US10484924B2 - Core network apparatus, radio terminal, and base station - Google Patents

Core network apparatus, radio terminal, and base station Download PDF

Info

Publication number
US10484924B2
US10484924B2 US15/523,814 US201515523814A US10484924B2 US 10484924 B2 US10484924 B2 US 10484924B2 US 201515523814 A US201515523814 A US 201515523814A US 10484924 B2 US10484924 B2 US 10484924B2
Authority
US
United States
Prior art keywords
throughput
radio terminal
information
controller
base station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US15/523,814
Other versions
US20170325151A1 (en
Inventor
Masato Fujishiro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Assigned to KYOCERA CORPORATION reassignment KYOCERA CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FUJISHIRO, MASATO
Publication of US20170325151A1 publication Critical patent/US20170325151A1/en
Application granted granted Critical
Publication of US10484924B2 publication Critical patent/US10484924B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/12Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0876Network utilisation, e.g. volume of load or congestion level
    • H04L43/0888Throughput
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/082Load balancing or load distribution among bearers or channels
    • H04W28/085
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0058Transmission of hand-off measurement information, e.g. measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/14Reselecting a network or an air interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/14Reselecting a network or an air interface
    • H04W36/144Reselecting a network or an air interface over a different radio air interface technology
    • H04W36/1446Reselecting a network or an air interface over a different radio air interface technology wherein at least one of the networks is unlicensed
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/22Performing reselection for specific purposes for handling the traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/304Reselection being triggered by specific parameters by measured or perceived connection quality data due to measured or perceived resources with higher communication quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/18Selecting a network or a communication service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/34Reselection control
    • H04W36/38Reselection control by fixed network equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present invention relates to a core network apparatus, a radio terminal, and a base station used in a system in which a process of switching a communication path between a mobile communication network and a wireless LAN is performed.
  • Non-Patent Literature 1 A communication path is established between a radio terminal and a core network, and switching in access point name (APN) units (or bearer units) can be performed.
  • APN access point name
  • the switching of the communication path is performed by network selection of selecting a network and traffic steering of routing traffic.
  • LTE long term evolution
  • E-UTRAN evolved universal terrestrial radio access network
  • EPC evolved packet core
  • the radio terminal determines whether or not switching is performed on the basis of whether or not first information on a mobile communication network side satisfies a first condition and whether or not second information on a wireless LAN side satisfies a second condition.
  • the first information is, for example, a measurement result (RSRPmeas) of a reference signal received power (RSRP) and a measurement result (RSRQmeas) of the reference signal received quality (RSRQ).
  • the second information is, for example, a wireless LAN channel utilization value, a wireless LAN backhaul value, a received signal strength indicator (RSSI).
  • Determination parameters for determining whether or not the communication path between the mobile communication network and the wireless LAN is performed are notified from a base station provided in a mobile communication network to the radio terminal.
  • the determination parameters there are individual parameters which are notified to the radio terminal and broadcast parameters which are broadcast to the radio terminal.
  • Non-Patent Literature 1 TS36.304 V12.1.0
  • a network apparatus includes a controller configured to measure a throughput of communication which is performed by a radio terminal via a wireless LAN.
  • the controller is configured to give a notification of throughput information indicating the throughput, to a base station constituting a mobile communication network.
  • a radio terminal includes a controller configured to measure a throughput of communication performed via a wireless LAN.
  • the controller is configured to give a notification of throughput information indicating the throughput, to a base station constituting a mobile communication network.
  • a base station includes a controller configured to obtain throughput information from a network apparatus or a radio terminal.
  • the throughput information is information indicating a throughput of communication performed by the radio terminal via a wireless LAN.
  • FIG. 1 is a diagram illustrating a communication system according to first and second embodiments.
  • FIG. 2 is a diagram illustrating a switching process according to the first and second embodiments.
  • FIG. 3 is a block diagram illustrating a configuration of a UE (radio terminal) according to the first and second embodiments.
  • FIG. 4 is a block diagram illustrating a configuration of an eNB (base station) according to the first and second embodiments.
  • FIG. 5 is a block diagram illustrating a configuration of a P-GW (core network apparatus) according to the first and second embodiments.
  • FIG. 6 is a sequence diagram illustrating an operation according to the first embodiment.
  • FIG. 7 is a sequence diagram illustrating an operation according to the second embodiment.
  • a core network apparatus is provided in a core network in a system in which a process of switching a communication path between a mobile communication network and a wireless LAN is performed.
  • the core network apparatus includes a controller configured to measure a throughput of communication which is performed by a radio terminal via a wireless LAN.
  • the controller is configured to give a notification of throughput information indicating the measured throughput, to a base station constituting the mobile communication network.
  • the controller is configured to start measurement of the throughput in response to reception of first switching information reported from the radio terminal.
  • the first switching information is information indicating that the radio terminal switches a communication path from the mobile communication network to the wireless LAN.
  • the controller is configured to end measurement of the throughput in response to reception of second switching information reported from the radio terminal.
  • the second switching information is information indicating that the radio terminal switches the communication path from the wireless LAN to the mobile communication network.
  • the throughput information is information for determining whether or not the base station permits the radio terminal to switch the communication path from the wireless LAN to the mobile communication network.
  • the controller when the radio terminal switches the communication path in APN units, the controller is configured to measure the throughput in APN units.
  • the controller when the radio terminal switches the communication path in bearer units, the controller is configured to measure the throughput in bearer units.
  • a radio terminal performs a process of switching a communication path between a mobile communication network and a wireless LAN.
  • the radio terminal includes a controller configured to measure a throughput of communication performed via a wireless LAN.
  • the controller is configured to give a notification of throughput information indicating the throughput, to a base station constituting a mobile communication network.
  • the controller is configured to start measurement of the throughput when first switching information is transmitted.
  • the first switching information is information indicating that the radio terminal switches the communication path from the mobile communication network to the wireless LAN.
  • the controller is configured to end measurement of the throughput when second switching information is transmitted or when a radio environment of the wireless LAN deteriorates.
  • the second switching information is information indicating that the radio terminal switches the communication path from the wireless LAN to the mobile communication network.
  • the throughput information is information for determining whether or not the base station permits the radio terminal to switch the communication path from the wireless LAN to the mobile communication network.
  • the controller when the radio terminal switches the communication path in APN units, the controller is configured to measure the throughput in APN units.
  • the controller when the radio terminal switches the communication path in bearer units, the controller is configured to measure the throughput in bearer units.
  • the throughput information is included in a message transmitted from the radio terminal to the base station.
  • the message is a message for requesting establishment of an RRC connection with the base station or a message for changing an RRC configuration of the radio terminal.
  • a base station is provided in a mobile communication network in a system in which a process of switching a communication path between a mobile communication network and a wireless LAN is performed.
  • the base station includes a controller configured to obtain throughput information from a network apparatus or a radio terminal.
  • the throughput information is information indicating a throughput of communication performed by the radio terminal via a wireless LAN.
  • the controller is configured to determine whether or not the radio terminal is permitted to switch a communication path from the wireless LAN to the mobile communication network on the basis of the throughput information.
  • the controller when a predicted throughput of the communication performed by the radio terminal via the base station is lower than the throughput indicated by the throughput information, the controller is configured not to permit the radio terminal to switch the communication path from the wireless LAN to the mobile communication network.
  • the throughput information is included in a first message transmitted from the network apparatus to the base station.
  • the first message is a message for requesting establishment of one or more bearers between the radio terminal and the network apparatus via the base station.
  • the throughput information is included in a second message transmitted from the radio terminal to the base station.
  • the second message is a message for requesting establishment of an RRC connection with the base station or a message for changing an RRC configuration of the radio terminal.
  • FIG. 1 is a diagram illustrating a communication system 1 according to the first embodiment.
  • LTE is employed as a mobile communication scheme.
  • the communication system 1 includes an E-UTRAN 10 , an EPC 20 , a wireless LAN (WLAN) 30 , an external packet network 40 , and a user equipment (UE) 100 .
  • the UE 100 corresponds to a radio terminal.
  • the E-UTRAN 10 corresponds to the mobile communication network.
  • the EPC 20 corresponds to the core network.
  • the E-UTRAN 10 includes an evolved Node-B (eNB 200 ).
  • the eNB 200 corresponds to the base station provided in the mobile communication network.
  • the eNB 200 manages one or more cells.
  • a cell may be regarded as a term indicating a geographical area or may be regarded as a function of performing radio communication with the UE 100 .
  • the eNBs 200 are connected to each other via an X 2 interface. A configuration of the eNB 200 will be described later.
  • the EPC 20 includes a mobility management entity (MME)/serving-gateway (S-GW) 300 and a packet data network gateway (P-GW) 400 .
  • MME mobility management entity
  • S-GW serving-gateway
  • P-GW packet data network gateway
  • the MME performs various kinds of mobility control such as location registration and handover of the UE 100 .
  • the S-GW performs control such that user data is relayed between the P-GW 400 and the eNB 200 .
  • the MME/S-GW 300 is connected to the eNB 200 via an S1 interface.
  • the P-GW 400 has a function as a connection point with the external packet network 40 and a function as a connection point with the WLAN 30 .
  • the P-GW 400 performs the allocation of an IP address to the UE 100 , authentication at the time of establishing the bearer, and the like. Further, the P-GW 400 performs control such that user data is relayed from the external packet network 40 or to the external packet network 40 .
  • the P-GW 400 corresponds to a core network apparatus provided in the core network.
  • the external packet network 40 is disposed outside the EPC 20 and is a packet network such as the Internet and/or an operator service network.
  • the WLAN 30 includes an access point (AP) 500 .
  • the AP 500 is configured in conformity with, for example, an IEEE 802.11 standard.
  • the AP 500 performs radio communication with the UE 100 at a frequency band different from a frequency band of LTE communication (for example, an unlicensed band).
  • the UE 100 is a terminal such as a mobile phone, a tablet, or a card type terminal. In addition to the function of performing radio communication with the eNB 200 , the UE 100 has a function of performing radio communication with the AP 500 . A configuration of the UE 100 will be described later.
  • FIG. 2 is a diagram illustrating the switching process according to the first embodiment.
  • the eNB 200 provides a mobile communication service of LTE in its own coverage area.
  • the coverage area of eNB 200 is configured with one or more cells.
  • the AP 500 provides a wireless LAN service in its own coverage area. A part or all of the coverage area of the AP 500 overlaps the coverage area of the eNB 200 .
  • the UE 100 in an RRC connected state or an RRC idle state performs the switching process to select one of the E-UTRAN 10 and the WLAN 50 as a radio access network in which transmission and reception of traffic are performed.
  • the switching process for example, network selection and traffic steering
  • a communication path in which transmission and reception of traffic are performed is established between the UE 100 and the P-GW 400 .
  • the switching process includes both a process in which the UE 100 switches the communication path from the E-UTRAN 10 to the WLAN 50 and a process in which the UE 100 switches the communication path from the WLAN 50 to the E-UTRAN 10 .
  • the switching of the communication path is performed in APN units. Alternatively, the switching of the communication path may be performed in bearer units.
  • the first information on the E-UTRAN 10 side includes, for example, a measurement result (RSRPmeas) of a signal level of a received signal (reference signal received power (RSRP)) and a measurement result (RSRQmeas) of a signal quality of a received signal (reference signal received quality (RSRQ)).
  • RSRPmeas measurement result of a signal level of a received signal
  • RSSmeas measurement result of a signal quality of a received signal
  • the second information on the WLAN 50 side includes, for example, a channel utilization value of the WLAN 50 (ChannelUtilizationWLAN), a downlink backhaul value of the WLAN 50 (BackhaulRateDlWLAN), an uplink backhaul value of the WLAN 50 (BackhaulRateUlWLAN), and a signal level of a received signal (a received signal strength indicator (RSSI).
  • a channel utilization value of the WLAN 50 ChannelUtilizationWLAN
  • a downlink backhaul value of the WLAN 50 BackhaulRateDlWLAN
  • an uplink backhaul value of the WLAN 50 BackhaulRateUlWLAN
  • RSSI received signal strength indicator
  • the first condition that the UE 100 switches the communication path from the E-UTRAN 10 to the WLAN 50 is, for example, that one of the following conditions (1a) or (1b) be satisfied. However, the first condition may be that both of the following conditions (1a) and (1b) be satisfied.
  • Three ServingOffloadWLAN,LowP ” and “Thresh ServingOffloadWLAN,LowQ ” are threshold values provided from the eNB 200 or predetermined threshold values.
  • the second condition that the UE 100 switches the communication path from the E-UTRAN 10 to the WLAN 50 is that, for example, all of the following conditions (1c) to (1f) be satisfied.
  • the second condition may be that any one of the following conditions (1c) to (1f) be satisfied.
  • Thresh ChUtilWLAN,Low ,” “Thresh BackhRateDLWLAN,High ,” “Thresh BackhRateULWLAN,High ,” and “Thresh BEACONRSSI,High ” are threshold values provided from the eNB 200 or predetermined threshold values.
  • the first condition that the UE 100 switches the communication path from the WLAN 50 to the E-UTRAN 10 is that, for example, the following conditions (2a) and (2b) be satisfied. However, the first condition may be that either of the following conditions (2a) or (2b) be satisfied.
  • Three ServingOffloadWLAN,HighP ” and “Thresh ServingOffloadWLAN,HighQ ” are threshold values provided from the eNB 200 or predetermined threshold values.
  • the second condition that the UE 100 switches the communication path from the WLAN 50 to the E-UTRAN 10 is, for example, that one of the following conditions (2c) to (2f) be satisfied. However, the second condition may be that all of the following conditions (2c) to (2f) be satisfied.
  • Thresh ChUtilWLAN,High “Thresh BackhRateDLWLAN,Low ,” “Thresh BackhRateULWLAN,Low ,” and “Thresh BEACONRSSI,Low ” are threshold values provided from the eNB 200 or predetermined threshold values.
  • the UE 100 may omit acquisition (that is, reception or measurement) of information whose threshold value is not provided.
  • the various threshold values described above are examples of the determination parameters (for example, RAN assistance parameters) for determining whether or not the UE 100 performs the switching process of switching the communication path between the E-UTRAN 10 and the WLAN 50 .
  • the determination parameters include one or more values selected from “Thresh ServingOffloadWLAN,LowP ,” “Thresh ServingOffloadWLAN,LowQ ,” “Thresh ChUtilWLAN,Low ,” “Thresh BackhRateDLWLAN,High ,” “Thresh BackhRateULWLAN,High ,” “Thresh BEACONRSSI,High ,” “Thresh ServingOffloadWLAN,HighP ,” “Thresh ServingOffloadWLAN,HighQ ,” “Thresh ChUtilWLAN,High ,” “Thresh BackhRateDLWLAN,Low ,” “Thresh BackhRateULWLAN,Low ,” and “Thresh BEA
  • the determination parameters may include a predetermined period (Tsteering WLAN ) in which the state in which the first condition or the second condition is satisfied is continued.
  • Tsteering WLAN a predetermined period in which the state in which the first condition or the second condition is satisfied is continued.
  • the determination parameters include individual parameters which are individually notified from the eNB 200 to the UE 100 and the broadcast parameters which are broadcast from the eNB 200 to the UE 100 .
  • the individual parameters are included in, for example, an RRC message (for example, RRC Connection Reconfiguration) which is transmitted from the eNB 200 to the UE 100 .
  • the broadcast parameters are included in, for example, an SIB (for example, WLAN-OffloadConfig-r 12 ) which is broadcast from the eNB 200 . It should be noted that, when the individual parameters are received in addition to the broadcast parameters, the UE 100 applies the individual parameters more preferentially than the broadcast parameters.
  • FIG. 3 is a block diagram illustrating a configuration of the UE 100 according to the first embodiment.
  • the UE 100 includes an LTE radio communication unit 110 , a WLAN radio communication unit 120 , and a controller 130 .
  • the LTE radio communication unit 110 has a function of performing radio communication with the eNB 200 and is configured with, for example, a radio transceiver. For example, the LTE radio communication unit 110 periodically receives the reference signal from the eNB 200 . The LTE radio communication unit 110 periodically measures the signal level of the reference signal (RSRP) and the signal quality of the reference signal (RSRQ). The LTE radio communication unit 110 receives the individual parameters and the broadcast parameters from the eNB 200 as the determination parameters.
  • RSRP signal level of the reference signal
  • RSRQ signal quality of the reference signal
  • the WLAN radio communication unit 120 has a function of performing radio communication with the AP 500 and is configured with, for example, a radio transceiver.
  • the WLAN radio communication unit 120 receives a beacon or probe response from the AP 500 .
  • the beacon or probe response includes a BBS load information element, and the channel utilization value (ChannelUtilizationWLAN) of the WLAN 50 can be acquired from the BBS load information element.
  • the WLAN radio communication unit 120 receives a response (a generic advertisement service (GAS) response) which is transmitted from the AP 500 in response to a request (GAS request) with respect to the AP 500 .
  • the response (GAS response) includes the downlink backhaul value (BackhaulRateDlWLAN) of the WLAN 50 and the uplink backhaul value (BackhaulRateUlWLAN) of the WLAN 50 .
  • ANQP access network query protocol
  • WFA Wi-Fi alliance
  • the WLAN radio communication unit 120 receives a signal from the AP 500 .
  • the WLAN radio communication unit 120 measures the signal level of the received signal (RSSI).
  • the signal level of the received signal (RSSI) is the signal strength of the beacon or probe response.
  • the controller 130 is configured with a CPU (processor), a memory, and the like, and controls the UE 100 .
  • the controller 130 controls the LTE radio communication unit 110 and the WLAN radio communication unit 120 .
  • the controller 130 performs the switching process for switching the communication path between the E-UTRAN 10 and the WLAN 50 .
  • FIG. 4 is a block diagram illustrating a configuration of the eNB 200 according to the first embodiment.
  • the eNB 200 includes an LTE radio communication unit 210 , a controller 220 , and a network communication unit 230 .
  • the LTE radio communication unit 210 has a function of performing radio communication with the UE 100 .
  • the LTE radio communication unit 210 periodically transmits the reference signal to the UE 100 .
  • the LTE radio communication unit 210 is configured with, for example, a radio transceiver.
  • the LTE radio communication unit 210 transmits the individual parameters and the broadcast parameters to the UE 100 as the determination parameters. As described above, the LTE radio communication unit 210 notifies the UE 100 of the individual parameters through the RRC message (for example, RRC Connection Reconfiguration), and notifies the UE 100 of the broadcast parameters through the SIB (for example, WLAN-OffloadConfig-r 12 ).
  • RRC message for example, RRC Connection Reconfiguration
  • SIB for example, WLAN-OffloadConfig-r 12
  • the controller 220 is configured with a CPU (processor), a memory, and the like, and controls the eNB 200 .
  • the controller 220 controls the LTE radio communication unit 210 and the network communication unit 230 .
  • the memory constituting the controller 220 may function as a storage unit, or a memory constituting a storage unit may be provided separately from a memory constituting the controller 220 .
  • the network communication unit 230 is connected to a neighbor base station via the X2 interface and is connected to the MME/S-GW via the S1 interface.
  • the network communication unit 230 is used for communication performed on the X2 interface and communication performed on the S1 interface.
  • the controller 220 acquires throughput information from the EPC 20 or the UE 100 .
  • the throughput information is information indicating the throughput of communication which the UE 100 performs with the EPC 20 via the WLAN 30 .
  • the throughput information is information indicating the throughput of the UE 100 when the UE 100 stays in the WLAN 30 .
  • the throughput may be a statistical value such as an average value.
  • the information indicating the throughput is not limited to the value of the throughput but may be an index value of the throughput.
  • the throughput information is included in a first message transmitted from the EPC 20 to the eNB 200 .
  • the first message is a message (E-RAB Setup Request) for requesting establishment of one or more bearers (E-RABs) between the UE 100 and the EPC 20 via the eNB 200 .
  • the E-RAB is configured with the S1 bearer between the eNB 200 and the S-GW 300 and the radio bearer between the eNB 200 and the UE 100 .
  • the controller 220 controls the UE 100 on the basis of the throughput information included in the first message.
  • the controller 220 determines whether or not the UE 100 is permitted to switch the communication path from the WLAN 30 to the E-UTRAN 10 .
  • the controller 220 determines that the UE 100 is denied to switch the communication path from the WLAN 30 to the E-UTRAN 10 . Then, the controller 220 may perform control such that the UE 100 switches the communication path to the WLAN 30 . The controller 220 may perform the control when a condition that the difference between the throughput which can be provided from the eNB 200 to the UE 100 and the throughput indicated by the throughput information is a predetermined value or more is satisfied in addition to this condition.
  • the throughput which can be provided from the eNB 200 to the UE 100 may be a predicted logical throughput or a measured throughput.
  • the logical throughput can be predicted in accordance with, for example, a modulation coding scheme (MCS) corresponding to a channel state with the UE 100 and an amount of radio resources (resource blocks (RBs)) that can be allocated to the UE 100 .
  • MCS modulation coding scheme
  • RBs radio resources
  • the control for causing the UE 100 to switch the communication path to the WLAN 30 includes first to third controls.
  • the first control is control of rejecting, when an establishment request for an RRC connection is received from the UE 100 , the establishment request.
  • the second control is control of releasing the RRC connection when the RRC connection with the UE 100 has already been established.
  • the third control is control of changing a parameter (a determination parameter) used for determining whether or not the communication path is switched from the EUTRAN 10 to the WLAN 50 and notifies the UE 100 of the changed parameter.
  • the third control may be used in combination with the first control or the second control. It is desirable that the parameter to be changed is an individual parameter which is individually notified to the UE 100 .
  • the controller 220 performs a setting of increasing the threshold value related to the first information on the E-UTRAN 10 side.
  • the threshold value related to the second information on the WLAN 50 side is set to be low.
  • the determination parameter is set so that the offload process to the WLAN 50 is easily performed.
  • the controller 220 optimizes a timer (Tsteering WLAN Timer) indicating a predetermined period (Tsteering WLAN ).
  • the timer is a timer that measures a minimum time (Tsteering WLAN ) in which the state in which the first information satisfies the first condition or the state in which the second information satisfies the second condition should be continued in order to perform the offload process or the reoffload process.
  • the eNB 200 sets the timer to have a value shorter than a currently set value.
  • FIG. 5 is a block diagram illustrating a configuration of the P-GW 400 according to the first embodiment.
  • the P-GW 400 includes a controller 410 and a network communication unit 420 .
  • the controller 410 is configured with a CPU (processor), a memory, and the like, and controls the P-GW 400 .
  • the controller 410 controls the network communication unit 420 .
  • the memory constituting the controller 410 may function as a storage unit, or a memory constituting the storage unit may be provided separately from the memory constituting the controller 410 .
  • the network communication unit 420 is connected to the MME/S-GW 300 , the AP 500 , and the external packet network 40 .
  • the network communication unit 420 is used for communication with the MME/S-GW 300 , the AP 500 , and the external packet network 40 . Further, the network communication unit 420 may be connected to the eNB 200 via a predetermined interface.
  • the controller 410 detects that the UE 100 having the communication path with the EPC 20 via the E-UTRAN 10 switches the communication path from the eNB 200 to the WLAN 50 (that is, the offload process). For example, the controller 410 detects the offload process on the basis of the flow of the user data of the UE 100 . Alternatively, the controller 410 may detect the offload process on the basis of a notification given from the UE 100 or the MME/S-GW 300 .
  • the controller 410 detects that the UE 100 has switched the communication path from the WLAN 50 to the E-UTRAN 10 (that is, the reoffload process). For example, the controller 410 detects the reoffload process on the basis of the user data flow of the UE 100 . Alternatively, the controller 410 may detect the reoffload processing on the basis of the notification from the notification from the UE 100 or the MME/S-GW 300 .
  • the controller 410 In response to reception of the first switching information (NAS message) reported from the UE 100 to the EPC 20 , the controller 410 starts measurement of the throughput.
  • the first switching information is information indicating that the communication path is switched from the E-UTRAN 10 to the WLAN 30 .
  • the controller 410 in response to reception of the second switching information (NAS message) reported from the UE 100 to the EPC 20 , the controller 410 ends the measurement of the throughput.
  • the second switching information is information indicating that the communication path is switched from the WLAN 30 to the E-UTRAN 10 .
  • the controller 410 measures the throughput of the communication with the UE 100 from the first switching (offload process) to the second switching (reoffload process). In other words, the controller 410 measures the throughput of the UE 100 when the UE 100 stays in the WLAN 30 .
  • the controller 410 may perform a statistical process on a throughput which is periodically measured.
  • the controller 410 measure the throughput in APN units.
  • the controller 410 measure the throughput in bearer units.
  • the controller 410 notifies the eNB 200 of the throughput information indicating the measured throughput.
  • the information indicating the throughput is not limited to a value of the throughput but may be an index value of the throughput.
  • the controller 410 may notify the eNB 200 of the throughput information via the MME/S-GW 300 .
  • FIG. 6 is a sequence diagram illustrating an operation according to the first embodiment.
  • the communication path is established between the UE 100 and the P-GW 400 .
  • one or more bearers are established between the UE 100 and the EPC 20 via the eNB 200 .
  • step S 101 the UE 100 performs the offload process from the eNB 200 to the AP 500 . Accordingly, the communication path between the UE 100 and the P-GW 400 is switched from the eNB 200 to the AP 500 . In the present sequence, the P-GW 400 detects the offload process via an MME 300 (step S 102 ).
  • step S 103 the P-GW 400 starts throughput measurement of the communication with the UE 100 .
  • the throughput measurement is performed in APN units or bearer units.
  • step S 104 the UE 100 performs the reoffload process from the AP 500 to the eNB 200 . Accordingly, the communication path between the UE 100 and the P-GW 400 is switched from the AP 500 to the eNB 200 . In the present sequence, the P-GW 400 detects the reoffload process via the MME 300 (step S 105 ).
  • step S 106 the P-GW 400 ends the throughput measurement of the communication with the UE 100 .
  • the P-GW 400 notifies the eNB 200 of the throughput information indicating the measured throughput via the MME 300 .
  • the P-GW 400 transmits the throughput information to the MME 300 .
  • the MME 300 transmits a first message (E-RAB Setup Request) including the throughput information to the eNB 200 .
  • the eNB 200 performs control for the UE 100 on the basis of the throughput information included in the first message. In detail, the eNB 200 performs control such that the UE 100 switches the communication path to the WLAN 30 when the throughput that can be provided from the eNB 200 to the UE 100 is lower than the throughput indicated by the throughput information.
  • the eNB 200 when the RRC Connection Request is received, the eNB 200 performs the first control of rejecting the RRC Connection Request. Alternatively, when the RRC connection with the UE 100 has already been established, the eNB 200 performs the second control of releasing the RRC connection.
  • the UE 100 performs control such that the communication path is switched in view of the throughput when the UE 100 stays in the WLAN 30 , whereby the deterioration of the service quality for the UE 100 can be suppressed.
  • step S 104 the UE 100 starts the reoffload process from the AP 500 to the eNB 200 .
  • the UE 100 transmits the message (NAS message) indicating that the communication path between the UE 100 and the P-GW 400 starts (is requested) to be switched from the AP 500 to the eNB 200 to the MME 300 .
  • the UE 100 may transmit the message (NAS message) indicating that the communication path between the UE 100 and the P-GW 400 starts (is requested) to be switched from the AP 500 to the eNB 200 to the MME 300 by temporarily setting the RRC connected state (the state in which the RRC connection with the eNB 200 is established).
  • step S 105 the P-GW 400 detects that the communication path between the UE 100 and the P-GW 400 starts to be switched from the AP 500 to the eNB 200 via the MME 300 .
  • step S 106 the P-GW 400 ends the throughput measurement of the communication with the UE 100 .
  • the P-GW 400 measures the throughput when the UE 100 stays in the WLAN 30 .
  • the UE 100 measures the throughput when the UE 100 stays in the WLAN 30 .
  • the controller 130 performs second switching (the reoffload process) of switching the communication path to the eNB 200 disposed in the E-UTRAN 10 .
  • the controller 130 measures the throughput of the communication with the EPC 20 (the P-GW 400 ) via the WLAN 30 and notifies the eNB 200 of the throughput information indicating the measured throughput.
  • the throughput may be a statistical value such as an average value.
  • the information indicating the throughput is not limited to the value of the throughput but may be an index value of the throughput.
  • the controller 130 when the first switching information (NAS message) is transmitted to the EPC 20 , the controller 130 starts measurement of the throughput.
  • the first switching information is information indicating that the communication path is switched from the E-UTRAN 10 to the WLAN 30 .
  • the controller 130 ends the measurement of the throughput when the second switching information (NAS message) is transmitted to the EPC 20 or when the radio environment of the WLAN 30 deteriorates.
  • the second switching information is information indicating that the communication path is switched from the WLAN 30 to the E-UTRAN 10 .
  • the radio environment of the WLAN 30 deteriorates, for example, when any one of the conditions (2c) to (2f) described above is satisfied or when all of the conditions (2c) to (2f) are satisfied.
  • the controller 130 measures the throughput in APN units.
  • the controller 130 measures the throughput in bearer (E-RAB) units.
  • the throughput information is included in the second message transmitted from the UE 100 to the eNB 200 .
  • the second message is a message (RRC Connection Request) for requesting the establishment of the RRC connection with the eNB 200 or a message (UE Assistance Information or RRC Connection Reconfiguration Complete) for changing the RRC configuration of the UE 100 .
  • the RRC Connection Request may be used as the second message. If the RRC connection of the UE 100 is maintained when the UE 100 stays in the WLAN 30 , the UE Assistance Information or the RRC Connection Reconfiguration Complete may be used as the second message.
  • FIG. 7 is a sequence diagram illustrating an operation according to the second embodiment.
  • the communication path is established between the UE 100 and the P-GW 400 .
  • one or more bearers are established between the UE 100 and the EPC 20 via the eNB 200 .
  • step S 201 the UE 100 performs the offload process from the eNB 200 to the AP 500 . Accordingly, the communication path between the UE 100 and the P-GW 400 is switched from the eNB 200 to the AP 500 .
  • step S 202 the UE 100 starts the throughput measurement of the communication performed via the AP 500 .
  • the throughput measurement is performed in APN units or bearer units.
  • step S 203 the UE 100 performs the reoffload process from the AP 500 to the eNB 200 . Accordingly, the communication path between the UE 100 and the P-GW 400 is switched from the AP 500 to the eNB 200 .
  • step S 204 the UE 100 ends the throughput measurement of the communication performed via the AP 500 .
  • the UE 100 includes the throughput information indicating the measured throughput in the second message and notifies the eNB 200 of the resulting second message.
  • the second message is the RRC Connection Request or the UE Assistance Information (or the RRC Connection Reconfiguration Complete).
  • the UE 100 notifies of the throughput information through the RRC Connection Request (step S 205 ).
  • the UE 100 notifies of the throughput information through the UE Assistance Information (or the RRC Connection Reconfiguration Complete) (step S 206 ).
  • the eNB 200 performs control for the UE 100 on the basis of the throughput information included in the second message. In detail, the eNB 200 performs control such that the UE 100 switches the communication path to the WLAN 30 when the throughput that can be provided from the eNB 200 to the UE 100 is lower than the throughput indicated by the throughput information (YES in step S 207 ).
  • This control is similar to that of the first embodiment.
  • the eNB 200 when the RRC Connection Request is received, the eNB 200 performs the first control of rejecting the RRC Connection Request.
  • the eNB 200 when the RRC connection with the UE 100 has already been established, the eNB 200 performs the second control of releasing the RRC connection (step S 208 ).
  • the eNB 200 performs the third control of changing the parameter (the determination parameter) used for determining whether or not the communication path is switched from the E-UTRAN 10 to the WLAN 50 .
  • the third control may be used in combination with the first control or the second control.
  • step S 203 the UE 100 starts the reoffload process from the AP 500 to the eNB 200 .
  • the UE 100 transmits the message (NAS message) indicating that the communication path between the UE 100 and the P-GW 400 starts (is requested) to be switched from the AP 500 to the eNB 200 to the MME 300 .
  • the UE 100 may transmit the message (NAS message) indicating that the communication path between the UE 100 and the P-GW 400 starts (is requested) to be switched from the AP 500 to the eNB 200 to the MME 300 by temporarily setting the RRC connected state (the state in which the RRC connection with the eNB 200 is established).
  • step S 204 the UE 100 stops the measurement of the throughput of the communication performed via the AP 500 using the transmission of the message in step S 203 as a trigger.
  • step S 205 the UE 100 transmits the RRC Connection Request to the eNB 200 and requests the establishment of the RRC connection.
  • Steps S 206 and S 207 are the same as in the operation described above.
  • step S 208 the eNB 200 rejects the RRC Connection Request transmitted from the UE 100 (that is, transmits the RRC Connection Reject). Or, when the UE 100 is in the RRC Connected state, the RRC Connection Release is transmitted in order to release the established RRC connection.
  • the first and second embodiments have been described under the assumption that a scheme of the mobile communication scheme is LTE. However, it may be a scheme other than LTE such as universal mobile telecommunications system (UMTS) or global system for mobile communications (GSM).
  • UMTS universal mobile telecommunications system
  • GSM global system for mobile communications
  • a program causing a computer to perform each process performed by any one of the UE 100 or the eNB 200 may be provided. Further, the program may be recorded on a computer readable medium. By using a computer-readable medium, it is possible to install the program in the computer.
  • the computer readable medium on which the program is recorded may be a non-transitory recording medium.
  • the non-transitory recording medium is not particularly limited but may be a recording medium such as a CD-ROM or a DVD-ROM.
  • a chip configured with a memory that stores a program of performing each process performed by any one of the UE 100 and the eNB 200 and a processor that executes a program stored in the memory may be provided.
  • the present invention is useful in communication fields.

Abstract

A network apparatus according to a first aspect includes a controller configured to measure a throughput of communication which is performed by a radio terminal via a wireless LAN. The controller is configured to give a notification of throughput information indicating the throughput, to a base station constituting a mobile communication network.

Description

TECHNICAL FIELD
The present invention relates to a core network apparatus, a radio terminal, and a base station used in a system in which a process of switching a communication path between a mobile communication network and a wireless LAN is performed.
BACKGROUND ART
In the past, a technique in which a radio terminal switches a communication path between a mobile communication network and a wireless LAN has been proposed (for example, see Non-Patent Literature 1). A communication path is established between a radio terminal and a core network, and switching in access point name (APN) units (or bearer units) can be performed.
The switching of the communication path is performed by network selection of selecting a network and traffic steering of routing traffic. In long term evolution (LTE), a mobile communication network is referred to as an evolved universal terrestrial radio access network (E-UTRAN), and a core network is referred to as an evolved packet core (EPC).
The radio terminal determines whether or not switching is performed on the basis of whether or not first information on a mobile communication network side satisfies a first condition and whether or not second information on a wireless LAN side satisfies a second condition. The first information is, for example, a measurement result (RSRPmeas) of a reference signal received power (RSRP) and a measurement result (RSRQmeas) of the reference signal received quality (RSRQ). The second information is, for example, a wireless LAN channel utilization value, a wireless LAN backhaul value, a received signal strength indicator (RSSI).
Determination parameters for determining whether or not the communication path between the mobile communication network and the wireless LAN is performed are notified from a base station provided in a mobile communication network to the radio terminal. As the determination parameters, there are individual parameters which are notified to the radio terminal and broadcast parameters which are broadcast to the radio terminal.
CITATION LIST Non Patent Literature
Non-Patent Literature 1: TS36.304 V12.1.0
SUMMARY OF INVENTION
A network apparatus according to a first aspect includes a controller configured to measure a throughput of communication which is performed by a radio terminal via a wireless LAN. The controller is configured to give a notification of throughput information indicating the throughput, to a base station constituting a mobile communication network.
A radio terminal according to a second aspect includes a controller configured to measure a throughput of communication performed via a wireless LAN. The controller is configured to give a notification of throughput information indicating the throughput, to a base station constituting a mobile communication network.
A base station according to a third aspect includes a controller configured to obtain throughput information from a network apparatus or a radio terminal. The throughput information is information indicating a throughput of communication performed by the radio terminal via a wireless LAN.
BRIEF DESCRIPTION OF DRAWINGS
FIG. 1 is a diagram illustrating a communication system according to first and second embodiments.
FIG. 2 is a diagram illustrating a switching process according to the first and second embodiments.
FIG. 3 is a block diagram illustrating a configuration of a UE (radio terminal) according to the first and second embodiments.
FIG. 4 is a block diagram illustrating a configuration of an eNB (base station) according to the first and second embodiments.
FIG. 5 is a block diagram illustrating a configuration of a P-GW (core network apparatus) according to the first and second embodiments.
FIG. 6 is a sequence diagram illustrating an operation according to the first embodiment.
FIG. 7 is a sequence diagram illustrating an operation according to the second embodiment.
DESCRIPTION OF EMBODIMENTS Overview of the Embodiment
A core network apparatus according to a first embodiment is provided in a core network in a system in which a process of switching a communication path between a mobile communication network and a wireless LAN is performed. The core network apparatus includes a controller configured to measure a throughput of communication which is performed by a radio terminal via a wireless LAN. The controller is configured to give a notification of throughput information indicating the measured throughput, to a base station constituting the mobile communication network.
In the first embodiment, the controller is configured to start measurement of the throughput in response to reception of first switching information reported from the radio terminal. The first switching information is information indicating that the radio terminal switches a communication path from the mobile communication network to the wireless LAN.
In the first embodiment, the controller is configured to end measurement of the throughput in response to reception of second switching information reported from the radio terminal. The second switching information is information indicating that the radio terminal switches the communication path from the wireless LAN to the mobile communication network.
In the first embodiment, the throughput information is information for determining whether or not the base station permits the radio terminal to switch the communication path from the wireless LAN to the mobile communication network.
In the first embodiment, when the radio terminal switches the communication path in APN units, the controller is configured to measure the throughput in APN units.
In the first embodiment, when the radio terminal switches the communication path in bearer units, the controller is configured to measure the throughput in bearer units.
A radio terminal according to a second embodiment performs a process of switching a communication path between a mobile communication network and a wireless LAN. The radio terminal includes a controller configured to measure a throughput of communication performed via a wireless LAN. The controller is configured to give a notification of throughput information indicating the throughput, to a base station constituting a mobile communication network.
In the second embodiment, the controller is configured to start measurement of the throughput when first switching information is transmitted. The first switching information is information indicating that the radio terminal switches the communication path from the mobile communication network to the wireless LAN.
In the second embodiment, the controller is configured to end measurement of the throughput when second switching information is transmitted or when a radio environment of the wireless LAN deteriorates. The second switching information is information indicating that the radio terminal switches the communication path from the wireless LAN to the mobile communication network.
In the second embodiment, the throughput information is information for determining whether or not the base station permits the radio terminal to switch the communication path from the wireless LAN to the mobile communication network.
In the second embodiment, when the radio terminal switches the communication path in APN units, the controller is configured to measure the throughput in APN units.
In the second embodiment, when the radio terminal switches the communication path in bearer units, the controller is configured to measure the throughput in bearer units.
In the second embodiment, the throughput information is included in a message transmitted from the radio terminal to the base station. The message is a message for requesting establishment of an RRC connection with the base station or a message for changing an RRC configuration of the radio terminal.
A base station according to first and second embodiments is provided in a mobile communication network in a system in which a process of switching a communication path between a mobile communication network and a wireless LAN is performed. The base station includes a controller configured to obtain throughput information from a network apparatus or a radio terminal. The throughput information is information indicating a throughput of communication performed by the radio terminal via a wireless LAN.
In the first and second embodiments, the controller is configured to determine whether or not the radio terminal is permitted to switch a communication path from the wireless LAN to the mobile communication network on the basis of the throughput information.
In the first and second embodiments, when a predicted throughput of the communication performed by the radio terminal via the base station is lower than the throughput indicated by the throughput information, the controller is configured not to permit the radio terminal to switch the communication path from the wireless LAN to the mobile communication network.
In the first embodiment, the throughput information is included in a first message transmitted from the network apparatus to the base station. The first message is a message for requesting establishment of one or more bearers between the radio terminal and the network apparatus via the base station.
In the second embodiment, the throughput information is included in a second message transmitted from the radio terminal to the base station. The second message is a message for requesting establishment of an RRC connection with the base station or a message for changing an RRC configuration of the radio terminal.
First Embodiment
(Configuration of Communication System)
A communication system according to a first embodiment will be described below. FIG. 1 is a diagram illustrating a communication system 1 according to the first embodiment. In the first embodiment, LTE is employed as a mobile communication scheme.
As illustrated in FIG. 1, the communication system 1 includes an E-UTRAN 10, an EPC 20, a wireless LAN (WLAN) 30, an external packet network 40, and a user equipment (UE) 100. The UE 100 corresponds to a radio terminal. In the first embodiment, the E-UTRAN 10 corresponds to the mobile communication network. Further, the EPC 20 corresponds to the core network.
The E-UTRAN 10 includes an evolved Node-B (eNB 200). In the first embodiment, the eNB 200 corresponds to the base station provided in the mobile communication network. The eNB 200 manages one or more cells. A cell may be regarded as a term indicating a geographical area or may be regarded as a function of performing radio communication with the UE 100. The eNBs 200 are connected to each other via an X 2 interface. A configuration of the eNB 200 will be described later.
The EPC 20 includes a mobility management entity (MME)/serving-gateway (S-GW) 300 and a packet data network gateway (P-GW) 400. The MME performs various kinds of mobility control such as location registration and handover of the UE 100. The S-GW performs control such that user data is relayed between the P-GW 400 and the eNB 200. The MME/S-GW 300 is connected to the eNB 200 via an S1 interface.
The P-GW 400 has a function as a connection point with the external packet network 40 and a function as a connection point with the WLAN 30. The P-GW 400 performs the allocation of an IP address to the UE 100, authentication at the time of establishing the bearer, and the like. Further, the P-GW 400 performs control such that user data is relayed from the external packet network 40 or to the external packet network 40. In the first embodiment, the P-GW 400 corresponds to a core network apparatus provided in the core network.
The external packet network 40 is disposed outside the EPC 20 and is a packet network such as the Internet and/or an operator service network.
The WLAN 30 includes an access point (AP) 500. The AP 500 is configured in conformity with, for example, an IEEE 802.11 standard. The AP 500 performs radio communication with the UE 100 at a frequency band different from a frequency band of LTE communication (for example, an unlicensed band).
The UE 100 is a terminal such as a mobile phone, a tablet, or a card type terminal. In addition to the function of performing radio communication with the eNB 200, the UE 100 has a function of performing radio communication with the AP 500. A configuration of the UE 100 will be described later.
(Overview of Switching Process)
A method in which the UE 100 performs a switching process (for example, network selection and traffic steering) for switching the communication path between the E-UTRAN 10 and the WLAN 50 will be described. FIG. 2 is a diagram illustrating the switching process according to the first embodiment.
As illustrated in FIG. 2, the eNB 200 provides a mobile communication service of LTE in its own coverage area. The coverage area of eNB 200 is configured with one or more cells. The AP 500 provides a wireless LAN service in its own coverage area. A part or all of the coverage area of the AP 500 overlaps the coverage area of the eNB 200.
The UE 100 in an RRC connected state or an RRC idle state performs the switching process to select one of the E-UTRAN 10 and the WLAN 50 as a radio access network in which transmission and reception of traffic are performed. In detail, when the state in which the first information on the E-UTRAN 10 side satisfies the first condition, and the second information on the WLAN 50 side satisfies the second condition is continued for a predetermined period, the switching process (for example, network selection and traffic steering) is performed.
A communication path in which transmission and reception of traffic are performed is established between the UE 100 and the P-GW 400. In the first embodiment, the switching process includes both a process in which the UE 100 switches the communication path from the E-UTRAN 10 to the WLAN 50 and a process in which the UE 100 switches the communication path from the WLAN 50 to the E-UTRAN 10. The switching of the communication path is performed in APN units. Alternatively, the switching of the communication path may be performed in bearer units.
Here, the first information on the E-UTRAN 10 side includes, for example, a measurement result (RSRPmeas) of a signal level of a received signal (reference signal received power (RSRP)) and a measurement result (RSRQmeas) of a signal quality of a received signal (reference signal received quality (RSRQ)).
The second information on the WLAN 50 side includes, for example, a channel utilization value of the WLAN 50 (ChannelUtilizationWLAN), a downlink backhaul value of the WLAN 50 (BackhaulRateDlWLAN), an uplink backhaul value of the WLAN 50 (BackhaulRateUlWLAN), and a signal level of a received signal (a received signal strength indicator (RSSI).
Switching Process from E-UTRAN 10 to WLAN 50
The first condition that the UE 100 switches the communication path from the E-UTRAN 10 to the WLAN 50 is, for example, that one of the following conditions (1a) or (1b) be satisfied. However, the first condition may be that both of the following conditions (1a) and (1b) be satisfied.
RSRPmeas<ThreshServingOffloadWLAN,LowP  (1a)
RSRQmeas<ThreshServingOffloadWLAN,LowQ  (1b)
“ThreshServingOffloadWLAN,LowP” and “ThreshServingOffloadWLAN,LowQ” are threshold values provided from the eNB 200 or predetermined threshold values.
The second condition that the UE 100 switches the communication path from the E-UTRAN 10 to the WLAN 50 is that, for example, all of the following conditions (1c) to (1f) be satisfied. However, the second condition may be that any one of the following conditions (1c) to (1f) be satisfied.
ChannelUtilizationWLAN<ThreshChUtilWLAN,Low  (1c)
BackhaulRateDlWLAN>ThreshBackhRateDLWLAN,High  (1d)
BackhaulRateUlWLAN>ThreshBackhRateULWLAN,High  (1e)
RSSI>ThreshBEACONRSSI,High  (1f)
“ThreshChUtilWLAN,Low,” “ThreshBackhRateDLWLAN,High,” “ThreshBackhRateULWLAN,High,” and “ThreshBEACONRSSI,High” are threshold values provided from the eNB 200 or predetermined threshold values.
Switching Process from WLAN 50 to E-UTRAN 10
The first condition that the UE 100 switches the communication path from the WLAN 50 to the E-UTRAN 10 is that, for example, the following conditions (2a) and (2b) be satisfied. However, the first condition may be that either of the following conditions (2a) or (2b) be satisfied.
RSRPmeas>ThreshServingOffloadWLAN,HighP  (2a)
RSRQmeas>ThreshServingOffloadWLAN,HighQ  (2b)
“ThreshServingOffloadWLAN,HighP” and “ThreshServingOffloadWLAN,HighQ” are threshold values provided from the eNB 200 or predetermined threshold values.
The second condition that the UE 100 switches the communication path from the WLAN 50 to the E-UTRAN 10 is, for example, that one of the following conditions (2c) to (2f) be satisfied. However, the second condition may be that all of the following conditions (2c) to (2f) be satisfied.
ChannelUtilizationWLAN>ThreshChUtilWLAN,High  (2c)
BackhaulRateDlWLAN<ThreshBackhRateDLWLAN,Low  (2d)
BackhaulRateUlWLAN<ThreshBackhRateULWLAN,Low  (2e)
RSSI<ThreshBEACONRSSI,Low  (2f)
“ThreshChUtilWLAN,High,” “ThreshBackhRateDLWLAN,Low,” “ThreshBackhRateULWLAN,Low,” and “ThreshBEACONRSSI,Low” are threshold values provided from the eNB 200 or predetermined threshold values.
When the above-described threshold values are not provided, the UE 100 may omit acquisition (that is, reception or measurement) of information whose threshold value is not provided.
In the first embodiment, the various threshold values described above are examples of the determination parameters (for example, RAN assistance parameters) for determining whether or not the UE 100 performs the switching process of switching the communication path between the E-UTRAN 10 and the WLAN 50. In other words, the determination parameters include one or more values selected from “ThreshServingOffloadWLAN,LowP,” “ThreshServingOffloadWLAN,LowQ,” “ThreshChUtilWLAN,Low,” “ThreshBackhRateDLWLAN,High,” “ThreshBackhRateULWLAN,High,” “ThreshBEACONRSSI,High,” “ThreshServingOffloadWLAN,HighP,” “ThreshServingOffloadWLAN,HighQ,” “ThreshChUtilWLAN,High,” “ThreshBackhRateDLWLAN,Low,” “ThreshBackhRateULWLAN,Low,” and “ThreshBEACONRSSI,Low.”
Further, the determination parameters may include a predetermined period (TsteeringWLAN) in which the state in which the first condition or the second condition is satisfied is continued.
The determination parameters include individual parameters which are individually notified from the eNB 200 to the UE 100 and the broadcast parameters which are broadcast from the eNB 200 to the UE 100. The individual parameters are included in, for example, an RRC message (for example, RRC Connection Reconfiguration) which is transmitted from the eNB 200 to the UE 100. The broadcast parameters are included in, for example, an SIB (for example, WLAN-OffloadConfig-r12) which is broadcast from the eNB 200. It should be noted that, when the individual parameters are received in addition to the broadcast parameters, the UE 100 applies the individual parameters more preferentially than the broadcast parameters.
(Configuration of Radio Terminal)
A configuration of the UE 100 (the radio terminal) according to the first embodiment will be described below. FIG. 3 is a block diagram illustrating a configuration of the UE 100 according to the first embodiment.
As illustrated in FIG. 3, the UE 100 includes an LTE radio communication unit 110, a WLAN radio communication unit 120, and a controller 130.
The LTE radio communication unit 110 has a function of performing radio communication with the eNB 200 and is configured with, for example, a radio transceiver. For example, the LTE radio communication unit 110 periodically receives the reference signal from the eNB 200. The LTE radio communication unit 110 periodically measures the signal level of the reference signal (RSRP) and the signal quality of the reference signal (RSRQ). The LTE radio communication unit 110 receives the individual parameters and the broadcast parameters from the eNB 200 as the determination parameters.
The WLAN radio communication unit 120 has a function of performing radio communication with the AP 500 and is configured with, for example, a radio transceiver. For example, the WLAN radio communication unit 120 receives a beacon or probe response from the AP 500. The beacon or probe response includes a BBS load information element, and the channel utilization value (ChannelUtilizationWLAN) of the WLAN 50 can be acquired from the BBS load information element.
The WLAN radio communication unit 120 receives a response (a generic advertisement service (GAS) response) which is transmitted from the AP 500 in response to a request (GAS request) with respect to the AP 500. The response (GAS response) includes the downlink backhaul value (BackhaulRateDlWLAN) of the WLAN 50 and the uplink backhaul value (BackhaulRateUlWLAN) of the WLAN 50. Such a query procedure is performed in accordance with an access network query protocol (ANQP) specified in Hotspot 2.0 of Wi-Fi alliance (WFA).
The WLAN radio communication unit 120 receives a signal from the AP 500. The WLAN radio communication unit 120 measures the signal level of the received signal (RSSI). The signal level of the received signal (RSSI) is the signal strength of the beacon or probe response.
The controller 130 is configured with a CPU (processor), a memory, and the like, and controls the UE 100. In detail, the controller 130 controls the LTE radio communication unit 110 and the WLAN radio communication unit 120. When the state in which the first information on the E-UTRAN 10 side satisfies the first condition, and the second information on the WLAN 50 side satisfies the second condition is continued for a predetermined period, the controller 130 performs the switching process for switching the communication path between the E-UTRAN 10 and the WLAN 50.
(Configuration of Base Station)
A configuration of the eNB 200 (the base station) according to the first embodiment will be described below. FIG. 4 is a block diagram illustrating a configuration of the eNB 200 according to the first embodiment.
As illustrated in FIG. 4, the eNB 200 includes an LTE radio communication unit 210, a controller 220, and a network communication unit 230.
The LTE radio communication unit 210 has a function of performing radio communication with the UE 100. For example, the LTE radio communication unit 210 periodically transmits the reference signal to the UE 100. The LTE radio communication unit 210 is configured with, for example, a radio transceiver.
The LTE radio communication unit 210 transmits the individual parameters and the broadcast parameters to the UE 100 as the determination parameters. As described above, the LTE radio communication unit 210 notifies the UE 100 of the individual parameters through the RRC message (for example, RRC Connection Reconfiguration), and notifies the UE 100 of the broadcast parameters through the SIB (for example, WLAN-OffloadConfig-r12).
The controller 220 is configured with a CPU (processor), a memory, and the like, and controls the eNB 200. In detail, the controller 220 controls the LTE radio communication unit 210 and the network communication unit 230. The memory constituting the controller 220 may function as a storage unit, or a memory constituting a storage unit may be provided separately from a memory constituting the controller 220.
The network communication unit 230 is connected to a neighbor base station via the X2 interface and is connected to the MME/S-GW via the S1 interface. The network communication unit 230 is used for communication performed on the X2 interface and communication performed on the S1 interface.
In the eNB 200 having the above configuration, the controller 220 acquires throughput information from the EPC 20 or the UE 100. The throughput information is information indicating the throughput of communication which the UE 100 performs with the EPC 20 via the WLAN 30. In other words, the throughput information is information indicating the throughput of the UE 100 when the UE 100 stays in the WLAN 30. The throughput may be a statistical value such as an average value. The information indicating the throughput is not limited to the value of the throughput but may be an index value of the throughput.
In the first embodiment, the throughput information is included in a first message transmitted from the EPC 20 to the eNB 200. The first message is a message (E-RAB Setup Request) for requesting establishment of one or more bearers (E-RABs) between the UE 100 and the EPC 20 via the eNB 200. The E-RAB is configured with the S1 bearer between the eNB 200 and the S-GW 300 and the radio bearer between the eNB 200 and the UE 100.
The controller 220 controls the UE 100 on the basis of the throughput information included in the first message. The controller 220 determines whether or not the UE 100 is permitted to switch the communication path from the WLAN 30 to the E-UTRAN 10.
In the first embodiment, when the throughput which can be provided from the eNB 200 to the UE 100 is lower than the throughput indicated by the throughput information, the controller 220 determines that the UE 100 is denied to switch the communication path from the WLAN 30 to the E-UTRAN 10. Then, the controller 220 may perform control such that the UE 100 switches the communication path to the WLAN 30. The controller 220 may perform the control when a condition that the difference between the throughput which can be provided from the eNB 200 to the UE 100 and the throughput indicated by the throughput information is a predetermined value or more is satisfied in addition to this condition.
Here, the throughput which can be provided from the eNB 200 to the UE 100 may be a predicted logical throughput or a measured throughput. The logical throughput can be predicted in accordance with, for example, a modulation coding scheme (MCS) corresponding to a channel state with the UE 100 and an amount of radio resources (resource blocks (RBs)) that can be allocated to the UE 100.
The control for causing the UE 100 to switch the communication path to the WLAN 30 includes first to third controls. The first control is control of rejecting, when an establishment request for an RRC connection is received from the UE 100, the establishment request. The second control is control of releasing the RRC connection when the RRC connection with the UE 100 has already been established. The third control is control of changing a parameter (a determination parameter) used for determining whether or not the communication path is switched from the EUTRAN 10 to the WLAN 50 and notifies the UE 100 of the changed parameter. The third control may be used in combination with the first control or the second control. It is desirable that the parameter to be changed is an individual parameter which is individually notified to the UE 100.
In the third control, the controller 220 performs a setting of increasing the threshold value related to the first information on the E-UTRAN 10 side. Alternatively, the threshold value related to the second information on the WLAN 50 side is set to be low. In other words, the determination parameter is set so that the offload process to the WLAN 50 is easily performed. Alternatively, the controller 220 optimizes a timer (Tsteering WLAN Timer) indicating a predetermined period (TsteeringWLAN). The timer is a timer that measures a minimum time (TsteeringWLAN) in which the state in which the first information satisfies the first condition or the state in which the second information satisfies the second condition should be continued in order to perform the offload process or the reoffload process. For example, the eNB 200 sets the timer to have a value shorter than a currently set value.
(Configuration of Core Network Apparatus)
A configuration of the P-GW 400 (the core network apparatus) according to the first embodiment will be described below. FIG. 5 is a block diagram illustrating a configuration of the P-GW 400 according to the first embodiment.
As illustrated in FIG. 5, the P-GW 400 includes a controller 410 and a network communication unit 420.
The controller 410 is configured with a CPU (processor), a memory, and the like, and controls the P-GW 400. In detail, the controller 410 controls the network communication unit 420. The memory constituting the controller 410 may function as a storage unit, or a memory constituting the storage unit may be provided separately from the memory constituting the controller 410.
The network communication unit 420 is connected to the MME/S-GW 300, the AP 500, and the external packet network 40. The network communication unit 420 is used for communication with the MME/S-GW 300, the AP 500, and the external packet network 40. Further, the network communication unit 420 may be connected to the eNB 200 via a predetermined interface.
In the P-GW 400 having the above configuration, the controller 410 detects that the UE 100 having the communication path with the EPC 20 via the E-UTRAN 10 switches the communication path from the eNB 200 to the WLAN 50 (that is, the offload process). For example, the controller 410 detects the offload process on the basis of the flow of the user data of the UE 100. Alternatively, the controller 410 may detect the offload process on the basis of a notification given from the UE 100 or the MME/S-GW 300.
Further, the controller 410 detects that the UE 100 has switched the communication path from the WLAN 50 to the E-UTRAN 10 (that is, the reoffload process). For example, the controller 410 detects the reoffload process on the basis of the user data flow of the UE 100. Alternatively, the controller 410 may detect the reoffload processing on the basis of the notification from the notification from the UE 100 or the MME/S-GW 300.
In response to reception of the first switching information (NAS message) reported from the UE 100 to the EPC 20, the controller 410 starts measurement of the throughput. The first switching information is information indicating that the communication path is switched from the E-UTRAN 10 to the WLAN 30.
Further, in response to reception of the second switching information (NAS message) reported from the UE 100 to the EPC 20, the controller 410 ends the measurement of the throughput. The second switching information is information indicating that the communication path is switched from the WLAN 30 to the E-UTRAN 10.
As described above, the controller 410 measures the throughput of the communication with the UE 100 from the first switching (offload process) to the second switching (reoffload process). In other words, the controller 410 measures the throughput of the UE 100 when the UE 100 stays in the WLAN 30. The controller 410 may perform a statistical process on a throughput which is periodically measured.
When the UE 100 switches the communication path in APN units, it is desirable that the controller 410 measure the throughput in APN units. When the UE 100 switches the communication path in bearer units, it is desirable that the controller 410 measure the throughput in bearer units.
The controller 410 notifies the eNB 200 of the throughput information indicating the measured throughput. The information indicating the throughput is not limited to a value of the throughput but may be an index value of the throughput. The controller 410 may notify the eNB 200 of the throughput information via the MME/S-GW 300.
Operation Sequence According to the First Embodiment
The operation sequence according to the first embodiment will be described below. FIG. 6 is a sequence diagram illustrating an operation according to the first embodiment. In an initial state of the present sequence, the communication path is established between the UE 100 and the P-GW 400. Specifically, one or more bearers (E-RABs) are established between the UE 100 and the EPC 20 via the eNB 200.
As illustrated in FIG. 6, in step S101, the UE 100 performs the offload process from the eNB 200 to the AP 500. Accordingly, the communication path between the UE 100 and the P-GW 400 is switched from the eNB 200 to the AP 500. In the present sequence, the P-GW 400 detects the offload process via an MME 300 (step S102).
In step S103, the P-GW 400 starts throughput measurement of the communication with the UE 100. As described above, the throughput measurement is performed in APN units or bearer units.
In step S104, the UE 100 performs the reoffload process from the AP 500 to the eNB 200. Accordingly, the communication path between the UE 100 and the P-GW 400 is switched from the AP 500 to the eNB 200. In the present sequence, the P-GW 400 detects the reoffload process via the MME 300 (step S105).
In step S106, the P-GW 400 ends the throughput measurement of the communication with the UE 100.
In steps S107 and S108, the P-GW 400 notifies the eNB 200 of the throughput information indicating the measured throughput via the MME 300. In detail, in step S107, the P-GW 400 transmits the throughput information to the MME 300. In step S108, the MME 300 transmits a first message (E-RAB Setup Request) including the throughput information to the eNB 200.
The eNB 200 performs control for the UE 100 on the basis of the throughput information included in the first message. In detail, the eNB 200 performs control such that the UE 100 switches the communication path to the WLAN 30 when the throughput that can be provided from the eNB 200 to the UE 100 is lower than the throughput indicated by the throughput information.
Specifically, when the RRC Connection Request is received, the eNB 200 performs the first control of rejecting the RRC Connection Request. Alternatively, when the RRC connection with the UE 100 has already been established, the eNB 200 performs the second control of releasing the RRC connection.
As described above, the UE 100 performs control such that the communication path is switched in view of the throughput when the UE 100 stays in the WLAN 30, whereby the deterioration of the service quality for the UE 100 can be suppressed.
The above-described operation will be described below in detail.
In step S104, the UE 100 starts the reoffload process from the AP 500 to the eNB 200. In other words, the UE 100 transmits the message (NAS message) indicating that the communication path between the UE 100 and the P-GW 400 starts (is requested) to be switched from the AP 500 to the eNB 200 to the MME 300. At this time, the UE 100 may transmit the message (NAS message) indicating that the communication path between the UE 100 and the P-GW 400 starts (is requested) to be switched from the AP 500 to the eNB 200 to the MME 300 by temporarily setting the RRC connected state (the state in which the RRC connection with the eNB 200 is established).
In step S105, the P-GW 400 detects that the communication path between the UE 100 and the P-GW 400 starts to be switched from the AP 500 to the eNB 200 via the MME 300.
In step S106, the P-GW 400 ends the throughput measurement of the communication with the UE 100.
Second Embodiment
Next, a second embodiment will be mainly described in connection with a difference from the first embodiment.
In the first embodiment, the P-GW 400 measures the throughput when the UE 100 stays in the WLAN 30. On the other hand, in the second embodiment, the UE 100 measures the throughput when the UE 100 stays in the WLAN 30.
In detail, in the UE 100, after first switching (the offload process) of switching the communication path from the E-UTRAN 10 to the WLAN 30 is performed, the controller 130 performs second switching (the reoffload process) of switching the communication path to the eNB 200 disposed in the E-UTRAN 10. The controller 130 measures the throughput of the communication with the EPC 20 (the P-GW 400) via the WLAN 30 and notifies the eNB 200 of the throughput information indicating the measured throughput. The throughput may be a statistical value such as an average value. The information indicating the throughput is not limited to the value of the throughput but may be an index value of the throughput.
In the second embodiment, when the first switching information (NAS message) is transmitted to the EPC 20, the controller 130 starts measurement of the throughput. The first switching information is information indicating that the communication path is switched from the E-UTRAN 10 to the WLAN 30.
Further, the controller 130 ends the measurement of the throughput when the second switching information (NAS message) is transmitted to the EPC 20 or when the radio environment of the WLAN 30 deteriorates. The second switching information is information indicating that the communication path is switched from the WLAN 30 to the E-UTRAN 10. The radio environment of the WLAN 30 deteriorates, for example, when any one of the conditions (2c) to (2f) described above is satisfied or when all of the conditions (2c) to (2f) are satisfied.
When the UE 100 switches the communication path in APN units, it is desirable that the controller 130 measures the throughput in APN units. When the UE 100 switches the communication path in bearer (E-RAB) units, it is desirable that the controller 130 measures the throughput in bearer (E-RAB) units.
In the second embodiment, the throughput information is included in the second message transmitted from the UE 100 to the eNB 200. The second message is a message (RRC Connection Request) for requesting the establishment of the RRC connection with the eNB 200 or a message (UE Assistance Information or RRC Connection Reconfiguration Complete) for changing the RRC configuration of the UE 100.
In detail, if the RRC connection of the UE 100 is released when the UE 100 stays in the WLAN 30, the RRC Connection Request may be used as the second message. If the RRC connection of the UE 100 is maintained when the UE 100 stays in the WLAN 30, the UE Assistance Information or the RRC Connection Reconfiguration Complete may be used as the second message.
An operation sequence according to the second embodiment will be described below. FIG. 7 is a sequence diagram illustrating an operation according to the second embodiment. In the initial state of the present sequence, the communication path is established between the UE 100 and the P-GW 400. In detail, one or more bearers (E-RABs) are established between the UE 100 and the EPC 20 via the eNB 200.
As illustrated in FIG. 7, in step S201, the UE 100 performs the offload process from the eNB 200 to the AP 500. Accordingly, the communication path between the UE 100 and the P-GW 400 is switched from the eNB 200 to the AP 500.
In step S202, the UE 100 starts the throughput measurement of the communication performed via the AP 500. As described above, the throughput measurement is performed in APN units or bearer units.
In step S203, the UE 100 performs the reoffload process from the AP 500 to the eNB 200. Accordingly, the communication path between the UE 100 and the P-GW 400 is switched from the AP 500 to the eNB 200.
In step S204, the UE 100 ends the throughput measurement of the communication performed via the AP 500.
In step S205 or S206, the UE 100 includes the throughput information indicating the measured throughput in the second message and notifies the eNB 200 of the resulting second message. Here, the second message is the RRC Connection Request or the UE Assistance Information (or the RRC Connection Reconfiguration Complete). In detail, when the RRC connection of the UE 100 is released, the UE 100 notifies of the throughput information through the RRC Connection Request (step S205). When the RRC connection of the UE 100 is maintained, the UE 100 notifies of the throughput information through the UE Assistance Information (or the RRC Connection Reconfiguration Complete) (step S206).
The eNB 200 performs control for the UE 100 on the basis of the throughput information included in the second message. In detail, the eNB 200 performs control such that the UE 100 switches the communication path to the WLAN 30 when the throughput that can be provided from the eNB 200 to the UE 100 is lower than the throughput indicated by the throughput information (YES in step S207).
This control is similar to that of the first embodiment. In detail, when the RRC Connection Request is received, the eNB 200 performs the first control of rejecting the RRC Connection Request. Alternatively, when the RRC connection with the UE 100 has already been established, the eNB 200 performs the second control of releasing the RRC connection (step S208). Alternatively, the eNB 200 performs the third control of changing the parameter (the determination parameter) used for determining whether or not the communication path is switched from the E-UTRAN 10 to the WLAN 50. The third control may be used in combination with the first control or the second control.
The above-described operation will be described below in detail.
In step S203, the UE 100 starts the reoffload process from the AP 500 to the eNB 200. In other words, the UE 100 transmits the message (NAS message) indicating that the communication path between the UE 100 and the P-GW 400 starts (is requested) to be switched from the AP 500 to the eNB 200 to the MME 300. At this time, the UE 100 may transmit the message (NAS message) indicating that the communication path between the UE 100 and the P-GW 400 starts (is requested) to be switched from the AP 500 to the eNB 200 to the MME 300 by temporarily setting the RRC connected state (the state in which the RRC connection with the eNB 200 is established).
In step S204, the UE 100 stops the measurement of the throughput of the communication performed via the AP 500 using the transmission of the message in step S203 as a trigger.
In step S205, the UE 100 transmits the RRC Connection Request to the eNB 200 and requests the establishment of the RRC connection.
Steps S206 and S207 are the same as in the operation described above.
When the throughput of the WLAN is determined to be larger than the throughput of the LTE in step S207, in step S208, the eNB 200 rejects the RRC Connection Request transmitted from the UE 100 (that is, transmits the RRC Connection Reject). Or, when the UE 100 is in the RRC Connected state, the RRC Connection Release is transmitted in order to release the established RRC connection.
Other Embodiments
The first and second embodiments have been described under the assumption that a scheme of the mobile communication scheme is LTE. However, it may be a scheme other than LTE such as universal mobile telecommunications system (UMTS) or global system for mobile communications (GSM).
Although not specifically mentioned in the first and second embodiments, a program causing a computer to perform each process performed by any one of the UE 100 or the eNB 200 may be provided. Further, the program may be recorded on a computer readable medium. By using a computer-readable medium, it is possible to install the program in the computer. Here, the computer readable medium on which the program is recorded may be a non-transitory recording medium. The non-transitory recording medium is not particularly limited but may be a recording medium such as a CD-ROM or a DVD-ROM.
Alternatively, a chip configured with a memory that stores a program of performing each process performed by any one of the UE 100 and the eNB 200 and a processor that executes a program stored in the memory may be provided.
This application claims the benefit of Japanese Patent Application No. 2014-227576 filed Nov. 7, 2014, the entire contents of which are incorporated herein by reference.
INDUSTRIAL APPLICABILITY
The present invention is useful in communication fields.

Claims (8)

The invention claimed is:
1. A radio terminal, comprising:
a controller configured to measure a throughput of communication performed via a wireless LAN, wherein
the controller is configured to give a notification of throughput information indicating the throughput, to a base station constituting a mobile communication network,
the throughput information is information for determining whether or not the base station permits the radio terminal to switch the communication path from the wireless LAN to the mobile communication network, and
the throughput information is included in a message transmitted from the radio terminal to the base station for requesting establishment of an RRC connection with the base station.
2. The radio terminal according to claim 1, wherein
the controller is configured to start measurement of the throughput when first switching information is transmitted, and
the first switching information is information indicating that the radio terminal switches the communication path from the mobile communication network to the wireless LAN.
3. The radio terminal according to claim 1, wherein
the controller is configured to end measurement of the throughput when second switching information is transmitted or when a radio environment of the wireless LAN deteriorates, and
the second switching information is information indicating that the radio terminal switches the communication path from the wireless LAN to the mobile communication network.
4. The radio terminal according to claim 1, wherein
when the radio terminal switches the communication path in APN units, the controller is configured to measure the throughput in APN units.
5. The radio terminal according to claim 1, wherein
when the radio terminal switches the communication path in bearer units, the controller is configured to measure the throughput in bearer units.
6. A base station, comprising:
a controller configured to obtain throughput information from a network apparatus or a radio terminal, wherein
the throughput information is information indicating a throughput of communication performed by the radio terminal via a wireless LAN,
the throughput information is information for determining whether or not the base station permits the radio terminal to switch the communication path from the wireless LAN to the mobile communication network, and
the throughput information is included in a message transmitted from the radio terminal to the base station for requesting establishment of an RRC connection with the base station.
7. The base station according to claim 6, wherein
the controller is configured to determine whether or not the radio terminal is permitted to switch a communication path from the wireless LAN to the mobile communication network on the basis of the throughput information.
8. The base station according to claim 7, wherein
when a predicted throughput of the communication performed by the radio terminal via the base station is lower than the throughput indicated by the throughput information, the controller is configured not to permit the radio terminal to switch the communication path from the wireless LAN to the mobile communication network.
US15/523,814 2014-11-07 2015-11-05 Core network apparatus, radio terminal, and base station Active 2035-11-08 US10484924B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014227576 2014-11-07
JP2014-227576 2014-11-07
PCT/JP2015/081212 WO2016072467A1 (en) 2014-11-07 2015-11-05 Trunk network device, wireless terminal, and base station

Publications (2)

Publication Number Publication Date
US20170325151A1 US20170325151A1 (en) 2017-11-09
US10484924B2 true US10484924B2 (en) 2019-11-19

Family

ID=55909191

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/523,814 Active 2035-11-08 US10484924B2 (en) 2014-11-07 2015-11-05 Core network apparatus, radio terminal, and base station

Country Status (4)

Country Link
US (1) US10484924B2 (en)
EP (1) EP3217722A4 (en)
JP (1) JP6870987B2 (en)
WO (1) WO2016072467A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6589505B2 (en) * 2015-09-24 2019-10-16 ヤマハ株式会社 Router
WO2018058463A1 (en) * 2016-09-29 2018-04-05 Nokia Technologies Oy Adaptive media service

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060068777A1 (en) * 2004-06-30 2006-03-30 Sadowsky John S Air interface cooperation between WWAN and WLAN
JP2014022847A (en) 2012-07-13 2014-02-03 Sumitomo Electric Ind Ltd Radio base station device, radio terminal device, radio communication device, communication control method, and communication control program
US20140038625A1 (en) * 2012-08-03 2014-02-06 Qualcomm Incorporated Methods and apparatus for transmitting clear to send (cts)-to-self indication
US20140045541A1 (en) * 2012-08-08 2014-02-13 Golba Llc Method and system for distributed transceivers and mobile device connectivity
JP2014127944A (en) 2012-12-27 2014-07-07 Kddi Corp Mobile terminal, communication program and communication system
WO2014162905A1 (en) 2013-04-05 2014-10-09 京セラ株式会社 Network selection control method and user terminal
US20140334465A1 (en) * 2013-05-08 2014-11-13 Lg Electronics Inc. Method and apparatus for paging based on location information of a user equipment in a convergence network of a plurality of communication systems
US20140355536A1 (en) * 2013-06-04 2014-12-04 Alcatel Lucent System and method providing fixed mobile convergence via bonded services
US20150109940A1 (en) * 2013-10-17 2015-04-23 Verizon Patent And Licensing Inc. Dynamic load balancing based on network performance
US20150189468A1 (en) * 2012-06-19 2015-07-02 Lg Electronics Inc. Location update method for terminal supporting multiple radio access technologies
US20150208311A1 (en) * 2012-07-26 2015-07-23 Lg Electronics Inc. Method of supporting communication using two or more radio access technologies and apparatus for same
US20150215832A1 (en) * 2014-01-28 2015-07-30 Openet Telecom Ltd. System and Method for Performing Network Selection
US20150245358A1 (en) * 2014-02-21 2015-08-27 Telefonaktiebolaget L M Ericsson (Publ) WLAN Throughput Prediction
US20150312831A1 (en) * 2014-04-23 2015-10-29 Mediatek Singapore Pte. Ltd. Dynamic Algorithms for WLAN-Cellular Performance Estimation, Access Selection, and Traffic Offload
WO2015178138A1 (en) 2014-05-19 2015-11-26 株式会社Nttドコモ Radio communication system, first access node, second access node, and communication control method
US20150358909A1 (en) * 2013-01-28 2015-12-10 Lg Electronics Inc. Method and apparatus for supporting state mode transition or performing state mode transition in plural communication system convergence networks
US20160007247A1 (en) * 2013-03-10 2016-01-07 Lg Electronics Inc. Method for performing channel switch in network converging plurality of communication systems and apparatus for same
US20160044526A1 (en) * 2014-08-08 2016-02-11 Sprint Spectrum Lp Systems and methods for scheduling transmissions from an access node
US20160073287A1 (en) * 2013-05-16 2016-03-10 Alexander Sirotkin Network selection in a heterogeneous network
US20160080958A1 (en) * 2013-04-24 2016-03-17 Nokia Technologies Oy Logged measurements
US20160286470A1 (en) * 2013-11-15 2016-09-29 Lg Electronics Inc. Method for transmitting and receiving signal in communication environment in which multiple communication systems interwork, and apparatus therefor
US20160295473A1 (en) * 2013-03-21 2016-10-06 Lg Electronics Inc. Method for switching data between plurality of communications systems and apparatus therefor
US20170006475A1 (en) * 2014-01-24 2017-01-05 Zte Corporation Method and Device for Configuring Cognitive Radio System Spectrum Resources
US20180176974A1 (en) * 2014-03-20 2018-06-21 Kyocera Corporation Master base station, mobile station, and communication control method

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060068777A1 (en) * 2004-06-30 2006-03-30 Sadowsky John S Air interface cooperation between WWAN and WLAN
US20150189468A1 (en) * 2012-06-19 2015-07-02 Lg Electronics Inc. Location update method for terminal supporting multiple radio access technologies
JP2014022847A (en) 2012-07-13 2014-02-03 Sumitomo Electric Ind Ltd Radio base station device, radio terminal device, radio communication device, communication control method, and communication control program
US20150208311A1 (en) * 2012-07-26 2015-07-23 Lg Electronics Inc. Method of supporting communication using two or more radio access technologies and apparatus for same
US20140038625A1 (en) * 2012-08-03 2014-02-06 Qualcomm Incorporated Methods and apparatus for transmitting clear to send (cts)-to-self indication
US20140045541A1 (en) * 2012-08-08 2014-02-13 Golba Llc Method and system for distributed transceivers and mobile device connectivity
JP2014127944A (en) 2012-12-27 2014-07-07 Kddi Corp Mobile terminal, communication program and communication system
US20150358909A1 (en) * 2013-01-28 2015-12-10 Lg Electronics Inc. Method and apparatus for supporting state mode transition or performing state mode transition in plural communication system convergence networks
US20160007247A1 (en) * 2013-03-10 2016-01-07 Lg Electronics Inc. Method for performing channel switch in network converging plurality of communication systems and apparatus for same
US20160295473A1 (en) * 2013-03-21 2016-10-06 Lg Electronics Inc. Method for switching data between plurality of communications systems and apparatus therefor
US20160337960A1 (en) 2013-04-05 2016-11-17 Kyocera Corporation Network selection control method and user terminal
WO2014162905A1 (en) 2013-04-05 2014-10-09 京セラ株式会社 Network selection control method and user terminal
US20160080958A1 (en) * 2013-04-24 2016-03-17 Nokia Technologies Oy Logged measurements
US20140334465A1 (en) * 2013-05-08 2014-11-13 Lg Electronics Inc. Method and apparatus for paging based on location information of a user equipment in a convergence network of a plurality of communication systems
US20160073287A1 (en) * 2013-05-16 2016-03-10 Alexander Sirotkin Network selection in a heterogeneous network
US20140355536A1 (en) * 2013-06-04 2014-12-04 Alcatel Lucent System and method providing fixed mobile convergence via bonded services
US20150109940A1 (en) * 2013-10-17 2015-04-23 Verizon Patent And Licensing Inc. Dynamic load balancing based on network performance
US20160286470A1 (en) * 2013-11-15 2016-09-29 Lg Electronics Inc. Method for transmitting and receiving signal in communication environment in which multiple communication systems interwork, and apparatus therefor
US20170006475A1 (en) * 2014-01-24 2017-01-05 Zte Corporation Method and Device for Configuring Cognitive Radio System Spectrum Resources
US20150215832A1 (en) * 2014-01-28 2015-07-30 Openet Telecom Ltd. System and Method for Performing Network Selection
US20150245358A1 (en) * 2014-02-21 2015-08-27 Telefonaktiebolaget L M Ericsson (Publ) WLAN Throughput Prediction
US20180176974A1 (en) * 2014-03-20 2018-06-21 Kyocera Corporation Master base station, mobile station, and communication control method
US20150312831A1 (en) * 2014-04-23 2015-10-29 Mediatek Singapore Pte. Ltd. Dynamic Algorithms for WLAN-Cellular Performance Estimation, Access Selection, and Traffic Offload
WO2015178138A1 (en) 2014-05-19 2015-11-26 株式会社Nttドコモ Radio communication system, first access node, second access node, and communication control method
US20160044526A1 (en) * 2014-08-08 2016-02-11 Sprint Spectrum Lp Systems and methods for scheduling transmissions from an access node

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) procedures in idle mode (Release 12); 3GPP TS 36.304 V12.1.0; Jun. 2014; pp. 1-35; 3GPP Organizational Partners.
3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Study on Wireless Local Area Network (WLAN)-3GPP radio interworking (Release 12); 3GPP TR 37.834 V12.0.0; Dec. 2013; pp. 1-5; 3GPP Organizational Partners.
3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Study on Wireless Local Area Network (WLAN)—3GPP radio interworking (Release 12); 3GPP TR 37.834 V12.0.0; Dec. 2013; pp. 1-5; 3GPP Organizational Partners.
CATT; "Traffic Steering of Solutions without ANDSF"; 3GPP TSG RAN WG2 Meeting #84; R2-133892; Nov. 11-15, 2013; pp. 1-3; San Francisco, USA.
Huawei, China Unicorn; Monitoring UE throughput in WLAN after offloading; 3GPP TSG-RAN3 Meeting #85bis; R3-142210; Oct. 6-10, 2014; Shanghai, China.
International Search Report issued in PCT/JP2015/081212; dated Jan. 26, 2016.
NSN, Nokia; Discussion on LS on CN impacts of RAN2 solutions for WLAN/3GPP radio interworking; SA WG2 Meeting #102; S2-140963; Mar. 24-28, 2014; St. Julian's, Malta.

Also Published As

Publication number Publication date
EP3217722A4 (en) 2018-08-22
WO2016072467A1 (en) 2016-05-12
US20170325151A1 (en) 2017-11-09
EP3217722A1 (en) 2017-09-13
JP6870987B2 (en) 2021-05-12
JPWO2016072467A1 (en) 2017-08-31

Similar Documents

Publication Publication Date Title
CN112312503B (en) Network selection and data aggregation with LTE-WLAN aggregation
CA2912985C (en) Reporting wifi channel measurements to a cellular radio network
JP6800841B2 (en) Base stations and wireless terminals
JP6445575B2 (en) Base station and wireless terminal
JP6527527B2 (en) Wireless base station and wireless terminal
US9706478B2 (en) Base station and apparatus
US10484924B2 (en) Core network apparatus, radio terminal, and base station
US20180324655A1 (en) Method of identifying traffic to 3gpp ran handed over from wlan to 3gpp ran
US20170339613A1 (en) Base station, apparatus, and radio terminal
US20170325150A1 (en) Base station and processor
JP7019294B2 (en) Wireless terminal

Legal Events

Date Code Title Description
AS Assignment

Owner name: KYOCERA CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FUJISHIRO, MASATO;REEL/FRAME:042211/0523

Effective date: 20170403

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4