WO2016074344A1 - 无磁水冷微波消融针制造方法 - Google Patents
无磁水冷微波消融针制造方法 Download PDFInfo
- Publication number
- WO2016074344A1 WO2016074344A1 PCT/CN2015/071280 CN2015071280W WO2016074344A1 WO 2016074344 A1 WO2016074344 A1 WO 2016074344A1 CN 2015071280 W CN2015071280 W CN 2015071280W WO 2016074344 A1 WO2016074344 A1 WO 2016074344A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- water
- coaxial cable
- water blocking
- blocking shaft
- zirconia
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/1815—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21G—MAKING NEEDLES, PINS OR NAILS OF METAL
- B21G1/00—Making needles used for performing operations
- B21G1/003—Needles for special purposes, e.g. knitting, crochet, hat-pins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K31/00—Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
- B23K31/02—Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/04—Fixed joints
- H01P1/045—Coaxial joints
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P11/00—Apparatus or processes specially adapted for manufacturing waveguides or resonators, lines, or other devices of the waveguide type
- H01P11/001—Manufacturing waveguides or transmission lines of the waveguide type
- H01P11/005—Manufacturing coaxial lines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P3/00—Waveguides; Transmission lines of the waveguide type
- H01P3/02—Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
- H01P3/06—Coaxial lines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R24/00—Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure
- H01R24/38—Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure having concentrically or coaxially arranged contacts
- H01R24/40—Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure having concentrically or coaxially arranged contacts specially adapted for high frequency
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R4/00—Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
- H01R4/02—Soldered or welded connections
- H01R4/023—Soldered or welded connections between cables or wires and terminals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R4/00—Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
- H01R4/02—Soldered or welded connections
- H01R4/029—Welded connections
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00526—Methods of manufacturing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00005—Cooling or heating of the probe or tissue immediately surrounding the probe
- A61B2018/00011—Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
- A61B2018/00023—Cooling or heating of the probe or tissue immediately surrounding the probe with fluids closed, i.e. without wound contact by the fluid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00571—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
- A61B2018/00577—Ablation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/1815—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
- A61B2018/1869—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves with an instrument interstitially inserted into the body, e.g. needles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2101/00—Articles made by soldering, welding or cutting
- B23K2101/36—Electric or electronic devices
- B23K2101/38—Conductors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/08—Non-ferrous metals or alloys
- B23K2103/12—Copper or alloys thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R2103/00—Two poles
Definitions
- the invention relates to a method for manufacturing a non-magnetic water-cooled microwave ablation needle, and the obtained ablation needle is particularly suitable for performing interventional treatment in a nuclear magnetic resonance environment.
- Microwave tumor ablation is the use of microwave energy to act on the tissue to produce a thermal effect. In a few minutes to ten minutes, the temperature of the thermal field can reach above 100 °C, and the tumor tissue is coagulated and inactivated at an instant high temperature to reach the tumor.
- Microwave tumor ablation is a method in which a microwave ablation needle is inserted into a human body tissue, and the microwave energy is continuously emitted from the front end to perform surgery. Because of its high efficiency, the window is small, and the depth and range of the tissue can be controlled. Ablation surgery of whole body solid tumors.
- Microwave ablation surgery is an imaging-guided minimally invasive procedure that is currently practiced in an ultrasound imaging environment.
- the technical problem to be solved by the present invention is to overcome the above disadvantages of the prior art, and to provide a method for manufacturing a non-magnetic water-cooled microwave ablation needle, and an ablation needle obtained according to the method.
- the method for manufacturing a non-magnetic water-cooled microwave ablation needle comprises the following steps:
- the copper water blocking shaft and the water conduit are sequentially sleeved on the coaxial cable, and the head of the water blocking shaft is pressed against the rear end surface of the zirconia thorn head, and the tail of the water blocking shaft is sealed and welded with the outer conductor of the coaxial cable.
- the front end of the water conduit is sleeved on the outer circumference of the lifting shoulder of the water blocking shaft, and is welded and fixed with the water blocking shaft, and no welding is required;
- the front end of the copper needle bar is set on the outer circumference of the zirconia thorn head, and the needle bar is fixed with the zirconia thorn head and the water blocking shaft by using epoxy resin glue, and riveted;
- the present invention also has the following further features:
- step S3 the method of dry bonding is to naturally dry in air for 2-4 hours, followed by heating in a drying oven for 2-4 hours, and the temperature in the drying oven is 93 °C.
