 4 and the water conduit 5 are sequentially sleeved on the coaxial cable 3.
  • the head of the water blocking shaft 4 is pressed against the rear end surface of the zirconia thorn head 1, and the tail of the water blocking shaft 4 and the coaxial cable 3
  • the outer conductor 8 is sealed and welded, and the front end of the water conduit 5 is sleeved on the outer circumference of the lifting shoulder of the water blocking shaft 4, and is welded and fixed to the water blocking shaft 4, and no welding is allowed.
  • the front end of the copper needle bar 6 is set on the outer circumference of the zirconia thorn head 1, and the needle bar 6 is fixed with the zirconia lancet 1 and the water blocking shaft 4 by epoxy resin glue, and is riveted.
  • the epoxy resin glue is respectively applied on the surface of the water blocking shaft 4 and the outer circumference of the rear shaft of the zirconia thorn head 1, and the needle rod 6 is pushed to the tail surface of the thorn head, and no gap is required, and the ablation needle is placed.
  • the mixture is heated in a dry oven for 25-35 minutes, and the temperature in the drying oven is 140-160 °C.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Electromagnetism (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Otolaryngology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Textile Engineering (AREA)
  • Surgical Instruments (AREA)
  • Constitution Of High-Frequency Heating (AREA)
  • Coupling Device And Connection With Printed Circuit (AREA)

Abstract

一种无磁水冷微波消融针制造方法,该制造方法针对无磁材料微波消融针而设计,其工艺过程合理,装配质量好,生产效率高。生产的无磁水冷微波消融针,适用于核磁共振成像环境下的微波肿瘤消融手术,有助于主疗医生清晰地确定肿瘤的位置,提高穿刺精度,对整个手术过程具有更好的可控性,提高手术的成功率,在有效灭活肿瘤的前提下尽可能的减少对周围正常组织的破坏,减轻患者的痛苦,缩短康复周期。

Description

无磁水冷微波消融针制造方法 技术领域
本发明涉及无磁水冷微波消融针制造方法,制造获得的消融针特别适合在核磁共振环境下实施介入治疗。
背景技术
随着现代科技与肿瘤学的进步,近十年来,国内微波肿瘤消融技术取得了突破性的紧张。微波肿瘤消融是利用微波能作用组织即可产生热效应,在数分钟到十数分钟的时间内,其热场中心温度可达100℃以上,肿瘤组织在瞬间高温下被凝固、灭活,达到肿瘤消融治疗的目的。微波肿瘤消融术是将微波消融针介入人体组织的病灶,由其前端持续发射微波能,以实施手术,因其效率高,窗口小,并且对组织的作用深度及范围大小均可控,适用于全身实体肿瘤的消融手术。
微波消融手术属于成像引导的微创手术,目前普遍在超声波成像环境下实施。作为主流的超声波成像技术,其在判断肿瘤的边界方面有一定局限性。为了能够完整的灭活肿瘤组织,手术主疗医生通常会加大加热范围,这样往往对人体正常组织产生不利影响,一旦穿刺位置不准,则带来更大的隐患。
相比而言,核磁共振成像技术具有较高的准确性,其成像的直观性和清晰程度是超声波成像技术所无法比拟的。然而,由于受到现有消融针在材料技术方面的限制,使其无法在核磁共振环境下使用,一定程度上限制了微波消融手术的发展。
发明内容
本发明所要解决的技术问题是,克服现有技术的上述缺点,提供一种无磁水冷微波消融针制造方法,以及依据该方法获得的消融针。
为了解决以上技术问题,本发明提供的无磁水冷微波消融针制造方法,包括以下步骤:
S1、将同轴电缆首尾端的外导体剥离,裸露出介质层,然后剥离裸露介质层的前段,露出内导体;所述同轴电缆的外导体和内导体均为铜材质;
S2、将铜质极芯与同轴电缆的内导体冷压变形连接牢固,连接后极芯与同轴电缆同心;
S3、在极芯外表面和氧化锆刺头内孔涂抹陶瓷胶,将极芯插入氧化锆刺头内孔,并进行干燥粘结;
S4、依次将铜质的堵水轴和引水管套在同轴电缆上,堵水轴的头部抵住氧化锆刺头后端面,堵水轴的尾部与同轴电缆外导体密封焊接,将引水管的前端套在堵水轴的抬肩外圆上,并与堵水轴焊接固定,不得有虚焊;
S5、铜质针杆前端套装在氧化锆刺头的外圆上,使用环氧树脂胶将针杆与氧化锆刺头、堵水轴进行固定,并进行铆接;
S6、将铜质的射频同轴连接器焊接于同轴电缆的尾部;
S7、安装进水套、进水腔、出水腔、水嘴和手柄。
为了解决上述问题,本发明还具有如下进一步的特征:
1、步骤S3中,干燥粘结的方法是,在空气中自然干燥2-4小时,随后在干燥恒温箱中加热2-4小时,干燥恒温箱内的温度为93℃。
2、步骤S5中,将环氧树脂胶分别涂覆于堵水轴表面和氧化锆刺头的后轴外圆上,将针杆推至刺头尾面,要求无缝隙,将消融针放入干燥恒温箱加热25-35分钟,干燥恒温箱内的温度为140-160℃。
3、所述进水管前部为斜面,并在背部开设出水孔,堵水轴为两段式,两段的内孔径相同,且与同轴电缆外导体相适应,前段部分的外径与针杆内径相适 应,后端部分的外径小于针杆内,径形成抬肩外圆,所述进水管斜面的前端与堵水轴抬肩外圆焊接固定。
5、所述氧化锆刺头的尾部外圆的外径与堵水轴前段部分的外径相等。
此外,本发明还保护利用上述制造方法制造获得的消融针或消融针的主体部件。
该消融针主要包括有:氧化锆刺头、极芯、同轴电缆、堵水轴、引水管、针杆,所述极芯插入刺头的中心孔内,极芯后端与半刚同轴电缆的内导体冷压固接,堵水轴套在同轴电缆上,其头部抵住氧化锆刺头后端面,尾部与同轴电缆外导体密封焊接,引水管的前端套在堵水轴外圆上,并与堵水轴焊接固定,针杆前端套装在氧化锆刺头的外圆上,并使用环氧树脂胶将针杆与氧化锆刺头、堵水轴进行粘结固定;射频同轴连接器与同轴电缆的尾部焊接。
本发明微波消融针使用无磁材料生产,适用于核磁共振成像环境下的微波肿瘤消融手术,有助于主疗医生清晰地确定肿瘤的位置,提高穿刺精度,对整个手术过程具有更好的可控性,提高手术的成功率,在有效灭活肿瘤的前提下尽可能的减少对周围正常组织的破坏,减轻患者的痛苦,缩短康复周期。
针对这种无磁材料的微波消融针,本发明提出了相应的制造方案,其工艺过程合理,装配质量好,成本率高。本发明消融针结构简单,零部件一定程度上进行了优化和减少,装配效率和质量得到了提高。经试验表明,装配后的产品质量达到设计要求。
附图说明
下面结合附图对本发明作进一步的说明。
图1是本发明无磁水冷消融针前端部分剖视图。
图2是本发明无磁水冷消融针整体结构示意图。
图中标号示意如下:1-氧化锆刺头,2-极芯,3-同轴电缆,4-堵水轴,5-引水管,6-针杆,7-内导体,8-外导体,9-介质层,10-出水腔,11-进水腔,12-水嘴,13-隔水圈,14-固定套。
具体实施方式
如图1、2所示,为本发明实施例所要制造的无磁水冷微波消融针,主要包括有:氧化锆刺头1、极芯2、同轴电缆3、堵水轴4、引水管5、针杆6,极芯2插入刺头的中心孔内,极芯2后端与半刚同轴电缆3的内导体7冷压固接,堵水轴4套在同轴电缆3上,其头部抵住氧化锆刺头1后端面,尾部与同轴电缆3外导体8密封焊接,引水管5的前端套在堵水轴4外圆上,并与堵水轴4焊接固定,针杆6前端套装在氧化锆刺头1的外圆上,并使用环氧树脂胶将针杆6与氧化锆刺头1、堵水轴4进行粘结固定;射频同轴连接器与同轴电缆3的尾部焊接。如图所示,进水管前部为斜面,并在背部开设出水孔,堵水轴4为两段式,两段的内孔径相同,且与同轴电缆3外导体8相适应,前段部分的外径与针杆6内径相适应,后端部分的外径小于针杆6内,径形成抬肩外圆,进水管斜面的前端与堵水轴4抬肩外圆焊接固定。氧化锆刺头1的尾部外圆的外径与堵水轴4前段部分的外径相等。图中,13为隔水圈,14为固定套。
本实施例无磁水冷微波消融针制造方法,包括以下步骤:
S1、将同轴电缆3首尾端的外导体8剥离,裸露出介质层9,然后剥离裸露介质层9的前段,露出内导体7;所述同轴电缆3的外导体8和内导体7均为铜材质。
S2、将铜质极芯2与同轴电缆3的内导体7冷压变形连接牢固,连接后极芯2与同轴电缆3同心。
S3、在极芯2外表面和氧化锆刺头1内孔涂抹陶瓷胶,将极芯2插入氧化 锆刺头1内孔,并进行干燥粘结。
本步骤中,干燥粘结的方法是,在空气中自然干燥2-4小时,随后在干燥恒温箱中加热2-4小时,干燥恒温箱内的温度为93℃。
S4、依次将铜质的堵水轴4和引水管5套在同轴电缆3上,堵水轴4的头部抵住氧化锆刺头1后端面,堵水轴4的尾部与同轴电缆3外导体8密封焊接,将引水管5的前端套在堵水轴4的抬肩外圆上,并与堵水轴4焊接固定,不得有虚焊。
S5、铜质针杆6前端套装在氧化锆刺头1的外圆上,使用环氧树脂胶将针杆6与氧化锆刺头1、堵水轴4进行固定,并进行铆接。
本步骤中,将环氧树脂胶分别涂覆于堵水轴4表面和氧化锆刺头1的后轴外圆上,将针杆6推至刺头尾面,要求无缝隙,将消融针放入干燥恒温箱加热25-35分钟,干燥恒温箱内的温度为140-160℃。
S6、将铜质的射频同轴连接器焊接于同轴电缆3的尾部。
S7、安装进水套、进水腔11、出水腔10、水嘴12和手柄。
除上述实施例外,本发明还可以有其他实施方式。凡采用等同替换或等效变换形成的技术方案,均落在本发明要求的保护范围。

Claims (8)

  1. 无磁水冷微波消融针制造方法,包括以下步骤:
    S1、将同轴电缆首尾端的外导体剥离,裸露出介质层,然后剥离裸露介质层的前段,露出内导体;所述同轴电缆的外导体和内导体均为铜材质;
    S2、将铜质极芯与同轴电缆的内导体冷压变形连接牢固,连接后极芯与同轴电缆同心;
    S3、在极芯外表面和氧化锆刺头内孔涂抹陶瓷胶,将极芯插入氧化锆刺头内孔,并进行干燥粘结;
    S4、依次将铜质的堵水轴和引水管套在同轴电缆上,堵水轴的头部抵住氧化锆刺头后端面,堵水轴的尾部与同轴电缆外导体密封焊接,将引水管的前端套在堵水轴的抬肩外圆上,并与堵水轴焊接固定,不得有虚焊;
    S5、铜质针杆前端套装在氧化锆刺头的外圆上,使用环氧树脂胶将针杆与氧化锆刺头、堵水轴进行固定,并进行铆接;
    S6、将铜质的射频同轴连接器焊接于同轴电缆的尾部;
    S7、安装进水套、进水腔、出水腔、水嘴和手柄。
  2. 根据权利要求1所述的无磁水冷微波消融针制造方法,其特征在于:步骤S3中,干燥粘结的方法是,在空气中自然干燥2-4小时,随后在干燥恒温箱中加热2-4小时,干燥恒温箱内的温度为93℃。
  3. 根据权利要求1所述的无磁水冷微波消融针制造方法,其特征在于:步骤S5中,将环氧树脂胶分别涂覆于堵水轴表面和氧化锆刺头的后轴外圆上,将针杆推至刺头尾面,要求无缝隙,将消融针放入干燥恒温箱加热25-35分钟,干燥恒温箱内的温度为140-160℃。
  4. 根据权利要求1所述的无磁水冷微波消融针制造方法,其特征在于:所述进水管前部为斜面,并在背部开设出水孔,堵水轴为两段式,两段的内孔径 相同,且与同轴电缆外导体相适应,前段部分的外径与针杆内径相适应,后端部分的外径小于针杆内,径形成抬肩外圆,所述进水管斜面的前端与堵水轴抬肩外圆焊接固定。
  5. 根据权利要求1所述的无磁水冷微波消融针制造方法,其特征在于:所述氧化锆刺头的尾部外圆的外径与堵水轴前段部分的外径相等。
  6. 依据权利要求1-3任一项方法制造获得的消融针,主要包括有:氧化锆刺头、极芯、同轴电缆、堵水轴、引水管、针杆,所述极芯插入刺头的中心孔内,极芯后端与半刚同轴电缆的内导体冷压固接,堵水轴套在同轴电缆上,其头部抵住氧化锆刺头后端面,尾部与同轴电缆外导体密封焊接,引水管的前端套在堵水轴外圆上,并与堵水轴焊接固定,针杆前端套装在氧化锆刺头的外圆上,并使用环氧树脂胶将针杆与氧化锆刺头、堵水轴进行粘结固定;射频同轴连接器与同轴电缆的尾部焊接。
  7. 根据权利要求6所述的消融针,其特征在于:所述进水管前部为斜面,并在背部开设出水孔,堵水轴为两段式,两段的内孔径相同,且与同轴电缆外导体相适应,前段部分的外径与针杆内径相适应,后端部分的外径小于针杆内,径形成抬肩外圆,所述进水管斜面的前端与堵水轴抬肩外圆焊接固定。
  8. 根据权利要求1所述的消融针,其特征在于:所述氧化锆刺头的尾部外圆的外径与堵水轴前段部分的外径相等。
PCT/CN2015/071280 2014-11-11 2015-01-22 无磁水冷微波消融针制造方法 WO2016074344A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/512,464 US10874458B2 (en) 2014-11-11 2015-01-22 Manufacturing method for non-magnetic water-cooled microwave ablation needle
JP2017509041A JP6231722B2 (ja) 2014-11-11 2015-01-22 非磁性水冷マイクロ波焼灼針の製造方法
EP15859080.2A EP3165191B1 (en) 2014-11-11 2015-01-22 Manufacturing method for non-magnetic water-cooled microwave ablation needle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410631162.5A CN104323856B (zh) 2014-11-11 2014-11-11 无磁水冷微波消融针制造方法
CN201410631162.5 2014-11-11

Publications (1)

Publication Number Publication Date
WO2016074344A1 true WO2016074344A1 (zh) 2016-05-19

Family

ID=52398773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/071280 WO2016074344A1 (zh) 2014-11-11 2015-01-22 无磁水冷微波消融针制造方法

Country Status (5)

Country Link
US (1) US10874458B2 (zh)
EP (1) EP3165191B1 (zh)
JP (1) JP6231722B2 (zh)
CN (1) CN104323856B (zh)
WO (1) WO2016074344A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110179539A (zh) * 2019-05-30 2019-08-30 江苏省肿瘤医院 一种用于消融术中消融针的密封定位装置
CN113729920A (zh) * 2021-09-28 2021-12-03 深圳迈微医疗科技有限公司 双模态组织消融针

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104720892A (zh) * 2015-03-16 2015-06-24 李晓光 一种用于囊性癌肿瘤消融治疗的微波消融天线
CN104688335B (zh) * 2015-03-16 2018-02-23 南京维京九洲医疗器械研发中心 一种用于治疗大肝癌的微波消融天线
CN104905874A (zh) * 2015-06-16 2015-09-16 翟博 一种具有活检功能的微波消融针及其刺头的制造方法
CN106236255A (zh) * 2016-08-25 2016-12-21 庞茂英 具有控温功能的血管微波消融针及制备方法
CN107260301B (zh) * 2017-04-20 2021-04-02 南通融锋医疗科技有限公司 真圆微波消融天线及系统
CN107802343A (zh) * 2017-11-06 2018-03-16 南京微创医学科技股份有限公司 一种分体式变径微波针
CN107865691A (zh) * 2017-11-22 2018-04-03 安徽硕金医疗设备有限公司 一种磁共振兼容的水冷微波消融针
CN108030548B (zh) * 2017-12-13 2024-05-07 南京康友医疗科技有限公司 一种可循环利用的微波软杆消融针
CN108030549B (zh) * 2017-12-29 2024-04-12 南京康友医疗科技有限公司 一种单边微波消融针
CN108992165A (zh) * 2018-04-10 2018-12-14 广东百德医疗有限公司 一种穿刺型半柔微波消融针的水冷结构
CN108938080B (zh) * 2018-07-26 2024-02-09 南京康友医疗科技有限公司 一种超声内镜下柔性微波消融针
CN109330680A (zh) * 2018-12-04 2019-02-15 安徽大中润科技有限公司 一种磁兼容的偶极子微波消融针
CN109481014B (zh) * 2018-12-21 2024-05-07 南京康友医疗科技有限公司 一种具有弹性弯曲弧度的微波消融装置
CN110507414A (zh) * 2019-09-16 2019-11-29 浙江大学 一种多缝隙微波消融针
CN110523003A (zh) * 2019-09-23 2019-12-03 南京臻泰微波科技有限公司 一种无需水冷的肿瘤微波消融针
CN112472289B (zh) * 2020-12-15 2022-03-25 宁波梅山保税港区时顺企业管理合伙企业(有限合伙) 一种微波消融针
CN113576658B (zh) * 2021-09-03 2023-03-03 济南市儿童医院(山东大学齐鲁儿童医院) 一种具有自引导功能的血管瘤治疗用微波消融针
CN115581523A (zh) * 2022-11-03 2023-01-10 南京亿高医疗科技股份有限公司 用于脊柱消融的消融针

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006002943A1 (en) * 2004-07-02 2006-01-12 Microsulis Limited Radiation applicator and method of radiating tissue
CN101631506A (zh) * 2006-01-03 2010-01-20 英国投资联合公司 放射发生器和放射组织的方法
CN201775679U (zh) * 2010-09-07 2011-03-30 南京庆海微波电子研究所 骨肿瘤水冷微波消融针
CN201775680U (zh) * 2010-09-07 2011-03-30 南京庆海微波电子研究所 可大功率使用的水冷微波消融针
US20130317495A1 (en) * 2007-06-28 2013-11-28 Covidien Lp Broadband microwave applicator
CN203619673U (zh) * 2013-11-29 2014-06-04 杨兴瑞 具有实时测温与消融为一体的高性能水冷微波消融天线

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5629380A (en) * 1994-09-19 1997-05-13 Minnesota Mining And Manufacturing Company Epoxy adhesive composition comprising a calcium salt and mannich base
US7322957B2 (en) * 2000-02-01 2008-01-29 Harold D. Kletschka Angioplasty device and method of making same
US20080275439A1 (en) * 2002-01-25 2008-11-06 David Francischelli Cardiac ablation and electrical interface system and instrument
US20090104448A1 (en) * 2007-10-17 2009-04-23 Henkel Ag & Co. Kgaa Preformed adhesive bodies useful for joining substrates
US8059059B2 (en) * 2008-05-29 2011-11-15 Vivant Medical, Inc. Slidable choke microwave antenna
US9993294B2 (en) * 2009-11-17 2018-06-12 Perseon Corporation Microwave coagulation applicator and system with fluid injection
US8414570B2 (en) * 2009-11-17 2013-04-09 Bsd Medical Corporation Microwave coagulation applicator and system
WO2014006562A1 (en) * 2012-07-03 2014-01-09 Element Six Technologies Us Corporation Handle for semiconductor-on-diamond wafers and method of manufacture

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006002943A1 (en) * 2004-07-02 2006-01-12 Microsulis Limited Radiation applicator and method of radiating tissue
CN101631506A (zh) * 2006-01-03 2010-01-20 英国投资联合公司 放射发生器和放射组织的方法
US20130317495A1 (en) * 2007-06-28 2013-11-28 Covidien Lp Broadband microwave applicator
CN201775679U (zh) * 2010-09-07 2011-03-30 南京庆海微波电子研究所 骨肿瘤水冷微波消融针
CN201775680U (zh) * 2010-09-07 2011-03-30 南京庆海微波电子研究所 可大功率使用的水冷微波消融针
CN203619673U (zh) * 2013-11-29 2014-06-04 杨兴瑞 具有实时测温与消融为一体的高性能水冷微波消融天线

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110179539A (zh) * 2019-05-30 2019-08-30 江苏省肿瘤医院 一种用于消融术中消融针的密封定位装置
CN110179539B (zh) * 2019-05-30 2024-03-01 江苏省肿瘤医院 一种用于消融术中消融针的密封定位装置
CN113729920A (zh) * 2021-09-28 2021-12-03 深圳迈微医疗科技有限公司 双模态组织消融针
WO2023051165A1 (zh) * 2021-09-28 2023-04-06 深圳迈微医疗科技有限公司 双模态组织消融针

Also Published As

Publication number Publication date
EP3165191A4 (en) 2017-08-30
EP3165191A1 (en) 2017-05-10
JP6231722B2 (ja) 2017-11-15
JP2017527359A (ja) 2017-09-21
US10874458B2 (en) 2020-12-29
CN104323856B (zh) 2017-07-18
US20170296269A1 (en) 2017-10-19
EP3165191B1 (en) 2018-05-09
CN104323856A (zh) 2015-02-04

Similar Documents

Publication Publication Date Title
WO2016074344A1 (zh) 无磁水冷微波消融针制造方法
US8069553B2 (en) Method for constructing a dipole antenna
TWI375579B (en) Radiation applicator and radiation application assembly
US8246614B2 (en) High-strength microwave antenna coupling
CN106109009B (zh) 一种使用433MHz频率的水冷微波消融针
CN104546126B (zh) 一种适用于肺癌介入治疗的微波消融天线
KR20100128608A (ko) 고주파 열 치료장치의 전극침
CN109953824A (zh) 一种微波消融针体、微波消融针及微波消融方法
CN104688335B (zh) 一种用于治疗大肝癌的微波消融天线
CN104720892A (zh) 一种用于囊性癌肿瘤消融治疗的微波消融天线
CN107349010A (zh) 射频消融探头及其制备方法
CN109259857A (zh) 一种在内窥镜引导下半刚穿刺型水冷微波消融治疗器械
CN117064540B (zh) 一种微波消融天线
WO2021051542A1 (zh) 一种多缝隙微波消融针
CN111603384A (zh) 一种具备加热测温功能的治疗针
CN203647465U (zh) 一种射频消融电极
CN107626041B (zh) 心脏起搏器、起博电极导线及其头端结构
CN107007350B (zh) 微波消融针及微波消融治疗仪
CN201631377U (zh) 经超声内镜引导的射频消融电极
CN212347173U (zh) 一种具备加热测温功能的治疗针
CN211381730U (zh) 一种集成的射频套管
CN210019637U (zh) 一种磁兼容的偶极子微波消融针
CN109330681B (zh) 一种磁兼容的水冷微波消融针及其制造方法
CN111358551A (zh) 一种用于支气管镜下的微波消融导管
CN206214180U (zh) 具有控温功能的血管微波消融针

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15859080

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015859080

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015859080

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017509041

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15512464

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE