WO2016074194A1 - 一种数据传输方法、设备及系统 - Google Patents

一种数据传输方法、设备及系统 Download PDF

Info

Publication number
WO2016074194A1
WO2016074194A1 PCT/CN2014/091002 CN2014091002W WO2016074194A1 WO 2016074194 A1 WO2016074194 A1 WO 2016074194A1 CN 2014091002 W CN2014091002 W CN 2014091002W WO 2016074194 A1 WO2016074194 A1 WO 2016074194A1
Authority
WO
WIPO (PCT)
Prior art keywords
prb
prbs
information
group
modulation
Prior art date
Application number
PCT/CN2014/091002
Other languages
English (en)
French (fr)
Inventor
王达
王键
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP14906077.4A priority Critical patent/EP3209057B1/en
Priority to CN201480080955.0A priority patent/CN106576269B/zh
Priority to US15/526,717 priority patent/US20170325285A1/en
Priority to PCT/CN2014/091002 priority patent/WO2016074194A1/zh
Publication of WO2016074194A1 publication Critical patent/WO2016074194A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/022Selective call receivers
    • H04W88/023Selective call receivers with message or information receiving capability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management

Definitions

  • the present invention relates to the field of communications, and in particular, to a data transmission method, device, and system.
  • the data transmission in the wireless communication network needs to occupy a certain bandwidth, and the data is carried on the carrier for transmission, and the bandwidth can represent the transmission amount of data in a fixed time.
  • each carrier uses 20 MHz bandwidth, and the 20 MHz bandwidth can transmit 110 PRBs (Physical Resource Blocks).
  • PRBs Physical Resource Blocks
  • Different numbers of PRBs correspond to different TBS (Transport Block Size) at different MCS (Modulation and Coding Scheme) levels.
  • the TBS is used to indicate the size of the transmitted data, and the corresponding TBS is selected according to different TBSs.
  • the encoding block size encodes the data.
  • the maximum transmission block of the communication system may be greater than 110 PRBs.
  • the existing coding modulation method does not.
  • the embodiment of the present invention provides a data transmission method, device, and system, which can solve the problem that when the number of physical resource blocks PRB of the wireless communication system is greater than 110, there is no corresponding TBS, and data cannot be encoded and modulated.
  • a data transmission method includes:
  • the first device acquires packet information, where the packet information is used to indicate that the N physical resource blocks PRB are divided into information of M PRB groups, where N is an integer greater than 110, and M is a positive integer;
  • the first device performs coding and modulation to generate a modulation symbol by using a transport block size TBS corresponding to each PRB group in the M PRB group;
  • the first device transmits the modulation symbol to a second device by using physical resources corresponding to the N PRBs.
  • the number of PRBs in each of the M-1 PRB groups in the M PRB group is a first preset value.
  • the difference between the number of PRBs of any two PRB groups in the M PRB group is not greater than the first threshold.
  • the first threshold is 1.
  • the length of the coding block corresponding to the number of PRBs of the mth PRB group in the M PRB group is a second threshold, where m is an integer satisfying 1 ⁇ m ⁇ M.
  • the method further includes:
  • the N physical resource blocks PRB are divided into the M PRB groups, so that the number of PRBs of at least one of the M PRB groups is the first PRB number.
  • the method further includes:
  • the first device maps the modulation symbol to a physical resource corresponding to the N PRBs.
  • the first device is configured to map the modulation symbol to a physical resource corresponding to the N PRBs, including:
  • the first device maps each group of modulation symbols in the M group of modulation symbols to corresponding physical resources according to the M groups of PRBs, or groups the M groups of modulation symbols into a whole set of modulation symbols. And mapping to the physical resources corresponding to the N PRBs.
  • the method further includes:
  • the first device sends control information to the second device, where the control information includes the packet information and resource mapping information, where the resource mapping information is used to indicate that the modulation symbol is mapped to the N PRBs.
  • the first device is a base station or a user equipment.
  • a data transmission method includes:
  • the second device acquires packet information, where the packet information is used to indicate that the N physical resource blocks PRB are divided into information of M PRB groups, where N is an integer greater than 110, and M is a positive integer;
  • the second device receives data on physical resources corresponding to the N PRBs
  • the second device demodulates the data according to the grouping information.
  • the number of PRBs in each of the M-1 PRB groups in the M PRB group is a first preset value.
  • the difference between the number of PRBs of any two PRB groups in the M PRB group is not greater than the first threshold.
  • the first threshold is 1.
  • the length of the coding block corresponding to the number of PRBs of the mth PRB group in the M PRB group is a second threshold, where m is an integer of 1 ⁇ m ⁇ M.
  • the method further includes:
  • control information sent by the first device where the control information includes the group information and resource mapping information, where the resource mapping information is used to indicate mapping the modulation symbol to the N PRBs
  • the mapping method on the corresponding physical resource
  • the second device is a base station or a user equipment.
  • a first device includes:
  • a packet module configured to obtain packet information, where the packet information is used to indicate that the N physical resource blocks PRB are divided into M PRB groups, where N is an integer greater than 110, and M is a positive integer;
  • a coded modulation module configured to perform code modulation and modulation to generate a modulation symbol by using a transport block size TBS corresponding to each PRB group of the M PRB groups acquired by the grouping module;
  • a transmission module configured to transmit, by using the physical resource corresponding to the N PRBs, the modulation symbol generated by the code modulation module to the second device.
  • the transmission module is further configured to map the modulation symbol to a physical resource corresponding to the N PRBs.
  • the transmission module is further configured to send control information to the second device, where the control information includes the packet information and resource mapping information, where the resource mapping information is used to indicate mapping the modulation symbol to the N The mapping mode on the physical resources corresponding to the PRB.
  • the first device is a base station or a user equipment.
  • a second device includes:
  • An acquiring module configured to obtain group information, where the group information is used to indicate that the N physical resource blocks PRB are divided into M PRB groups, where N is an integer greater than 110, and M is a positive integer;
  • a receiving module configured to receive data on physical resources corresponding to the N PRBs
  • a demodulation module configured to demodulate the data received by the receiving module according to the grouping information acquired by the acquiring module.
  • the acquiring module includes a receiving subunit, configured to receive control information sent by the first device, where the control information includes the grouping information and resource mapping information, where the resource mapping information is used to indicate mapping the modulation symbol A mapping manner to physical resources corresponding to the N PRBs.
  • the second device is a base station or a user equipment.
  • a first device includes a processor, a memory, a bus, and a transceiver, wherein the processor, the memory, and the transceiver are connected to each other through the bus;
  • the transceiver is configured to acquire packet information, where the packet information is used to indicate that the N physical resource blocks PRB are divided into information of M PRB groups, where N is an integer greater than 110, and M is a positive integer;
  • the processor is configured to perform code modulation and modulation to generate a modulation symbol by using a transport block size TBS corresponding to each PRB group in the M PRB groups acquired by the transceiver;
  • the transceiver is further configured to transmit, by using a physical resource corresponding to the N PRBs, the modulation symbol generated by the processor to a second device.
  • the transceiver is further configured to map the modulation symbol to a physical resource corresponding to the N PRBs.
  • the transceiver is further configured to send control information to the second device, where the control information includes the packet information and resource mapping information, where the resource mapping information is used to indicate mapping the modulation symbol to the N Mapping method on physical resources corresponding to PRBs
  • the first device is a base station or a user equipment.
  • a second device includes a processor, a memory, a bus, and a receiver, wherein the processor, the memory, and the receiver are connected to each other through the bus;
  • the processor is configured to acquire packet information, where the packet information is used to indicate that the N physical resource blocks PRB are divided into information of M PRB groups, where N is an integer greater than 110, and M is a positive integer;
  • the receiver is configured to receive data on a physical resource corresponding to the N PRBs;
  • the processor is further configured to demodulate the data received by the receiver according to the acquired packet information.
  • the processor is further configured to receive, by using the receiver, control information sent by the first device, where the control information includes the group information and resource mapping information, where the resource mapping information is used to indicate that the modulation is to be performed.
  • a symbol is mapped to a mapping manner on a physical resource corresponding to the N PRBs.
  • the second device is a base station or a user equipment.
  • a wireless network system including a first device and a second device;
  • the first device is the first device described in the third aspect or any one of the possible implementation manners of the third aspect, where the second device is any one of the fourth aspect or the fourth aspect a second device as described in the implementation;
  • first device is the first device described in any one of the possible implementation manners of the fifth aspect or the fifth aspect, where the second device is any one of the sixth aspect or the sixth aspect The second device described in the implementation.
  • the data transmission method, device, and system provided by the embodiment of the present invention divide the N physical resource blocks PRB into M PRB groups by using the first device, and perform coding modulation on the TBS corresponding to each PRB group in the M PRB groups to generate modulation symbols. And transmitting data to the second device by using physical resources corresponding to the N PRBs.
  • the number of PRBs of each group after the grouping is applied to the existing modulation mode, and when the number of physical resource blocks PRB of the wireless communication system is greater than 110, there is no corresponding TBS, and the data cannot be encoded and modulated.
  • FIG. 1 is a schematic flowchart of a data transmission method according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a PRB grouping manner according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of a data transmission method according to another embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a first device according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a second device according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a first device according to another embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a second device according to another embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a wireless network system according to an embodiment of the present invention.
  • the embodiment of the present invention provides a data transmission method, which is applied to a wireless network, and is preferably applied to a first device in an LTE system.