- step S5 the epoxy resin glue is respectively applied on the outer surface of the water-blocking shaft surface and the rear shaft of the zirconia thorn head, and the needle rod is pushed to the tail surface of the thorn head, and no gap is required, and the ablation needle is placed.
- the drying oven is heated for 25-35 minutes and the temperature in the drying oven is 140-160 °C.
- the front part of the inlet pipe is a sloped surface, and a water outlet hole is formed in the back.
- the water blocking shaft is of two stages, the inner diameters of the two sections are the same, and the outer diameter of the coaxial cable is adapted to the outer diameter of the front section and the needle. Rod inner diameter is appropriate
- the outer diameter of the rear end portion is smaller than the inner diameter of the needle bar, and the outer diameter of the lifting shoulder is formed.
- the front end of the inclined surface of the water inlet pipe is welded and fixed to the outer circumference of the water blocking shaft lifting shoulder.
- the outer diameter of the outer circumference of the zirconia thorn head is equal to the outer diameter of the front portion of the water blocking shaft.
- the present invention also protects the main body member of the ablation needle or ablation needle obtained by the above manufacturing method.
- the ablation needle mainly comprises: a zirconia thorn head, a pole core, a coaxial cable, a water blocking shaft, a water guiding pipe, a needle bar, the pole core is inserted into the center hole of the thorn head, and the rear end of the polar core is coaxial with the semi-rigid
- the inner conductor of the cable is cold-pressed and fixed, and the water-blocking bushing is sleeved on the coaxial cable, the head of the cable is pressed against the rear end surface of the zirconia thorn, the tail is sealed with the outer conductor of the coaxial cable, and the front end of the water conduit is sleeved on the water blocking shaft.
- the front end of the needle bar is set on the outer circle of the zirconia thorn head, and the needle bar is bonded and fixed with the zirconia thorn head and the water blocking shaft by using epoxy resin;
- the coaxial connector is soldered to the tail of the coaxial cable.
- the microwave ablation needle of the invention is produced by using non-magnetic material and is suitable for microwave tumor ablation surgery in a nuclear magnetic resonance imaging environment, which helps the treating doctor to clearly determine the location of the tumor, improve the precision of the puncture, and has better performance for the whole surgical procedure. Control, improve the success rate of surgery, under the premise of effectively inactivating tumors, reduce the damage to surrounding normal tissue as much as possible, reduce the pain of patients and shorten the recovery cycle.
- the invention proposes a corresponding manufacturing scheme, the process is reasonable, the assembly quality is good, and the cost rate is high.
- the ablation needle of the invention has a simple structure, the components are optimized and reduced to a certain extent, and the assembly efficiency and quality are improved. Tests have shown that the quality of the assembled product meets the design requirements.
- FIG. 2 is a schematic view showing the overall structure of the non-magnetic water-cooling ablation needle of the present invention.
- the numbers in the figure are as follows: 1-zirconia thorn, 2-pole core, 3-coaxial cable, 4-blocking water shaft, 5-water conduit, 6-needle rod, 7-inner conductor, 8-outer conductor, 9-media layer, 10-water outlet, 11-inlet chamber, 12-water nozzle, 13-water barrier, 14-sleeve.
- the non-magnetic water-cooled microwave ablation needle to be manufactured mainly comprises: zirconia thorn head 1, pole core 2, coaxial cable 3, water blocking shaft 4, water conduit 5 , the needle bar 6, the pole core 2 is inserted into the central hole of the lancet, the rear end of the pole core 2 is cold-pressed and fixed to the inner conductor 7 of the semi-rigid coaxial cable 3, and the water blocking shaft 4 is sleeved on the coaxial cable 3, The head is pressed against the rear end surface of the zirconia thorn head 1, and the tail portion is sealed and welded with the outer conductor 8 of the coaxial cable 3.
- the front end of the water conduit 5 is sleeved on the outer circumference of the water blocking shaft 4, and is welded and fixed to the water blocking shaft 4, the needle bar 6
- the front end is set on the outer circumference of the zirconia thorn head 1, and the needle bar 6 is bonded and fixed with the zirconia thorn head 1 and the water blocking shaft 4 by using epoxy resin glue; the RF coaxial connector and the coaxial cable 3
- the tail is welded.
- the front part of the inlet pipe is inclined, and a water hole is opened in the back.
- the water blocking shaft 4 is of two stages, the inner diameters of the two sections are the same, and are compatible with the outer conductor 8 of the coaxial cable 3, and the front part is
- the outer diameter is adapted to the inner diameter of the needle bar 6, the outer diameter of the rear end portion is smaller than the inner diameter of the needle bar 6, and the outer diameter of the lifting shoulder is formed.
- the front end of the inclined surface of the water inlet pipe is welded and fixed to the outer circumference of the water blocking shaft 4.
- the outer diameter of the outer circumference of the tail of the zirconia lance 1 is equal to the outer diameter of the front portion of the water blocking shaft 4.
- 13 is a water barrier and 14 is a fixed sleeve.
- the outer conductor 8 of the first end of the coaxial cable 3 is peeled off, the dielectric layer 9 is exposed, and then the front section of the bare dielectric layer 9 is peeled off to expose the inner conductor 7; the outer conductor 8 and the inner conductor 7 of the coaxial cable 3 are both Copper material.
- the copper core 2 and the inner conductor 7 of the coaxial cable 3 are cold-deformed and firmly connected, and the pole core 2 is concentric with the coaxial cable 3 after being connected.
- the dry bonding method is to naturally dry in air for 2-4 hours, followed by heating in a drying oven for 2-4 hours, and the temperature in the drying oven is 93 °C.
- the copper water blocking shaft 4 and the water conduit 5 are sequentially sleeved on the coaxial cable 3.
- the head of the water blocking shaft 4 is pressed against the rear end surface of the zirconia thorn head 1, and the tail of the water blocking shaft 4 and the coaxial cable 3
- the outer conductor 8 is sealed and welded, and the front end of the water conduit 5 is sleeved on the outer circumference of the lifting shoulder of the water blocking shaft 4, and is welded and fixed to the water blocking shaft 4, and no welding is allowed.
- the front end of the copper needle bar 6 is set on the outer circumference of the zirconia thorn head 1, and the needle bar 6 is fixed with the zirconia lancet 1 and the water blocking shaft 4 by epoxy resin glue, and is riveted.
- the epoxy resin glue is respectively applied on the surface of the water blocking shaft 4 and the outer circumference of the rear shaft of the zirconia thorn head 1, and the needle rod 6 is pushed to the tail surface of the thorn head, and no gap is required, and the ablation needle is placed.
- the mixture is heated in a dry oven for 25-35 minutes, and the temperature in the drying oven is 140-160 °C.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medical Informatics (AREA)
- General Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Electromagnetism (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- Otolaryngology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Textile Engineering (AREA)
