WO2016072681A1 - Wire rod having enhanced strength and impact toughness and preparation method for same - Google Patents

Wire rod having enhanced strength and impact toughness and preparation method for same Download PDF

Info

Publication number
WO2016072681A1
WO2016072681A1 PCT/KR2015/011653 KR2015011653W WO2016072681A1 WO 2016072681 A1 WO2016072681 A1 WO 2016072681A1 KR 2015011653 W KR2015011653 W KR 2015011653W WO 2016072681 A1 WO2016072681 A1 WO 2016072681A1
Authority
WO
WIPO (PCT)
Prior art keywords
impact toughness
less
manganese
wire rod
present
Prior art date
Application number
PCT/KR2015/011653
Other languages
French (fr)
Korean (ko)
Inventor
이형직
박성운
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150146726A external-priority patent/KR101714905B1/en
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to CN201580059834.2A priority Critical patent/CN107075650B/en
Priority to US15/521,004 priority patent/US20170335439A1/en
Priority to DE112015004989.4T priority patent/DE112015004989T5/en
Priority to JP2017522896A priority patent/JP6475831B2/en
Priority to MX2017005688A priority patent/MX2017005688A/en
Publication of WO2016072681A1 publication Critical patent/WO2016072681A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese

Definitions

  • the present invention relates to a wire rod having excellent impact toughness and a method of manufacturing the same that can be used for parts of industrial machines, automobiles, and the like exposed to various external load environments.
  • the wire of ferrite or pearlite structure has a limit in securing excellent strength and impact toughness.
  • Materials with these structures generally have high impact toughness, but relatively low strength, and when cold drawn to increase strength, high strength can be obtained, but impact toughness decreases sharply in proportion to strength increase. There is this.
  • bainite or tempered martensite is used to realize excellent strength and impact toughness simultaneously.
  • the bainite structure can be obtained by constant temperature heat treatment using hot rolled steel
  • the temper martensite structure can be obtained by quenching and tempering heat treatment.
  • these tissues cannot be stably obtained by the usual hot rolling and continuous cooling processes alone, and thus must be subjected to such additional heat treatment using hot rolled steel.
  • wire rods that can stably obtain bainite or martensite structure using hot rolling and continuous cooling processes without additional heat treatment have not yet been developed, and thus there is a demand for wire rod development.
  • the present invention is to provide a wire rod and a method for manufacturing the same that can have a high strength and excellent impact toughness only by hot rolling and continuous cooling process without an additional heat treatment process.
  • carbon (C) 0.05 ⁇ 0.15%
  • silicon (Si) 0.2% or less
  • manganese (Mn) more than 3.5% 5.0% or less
  • chromium (Cr) 0.5-2.0%
  • Phosphorus (P) 0.020% or less
  • sulfur (S) 0.020% or less
  • aluminum (Al) 0.010% to 0.050%
  • the rest includes Fe and unavoidable impurities
  • the microstructure provides a wire rod having excellent impact toughness, including an area fraction of 95% or more martensite and the remainder of retained austenite ( ⁇ ).
  • carbon (C) 0.05 ⁇ 0.15%
  • silicon (Si) 0.2% or less
  • manganese (Mn) more than 3.5% 5.0% or less
  • chromium (Cr) 0.5 ⁇ 2.0%
  • phosphorus (P) 0.020% or less
  • sulfur (S) 0.020% or less
  • aluminum (Al) 0.010 to 0.050%, the rest of which reheats the steel containing Fe and unavoidable impurities
  • It provides a method of producing a wire with excellent impact toughness comprising the step of air cooling the cooled steel.
  • the present invention by using only the hot rolling and continuous cooling process can provide a wire rod excellent in strength and impact toughness required in the material or parts for industrial machinery and automobiles.
  • the conventional additional heat treatment process can be omitted, which is very advantageous to reduce the overall manufacturing cost.
  • the present invention relates to a wire rod having excellent impact toughness only by hot rolling and continuous cooling process without the additional heat treatment process such as constant temperature transformation, quenching and tempering, in order to secure high strength and excellent impact toughness, and a method of manufacturing the same.
  • Wire rod of the present invention in weight%, carbon (C): 0.05 ⁇ 0.15%, silicon (Si): 0.2% or less, manganese (Mn): more than 3.5% and 5.0% or less, chromium (Cr): 0.5-2.0%, Phosphorus (P): 0.020% or less, Sulfur (S): 0.020% or less, aluminum (Al): 0.010% to 0.050%, the rest includes Fe and unavoidable impurities.
  • Carbon is an essential element for securing strength and is dissolved in steel or exists in carbide or cementite form.
  • the easiest way to increase the strength is to increase the carbon content to form carbides or cementite, but on the contrary, ductility and impact toughness decrease, so it is necessary to control the amount of carbon added within a certain range.
  • Silicon together with aluminum, is known as a deoxidation element and is an element that improves strength. Silicon is known to be an element that is very effective in increasing the strength through solid solution strengthening of steel as it is dissolved in ferrite when added. However, since the strength is greatly increased by the addition of silicon, but the ductility and impact toughness decrease rapidly, the addition of silicon is very limited in the case of cold forged parts that require sufficient ductility. In the present invention to minimize the drop in strength, in order to ensure excellent impact toughness, the content of the silicon is included in less than 0.2%. If the silicon content exceeds 0.2%, it may be difficult to secure the target impact toughness. More preferably, it contains 0.1% or less.
  • Manganese increases the strength of the steel and improves the hardenability to facilitate the formation of low temperature structures such as bainite or martensite at a wide range of cooling rates.
  • the manganese content is 3.5% or less, the hardenability is not sufficient, so it is difficult to stably secure the low temperature structure by the continuous cooling process after hot rolling. If it exceeds 5.0%, segregation of Mn during coagulation is likely to be facilitated. In consideration of this, in the present invention, it is preferable that the content of manganese more than 3.5%, 5.0% or less.
  • Chromium like manganese, increases the strength and hardenability of steels and improves impact toughness, especially when added with manganese. However, if the chromium content is less than 0.5%, the effect of improving strength, hardenability and impact property is not great. If the chromium content is more than 2.0%, it is effective for improving strength and hardenability, but the impact property may be lowered. In consideration of this, in the present invention, it is preferable to include the content of chromium in 0.5 ⁇ 2.0%.
  • Phosphorus (P) 0.020% or less
  • phosphorus is segregated at grain boundaries to lower toughness and reduce delayed fracture resistance, it is preferable not to be included as much as possible, and for this reason, the upper limit thereof is limited to 0.020%.
  • the sulfur segregates at grain boundaries, lowers toughness, forms low melting emulsions, and inhibits hot rolling, so it is preferably not included. For this reason, the upper limit of the present invention is limited to 0.020%.
  • Aluminum is a powerful deoxidation element that removes oxygen in steel to improve cleanliness, and also combines with nitrogen dissolved in steel to form AlN, thereby improving impact toughness.
  • the content is less than 0.010%, the effect of addition is difficult to be expected. If the content exceeds 0.050%, a large amount of alumina inclusions are generated, and mechanical properties can be greatly reduced. In consideration of this point, in the present invention, it is preferable to make the aluminum content in the range of 0.010% to 0.050%.
  • the rest includes Fe and unavoidable impurities.
  • the present invention does not exclude the addition of alloys other than the alloy compositions mentioned above.
  • the content of the manganese (Mn), chromium (Cr) and carbon (C) is preferably contained so as to satisfy the following relational formula (1).
  • manganese (Mn), chromium (Cr) and carbon (C) refer to the weight-based content of the corresponding element, respectively.
  • the present invention by controlling the content of manganese, chromium and carbon as shown in the relation 1, it is possible to manufacture a wire rod having more excellent impact toughness. That is, manganese and chromium increase the hardenability, so that martensite is easily generated even when the cooling rate is relatively low, and carbon and chromium having a low content can greatly contribute to improving the impact toughness of martensite.
  • the content of the manganese (Mn) and silicon (Si) in the present invention is preferably contained so as to satisfy the following relation 2.
  • manganese (Mn) and silicon (Si) refer to the content by weight of the corresponding element, respectively.
  • Manganese in the present invention increases the hardenability to help the martensite is easily produced even when the cooling rate is relatively small.
  • silicon is dissolved in steel to increase strength, but impact toughness is lowered.
  • the present inventors focused on the above point, and as a result of repeated studies and experiments, when the relationship between the manganese and silicon satisfies Mn / Si ⁇ 22 on a weight percent basis, the present invention provides a wire of martensite structure having excellent strength and impact toughness. It is to confirm that it can be done and to present this compositional relation.
  • the ratio of the maximum concentration [Mn max ] and the minimum concentration [Mn min ] of manganese in an arbitrary cross-sectional area satisfies the following expression (3).
  • the manganese is easy to produce martensite even when the cooling rate is relatively small by increasing the hardenability, but martensite can be easily produced when the manganese is locally segregated, while in the region where manganese is depleted Can be formed, the microstructure becomes non-uniform, impact toughness may be inferior.
  • the present inventors have focused on the above points, and have repeatedly conducted research and experiments to provide a wire rod of martensite structure having excellent strength and impact toughness when the ratio between the maximum concentration and the minimum concentration of manganese in any cross-sectional area of the wire rod is 4 or less. We can confirm that we can and present this relationship.
  • the microstructure of the wire rod of the present invention contains not less than 95 area% of martensite and residual residual austenite ( ⁇ ). Martensite of the present invention is characterized by low carbon content, high strength, high ductility, and excellent impact toughness. However, when the amount of bainite or residual austenite other than the martensite is increased, the impact toughness may be somewhat advantageous, but it is not preferable because the reduction in strength cannot be prevented. Therefore, the wire rod of the present invention contains at least 95 area% of martensite.
  • the wire rod of the present invention preferably has a circular cross section, a tensile strength of 1000 to 1200 MPa, and an impact value of 80 J or more.
  • Method for producing a wire rod of the present invention after providing a steel having the above-described composition, the step of reheating it; Hot rolling the reheated steel; After the hot rolling, the step of cooling to a temperature range of Mf ⁇ Mf-50 °C at a rate of 0.2 °C / s or more; And air-cooling the cooled steel material.
  • the reheating temperature range employable in the present invention may be in the range of 1000 to 1100 ° C.
  • the form of the said steel is not specifically limited, Usually, it is preferable that it is a bloom or billet form.
  • the reheated steel is hot rolled to produce a wire rod.
  • the finishing hot rolling temperature of the said hot rolling is not specifically limited, It is preferable to manage in the range of 850-950 degreeC.
  • the hot rolled steel is cooled, the cooling is preferably cooled to a cooling rate of 0.2 °C / s or more to the temperature range of Mf ⁇ Mf-50 °C. If the cooling end temperature exceeds Mf, it is difficult to secure a sufficient amount of martensite structure. If the cooling end temperature is less than Mf-50 ° C, the steel is sufficiently cooled and easy to handle, but the cooling end temperature is lower than that of Mf ⁇ Mf-50 ° C. It is preferable to set it as a temperature range.
  • the Mf means the temperature at which the phase transformation from austenite to martensite is terminated.
  • the section from the cooling start temperature to the cooling end temperature at a cooling rate of 0.2 ° C / s or more. Cooling at a cooling rate of at least 0.2 °C / s, and then air-cooled to obtain a structure with martensite of 95% or more of the area fraction.
  • the wire rod thus prepared was shown in Table 2 by analyzing the microstructure, and the tensile strength and impact toughness were measured and shown in Table 2. Meanwhile, the concentration of manganese was measured by using Electron Probe Micro-Analysis (EPMA).
  • EPMA Electron Probe Micro-Analysis
  • the room temperature tensile test was measured by performing a crosshead speed of 0.9mm / min to the yield point, 6mm / min after that.
  • the impact test was measured at room temperature using an impact tester having a curvature of the edge portion of the striker impacting the specimen of 2mm and a test capacity of 500J.
  • equations in Table 1 is C (Mn + Cr) 5/ 50, equation 2 is a Mn / Si, the remainder being Fe and inevitable impurities)
  • Example 7 is a case where the content of silicon is 0.1% by weight or less, it can be seen that very excellent impact toughness and elongation can be secured compared to other invention examples.
  • Comparative Example 9 is a case where the chromium component is outside the scope of the present invention, but the strength is increased, but the ductility decreases and eventually the impact toughness is inferior.
  • Comparative Example 10 is a case where the content of carbon exceeds the range of the present invention, the strength is greatly increased due to the increase in the martensite matrix solid solution strengthening effect of carbon, there is a problem that the impact toughness is very low.
  • Comparative Example 11 is a case in which the manganese component is out of the scope of the present invention, but the strength is increased, but the ductility decreases, and thus the impact toughness is worsened.
  • the segregation of manganese in the steel also shows that the impact toughness is inferior due to the formation of locally uneven tissue.
  • Comparative Example 12 is a case where the manganese is added less than the component range of the present invention, because the relatively low curing ability, when the cooling rate is small, forming a bainite structure instead of martensite, the impact toughness increases, but the strength is reduced Is showing.
  • Comparative Example 13 is a case where the silicon is contained beyond the component range of the present invention, it can be seen that even when the addition amount of 0.52% level, the tensile strength is greatly increased and the impact toughness is drastically reduced.
  • Comparative Example 14 shows that when the steel composition of the present invention is satisfied but the cooling rate is too slow, bainite structure is formed instead of martensite, thereby increasing impact toughness but decreasing strength.
  • Comparative Example 15 containing less chromium can be seen that the impact toughness is not good.

Abstract

The present invention relates to a wire rod having enhanced strength and impact toughness and a preparation method for same, the wire rod which can be used for components of an industrial machine, vehicle and the like that are exposed to various environments of external loads.

Description

충격 인성이 우수한 선재 및 그 제조방법Wire rod with excellent impact toughness and manufacturing method
본 발명은 다양한 외부 부하 환경에 노출되는 산업기계, 자동차 등의 부품에 사용될 수 있는 충격 인성이 우수한 선재와 이를 제조하는 방법에 관한 것이다.The present invention relates to a wire rod having excellent impact toughness and a method of manufacturing the same that can be used for parts of industrial machines, automobiles, and the like exposed to various external load environments.
최근, 환경오염의 주범으로 지목되고 있는 이산화탄소의 배출을 줄이기 위한 노력이 전세계적인 이슈가 되고 있다. 그 일환으로 자동차의 배기가스를 규제하는 움직임이 활발하며, 이에 대한 대책으로 자동차 메이커들은 연비 향상을 통해 이 문제를 해결해 나가려고 하고 있다. 그런데 연비 향상을 위해서는 자동차의 경량화 및 고성능화가 요구되므로, 이에 따른 자동차용 소재 또는 부품의 고강도 필요성이 증대되고 있다. 또한 외부 충격에 대한 안정성의 요구도 높아지고 있으므로, 충격인성도 소재 또는 부품의 중요한 물성으로 인식되고 있다.Recently, efforts to reduce the emission of carbon dioxide, which is the main cause of environmental pollution, have become a global issue. As a part of this, the movement to regulate the exhaust gas of automobiles is active, and as a countermeasure, automakers are trying to solve this problem by improving fuel economy. However, in order to improve fuel efficiency, it is required to reduce the weight and performance of automobiles, and thus, the necessity of high strength of automobile materials or components is increasing. In addition, since the demand for stability against external impact is increasing, impact toughness is also recognized as an important physical property of a material or a component.
페라이트 또는 펄라이트 조직의 선재는 우수한 강도 및 충격 인성을 확보하는데 한계가 있다. 이들 조직을 갖는 소재는 통상 충격 인성은 높은 반면, 강도는 상대적으로 낮은 특징이 있으며, 강도를 높이기 위해서 냉간 신선을 행하게 되면 고강도를 얻을 수 있으나, 충격 인성은 강도 상승에 비례해 급격하게 저하되는 단점이 있다.The wire of ferrite or pearlite structure has a limit in securing excellent strength and impact toughness. Materials with these structures generally have high impact toughness, but relatively low strength, and when cold drawn to increase strength, high strength can be obtained, but impact toughness decreases sharply in proportion to strength increase. There is this.
따라서, 일반적으로 우수한 강도와 충격 인성을 동시에 구현하기 위해서는 베이나이트 조직이나 템퍼드 마르텐사이트 조직을 이용하게 된다. 베이나이트 조직은 열간 압연한 강재를 사용하여 항온변태 열처리를 통해 얻을 수 있고, 템퍼트 마르텐사이트 조직은 담금질 및 뜨임 열처리를 통해 얻을 수 있다. 그러나, 통상의 열간 압연 및 연속 냉각 공정만으로 이러한 조직들은 안정적으로 얻을 수 없기 때문에 열간 압연된 강재를 사용하여 상기와 같은 추가적인 열처리 공정을 거쳐야만 한다.Therefore, in general, bainite or tempered martensite is used to realize excellent strength and impact toughness simultaneously. The bainite structure can be obtained by constant temperature heat treatment using hot rolled steel, and the temper martensite structure can be obtained by quenching and tempering heat treatment. However, these tissues cannot be stably obtained by the usual hot rolling and continuous cooling processes alone, and thus must be subjected to such additional heat treatment using hot rolled steel.
추가적인 열처리를 하지 않고도 고강도 및 우수한 충격 인성을 확보할 수 있다면 소재로부터 부품 생산에 이르기까지 공정의 일부가 생략되거나 단순해질 수 있어 생산성을 향상시키고, 제조원가를 낮출 수 있는 장점이 있다.If it is possible to secure high strength and excellent impact toughness without additional heat treatment, a part of the process from material to part production can be omitted or simplified, thereby improving productivity and lowering manufacturing cost.
그러나, 추가적인 열처리 공정 없이 열간압연 및 연속 냉각 공정을 이용하여 베이나이트 또는 마르텐사이트 조직을 안정적으로 얻을 수 있는 선재는 아직 개발되지 못하고 있어, 이러한 선재 개발에 대한 요구가 대두되고 있다.However, wire rods that can stably obtain bainite or martensite structure using hot rolling and continuous cooling processes without additional heat treatment have not yet been developed, and thus there is a demand for wire rod development.
본 발명은 추가 열처리 공정 없이 열간압연 및 연속 냉각 공정만으로 고강도와 우수한 충격 인성을 가질 수 있는 선재 및 이를 제조하는 방법을 제공하고자 하는 것이다. The present invention is to provide a wire rod and a method for manufacturing the same that can have a high strength and excellent impact toughness only by hot rolling and continuous cooling process without an additional heat treatment process.
본 발명이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The problem to be solved by the present invention is not limited to the above-mentioned problem, another task that is not mentioned will be clearly understood by those skilled in the art from the following description.
본 발명의 일태양은 중량%로, 탄소(C): 0.05~0.15%, 실리콘(Si): 0.2% 이하, 망간(Mn): 3.5% 초과 5.0% 이하, 크롬(Cr): 0.5~2.0%, 인(P): 0.020% 이하, 황(S): 0.020% 이하, 알루미늄(Al): 0.010~0.050%, 나머지는 Fe 및 불가피한 불순물을 포함하고,One embodiment of the present invention by weight, carbon (C): 0.05 ~ 0.15%, silicon (Si): 0.2% or less, manganese (Mn): more than 3.5% 5.0% or less, chromium (Cr): 0.5-2.0% , Phosphorus (P): 0.020% or less, sulfur (S): 0.020% or less, aluminum (Al): 0.010% to 0.050%, the rest includes Fe and unavoidable impurities,
미세조직은 면적분율로, 95% 이상의 마르텐사이트와 나머지는 잔류 오스테나이트(γ)를 포함하는 충격 인성이 우수한 선재를 제공한다.The microstructure provides a wire rod having excellent impact toughness, including an area fraction of 95% or more martensite and the remainder of retained austenite (γ).
본 발명의 또다른 일태양은 중량%로, 탄소(C): 0.05~0.15%, 실리콘(Si): 0.2% 이하, 망간(Mn): 3.5% 초과 5.0% 이하, 크롬(Cr): 0.5~2.0%, 인(P): 0.020% 이하, 황(S): 0.020% 이하, 알루미늄(Al): 0.010~0.050%, 나머지는 Fe 및 불가피한 불순물을 포함하는 강재를 재가열하는 단계;Another embodiment of the present invention by weight, carbon (C): 0.05 ~ 0.15%, silicon (Si): 0.2% or less, manganese (Mn): more than 3.5% 5.0% or less, chromium (Cr): 0.5 ~ 2.0%, phosphorus (P): 0.020% or less, sulfur (S): 0.020% or less, aluminum (Al): 0.010 to 0.050%, the rest of which reheats the steel containing Fe and unavoidable impurities;
상기 재가열된 강재를 열간 압연하는 단계;Hot rolling the reheated steel;
상기 열간 압연 후, Mf~Mf-50℃의 온도범위까지 0.2℃/s 이상의 속도로 냉각하는 단계; 및After the hot rolling, cooling to a temperature range of Mf ~ Mf-50 ℃ at a rate of 0.2 ℃ / s or more; And
상기 냉각된 강재를 공냉하는 단계를 포함하는 충격 인성이 우수한 선재의 제조방법을 제공한다.It provides a method of producing a wire with excellent impact toughness comprising the step of air cooling the cooled steel.
상술한 구성에 따른 본 발명은, 열간 압연 및 연속 냉각 공정만을 이용하여 산업기계 및 자동차용 소재 또는 부품에서 요구되는 강도 및 충격 인성이 우수한 선재를 제공할 수 있다. The present invention according to the above-described configuration, by using only the hot rolling and continuous cooling process can provide a wire rod excellent in strength and impact toughness required in the material or parts for industrial machinery and automobiles.
또한, 종래의 추가적인 열처리 공정을 생략할 수 있어서, 전체 제조비용을 절감하는데 매우 유리하다.In addition, the conventional additional heat treatment process can be omitted, which is very advantageous to reduce the overall manufacturing cost.
이하, 본 발명에 대해 상세히 설명한다. 본 발명은 고강도 및 우수한 충격 인성을 확보하기 위해, 항온변태나 담금질 및 뜨임과 같은 추가 열처리 공정이 없이도 열간압연 및 연속 냉각 공정만으로 우수한 충격 인성을 갖는 선재 및 그 제조방법에 관한 것이다. Hereinafter, the present invention will be described in detail. The present invention relates to a wire rod having excellent impact toughness only by hot rolling and continuous cooling process without the additional heat treatment process such as constant temperature transformation, quenching and tempering, in order to secure high strength and excellent impact toughness, and a method of manufacturing the same.
먼저, 본 발명의 선재에 대해 상세히 설명한다. 본 발명의 선재는 중량%로, 탄소(C): 0.05~0.15%, 실리콘(Si): 0.2% 이하, 망간(Mn): 3.5% 초과 5.0% 이하, 크롬(Cr): 0.5~2.0%, 인(P): 0.020% 이하, 황(S): 0.020% 이하, 알루미늄(Al): 0.010~0.050%, 나머지는 Fe 및 불가피한 불순물을 포함한다. First, the wire rod of the present invention will be described in detail. Wire rod of the present invention in weight%, carbon (C): 0.05 ~ 0.15%, silicon (Si): 0.2% or less, manganese (Mn): more than 3.5% and 5.0% or less, chromium (Cr): 0.5-2.0%, Phosphorus (P): 0.020% or less, Sulfur (S): 0.020% or less, aluminum (Al): 0.010% to 0.050%, the rest includes Fe and unavoidable impurities.
이하, 본 발명의 선재의 강 성분과 조성범위의 한정이유를 상세히 설명한다(이하, 중량%임).Hereinafter, the reason for limitation of the steel component and the composition range of the wire rod of the present invention will be described in detail (hereinafter,% by weight).
탄소(C): 0.05~0.15%Carbon (C): 0.05-0.15%
탄소는 강도를 확보하기 위한 필수적인 원소로서, 강중에 고용되거나 탄화물 또는 세멘타이트 형태로 존재한다. 강도의 증가를 위해 가장 손쉽게 할 수 있는 방법이 탄소 함량을 증가시켜 탄화물이나 세멘타이트를 형성시키는 일이지만, 반대로 연성과 충격 인성은 감소하기 때문에 일정한 범위내로 탄소의 첨가량을 조절할 필요가 있다. 본 발명에서는 C 함량을 0.05~0.15% 범위로 첨가함이 바람직한데, 이는 탄소 함량이 0.05% 미만이면 목표 강도를 얻기 힘들고, 0.15%를 초과하면 충격 인성이 급격히 감소할 수 있기 때문이다.Carbon is an essential element for securing strength and is dissolved in steel or exists in carbide or cementite form. The easiest way to increase the strength is to increase the carbon content to form carbides or cementite, but on the contrary, ductility and impact toughness decrease, so it is necessary to control the amount of carbon added within a certain range. In the present invention, it is preferable to add the C content in the range of 0.05 to 0.15%, because if the carbon content is less than 0.05%, it is difficult to obtain the target strength, and if it exceeds 0.15%, the impact toughness may be drastically reduced.
실리콘(Si): 0.2% 이하Silicon (Si): 0.2% or less
실리콘은 알루미늄과 함께 탈산 원소로 알려져 있고, 강도를 향상시키는 원소이다. 실리콘은 첨가시 페라이트에 고용되어 강재의 고용 강화를 통한 강도 증가에 매우 효과가 큰 원소로 알려져 있다. 그러나, 실리콘 첨가에 의해 강도는 크게 증가하지만 연성과 충격 인성은 급격히 감소하기 때문에 충분한 연성을 필요로 하는 냉간 단조 부품의 경우 실리콘 첨가를 매우 제한하고 있다. 본 발명에서는 강도 하락을 최소화하면서, 우수한 충격 인성을 확보하기 위해서, 상기 실리콘의 함량을 0.2%이하로 포함한다. 실리콘 함량이 0.2%를 초과하면 목표 충격인성의 확보가 어려울 수 있기 때문이다. 보다 바람직하게는 0.1%이하로 포함한다. Silicon, together with aluminum, is known as a deoxidation element and is an element that improves strength. Silicon is known to be an element that is very effective in increasing the strength through solid solution strengthening of steel as it is dissolved in ferrite when added. However, since the strength is greatly increased by the addition of silicon, but the ductility and impact toughness decrease rapidly, the addition of silicon is very limited in the case of cold forged parts that require sufficient ductility. In the present invention to minimize the drop in strength, in order to ensure excellent impact toughness, the content of the silicon is included in less than 0.2%. If the silicon content exceeds 0.2%, it may be difficult to secure the target impact toughness. More preferably, it contains 0.1% or less.
망간(Mn): 3.5% 초과, 5.0% 이하Manganese (Mn): greater than 3.5%, less than 5.0%
망간은 강재의 강도를 증가시키고, 경화능을 향상시켜 넓은 범위의 냉각속도에서 베이나이트 또는 마르텐사이트와 같은 저온조직의 형성을 용이하게 한다. 그러나 망간 함량이 3.5% 이하이면 경화능이 충분하지 못해 열간압연 후 연속냉각 공정으로 저온조직을 안정적으로 확보하기 곤란해 진다. 또한 5.0%를 초과하면 응고 중 Mn의 편석이 조장되기 쉽다. 이를 고려하여, 본 발명에서는 망간의 함량을 3.5% 초과, 5.0% 이하로 포함하는 것이 바람직하다.Manganese increases the strength of the steel and improves the hardenability to facilitate the formation of low temperature structures such as bainite or martensite at a wide range of cooling rates. However, if the manganese content is 3.5% or less, the hardenability is not sufficient, so it is difficult to stably secure the low temperature structure by the continuous cooling process after hot rolling. If it exceeds 5.0%, segregation of Mn during coagulation is likely to be facilitated. In consideration of this, in the present invention, it is preferable that the content of manganese more than 3.5%, 5.0% or less.
크롬(Cr): 0.5~2.0%Chromium (Cr): 0.5-2.0%
크롬은 망간과 유사하게 강재의 강도와 경화능을 증가시키고, 특히 망간과 함께 첨가할 경우에는 충격 인성을 향상시킨다. 그러나, 크롬 함량이 0.5% 미만이면 강도, 경화능 및 충격특성 향상 효과가 크지 않고, 크롬 함유량이 2.0%를 초과하면 강도와 경화능 향상에는 유효하지만 충격 특성이 저하될 수 있다. 이를 고려하여, 본 발명에서는 크롬의 함량을 0.5~2.0%로 포함하는 것이 바람직하다.Chromium, like manganese, increases the strength and hardenability of steels and improves impact toughness, especially when added with manganese. However, if the chromium content is less than 0.5%, the effect of improving strength, hardenability and impact property is not great. If the chromium content is more than 2.0%, it is effective for improving strength and hardenability, but the impact property may be lowered. In consideration of this, in the present invention, it is preferable to include the content of chromium in 0.5 ~ 2.0%.
인(P): 0.020% 이하Phosphorus (P): 0.020% or less
상기 인은 결정립계에 편석되어 인성을 저하시키고, 지연파괴 저항성을 감소시키는 주요 원인이므로, 가능한 포함되지 않는 것이 바람직하며, 이러한 이유로 본 발명에서는 그 상한을 0.020%로 한정한다.Since phosphorus is segregated at grain boundaries to lower toughness and reduce delayed fracture resistance, it is preferable not to be included as much as possible, and for this reason, the upper limit thereof is limited to 0.020%.
황(S): 0.020% 이하Sulfur (S): 0.020% or less
상기 황은 결정립계에 편석되어 인성을 저하시키고 저융점 유화물을 형성시켜 열간 압연을 저해하므로, 가능한 포함되지 않는 것이 바람직하다. 이러한 이유로 본 발명에서는 그 상한을 0.020%로 한정한다.The sulfur segregates at grain boundaries, lowers toughness, forms low melting emulsions, and inhibits hot rolling, so it is preferably not included. For this reason, the upper limit of the present invention is limited to 0.020%.
알루미늄(Al): 0.010~0.050%Aluminum (Al): 0.010 ~ 0.050%
알루미늄은 강력한 탈산 원소로서 강중의 산소를 제거해 청정도를 높일 뿐만 아니라, 강중에 고용된 질소와 결합하여 AlN을 형성함으로써, 충격 인성을 향상시킬 수 있다. 본 발명에서는 알루미늄을 적극적으로 첨가하지만 함유량이 0.010% 미만이면, 그 첨가 효과를 기대하기 어렵고, 0.050%를 초과하면 알루미나 개재물이 다량 생성되어 기계적 물성을 크게 저하시킬 수 있다. 이러한 점을 고려하여 본 발명에서는 알루미늄의 함량을 0.010~0.050%의 범위로 하는 것이 바람직하다.Aluminum is a powerful deoxidation element that removes oxygen in steel to improve cleanliness, and also combines with nitrogen dissolved in steel to form AlN, thereby improving impact toughness. In the present invention, although aluminum is actively added, if the content is less than 0.010%, the effect of addition is difficult to be expected. If the content exceeds 0.050%, a large amount of alumina inclusions are generated, and mechanical properties can be greatly reduced. In consideration of this point, in the present invention, it is preferable to make the aluminum content in the range of 0.010% to 0.050%.
상기 조성 이외에 나머지는 Fe와 불가피한 불순물을 포함한다. 본 발명에서는 상기 언급된 합금 조성이외에 다른 합금의 추가를 배제하지 않는다.In addition to the above composition, the rest includes Fe and unavoidable impurities. The present invention does not exclude the addition of alloys other than the alloy compositions mentioned above.
한편, 본 발명에서는 상기 망간(Mn), 크롬(Cr) 및 탄소(C)의 함량이 하기 관계식 1을 만족하도록 함유됨이 바람직하다. On the other hand, in the present invention, the content of the manganese (Mn), chromium (Cr) and carbon (C) is preferably contained so as to satisfy the following relational formula (1).
[관계식 1][Relationship 1]
4.0 ≤ C(Mn+Cr)5/50 ≤ 9.04.0 ≤ C (Mn + Cr) 5/50 ≤ 9.0
단, 상기 관계식 1에서 망간(Mn), 크롬(Cr) 및 탄소(C)는 각각 해당원소의 중량기준 함량을 의미한다.However, in the relation 1, manganese (Mn), chromium (Cr) and carbon (C) refer to the weight-based content of the corresponding element, respectively.
본 발명에서는 상기 관계식 1과 같이 망간, 크롬 및 탄소의 함량을 제어함으로써, 보다 우수한 충격 인성을 갖는 선재를 제조할 수 있다. 즉, 망간과 크롬은 경화능을 높여서 냉각속도가 상대적으로 작은 경우에도 마르텐사이트가 용이하게 생성되도록 돕고, 저함유량의 탄소와 크롬은 마르텐사이트의 충격 인성을 개선하는데 크게 기여할 수 있도록 한다.In the present invention, by controlling the content of manganese, chromium and carbon as shown in the relation 1, it is possible to manufacture a wire rod having more excellent impact toughness. That is, manganese and chromium increase the hardenability, so that martensite is easily generated even when the cooling rate is relatively low, and carbon and chromium having a low content can greatly contribute to improving the impact toughness of martensite.
또한, 본 발명에서 상기 망간(Mn) 및 실리콘(Si)의 함량은 하기 관계식 2를 만족하도록 함유되는 것이 바람직하다.In addition, the content of the manganese (Mn) and silicon (Si) in the present invention is preferably contained so as to satisfy the following relation 2.
[관계식 2][Relationship 2]
Mn/Si ≥ 22Mn / Si ≥ 22
단, 상기 관계식 2에서 망간(Mn) 및 실리콘(Si)은 각각 해당원소의 중량기준 함량을 의미한다.However, in the relation 2, manganese (Mn) and silicon (Si) refer to the content by weight of the corresponding element, respectively.
본 발명에서 망간은 경화능을 높여서 냉각속도가 상대적으로 작은 경우에도 마르텐사이트가 쉽게 생성되도록 돕는다. 그리고 실리콘은 강중에 고용되어 강도는 증가시키지만 충격 인성은 떨어뜨리는 단점이 있다. Manganese in the present invention increases the hardenability to help the martensite is easily produced even when the cooling rate is relatively small. In addition, silicon is dissolved in steel to increase strength, but impact toughness is lowered.
본 발명자들은 상기 점에 착안하여 연구와 실험을 거듭한 결과, 상기 망간과 실리콘의 관계가 중량% 기준으로 Mn/Si ≥ 22를 만족했을 때 우수한 강도와 충격 인성을 가지는 마르텐사이트 조직의 선재를 제공할 수 있음을 확인하고 본 조성성분 관계식을 제시하는 것이다.The present inventors focused on the above point, and as a result of repeated studies and experiments, when the relationship between the manganese and silicon satisfies Mn / Si ≥ 22 on a weight percent basis, the present invention provides a wire of martensite structure having excellent strength and impact toughness. It is to confirm that it can be done and to present this compositional relation.
한편, 본 발명의 선재는 임의의 단면 영역에서 망간의 최대 농도[Mnmax]와 최소 농도[Mnmin]의 비가 하기 관계식 3을 만족하는 것이 바람직하다.On the other hand, in the wire rod of the present invention, it is preferable that the ratio of the maximum concentration [Mn max ] and the minimum concentration [Mn min ] of manganese in an arbitrary cross-sectional area satisfies the following expression (3).
[관계식 3][Relationship 3]
[Mnmax]/[Mnmin] ≤ 4[Mn max ] / [Mn min ] ≤ 4
본 발명에서 망간은 경화능을 높여서 냉각속도가 상대적으로 작은 경우에도 마르텐사이트가 쉽게 생성되도록 돕지만, 국부적으로 망간이 편석되어 있으면 마르텐사이트가 쉽게 생성될 수 있는 반면, 망간이 고갈된 영역에서는 페라이트가 형성될 수 있어 미세조직이 불균일해지고, 충격 인성이 열위해질 수 있다.In the present invention, the manganese is easy to produce martensite even when the cooling rate is relatively small by increasing the hardenability, but martensite can be easily produced when the manganese is locally segregated, while in the region where manganese is depleted Can be formed, the microstructure becomes non-uniform, impact toughness may be inferior.
본 발명자들은 상기 점에 착안하여 연구와 실험을 거듭한 결과, 상기 선재의 임의의 단면 영역에서 망간의 최대 농도와 최소 농도의 비가 4 이하일 때 우수한 강도와 충격 인성을 가지는 마르텐사이트 조직의 선재를 제공할 수 있음을 확인하고 본 관계식을 제시하는 것이다.The present inventors have focused on the above points, and have repeatedly conducted research and experiments to provide a wire rod of martensite structure having excellent strength and impact toughness when the ratio between the maximum concentration and the minimum concentration of manganese in any cross-sectional area of the wire rod is 4 or less. We can confirm that we can and present this relationship.
이하, 본 발명의 미세조직에 대해 상세히 설명한다. Hereinafter, the microstructure of the present invention will be described in detail.
본 발명의 선재의 미세조직은 95 면적% 이상의 마르텐사이트와 잔부 잔류 오스테나이트(γ)를 포함한다. 본 발명의 마르텐사이트는 탄소함량이 낮아, 고강도임에도 불구하고, 연성이 높고, 충격 인성 또한 매우 우수한 특징이 있다. 그러나, 상기 마르텐사이트 이외의 베이나이트 또는 잔류 오스테나이트 양이 많아지게 되면 충격 인성의 측면은 다소 유리해질 수 있으나, 강도의 저하를 막을 수 없으므로 바람직하지 않다. 따라서, 본 발명의 선재는 95 면적% 이상의 마르텐사이트를 포함한다.The microstructure of the wire rod of the present invention contains not less than 95 area% of martensite and residual residual austenite (γ). Martensite of the present invention is characterized by low carbon content, high strength, high ductility, and excellent impact toughness. However, when the amount of bainite or residual austenite other than the martensite is increased, the impact toughness may be somewhat advantageous, but it is not preferable because the reduction in strength cannot be prevented. Therefore, the wire rod of the present invention contains at least 95 area% of martensite.
본 발명의 선재는 단면이 원형의 소재이고, 인장강도가 1000~1200MPa 이고, 충격치가 80J 이상인 것이 바람직하다. The wire rod of the present invention preferably has a circular cross section, a tensile strength of 1000 to 1200 MPa, and an impact value of 80 J or more.
다음으로, 본 발명의 선재를 제조하는 방법에 대해 상세히 설명한다.Next, the method of manufacturing the wire rod of the present invention will be described in detail.
본 발명의 선재의 제조방법은, 상술한 조성을 갖는 강을 마련한 후, 이를 재가열하는 공정; 상기 재가열된 강재를 열간 압연하는 단계; 상기 열간 압연한 후, Mf~Mf-50℃의 온도범위까지 0.2℃/s 이상의 속도로 냉각하는 공정; 및 상기 냉각된 강재를 공냉하는 공정;을 포함한다.Method for producing a wire rod of the present invention, after providing a steel having the above-described composition, the step of reheating it; Hot rolling the reheated steel; After the hot rolling, the step of cooling to a temperature range of Mf ~ Mf-50 ℃ at a rate of 0.2 ℃ / s or more; And air-cooling the cooled steel material.
먼저, 본 발명에서는 상술한 조성성분을 갖는 강재를 마련한 후, 이를 재가열 한다. 본 발명에서 채용할 수 있는 재가열 온도 범위는 1000~1100℃ 범위를 이용하면 좋다. First, in the present invention, after preparing the steel having the above-described composition components, it is reheated. The reheating temperature range employable in the present invention may be in the range of 1000 to 1100 ° C.
상기 강재의 형태는 특별히 한정되지 않으나, 통상적으로는 블룸(bloom)이나 빌렛(billet) 형태인 것이 바람직하다.Although the form of the said steel is not specifically limited, Usually, it is preferable that it is a bloom or billet form.
이어, 상기 재가열된 강재를 열간 압연하여 선재를 제조한다. 상기 열간 압연의 마무리 열간 압연 온도는 특별히 한정되지 않으나, 850~950℃ 범위로 관리하는 것이 바람직하다.Subsequently, the reheated steel is hot rolled to produce a wire rod. Although the finishing hot rolling temperature of the said hot rolling is not specifically limited, It is preferable to manage in the range of 850-950 degreeC.
상기 열간 압연된 강재는 냉각처리되는데, 상기 냉각은 Mf~Mf-50℃의 온도범위까지 0.2℃/s 이상의 냉각속도로 냉각하는 것이 바람직하다. 냉각 종료 온도가 Mf를 초과하면 충분한 양의 마르텐사이트 조직을 확보하기 어렵고, Mf-50℃ 미만이면 강재가 충분히 식어 취급은 용이하나, 생산성을 떨어뜨리기 때문에 냉각종료온도는 Mf~Mf-50℃의 온도범위로 하는 것이 바람직하다. 상기 Mf는 오스테나이트에서 마르텐사이트로의 상변태가 종료되는 온도를 의미한다.The hot rolled steel is cooled, the cooling is preferably cooled to a cooling rate of 0.2 ℃ / s or more to the temperature range of Mf ~ Mf-50 ℃. If the cooling end temperature exceeds Mf, it is difficult to secure a sufficient amount of martensite structure. If the cooling end temperature is less than Mf-50 ° C, the steel is sufficiently cooled and easy to handle, but the cooling end temperature is lower than that of Mf ~ Mf-50 ° C. It is preferable to set it as a temperature range. The Mf means the temperature at which the phase transformation from austenite to martensite is terminated.
본 발명에서는 열간 압연 후 연속 냉각을 수행하여 마르텐사이트 조직을 확보함으로써 우수한 강도와 충격 인성을 확보한다. 이에, 기존에 행했던 담금질 및 템퍼링과 같은 열처리를 생략할 수 있어, 추가 공정을 요하지 않아 제조원가 측면에서 매우 유리한 장점이 있다.In the present invention, by performing continuous cooling after hot rolling to secure the martensite structure to ensure excellent strength and impact toughness. Thus, heat treatments such as quenching and tempering, which have been previously performed, may be omitted, and thus, an additional process is not required, and thus, there is a very advantageous advantage in terms of manufacturing cost.
또한, 본 발명에서는 냉각 개시 온도에서부터 냉각 종료 온도까지의 구간을 0.2℃/s 이상의 냉각속도로 냉각함이 바람직하다. 0.2℃/s 이상의 냉각속도로 냉각하고, 이후 공냉하는 단계를 거치게 되면 면적분율 95% 이상의 마르텐사이트로 조직을 확보할 수 있다.In the present invention, it is preferable to cool the section from the cooling start temperature to the cooling end temperature at a cooling rate of 0.2 ° C / s or more. Cooling at a cooling rate of at least 0.2 ℃ / s, and then air-cooled to obtain a structure with martensite of 95% or more of the area fraction.
이하, 본 발명의 실시예에 대해 상세히 설명한다. 하기 실시예는 본 발명의 이해를 위한 것일 뿐, 실시예에 의해 본 발명을 한정하는 것은 아니다.Hereinafter, embodiments of the present invention will be described in detail. The following examples are only for the understanding of the present invention, and the present invention is not limited by the examples.
(실시예)(Example)
하기 표 1의 조성 성분을 갖는 용강을 주조한 후, 이를 1100℃로 재가열한 후 직경 15mm로 선재 압연한 후, 표 2의 냉각속도로 Mf 온도 이하인 150℃까지 냉각한 이후 공냉하여 선재를 제조하였다. 한편, 마르텐사이트 상변태 종료 온도인 Mf는 Dilatometer를 이용하여 측정하였고, 화학조성이 따라 다소 차이가 나며, 150~200℃ 범위를 보였다.After casting the molten steel having a composition component of Table 1, after reheating it to 1100 ℃ and wire rod rolled to a diameter of 15mm, after cooling to 150 ℃ below the Mf temperature at the cooling rate of Table 2 and air-cooled to prepare a wire rod . On the other hand, Mf, the phase transformation end temperature of martensite, was measured using a dilatometer, and was slightly different depending on chemical composition, and showed a range of 150 to 200 ° C.
이렇게 제조된 선재를 미세조직을 분석하여 표 2에 나타내었으며, 인장강도와 충격 인성을 측정하여 표 2에 나타내었다. 한편, 망간의 농도는 EPMA(Electron Probe Micro-Analysis)를 이용하여 측정하였다.The wire rod thus prepared was shown in Table 2 by analyzing the microstructure, and the tensile strength and impact toughness were measured and shown in Table 2. Meanwhile, the concentration of manganese was measured by using Electron Probe Micro-Analysis (EPMA).
그리고, 상온 인장시험은 crosshead speed를 항복점까지는 0.9mm/min, 그 이후로는 6mm/min의 속도로 실시하여 측정하였다. 또한 충격 시험은 시편에 충격을 가하는 striker의 edge부 곡률이 2mm이고, 시험 용량이 500J인 충격시험기를 이용하여 상온에서 실시하여 측정하였다.In addition, the room temperature tensile test was measured by performing a crosshead speed of 0.9mm / min to the yield point, 6mm / min after that. In addition, the impact test was measured at room temperature using an impact tester having a curvature of the edge portion of the striker impacting the specimen of 2mm and a test capacity of 500J.
No.No. 조성성분(중량%)Ingredients (% by weight) 관계식 1Relationship 1 관계식 2Relation 2
CC SiSi MnMn CrCr PP SS AlAl
1One 0.070.07 0.170.17 4.14.1 1.01.0 0.0170.017 0.0200.020 0.0240.024 4.834.83 24.124.1
22 0.090.09 0.190.19 3.93.9 1.41.4 0.0140.014 0.0170.017 0.0290.029 7.537.53 20.520.5
33 0.080.08 0.150.15 3.83.8 0.90.9 0.0110.011 0.0150.015 0.0350.035 3.673.67 25.325.3
44 0.060.06 0.160.16 4.74.7 0.70.7 0.0160.016 0.0130.013 0.0180.018 5.515.51 29.429.4
55 0.120.12 0.140.14 3.63.6 1.51.5 0.0150.015 0.0140.014 0.0340.034 8.288.28 25.725.7
66 0.140.14 0.200.20 4.34.3 1.21.2 0.0110.011 0.0120.012 0.0260.026 14.0914.09 21.521.5
77 0.070.07 0.080.08 3.73.7 1.81.8 0.0190.019 0.0130.013 0.0430.043 7.057.05 46.246.2
88 0.110.11 0.180.18 4.54.5 0.80.8 0.0150.015 0.0160.016 0.0150.015 9.209.20 25.025.0
99 0.070.07 0.160.16 3.73.7 2.52.5 0.0140.014 0.0130.013 0.0380.038 12.8312.83 23.123.1
1010 0.180.18 0.160.16 4.24.2 0.50.5 0.0110.011 0.0150.015 0.0330.033 8.268.26 26.326.3
1111 0.110.11 0.170.17 5.35.3 0.80.8 0.0180.018 0.0140.014 0.0270.027 18.5818.58 31.231.2
1212 0.060.06 0.150.15 2.62.6 1.51.5 0.0160.016 0.0170.017 0.0210.021 1.391.39 17.317.3
1313 0.100.10 0.240.24 3.83.8 1.81.8 0.0120.012 0.0110.011 0.0250.025 11.0111.01 15.815.8
1414 0.080.08 0.140.14 3.63.6 1.41.4 0.0150.015 0.0120.012 0.0320.032 5.005.00 25.725.7
1515 0.090.09 0.180.18 4.34.3 0.20.2 0.0170.017 0.0160.016 0.0360.036 3.323.32 23.923.9
(상기 표 1에서 관계식 1은 C(Mn+Cr)5/50, 관계식 2는 Mn/Si이며, 나머지는 Fe와 불가피한 불순물임) (1 equations in Table 1 is C (Mn + Cr) 5/ 50, equation 2 is a Mn / Si, the remainder being Fe and inevitable impurities)
Figure PCTKR2015011653-appb-T000001
Figure PCTKR2015011653-appb-T000001
(상기 표 2에서 관계식 3은 [Mnmax]/[Mnmin]임)(Equation 3 in Table 2 is [Mn max ] / [Mn min ])
상기 표 1 및 2에 나타난 바와 같이, 본 발명의 강조성 및 제조방법을 만족하는 발명예 1 내지 8은 모두 95 면적% 이상의 마르텐사이트 조직이 얻어져, 1000~1200MPa 이상의 높은 인장강도와 80J 이상의 우수한 충격 인성을 나타내고 있음을 알 수 있다.As shown in Table 1 and 2, Inventive Examples 1 to 8 satisfying the emphasis and the manufacturing method of the present invention are all obtained in the martensite structure of 95 area% or more, excellent tensile strength of 1000 ~ 1200MPa or more and 80J or more It can be seen that impact toughness is shown.
한편, 발명예 7은 실리콘의 함량이 0.1 중량% 이하인 경우로서, 다른 발명예에 비해 매우 우수한 충격 인성과 연신율을 확보할 수 있음을 알 수 있다. 또한, 상기 발명예들 중에서, 망간, 크롬 및 탄소의 함량의 관계식 1(4.0 ≤ C(Mn+Cr)5/50 ≤ 9.0)과 망간과 실리콘의 관계식 2(Mn/Si ≥ 22.0)를 모두 만족하는 1, 4, 5 및 7은 그렇지 않은 경우와 비교할 때, 충격 인성이 더욱 우수해지는 것을 알 수 있다. On the other hand, Example 7 is a case where the content of silicon is 0.1% by weight or less, it can be seen that very excellent impact toughness and elongation can be secured compared to other invention examples. In addition, among the above inventions, satisfies relation 1 (4.0 ≦ C (Mn + Cr) 5 /50≦9.0) of manganese, chromium and carbon content and relation 2 (Mn / Si ≧ 22.0) of manganese and silicon. 1, 4, 5 and 7 can be seen that the impact toughness is more excellent than when not.
즉, 상기 발명예들 중에서 관계식 1(4.0 ≤ C(Mn+Cr)5/50 ≤ 9.0) 및/또는 관계식 2(Mn/Si ≥ 22.0)를 만족하지 않는 발명예 2, 3, 6 및 8은 상대적으로 충격 인성이 다소 열위해지는 것을 알 수 있다.That is, in Examples 2, 3, 6, and 8 that do not satisfy relation 1 (4.0 ≦ C (Mn + Cr) 5 /50≦9.0) and / or relation 2 (Mn / Si ≧ 22.0), It can be seen that the impact toughness is relatively inferior.
비교예 9는 크롬 성분이 본 발명의 범위를 벗어난 경우로서, 강도는 증가되었지만, 연성이 감소하여 결국 충격 인성이 열위한 것을 보이고 있다. 비교예 10은 탄소의 함량이 본 발명의 범위를 초과한 경우로서, 탄소의 마르텐사이트 기지 고용강화 효과의 증대로 강도가 크게 증가하였으나, 충격 인성은 매우 낮아지는 문제가 있다. Comparative Example 9 is a case where the chromium component is outside the scope of the present invention, but the strength is increased, but the ductility decreases and eventually the impact toughness is inferior. Comparative Example 10 is a case where the content of carbon exceeds the range of the present invention, the strength is greatly increased due to the increase in the martensite matrix solid solution strengthening effect of carbon, there is a problem that the impact toughness is very low.
비교예 11은 망간 성분이 본 발명의 범위를 벗어난 경우로서, 강도는 증가하였으나, 연성이 감소하여 결국 충격 인성이 나빠짐을 보이고 있다. 또한 강 중에 망간이 편석되어 있기 때문에 국부적으로 불균일한 조직의 형성으로 인해서도 충격 인성이 열위해지고 있음을 보여준다.Comparative Example 11 is a case in which the manganese component is out of the scope of the present invention, but the strength is increased, but the ductility decreases, and thus the impact toughness is worsened. The segregation of manganese in the steel also shows that the impact toughness is inferior due to the formation of locally uneven tissue.
비교예 12는 망간이 본 발명의 성분 범위보다 적게 첨가된 경우로서, 상대적으로 경화능이 낮기 때문에 냉각속도가 작을 경우, 마르텐사이트 대신 베이나이트 조직을 형성하여, 충격 인성은 증가하지만, 강도는 감소하는 것을 보여주고 있다. 또한, 비교예 13은 실리콘이 본 발명의 성분 범위를 초과하여 함유된 경우로서, 그 첨가량이 0.52% 수준에서도 인장강도는 크게 증가하며 그와 함께 충격 인성은 급격히 감소하는 것을 확인할 수 있다.Comparative Example 12 is a case where the manganese is added less than the component range of the present invention, because the relatively low curing ability, when the cooling rate is small, forming a bainite structure instead of martensite, the impact toughness increases, but the strength is reduced Is showing. In addition, Comparative Example 13 is a case where the silicon is contained beyond the component range of the present invention, it can be seen that even when the addition amount of 0.52% level, the tensile strength is greatly increased and the impact toughness is drastically reduced.
비교예 14는 본 발명의 강 조성성분은 만족하나 냉각속도가 너무 느릴 경우 마르텐사이트 대신 베이나이트 조직이 형성되어, 충격 인성은 증가되었지만 강도는 감소한 것을 보여주고 있다. 아울러, 크롬이 적게 함유된 비교예 15은 충격인성이 좋지 않음을 알 수 있다.Comparative Example 14 shows that when the steel composition of the present invention is satisfied but the cooling rate is too slow, bainite structure is formed instead of martensite, thereby increasing impact toughness but decreasing strength. In addition, Comparative Example 15 containing less chromium can be seen that the impact toughness is not good.

Claims (9)

  1. 중량%로, 탄소(C): 0.05~0.15%, 실리콘(Si): 0.2% 이하, 망간(Mn): 3.5% 초과 5.0% 이하, 크롬(Cr): 0.5~2.0%, 인(P): 0.020% 이하, 황(S): 0.020% 이하, 알루미늄(Al): 0.010~0.050%, 나머지는 Fe 및 불가피한 불순물을 포함하고,By weight%, carbon (C): 0.05-0.15%, silicon (Si): 0.2% or less, manganese (Mn): more than 3.5% and 5.0% or less, chromium (Cr): 0.5-2.0%, phosphorus (P): 0.020% or less, sulfur (S): 0.020% or less, aluminum (Al): 0.010% to 0.050%, the rest includes Fe and inevitable impurities,
    미세조직은 면적분율로, 95% 이상의 마르텐사이트와 나머지는 잔류 오스테나이트(γ)를 포함하는 충격 인성이 우수한 선재.Wire structure with excellent impact toughness including microstructure as an area fraction and 95% or more of martensite and remaining austenite (γ).
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 망간(Mn), 크롬(Cr) 및 탄소(C)의 함량은 하기 관계식 1을 만족하는 충격 인성이 우수한 선재.The content of the manganese (Mn), chromium (Cr) and carbon (C) is excellent wire toughness satisfying the following relational formula (1).
    [관계식 1][Relationship 1]
    4.0 ≤ C(Mn+Cr)5/50 ≤ 9.04.0 ≤ C (Mn + Cr) 5/50 ≤ 9.0
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 망간(Mn) 및 실리콘(Si)의 함량은 하기 관계식 2를 만족하는 충격 인성이 우수한 선재.The wire of the manganese (Mn) and silicon (Si) is excellent impact toughness that satisfies the following relation 2.
    [관계식 2][Relationship 2]
    Mn/Si ≥ 22.0Mn / Si ≥ 22.0
  4. 청구항 1에 있어서, The method according to claim 1,
    상기 선재는 임의의 단면에서 망간의 최대 농도[Mnmax]와 최소 농도[Mnmin]의 비가 하기 관계식 3을 만족하는 충격 인성이 우수한 선재.The wire is an excellent impact toughness of the ratio of the maximum concentration [Mn max ] and the minimum concentration [Mn min ] of manganese in any cross section satisfies the following equation 3.
    [관계식 3][Relationship 3]
    [Mnmax]/[Mnmin] ≤ 4[Mn max ] / [Mn min ] ≤ 4
  5. 중량%로, 탄소(C): 0.05~0.15%, 실리콘(Si): 0.2% 이하, 망간(Mn): 3.5% 초과 5.0% 이하, 크롬(Cr): 0.5~2.0%, 인(P): 0.020% 이하, 황(S): 0.020% 이하, 알루미늄(Al): 0.010~0.050%, 나머지는 Fe 및 불가피한 불순물을 포함하는 강재를 재가열하는 단계;By weight%, carbon (C): 0.05-0.15%, silicon (Si): 0.2% or less, manganese (Mn): more than 3.5% and 5.0% or less, chromium (Cr): 0.5-2.0%, phosphorus (P): Reheating the steel including 0.020% or less, sulfur (S): 0.020% or less, aluminum (Al): 0.010 to 0.050%, and the remainder Fe and unavoidable impurities;
    상기 재가열된 강재를 열간 압연하는 단계;Hot rolling the reheated steel;
    상기 열간 압연 후, Mf~Mf-50℃의 온도범위까지 0.2℃/s 이상의 속도로 냉각하는 단계; 및After the hot rolling, cooling to a temperature range of Mf ~ Mf-50 ℃ at a rate of 0.2 ℃ / s or more; And
    상기 냉각된 강재를 공냉하는 단계Air cooling the cooled steel
    를 포함하는 충격 인성이 우수한 선재의 제조방법.Method for producing a wire rod excellent impact toughness comprising a.
  6. 청구항 5에 있어서,The method according to claim 5,
    상기 망간(Mn), 크롬(Cr) 및 탄소(C)의 함량은 하기 관계식 1을 만족하는 충격 인성이 우수한 선재의 제조방법.The content of the manganese (Mn), chromium (Cr) and carbon (C) is a method of producing a wire rod excellent impact toughness that satisfies the following relation 1.
    [관계식 1][Relationship 1]
    4.0 ≤ C(Mn+Cr)5/50 ≤ 9.04.0 ≤ C (Mn + Cr) 5/50 ≤ 9.0
  7. 청구항 5에 있어서,The method according to claim 5,
    상기 망간(Mn) 및 실리콘(Si)의 함량은 하기 관계식 2를 만족하는 충격 인성이 우수한 선재의 제조방법.The content of the manganese (Mn) and silicon (Si) is a method for producing a wire rod excellent impact toughness that satisfies the following relation 2.
    [관계식 2][Relationship 2]
    Mn/Si ≥ 22.0 Mn / Si ≥ 22.0
  8. 청구항 5에 있어서,The method according to claim 5,
    상기 재가열 온도는 1000~1100℃로 행하는 충격 인성이 우수한 선재의 제조방법.The reheating temperature is a method for producing a wire rod excellent in impact toughness performed at 1000 ~ 1100 ℃.
  9. 청구항 5에 있어서,The method according to claim 5,
    상기 열간 압연의 마무리 열간 압연은 850~950℃의 온도범위에서 행하는 충격 인성이 우수한 선재의 제조방법.Finishing of the hot rolling The hot rolling is a method for producing a wire rod having excellent impact toughness at a temperature range of 850 to 950 ° C.
PCT/KR2015/011653 2014-11-03 2015-11-02 Wire rod having enhanced strength and impact toughness and preparation method for same WO2016072681A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580059834.2A CN107075650B (en) 2014-11-03 2015-11-02 The excellent wire rod of impact flexibility and its manufacturing method
US15/521,004 US20170335439A1 (en) 2014-11-03 2015-11-02 Wire rod having enhanced strength and impact toughness and preparation method for same
DE112015004989.4T DE112015004989T5 (en) 2014-11-03 2015-11-02 ROLLED WIRE WITH IMPROVED STRENGTH AND IMPACT AND MANUFACTURING METHOD THEREFOR
JP2017522896A JP6475831B2 (en) 2014-11-03 2015-11-02 Wire rod excellent in impact toughness and manufacturing method thereof
MX2017005688A MX2017005688A (en) 2014-11-03 2015-11-02 Wire rod having enhanced strength and impact toughness and preparation method for same.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2014-0151493 2014-11-03
KR20140151493 2014-11-03
KR1020150146726A KR101714905B1 (en) 2014-11-03 2015-10-21 Steel wire rod having high impact toughness, and method for manufacturing thereof
KR10-2015-0146726 2015-10-21

Publications (1)

Publication Number Publication Date
WO2016072681A1 true WO2016072681A1 (en) 2016-05-12

Family

ID=55909352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/011653 WO2016072681A1 (en) 2014-11-03 2015-11-02 Wire rod having enhanced strength and impact toughness and preparation method for same

Country Status (1)

Country Link
WO (1) WO2016072681A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090062598A (en) * 2007-12-13 2009-06-17 주식회사 포스코 High strength steel plate for high heat input welding having welded joint with superior impact toughness in weld heat affected zone
KR20090122346A (en) * 2007-02-23 2009-11-27 코루스 스타알 베.뷔. Cold rolled and continuously annealed high strength steel strip and method for producing said steel
KR20120054359A (en) * 2010-11-19 2012-05-30 주식회사 포스코 High-strength steel having excellent cryogenic toughness and method for production thereof
KR20120074807A (en) * 2010-12-28 2012-07-06 주식회사 포스코 Method for manufacturing low yield ratio type high strength hot rolled steel sheet and the steel sheet manufactured thereby
KR20120132838A (en) * 2011-05-30 2012-12-10 현대제철 주식회사 High strength thick steel and method of manufacturing the thick steel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090122346A (en) * 2007-02-23 2009-11-27 코루스 스타알 베.뷔. Cold rolled and continuously annealed high strength steel strip and method for producing said steel
KR20090062598A (en) * 2007-12-13 2009-06-17 주식회사 포스코 High strength steel plate for high heat input welding having welded joint with superior impact toughness in weld heat affected zone
KR20120054359A (en) * 2010-11-19 2012-05-30 주식회사 포스코 High-strength steel having excellent cryogenic toughness and method for production thereof
KR20120074807A (en) * 2010-12-28 2012-07-06 주식회사 포스코 Method for manufacturing low yield ratio type high strength hot rolled steel sheet and the steel sheet manufactured thereby
KR20120132838A (en) * 2011-05-30 2012-12-10 현대제철 주식회사 High strength thick steel and method of manufacturing the thick steel

Similar Documents

Publication Publication Date Title
WO2018074887A1 (en) High-strength reinforcing steel and method for manufacturing same
WO2017082684A1 (en) Wire having excellent cold forgeability and manufacturing method therefor
WO2017082687A1 (en) Microalloyed wire having excellent cold workability and manufacturing method therefor
WO2021091138A1 (en) Steel plate having high strength and excellent low-temperature impact toughness and method for manufacturing thereof
WO2018117646A1 (en) Thick steel sheet having excellent cryogenic impact toughness and manufacturing method therefor
WO2015099222A1 (en) Hot-rolled steel plate having excellent welding property and burring property and method for manufacturing same
WO2017222159A1 (en) High-strength cold-rolled steel sheet with excellent workability and manufacturing method therefor
WO2020111856A2 (en) High-strength steel sheet having excellent ductility and low-temperature toughness and method for manufacturing thereof
WO2016072679A1 (en) Wire rod having enhanced strength and impact toughness and preparation method for same
WO2021172604A1 (en) Non-heat treated wire rod with excellent wire drawability and impact toughness and manufacturing method therefor
WO2020111857A1 (en) Chromium-molybdenum steel plate having excellent creep strength and method for manufacturing same
WO2018110850A1 (en) High-strength wire rod having superior impact toughness and manufacturing method therefor
WO2017222122A1 (en) Reinforcing bar and manufacturing method therefor
WO2011081236A1 (en) Quenched steel sheet having excellent hot press formability, and method for manufacturing same
WO2019132179A1 (en) High-strength high-toughness hot-rolled steel sheet and manufacturing method therefor
WO2015099214A1 (en) Quenched steel sheet having excellent strength and ductility and method for manufacturing same
WO2021125793A1 (en) Wire rod for high strength cold head quality steel with excellent resistance to hydrogen embrittlement, and manufacturing method thereof
WO2017095049A1 (en) Wire rod having excellent low temperature impact toughness and manufacturing method therefor
WO2017111303A1 (en) High-strength hot-rolled steel sheet with excellent bending workability and production method therefor
WO2021125471A1 (en) Wire rod for ultra-high strength spring, steel wire and manufacturing method thereof
WO2016072681A1 (en) Wire rod having enhanced strength and impact toughness and preparation method for same
WO2020130614A2 (en) High strength hot-rolled steel sheet having excellent hole expansion ratio and manufacturing method for same
WO2020085852A1 (en) High manganese austenitic steel having high yield strength and manufacturing method for same
WO2021125710A1 (en) Non-heat treated wire rod having excellent drawability and impact toughness and method for manufacturing same
WO2022131540A1 (en) Armored steel having high hardness and excellent low-temperature impact toughness and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15857969

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017522896

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/005688

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 112015004989

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15857969

Country of ref document: EP

Kind code of ref document: A1