  • the first device may be a base station or a user equipment.
  • this embodiment uses LTE
  • the data transmission method provided in this embodiment includes the following steps:
  • the first device acquires group information.
  • the grouping information is used to indicate information that the N PRBs are divided into M PRB groups, N is an integer greater than 110, and M is a positive integer.
  • the group information may be preset by the first device, or may be transmitted by the other third device to the first device, or negotiated by the first device and the second device. Make a limit.
  • N is the number of PRBs used for data transmission, and the number of PRBs of each PRB group in the M PRB groups is less than or equal to 110.
  • the maximum bandwidth is 20 MHz.
  • up to 110 PRBs can be coded and modulated at a time. Therefore, the N PRBs are divided into M groups for coding modulation, and the number of PRBs in each PRB group is less than or Equal to 110, which enables data transmissions greater than 20 MHz bandwidth to be applied to existing coded modulation modes.
  • the present embodiment provides three grouping modes, as shown in FIG. 2.
  • FIG. 2 is only an example, and does not mean that the present invention is limited to the three grouping modes shown in FIG. 2.
  • the first mode is: in the M PRB group, the number of PRBs in each of the M1 PRB groups is a first preset value.
  • the first preset value is 110.
  • the first preset value may be Adjust according to the specific situation.
  • the first preset value is 110, if N is an integer multiple of 110, then The number of PRBs in each PRB group is 110. If N is not an integer multiple of 110, then That is, the integer part of the result of dividing N by 110 is incremented by 1, so that the number of PRBs of the M-1 PRB groups is 110, and the number of PRBs of one PRB group is mod (N, 110), that is, the remainder of N divided by 110.
  • the second mode the difference between the number of PRBs of any two PRB groups in the M PRB group is less than or equal to the first threshold.
  • the first threshold is 1, and the present invention does not limit the specific value of the first threshold.
  • the third mode for the mth PRB group in the M PRB group, the code block length corresponding to the number of PRBs of the mth PRB group is a second threshold, where m is an integer satisfying 1 ⁇ m ⁇ M.
  • the coded block length is the code length of the turbo code, and preferably, the second threshold is 6144 bits.
  • TBS at I MCS selecting a first number of different PRB numbers corresponding TBS, TBS corresponding to a first coding block length for the first
  • the second threshold determines the number of the first PRBs corresponding to the first TBS according to the first TBS, and divides the N physical resource blocks PRB into M PRB groups, so that the number of PRBs of at least one PRB group in the M PRB groups is the first PRB number.
  • the maximum coding block length is 6144 bits.
  • the length of the coding block corresponding to the number of PRBs in the packet is 6144 bits. , improved system performance.
  • the I TBS (TBS Index, Transport Block Size Index) number is first determined according to the I MCS (Modulation Index) number.
  • the I MCS number corresponds to one I TBS number
  • one I TBS number corresponds to multiple TBSs
  • one I TBS number and PRB number can determine one TBS, that is, when the I TBS numbers are the same, different PRB numbers correspond to different TBSs, that is, when When the I TBS numbers are the same, one PRB number corresponds to one TBS.
  • the number of PRBs may be an integer in [1, 110], so an I TBS number may have 110 TBSs.
  • the coding modulation calculation method (TBS+24) is an integer multiple of (coding block length -24), where 24 is the length of the CRC (Cyclical Redundancy Check) bit, when the coding block length When the maximum value is 6144, (TBS+24) must be an integer multiple of 6120.
  • the number of PRBs corresponding to the TBS that satisfies (TBS+24) is an integer multiple of 6120.
  • the first PRB number of course, the first PRB number can contain multiple values. This embodiment provides a list of alternative PRB numbers, as shown in Table 1:
  • the I TBS number is small, for example, the I TBS number is from 0 to 6, and there is no PRB number corresponding to the coding block length of 6144 bits, the number of PRBs in each group may be selected to correspond to one or more PRBs having a larger coding block length.
  • the number as shown in Table 1, I TBS number 0 to 6 shows the number of first PRBs.
  • the number of PRBs can be 76, 76, 76, 76, 76, 55, respectively, because the last 5 remaining PRBs can be added to the smallest number of PRB packets (the number of PRBs is 50) to form a group with a PRB number of 55.
  • Lookup table 1 and the number of 5 PRB groups can be respectively It is 95, 95, 95, 95, 35, and the last 35 PRBs are individually grouped.
  • the first device performs coding and modulation to generate a modulation symbol by using a transport block size TBS corresponding to each PRB group in the M PRB groups.
  • one PRB group corresponds to a set of modulation symbols.
  • the number of different PRBs corresponds to different TBSs, and the data carried by each PRB group in the M PRB groups is coded and modulated according to different TBSs.
  • the first device transmits the modulation symbol to the second device by using physical resources corresponding to the N PRBs.
  • each set of modulation symbols in the M sets of modulation symbols are respectively mapped to corresponding physical resources according to the M PRB groups, or the M sets of modulation symbols are grouped into a whole set of modulation symbols, and mapped to N PRBs. On the physical resources. In this way, by grouping the PRBs, the number of PRBs in the data transmission process of the first device to the second device may be greater than 110.
  • control information is further sent to the second device, where the control information includes the group information and the resource mapping information, where the resource mapping information is used to indicate that the modulation symbol is mapped to the physical resource corresponding to the N PRBs.
  • the second device is a single device, which may be a base station or a user device.
  • the first device and the second device are only used to distinguish two devices, and are not used to limit the device.
  • the first physical device divides the N physical resource blocks PRB into M PRB groups, and uses the TBS corresponding to each PRB group in the M PRB groups to perform modulation and modulation to generate modulation symbols, and uses N.
  • the physical resources corresponding to the PRBs transmit data to the second device.
  • the number of PRBs of each group after the grouping is applied to the existing modulation mode, and when the number of physical resource blocks PRB of the wireless communication system is greater than 110, there is no corresponding TBS, and the data cannot be encoded and modulated.
  • another embodiment of the present invention provides a data transmission method, which is applied to a second device in a wireless network.
  • the second device may be a base station or a user equipment.
  • the embodiment does not limit this.
  • the embodiment is a data transmission method on the receiving side. Referring to FIG. 3, the method includes the following steps:
  • the second device acquires group information.
  • the packet information is used to indicate that the N PRBs are divided into M PRB groups.
  • the data carried by the M PRB groups are respectively coded and modulated, and M is a positive integer.
  • the number of PRBs in each PRB group of the M PRB groups is Less than or equal to 110.
  • the group information may be sent by the first device, that is, the embodiment corresponding to FIG.
  • the executor of the data transmission method described in the foregoing may also be sent by another device, and the packet information may be preset by the second device, or may be negotiated by the second device at the peer device.
  • the invention is not limited.
  • the grouping information may be carried in the control information, and the control information may further include resource mapping information, where the resource mapping information is used to indicate a mapping manner of mapping the modulation symbols to physical resources corresponding to the N PRBs.
  • the second device receives data on physical resources corresponding to the N PRBs.
  • N is an integer greater than 110, which is the number of PRBs used for this data transmission.
  • the grouping manner of the M PRB groups in this embodiment may adopt the three grouping manners described in step 102 of the embodiment corresponding to FIG. 1, and of course, other grouping manners may also be adopted.
  • the maximum bandwidth is 20 MHz.
  • the N PRBs are divided into M groups for code modulation, and the number of PRBs in each PRB group is less than or Equal to 110, which enables data transmissions greater than 20 MHz bandwidth to be applied to existing coded modulation modes.
  • the second device demodulates the data according to the group information.
  • the packet information is obtained by the second device, where the packet information is used to indicate that the N PRBs are divided into M PRB groups, and the data is received on the physical resources corresponding to the N PRBs, and the data is compared according to the group information.
  • the packet information is used to indicate that the N PRBs are divided into M PRB groups, and the data is received on the physical resources corresponding to the N PRBs, and the data is compared according to the group information.
  • the first device is configured to implement the data transmission method described in the embodiment corresponding to FIG. 1
  • the first device 40 includes the first device 40, as shown in FIG. 4 , according to the embodiment corresponding to FIG. 1 .
  • the packet module 401 is configured to obtain packet information, where the packet information is used to indicate that the N physical resource blocks PRB are divided into M PRB groups, where N is an integer greater than 110, and M is a positive integer.
  • N is For the number of PRBs used in this data transmission, the number of PRBs in each of the M PRB groups is less than or equal to 110.
  • the code modulation module 402 is configured to perform code modulation on each of the M PRB groups corresponding to the M PRB groups acquired by the grouping module 401 to generate modulation symbols.
  • the transmitting module 403 is configured to transmit the modulation symbol generated by the code modulation module 402 to the second device by using physical resources corresponding to the N PRBs.
  • the number of PRBs in each of the M-1 PRB groups is the first preset value.
  • the difference in the number of PRBs of any two PRB groups is not greater than the first threshold.
  • the first threshold is 1.
  • the length of the coding block corresponding to the number of PRBs of the mth PRB group in the M PRB groups is a second threshold, where m is an integer satisfying 1 ⁇ m ⁇ M.
  • Grouping module 401 according to the specific number I MCS determination I MCS number corresponds to PRB numbers of different transport block size TBS, TBS at I MCS selecting a first number of different PRB TBS corresponding number, the first coding block length corresponding to the TBS For the second threshold, the number of the first PRBs corresponding to the first TBS is determined according to the first TBS, and the N physical resource blocks PRB are divided into M PRB groups, so that the number of PRBs of at least one PRB group in the M PRB groups is the first PRB. Quantity.
  • the transmitting module 403 is further configured to map the modulation symbol to a physical resource corresponding to the N PRBs.
  • the transmission module 403 is further configured to send the control information to the second device, where the control information includes the grouping information and the resource mapping information, where the resource mapping information is used to indicate a mapping manner of mapping the modulation symbols to physical resources corresponding to the N PRBs.
  • the first device is a base station or a user equipment.
  • the first device provided by the embodiment of the present invention divides the N physical resource blocks PRB into M PRB groups, and uses the TBS corresponding to each PRB group in the M PRB groups to perform modulation and modulation to generate modulation symbols, and uses N PRBs to correspond.
  • Physical resources to the second device transfer data.
  • the number of PRBs of each group after the grouping is applied to the existing modulation mode, and when the number of physical resource blocks PRB of the wireless communication system is greater than 110, there is no corresponding TBS, and the data cannot be encoded and modulated.
  • the embodiment of the present invention provides a second device, which is used to perform the data transmission method described in the foregoing embodiment corresponding to FIG. 3.
  • the second device 50 includes The receiving module 502, the obtaining module 501, and the demodulating module 503.
  • the obtaining module 501 is configured to acquire packet information, where the packet information is used to indicate that the N physical resource blocks PRB are divided into information of M PRB groups, where N is an integer greater than 110, and M is a positive integer.
  • the receiving module 502 is configured to receive data on physical resources corresponding to the N PRBs.
  • the demodulation module 503 is configured to demodulate the data received by the receiving module 502 according to the group information acquired by the obtaining module 501.
  • the number of PRBs in each of the M-1 PRB groups is the first preset value.
  • the difference in the number of PRBs of any two PRB groups is not greater than the first threshold.
  • the first threshold is 1.
  • the code block length corresponding to the number of PRBs of the mth PRB group is a second threshold, where m is an integer of 1 ⁇ m ⁇ M.
  • the obtaining module 501 includes a receiving subunit 5021, configured to receive control information sent by the first device, where the control information includes packet information and resource mapping information, where the resource mapping information is used to indicate that the modulation symbol is mapped to the N PRBs. The way to map on physical resources.
  • the second device is a base station or a user equipment.
  • the second device provided in this embodiment obtains packet information, and the packet information is used to indicate that the N PRBs are divided into M PRB groups, and the physical resources corresponding to the N PRBs.
  • the number of block PRBs is greater than 110, there is no corresponding TBS, and the data cannot be encoded and modulated.
  • the first device 60 for performing the data transmission method described in the foregoing embodiment corresponding to FIG. 1 .
  • the first The device may be a base station or a user equipment, which is not limited by the present invention.
  • the first device 60 includes: at least one processor 601, a memory 602, a bus 603, and a transceiver 604.
  • the at least one processor 601, the memory 602, and the transceiver The 604 are connected by the bus 603 and complete communication with each other.
  • the bus 603 may be an ISA (Industry Standard Architecture) bus, a PCI (Peripheral Component) bus, or an EISA (Extended Industry Standard Architecture) bus.
  • the bus 603 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 6, but it does not mean that there is only one bus or one type of bus. among them:
  • the memory 602 is used to execute the application code of the inventive scheme, and the application code for executing the inventive scheme is stored in a memory and controlled by the processor 601 for execution.
  • the memory can be a read only memory ROM or other type of static storage device that can store static information and instructions, a random access memory RAM or other type of dynamic storage device that can store information and instructions, or can be electrically erasable or programmable.
  • These memories are connected to the processor via a bus.
  • the processor 601 may be a central processing unit 601 (CPU), or an application specific integrated circuit (ASIC), or one configured to implement an embodiment of the present invention. Multiple integrated circuits.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • the transceiver 604 is configured to acquire packet information, where the packet information is used to indicate that the N physical resource blocks PRB are divided into information of M PRB groups, where N is an integer greater than 110, and M is a positive integer.
  • the processor 601 is configured to perform code modulation and modulation to generate a modulation symbol by using a transport block size TBS corresponding to each PRB group in the M PRB groups acquired by the transceiver 604.
  • the transceiver 604 is further configured to transmit the modulation symbol generated by the processor 601 to the second device by using physical resources corresponding to the N PRBs.
  • the number of PRBs in each of the M-1 PRB groups is the first preset value.
  • the difference in the number of PRBs of any two PRB groups is not greater than the first threshold.
  • the code block length corresponding to the number of PRBs of the mth PRB group is a second threshold, where m is an integer satisfying 1 ⁇ m ⁇ M.
  • I MCS number corresponds to PRB number of different transport block size TBS
  • TBS at I MCS selecting a first number of different PRB TBS corresponding number
  • the number of the first PRBs corresponding to the first TBS is determined according to the first TBS, and the N physical resource blocks PRB are divided into M PRB groups, so that the number of PRBs of at least one PRB group in the M PRB groups is the first PRB.
  • the transceiver 604 is further configured to map modulation symbols to physical resources corresponding to the N PRBs.
  • the transceiver 604 is further configured to send the control information to the second device, where the control information includes the grouping information and the resource mapping information, where the resource mapping information is used to indicate a mapping manner of mapping the modulation symbols to physical resources corresponding to the N PRBs.
  • the first device provided by the embodiment of the present invention divides the N physical resource blocks PRB into M PRB groups, and uses the TBS corresponding to each PRB group in the M PRB groups to perform modulation and modulation to generate modulation symbols, and uses N PRBs to correspond.
  • the physical resource transfers data to the second device.
  • the number of PRBs of each group after the grouping is applied to the existing modulation mode, and when the number of physical resource blocks PRB of the wireless communication system is greater than 110, there is no corresponding TBS, and the data cannot be encoded and modulated.
  • another embodiment of the present invention provides a second device 70 for performing the data transmission method described in the foregoing embodiment corresponding to FIG. 3.
  • the second The device may be a base station or a user equipment, which is not limited by the present invention.
  • the second device 70 includes: at least one processor 701, a memory 702, a bus 703, and a receiver 704, the at least one processor 701, the memory 702, and the receiving device.
  • the 704 are connected by the bus 703 and complete communication with each other.
  • the bus 703 may be an ISA (Industry Standard Architecture) bus, a PCI (Peripheral Component) bus, or an EISA (Extended Industry Standard Architecture) bus.
  • the bus 703 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 7, but it does not mean that there is only one bus or one type of bus. among them:
  • the memory 702 is for executing application code of the inventive scheme, and the application code for executing the inventive scheme is stored in a memory and controlled by the processor 701 for execution.
  • the memory can be a read only memory ROM or other type of static storage device that can store static information and instructions, a random access memory RAM or other type of dynamic storage device that can store information and instructions, or can be electrically erasable or programmable.
  • These memories are connected to the processor via a bus.
  • the processor 701 may be a central processing unit 701 (Central Processing Unit, It is abbreviated as CPU), or an Application Specific Integrated Circuit (ASIC), or one or more integrated circuits configured to implement the embodiments of the present invention.
  • CPU Central Processing Unit
  • ASIC Application Specific Integrated Circuit
  • the processor 701 is configured to acquire packet information, where the packet information is used to indicate that the N physical resource blocks PRB are divided into information of M PRB groups, where N is an integer greater than 110, and M is a positive integer.
  • the receiver 704 is configured to receive data on physical resources corresponding to the N PRBs.
  • the processor 701 is further configured to demodulate the data received by the receiver 704 according to the acquired packet information.
  • the number of PRBs in each of the M-1 PRB groups is the first preset value.
  • the difference in the number of PRBs of any two PRB groups is not greater than the first threshold.
  • the code block length corresponding to the number of PRBs of the mth PRB group is a second threshold, where m is an integer satisfying 1 ⁇ m ⁇ M.
  • the processor 701 is further configured to receive the control information sent by the first device by using the receiver 704, where the control information includes the group information and the resource mapping information, where the resource mapping information is used to indicate that the modulation symbol is mapped to the N PRBs. The way to map on physical resources.
  • the second device provided in this embodiment obtains packet information, and the packet information is used to indicate that the N PRBs are divided into information of M PRB groups, receive data on physical resources corresponding to the N PRBs, and demodulate the data according to the group information. Because the number of PRBs of each group after the grouping is applied to the existing modulation mode, the number of PRBs of the physical resource block of the wireless communication system is greater than 110, and there is no corresponding TBS. The problem of coding modulation of data is not possible.
  • the embodiment of the present invention provides a wireless network system for performing the data transmission method described in the foregoing embodiments of FIG. 1 and FIG. 3, in conjunction with the embodiments corresponding to FIG. 1 to FIG.
  • the wireless network system 80 includes a first device 801 and a second device 802.
  • the first device 801 is the first device described in the embodiment corresponding to FIG. 4, and the second device 802 is the second device described in the embodiment corresponding to FIG. 5.
  • the first device 801 is the first device described in the embodiment corresponding to FIG. 6, and the second device 802 is the second device described in the embodiment corresponding to FIG. 7.
  • the first device 801 may be a base station or a user equipment
  • the second device 802 may be a base station or a user equipment.
  • the radio network system provided by the embodiment of the present invention divides the N physical resource blocks PRB into M PRB groups by using the first device, and performs modulation coding on the TBS corresponding to each PRB group in the M PRB groups to generate modulation symbols, and uses N.
  • the physical resources corresponding to the PRBs transmit data to the second device.
  • the number of PRBs of each group after the grouping is applied to the existing modulation mode, and when the number of physical resource blocks PRB of the wireless communication system is greater than 110, there is no corresponding TBS, and the data cannot be encoded and modulated.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a computer.
  • the computer readable medium may include a RAM (Random Access Memory), a ROM (Read Only Memory), and an EEPROM (Electrically Erasable Programmable Read Only Memory).
  • CD-ROM Compact Disc Read Only Memory
  • CD-ROM Compact Disc Read Only Memory
  • CD-ROM Compact Disc Read Only Memory
  • Any connection may suitably be a computer readable medium.
  • the software is using a coaxial cable, fiber optic cable, twisted pair cable, DSL (Digital Subscriber Line) or wireless technologies such as infrared, radio and microwave, from the website, Coaxial cables, fiber optic cables, twisted pair, DSL, or wireless technologies such as infrared, wireless, and microwaves are included in the fixing of the associated media, as transmitted by a server or other remote source.
  • the disc and the disc include a CD (Compact Disc), a laser disc, a compact disc, a DVD disc (Digital Versatile Disc), a floppy disc, and a Blu-ray disc, wherein the disc is usually magnetically copied,
  • the disc uses a laser to optically replicate the data. Combinations of the above should also be included within the scope of the computer readable media.

Abstract

一种数据传输方法、设备及系统,涉及通信领域,能够解决无线通信系统的物理资源块PRB数量大于110时,没有对应的传输块TBS,无法对数据进行编码调制的问题。具体方案为:第一设备获取分组信息,分组信息用于指示N个PRB分成M个PRB组的信息,使用M个PRB组中每个PRB组对应的TBS进行编码调制生成调制符号,并利用N个PRB对应的物理资源向第二设备传输数据。上述方案用于无线网络中的数据传输。

Description

一种数据传输方法、设备及系统 技术领域
本发明涉及通信领域,尤其涉及一种数据传输方法、设备及系统。
背景技术
无线通信网络中的数据传输需要占用一定带宽,将数据承载在载波上进行传输,带宽能够表示固定时间内数据的传输量。在LTE(Long Term Evolution,长期演进)系统中,每个载波采用20MHz带宽,20MHz带宽最大能够传输110个PRB(Physical Resource Block,物理资源块)。不同数量的PRB在不同的MCS(Modulation and Coding Scheme,编码调制方式)级别上对应不同的TBS(Transport Block Size,传输块大小),TBS用于指示传输数据的大小,根据不同的TBS选择相应的编码块大小对数据进行编码。
随着移动通信系统的发展,无线通信网络需要更高的数据传输速率,这就需要系统支持更大的载波带宽,例如,massive CA(massive Carrier Aggregation,大容量载波聚合技术)需要支持大于20MHz的带宽的载波聚合,当然,此处只是举例说明,并不代表只有massive CA技术需要支持大于20MHz带宽传输数据,这样,通信系统的最大传输块就可能大于110个PRB,现有的编码调制方式没有大于110个PRB所对应的TBS,这导致传输块包含的PRB大于110个时无法对数据进行编码调制。
发明内容
本发明的实施例提供一种数据传输方法、设备及系统,能够解决无线通信系统的物理资源块PRB数量大于110时,没有对应的TBS,无法对数据进行编码调制的问题。
为达到上述目的,本发明的实施例采用如下技术方案:
第一方面,一种数据传输方法,包括:
第一设备获取分组信息,所述分组信息用于指示N个物理资源块PRB分成M个PRB组的信息,其中,N为大于110的整数,M为正整数;
所述第一设备使用所述M个PRB组中每个PRB组对应的传输块大小TBS进行编码调制生成调制符号;
所述第一设备使用所述N个PRB对应的物理资源向第二设备传输所述调制符号。
结合第一方面,在第一方面的第一种可能的实现方式中,
所述M个PRB组内,M-1个PRB组中每个PRB组的PRB数量为第一预设值。
结合第一方面,在第一方面的第二种可能的实现方式中,
所述M个PRB组内,任意两个PRB组的PRB数量之差不大于第一阈值。
结合第一方面的第二种可能的实现方式,在第一方面的第三种可能的实现方式中,所述第一阈值为1。
结合第一方面,在第一方面的第四种可能的实现方式中,
所述M个PRB组内第m个PRB组的PRB数量对应的编码块长度为第二阈值,其中m为满足1≤m≤M的整数。
结合第一方面的第四种可能的实现方式,在第一方面的第五种可能的实现方式中,所述方法还包括:
根据调制索引IMCS编号确定所述调制级别对应不同PRB数量的传输块大小TBS;
在所述IMCS编号对应的不同PRB数量的TBS中选择第一TBS,所述第一TBS对应的编码块长度为所述第二阈值;
根据所述第一TBS确定所述第一TBS对应的第一PRB数量;
将所述N个物理资源块PRB分成所述M个PRB组,使得所述M个PRB组中至少一个PRB组的PRB数量为所述第一PRB数量。
结合第一方面至第一方面的第五种可能的实现方式中任一实现方式,在第一方面的第六种可能的实现方式中,所述方法还包括:
所述第一设备将所述调制符号映射到所述N个PRB对应的物理资源上。
结合第一方面至第一方面的第六种可能的实现方式中任一实现 方式,在第一方面的第七种可能的实现方式中,所述第一设备将所述调制符号映射到所述N个PRB对应的物理资源上,包括:
所述第一设备将所述M组调制符号中每组调制符号按照所述M个PRB组分别映射到对应的物理资源上,或者,将所述M组调制符号组成一组整体的调制符号,并映射到所述N个PRB对应的物理资源上。
结合第一方面至第一方面的第七种可能的实现方式中任一实现方式,在第一方面的第八种可能的实现方式中,所述方法还包括:
所述第一设备向所述第二设备发送控制信息,所述控制信息包括所述分组信息及资源映射信息,所述资源映射信息用于指示将所述调制符号映射到所述N个PRB对应的物理资源上的映射方式。
结合第一方面至第一方面的第八种可能的实现方式中任一实现方式,在第一方面的第九种可能的实现方式中,
所述第一设备为基站或用户设备。
第二方面,一种数据传输方法,包括:
第二设备获取分组信息,所述分组信息用于指示N个物理资源块PRB分成M个PRB组的信息,其中,N为大于110的整数,M为正整数;
所述第二设备在所述N个PRB对应的物理资源上接收数据;
所述第二设备根据所述分组信息对所述数据进行解调。
结合第二方面,在第二方面的第一种可能的实现方式中,
所述M个PRB组内,M-1个PRB组中每个PRB组的PRB数量为第一预设值。
结合第二方面,在第二方面的第二种可能的实现方式中,
所述M个PRB组内,任意两个PRB组的PRB数量之差不大于第一阈值。
结合第二方面的第二种可能的实现方式,在第二方面的第三种可能的实现方式中,所述第一阈值为1。
结合第二方面,在第二方面的第四种可能的实现方式中,
所述M个PRB组内第m个PRB组的PRB数量对应的编码块长度为第二阈值,其中m为1≤m≤M的整数。
结合第二方面至第二方面的第四种可能的实现方式中任一实现方式,在第二方面的第五种可能的实现方式中,所述方法还包括:
所述第二设备接收所述第一设备发送的控制信息,所述控制信息包括所述分组信息及资源映射信息,所述资源映射信息用于指示将所述调制符号映射到所述N个PRB对应的物理资源上的映射方式。
结合第二方面至第二方面的第五种可能的实现方式中任一实现方式,在第二方面的第六种可能的实现方式中,
所述第二设备为基站或用户设备。
第三方面,一种第一设备,包括:
分组模块,用于获取分组信息,所述分组信息用于指示N个物理资源块PRB分成M个PRB组的信息,其中,N为大于110的整数,M为正整数;
编码调制模块,用于使用所述分组模块获取的M个PRB组中每个PRB组对应的传输块大小TBS进行编码调制生成调制符号;
传输模块,用于使用所述N个PRB对应的物理资源向第二设备传输所述编码调制模块生成的所述调制符号。
结合第三方面,在第三方面的第一种可能的实现方式中,
所述传输模块,还用于将所述调制符号映射到所述N个PRB对应的物理资源上。
结合第三方面或第三方面的第一种可能的实现方式,在第三方面的第二种可能的实现方式中,
所述传输模块,还用于向所述第二设备发送控制信息,所述控制信息包括所述分组信息及资源映射信息,所述资源映射信息用于指示将所述调制符号映射到所述N个PRB对应的物理资源上的映射方式。
结合第三方面至第三方面的第二种可能的实现方式,在第三方面的第三种可能的实现方式中,
所述第一设备为基站或用户设备。
第四方面,一种第二设备,包括:
获取模块,用于获取分组信息,所述分组信息用于指示N个物理资源块PRB分成M个PRB组的信息,其中,N为大于110的整数,M为正整数;
接收模块,用于在所述N个PRB对应的物理资源上接收数据;
解调模块,用于根据所述获取模块获取的所述分组信息对所述接收模块接收的所述数据进行解调。
结合第四方面,在第四方面的第一种可能的实现方式中,
所述获取模块包括接收子单元,用于接收所述第一设备发送的控制信息,所述控制信息包括所述分组信息及资源映射信息,所述资源映射信息用于指示将所述调制符号映射到所述N个PRB对应的物理资源上的映射方式。
结合第四方面或第四方面的第一种可能的实现方式,在第四方面的第二种可能的实现方式中,
所述第二设备为基站或用户设备。
第五方面,一种第一设备,包括处理器、存储器、总线及收发器,所述处理器、所述存储器及所述收发器通过所述总线相互连接;
其中,所述收发器,用于获取分组信息,所述分组信息用于指示N个物理资源块PRB分成M个PRB组的信息,其中,N为大于110的整数,M为正整数;
所述处理器,用于使用所述收发器获取的M个PRB组中每个PRB组对应的传输块大小TBS进行编码调制生成调制符号;
所述收发器,还用于使用所述N个PRB对应的物理资源向第二设备传输所述处理器生成的所述调制符号。
结合第五方面,在第五方面的第一种可能的实现方式中,
所述收发器,还用于将所述调制符号映射到所述N个PRB对应的物理资源上。
结合第五方面或第五方面的第一种可能的实现方式,在第五方面的第二种可能的实现方式中,
所述收发器,还用于向所述第二设备发送控制信息,所述控制信息包括所述分组信息及资源映射信息,所述资源映射信息用于指示将所述调制符号映射到所述N个PRB对应的物理资源上的映射方式
结合第五方面至第五方面的第二种可能的实现方式中任一实现方式,在第五方面的第三种可能的实现方式中,
所述第一设备为基站或用户设备。
第六方面,一种第二设备,包括处理器、存储器、总线及接收器,所述处理器、所述存储器及所述接收器通过所述总线相互连接;
所述处理器,用于获取分组信息,所述分组信息用于指示N个物理资源块PRB分成M个PRB组的信息,其中,N为大于110的整数,M为正整数;
所述接收器,用于在所述N个PRB对应的物理资源上接收数据;
所述处理器,还用于根据获取的所述分组信息对所述接收器接收的所述数据进行解调。
结合第六方面,在第六方面的第一种可能的实现方式中,
所述处理器,还用于通过所述接收器接收所述第一设备发送的控制信息,所述控制信息包括所述分组信息及资源映射信息,所述资源映射信息用于指示将所述调制符号映射到所述N个PRB对应的物理资源上的映射方式。
结合第六方面或第六方面的第一种可能的实现方式,在第六方面的第二种可能的实现方式中,
所述第二设备为基站或用户设备。
第七方面,一种无线网络系统,包括第一设备及第二设备;
其中,所述第一设备为第三方面或第三方面的任意一种可能的实现方式中所描述的第一设备,所述第二设备为第四方面或第四方面的任意一种可能的实现方式中所描述的第二设备;
或者,所述第一设备为第五方面或第五方面的任意一种可能的实现方式中所描述的第一设备,所述第二设备为第六方面或第六方面的任意一种可能的实现方式中所描述的第二设备。
本发明实施例提供的数据传输方法、设备及系统,通过第一设备将N个物理资源块PRB分成M个PRB组,使用M个PRB组中每个PRB组对应的TBS进行编码调制生成调制符号,并利用N个PRB对应的物理资源向第二设备传输数据。使得分组后每个组的PRB数量适用于现有的调制方式,解决了无线通信系统的物理资源块PRB数量大于110时,没有对应的TBS,无法对数据进行编码调制的问题。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种数据传输方法流程示意图;
图2为本发明实施例提供的PRB分组方式示意图;
图3为本发明另一实施例提供的一种数据传输方法流程示意图;
图4为本发明实施例提供的一种第一设备结构示意图;
图5为本发明实施例提供的一种第二设备结构示意图;
图6为本发明另一实施例提供的一种第一设备结构示意图;
图7为本发明另一实施例提供的一种第二设备结构示意图;
图8为本发明实施例提供的一种无线网络系统结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例提供一种数据传输方法,应用于无线网络中,优选的,应用于LTE系统中的第一设备,优选的,该第一设备可以是基站,也可以是用户设备,本实施例对此不做限定,当然,本实施例以LTE 系统为例进行说明,并不代表本发明局限于此。参照图1所示,本实施例提供的数据传输方法包括以下步骤:
101、第一设备获取分组信息。
该分组信息用于指示N个PRB分成M个PRB组的信息,N为大于110的整数,M为正整数。可选的,该分组信息可以是第一设备预先设置的,也可以是其他第三设备传输至第一设备的,或者是由第一设备与对端第二设备协商的,对此本发明不做限制定。
具体的,N为本次数据传输所使用的PRB数量,M个PRB组中每一个PRB组的PRB数量小于或等于110。在LTE系统中,最大带宽为20MHz,对应的编码调制中,一次最多可以对110个PRB进行编码调制,因此,将N个PRB分成M个组进行编码调制,每一个PRB组的PRB数量小于或等于110,这就能够使得大于20MHz带宽的数据传输适用于现有的编码调制方式。
优选的,本实施例提供三种分组方式,如图2所示,当然,图2只是举例说明,并不代表本发明只局限于图2中所示的三种分组方式。
第一种方式:M个PRB组内,M-1个PRB组中每个PRB组的PRB数量为第一预设值,优选的,第一预设值为110,当然第一预设值可以根据具体情况进行调节。当第一预设值为110时,如果N为110的整数倍,则
Figure PCTCN2014091002-appb-000001
每个PRB组的PRB数量均为110,如果N不为110的整数倍,则
Figure PCTCN2014091002-appb-000002
即N除以110结果的整数部分加1,这样就有M-1个PRB组的PRB数量为110,有一个PRB组的PRB数量为mod(N,110),即N除以110的余数。
第二种方式:M个PRB组内,任意两个PRB组的PRB数量之差小于或等于第一阈值。优选的,第一阈值为1,当然本发明对于第一阈值的具体取值不做限制。当第一阈值为1时,如果N为110的整数倍,则
Figure PCTCN2014091002-appb-000003
每个PRB组的PRB数量均为110,如果N不为110的整数倍,确定分组数目为
Figure PCTCN2014091002-appb-000004
计算每组的PRB数量为
Figure PCTCN2014091002-appb-000005
再计算余数a=mod(N,M)<M,即N除以M的余数,将M个PRB组中a个PRB组的PRB数量确定为A+1,将其与M-a个PRB组的PRB数量确定为A,使得N个PRB近似等分。例如,N=478,计算可得M=5,A=95,a=3,5个PRB组的PRB数量分别为96、96、96、95、95。
第三种方式:对于M个PRB组内第m个PRB组,第m个PRB组的PRB数量对应的编码块长度为第二阈值,其中m为满足1≤m≤M的整数。
其中,编码块长度为Turbo码的编码长度,优选的,第二阈值为6144位。
具体可选的,根据IMCS编号确定IMCS编号对应不同PRB数量的传输块大小TBS,在IMCS编号对应的不同PRB数量的TBS中选择第一TBS,第一TBS对应的编码块长度为第二阈值,根据第一TBS确定第一TBS对应的第一PRB数量,将N个物理资源块PRB分成M个PRB组,使得M个PRB组中至少一个PRB组的PRB数量为第一PRB数量。在LTE系统中,以Turbo码为例,最大编码块长度为6144位,因此,将N个PRB分成M个PRB组时,尽可能多的使得分组内的PRB数量对应的编码块长度为6144位,提升了系统性能。可选的,以LTE系统中的Turbo码为例,当第二阈值是6144位时,首先根据IMCS(Modulation Index,调制索引)编号确定ITBS(TBS Index,传输块大小索引)编号,一个IMCS编号对应一个ITBS编号,一个ITBS编号对应多个TBS,一个ITBS编号和PRB数量可以确定一个TBS,即ITBS编号相同时,不同的PRB数量对应不同的TBS,也就是说当ITBS编号相同时,一个PRB数量对应一个TBS,对于LTE系统中的Turbo码,PRB数量可以是[1,110]中的整数,所以一个ITBS编号可以有110个TBS。又因为编码调制的计算方法中(TBS+24)是(编码块长度-24)的整数倍,其中,24为CRC(Cyclical Redundancy Check,循环冗佘码校验)位的长度,当编码块长度确定为最大值6144时,(TBS+24)须为6120的整数倍,在ITBS编号已经确定的情况下,就 要选择满足(TBS+24)是6120的整数倍的TBS所对应的PRB数量,将其作为第一PRB数量,当然第一PRB数量可以包含多个数值。本实施例提供备选PRB数量列表,如表一所示:
表一
Figure PCTCN2014091002-appb-000006
Figure PCTCN2014091002-appb-000007
对于ITBS编号较小的,例如ITBS编号从0到6,没有对应编码块长度为6144位的PRB数量,可以将每组中PRB的数量选择对应编码块长度较大的一个或多个PRB数量,如表一中ITBS编号0到6行所示第一PRB数量。
以表一为例,当IMCS编号为28时,对应的ITBS编号为26,如果N为435,则可以将PRB分为6组,即M=6,查找表一,6个PRB组的PRB数量可以分别是76、76、76、76、76、55,因为最后剩余5个PRB,可以将其加入到数量最小的PRB分组(PRB数量为50)中组成PRB数量为55的组。又如,当IMCS编号为18时,对应的ITBS编号为16,当N=415时,可以将PRB分为5组,即M=5,查找表一,5个PRB组的数量可以分别是95、95、95、95、35,最后剩余的35个PRB单独成为一组。
102、第一设备使用M个PRB组中每个PRB组对应的传输块大小TBS进行编码调制生成调制符号。
优选的,一个PRB组对应一组调制符号。可选的,M个PRB组中每个PRB组的PRB数量确定后,不同的PRB数量对应不同的TBS,分别根据不同的TBS对M个PRB组中每个PRB组承载的数据进行编码调制。
103、第一设备使用N个PRB对应的物理资源向第二设备传输调制符号。
可选的,将M组调制符号中每组调制符号按照M个PRB组分别映射到对应的物理资源上,或者,将M组调制符号组成一组整体的调制符号,并映射到N个PRB对应的物理资源上。这样,通过对PRB进行分组,使得第一设备向第二设备的一次数据传输过程中PRB数量可以大于110。
可选的,还可以向第二设备发送控制信息,控制信息包括分组信息及资源映射信息,资源映射信息用于指示将调制符号映射到N个PRB对应的物理资源上的映射方式。
优选的,第二设备是一个单独的设备,可以是基站或用户设备,当然,此处第一设备与第二设备只是用于区分两个设备,并不用于对设备进行限定。
本发明实施例提供的数据传输方法,通过第一设备将N个物理资源块PRB分成M个PRB组,使用M个PRB组中每个PRB组对应的TBS进行编码调制生成调制符号,并利用N个PRB对应的物理资源向第二设备传输数据。使得分组后每个组的PRB数量适用于现有的调制方式,解决了无线通信系统的物理资源块PRB数量大于110时,没有对应的TBS,无法对数据进行编码调制的问题。
对应图1对应的实施例,本发明另一实施例提供一种数据传输方法,应用于无线网络中的第二设备,可选的,该第二设备可以是基站,也可以是用户设备,本实施例对此不作限定,结合图1对应的实施例中描述的数据传输方法,本实施例是接收侧的数据传输方法,参照图3所示,包括以下步骤:
301、第二设备获取分组信息。
分组信息用于指示N个PRB分成M个PRB组的信息,M个PRB组承载的数据是分别经过编码调制后进行传输的,M为正整数,M个PRB组中每一个PRB组的PRB数量小于或等于110。
可选的,分组信息可以是第一设备发送的,即图1对应的实施例 中所描述的数据传输方法的执行主体,也可以是其他设备发送的,该分组信息也可以是第二设备预先设置的,或者,由第二设备于对端第一设备协商的,对此,本发明不做限制。优选的,该分组信息可以携带在控制信息中,该控制信息还可以包括资源映射信息,资源映射信息用于指示将调制符号映射到N个PRB对应的物理资源上的映射方式。
302、第二设备在N个PRB对应的物理资源上接收数据。
N为大于110的整数,是本次数据传输所使用的PRB数量。
优选的,本实施例中M个PRB组的分组方式可以采用图1对应的实施例步骤102中所描述的三种分组方式,当然也可以采用其他分组方式。在LTE系统中,最大带宽为20MHz,对应的编码调制中,一次最多可以对110个PRB进行编码调制,因此,将N个PRB分成M个组进行编码调制,每个PRB组的PRB数量小于或等于110,这就能够使得大于20MHz带宽的数据传输适用于现有的编码调制方式。
303、第二设备根据分组信息对数据进行解调。
本实施例提供的数据传输方法,通过第二设备获取分组信息,分组信息用于指示N个PRB分成M个PRB组的信息,在N个PRB对应的物理资源上接收数据,根据分组信息对数据进行解调,因为将N个PRB分为M个PRB组,使得分组后每个组的PRB数量适用于现有的调制方式,解决了无线通信系统的物理资源块PRB数量大于110时,没有对应的TBS,无法对数据进行编码调制的问题。
基于上述图1对应的实施例,本发明实施例提供一种第一设备,用于实施上述图1对应的实施例中所描述的数据传输方法,参照图4所示,该第一设备40包括分组模块401、编码调制模块402、及传输模块403。
其中,分组模块401,用于获取分组信息,分组信息用于指示N个物理资源块PRB分成M个PRB组的信息,其中,N为大于110的整数,M为正整数,优选的,N为本次数据传输所使用的PRB数量,M个PRB组中每一个PRB组的PRB数量小于或等于110。
编码调制模块402,用于使用分组模块401获取的M个PRB组中每个PRB组对应TBS进行编码调制生成调制符号。
传输模块403,用于使用N个PRB对应的物理资源向第二设备传输编码调制模块402生成的调制符号。
可选的,在第一种应用场景中,
M个PRB组内,M-1个PRB组中每个PRB组的PRB数量为第一预设值。
可选的,在第二种应用场景中,
M个PRB组内,任意两个PRB组的PRB数量之差不大于第一阈值。优选的,第一阈值为1。
可选的,在第三种应用场景中,
M个PRB组内第m个PRB组的PRB数量对应的编码块长度为第二阈值,其中m为满足1≤m≤M的整数。
进一步可选的,在第三种应用场景中,
分组模块401,具体用于根据IMCS编号确定IMCS编号对应不同PRB数量的传输块大小TBS,在IMCS编号对应的不同PRB数量的TBS中选择第一TBS,第一TBS对应的编码块长度为第二阈值,根据第一TBS确定第一TBS对应的第一PRB数量,将N个物理资源块PRB分成M个PRB组,使得M个PRB组中至少一个PRB组的PRB数量为第一PRB数量。
可选的,传输模块403,还用于将所述调制符号映射到所述N个PRB对应的物理资源上。
传输模块403,还用于向第二设备发送控制信息,控制信息包括分组信息及资源映射信息,资源映射信息用于指示将调制符号映射到N个PRB对应的物理资源上的映射方式。
优选的,该第一设备为基站或用户设备。
本发明实施例提供的第一设备,通过将N个物理资源块PRB分成M个PRB组,使用M个PRB组中每个PRB组对应的TBS进行编码调制生成调制符号,并利用N个PRB对应的物理资源向第二设备 传输数据。使得分组后每个组的PRB数量适用于现有的调制方式,解决了无线通信系统的物理资源块PRB数量大于110时,没有对应的TBS,无法对数据进行编码调制的问题。
基于上述图3对应的实施例,本发明实施例提供一种第二设备,用于执行上述图3对应的实施例中所描述的数据传输方法,参照图5所示,该第二设备50包括接收模块502、获取模块501及解调模块503。
其中,获取模块501,用于获取分组信息,分组信息用于指示N个物理资源块PRB分成M个PRB组的信息,其中,N为大于110的整数,M为正整数。
接收模块502,用于在N个PRB对应的物理资源上接收数据。
解调模块503,用于根据获取模块501获取的分组信息对接收模块502接收的数据进行解调。
可选的,在第一种应用场景中,
M个PRB组内,M-1个PRB组中每个PRB组的PRB数量为第一预设值。
可选的,在第二种应用场景中,
M个PRB组内,任意两个PRB组的PRB数量之差不大于第一阈值。优选的,第一阈值为1。
可选的,在第三种应用场景中,
对于M个PRB组内第m个PRB组,第m个PRB组的PRB数量对应的编码块长度为第二阈值,其中m为1≤m≤M的整数。
可选的,获取模块501包括接收子单元5021,用于接收第一设备发送的控制信息,控制信息包括分组信息及资源映射信息,资源映射信息用于指示将调制符号映射到N个PRB对应的物理资源上的映射方式。
优选的,第二设备为基站或用户设备。
本实施例提供的第二设备,通过获取分组信息,分组信息用于指示N个PRB分成M个PRB组的信息,在N个PRB对应的物理资源 上接收数据,根据分组信息对数据进行解调,因为将N个PRB分为M个PRB组,使得分组后每个组的PRB数量适用于现有的调制方式,解决了无线通信系统的物理资源块PRB数量大于110时,没有对应的TBS,无法对数据进行编码调制的问题。
基于上述图1对应的实施例,本发明另一实施例提供一种第一设备60,用于执行上述图1对应的实施例中所描述的数据传输方法,参照图6所示,该第一设备可以是基站或用户设备,本发明对此不做限制,该第一设备60包括:至少一个处理器601、存储器602、总线603和收发器604,该至少一个处理器601、存储器602和收发器604通过总线603连接并完成相互间的通信。
该总线603可以是ISA(Industry Standard Architecture,工业标准体系结构)总线、PCI(Peripheral Component,外部设备互连)总线或EISA(Extended Industry Standard Architecture,扩展工业标准体系结构)总线等。该总线603可以分为地址总线、数据总线、控制总线等。为便于表示,图6中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。其中:
存储器602用于执行本发明方案的应用程序代码,执行本发明方案的应用程序代码保存在存储器中,并由处理器601来控制执行。
该存储器可以是只读存储器ROM或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器RAM或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器EEPROM、只读光盘CD-ROM或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。这些存储器通过总线与处理器相连接。
处理器601可能是一个中央处理器601(Central Proce ssing Unit,简称为CPU),或者是特定集成电路(Application Specific Integrated Circuit,简称为ASIC),或者是被配置成实施本发明实施例的一个或 多个集成电路。
其中,收发器604,用于获取分组信息,分组信息用于指示N个物理资源块PRB分成M个PRB组的信息,其中,N为大于110的整数,M为正整数。
处理器601,用于使用收发器604获取的M个PRB组中每个PRB组对应的传输块大小TBS进行编码调制生成调制符号。
收发器604,还用于使用N个PRB对应的物理资源向第二设备传输处理器601生成的调制符号。
可选的,在第一种应用场景中,
M个PRB组内,M-1个PRB组中每个PRB组的PRB数量为第一预设值。
可选的,在第二种应用场景中,
M个PRB组内,任意两个PRB组的PRB数量之差不大于第一阈值。
可选的,在第三种应用场景中,
对于M个PRB组内第m个PRB组,第m个PRB组的PRB数量对应的编码块长度为第二阈值,其中m为满足1≤m≤M的整数。
进一步可选的,在第三种应用场景中,
处理器601,具体用于根据IMCS编号确定IMCS编号对应不同PRB数量的传输块大小TBS,在IMCS编号对应的不同PRB数量的TBS中选择第一TBS,第一TBS对应的编码块长度为第二阈值,根据第一TBS确定第一TBS对应的第一PRB数量,将N个物理资源块PRB分成M个PRB组,使得M个PRB组中至少一个PRB组的PRB数量为第一PRB数量。
可选的,收发器604,还用于将调制符号映射到N个PRB对应的物理资源上。
收发器604,还用于向第二设备发送控制信息,控制信息包括分组信息及资源映射信息,资源映射信息用于指示将调制符号映射到N个PRB对应的物理资源上的映射方式。
本发明实施例提供的第一设备,通过将N个物理资源块PRB分成M个PRB组,使用M个PRB组中每个PRB组对应的TBS进行编码调制生成调制符号,并利用N个PRB对应的物理资源向第二设备传输数据。使得分组后每个组的PRB数量适用于现有的调制方式,解决了无线通信系统的物理资源块PRB数量大于110时,没有对应的TBS,无法对数据进行编码调制的问题。
基于上述图3对应的实施例,本发明另一实施例提供一种第二设备70,用于执行上述图3对应的实施例中所描述的数据传输方法,参照图7所示,该第二设备可以是基站或用户设备,本发明对此不做限制,该第二设备70包括:至少一个处理器701、存储器702、总线703和接收器704,该至少一个处理器701、存储器702和接收器704通过总线703连接并完成相互间的通信。
该总线703可以是ISA(Industry Standard Architecture,工业标准体系结构)总线、PCI(Peripheral Component,外部设备互连)总线或EISA(Extended Industry Standard Architecture,扩展工业标准体系结构)总线等。该总线703可以分为地址总线、数据总线、控制总线等。为便于表示,图7中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。其中:
存储器702用于执行本发明方案的应用程序代码,执行本发明方案的应用程序代码保存在存储器中,并由处理器701来控制执行。
该存储器可以是只读存储器ROM或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器RAM或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器EEPROM、只读光盘CD-ROM或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。这些存储器通过总线与处理器相连接。
处理器701可能是一个中央处理器701(Central Processing Unit, 简称为CPU),或者是特定集成电路(Application Specific Integrated Circuit,简称为ASIC),或者是被配置成实施本发明实施例的一个或多个集成电路。
其中,处理器701,用于获取分组信息,分组信息用于指示N个物理资源块PRB分成M个PRB组的信息,其中,N为大于110的整数,M为正整数。
接收器704,用于在N个PRB对应的物理资源上接收数据。
处理器701,还用于根据获取的分组信息对接收器704接收的数据进行解调。
可选的,在第一种应用场景中,
M个PRB组内,M-1个PRB组中每个PRB组的PRB数量为第一预设值。
可选的,在第二种应用场景中,
M个PRB组内,任意两个PRB组的PRB数量之差不大于第一阈值。
可选的,在第三种应用场景中,
对于M个PRB组内第m个PRB组,第m个PRB组的PRB数量对应的编码块长度为第二阈值,其中m为满足1≤m≤M的整数。
可选的,处理器701,还用于通过接收器704接收第一设备发送的控制信息,控制信息包括分组信息及资源映射信息,资源映射信息用于指示将调制符号映射到N个PRB对应的物理资源上的映射方式。
本实施例提供的第二设备,通过获取分组信息,分组信息用于指示N个PRB分成M个PRB组的信息,在N个PRB对应的物理资源上接收数据,根据分组信息对数据进行解调,因为将N个PRB分为M个PRB组,使得分组后每个组的PRB数量适用于现有的调制方式,解决了无线通信系统的物理资源块PRB数量大于110时,没有对应的TBS,无法对数据进行编码调制的问题。
结合上述图1至图7对应的实施例,本发明实施例提供一种无线网络系统,用于执行上述图1及图3的实施例中描述的数据传输方法, 参照图8所示,该无线网络系统80包括第一设备801及第二设备802。
其中,第一设备801为图4对应的实施例中描述的第一设备,第二设备802为图5对应的实施例中描述的第二设备。
或者,第一设备801为图6对应的实施例中描述的第一设备,第二设备802为图7对应的实施例中描述的第二设备。
优选的,该第一设备801可以是基站或者用户设备,第二设备802可以是基站或者用户设备,对此,本发明不做限定。
本发明实施例提供的无线网络系统,通过第一设备将N个物理资源块PRB分成M个PRB组,使用M个PRB组中每个PRB组对应的TBS进行编码调制生成调制符号,并利用N个PRB对应的物理资源向第二设备传输数据。使得分组后每个组的PRB数量适用于现有的调制方式,解决了无线通信系统的物理资源块PRB数量大于110时,没有对应的TBS,无法对数据进行编码调制的问题。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本发明可以用硬件实现,或固件实现,或它们的组合方式来实现。当使用软件实现时,可以将上述功能存储在计算机可读介质中或作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括RAM(Random Access Memory,随机存储器)、ROM(Read Only Memory,只读内存)、EEPROM(Electrically Erasable Programmable Read Only Memory,电可擦可编程只读存储器)、CD-ROM(Compact Disc Read Only Memory,即只读光盘)或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。此外。任何连接可以适当的成为计算机可读介质。例如,如果软件是使用同轴电缆、光纤光缆、双绞线、DSL(Digital Subscriber Line,数字用户专线)或者诸如红外线、无线电和微波之类的无线技术从网站、 服务器或者其他远程源传输的,那么同轴电缆、光纤光缆、双绞线、DSL或者诸如红外线、无线和微波之类的无线技术包括在所属介质的定影中。如本发明所使用的,盘和碟包括CD(Compact Disc,压缩光碟)、激光碟、光碟、DVD碟(Digital Versatile Disc,数字通用光)、软盘和蓝光光碟,其中盘通常磁性的复制数据,而碟则用激光来光学的复制数据。上面的组合也应当包括在计算机可读介质的保护范围之内。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (30)

  1. 一种数据传输方法,其特征在于,包括:
    第一设备获取分组信息,所述分组信息用于指示N个物理资源块PRB分成M个PRB组的信息,其中,N为大于110的整数,M为正整数;
    所述第一设备使用所述M个PRB组中每个PRB组对应的传输块大小TBS进行编码调制生成调制符号;
    所述第一设备使用所述N个PRB对应的物理资源向第二设备传输所述调制符号。
  2. 根据权利要求1所述的方法,其特征在于,
    所述M个PRB组内,M-1个PRB组中每个PRB组的PRB数量为第一预设值。
  3. 根据权利要求1所述的方法,其特征在于,
    所述M个PRB组内,任意两个PRB组的PRB数量之差不大于第一阈值。
  4. 根据权利要求3所述的方法,其特征在于,所述第一阈值为1。
  5. 根据权利要求1所述的方法,其特征在于,
    所述M个PRB组内第m个PRB组的PRB数量对应的编码块长度为第二阈值,其中m为满足1≤m≤M的整数。
  6. 根据权利要求1-5中任一项所述的方法,其特征在于,还包括:
    所述第一设备将所述调制符号映射到所述N个PRB对应的物理资源上。
  7. 根据权利要求1-6中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备向所述第二设备发送控制信息,所述控制信息包括所述分组信息及资源映射信息,所述资源映射信息用于指示将所述调制符号映射到所述N个PRB对应的物理资源上的映射方式。
  8. 根据权利要求1-7中任一项所述的方法,其特征在于,
    所述第一设备为基站或用户设备。
  9. 一种数据传输方法,其他特征在于,包括:
    第二设备获取分组信息,所述分组信息用于指示N个物理资源块PRB分成M个PRB组的信息,其中,N为大于110的整数,M为正整数;
    所述第二设备在所述N个PRB对应的物理资源上接收数据;
    所述第二设备根据所述分组信息对所述数据进行解调。
  10. 根据权利要求9所述的方法,其特征在于,
    所述M个PRB组内,M-1个PRB组中每个PRB组的PRB数量为第一预设值。
  11. 根据权利要求9所述的方法,其特征在于,
    所述M个PRB组内,任意两个PRB组的PRB数量之差不大于第一阈值。
  12. 根据权利要求11所述的方法,其特征在于,所述第一阈值为1。
  13. 根据权利要求9所述的方法,其特征在于,
    所述M个PRB组内第m个PRB组的PRB数量对应的编码块长度为第二阈值,其中m为1≤m≤M的整数。
  14. 根据权利要求9-13中任一项所述的方法,其特征在于,还包括:
    所述第二设备接收所述第一设备发送的控制信息,所述控制信息包括所述分组信息及资源映射信息,所述资源映射信息用于指示将所述调制符号映射到所述N个PRB对应的物理资源上的映射方式。
  15. 根据权利要求9-14中任一项所述的方法,其特征在于,
    所述第二设备为基站或用户设备。
  16. 一种第一设备,其特征在于,包括:
    分组模块,用于获取分组信息,所述分组信息用于指示N个物理资源块PRB分成M个PRB组的信息,其中,N为大于110的整数, M为正整数;
    编码调制模块,用于使用所述分组模块获取的M个PRB组中每个PRB组对应的传输块大小TBS进行编码调制生成调制符号;
    传输模块,用于使用所述N个PRB对应的物理资源向第二设备传输所述编码调制模块生成的所述调制符号。
  17. 根据权利要求16所述的设备,其特征在于,
    所述传输模块,还用于将所述调制符号映射到所述N个PRB对应的物理资源上。
  18. 根据权利要求16或17所述的设备,其特征在于,
    所述传输模块,还用于向所述第二设备发送控制信息,所述控制信息包括所述分组信息及资源映射信息,所述资源映射信息用于指示将所述调制符号映射到所述N个PRB对应的物理资源上的映射方式。
  19. 根据权利要求16-18任一项所述的设备,其特征在于,
    所述第一设备为基站或用户设备。
  20. 一种第二设备,其特征在于,包括:
    获取模块,用于获取分组信息,所述分组信息用于指示N个物理资源块PRB分成M个PRB组的信息,其中,N为大于110的整数,M为正整数;
    接收模块,用于在所述N个PRB对应的物理资源上接收数据;
    解调模块,用于根据所述获取模块获取的所述分组信息对所述接收模块接收的所述数据进行解调。
  21. 根据权利要求20所述的设备,其特征在于,
    所述获取模块包括接收子单元,用于接收所述第一设备发送的控制信息,所述控制信息包括所述分组信息及资源映射信息,所述资源映射信息用于指示将所述调制符号映射到所述N个PRB对应的物理资源上的映射方式。
  22. 根据权利要求20或21所述的设备,其特征在于,
    所述第二设备为基站或用户设备。
  23. 一种第一设备,其特征在于,包括处理器、存储器、总线及 收发器,所述处理器、所述存储器及所述收发器通过所述总线相互连接;
    其中,所述收发器,用于获取分组信息,所述分组信息用于指示N个物理资源块PRB分成M个PRB组的信息,其中,N为大于110的整数,M为正整数;
    所述处理器,用于使用所述收发器获取的M个PRB组中每个PRB组对应的传输块大小TBS进行编码调制生成调制符号;
    所述收发器,还用于使用所述N个PRB对应的物理资源向第二设备传输所述处理器生成的所述调制符号。
  24. 根据权利要求23所述的设备,其特征在于,
    所述收发器,还用于将所述调制符号映射到所述N个PRB对应的物理资源上。
  25. 根据权利要求23或24所述的设备,其特征在于,
    所述收发器,还用于向所述第二设备发送控制信息,所述控制信息包括所述分组信息及资源映射信息,所述资源映射信息用于指示将所述调制符号映射到所述N个PRB对应的物理资源上的映射方式。
  26. 根据权利要求23-25任一项所述的设备,其特征在于,
    所述第一设备为基站或用户设备。
  27. 一种第二设备,其特征在于,包括处理器、存储器、总线及接收器,所述处理器、所述存储器及所述接收器通过所述总线相互连接;
    所述处理器,用于获取分组信息,所述分组信息用于指示N个物理资源块PRB分成M个PRB组的信息,其中,N为大于110的整数,M为正整数;
    所述接收器,用于在所述N个PRB对应的物理资源上接收数据;
    所述处理器,还用于根据获取的所述分组信息对所述接收器接收的所述数据进行解调。
  28. 根据权利要求27所述的设备,其特征在于,
    所述处理器,还用于通过所述接收器接收所述第一设备发送的控 制信息,所述控制信息包括所述分组信息及资源映射信息,所述资源映射信息用于指示将所述调制符号映射到所述N个PRB对应的物理资源上的映射方式。
  29. 根据权利要求27或28所述的设备,其特征在于,
    所述第二设备为基站或用户设备。
  30. 一种无线网络系统,其特征在于,包括第一设备及第二设备;
    其中,所述第一设备为权利要求16-19任一项所述的第一设备,所述第二设备为权利要求20-22任一项所述的第二设备;
    或者,所述第一设备为权利要求23-26任一项所述的第一设备,所述第二设备为权利要求27-29任一项所述的第二设备。
PCT/CN2014/091002 2014-11-13 2014-11-13 一种数据传输方法、设备及系统 WO2016074194A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14906077.4A EP3209057B1 (en) 2014-11-13 2014-11-13 Data transmission method, device and system
CN201480080955.0A CN106576269B (zh) 2014-11-13 2014-11-13 一种数据传输方法、设备及系统
US15/526,717 US20170325285A1 (en) 2014-11-13 2014-11-13 Data transmission method, device, and system
PCT/CN2014/091002 WO2016074194A1 (zh) 2014-11-13 2014-11-13 一种数据传输方法、设备及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/091002 WO2016074194A1 (zh) 2014-11-13 2014-11-13 一种数据传输方法、设备及系统

Publications (1)

Publication Number Publication Date
WO2016074194A1 true WO2016074194A1 (zh) 2016-05-19

Family

ID=55953592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/091002 WO2016074194A1 (zh) 2014-11-13 2014-11-13 一种数据传输方法、设备及系统

Country Status (4)

Country Link
US (1) US20170325285A1 (zh)
EP (1) EP3209057B1 (zh)
CN (1) CN106576269B (zh)
WO (1) WO2016074194A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10608804B2 (en) 2015-01-19 2020-03-31 Huawei Technologies Co., Ltd. Data transmission method, device, and system
CN112134650A (zh) * 2016-10-12 2020-12-25 Oppo广东移动通信有限公司 传输数据的方法和接收端设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102378253A (zh) * 2010-08-16 2012-03-14 中国移动通信集团公司 一种确定传输块大小的方法和装置
CN103547340A (zh) * 2013-03-21 2014-01-29 华为终端有限公司 数据传输方法、基站及用户设备
CN104038970A (zh) * 2013-03-05 2014-09-10 电信科学技术研究院 一种通信处理方法及设备
CN104065605A (zh) * 2013-03-22 2014-09-24 电信科学技术研究院 一种新载波类型载波上的通信方法及装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2106057A1 (en) * 2008-03-25 2009-09-30 Panasonic Corporation Resource allocation size dependent transport block size signalling
US20110025548A1 (en) * 2009-07-31 2011-02-03 Gm Global Technology Operations, Inc. System and method for vehicle sensor fusion
US8917677B2 (en) * 2010-04-14 2014-12-23 Samsung Electronics Co., Ltd. Systems and methods for bundling resource blocks in a wireless communication system
US20120010668A1 (en) * 2010-07-08 2012-01-12 Warsaw Orthopedic, Inc. Expandable surgical implant
CN104025494B (zh) * 2011-11-04 2017-09-22 瑞典爱立信有限公司 网络节点、用户设备及其方法
US9474059B2 (en) * 2012-01-13 2016-10-18 Lg Electronics Inc. Method for receiving downlink control signal, user equipment, method for transmitting downlink control signal and base station
US9374184B2 (en) * 2012-03-23 2016-06-21 Nokia Solutions And Networks Oy Controlling of code block to physical layer mapping
US9532337B2 (en) * 2012-05-19 2016-12-27 Google Technology Holdings LLC Method and apparatus for transport block signaling in a wireless communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102378253A (zh) * 2010-08-16 2012-03-14 中国移动通信集团公司 一种确定传输块大小的方法和装置
CN104038970A (zh) * 2013-03-05 2014-09-10 电信科学技术研究院 一种通信处理方法及设备
CN103547340A (zh) * 2013-03-21 2014-01-29 华为终端有限公司 数据传输方法、基站及用户设备
CN104065605A (zh) * 2013-03-22 2014-09-24 电信科学技术研究院 一种新载波类型载波上的通信方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3209057A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10608804B2 (en) 2015-01-19 2020-03-31 Huawei Technologies Co., Ltd. Data transmission method, device, and system
CN112134650A (zh) * 2016-10-12 2020-12-25 Oppo广东移动通信有限公司 传输数据的方法和接收端设备
CN112134650B (zh) * 2016-10-12 2022-05-31 Oppo广东移动通信有限公司 传输数据的方法和接收端设备

Also Published As

Publication number Publication date
EP3209057A4 (en) 2017-10-11
EP3209057B1 (en) 2019-01-09
CN106576269A (zh) 2017-04-19
EP3209057A1 (en) 2017-08-23
CN106576269B (zh) 2020-04-03
US20170325285A1 (en) 2017-11-09

Similar Documents

Publication Publication Date Title
TWI554051B (zh) A method, system and apparatus for transmitting and receiving data
CN108347318B (zh) 一种上行传输方法及装置
CA2978473A1 (en) Uplink data transmission method and apparatus
WO2018171474A1 (zh) 数据传输的方法、设备和系统
WO2016109926A1 (zh) 一种信息传输方法、设备及系统
CN110166168B (zh) 确定传输块大小的方法、装置以及系统
WO2016154968A1 (zh) 编码方法、装置、基站和用户设备
WO2016145664A1 (zh) 传输信息的方法、终端设备、网络设备和装置
US11677499B2 (en) Tone interleaving methods for multi-bands and wide bandwidth transmissions in WLAN
WO2019192272A1 (zh) 一种上行控制信息传输的方法与设备
WO2019154016A1 (zh) 一种上行信息传输方法及设备
TWI771520B (zh) 上行控制通道資源確定方法、終端和網路側設備
KR20220133208A (ko) 구성 방법 및 장치, 수신 방법 및 장치, 디바이스, 및 저장 매체
CN110149701B (zh) 一种上行信息传输方法及设备
CN110752904A (zh) 一种信息传输方法、终端及基站
CN110830191B (zh) 非周期zp-csi-rs资源集的确定、配置方法及装置、存储介质、用户终端、网络端
WO2016074194A1 (zh) 一种数据传输方法、设备及系统
JP7130005B2 (ja) リソース指示方法、ユーザー装置、ネットワーク機器及びコンピュータ記憶媒体
CN107078992B (zh) 一种信息传输方法、设备及系统
WO2017133407A1 (zh) 信号传输方法和装置
CN107079423B (zh) 一种数据传输方法及设备
WO2016119760A1 (zh) 资源分配的方法及装置和信息反馈的方法及装置
US9893862B2 (en) Aggregation frame design method and apparatus
WO2017054571A1 (zh) 一种数据传输方法、设备和系统
WO2016049909A1 (zh) 数据传输方法和相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14906077

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15526717

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014906077

Country of ref document: EP