- Surgical Instruments (AREA)
- Constitution Of High-Frequency Heating (AREA)
- Coupling Device And Connection With Printed Circuit (AREA)
Abstract
Description
Claims (8)
- 无磁水冷微波消融针制造方法,包括以下步骤:S1、将同轴电缆首尾端的外导体剥离,裸露出介质层,然后剥离裸露介质层的前段,露出内导体;所述同轴电缆的外导体和内导体均为铜材质;S2、将铜质极芯与同轴电缆的内导体冷压变形连接牢固,连接后极芯与同轴电缆同心;S3、在极芯外表面和氧化锆刺头内孔涂抹陶瓷胶,将极芯插入氧化锆刺头内孔,并进行干燥粘结;S4、依次将铜质的堵水轴和引水管套在同轴电缆上,堵水轴的头部抵住氧化锆刺头后端面,堵水轴的尾部与同轴电缆外导体密封焊接,将引水管的前端套在堵水轴的抬肩外圆上,并与堵水轴焊接固定,不得有虚焊;S5、铜质针杆前端套装在氧化锆刺头的外圆上,使用环氧树脂胶将针杆与氧化锆刺头、堵水轴进行固定,并进行铆接;S6、将铜质的射频同轴连接器焊接于同轴电缆的尾部;S7、安装进水套、进水腔、出水腔、水嘴和手柄。
- 根据权利要求1所述的无磁水冷微波消融针制造方法,其特征在于:步骤S3中,干燥粘结的方法是,在空气中自然干燥2-4小时,随后在干燥恒温箱中加热2-4小时,干燥恒温箱内的温度为93℃。
- 根据权利要求1所述的无磁水冷微波消融针制造方法,其特征在于:步骤S5中,将环氧树脂胶分别涂覆于堵水轴表面和氧化锆刺头的后轴外圆上,将针杆推至刺头尾面,要求无缝隙,将消融针放入干燥恒温箱加热25-35分钟,干燥恒温箱内的温度为140-160℃。
- 根据权利要求1所述的无磁水冷微波消融针制造方法,其特征在于:所述进水管前部为斜面,并在背部开设出水孔,堵水轴为两段式,两段的内孔径 相同,且与同轴电缆外导体相适应,前段部分的外径与针杆内径相适应,后端部分的外径小于针杆内,径形成抬肩外圆,所述进水管斜面的前端与堵水轴抬肩外圆焊接固定。
- 根据权利要求1所述的无磁水冷微波消融针制造方法,其特征在于:所述氧化锆刺头的尾部外圆的外径与堵水轴前段部分的外径相等。
- 依据权利要求1-3任一项方法制造获得的消融针,主要包括有:氧化锆刺头、极芯、同轴电缆、堵水轴、引水管、针杆,所述极芯插入刺头的中心孔内,极芯后端与半刚同轴电缆的内导体冷压固接,堵水轴套在同轴电缆上,其头部抵住氧化锆刺头后端面,尾部与同轴电缆外导体密封焊接,引水管的前端套在堵水轴外圆上,并与堵水轴焊接固定,针杆前端套装在氧化锆刺头的外圆上,并使用环氧树脂胶将针杆与氧化锆刺头、堵水轴进行粘结固定;射频同轴连接器与同轴电缆的尾部焊接。
- 根据权利要求6所述的消融针,其特征在于:所述进水管前部为斜面,并在背部开设出水孔,堵水轴为两段式,两段的内孔径相同,且与同轴电缆外导体相适应,前段部分的外径与针杆内径相适应,后端部分的外径小于针杆内,径形成抬肩外圆,所述进水管斜面的前端与堵水轴抬肩外圆焊接固定。
- 根据权利要求1所述的消融针,其特征在于:所述氧化锆刺头的尾部外圆的外径与堵水轴前段部分的外径相等。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/512,464 US10874458B2 (en) | 2014-11-11 | 2015-01-22 | Manufacturing method for non-magnetic water-cooled microwave ablation needle |
JP2017509041A JP6231722B2 (ja) | 2014-11-11 | 2015-01-22 | 非磁性水冷マイクロ波焼灼針の製造方法 |
EP15859080.2A EP3165191B1 (en) | 2014-11-11 | 2015-01-22 | Manufacturing method for non-magnetic water-cooled microwave ablation needle |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410631162.5A CN104323856B (zh) | 2014-11-11 | 2014-11-11 | 无磁水冷微波消融针制造方法 |
CN201410631162.5 | 2014-11-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016074344A1 true WO2016074344A1 (zh) | 2016-05-19 |
Family
ID=52398773
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/071280 WO2016074344A1 (zh) | 2014-11-11 | 2015-01-22 | 无磁水冷微波消融针制造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10874458B2 (zh) |
EP (1) | EP3165191B1 (zh) |
JP (1) | JP6231722B2 (zh) |
CN (1) | CN104323856B (zh) |
WO (1) | WO2016074344A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110179539A (zh) * | 2019-05-30 | 2019-08-30 | 江苏省肿瘤医院 | 一种用于消融术中消融针的密封定位装置 |
CN113729920A (zh) * | 2021-09-28 | 2021-12-03 | 深圳迈微医疗科技有限公司 | 双模态组织消融针 |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104720892A (zh) * | 2015-03-16 | 2015-06-24 | 李晓光 | 一种用于囊性癌肿瘤消融治疗的微波消融天线 |
CN104688335B (zh) * | 2015-03-16 | 2018-02-23 | 南京维京九洲医疗器械研发中心 | 一种用于治疗大肝癌的微波消融天线 |
CN104905874A (zh) * | 2015-06-16 | 2015-09-16 | 翟博 | 一种具有活检功能的微波消融针及其刺头的制造方法 |
CN106236255A (zh) * | 2016-08-25 | 2016-12-21 | 庞茂英 | 具有控温功能的血管微波消融针及制备方法 |
CN107260301B (zh) * | 2017-04-20 | 2021-04-02 | 南通融锋医疗科技有限公司 | 真圆微波消融天线及系统 |
CN107802343A (zh) * | 2017-11-06 | 2018-03-16 | 南京微创医学科技股份有限公司 | 一种分体式变径微波针 |
CN107865691A (zh) * | 2017-11-22 | 2018-04-03 | 安徽硕金医疗设备有限公司 | 一种磁共振兼容的水冷微波消融针 |
CN108030548B (zh) * | 2017-12-13 | 2024-05-07 | 南京康友医疗科技有限公司 | 一种可循环利用的微波软杆消融针 |
CN108030549B (zh) * | 2017-12-29 | 2024-04-12 | 南京康友医疗科技有限公司 | 一种单边微波消融针 |
CN108992165A (zh) * | 2018-04-10 | 2018-12-14 | 广东百德医疗有限公司 | 一种穿刺型半柔微波消融针的水冷结构 |
CN108938080B (zh) * | 2018-07-26 | 2024-02-09 | 南京康友医疗科技有限公司 | 一种超声内镜下柔性微波消融针 |
CN109330680A (zh) * | 2018-12-04 | 2019-02-15 | 安徽大中润科技有限公司 | 一种磁兼容的偶极子微波消融针 |
CN109481014B (zh) * | 2018-12-21 | 2024-05-07 | 南京康友医疗科技有限公司 | 一种具有弹性弯曲弧度的微波消融装置 |
CN110507414A (zh) * | 2019-09-16 | 2019-11-29 | 浙江大学 | 一种多缝隙微波消融针 |
CN110523003A (zh) * | 2019-09-23 | 2019-12-03 | 南京臻泰微波科技有限公司 | 一种无需水冷的肿瘤微波消融针 |
CN112472289B (zh) * | 2020-12-15 | 2022-03-25 | 宁波梅山保税港区时顺企业管理合伙企业(有限合伙) | 一种微波消融针 |
CN113576658B (zh) * | 2021-09-03 | 2023-03-03 | 济南市儿童医院(山东大学齐鲁儿童医院) | 一种具有自引导功能的血管瘤治疗用微波消融针 |
CN115581523A (zh) * | 2022-11-03 | 2023-01-10 | 南京亿高医疗科技股份有限公司 | 用于脊柱消融的消融针 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006002943A1 (en) * | 2004-07-02 | 2006-01-12 | Microsulis Limited | Radiation applicator and method of radiating tissue |
CN101631506A (zh) * | 2006-01-03 | 2010-01-20 | 英国投资联合公司 | 放射发生器和放射组织的方法 |
CN201775679U (zh) * | 2010-09-07 | 2011-03-30 | 南京庆海微波电子研究所 | 骨肿瘤水冷微波消融针 |
CN201775680U (zh) * | 2010-09-07 | 2011-03-30 | 南京庆海微波电子研究所 | 可大功率使用的水冷微波消融针 |
US20130317495A1 (en) * | 2007-06-28 | 2013-11-28 | Covidien Lp | Broadband microwave applicator |
CN203619673U (zh) * | 2013-11-29 | 2014-06-04 | 杨兴瑞 | 具有实时测温与消融为一体的高性能水冷微波消融天线 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5629380A (en) * | 1994-09-19 | 1997-05-13 | Minnesota Mining And Manufacturing Company | Epoxy adhesive composition comprising a calcium salt and mannich base |
US7322957B2 (en) * | 2000-02-01 | 2008-01-29 | Harold D. Kletschka | Angioplasty device and method of making same |
US20080275439A1 (en) * | 2002-01-25 | 2008-11-06 | David Francischelli | Cardiac ablation and electrical interface system and instrument |
US20090104448A1 (en) * | 2007-10-17 | 2009-04-23 | Henkel Ag & Co. Kgaa | Preformed adhesive bodies useful for joining substrates |
US8059059B2 (en) * | 2008-05-29 | 2011-11-15 | Vivant Medical, Inc. | Slidable choke microwave antenna |
US9993294B2 (en) * | 2009-11-17 | 2018-06-12 | Perseon Corporation | Microwave coagulation applicator and system with fluid injection |
US8414570B2 (en) * | 2009-11-17 | 2013-04-09 | Bsd Medical Corporation | Microwave coagulation applicator and system |
WO2014006562A1 (en) * | 2012-07-03 | 2014-01-09 | Element Six Technologies Us Corporation | Handle for semiconductor-on-diamond wafers and method of manufacture |
-
2014
- 2014-11-11 CN CN201410631162.5A patent/CN104323856B/zh active Active
-
2015
- 2015-01-22 JP JP2017509041A patent/JP6231722B2/ja active Active
- 2015-01-22 WO PCT/CN2015/071280 patent/WO2016074344A1/zh active Application Filing
- 2015-01-22 US US15/512,464 patent/US10874458B2/en active Active
- 2015-01-22 EP EP15859080.2A patent/EP3165191B1/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006002943A1 (en) * | 2004-07-02 | 2006-01-12 | Microsulis Limited | Radiation applicator and method of radiating tissue |
CN101631506A (zh) * | 2006-01-03 | 2010-01-20 | 英国投资联合公司 | 放射发生器和放射组织的方法 |
US20130317495A1 (en) * | 2007-06-28 | 2013-11-28 | Covidien Lp | Broadband microwave applicator |
CN201775679U (zh) * | 2010-09-07 | 2011-03-30 | 南京庆海微波电子研究所 | 骨肿瘤水冷微波消融针 |
CN201775680U (zh) * | 2010-09-07 | 2011-03-30 | 南京庆海微波电子研究所 | 可大功率使用的水冷微波消融针 |
CN203619673U (zh) * | 2013-11-29 | 2014-06-04 | 杨兴瑞 | 具有实时测温与消融为一体的高性能水冷微波消融天线 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110179539A (zh) * | 2019-05-30 | 2019-08-30 | 江苏省肿瘤医院 | 一种用于消融术中消融针的密封定位装置 |
CN110179539B (zh) * | 2019-05-30 | 2024-03-01 | 江苏省肿瘤医院 | 一种用于消融术中消融针的密封定位装置 |
CN113729920A (zh) * | 2021-09-28 | 2021-12-03 | 深圳迈微医疗科技有限公司 | 双模态组织消融针 |
WO2023051165A1 (zh) * | 2021-09-28 | 2023-04-06 | 深圳迈微医疗科技有限公司 | 双模态组织消融针 |
Also Published As
Publication number | Publication date |
---|---|
EP3165191A4 (en) | 2017-08-30 |
EP3165191A1 (en) | 2017-05-10 |
JP6231722B2 (ja) | 2017-11-15 |
JP2017527359A (ja) | 2017-09-21 |
US10874458B2 (en) | 2020-12-29 |
CN104323856B (zh) | 2017-07-18 |
US20170296269A1 (en) | 2017-10-19 |
EP3165191B1 (en) | 2018-05-09 |
CN104323856A (zh) | 2015-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016074344A1 (zh) | 无磁水冷微波消融针制造方法 | |
US8069553B2 (en) | Method for constructing a dipole antenna | |
TWI375579B (en) | Radiation applicator and radiation application assembly | |
US8246614B2 (en) | High-strength microwave antenna coupling | |
CN106109009B (zh) | 一种使用433MHz频率的水冷微波消融针 | |
CN104546126B (zh) | 一种适用于肺癌介入治疗的微波消融天线 | |
KR20100128608A (ko) | 고주파 열 치료장치의 전극침 | |
CN109953824A (zh) | 一种微波消融针体、微波消融针及微波消融方法 | |
CN104688335B (zh) | 一种用于治疗大肝癌的微波消融天线 | |
CN104720892A (zh) | 一种用于囊性癌肿瘤消融治疗的微波消融天线 | |
CN107349010A (zh) | 射频消融探头及其制备方法 | |
CN109259857A (zh) | 一种在内窥镜引导下半刚穿刺型水冷微波消融治疗器械 | |
CN117064540B (zh) | 一种微波消融天线 | |
WO2021051542A1 (zh) | 一种多缝隙微波消融针 | |
CN111603384A (zh) | 一种具备加热测温功能的治疗针 | |
CN203647465U (zh) | 一种射频消融电极 | |
CN107626041B (zh) | 心脏起搏器、起博电极导线及其头端结构 | |
CN107007350B (zh) | 微波消融针及微波消融治疗仪 | |
CN201631377U (zh) | 经超声内镜引导的射频消融电极 | |
CN212347173U (zh) | 一种具备加热测温功能的治疗针 | |
CN211381730U (zh) | 一种集成的射频套管 | |
CN210019637U (zh) | 一种磁兼容的偶极子微波消融针 | |
CN109330681B (zh) | 一种磁兼容的水冷微波消融针及其制造方法 | |
CN111358551A (zh) | 一种用于支气管镜下的微波消融导管 | |
CN206214180U (zh) | 具有控温功能的血管微波消融针 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15859080 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2015859080 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015859080 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2017509041 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15512464 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |