WO2016072467A1 - 基幹ネットワーク装置、無線端末、及び基地局 - Google Patents

基幹ネットワーク装置、無線端末、及び基地局 Download PDF

Info

Publication number
WO2016072467A1
WO2016072467A1 PCT/JP2015/081212 JP2015081212W WO2016072467A1 WO 2016072467 A1 WO2016072467 A1 WO 2016072467A1 JP 2015081212 W JP2015081212 W JP 2015081212W WO 2016072467 A1 WO2016072467 A1 WO 2016072467A1
Authority
WO
WIPO (PCT)
Prior art keywords
throughput
wireless terminal
information
control unit
base station
Prior art date
Application number
PCT/JP2015/081212
Other languages
English (en)
French (fr)
Inventor
真人 藤代
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to US15/523,814 priority Critical patent/US10484924B2/en
Priority to JP2016557807A priority patent/JP6870987B2/ja
Priority to EP15858064.7A priority patent/EP3217722A4/en
Publication of WO2016072467A1 publication Critical patent/WO2016072467A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/12Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0876Network utilisation, e.g. volume of load or congestion level
    • H04L43/0888Throughput
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/082Load balancing or load distribution among bearers or channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0058Transmission of hand-off measurement information, e.g. measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/14Reselecting a network or an air interface
    • H04W36/144Reselecting a network or an air interface over a different radio air interface technology
    • H04W36/1446Reselecting a network or an air interface over a different radio air interface technology wherein at least one of the networks is unlicensed
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/22Performing reselection for specific purposes for handling the traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/304Reselection being triggered by specific parameters by measured or perceived connection quality data due to measured or perceived resources with higher communication quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/18Selecting a network or a communication service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/34Reselection control
    • H04W36/38Reselection control by fixed network equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present invention relates to a backbone network device, a wireless terminal, and a base station used in a system that performs processing for switching a communication path between a mobile communication network and a wireless LAN.
  • Non-Patent Document 1 a technology has been proposed in which a wireless terminal switches a communication path between a mobile communication network and a wireless LAN (see, for example, Non-Patent Document 1).
  • the communication path is established between the wireless terminal and the backbone network, and can be switched in APN (Access Point Name) units (or bearer units).
  • APN Access Point Name
  • Such communication path switching is performed by network selection for selecting a network and traffic steering for routing traffic.
  • LTE Long Term Evolution
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • EPC Evolved Packet Core
  • the wireless terminal determines whether to perform switching based on whether the first information on the mobile communication network side satisfies the first condition and whether the second information on the wireless LAN side satisfies the second condition.
  • the first information is, for example, a measurement result (RSRPmeas) of reference signal received power (RSRP) and a measurement result (RSRQmeas) of reference signal reception quality (RSRQ).
  • the second information is, for example, a wireless LAN channel utilization value, a wireless LAN backhaul value, and a received signal strength indicator (RSSI).
  • a determination parameter for determining whether or not to switch a communication path between a mobile communication network and a wireless LAN is notified to a wireless terminal from a base station provided in the mobile communication network.
  • the determination parameter there are an individual parameter individually notified to the wireless terminal and a notification parameter notified to the wireless terminal.
  • the network device includes a control unit that measures the throughput of communication performed by a wireless terminal via a wireless LAN.
  • the control unit notifies the base station constituting the mobile communication network of throughput information indicating the throughput.
  • the wireless terminal includes a control unit that measures the throughput of communication performed via the wireless LAN.
  • the control unit notifies the base station constituting the mobile communication network of throughput information indicating the throughput.
  • the base station includes a control unit that acquires throughput information from a network device or a wireless terminal.
  • the throughput information is information indicating the throughput of communication performed by the wireless terminal via the wireless LAN.
  • FIG. 2 is a block diagram showing a configuration of a P-GW (core network device) according to the first embodiment and the second embodiment. It is a sequence diagram which shows the operation
  • the backbone network device is provided in a backbone network in a system in which a wireless terminal performs a process of switching a communication path between a mobile communication network and a wireless LAN.
  • the backbone network device includes a control unit that measures a throughput of communication performed by the wireless terminal with the backbone network via the wireless LAN.
  • the control unit notifies throughput information indicating the measured throughput to a base station provided in the mobile communication network.
  • the control unit starts measuring the throughput in response to reception of first switching information notified from the wireless terminal to the backbone network.
  • the first switching information is information indicating that a communication path is switched from the mobile communication network to the wireless LAN.
  • control unit ends the measurement of the throughput in response to the reception of the second switching information notified from the wireless terminal to the backbone network.
  • the second switching information is information indicating that a communication path is switched from the wireless LAN to the mobile communication network.
  • the throughput information is information for the base station to determine whether or not the wireless terminal is permitted to switch the communication path from the wireless LAN to the mobile communication network.
  • the control unit measures the throughput in units of APN.
  • the control unit measures the throughput in units of bearers.
  • the wireless terminal performs processing for switching a communication path between the mobile communication network and the wireless LAN.
  • the wireless terminal includes a control unit that measures throughput of communication performed with the backbone network via the wireless LAN.
  • the control unit notifies throughput information indicating the measured throughput to a base station provided in the mobile communication network.
  • the control unit starts measuring the throughput in response to transmitting the first switching information to the backbone network.
  • the first switching information is information indicating that a communication path is switched from the mobile communication network to the wireless LAN.
  • control unit ends the measurement of the throughput in response to the transmission of the second switching information to the backbone network or the deterioration of the wireless environment of the wireless LAN.
  • the second switching information is information indicating that a communication path is switched from the wireless LAN to the mobile communication network.
  • the throughput information is information for the base station to determine whether or not the wireless terminal is permitted to switch the communication path from the wireless LAN to the mobile communication network.
  • the control unit measures the throughput in units of APN.
  • the control unit measures the throughput in units of bearers.
  • the throughput information is included in a message transmitted from the wireless terminal to the base station.
  • the message is a message for requesting establishment of an RRC connection with the base station, or a message for changing the RRC setting of the wireless terminal.
  • the base station is provided in the mobile communication network in a system in which a wireless terminal performs a process of switching a communication path between the mobile communication network and the wireless LAN.
  • the base station includes a control unit that acquires throughput information from a backbone network or the wireless terminal.
  • the throughput information is information indicating the throughput of communication performed by the wireless terminal with the backbone network via the wireless LAN.
  • control unit determines whether to allow the wireless terminal to switch its communication path from the wireless LAN to the mobile communication network based on the throughput information. .
  • the control unit when the throughput that the base station can provide to the wireless terminal is lower than the throughput indicated by the throughput information, the control unit causes the wireless terminal to specify the communication path. It is determined that switching from the wireless LAN to the mobile communication network is rejected.
  • the throughput information is included in a first message transmitted from the backbone network to the base station.
  • the first message is a message for requesting establishment of one or more bearers via the base station between the wireless terminal and the backbone network.
  • the throughput information is included in a second message transmitted from the wireless terminal to the base station.
  • the second message is a message for requesting establishment of an RRC connection with the base station or a message for changing the RRC setting of the wireless terminal.
  • FIG. 1 is a diagram illustrating a communication system 1 according to the first embodiment.
  • LTE is adopted as a mobile communication method.
  • the communication system 1 includes an E-UTRAN 10, an EPC 20, a WLAN (wireless LAN) 30, an external packet network 40, and a UE (User Equipment) 100.
  • the UE 100 corresponds to a radio terminal.
  • the E-UTRAN 10 corresponds to a mobile communication network.
  • the EPC 20 corresponds to a backbone network.
  • the E-UTRAN 10 includes an eNB 200 (evolved Node-B).
  • the eNB 200 corresponds to a base station provided in a mobile communication network.
  • the eNB 200 manages one or a plurality of cells. Note that the cell may be considered as a term indicating a geographical area, or may be considered as a function of performing radio communication with the UE 100.
  • the eNB 200 is connected to each other via the X2 interface. The configuration of the eNB 200 will be described later.
  • the EPC 20 includes MME (Mobility Management Entity) / S-GW (Serving-Gateway) 300 and P-GW (Packet Data Network Gateway) 400.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • P-GW Packet Data Network Gateway
  • the MME performs various mobility controls such as location registration and handover of the UE 100.
  • the S-GW performs control for relaying user data between the P-GW 400 and the eNB 200.
  • the MME / S-GW 300 is connected to the eNB 200 via the S1 interface.
  • the P-GW 400 has a function as a connection point with the external packet network 40 and a function as a connection point with the WLAN 30.
  • the P-GW 400 performs assignment of an IP address to the UE 100, authentication at the time of bearer establishment, and the like. Further, the P-GW 400 performs control to relay user data from or to the external packet network 40.
  • the P-GW 400 corresponds to a backbone network device provided in the backbone network. The configuration of the P-GW 400 will be described later.
  • the external packet network 40 is provided outside the EPC 20, and is a packet network such as the Internet and / or an operator service network.
  • WLAN 30 includes an access point (AP) 500.
  • the AP 500 is configured based on, for example, IEEE 802.11 standards.
  • AP 500 performs radio communication with UE 100 in a frequency band (for example, unlicensed band) different from the frequency band of LTE communication.
  • the UE 100 is a terminal such as a mobile phone or a tablet, or a card type terminal.
  • the UE 100 has a function of performing wireless communication with the AP 500 in addition to a function of performing wireless communication with the eNB 200.
  • the configuration of the UE 100 will be described later.
  • FIG. 2 is a diagram illustrating a switching process according to the first embodiment.
  • the eNB 200 provides an LTE mobile communication service in its own coverage area.
  • the coverage area of the eNB 200 is configured by one or a plurality of cells.
  • the AP 500 provides a wireless LAN service in its coverage area. Part or all of the coverage area of the AP 500 overlaps with the coverage area of the eNB 200.
  • the UE 100 in the RRC connected state or the RRC idle state performs a switching process in order to select a radio access network that transmits and receives traffic from the E-UTRAN 10 and the WLAN 50. Specifically, switching is performed when the first information on the E-UTRAN 10 side satisfies the first condition and the second information on the WLAN 50 side satisfies the second condition continues for a predetermined period. Processing (eg, network selection and traffic steering) is performed.
  • a communication path for transmitting and receiving traffic is established between the UE 100 and the P-GW 400.
  • the switching process includes both the process in which the UE 100 switches the communication path from the E-UTRAN 10 to the WLAN 50 and the process of switching the communication path from the WLAN 50 to the E-UTRAN 10.
  • switching of communication paths is performed in units of APN.
  • switching of communication paths may be performed on a bearer basis.
  • the first information on the E-UTRAN 10 side includes, for example, measurement of the signal level (RSRP; Reference Signal Received Power) of the received signal and the signal quality (RSRQ: Reference Signal Received Quality) of the received signal. It is a result (RSRQmeas).
  • RSRP Reference Signal Received Power
  • RSSQ Reference Signal Received Quality
  • the second information on the WLAN 50 side includes, for example, the channel utilization value of the WLAN 50 (ChannelUtilization WLAN), the downlink backhaul value of the WLAN 50 (BackhaulRateDlWLAN), the uplink backhaul value of the WLAN 50 (BackhaulRateUlWLAN), and the signal level of the received signal (RSSI). ; Received Signal Strength Indicator).
  • the first condition for the UE 100 to switch the communication path from the E-UTRAN 10 to the WLAN 50 is, for example, that either of the following conditions (1a) or (1b) is satisfied.
  • the first condition may be that all of the following conditions (1a) to (1b) are satisfied.
  • Three ServingOffloadWLAN, LowP ” and “Thresh ServingOffloadWLAN, LowQ ” are thresholds provided from the eNB 200 or predetermined thresholds.
  • the second condition for the UE 100 to switch the communication path from the E-UTRAN 10 to the WLAN 50 is, for example, that all of the following conditions (1c) to (1f) are satisfied.
  • the second condition may be that any of the following conditions (1c) to (1f) is satisfied.
  • ThreshChillWLAN, Low ”, “ ThreshBackRateDLWLAN, High ”, “ ThreshBackRateULWLAN, High ” and “ ThreshBEACONRSSI, High ” are thresholds provided in advance from the eNB 200 or threshold values.
  • the first condition for the UE 100 to switch the communication path from the WLAN 50 to the E-UTRAN 10 is, for example, that the following conditions (2a) and (2b) are satisfied.
  • the first condition may be that either of the following conditions (2a) or (2b) is satisfied.
  • Three ServingOffloadWLAN, HighP and “Thresh ServingOffloadWLAN, HighQ ” are thresholds provided from the eNB 200 or predetermined thresholds.
  • the second condition for the UE 100 to switch the communication path from the WLAN 50 to the E-UTRAN 10 is, for example, that any of the following conditions (2c) to (2f) is satisfied.
  • the second condition may be that all of the following conditions (2c) to (2f) are satisfied.
  • ThreshChillWLAN, High ”, “ ThreshBackRateDLWLAN, Low ”, “ ThreshBackRateULWLAN, Low ”, and “ ThreshBEACONRSSI, Low ” are thresholds provided from the eNB 200 or predetermined thresholds.
  • UE100 may abbreviate
  • the above-described various threshold values are examples of determination parameters (for example, RAN assistance parameters) for determining whether or not the UE 100 performs a switching process for switching a communication path between the E-UTRAN 10 and the WLAN 50. It is.
  • the determination parameter "Thresh ServingOffloadWLAN, LowP", “Thresh ServingOffloadWLAN, LowQ”, “Thresh ChUtilWLAN, Low”, “Thresh BackhRateDLWLAN, High”, “Thresh BackhRateULWLAN, High”, “Thresh BEACONRSSI, High”, “Thresh ServingOffloadWLAN, HighP “,” Thresh ServingOffloadWLAN , HighQ ",” Thresh ChUtilWLAN, High ",” Thresh BackhRateDLWLAN, Low “,” Thresh BackhRateULWLAN, Lo “And” Thresh BEACONRSSI, including one or more values selected from the Low ".
  • the determination parameter may include a predetermined period (Tsteering WLAN ) in which the state where the first condition or the second condition is satisfied should continue.
  • the determination parameter there are an individual parameter notified individually from the eNB 200 to the UE 100 and a notification parameter notified from the eNB 200 to the UE 100.
  • An individual parameter is contained in the RRC message (for example, RRC Connection Reconfiguration) transmitted from eNB200 to UE100, for example.
  • the broadcast parameter is included in, for example, an SIB broadcast from the eNB 200 (for example, WLAN-OffloadConfig-r12). It should be noted that the UE 100 applies the individual parameter with priority over the broadcast parameter when receiving the individual parameter in addition to the broadcast parameter.
  • FIG. 3 is a block diagram illustrating a configuration of the UE 100 according to the first embodiment.
  • the UE 100 includes an LTE radio communication unit 110, a WLAN radio communication unit 120, and a control unit 130.
  • the LTE wireless communication unit 110 has a function of performing wireless communication with the eNB 200, and is configured by, for example, a wireless transceiver. For example, the LTE wireless communication unit 110 periodically receives a reference signal from the eNB 200. The LTE wireless communication unit 110 periodically measures the signal level (RSRP) of the reference signal and the signal quality (RSRQ) of the reference signal. The LTE wireless communication unit 110 receives an individual parameter and a broadcast parameter from the eNB 200 as determination parameters.
  • RSRP signal level
  • RSRQ signal quality
  • the WLAN wireless communication unit 120 has a function of performing wireless communication with the AP 500, and includes, for example, a wireless transceiver.
  • the WLAN wireless communication unit 120 receives a beacon or a probe response from the AP 500.
  • the beacon or probe response includes a BBS Load information element, and the channel usage value (ChannelUtilization WLAN) of the WLAN 50 can be acquired from the BBS Load information element.
  • the WLAN wireless communication unit 120 receives a response (GAS Response) returned from the AP 500 in response to a request (GAS (Generic Advertisement Service) Request) to the AP 500.
  • the response (GAS Response) includes the downlink backhaul value of WLAN 50 (BackhaulRateDlWLAN) and the uplink backhaul value of WLAN 50 (BackhaulRateUlWLAN).
  • ANQP Access Network Query Protocol
  • WSP Wi-Fi Alliance
  • the WLAN wireless communication unit 120 receives a signal from AP 500.
  • the WLAN radio communication unit 120 measures the signal level (RSSI) of the received signal.
  • the signal level (RSSI) of the received signal is the signal strength of the beacon or probe response.
  • the control unit 130 includes a CPU (processor), a memory, and the like, and controls the UE 100. Specifically, the control unit 130 controls the LTE wireless communication unit 110 and the WLAN wireless communication unit 120. In addition, the control unit 130 determines that the state in which the first information on the E-UTRAN 10 side satisfies the first condition and the second information on the WLAN 50 side satisfies the second condition continues for a predetermined period. In addition, a switching process for switching the communication path between the E-UTRAN 10 and the WLAN 50 is executed.
  • a switching process for switching the communication path between the E-UTRAN 10 and the WLAN 50 is executed.
  • FIG. 4 is a block diagram illustrating a configuration of the eNB 200 according to the first embodiment.
  • the eNB 200 includes an LTE radio communication unit 210, a control unit 220, and a network communication unit 230.
  • the LTE wireless communication unit 210 has a function of performing wireless communication with the UE 100.
  • the LTE radio communication unit 210 periodically transmits a reference signal to the UE 100.
  • the LTE wireless communication unit 210 is configured by a wireless transceiver, for example.
  • the LTE wireless communication unit 210 transmits an individual parameter and a notification parameter to the UE 100 as determination parameters. As described above, the LTE radio communication unit 210 notifies the UE 100 of the individual parameters by an RRC message (for example, RRC Connection Reconfiguration), and notifies the UE 100 of the notification parameters by an SIB (for example, WLAN-OffloadConfig-r12).
  • RRC message for example, RRC Connection Reconfiguration
  • SIB for example, WLAN-OffloadConfig-r12
  • the control unit 220 includes a CPU (processor) and a memory, and controls the eNB 200. Specifically, the control unit 220 controls the LTE wireless communication unit 210 and the network communication unit 230. Note that a memory constituting the control unit 220 may function as a storage unit, or a memory constituting the storage unit may be provided separately from the memory constituting the control unit 220.
  • the network communication unit 230 is connected to the neighboring base station via the X2 interface, and is connected to the MME / S-GW 300 via the S1 interface.
  • the network communication unit 230 is used for communication performed on the X2 interface and communication performed on the S1 interface.
  • the control unit 220 acquires the throughput information from the EPC 20 or the UE 100.
  • Throughput information is information indicating the throughput of communication that the UE 100 performs with the EPC 20 via the WLAN 30.
  • the throughput information is information indicating the throughput of the UE 100 when staying in the WLAN 30.
  • the throughput may be a statistical value such as an average value.
  • the information indicating the throughput is not limited to the throughput value itself, but may be a throughput index value.
  • the throughput information is included in the first message transmitted from the EPC 20 to the eNB 200.
  • the first message is a message (E-RAB Setup Request) for requesting establishment of one or more bearers (E-RAB) via the eNB 200 between the UE 100 and the EPC 20.
  • the E-RAB includes an S1 bearer between the eNB 200 and the S-GW 300 and a radio bearer between the eNB 200 and the UE 100.
  • the controller 220 controls the UE 100 based on the throughput information included in the first message.
  • the control unit 220 determines whether or not the UE 100 is permitted to switch the communication path from the WLAN 30 to the E-UTRAN 10.
  • the control unit 220 determines that the UE 100 refuses to switch the communication path from the WLAN 30 to the E-UTRAN 10. . And the control part 220 may perform control for UE100 to switch a communication path to WLAN30. In addition to such conditions, the control unit 220 performs the control when the condition that the difference between the throughput that the eNB 200 can provide to the UE 100 and the throughput indicated by the throughput information is a predetermined value or more is satisfied. Also good.
  • the throughput that the eNB 200 can provide to the UE 100 may be a predicted logical throughput or an actually measured throughput.
  • the logical throughput can be predicted according to, for example, a modulation and coding scheme (MCS) corresponding to a channel state between the UE 100 and the amount of radio resources (RB; Resource Block) that can be allocated to the UE 100.
  • MCS modulation and coding scheme
  • control for the UE 100 to switch the communication path to the WLAN 30 there is a first control to a third control.
  • 1st control is control which refuses the said establishment request
  • the second control is control for releasing the RRC connection when the RRC connection with the UE 100 is already established.
  • the third control is control for changing the parameter (determination parameter) used for determining whether or not to switch the communication path from the EUTRAN 10 to the WLAN 50 and notifying the UE 100.
  • the third control may be used in combination with the first control or the second control.
  • the parameter to be changed is preferably an individual parameter that is individually notified to the UE 100.
  • the control unit 220 sets a high threshold for the first information on the E-UTRAN 10 side.
  • the threshold for the second information on the WLAN 50 side is set low. That is, the determination parameter is set so that offload processing to the WLAN 50 is easily performed.
  • the controller 220 optimizes a timer (Tsteering WLAN Timer) indicating a predetermined period (Tsteering WLAN ).
  • the timer is the minimum time (Tsteering) in which the state where the first information satisfies the first condition or the state where the second information satisfies the second condition should continue It is a timer for measuring WLAN ).
  • the eNB 200 sets the timer to be shorter than the current setting value.
  • FIG. 5 is a block diagram showing a configuration of the P-GW 400 according to the first embodiment.
  • the P-GW 400 includes a control unit 410 and a network communication unit 420.
  • the control unit 410 includes a CPU (processor), a memory, and the like, and controls the P-GW 400. Specifically, the control unit 410 controls the network communication unit 420. Note that a memory constituting the control unit 410 may function as a storage unit, or a memory constituting the storage unit may be provided separately from the memory constituting the control unit 410.
  • the network communication unit 420 is connected to the MME / S-GW 300, the AP 500, and the external packet network 40.
  • the network communication unit 420 is used for communication with the MME / S-GW 300, the AP 500, and the external packet network 40.
  • the network communication unit 420 may be connected to the eNB 200 via a predetermined interface.
  • the control unit 410 has switched the communication path from the eNB 200 to the WLAN 50 by the UE 100 having a communication path with the EPC 20 via the E-UTRAN 10 (ie, offload processing). Is detected. For example, the control unit 410 detects an offload process based on the user data flow of the UE 100. Alternatively, the control unit 410 may detect the offload process based on a notification from the UE 100 or the MME / S-GW 300.
  • control unit 410 detects that the UE 100 has switched the communication path from the WLAN 50 to the E-UTRAN 10 (that is, the re-offload process). For example, the control unit 410 detects the re-offload process based on the user data flow of the UE 100. Or the control part 410 may detect a re-offload process based on the notification from the notification from UE100 or MME / S-GW300.
  • the control unit 410 starts measuring the throughput in response to the reception of the first switching information (NAS message) notified from the UE 100 to the EPC 20.
  • the first switching information is information indicating that the communication path is switched from the E-UTRAN 10 to the WLAN 30.
  • control unit 410 ends the measurement of the throughput in response to the reception of the second switching information (NAS message) notified from the UE 100 to the EPC 20.
  • the second switching information is information indicating that the communication path is switched from the WLAN 30 to the E-UTRAN 10.
  • control unit 410 measures the throughput of communication with the UE 100 during the period from the first switching (offload process) to the second switching (reoffload process). In other words, the control unit 410 measures the throughput of the UE 100 when staying in the WLAN 30.
  • the control unit 410 may perform statistical processing on the periodically measured throughput.
  • control unit 410 When the UE 100 switches communication paths in units of APN, the control unit 410 preferably measures throughput in units of APN. When the UE 100 switches communication paths in units of bearers, the control unit 410 preferably measures throughput in units of bearers.
  • the control unit 410 notifies the eNB 200 of throughput information indicating the measured throughput.
  • the information indicating the throughput is not limited to the throughput value itself, but may be a throughput index value.
  • the control unit 410 may notify the eNB 200 of throughput information via the MME / S-GW 300.
  • FIG. 6 is a sequence diagram showing an operation according to the first embodiment.
  • a communication path is established between the UE 100 and the P-GW 400.
  • one or more bearers are established between the UE 100 and the EPC 20 via the eNB 200.
  • step S101 the UE 100 performs an offload process from the eNB 200 to the AP 500.
  • the communication path between the UE 100 and the P-GW 400 is switched from the eNB 200 to the AP 500.
  • the P-GW 400 detects offload processing via the MME 300 (step S102).
  • step S103 the P-GW 400 starts measuring the throughput of communication with the UE 100.
  • the throughput measurement is performed in units of APN or bearer.
  • step S104 the UE 100 performs a re-offload process from the AP 500 to the eNB 200.
  • the communication path between the UE 100 and the P-GW 400 is switched from the AP 500 to the eNB 200.
  • the P-GW 400 detects the re-offload process via the MME 300 (step S105).
  • step S106 the P-GW 400 ends the throughput measurement of communication with the UE 100.
  • the P-GW 400 notifies the eNB 200 via the MME 300 of throughput information indicating the measured throughput. Specifically, in step S107, the P-GW 400 transmits throughput information to the MME 300. In step S108, the MME 300 transmits a first message (E-RAB Setup Request) including the throughput information to the eNB 200.
  • E-RAB Setup Request a first message including the throughput information to the eNB 200.
  • the eNB 200 performs control on the UE 100 based on the throughput information included in the first message. Specifically, the eNB 200 performs control for the UE 100 to switch the communication path to the WLAN 30 when the throughput that the eNB 200 can provide to the UE 100 is lower than the throughput indicated by the throughput information.
  • the eNB 200 when the eNB 200 receives the RRC Connection Request, the eNB 200 performs the first control to reject the RRC Connection Request. Alternatively, the eNB 200 performs the second control for releasing the RRC connection when the RRC connection with the UE 100 is already established.
  • step S104 the UE 100 starts a re-offload process from the AP 500 to the eNB 200.
  • the UE 100 transmits to the MME 300 a message (NAS message) for starting (requesting) switching of the communication path between the UE 100 and the P-GW 400 from the AP 500 to the eNB 200.
  • the UE 100 starts switching the communication path between the UE 100 and the P-GW 400 from the AP 500 to the eNB 200 by temporarily setting the RRC connected state (the state in which the RRC connection with the eNB 200 is established) (request). ) May be transmitted to the MME 300.
  • the RRC connected state the state in which the RRC connection with the eNB 200 is established
  • step S105 the P-GW 400 detects that the switching of the communication path between the UE 100 and the P-GW 400 from the AP 500 to the eNB 200 is started via the MME 300.
  • step S106 the P-GW 400 ends the throughput measurement of communication with the UE 100.
  • the P-GW 400 measures the throughput when the UE 100 stays in the WLAN 30.
  • the UE 100 measures the throughput when the UE 100 stays in the WLAN 30.
  • the control unit 130 performs the first switching (offload process) for switching the communication path from the E-UTRAN 10 to the WLAN 30, and then switches the communication path to the eNB 200 provided in the E-UTRAN 10. 2 is switched (re-offload processing).
  • the control unit 130 measures the throughput of communication performed with the EPC 20 (P-GW 400) via the WLAN 30, and notifies the eNB 200 of throughput information indicating the measured throughput.
  • the throughput may be a statistical value such as an average value.
  • the information indicating the throughput is not limited to the throughput value itself, but may be a throughput index value.
  • the control unit 130 starts measuring the throughput in response to the transmission of the first switching information (NAS message) to the EPC 20.
  • the first switching information is information indicating that the communication path is switched from the E-UTRAN 10 to the WLAN 30.
  • control unit 130 ends the measurement of the throughput in response to the transmission of the second switching information (NAS message) to the EPC 20 or the deterioration of the wireless environment of the WLAN 30.
  • the second switching information is information indicating that the communication path is switched from the WLAN 30 to the E-UTRAN 10.
  • the deterioration of the wireless environment of the WLAN 30 means that, for example, any of the above conditions (2c) to (2f) is satisfied, or all of the conditions (2c) to (2f) are satisfied.
  • the control unit 130 When the UE 100 switches the communication path in units of APN, the control unit 130 preferably measures the throughput in units of APN. When the UE 100 switches communication paths in units of bearers (E-RAB), the control unit 130 preferably measures throughput in units of bearers (E-RAB).
  • the throughput information is included in the second message transmitted from the UE 100 to the eNB 200.
  • the second message is a message for requesting establishment of an RRC connection with the eNB 200 (RRC Connection Request), or a message for changing the RRC setting of the UE 100 (UE Assistance Information or RRC Connection Configuration Complete).
  • the RRC Connection Request can be used as the second message.
  • the UE Assistance Information or the RRC Connection Reconfiguration Complete can be used as the second message.
  • FIG. 7 is a sequence diagram showing an operation according to the second embodiment.
  • a communication path is established between the UE 100 and the P-GW 400.
  • one or more bearers are established between the UE 100 and the EPC 20 via the eNB 200.
  • step S201 the UE 100 performs an offload process from the eNB 200 to the AP 500.
  • the communication path between the UE 100 and the P-GW 400 is switched from the eNB 200 to the AP 500.
  • step S202 the UE 100 starts measuring the throughput of communication performed via the AP 500.
  • the throughput measurement is performed in units of APN or bearer.
  • step S203 the UE 100 performs a re-offload process from the AP 500 to the eNB 200.
  • the communication path between the UE 100 and the P-GW 400 is switched from the AP 500 to the eNB 200.
  • step S204 the UE 100 ends the throughput measurement of communication performed via the AP 500.
  • the UE 100 includes the throughput information indicating the measured throughput in the second message and notifies the eNB 200.
  • the second message here is RRC Connection Request or UE Assistance Information (or RRC Connection Reconfiguration Complete).
  • the UE 100 notifies the throughput information by the RRC Connection Request (Step S205).
  • the UE 100 notifies the throughput information by UE Assistance Information (or RRC Connection Reconfiguration Complete) (step S206).
  • the eNB 200 performs control on the UE 100 based on the throughput information included in the second message. Specifically, the eNB 200 performs control for the UE 100 to switch the communication path to the WLAN 30 when the throughput that the eNB 200 can provide to the UE 100 is lower than the throughput indicated by the throughput information (step S207; YES).
  • the control is the same as in the first embodiment. Specifically, when receiving the RRC Connection Request, the eNB 200 performs first control for rejecting the RRC Connection Request. Alternatively, when the RRC connection with the UE 100 has already been established, the eNB 200 performs the second control for releasing the RRC connection (step S208). Alternatively, the eNB 200 performs third control for changing a parameter (determination parameter) used for determining whether or not to switch the communication path from the E-UTRAN 10 to the WLAN 50. The third control may be used in combination with the first control or the second control.
  • step S203 the UE 100 starts a re-offload process from the AP 500 to the eNB 200.
  • the UE 100 transmits to the MME 300 a message (NAS message) for starting (requesting) switching of the communication path between the UE 100 and the P-GW 400 from the AP 500 to the eNB 200.
  • the UE 100 starts switching the communication path between the UE 100 and the P-GW 400 from the AP 500 to the eNB 200 by temporarily setting the RRC-connected state (the state in which the RRC connection with the eNB 200 is established) ( (Request) message (NAS message) may be transmitted to the MME 300.
  • RRC-connected state the state in which the RRC connection with the eNB 200 is established
  • step S204 the UE 100 stops measuring the throughput of communication performed via the AP 500 in response to the transmission of the message in step S203.
  • step S205 the UE 100 requests establishment of an RRC connection by transmitting an RRC Connection Request to the eNB 200.
  • Step S206 and step S207 are the same as the operation described above.
  • step S208 if the eNB 200 determines that the WLAN throughput is larger than the LTE throughput in step S207, the eNB 200 rejects the RRC Connection Request transmitted from the UE 100 (that is, transmits the RRC Connection Reject). Alternatively, when the UE 100 is already in the RRC Connected state, an RRC Connection Release is transmitted to release the established RRC connection.
  • LTE Long Term Evolution
  • GSM Global System for Mobile communications
  • a program for causing a computer to execute each process performed by either the UE 100 or the eNB 200 may be provided.
  • the program may be recorded on a computer readable medium. If a computer-readable medium is used, a program can be installed in the computer.
  • the computer-readable medium on which the program is recorded may be a non-transitory recording medium.
  • the non-transitory recording medium is not particularly limited, but may be a recording medium such as a CD-ROM or a DVD-ROM.
  • a chip configured by a memory that stores a program for executing each process performed by either the UE 100 or the eNB 200 and a processor that executes the program stored in the memory may be provided.
  • the present invention is useful in the communication field.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 第1の側面に係るネットワーク装置は、無線端末が無線LANを介して行う通信のスループットを測定する制御部を備える。前記制御部は、前記スループットを示すスループット情報を、移動通信ネットワークを構成する基地局に通知する。

Description

基幹ネットワーク装置、無線端末、及び基地局
 本発明は、移動通信ネットワークと無線LANとの間で通信経路を切り替える処理を行うシステムで用いる基幹ネットワーク装置、無線端末、及び基地局に関する。
 従来、無線端末が移動通信ネットワークと無線LANとの間で通信経路を切り替える技術が提案されている(例えば、非特許文献1参照)。通信経路は、無線端末と基幹ネットワークとの間に確立されており、APN(Access Point Name)単位(又はベアラ単位)での切り替えが可能である。
 このような通信経路の切り替えは、ネットワークを選択するネットワークセレクション及びトラフィックのルーティングを行うトラフィックステアリングにより行われる。また、LTE(Long Term Evolution)において、移動通信ネットワークはE-UTRAN(Evolved Universal Terrestrial Radio Access Network)と称され、基幹ネットワークはEPC(Evolved Packet Core)と称される。
 無線端末は、移動通信ネットワーク側の第1情報が第1条件を満たすか否か及び無線LAN側の第2情報が第2条件を満たすか否かに基づいて、切り替えを行うか否かを判定する。第1情報は、例えば、参照信号受信電力(RSRP)の測定結果(RSRPmeas)及び参照信号受信品質(RSRQ)の測定結果(RSRQmeas)である。第2情報は、例えば、無線LANのチャネル利用値、無線LANのバックホール値、受信信号強度指示子(RSSI)である。
 ところで、移動通信ネットワークと無線LANとの間で通信経路を切り替えるか否かを判定するための判定パラメータは、移動通信ネットワークに設けられた基地局から無線端末に対して通知される。判定パラメータとしては、無線端末に対して個別に通知される個別パラメータ及び無線端末に対して報知される報知パラメータが存在する。
TS36.304 V12.1.0
 第1の側面に係るネットワーク装置は、無線端末が無線LANを介して行う通信のスループットを測定する制御部を備える。前記制御部は、前記スループットを示すスループット情報を、移動通信ネットワークを構成する基地局に通知する。
 第2の側面に係る無線端末は、無線LANを介して行う通信のスループットを測定する制御部を備える。前記制御部は、前記スループットを示すスループット情報を、移動通信ネットワークを構成する基地局に通知する。
 第3の側面に係る基地局は、ネットワーク装置又は無線端末からスループット情報を取得する制御部を備える。前記スループット情報は、前記無線LANを介して前記無線端末が行う通信のスループットを示す情報である。
第1実施形態及び第2実施形態に係る通信システムを示す図である。 第1実施形態及び第2実施形態に係る切り替え処理を示す図である。 第1実施形態及び第2実施形態に係るUE(無線端末)の構成を示すブロック図である。 第1実施形態及び第2実施形態に係るeNB(基地局)の構成を示すブロック図である。 第1実施形態及び第2実施形態に係るP-GW(基幹ネットワーク装置)の構成を示すブロック図である。 第1実施形態に係る動作を示すシーケンス図である。 第2実施形態に係る動作を示すシーケンス図である。
 [実施形態の概要]
 第1実施形態に係る基幹ネットワーク装置は、移動通信ネットワークと無線LANとの間で無線端末が通信経路を切り替える処理を行うシステムにおいて、基幹ネットワークに設けられる。前記基幹ネットワーク装置は、前記無線LANを介して前記無線端末が前記基幹ネットワークと行う通信のスループットを測定する制御部を備える。前記制御部は、前記測定したスループットを示すスループット情報を、前記移動通信ネットワークに設けられた基地局に通知する。
 第1実施形態において、前記制御部は、前記無線端末から前記基幹ネットワークに通知される第1の切り替え情報の受信に応じて、前記スループットの測定を開始する。前記第1の切り替え情報は、前記移動通信ネットワークから前記無線LANに通信経路を切り替えることを示す情報である。
 第1実施形態において、前記制御部は、前記無線端末から前記基幹ネットワークに通知される第2の切り替え情報の受信に応じて、前記スループットの測定を終了する。前記第2の切り替え情報は、前記無線LANから前記移動通信ネットワークに通信経路を切り替えることを示す情報である。
 第1実施形態において、前記スループット情報は、前記基地局が、前記無線端末がその通信経路を前記無線LANから前記移動通信ネットワークへ切り替えることを許可するか否か判断するための情報である。
 第1実施形態において、前記無線端末がAPN単位で通信経路を切り替える場合、前記制御部は、前記APN単位で前記スループットを測定する。
 第1実施形態において、前記無線端末がベアラ単位で通信経路を切り替える場合、前記制御部は、前記ベアラ単位で前記スループットを測定する。
 第2実施形態に係る無線端末は、移動通信ネットワークと無線LANとの間で通信経路を切り替える処理を行う。前記無線端末は、前記無線LANを介して基幹ネットワークと行う通信のスループットを測定する制御部を備える。前記制御部は、前記測定したスループットを示すスループット情報を、前記移動通信ネットワークに設けられた基地局に通知する。
 第2実施形態において、前記制御部は、前記基幹ネットワークに第1の切り替え情報を送信したことに応じて、前記スループットの測定を開始する。前記第1の切り替え情報は、前記移動通信ネットワークから前記無線LANに通信経路を切り替えることを示す情報である。
 第2実施形態において、前記制御部は、前記基幹ネットワークに第2の切り替え情報を送信したこと、又は前記無線LANの無線環境が悪化したことに応じて、前記スループットの測定を終了する。前記第2の切り替え情報は、前記無線LANから前記移動通信ネットワークに通信経路を切り替えることを示す情報である。
 第2実施形態において、前記スループット情報は、前記基地局が、前記無線端末がその通信経路を前記無線LANから前記移動通信ネットワークへ切り替えることを許可するか否か判断するための情報である。
 第2実施形態において、前記無線端末がAPN単位で通信経路を切り替える場合、前記制御部は、前記APN単位で前記スループットを測定する。
 第2実施形態において、前記無線端末がベアラ単位で通信経路を切り替える場合、前記制御部は、前記ベアラ単位で前記スループットを測定する。
 第2実施形態において、前記スループット情報は、前記無線端末から前記基地局に送信されるメッセージに含まれている。前記メッセージは、前記基地局とのRRC接続の確立を要求するためのメッセージ、又は前記無線端末のRRC設定の変更のためのメッセージである。
 第1実施形態及び第2実施形態に係る基地局は、移動通信ネットワークと無線LANとの間で無線端末が通信経路を切り替える処理を行うシステムにおいて、前記移動通信ネットワークに設けられる。前記基地局は、基幹ネットワーク又は前記無線端末からスループット情報を取得する制御部を備える。前記スループット情報は、前記無線LANを介して前記無線端末が前記基幹ネットワークと行う通信のスループットを示す情報である。
 第1実施形態及び第2実施形態において、前記制御部は、前記スループット情報に基づいて、前記無線端末がその通信経路を前記無線LANから前記移動通信ネットワークへ切り替えることを許可するか否か判断する。
 第1実施形態及び第2実施形態において、前記基地局が前記無線端末に提供可能なスループットが、前記スループット情報が示すスループットよりも低い場合、前記制御部は、前記無線端末がその通信経路を前記無線LANから前記移動通信ネットワークへ切り替えることを拒否すると判断する。
 第1実施形態において、前記スループット情報は、前記基幹ネットワークから前記基地局に送信される第1のメッセージに含まれている。前記第1のメッセージは、前記無線端末と前記基幹ネットワークとの間に前記基地局を介する1又は複数のベアラの確立を要求するためのメッセージである。
 第2実施形態において、前記スループット情報は、前記無線端末から前記基地局に送信される第2のメッセージに含まれている。前記第2のメッセージは、前記基地局とのRRC接続の確立を要求するためのメッセージ、又は前記無線端末のRRC設定の変更のためのメッセージである。
 [第1実施形態]
 (通信システムの構成)
 以下において、第1実施形態に係る通信システムについて説明する。図1は、第1実施形態に係る通信システム1を示す図である。第1実施形態において、移動通信方式としてLTEが採用されている。
 図1に示すように、通信システム1は、E-UTRAN10と、EPC20と、WLAN(無線LAN)30と、外部パケットネットワーク40と、UE(User Equipment)100と、を備える。第1実施形態において、UE100は、無線端末に相当する。E-UTRAN10は移動通信ネットワークに相当する。また、EPC20は基幹ネットワークに相当する。
 E-UTRAN10は、eNB200(evolved Node-B)を含む。第1実施形態において、eNB200は、移動通信ネットワークに設けられる基地局に相当する。eNB200は、1つ又は複数のセルを管理する。なお、セルとは、地理的なエリアを示す用語と考えてもよく、UE100と無線通信を行う機能と考えてもよい。eNB200は、X2インターフェイスを介して相互に接続される。eNB200の構成については後述する。
 EPC20は、MME(Mobility Management Entity)/S-GW(Serving-Gateway)300と、P-GW(Packet Data Network Gateway)400と、を含む。MMEは、UE100の位置登録及びハンドオーバなどの各種モビリティ制御などを行う。S-GWは、P-GW400とeNB200との間でユーザデータを中継する制御を行う。MME/S-GW300は、S1インターフェイスを介してeNB200と接続される。
 P-GW400は、外部パケットネットワーク40との接続点としての機能と、WLAN30との接続点としての機能と、を有する。P-GW400は、UE100へのIPアドレスの割り当て、及びベアラ確立時の認証などを行う。また、P-GW400は、外部パケットネットワーク40から又は外部パケットネットワーク40にユーザデータを中継する制御を行う。第1実施形態において、P-GW400は、基幹ネットワークに設けられる基幹ネットワーク装置に相当する。P-GW400の構成については後述する。
 外部パケットネットワーク40は、EPC20の外部に設けられており、インターネット及び/又はオペレータサービスネットワークなどのパケットネットワークである。
 WLAN30は、アクセスポイント(AP)500を含む。AP500は、例えばIEEE 802.11諸規格に準拠して構成される。AP500は、LTE通信の周波数帯とは異なる周波数帯(例えば、アンライセンスドバンド)でUE100との無線通信を行う。
 UE100は、携帯電話又はタブレットなどの端末、又はカード型端末である。UE100は、eNB200と無線通信を行う機能に加えて、AP500と無線通信を行う機能を有する。UE100の構成については後述する。
 (切り替え処理の概要)
 以下において、UE100がE-UTRAN10とWLAN50との間で通信経路を切り替える切り替え処理(例えば、ネットワークセレクション及びトラフィックステアリング)を行う方法について説明する。図2は、第1実施形態に係る切り替え処理を示す図である。
 図2に示すように、eNB200は、自身のカバレッジエリアにおいてLTEの移動通信サービスを提供する。eNB200のカバレッジエリアは、1つ又は複数のセルによって構成される。AP500は、自身のカバレッジエリアにおいて無線LANサービスを提供する。AP500のカバレッジエリアの一部又は全部は、eNB200のカバレッジエリアと重複する。
 RRCコネクティッド状態又はRRCアイドル状態のUE100は、E-UTRAN10及びWLAN50のうちトラフィックを送受信する無線アクセスネットワークを選択するために切り替え処理を行う。詳細には、E-UTRAN10側の第1情報が第1条件を満たしており、かつ、WLAN50側の第2情報が第2条件を満たしている状態が所定期間に亘って継続する場合に、切り替え処理(例えば、ネットワークセレクション及びトラフィックステアリング)が実行される。
 UE100とP-GW400との間には、トラフィックを送受信するための通信経路が確立されている。第1実施形態において、切り替え処理は、UE100が、E-UTRAN10からWLAN50に対して通信経路を切り替える処理、及び、WLAN50からE-UTRAN10に対して通信経路を切り替える処理の双方を含む。また、通信経路の切り替えは、APN単位で行われる。或いは、通信経路の切り替えは、ベアラ単位で行われてもよい。
 ここで、E-UTRAN10側の第1情報は、例えば、受信信号の信号レベル(RSRP;Reference Signal Received Power)の測定結果(RSRPmeas)及び受信信号の信号品質(RSRQ;Reference Signal Received Quality)の測定結果(RSRQmeas)である。
 WLAN50側の第2情報は、例えば、WLAN50のチャネル利用値(ChannelUtilizationWLAN)、WLAN50の下りリンクのバックホール値(BackhaulRateDlWLAN)、WLAN50の上りリンクのバックホール値(BackhaulRateUlWLAN)、受信信号の信号レベル(RSSI;Received Signal Strength Indicator)である。
 ・E-UTRAN10からWLAN50に対する切り替え処理
 UE100がE-UTRAN10からWLAN50に対して通信経路を切り替える第1条件は、例えば、以下の条件(1a)又は(1b)のいずれかが満たされることである。但し、第1条件は、以下の条件(1a)~(1b)の全てが満たされることであってもよい。
 (1a)RSRPmeas<ThreshServingOffloadWLAN,LowP
 (1b)RSRQmeas<ThreshServingOffloadWLAN,LowQ
 なお、“ThreshServingOffloadWLAN,LowP”及び“ThreshServingOffloadWLAN,LowQ”は、eNB200から提供される閾値又は予め定められた閾値である。
 UE100がE-UTRAN10からWLAN50に対して通信経路を切り替える第2条件は、例えば、以下の条件(1c)~(1f)の全てが満たされることである。但し、第2条件は、以下の条件(1c)~(1f)のいずれかが満たされることであってもよい。
 (1c)ChannelUtilizationWLAN<ThreshChUtilWLAN,Low
 (1d)BackhaulRateDlWLAN>ThreshBackhRateDLWLAN,High
 (1e)BackhaulRateUlWLAN>ThreshBackhRateULWLAN,High
 (1f)RSSI>ThreshBEACONRSSI,High
 なお、“ThreshChUtilWLAN,Low”、“ThreshBackhRateDLWLAN,High”、“ThreshBackhRateULWLAN,High”及び“ThreshBEACONRSSI,High”は、eNB200から提供される閾値又は予め定められた閾値である。
 ・WLAN50からE-UTRAN10に対する切り替え処理
 UE100がWLAN50からE-UTRAN10に対して通信経路を切り替える第1条件は、例えば、以下の条件(2a)及び(2b)が満たされることである。但し、第1条件は、以下の条件(2a)又は(2b)のいずれかが満たされることであってもよい。
 (2a)RSRPmeas>ThreshServingOffloadWLAN,HighP
 (2b)RSRQmeas>ThreshServingOffloadWLAN,HighQ
 なお、“ThreshServingOffloadWLAN,HighP”及び“ThreshServingOffloadWLAN,HighQ”は、eNB200から提供される閾値又は予め定められた閾値である。
 UE100がWLAN50からE-UTRAN10に対して通信経路を切り替える第2条件は、例えば、以下の条件(2c)~(2f)のいずれかが満たされることである。但し、第2条件は、以下の条件(2c)~(2f)の全てが満たされることであってもよい。
 (2c)ChannelUtilizationWLAN>ThreshChUtilWLAN,High
 (2d)BackhaulRateDlWLAN<ThreshBackhRateDLWLAN,Low
 (2e)BackhaulRateUlWLAN<ThreshBackhRateULWLAN,Low
 (2f)RSSI<ThreshBEACONRSSI,Low
 なお、“ThreshChUtilWLAN,High”、“ThreshBackhRateDLWLAN,Low”、“ThreshBackhRateULWLAN,Low”及び“ThreshBEACONRSSI,Low”は、eNB200から提供される閾値又は予め定められた閾値である。
 なお、上述した閾値が提供されていない場合には、UE100は、閾値が提供されていない情報の取得(すなわち、受信又は測定)を省略してもよい。
 第1実施形態において、上述した各種閾値は、UE100がE-UTRAN10とWLAN50との間で通信経路を切り替える切り替え処理を行うか否かを判定するための判定パラメータ(例えば、RAN assistance parameter)の一例である。すなわち、判定パラメータは、“ThreshServingOffloadWLAN,LowP”、“ThreshServingOffloadWLAN,LowQ”、“ThreshChUtilWLAN,Low”、“ThreshBackhRateDLWLAN,High”、“ThreshBackhRateULWLAN,High”、“ThreshBEACONRSSI,High”、“ThreshServingOffloadWLAN,HighP”、“ThreshServingOffloadWLAN,HighQ”、“ThreshChUtilWLAN,High”、“ThreshBackhRateDLWLAN,Low”、“ThreshBackhRateULWLAN,Low”及び“ThreshBEACONRSSI,Low”の中から選択された1つ以上の値を含む。
 さらに、判定パラメータは、第1条件又は第2条件が満たされている状態が継続すべき所定期間(TsteeringWLAN)を含んでもよい。
 判定パラメータとしては、eNB200からUE100に対して個別に通知される個別パラメータ及びeNB200からUE100に対して報知される報知パラメータが存在する。個別パラメータは、例えば、eNB200からUE100に送信されるRRCメッセージ(例えば、RRC Connection Reconfiguration)に含まれる。報知パラメータは、例えば、eNB200から報知されるSIB(例えば、WLAN-OffloadConfig-r12)に含まれる。UE100は、報知パラメータに加えて個別パラメータを受信した場合に、報知パラメータよりも個別パラメータを優先して適用することに留意すべきである。
 (無線端末の構成)
 以下において、第1実施形態に係るUE100(無線端末)の構成について説明する。図3は、第1実施形態に係るUE100の構成を示すブロック図である。
 図3に示すように、UE100は、LTE無線通信部110と、WLAN無線通信部120と、制御部130と、を含む。
 LTE無線通信部110は、eNB200と無線通信を行う機能を有し、例えば、無線送受信機によって構成される。例えば、LTE無線通信部110は、eNB200から参照信号を定期的に受信する。LTE無線通信部110は、参照信号の信号レベル(RSRP)及び参照信号の信号品質(RSRQ)を定期的に測定する。LTE無線通信部110は、判定パラメータとして個別パラメータ及び報知パラメータをeNB200から受信する。
 WLAN無線通信部120は、AP500と無線通信を行う機能を有し、例えば、無線送受信機によって構成される。例えば、WLAN無線通信部120は、AP500からビーコン又はプローブ応答を受信する。ビーコン又はプローブ応答は、BBS Load情報要素を含み、WLAN50のチャネル利用値(ChannelUtilizationWLAN)は、BBS Load情報要素から取得することができる。
 WLAN無線通信部120は、AP500に対する要求(GAS(Generic Advertisement Service) Request)に応じてAP500から返信される応答(GAS Response)を受信する。応答(GAS Response)は、WLAN50の下りリンクのバックホール値(BackhaulRateDlWLAN)及びWLAN50の上りリンクのバックホール値(BackhaulRateUlWLAN)を含む。このような問合せ手順は、WFA(Wi-Fi Alliance)のHotspot2.0で規定されるANQP(Access Network Query Protocol)に従って行われる。
 WLAN無線通信部120は、AP500から信号を受信する。WLAN無線通信部120は、受信信号の信号レベル(RSSI)を測定する。受信信号の信号レベル(RSSI)は、ビーコン又はプローブ応答の信号強度である。
 制御部130は、CPU(プロセッサ)及びメモリ等によって構成されており、UE100を制御する。詳細には、制御部130は、LTE無線通信部110及びWLAN無線通信部120を制御する。また、制御部130は、E-UTRAN10側の第1情報が第1条件を満たしており、かつ、WLAN50側の第2情報が第2条件を満たしている状態が所定期間に亘って継続する場合に、E-UTRAN10とWLAN50との間で通信経路を切り替える切り替え処理を実行する。
 (基地局の構成)
 以下において、第1実施形態に係るeNB200(基地局)の構成について説明する。図4は、第1実施形態に係るeNB200の構成を示すブロック図である。
 図4に示すように、eNB200は、LTE無線通信部210と、制御部220と、ネットワーク通信部230と、を含む。
 LTE無線通信部210は、UE100と無線通信を行う機能を有する。例えば、LTE無線通信部210は、UE100に対して参照信号を定期的に送信する。LTE無線通信部210は、例えば、無線送受信機によって構成される。
 LTE無線通信部210は、判定パラメータとして個別パラメータ及び報知パラメータをUE100に送信する。上述したように、LTE無線通信部210は、RRCメッセージ(例えば、RRC Connection Reconfiguration)によって個別パラメータをUE100に通知し、SIB(例えば、WLAN-OffloadConfig-r12)によって報知パラメータをUE100に通知する。
 制御部220は、CPU(プロセッサ)及びメモリ等によって構成されており、eNB200を制御する。詳細には、制御部220は、LTE無線通信部210及びネットワーク通信部230を制御する。なお、制御部220を構成するメモリが記憶部として機能してもよいし、制御部220を構成するメモリとは別に記憶部を構成するメモリが設けられてもよい。
 ネットワーク通信部230は、X2インターフェイスを介して近隣基地局と接続され、S1インターフェイスを介してMME/S-GW300と接続される。ネットワーク通信部230は、X2インターフェイス上で行う通信及びS1インターフェイス上で行う通信に用いられる。
 このように構成されたeNB200において、制御部220は、EPC20又はUE100からスループット情報を取得する。スループット情報は、UE100がWLAN30を介してEPC20と行う通信のスループットを示す情報である。換言すると、スループット情報は、WLAN30に滞在していた際のUE100のスループットを示す情報である。スループットは、平均値などの統計値であってもよい。スループットを示す情報は、スループットの値そのものに限らず、スループットのインデックス値であってもよい。
 第1実施形態において、スループット情報は、EPC20からeNB200に送信される第1のメッセージに含まれている。第1のメッセージは、UE100とEPC20との間にeNB200を介する1又は複数のベアラ(E-RAB)の確立を要求するためのメッセージ(E-RAB Setup Request)である。E-RABは、eNB200とS-GW300との間のS1ベアラ、及びeNB200とUE100との間の無線ベアラにより構成される。
 制御部220は、第1のメッセージに含まれるスループット情報に基づいて、UE100に対する制御を行う。制御部220は、UE100がその通信経路をWLAN30からE-UTRAN10へ切り替えることを許可するか否か判断する。
 第1実施形態において、eNB200がUE100に提供可能なスループットが、スループット情報が示すスループットよりも低い場合、制御部220は、UE100がその通信経路をWLAN30からE-UTRAN10へ切り替えることを拒否すると判断する。そして、制御部220は、UE100がWLAN30に通信経路を切り替えるための制御を行ってもよい。制御部220は、このような条件に加えて、eNB200がUE100に提供可能なスループットとスループット情報が示すスループットとの差分が所定値以上であるという条件が満たされた場合に、当該制御を行ってもよい。
 ここで、eNB200がUE100に提供可能なスループットは、予測される論理スループットであってもよいし、実測スループットであってもよい。論理スループットは、例えば、UE100との間のチャネル状態に応じた変調符号化方式(MCS)と、UE100に割り当て可能な無線リソース(RB;Resource Block)の量とに応じて予測することができる。
 UE100がWLAN30に通信経路を切り替えるための制御としては、第1の制御乃至第3の制御がある。第1の制御は、UE100からRRC接続の確立要求を受信した場合に、当該確立要求を拒否する制御である。第2の制御は、UE100とのRRC接続が既に確立されている場合に、当該RRC接続を解放する制御である。第3の制御は、EUTRAN10からWLAN50に通信経路を切り替えるか否かの判定に用いるパラメータ(判定パラメータ)を変更してUE100に通知する制御である。第3の制御は、第1の制御又は第2の制御と併用してもよい。変更されるパラメータは、UE100に対して個別に通知する個別パラメータであることが好ましい。
 第3の制御において、制御部220は、E-UTRAN10側の第1情報に関する閾値を高く設定する。或いは、WLAN50側の第2情報に関する閾値を低く設定する。つまり、WLAN50へのオフロード処理が実行され易くなるような判定パラメータに設定する。或いは、制御部220は、所定期間(TsteeringWLAN)を示すタイマ(Tsteering WLAN Timer)の最適化を行う。当該タイマは、オフロード処理又はリオフロード処理を実行するために、第1情報が第1条件を満たしている状態又は第2情報が第2条件を満たしている状態が継続すべき最小の時間(TsteeringWLAN)を計測するためのタイマである。例えば、eNB200は、当該タイマを現在の設定値よりも短く設定する。
 (基幹ネットワーク装置の構成)
 以下において、第1実施形態に係るP-GW400(基幹ネットワーク装置)の構成について説明する。図5は、第1実施形態に係るP-GW400の構成を示すブロック図である。
 図5に示すように、P-GW400は、制御部410と、ネットワーク通信部420と、を含む。
 制御部410は、CPU(プロセッサ)及びメモリ等によって構成されており、P-GW400を制御する。詳細には、制御部410は、ネットワーク通信部420を制御する。なお、制御部410を構成するメモリが記憶部として機能してもよいし、制御部410を構成するメモリとは別に記憶部を構成するメモリが設けられてもよい。
 ネットワーク通信部420は、MME/S-GW300、AP500、及び外部パケットネットワーク40と接続される。ネットワーク通信部420は、MME/S-GW300、AP500、及び外部パケットネットワーク40との通信に用いられる。さらに、ネットワーク通信部420は、所定のインターフェイスを介してeNB200と接続されてもよい。
 このように構成されたP-GW400において、制御部410は、E-UTRAN10を介してEPC20との間に通信経路を有するUE100がeNB200からWLAN50に通信経路を切り替えたこと(すなわち、オフロード処理)を検知する。例えば、制御部410は、UE100のユーザデータの流れに基づいて、オフロード処理を検知する。或いは、制御部410は、UE100又はMME/S-GW300からの通知に基づいて、オフロード処理を検知してもよい。
 さらに、制御部410は、UE100がWLAN50からE-UTRAN10に通信経路を切り替えたこと(すなわち、リオフロード処理)を検知する。例えば、制御部410は、UE100のユーザデータの流れに基づいて、リオフロード処理を検知する。或いは、制御部410は、UE100又はMME/S-GW300からの通知からの通知に基づいて、リオフロード処理を検知してもよい。
 制御部410は、UE100からEPC20に通知される第1の切り替え情報(NASメッセージ)の受信に応じて、スループットの測定を開始する。第1の切り替え情報は、E-UTRAN10からWLAN30に通信経路を切り替えることを示す情報である。
 また、制御部410は、UE100からEPC20に通知される第2の切り替え情報(NASメッセージ)の受信に応じて、スループットの測定を終了する。第2の切り替え情報は、WLAN30からE-UTRAN10に通信経路を切り替えることを示す情報である。
 このように、制御部410は、第1の切り替え(オフロード処理)から第2の切り替え(リオフロード処理)までの間におけるUE100との通信のスループットを測定する。換言すると、制御部410は、WLAN30に滞在している際のUE100のスループットを測定する。制御部410は、定期的に測定したスループットに統計処理を施してもよい。
 UE100がAPN単位で通信経路を切り替える場合、制御部410は、APN単位でスループットを測定することが好ましい。UE100がベアラ単位で通信経路を切り替える場合、制御部410は、ベアラ単位でスループットを測定することが好ましい。
 制御部410は、測定したスループットを示すスループット情報をeNB200に通知する。スループットを示す情報は、スループットの値そのものに限らず、スループットのインデックス値であってもよい。制御部410は、MME/S-GW300を介してスループット情報をeNB200に通知してもよい。
 (第1実施形態に係る動作シーケンス)
 以下において、第1実施形態に係る動作シーケンスについて説明する。図6は、第1実施形態に係る動作を示すシーケンス図である。本シーケンスの初期状態において、UE100とP-GW400との間には通信経路が確立されている。詳細には、UE100とEPC20との間にeNB200を介する1又は複数のベアラ(E-RAB)が確立されている。
 図6に示すように、ステップS101において、UE100は、eNB200からAP500へのオフロード処理を行う。その結果、UE100とP-GW400との間の通信経路がeNB200からAP500に切り替わる。本シーケンスでは、P-GW400は、MME300を介してオフロード処理を検知する(ステップS102)。
 ステップS103において、P-GW400は、UE100との通信のスループット測定を開始する。上述したように、スループット測定は、APN単位又はベアラ単位で行われる。
 ステップS104において、UE100は、AP500からeNB200へのリオフロード処理を行う。その結果、UE100とP-GW400との間の通信経路がAP500からeNB200に切り替わる。本シーケンスでは、P-GW400は、MME300を介してリオフロード処理を検知する(ステップS105)。
 ステップS106において、P-GW400は、UE100との通信のスループット測定を終了する。
 ステップS107及びS108において、P-GW400は、測定したスループットを示すスループット情報を、MME300を介してeNB200に通知する。詳細には、ステップS107において、P-GW400は、スループット情報をMME300に送信する。ステップS108において、MME300は、当該スループット情報を含む第1のメッセージ(E-RAB Setup Request)をeNB200に送信する。
 eNB200は、第1のメッセージに含まれるスループット情報に基づいて、UE100に対する制御を行う。詳細には、eNB200は、自eNB200がUE100に提供可能なスループットが、スループット情報が示すスループットよりも低い場合に、UE100がWLAN30に通信経路を切り替えるための制御を行う。
 具体的には、eNB200は、RRC Connection Requestを受信した場合に、当該RRC Connection Requestを拒否する第1の制御を行う。或いは、eNB200は、UE100とのRRC接続が既に確立されている場合に、当該RRC接続を解放する第2の制御を行う。
 このように、UE100がWLAN30に滞在していた際のスループットを考慮して通信経路の切り替えを制御することにより、UE100に対するサービス品質の劣化を抑制することができる。
 また、上述した動作の詳細について以下に説明する。
 ステップS104において、UE100は、AP500からeNB200へのリオフロード処理を開始する。言い換えると、UE100は、UE100とP-GW400との間の通信経路をAP500からeNB200へ切り替えることを開始(要求)する旨のメッセージ(NASメッセージ)をMME300へ送信する。このとき、UE100は、一時的にRRC connected状態(eNB200とのRRC接続を確立した状態)とすることにより、UE100とP-GW400との間の通信経路をAP500からeNB200へ切り替えることを開始(要求)する旨のメッセージ(NASメッセージ)をMME300へ送信してもよい。
 ステップS105において、P-GW400は、MME300を介して、UE100とP-GW400との間の通信経路をAP500からeNB200へ切り替えることを開始したことを検知する。
 ステップS106において、P-GW400は、UE100との通信のスループット測定を終了する。
 [第2実施形態]
 次に、第2実施形態について、第1実施形態との相違点を主として説明する。
 第1実施形態において、UE100がWLAN30に滞在していた際のスループットをP-GW400が測定していた。これに対し、第2実施形態においては、UE100がWLAN30に滞在していた際のスループットをUE100が測定する。
 詳細には、UE100において、制御部130は、E-UTRAN10からWLAN30に通信経路を切り替える第1の切り替え(オフロード処理)を行った後、E-UTRAN10に設けられたeNB200に通信経路を切り替える第2の切り替え(リオフロード処理)を行う。制御部130は、WLAN30を介してEPC20(P-GW400)と行う通信のスループットを測定し、該測定したスループットを示すスループット情報をeNB200に通知する。スループットは、平均値などの統計値であってもよい。スループットを示す情報は、スループットの値そのものに限らず、スループットのインデックス値であってもよい。
 第2実施形態において、制御部130は、EPC20に第1の切り替え情報(NASメッセージ)を送信したことに応じて、スループットの測定を開始する。第1の切り替え情報は、E-UTRAN10からWLAN30に通信経路を切り替えることを示す情報である。
 また、制御部130は、EPC20に第2の切り替え情報(NASメッセージ)を送信したこと、又はWLAN30の無線環境が悪化したことに応じて、スループットの測定を終了する。第2の切り替え情報は、WLAN30からE-UTRAN10に通信経路を切り替えることを示す情報である。WLAN30の無線環境が悪化したとは、例えば、上述した条件(2c)~(2f)のいずれかが満たされたこと、又は条件(2c)~(2f)の全てが満たされることである。
 UE100がAPN単位で通信経路を切り替える場合、制御部130は、APN単位でスループットを測定することが好ましい。UE100がベアラ(E-RAB)単位で通信経路を切り替える場合、制御部130は、ベアラ(E-RAB)単位でスループットを測定することが好ましい。
 第2実施形態において、スループット情報は、UE100からeNB200に送信される第2のメッセージに含まれている。第2のメッセージは、eNB200とのRRC接続の確立を要求するためのメッセージ(RRC Connection Request)、又はUE100のRRC設定の変更のためのメッセージ(UE Assistance Information又はRRC Connection Reconfiguration Complete)である。
 詳細には、UE100がWLAN30に滞在していた際にUE100のRRC接続が解放される場合、第2のメッセージとしてRRC Connection Requestを使用することができる。UE100がWLAN30に滞在していた際にUE100のRRC接続が維持される場合、第2のメッセージとしてUE Assistance Information又はRRC Connection Reconfiguration Completeを使用することができる。
 以下において、第2実施形態に係る動作シーケンスについて説明する。図7は、第2実施形態に係る動作を示すシーケンス図である。本シーケンスの初期状態において、UE100とP-GW400との間には通信経路が確立されている。詳細には、UE100とEPC20との間にeNB200を介する1又は複数のベアラ(E-RAB)が確立されている。
 図7に示すように、ステップS201において、UE100は、eNB200からAP500へのオフロード処理を行う。その結果、UE100とP-GW400との間の通信経路がeNB200からAP500に切り替わる。
 ステップS202において、UE100は、AP500を介して行う通信のスループット測定を開始する。上述したように、スループット測定は、APN単位又はベアラ単位で行われる。
 ステップS203において、UE100は、AP500からeNB200へのリオフロード処理を行う。その結果、UE100とP-GW400との間の通信経路がAP500からeNB200に切り替わる。
 ステップS204において、UE100は、AP500を介して行う通信のスループット測定を終了する。
 ステップS205又はS206において、UE100は、測定したスループットを示すスループット情報を第2のメッセージに含めてeNB200に通知する。ここでいう第2のメッセージとは、RRC Connection Requestか若しくはUE Assistance Information(又はRRC Connection Reconfiguration Complete)である。詳細には、UE100のRRC接続が解放されている場合、UE100がRRC Connection Requestによりスループット情報を通知する(ステップS205)。UE100のRRC接続が維持されている場合、UE100がUE Assistance Information(又はRRC Connection Reconfiguration Complete)によりスループット情報を通知する(ステップS206)。
 eNB200は、第2のメッセージに含まれるスループット情報に基づいて、UE100に対する制御を行う。詳細には、eNB200は、自eNB200がUE100に提供可能なスループットが、スループット情報が示すスループットよりも低い場合(ステップS207;YES)に、UE100がWLAN30に通信経路を切り替えるための制御を行う。
 当該制御については、第1実施形態と同様である。詳細には、eNB200は、RRC Connection Requestを受信した場合に、当該RRC Connection Requestを拒否する第1の制御を行う。或いは、eNB200は、UE100とのRRC接続が既に確立されている場合に、当該RRC接続を解放する第2の制御を行う(ステップS208)。或いは、eNB200は、E-UTRAN10からWLAN50に通信経路を切り替えるか否かの判定に用いるパラメータ(判定パラメータ)を変更する第3の制御を行う。第3の制御は、第1の制御又は第2の制御と併用してもよい。
 また、上述した動作の詳細について以下に説明する。
 ステップS203において、UE100は、AP500からeNB200へのリオフロード処理を開始する。言い換えると、UE100は、UE100とP-GW400との間の通信経路をAP500からeNB200へ切り替えることを開始(要求)する旨のメッセージ(NASメッセージ)をMME300へ送信する。このとき、UE100は、一時的にRRC-connected状態(eNB200とのRRC接続を確立した状態)とすることにより、UE100とP-GW400との間の通信経路をAP500からeNB200へ切り替えることを開始(要求)する旨のメッセージ(NASメッセージ)をMME300へ送信してもよい。
 ステップS204において、UE100は、ステップS203におけるメッセージの送信を契機として、AP500を介して行う通信のスループットの測定を停止する。
 ステップS205において、UE100は、RRC Connection RequestをeNB200へ送信することによって、RRCコネクションの確立を要求する。
 ステップS206及びステップS207は、上述した動作と同様である。
 ステップS208において、eNB200は、ステップS207においてLTEのスループットよりWLANのスループットの方が大きいと判定した場合には、UE100から送信されたRRC Connection Requestを拒絶(つまり、RRC Connection Rejectを送信)する。又は、既にUE100がRRC Connected状態の場合には、確立済みのRRCコネクションを解放するために、RRC Connection Releaseを送信する。
 [その他の実施形態]
 第1実施形態及び第2実施形態では、移動通信の方式がLTEである一例について説明した。しかしながら、LTE以外の方式、例えば、UMTS(Universal Mobile Telecommunications System)又はGSM(登録商標)(Global System for Mobile communications)などであってもよい。
 第1実施形態及び第2実施形態では特に触れていないが、UE100及びeNB200のいずれかが行う各処理をコンピュータに実行させるプログラムが提供されてもよい。また、プログラムは、コンピュータ読取り可能媒体に記録されていてもよい。コンピュータ読取り可能媒体を用いれば、コンピュータにプログラムをインストールすることが可能である。ここで、プログラムが記録されたコンピュータ読取り可能媒体は、非一過性の記録媒体であってもよい。非一過性の記録媒体は、特に限定されるものではないが、例えば、CD-ROMやDVD-ROM等の記録媒体であってもよい。
 或いは、UE100及びeNB200のいずれかが行う各処理を実行するためのプログラムを記憶するメモリ及びメモリに記憶されたプログラムを実行するプロセッサによって構成されるチップが提供されてもよい。
 なお、日本国特許出願第2014-227576号(2014年11月7日出願)の全内容が参照により本願明細書に組み込まれている。
 本発明は、通信分野において有用である。

Claims (18)

  1.  無線端末が無線LANを介して行う通信のスループットを測定する制御部を備え、
     前記制御部は、前記スループットを示すスループット情報を、移動通信ネットワークを構成する基地局に通知することを特徴とするネットワーク装置。
  2.  前記制御部は、前記無線端末から通知される第1の切り替え情報の受信に応じて、前記スループットの測定を開始し、
     前記第1の切り替え情報は、前記無線端末が前記移動通信ネットワークから前記無線LANに通信経路を切り替えることを示す情報であることを特徴とする請求項1に記載のネットワーク装置。
  3.  前記制御部は、前記無線端末から通知される第2の切り替え情報の受信に応じて、前記スループットの測定を終了し、
     前記第2の切り替え情報は、前記無線端末が前記無線LANから前記移動通信ネットワークに通信経路を切り替えることを示す情報であることを特徴とする請求項1に記載のネットワーク装置。
  4.  前記スループット情報は、前記基地局が、前記無線端末が前記無線LANから前記移動通信ネットワークへ通信経路を切り替えることを許可するか否か判断するための情報であることを特徴とする請求項1に記載のネットワーク装置。
  5.  前記無線端末がAPN単位で通信経路を切り替える場合、前記制御部は、前記APN単位で前記スループットを測定することを特徴とする請求項1に記載のネットワーク装置。
  6.  前記無線端末がベアラ単位で通信経路を切り替える場合、前記制御部は、前記ベアラ単位で前記スループットを測定することを特徴とする請求項1に記載のネットワーク装置。
  7.  無線LANを介して行う通信のスループットを測定する制御部を備え、
     前記制御部は、前記スループットを示すスループット情報を、移動通信ネットワークを構成する基地局に通知することを特徴とする無線端末。
  8.  前記制御部は、第1の切り替え情報を送信したことに応じて、前記スループットの測定を開始し、
     前記第1の切り替え情報は、前記無線端末が前記移動通信ネットワークから前記無線LANに通信経路を切り替えることを示す情報であることを特徴とする請求項7に記載の無線端末。
  9.  前記制御部は、第2の切り替え情報を送信したこと、又は前記無線LANの無線環境が悪化したことに応じて、前記スループットの測定を終了し、
     前記第2の切り替え情報は、前記無線端末が前記無線LANから前記移動通信ネットワークに通信経路を切り替えることを示す情報であることを特徴とする請求項7に記載の無線端末。
  10.  前記スループット情報は、前記基地局が、前記無線端末が前記無線LANから前記移動通信ネットワークへ通信経路を切り替えることを許可するか否か判断するための情報であることを特徴とする請求項7に記載の無線端末。
  11.  前記無線端末がAPN単位で通信経路を切り替える場合、前記制御部は、前記APN単位で前記スループットを測定することを特徴とする請求項7に記載の無線端末。
  12.  前記無線端末がベアラ単位で通信経路を切り替える場合、前記制御部は、前記ベアラ単位で前記スループットを測定することを特徴とする請求項7に記載の無線端末。
  13.  前記スループット情報は、前記無線端末から前記基地局に送信されるメッセージに含まれており、
     前記メッセージは、前記基地局とのRRC接続の確立を要求するためのメッセージ、又は前記無線端末のRRC設定の変更のためのメッセージであることを特徴とする請求項7に記載の無線端末。
  14.  ネットワーク装置又は無線端末からスループット情報を取得する制御部を備え、
     前記スループット情報は、前記無線LANを介して前記無線端末が行う通信のスループットを示す情報であることを特徴とする基地局。
  15.  前記制御部は、前記スループット情報に基づいて、前記無線端末が前記無線LANから前記移動通信ネットワークへ通信経路を切り替えることを許可するか否か判断することを特徴とする請求項14に記載の基地局。
  16.  前記基地局を介して前記無線端末が行う通信の予想スループットが、前記スループット情報が示すスループットよりも低い場合、前記制御部は、前記無線端末が前記無線LANから前記移動通信ネットワークへ通信経路を切り替えることを許可しないことを特徴とする請求項15に記載の基地局。
  17.  前記スループット情報は、前記ネットワーク装置から前記基地局に送信される第1のメッセージに含まれており、
     前記第1のメッセージは、前記無線端末と前記ネットワーク装置との間に前記基地局を介する1又は複数のベアラの確立を要求するためのメッセージであることを特徴とする請求項14に記載の基地局。
  18.  前記スループット情報は、前記無線端末から前記基地局に送信される第2のメッセージに含まれており、
     前記第2のメッセージは、前記基地局とのRRC接続の確立を要求するためのメッセージ又は前記無線端末のRRC設定の変更のためのメッセージであることを特徴とする請求項14に記載の基地局。
PCT/JP2015/081212 2014-11-07 2015-11-05 基幹ネットワーク装置、無線端末、及び基地局 WO2016072467A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/523,814 US10484924B2 (en) 2014-11-07 2015-11-05 Core network apparatus, radio terminal, and base station
JP2016557807A JP6870987B2 (ja) 2014-11-07 2015-11-05 基幹ネットワーク装置、無線端末、及び基地局
EP15858064.7A EP3217722A4 (en) 2014-11-07 2015-11-05 Trunk network device, wireless terminal, and base station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014227576 2014-11-07
JP2014-227576 2014-11-07

Publications (1)

Publication Number Publication Date
WO2016072467A1 true WO2016072467A1 (ja) 2016-05-12

Family

ID=55909191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/081212 WO2016072467A1 (ja) 2014-11-07 2015-11-05 基幹ネットワーク装置、無線端末、及び基地局

Country Status (4)

Country Link
US (1) US10484924B2 (ja)
EP (1) EP3217722A4 (ja)
JP (1) JP6870987B2 (ja)
WO (1) WO2016072467A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6589505B2 (ja) * 2015-09-24 2019-10-16 ヤマハ株式会社 ルータ
US11277765B2 (en) * 2016-09-29 2022-03-15 Nokia Technologies Oy Adaptive media service

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014022847A (ja) * 2012-07-13 2014-02-03 Sumitomo Electric Ind Ltd 無線基地局装置、無線端末装置、無線通信装置、通信制御方法および通信制御プログラム
JP2014127944A (ja) * 2012-12-27 2014-07-07 Kddi Corp 携帯端末、通信プログラム及び通信システム
WO2014162905A1 (ja) * 2013-04-05 2014-10-09 京セラ株式会社 ネットワーク選択制御方法及びユーザ端末
WO2015178138A1 (ja) * 2014-05-19 2015-11-26 株式会社Nttドコモ 無線通信システム、第1アクセスノード、第2アクセスノード、及び通信制御方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060068777A1 (en) * 2004-06-30 2006-03-30 Sadowsky John S Air interface cooperation between WWAN and WLAN
WO2013191461A1 (ko) * 2012-06-19 2013-12-27 엘지전자 주식회사 복수의 무선접속 기술을 지원 가능한 단말이 위치 갱신을 수행하는 방법
WO2014017872A1 (ko) * 2012-07-26 2014-01-30 엘지전자 주식회사 2이상의 무선접속기술을 이용한 신호 송수신을 지원하기 위한 방법 및 이를 위한 장치
US9100975B2 (en) * 2012-08-03 2015-08-04 Qualcomm Incorporated Methods and apparatus for transmitting clear to send (CTS)-to-self indication
US10020861B2 (en) * 2012-08-08 2018-07-10 Golba Llc Method and system for distributed transceivers and mobile device connectivity
US9743356B2 (en) * 2013-01-28 2017-08-22 Lg Electronics Inc. Method and apparatus for supporting state mode transition or performing state mode transition in plural communication system convergence networks
KR20160009530A (ko) * 2013-03-10 2016-01-26 엘지전자 주식회사 복수의 통신 시스템 융합 망에서 채널 스위치를 수행하는 방법 및 이를 위한 장치
WO2014148749A1 (ko) * 2013-03-21 2014-09-25 엘지전자 주식회사 복수의 통신시스템 간의 데이터 전환을 수행하는 방법 및 이를 위한 장치
US20160080958A1 (en) * 2013-04-24 2016-03-17 Nokia Technologies Oy Logged measurements
US20140334465A1 (en) * 2013-05-08 2014-11-13 Lg Electronics Inc. Method and apparatus for paging based on location information of a user equipment in a convergence network of a plurality of communication systems
CN105359586B (zh) * 2013-05-16 2019-04-16 英特尔Ip公司 异构网络中的网络选择
US20140355536A1 (en) * 2013-06-04 2014-12-04 Alcatel Lucent System and method providing fixed mobile convergence via bonded services
US9232439B2 (en) * 2013-10-17 2016-01-05 Verizon Patent And Licensing Inc. Dynamic load balancing based on network performance
US10075904B2 (en) * 2013-11-15 2018-09-11 Lg Electronics Inc. Method for transmitting and receiving signal in communication environment in which multiple communication systems interwork, and apparatus therefor
CN104811943A (zh) * 2014-01-24 2015-07-29 中兴通讯股份有限公司 认知无线电系统频谱资源配置方法和装置
EP3419346B1 (en) * 2014-01-28 2021-07-28 Openet Telecom Ltd. System and method for performing network selection
EP3108686B1 (en) * 2014-02-21 2019-06-19 Telefonaktiebolaget LM Ericsson (publ) Wlan throughput prediction
US10285212B2 (en) * 2014-03-20 2019-05-07 Kyocera Corporation Master base station, mobile station, and communication control method
US9763159B2 (en) * 2014-04-23 2017-09-12 Mediatek Singapore Pte. Ltd. Dynamic algorithms for WLAN-cellular performance estimation, access selection, and traffic offload
US9572064B2 (en) * 2014-08-08 2017-02-14 Sprint Spectrum L.P. Systems and methods for scheduling transmissions from an access node

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014022847A (ja) * 2012-07-13 2014-02-03 Sumitomo Electric Ind Ltd 無線基地局装置、無線端末装置、無線通信装置、通信制御方法および通信制御プログラム
JP2014127944A (ja) * 2012-12-27 2014-07-07 Kddi Corp 携帯端末、通信プログラム及び通信システム
WO2014162905A1 (ja) * 2013-04-05 2014-10-09 京セラ株式会社 ネットワーク選択制御方法及びユーザ端末
WO2015178138A1 (ja) * 2014-05-19 2015-11-26 株式会社Nttドコモ 無線通信システム、第1アクセスノード、第2アクセスノード、及び通信制御方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Study on Wireless Local Area Network (WLAN) - 3GPP radio interworking (Release 12)", 3GPP TR 37.834 V12.0.0, December 2013 (2013-12-01), pages 13 - 16, XP051293258 *
CATT: "Traffic steering of solutions without ANDSF", 3GPP TSG RAN WG2 MEETING #84, R2-133892, November 2013 (2013-11-01), pages 1 - 3, XP050736724 *
See also references of EP3217722A4 *

Also Published As

Publication number Publication date
US20170325151A1 (en) 2017-11-09
JP6870987B2 (ja) 2021-05-12
US10484924B2 (en) 2019-11-19
EP3217722A4 (en) 2018-08-22
EP3217722A1 (en) 2017-09-13
JPWO2016072467A1 (ja) 2017-08-31

Similar Documents

Publication Publication Date Title
US10251109B2 (en) Communication control method
CN112312503B (zh) 具有lte-wlan聚合的网络选择及数据聚合
EP2947926B1 (en) Communication control method and user terminal
KR102071483B1 (ko) 트래픽 오프로딩을 위한 시스템, 방법 및 디바이스
EP3328121B1 (en) Method, computer-redable medium and apparatus for handling traffic steering failure in wireless communication system
JP6800841B2 (ja) 基地局及び無線端末
EP2946594A1 (en) Reporting wifi channel measurements to a cellular radio network
US10271255B2 (en) Base station
JP6527527B2 (ja) 無線基地局及び無線端末
JP6153673B2 (ja) 基地局及び通信装置
JP6870987B2 (ja) 基幹ネットワーク装置、無線端末、及び基地局
WO2016072470A1 (ja) 基地局、装置、及び無線端末
US20170325150A1 (en) Base station and processor
JP7019294B2 (ja) 無線端末

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15858064

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016557807

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015858064

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15523814

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE