WO2016072360A1 - Multi-wavelength light source and light source device - Google Patents

Multi-wavelength light source and light source device Download PDF

Info

Publication number
WO2016072360A1
WO2016072360A1 PCT/JP2015/080732 JP2015080732W WO2016072360A1 WO 2016072360 A1 WO2016072360 A1 WO 2016072360A1 JP 2015080732 W JP2015080732 W JP 2015080732W WO 2016072360 A1 WO2016072360 A1 WO 2016072360A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
wavelength
phosphor
condensing
Prior art date
Application number
PCT/JP2015/080732
Other languages
French (fr)
Japanese (ja)
Inventor
理 大澤
昌士 岡本
井上 正樹
和典 別所
Original Assignee
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015070871A external-priority patent/JP6428437B2/en
Application filed by ウシオ電機株式会社 filed Critical ウシオ電機株式会社
Publication of WO2016072360A1 publication Critical patent/WO2016072360A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details

Definitions

  • the present invention relates to a multiwavelength light source using a light emitting element such as a semiconductor laser, such as a white light source usable in an optical apparatus such as a projector, and a light source device including the multiwavelength light source.
  • a light emitting element such as a semiconductor laser
  • a white light source usable in an optical apparatus such as a projector
  • a light source device including the multiwavelength light source.
  • high-intensity discharge lamps such as xenon lamps and ultra-high pressure mercury lamps have been used in light source devices for image display such as DLP (TM) projectors and liquid crystal projectors, and photomask exposure apparatuses. It has been.
  • TM DLP
  • FIG. 11 is a diagram for explaining one form of a part of a conventional light source device related to the light source device of the present invention (reference: Japanese Patent Application Laid-Open No. 2004-252112, etc.) ).
  • a light condensing means (not shown) composed of a concave reflecting mirror, a lens, or the like.
  • FmA is input to the incident end (PmiA) and output from the exit end (PmoA).
  • a light guide can be used, which is also called a name such as a rod integrator or a light tunnel, and is a light transmissive material such as glass or resin.
  • the light homogenizing means (FmiA) repeats total reflection on the side surface of the light homogenizing means (FmA). By propagating through FmA), even if the distribution of light input to the incident end (PmiA) is uneven, the illuminance on the exit end (PmoA) is sufficiently uniformed. Function.
  • a hollow square tube the inner surface of which is a reflecting mirror
  • the illumination lens (Ej1A) is arranged so that a square image of the emission end (PmoA) is formed on the two-dimensional light amplitude modulation element (DmjA), and is output from the emission end (PmoA).
  • the two-dimensional light amplitude modulation element (DmjA) is illuminated with light.
  • a mirror (MjA) is disposed between the illumination lens (Ej1A) and the two-dimensional light amplitude modulation element (DmjA).
  • the two-dimensional light amplitude modulation element (DmjA) modulates the light so that it is directed to the direction of incidence on the projection lens (Ej2A) or not to the direction of incidence according to the video signal.
  • the image is displayed on the screen (Tj).
  • the two-dimensional light amplitude modulation element as described above is sometimes called a light valve.
  • the two-dimensional light amplitude modulation element (DmjA) is generally DMD (TM) (digital). ⁇ Micromirror devices are often used.
  • FIG. 12 is a diagram for explaining one form of a part of the apparatus (reference: JP-A-2001-142141, etc.).
  • a light source composed of a high-intensity discharge lamp or the like is converted into a substantially collimated light beam with the help of collimator means (not shown) composed of a concave reflecting mirror, lens, etc. It is input to the incident end (PmiB) of the eye integrator (FmB) and output from the exit end (PmoB).
  • the fly eye integrator (FmB) is composed of a combination of a front stage fly-eye lens (F1B) on the incident side, a rear stage fly-eye lens (F2B) on the exit side, and an illumination lens (Ej1B). Both the front fly-eye lens (F1B) and the rear fly-eye lens (F2B) are formed by arranging a large number of rectangular lenses having the same focal length and the same shape in the vertical and horizontal directions.
  • Each lens of the front-stage fly-eye lens (F1B) and the corresponding lens of the rear-stage fly-eye lens (F2B) in the subsequent stage constitute an optical system called Koehler illumination.
  • a large number of optical systems are arranged vertically and horizontally.
  • the Kohler illumination optical system is composed of two lenses.
  • the front lens collects light and illuminates the target surface, the front lens does not form a light source image on the target surface, but the center of the rear lens.
  • a light source image is formed on this surface, and the rear lens is arranged so as to form an image of the quadrangle of the outer shape of the front lens on the target surface (surface to be illuminated), thereby uniformly illuminating the target surface.
  • the function of the latter lens is to prevent the phenomenon that the illuminance around the square of the target surface falls depending on the size when the light source is not a perfect point light source but has a finite size if it is not
  • the rear lens can make the illuminance uniform to the periphery of the square of the target surface without depending on the size of the light source.
  • the fly-eye integrator (FmB) is basically input with a substantially parallel light beam, so the front fly-eye lens (F1B) and the rear fly-eye lens (F2B). ) Are arranged to be equal to their focal lengths, so that an image of the target surface of uniform illumination as the Kohler illumination optical system is generated at infinity.
  • the illumination lens (Ej1B) is disposed at the rear stage of the rear fly-eye lens (F2B), the target surface is drawn toward the focal plane of the illumination lens (Ej1B) from infinity.
  • the output light flux is also substantially axially symmetric. Because of the nature of the lens, that is, the Fourier transform action of the lens, all rays incident on the lens surface at the same angle are refracted toward the same point on the focal plane regardless of the incident position on the lens surface.
  • the output of the Koehler illumination optical system is imaged on the same target surface on the focal plane of the illumination lens (Ej1B).
  • a polarizing beam splitter (MjB) is disposed between the illumination lens (Ej1B) and the two-dimensional light amplitude modulation element (DmjB), so that light is transmitted to the two-dimensional light amplitude modulation element ( DmjB) is reflected.
  • the two-dimensional light amplitude modulation element (DmjB) rotates the polarization direction of light by 90 degrees for each pixel according to the video signal, or modulates and reflects the light so that only the rotated light is reflected. Then, the light passes through the polarizing beam splitter (MjB) and is incident on the projection lens (Ej3B) to display an image on the screen (Tj).
  • LCOS silicon liquid crystal device
  • DmjB two-dimensional light amplitude modulation element
  • a transmission type liquid crystal device (LCD) is also used with an optical arrangement suitable for the same (reference: No. 10-133303).
  • a dynamic color filter such as a color wheel is disposed after the light uniformizing means, and R, G, B (red, green, blue)
  • the two-dimensional light amplitude modulation element is illuminated as a color sequential light beam, and color display is realized by time division, or a dichroic mirror or dichroic prism is arranged at the subsequent stage of the light uniformizing means, and R, G, B
  • a dichroic mirror or dichroic prism to perform color synthesis of modulated light beams of the three primary colors R, G, and B
  • FIGS. 11 and 12 it is omitted in order to avoid complexity.
  • the high-intensity discharge lamp described above has drawbacks such as low conversion efficiency from input power to optical power, that is, a large heat loss or a short life.
  • solid light sources such as LEDs and semiconductor lasers have attracted attention as alternative light sources that have overcome these drawbacks.
  • the LED has a smaller heat loss and a longer life than the discharge lamp, but the emitted light has no directivity like the discharge lamp, so the light source device and the exposure device described above. In applications where only light in a specific direction can be used, there is a problem that the light use efficiency is low.
  • semiconductor lasers like LEDs, have low heat loss, long life, and high directivity, so that only light in a specific direction such as the above-described light source device and exposure device can be used. In use, there is an advantage that the utilization efficiency of light is high.
  • a semiconductor laser For example, what is currently readily available as a red semiconductor laser has a wavelength band of 635 to 640 nm and requires a large optical power due to low visibility, and for example, as a green semiconductor laser, What is available has a wavelength band of 522 to 526 nm, and from the viewpoint of image reproduction, there is a problem that it is too short from an ideal wavelength.
  • the wavelength band that directly uses the emitted light of the semiconductor laser is only blue, and red and green are obtained by converting the wavelength of the emitted light of the blue semiconductor laser using a phosphor that can easily adjust the emission wavelength by adjusting the components.
  • Technology has been developed to achieve this.
  • a solid-state light source such as a semiconductor laser emitting blue light is condensed as one excitation light at one point of a rotating disk, and the rotating disk has a blue complementary color.
  • a technology relating to a white light source that sequentially generates yellow and blue luminous fluxes by providing a segment provided with a yellow phosphor layer emitting yellow fluorescence and a segment provided with a blue scattering reflection layer is described.
  • a simple polarization dichroic mirror is used as an output light separation and extraction element for directing excitation light from a solid light source to a rotating disk and extracting light from the rotating disk as output light. Therefore, the ratio of the amount of light that returns to the solid light source out of the blue light coming out of the rotating disk is high, and there is a problem that the light use efficiency is not good.
  • a plurality of concave reflecting mirrors (spheroid ellipsoids) provided with excitation light from a plurality of solid light sources by a semiconductor laser emitting blue light corresponding to each of the solid light sources.
  • a technology relating to a white light source with high luminance that uses scattered excitation light and fluorescence by focusing light on one point of the phosphor or a plurality of adjacent points.
  • the number of concave reflecting mirrors equal to the number of solid light sources needs to be arranged three-dimensionally symmetrically, and each solid light source needs to be accurately arranged at a predetermined position relative to each concave reflecting mirror. Therefore, there is a problem that the structure becomes complicated. Further, the problem of how to improve the utilization efficiency of light emitted from the phosphor is not yet solved.
  • excitation light from a plurality of solid-state light sources such as a semiconductor laser emitting blue light is collected by a lens so as to pass through a small entrance opening provided in a mirror box.
  • the phosphor provided on the exit side in the mirror box is caused to emit light, and at the exit of the mirror box, a dichroic filter that reflects excitation light and returns to the mirror box and transmits fluorescence is provided.
  • a technique is described in which the use efficiency of excitation light and fluorescence is enhanced by reflecting the fluorescence toward the exit side.
  • the excitation light and fluorescence that reach the dichroic filter become scattered light, and the direction distribution of the light is large, so that the wavelength selectivity of reflection / transmission of the dichroic filter becomes very poor and efficiency is lowered.
  • the size of the specular box is not sufficiently large compared to the size of the excitation light entrance opening, the effect of providing the specular box does not appear. Since the area of the exit becomes large and the point light source property is lowered, there is a problem that it is difficult to obtain high light utilization efficiency.
  • excitation light from a plurality of solid light sources such as a semiconductor laser emitting blue light is combined with one light beam as a whole by a collimator lens provided corresponding to each of the solid light sources.
  • a technology related to a high-brightness white light source that uses fluorescence emitted from the phosphor, or scattered excitation light and fluorescence, by condensing on a small area of the phosphor with a common concave reflecting mirror. ing.
  • this technique the problem of how to increase the utilization efficiency of light emitted from the phosphor is not yet solved.
  • a problem to be solved by the present invention is to provide a multi-wavelength light source and a light source device that achieve high arrival efficiency of excitation light from a light emitting element to a phosphor and high extraction efficiency of light emitted from the phosphor to the outside. It is to provide.
  • the multi-wavelength light source converts the light emitting element (Y1) and the radiated light (Fa1) emitted from the light emitting element (Y1) into a light beam (Fbl) that forms a distant image.
  • An integrated light source (W) in which a plurality of element light sources (U1, U2,...) Are arranged side by side as a single element light source (U1).
  • Each of the luminous fluxes (P1, P2,%) Having spectral characteristics that selectively reflects light having a radiation wavelength of the light emitting elements (Y1, Y2,...) Is output from the integrated light source (W).
  • a dichroic reflection element (M) selectively provided at a position where Fb1, Fb2,.
  • a mixed divergent light beam (Fe) of fluorescence emitted from the light collection region (Aq) on the surface of the phosphor (N) and residual excitation light reflected from the light collection region (Aq) is generated.
  • the mixed divergent light beam (Fe) is converted by the light collecting element (Ef) into a light beam (Ff) that propagates in the opposite direction to the focused light beam (Fd) to form a distant image.
  • the luminous flux (Ff) is transmitted through the dichroic reflection element (M), whereby a mixed output luminous flux (Fg) is output to the outside.
  • the multi-wavelength light source is a light-emitting element (Y1) and a luminous flux (Fb1) that forms a distant image of radiated light (Fa1) emitted from the light-emitting element (Y1).
  • a dichroic reflection element (M) selectively provided at a position where Fb1, Fb2,.
  • a condensing element (Ef) for condensing the luminous flux (Fcl, Fc2,%) Generated by transmitting the luminous flux (Fbl, Fb2, etc Through the dichroic reflection element (M);
  • the converged light beam (Fd) generated by condensing the light beams (Fc1, Fc2,...) By the light collecting element (Ef) forms the light collection region (Aq), the light collection region (Aq).
  • the multi-wavelength light source when focusing on the principal rays (Lp1, Lp2,%) In the luminous flux (Fbl, Fb2,...), The fluorescence of the principal rays (Lp1, Lp2,).
  • the component regularly reflected on the surface of the body (N) is propagated by the condensing element (Ef) in the direction opposite to that at the time of condensing and reaches the dichroic reflecting element (M).
  • the regions (P1, P2,...) Are not formed.
  • the multiwavelength light source according to a third aspect of the present invention is characterized in that the condensing region (Aq) is an exit pupil formed by the condensing element (Ef) and an optical system in front thereof. Is.
  • the multi-wavelength light source according to a fourth aspect of the present invention is characterized in that the phosphor (N) is a normal line while keeping the normal of the surface of the phosphor (N) in the light collection region (Aq) unchanged. It is possible to move in a vertical direction.
  • the phosphor (N) is: The content ratio of the phosphor that emits fluorescence that belongs to the green wavelength band and the phosphor that emits fluorescence that belongs to the red wavelength band, Alternatively, the content ratio of the phosphor that emits fluorescence belonging to the green wavelength band, the phosphor that emits fluorescence belonging to the red wavelength band, and the reflector that reflects light in the blue wavelength band is, The phosphors (N) are distributed monotonically depending on the positions on the surface.
  • the light condensing element (Ef) is constituted by a lens, and the light from the phosphor (N) along the optical axis of the light condensing element (Ef).
  • the integrated light sources (Wi, Wj) are arranged on both the left side and the right side of the light collecting element (Ef), and the dichroic reflective element (M) is arranged between the left side and the right side.
  • the left and right integrated light sources (Wi, Wj) are configured such that the element light sources (U1, U2,...) Are arranged in a grid pattern.
  • the arrangement pattern of the regions (P1, P2,%) Projected on a plane perpendicular to the optical axis of the optical element (Ef) is based on an arrangement that is symmetric with respect to the optical axis of the condensing element (Ef).
  • the period of the arrangement pattern of the regions (P1, P2,...) In a direction parallel or perpendicular to the direction of the ridgeline of the roof in the roof type arrangement of the dichroic surfaces (Smi, Smj) described above. The arrangement is shifted.
  • a light source device comprising: the multi-wavelength light source according to the first aspect; and a fly eye integrator (FmB) to which a mixed output light beam (Fg) output from the multi-wavelength light source is input.
  • a light source device comprising: The direction of the arrangement pattern when the arrangement pattern of the regions (P1, P2,...) Provided in the dichroic reflection element (M) is projected onto the front fly-eye lens (F1B) of the fly-eye integrator (FmB);
  • the multi-wavelength light source and the fly eye integrator (FmB) are arranged so that the directions of the fly eye lenses of the fly eye integrator (FmB) do not coincide with each other.
  • the block diagram which simplifies and shows the multiwavelength light source of this invention is represented.
  • the block diagram which simplifies and shows the multiwavelength light source of this invention is represented.
  • the schematic diagram which simplifies and shows a part of multi-wavelength light source of this invention is represented.
  • the schematic diagram which simplifies and shows the multiwavelength light source of this invention is represented.
  • the schematic diagram which simplifies and shows a part of multi-wavelength light source of this invention is represented.
  • the conceptual diagram which simplifies and shows one form of a part of light source device of this invention is represented.
  • the figure which simplifies and shows one form of the one part of the Example of the multiwavelength light source of this invention is represented.
  • the figure which simplifies and shows one form of the one part of the Example of the multiwavelength light source of this invention is represented.
  • the figure which simplifies and shows one form of the Example of the multiwavelength light source of this invention is represented.
  • the figure which simplifies and shows one form of the Example of the multiwavelength light source of this invention is represented.
  • the figure explaining one form of one kind of conventional light source device concerning the light source device of this invention is represented.
  • the figure explaining one form of one kind of conventional light source device concerning the light source device of this invention is represented.
  • conjugate as a general term in the field of geometric optics, for example, when A and B are conjugate, it has an imaging function such as a lens based on at least paraxial theory. It means that A is imaged on B or B is imaged on A by the action of the optical element. At this time, A and B are images, and it is a matter of course that isolated point images are included as targets, and a set of a plurality of point images and a spread image in which point images are continuously distributed are also targets. include.
  • a point image or an image point is a general term in the field of geometric optics, in which light is actually radiated from that point, the light converges toward that point, and the screen is A bright spot appears when placed, the light seems to converge toward that point (but the point is inside the optical system and the screen cannot be placed), the light is emitted from that point (However, the point is inside the optical system and the screen cannot be placed), and no distinction is made.
  • blurring occurs due to aberrations or defocusing in imaging, Ignore the phenomenon of disappearing from an ideal point or diffraction limited image.
  • the input image of the optical system can be considered as just one point light source, and it is usually on the optical axis of the optical system.
  • the central beam of the diverging direction distribution of diverging light from the semiconductor laser may be arranged in a direction that coincides with the optical axis.
  • a design that takes into account the entrance pupil, exit pupil, and chief ray of the optical system is required. Describes this situation.
  • an aperture stop is usually present inside the lens, but when the lens is viewed from the side where the light enters, the image of the aperture stop that can be seen through the lens is the entrance pupil, the side from which the light exits.
  • a light beam (usually a meridian light beam) that is directed to the center of the exit pupil or entrance pupil or that emerges from the center of the exit pupil when the lens is viewed from the lens is called a principal ray.
  • rays other than the principal ray are called peripheral rays.
  • there is often no aperture stop because it is not necessary to cut out the light beam by the aperture stop, and in that case, depending on the form of light in the optical system. They are defined.
  • the central ray of the direction distribution of light in the luminous flux from the radiation point is the principal ray, and there is an entrance pupil at the position where the principal ray incident on the optical system or its extension intersects the optical axis, and exits from the optical system.
  • the exit pupil is considered to be at a position where the principal ray or its extension intersects the optical axis.
  • the chief ray and the optical axis defined in this way do not intersect due to, for example, an adjustment error and are only in a twisted position.
  • the optical axis of the optical system is referred to as the z-axis.
  • the optical axis is bent by the reflecting mirror, the direction in which the light beam along the original z-axis is reflected and travels is also determined. It is called the z axis and does not take a new coordinate axis.
  • the x axis and the y axis are expressed as axes perpendicular to the z axis for convenience.
  • FIG. 1 is a block diagram which simplifies and shows the multiwavelength light source of this invention.
  • the light emitting element (Yl) constituting the element light source (Ul) is driven by a driver circuit (not shown) configured based on a DC / DC converter, which is configured by a circuit of a system such as a subordinate chopper or a boost chopper, for example. And emits radiated light (Fa1).
  • a driver circuit not shown
  • a DC / DC converter which is configured by a circuit of a system such as a subordinate chopper or a boost chopper, for example.
  • radiated light Fa1
  • the emitted light (Fa1) is converted into a light beam (Fb1) that forms a distant image conjugate with the image of the light emitting area of the light emitting element (Y1) by a collimator element (E1) made of, for example, an aspheric lens. .
  • a collimator element (E1) made of, for example, an aspheric lens.
  • the light beam (Fb1) for example, it can be configured to be a parallel light beam, or can be configured to be a divergent light beam or a converged light beam that is nearly parallel.
  • an integrated light source (W) is formed, and light fluxes from each of the element light sources (U1, U2,).
  • the principal rays (Lpl, Lp2,%) Of the light beams (Fbl, Fb2,%) can be configured to be parallel to each other, for example. Also, it can be configured to be divergent or convergent near parallel.
  • the light beams (Fb1, Fb2,%) are made incident on the dichroic reflection element (M).
  • the dichroic reflective element (M) has a region (P1, P2,%) Having a spectral characteristic that selectively reflects light having the emission wavelength of the light emitting elements (Y1, Y2,%) With as high efficiency as possible.
  • Light having a wavelength other than the emission wavelength of the light emitting elements (Yl, Y2,...) Is formed so as to be transmitted with as high efficiency as possible.
  • the dichroic reflective element (M) is configured to transmit light of all related wavelength bands with as high efficiency as possible in the regions other than the regions (P1, P2,). Therefore, the light fluxes (Fbl, Fb2,...) Are reflected by the dichroic reflection element (M), and as the light fluxes (Fc1, Fc2,%),
  • a light collecting element (Ef) having a light collecting function such as a convex lens or a concave mirror. It is made to enter.
  • the luminous fluxes (Fc1, Fc2,...) Are collected by the condensing element (Ef) and are incident on the phosphor (N) as a focused luminous flux (Fd).
  • a condensing region (Aq) irradiated with the focused light beam (Fd) is formed on the surface of the phosphor (N).
  • the light having the emission wavelength of the light emitting element (Yl, Y2,...) Of the focused light beam (Fd) is absorbed as excitation light, and the wavelength is different from that. Emits fluorescence in the band.
  • the wavelength of the emitted fluorescence is usually longer than that of the excitation light, but fluorescence having a shorter wavelength than that of the excitation light may be emitted by multiphoton fluorescence.
  • a multi-wavelength light source that outputs a light beam in which light of a plurality of wavelengths is mixed, that is, fluorescence in which excitation light is wavelength-converted by the phosphor (N) and residual excitation light that has not been wavelength-converted, is realized. .
  • the region (P1, P2,%) Of the dichroic reflecting element (M) is formed so as to reflect the excitation light having the emission wavelength of the light emitting elements (Y1, Y2,%) As efficiently as possible. Therefore, high arrival efficiency of excitation light from the light emitting element to the phosphor can be realized.
  • the dichroic reflection element (M) is made to transmit as efficiently as possible in a region other than the region (P1, P2,%), And With respect to the fluorescence from the phosphor (N), both the region (P1, P2,%) And other regions are made to transmit with the highest possible efficiency. High extraction efficiency can be realized.
  • the regions (P1, P2,%) As narrow as possible as long as the light beams (Fbl, Fb2,%) Do not protrude. If the region (P1, P2,%) Is too narrow, the luminous flux (Fb1, Fb2,%) Protrudes and the component that does not reach the phosphor (N) increases. If the region (P1, P2,%) Is too wide, it is reflected in the direction of the integrated light source (W) among the residual excitation light reflected without wavelength conversion in the mixed divergent light beam (Fe). This is because the number of components increases, and in any case, the light utilization efficiency is lowered.
  • the luminous flux (Fbl, Fb2,%) Is S-polarized with respect to the dichroic reflecting element (M).
  • the region (P1, P2,%) Functions as a polarization beam splitter that reflects the luminous flux (Fb1, Fb2,%) As efficiently as possible.
  • a dichroic reflective element (M) can be devised. What happens is that when the luminous flux (Fbl, Fb2,%) Reaches the phosphor (N) and is reflected, rotation of the polarized light occurs, so that when the light beam returns to the dichroic reflecting element (M), it is polarized.
  • the ratio of components that can pass through the region (P1, P2,%) Increases. If the degree of polarization of the excitation light returning to the dichroic reflection element (M) is not sufficiently lowered, excitation light is interposed between the dichroic reflection element (M) and the condensing element (Ef). By inserting a quarter-wave plate relating to the wavelength and forcibly rotating the polarization of the excitation light returning to the dichroic reflection element (M) by 90 degrees, the region (P1, P2,...) It is possible to increase the proportion of the component that can pass through.
  • FIG. 2 is a simplified block diagram showing the multi-wavelength light source of the invention. The function of the multi-wavelength light source in this figure is to read the description of reflection and transmission at the dichroic reflection element (M), in the description of FIG. It can be understood by changing.
  • the dichroic reflective element (M) has a spectral characteristic (P1) that selectively transmits light having the emission wavelength of the light emitting elements (Yl, Y2,%) With as high efficiency as possible.
  • P2,... are selectively provided at locations where the luminous fluxes (Fb1, Fb2,%) Strike.
  • the dichroic reflection element (M) is configured to reflect light of all related wavelength bands with as high efficiency as possible in the regions other than the regions (P1, P2,).
  • the luminous fluxes (Fbl, Fb2,...) are transmitted through the dichroic reflection element (M) and are incident on the light collecting elements (Ef) as luminous fluxes (Fcl, Fc2,...), And the phosphor (N).
  • a condensing region (Aq) is formed on the surface.
  • the condensing element (Ef) functions as a collimator for the fluorescence emitted from the condensing region (Aq) and the residual excitation light that has not undergone wavelength conversion.
  • a light beam (Ff) that forms a distant image conjugate with the light region (Aq) is emitted, and the light beam (Ff) is reflected by the dichroic reflection element (M) to produce a mixed output light beam (Fg) in the z-axis direction. ) Is output to the outside.
  • a multi-wavelength light source that outputs a light beam in which light of a plurality of wavelengths is mixed, that is, fluorescence in which excitation light is wavelength-converted by the phosphor (N) and residual excitation light that has not been wavelength-converted, is realized. .
  • the surface of the phosphor (N) With respect to the surface of the phosphor (N), if it is flat, unless it is specially treated, it is not a perfect diffuse reflection surface, and its reflection characteristic shows a strong peak in the regular reflection component.
  • the residual excitation light that has not been wavelength-converted passes through the region other than the region (P1, P2,%) In the dichroic reflective element (M). Since it is outputted to the outside by using it, the region (P1, P2,%) Does not exist at the position where the specular reflection component of the residual pumping light of the dichroic reflecting element (M) passes. This is advantageous for increasing the utilization efficiency.
  • the light collecting element (Ef) has an axisymmetric structure with respect to the z axis, and the phosphor (N).
  • the principal rays (Lp1, Lp2, Lp4, Lp5) of Fb2, Fb4, Fb5) are rays existing on the paper surface of FIGS.
  • the most simplified / idealized condition is output from each of the element light sources (U1, U2,%) Constituting the integrated light source (W).
  • the light beams (Fbl, Fb2,%) Accurately form a parallel light beam (in other words, accurately form an output image point at infinity), and all of the light beams (Fb1, Fb2,%) Assume a condition in which the principal rays (Lpl, Lp2,%) Are exactly parallel to each other (in other words, the luminous fluxes (Fbl, Fb2,%) Form exactly the same infinite output image point).
  • the condensing region (Aq) formed on the surface of the phosphor (N) is the above-mentioned output image point at infinity formed by (the light beams (Fb1, Fb2,...)). It becomes one point-like region (conjugate).
  • the condensing region (Aq) will be a collection of light condensing regions having a finite size separated into a plurality, but it must be a small region where the optical power is concentrated. There is a problem that the phosphor (N) is rapidly deteriorated at a location.
  • the condensing region (Aq) is configured to be an exit pupil formed by the condensing element (Ef) and an optical system in front thereof. .
  • the position and size of the pupil are basic parameters of the optical system, and the size of the condensing region (Aq) required from the viewpoint of deterioration of the phosphor (N) is designed accurately. This is because it is possible to achieve this, and if such a design is used, it is not necessary to add an extra optical element that leads to a decrease in light utilization efficiency.
  • FIG. 3 is a schematic diagram showing a part of the multi-wavelength light source of the present invention in a simplified manner. This figure shows how each of the light beams (Fc1, Fc2,%) Is converted into a focused light beam (Fd1, Fd2,...) By the condensing element (Ef).
  • the fact that the condensing region (Aq) becomes an exit pupil means that the principal rays (Lpl, Lp2,%) Of the luminous flux (Fbl, Fb2, etc
  • Output from the integrated light source (W) as shown in FIG. )) Passes through the center of the light collection region (Aq), that is, the point (Q) that is the intersection of the phosphor (N) and the z-axis, and if the luminous flux (Fbl, If the divergence angles of Fb2,... Are all the same, for example, if the thicknesses of the light beams (Fbl, Fb2,...)
  • the integrated light source (W) are all the same, for example.
  • the luminous fluxes (Fbl, Fb2,%) Toward More luminous fluxes (Fd1, Fd2,%) After passing through the condensing element (Ef), and each centered on the common point (Q). A light irradiation region having approximately the same diameter is formed.
  • the diameter of the light irradiation region is represented by the distance between the tips of the arrows (A1, A2), and eventually the size of the light collection region (Aq) is defined. become.
  • the light beam (Fb1, Fb2,...) Is configured as a telecentric optical system that forms an image point on the same plane that has an exit pupil at infinity and is far (positive or negative distance) but not infinity. It is.
  • the second is that the luminous fluxes (Fbl, Fb2,%) That are the output from the integrated light source (W) are parallel luminous fluxes, that is, an infinite image point is formed.
  • the exit pupil is configured to come to a finite position.
  • there is an intermediate method between them i.e., the exit pupil is at a finite position and it is configured to form an image point on the same plane that is not infinity, but the complexity of the design and assembly adjustment of the optical system Increase.
  • the first method described above is considered to be the easiest to assemble and adjust the optical system.
  • the output of each of the element light sources (U1, U2,%) The element light sources (U1, U1,%) Such that the distance between the active region of the light emitting elements (Y1, Y2,%) And the collimator elements (E1, E2,%) Is a predetermined distance so that the image point can be a predetermined distance.
  • Assemble each of U2, .
  • the specifications of the light emitting elements (Y1, Y2,%) And the collimator elements (El, E2,...) Are all the same.
  • the integrated light source (W) In order for the integrated light source (W) to be a telecentric optical system, the principal rays (Lp1, Lp2,%) Of all the luminous fluxes (Fbl, Fb2,%) Of the element light sources (U1, U2,).
  • the element light sources (U1, U2,%) May be assembled so that.
  • the diameter of the light condensing region (Aq) can be easily obtained by the basic paraxial optical calculation from the design guideline of the telecentric optical system described above, but an explanation that is intuitively easy to understand is given below. Keep it.
  • the position of the pupil that is, the point (Q) is generated at the focal point of the condensing element (Ef).
  • the distance (zqj) of the output image point (Jl, J2,%) Conjugate with the active region of the light emitting element (Yl, Y2,...) From the point (Q) is the above-described collimator element (El, Y1,. If the focal distance of E2,...
  • the divergence angle of the focused light beam (Fdl, Fd2,%) That forms the output image point (Jl, J2,%) Is the radiated light (Fa1, Fa2,%) From the light emitting elements (Yl, Y2,. )) And the focal length of the collimator elements (El, E2,).
  • the diameter of the condensing region (Aq) is determined from the divergence angle of the focused light beam (Fd1, Fd2,%) And the distance (zqj), as is apparent from FIG.
  • collimator element it must be an element that converts light into a substantially collimated light beam, and parts that are commercially available as collimator elements for semiconductor laser radiation can also be used in this multi-wavelength light source. In this specification, it will be called a collimator element as it is.
  • the output image points (J1, J2,%) May be formed in front of the pupil position, contrary to this figure.
  • the output image point (Jl, J2,%) May be placed inside the optical system from the dichroic reflective element (M) to the condensing element (Ef).
  • the size of the region (P1, P2,%) Can be slightly reduced, and the light utilization efficiency can be improved accordingly. Benefits can be gained.
  • the irradiation power density of the excitation light becomes lower, which is advantageous from the viewpoint of deterioration of the phosphor (N). Since the size of the light source of the fluorescence from which the excitation light is wavelength-converted and the residual excitation light that has not been wavelength-converted emitted from Aq) is increased, the condensing region (Aq) generated by the condensing element (Ef) ) And a distant image are large, and the mixed output light beam (Fg) output to the outside is disadvantageous because the directional purity of the collimated light beam, that is, the light quality is lowered.
  • the phosphor (N) is placed in a direction perpendicular to the normal while keeping the normal of the surface of the phosphor (N) in the light collection region (Aq) unchanged. It is preferable to be configured to be movable.
  • the phosphor (N) is formed in a disk shape, and its central axis is arranged parallel to the z-axis and rotated, for example, the phosphor (N) is arranged on the side surface of the cylinder.
  • the phosphor (N) may be formed in a flat plate shape and translated in a direction perpendicular to the z-axis.
  • the movement may be performed continuously or stepwise, or may be performed continuously, or intermittently when the deterioration of the phosphor (N) is recognized. It may be executed automatically.
  • the movement mechanism may be provided with power such as a motor or a solenoid, or may be based manually.
  • the multi-wavelength light source of the present invention is particularly suitable for applications in which a white light source is realized by using a material that emits R, G, and B3 primary colors.
  • the white light source referred to here is not limited to the color (chromaticity) of the light beam emitted from the light source that can be regarded as strictly white, or R, G, B3 in an apparatus using the light beam emitted therefrom.
  • the primary color is taken out, and if the content ratio of R, G, B components deviates from the ideal white, it can be used as a white light source as a result by reducing the utilization efficiency of the extra components included Including things.
  • one type of phosphor may emit fluorescence belonging to the green wavelength band and fluorescence belonging to the red wavelength band, or emit at least fluorescence belonging to the green wavelength band.
  • a mixture of a phosphor and a phosphor that emits fluorescence belonging to the red wavelength band may be used.
  • the emission spectrum of the phosphor (N) when excited by the emission wavelength of the light emitting elements (Yl, Y2,...) Is composed of a large continuous spectrum including at least a green wavelength band and a red wavelength band. Alternatively, it may have at least a peak belonging to the green wavelength band and a peak belonging to the red wavelength band.
  • the white light source composed of a light emitting element that emits radiated light in each wavelength band of R, G, and B
  • the total luminous flux output it is possible to adjust the content ratios of the respective colors, that is, the components of the R, G, and B colors.
  • the emission wavelength band of the light emitting element (Yl, Y2,%) Is blue
  • the phosphor (N) is a mixture of a phosphor emitting green fluorescence and a phosphor emitting red fluorescence.
  • a phosphor that emits fluorescence belonging to the green wavelength band, and The content ratio with the phosphor that emits fluorescence belonging to the red wavelength band is distributed monotonously depending on the position on the surface of the phosphor (N), or the R, G, B colors of the output light
  • the phosphor (N) emits fluorescence belonging to the green wavelength band, and phosphor emits fluorescence belonging to the red wavelength band;
  • the phosphor (N) is configured so that the content ratio with respect to the reflector that reflects light in the blue wavelength band is monotonously distributed at positions on the surface of the phosphor (N). Position when the phosphor (N) is installed in a multi-wavelength light source By adjusting, it is possible to adjust the content ratio of the color components of the output light.
  • the normal of the phosphor surface is taken on the z axis, and the x axis and the y axis are taken on the phosphor surface.
  • the content of the reflector that reflects light in the blue wavelength band with respect to the phosphor content of the green phosphor and the red phosphor is monotonous only in the y coordinate without depending on the x coordinate.
  • the content ratio of the green phosphor out of the total phosphor content of the green phosphor and the red phosphor is monotonous only in the x coordinate without depending on the y coordinate.
  • the phosphor (N) may be configured to be distributed depending on.
  • “distributed monotonically depending on the x coordinate” means that the distribution amount increases or remains constant (or decreases or decreases) when the x coordinate increases when the distribution is viewed while changing the x coordinate. It means that it does not decrease after increase (increase after decrease).
  • the microscopic distribution smaller than the diameter of the condensing region (Aq) may be careless, and an average value over a region that is at least as large as the diameter of the condensing region (Aq). As long as the distribution amount is monotonous.
  • FIG. 4 (a) is a schematic diagram showing the multi-wavelength light source of the present invention in a simplified manner, as it is possible to achieve both the arrangement balance of the temperature rising elements and the compactness as the light source.
  • the condensing element (Ef) is constituted by a lens, and when viewed in the direction in which the fluorescence from the phosphor (N) comes along the optical axis of the condensing element (Ef), the integrated light source (Wi, Wj) ) Are arranged on both the left side and the right side of the condensing element (Ef) to constitute the multi-wavelength light source.
  • the dichroic reflecting element (M) is composed of two parts, the left side and the right side.
  • the left dichroic reflector (Mi) for reflecting the light beam (Fbil, Fbi2,...) From the integrated light source (Wi) and the light beam (Fbjl, Fbj2, etc From the right integrated light source (Wj) are reflected.
  • the dichroic surface (Smi, Smj) it is preferable to arrange the dichroic surface (Smi, Smj) in a roof shape.
  • the dichroic reflecting element (M) of the figure is illustrated as being configured by a dichroic prism, but by doing so, the joint portion of the dichroic surface (Smi, Smj), that is, the ridge line portion of the roof type arrangement It is possible to reduce the loss of the luminous flux from the condensing element (Ef) in comparison with the case where it is constituted by a dichroic mirror.
  • the integrated light source (Wi) and the integrated light source (Wj) are arranged so as to be shifted by one. Therefore, the regions (P1, P2,%) On the dichroic surfaces (Smi, Smj) for selectively reflecting the light beams (Fbi1, Fbi2, etc And the light beams (Fbj1, Fbj2,.
  • the arrangement is not symmetrical but is shifted in the x direction by a quarter of the period of the arrangement pattern of the regions (P1, P2,).
  • the region (P1, P2,%) Is shifted in the x direction, but it is also a schematic diagram showing a part of the multi-wavelength light source of the present invention in a simplified manner.
  • the use efficiency can be similarly increased by shifting in the y direction.
  • the principal ray (Lpjl) of the light beam (Fbi1) from the integrated light source (Wi) is reflected by the region (P1), it is specularly reflected from the phosphor (N).
  • the chief ray (Lpj1 ′) when it is returned passes through a portion where the region (P1, P2,...) Is not formed as shown in FIG.
  • each of the left and right integrated light sources (Wi, Wj) is configured by arranging the element light sources (U1, U2,%) In a lattice pattern, and is perpendicular to the optical axis of the light collecting element (Ef).
  • the arrangement pattern of the regions (P1, P2,%) Projected onto the plane is based on an arrangement that is symmetric with respect to the optical axis of the light condensing element (Ef), and the arrangement pattern of the dichroic surfaces (Smi, Smj).
  • the multi-wavelength light source of the present invention is formed into a light source device in combination with the above-described rod integrator or fly eye integrator, and can be suitably used, for example, to configure a projector, but particularly when combined with a fly eye integrator.
  • the residual excitation light that has not been wavelength-converted by the phosphor (N) cannot be output via the region (P1, P2,).
  • a shadow corresponding to the arrangement pattern of the regions (P1, P2,%) Described in (a) of FIG. 4 and (a), (b), and (c) of FIG. become.
  • the function as the light uniformizing means of the fly eye integrator is expressed by superimposing the illuminance distribution on each lens surface of the front fly eye lens (F1B).
  • the mixed output light beam (Fg) is input to the fly eye integrator (FmB), the shadow is also superimposed.
  • the fly eye integrator (FmB) may be superposed so as to strengthen the influence of the shadow.
  • Such inconvenient shadow superposition is performed by changing the arrangement pattern of the regions (P1, P2,%) Provided in two types of arrangement directions, that is, the dichroic reflection element (M), to the fly eye integrator (FmB). Occurs most significantly when the direction of the alignment pattern when projected onto the first fly-eye lens (F1B) matches the direction of alignment of the fly-eye lenses of the fly-eye integrator (FmB).
  • the arrangement pattern of the regions (P1, P2,...) Just described is projected onto the front fly-eye lens (F1B), the mixed output light beam (Fg) output from the multi-wavelength light source. Is projected in the direction of the central axis (z).
  • FIG. 6 is a conceptual diagram.
  • Po virtual plane perpendicular to the central axis (z) of the mixed output light beam (Fg) of the multi-wavelength light source shown in FIG.
  • a projection of the dichroic reflection element (M) and the condensing element (Ef) is drawn as a symbol of the multi-wavelength light source of the present invention, and the preceding fly-eye lens (F1B) is symbolized as the fly-eye integrator (FmB).
  • the x-axis and the y-axis are arranged so as to have an inclination with respect to the x′-axis and the y′-axis, which are the directions of the fly-eye lenses of the fly-eye integrator (FmB).
  • the angle of the inclination is not limited, and the fly eye integrator (FmB) needs to be set to an angle that can be overlapped so as to weaken the influence of the shadow. A reasonable value may be obtained experimentally.
  • FIG. 7 is a figure which simplifies and shows one form of the Example of the multi-wavelength light source of this invention.
  • (A) of this figure shows one structural example of the said element light source (U1), the assembly structure for mounting
  • (b) is a collimator.
  • the collimator elements (El, E2,...) So that a light beam is emitted, the collimator elements are first applied to the lens mount (Hzl ′, Hz2 ′,.
  • the collimator elements (El, E2,%) are fixed to the lens mount (Hz1 ′, Hz2 ′,.
  • the lens holders (Hz1, Hz2,%) Fixed to the elements (Yl, Y2,%) Are caused to emit light by passing current through the light emitting elements (Y1, Y2,%), And the collimator elements (El, Y1,.
  • each of the element light sources (U1, U2,%) Is configured, and these are integrated and mounted on the common heat sink (Hs), whereby one of the integrated light sources (W).
  • the heat sink (Hs) is made of a metal material such as aluminum
  • the lens holder (Hz1, Hz2,%) Interposed between the heat sink (Hs) and the metal case (Myl, My2,...)
  • it is made of a material such as ceramic having good thermal conductivity.
  • the light emitting element (Yl) and the collimator element (El) are assembled to constitute the element light source (Ul) as an entity, and a plurality of them are integrated to form the integrated light source (W).
  • An example of what is configured is shown.
  • a light emitting element assembly composed of a plurality of light emitting elements (Y1, Y2,...)
  • a collimator element assembly composed of a plurality of collimator elements (E1, E2,...)
  • the element light source (U1) composed of one light emitting element (Y1) and one collimator element (E1)
  • the integrated light source (W) formed may be regarded as an integrated unit.
  • FIG. 8 is a diagram showing a simplified form of a part of the embodiment of the multi-wavelength light source of the present invention.
  • (A) of this figure is the external appearance of the package (Py) containing the light emitting elements (Yl, Y2,...), (B) shows the internal structure of the package (Py), and (c) shows the package (Py).
  • Py is an integrated light source (W) configured by combining a collimator element array (Exy).
  • the heat sink (Hs) is made of a material having good thermal conductivity such as metal and forms the bottom surface of the package (Py).
  • the heat sink (Hs) is a larger heat sink through the fixing hole (Ph). It may be fixed and integrated to function as a heat sink.
  • the cover (Pc) made of metal, ceramic, or the like is provided with a window (Pw) for taking out a light beam emitted from the light emitting elements (Y1, Y2, etc And joined to the heat sink (Hs). And a hermetic seal structure.
  • the multi-wavelength light source of the present invention may be composed of a plurality of packages (Py).
  • the light emitting regions of the respective light emitting elements (Y1, Y2,...) are regarded as point image sets arranged vertically and horizontally independently in the same plane. Can do.
  • the collimator element array (Exy) is configured by arranging independent partial lenses (Eml, Em2,%) Corresponding to the collimator elements (E1, E2,). Then, by arranging it outside the window (Pw), the light flux from each point image is input to the dichroic reflection element (M) of the multi-wavelength light source corresponding to the light flux (Fbil, Fbi2,). It can be converted into a luminous flux suitable for what it does.
  • the collimator element array (Exy) in which the partial lenses (Em1, Em2,...) Are arranged in a two-dimensional array can be molded as a single unit by a technique similar to the fly eye lens manufacturing technique described above. Is preferred.
  • the package (Py) is configured so that the collimator element array (Exy) configured by arranging the partial lenses (Eml, Em2,%) In a two-dimensional array as an integral one also serves as the window (Pw). May be.
  • FIG. 9 is a diagram showing a simplified form of an embodiment of the multi-wavelength light source of the present invention.
  • the multi-wavelength light source of this figure is drawn as a more practical one based on the multi-wavelength light source shown in FIG. 4, (a) is a front view, and (b) is a side view.
  • the integrated light sources (Wi1, Wi2, Wj1, Wj2) and the phosphor (N) maintain good thermal contact with the common heat sink (Bh), which also serves as the base of the multi-wavelength light source. It is fixed.
  • the heat sink (Bh) is fixed to a cooling structure of an air cooling type, a water cooling type, or a Peltier element.
  • the dichroic reflecting element (M) in this figure is configured by combining dichroic reflecting portions (Mi, Mj) made of two thin flat plates.
  • the condensing element (Ef) includes a spherical or aspherical lens (Efl) for converting a parallel light beam into a focused light beam, and a two-stage for converting the focused light beam into a focused light beam having a larger divergence angle.
  • the aplanatic lens (Ef2, Ef3) (so-called luboschets lens) is drawn. Since the fluorescence whose excitation light has undergone wavelength conversion is diverged from the condensing region (Aq) without directivity, the condensing element (Ef) is capable of collimating divergent light with a solid angle as large as possible.
  • the condensing element (Ef) described in this figure is a configuration suitable for satisfying this necessity.
  • the light-collecting element ( Ef) is preferably corrected for chromatic aberration of two colors or three colors. In this way, it is divided into at least three lenses and is designed to correct aberrations using an appropriate glass material. It will be possible.
  • the arrangement pitch in the x direction is not small.
  • the step-like mirrors (Mil, Mi2,..., Mj1, Mj2,...) In which the 45-degree mirrors are arranged with the arrangement interval in the x direction different from the arrangement interval in the z direction are provided. In this way, the arrangement pitch in the z direction of the light beams incident on the dichroic reflection element (M) can be made sufficiently small, so the excitation light provided on the dichroic reflection element (M) is selected.
  • the regions (Pa, Pb,...) For reflective reflection can be merged as described above.
  • the arrangement intervals in the y direction of the light beams incident on the dichroic reflection element (M) are not uniform, and therefore the arrangement intervals in the y direction of the regions (Pa, Pb,...) Are not uniform.
  • the principal ray (Lpil) from the integrated light source (Wi) is reflected by the region (Pa)
  • the arrangement is shifted with respect to the arrangement symmetrical to the z axis,
  • the principal ray (Lpil ′) when it is reflected back from the phosphor (N) passes through a portion where the region (Pa, Pb,...) Is not formed, and thus the remaining excitation light is used. Efficiency is improved.
  • the integrated light sources (Wi1, Wi2) are in contact with each other and the integrated light sources (Wj1, Wj2) are in contact with each other with respect to the integrated light sources (Wi1, Wi2) and the integrated light sources (Wj1, Wj2). If the arrangement interval in the y direction of the light beams incident on the dichroic reflection element (M) cannot be made uniform even if it is adjusted until contact is made, it is made of parallel flat glass as shown by a two-dot chain line in the figure.
  • the beam shift element (Es) is arranged so that the surface thereof is parallel to the z-axis, and the angle is adjusted around the z-axis, whereby the light beam incident on the dichroic reflection element (M) in the y-direction.
  • the beam shift element (Es) is a beam from both the integrated light sources (Wi2, Wj2) or the integrated light sources (Wi1, Wi2,). j1, Wj2) is arranged on the light beam from all.).
  • the integrated light source (Wil, Wi2, Wjl, Wj2) is realized by a commercial product
  • NUBM05 product name “blue laser diode bank” manufactured by Nichia Corporation
  • the collimator lens for making each output beam become a light beam forming an infinite image point is assembled in each semiconductor laser as a standard.
  • the first method for realizing an optical system using the light collection region (Aq) as an exit pupil is performed, the output beam is converted into a light beam that forms an image point of a finite distance at a specified position.
  • a conversion lens may be inserted.
  • the conversion lens is manufactured as a lens array in which the conversion lenses are arranged in a two-dimensional array and integrally molded, similar to the collimator element array (Exy).
  • the left element light source set composed of the integrated light sources (Wi1, Wi2) and the right element light source set composed of the integrated light sources (Wj1, Wj2) are respectively represented by the x-axis and y-axis.
  • the stepped mirrors (Mil, Mi2,..., Mj1) are adjusted accordingly. , Mj2,).
  • the pitch of the step-like mirrors (Mil, Mi2,..., Mj1, Mj2,...) In the z-axis direction is the thickness of the light flux of each element light source (in FIG. 1, the light flux (Fbl, If there is no allowance for the thickness (ie, diameter) of Fb2, etc.
  • the focal length of the collimator elements (the collimator elements (El, E2,%) In FIG. 1) of each element light source may be shortened.
  • FIG. 10 is a diagram showing a simplified form of an embodiment of the multi-wavelength light source of the present invention.
  • beam compressor lenses (Gil, Gi2,..., Gj1, Gj2,...)
  • For reducing the beam thickness may be inserted into the output beams of the integrated light sources (Wi1 ′, Wj1 ′).
  • each of the beam compressor lenses (Gil, Gi2,..., Gj1, Gj2,...) Has a convex spherical surface on the incident side of the beam and a concave spherical surface on the exit side.
  • the lens is constituted by one meniscus lens having an infinite distance
  • two lenses of a convex lens and a concave lens may be arranged confocally.
  • the beam compressor lenses (Gil, Gi2,..., Gj1, Gj2 ,... Also serves as a conversion lens for converting into a light beam that forms an image point of a finite distance at the specified position as described above, the beam compressor lenses (Gil, Gi2,..., Gj1, Gj2,...) It is preferable to provide a finite focal length of an appropriate value, positive or negative, not infinite.
  • the beam compressor lens (Gil, Gi2,..., Gj1, Gj2,%) Is described as being provided for each output beam of the integrated light source (Wi1 ′, Wj1 ′).
  • the beam compressor lens (Gil, Gi2,..., Gj1, Gj2,...) Can be replaced with a cylindrical lens having a generatrix in the y-axis direction.
  • the step-like mirrors (Mil, Mi2,..., Mj1, Mj2,%) Extend in the y-axis direction, and a plurality of beams arranged in the y-axis direction are collectively displayed.
  • the cylindrical lens also has a structure in which the generatrix extends in the y-axis direction, whereby the thickness in the x-axis direction is collectively reduced with respect to a plurality of beams arranged in the y-axis direction. Can be. Even if this state is illustrated, since the beam compressor lens (Gil, Gi2,..., Gj1, Gj2,...) In FIG. To do.
  • the distances to the condensing element (Ef) are not uniform (however, the distance referred to here is, for example, from the output-side main plane of the collimator element of each element light source to the input-side main plane of the condensing element (Ef)) And the distance between them.) Therefore, if the focal length of the conversion lens that is inserted into the light beam from each element light source and converts to a light beam that forms an image point of a finite distance at the specified position is the same regardless of the element light source, The arrangement of the output image points (J1, J2,%) From the optical element (Ef) is perpendicular to the axis of the condensing element (Ef) as shown in FIG. There is a possibility of causing a phenomenon of falling off and tilting.
  • an image point of a finite distance at the specified position is formed according to the distance from each element light source in the integrated light source to the light collecting element (Ef). What is necessary is just to adjust the focal distance of the conversion lens for converting into the light beam which carries out.
  • the light condensing region (Aq) becomes a small region where the optical power is concentrated by a method other than realizing the optical system having the light condensing region (Aq) as the exit pupil described above.
  • a diffusion plate (Bi, Bj) it can be realized by inserting a diffusion plate (Bi, Bj) at the position shown in FIG.
  • the present invention can be used in industries that design and manufacture multi-wavelength light sources using light emitting elements such as semiconductor lasers, such as white light sources that can be used in optical devices such as projectors.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Projection Apparatus (AREA)

Abstract

The purpose of the preset invention is to achieve high arrival efficiency for excitation light traveling from a light-emitting element to a fluorescent body and high outcoupling efficiency for light emitted externally from the fluorescent body. A multi-wavelength light source comprises: an integrated light source wherein multiple element light sources each including a light-emitting element and a collimator element are integrated side by side; a dichroic reflective element wherein regions that selectively reflect the light with the same emission wavelength as the light-emitting element are selectively provided at the points where light beams emitted from the integrated light source impinge; a condensing element for condensing a light beam; and a fluorescent body for absorbing the light with the same emission wavelength as the light-emitting element as the excitation light and emitting fluorescent light in another wavelength bandwidth. The condensing element converts a diverging light beam mixed with the fluorescent light emitted from a condensing region on the surface of the fluorescent body and the residual excitation light reflected from the condensing region into a light beam that is propagated in the direction opposite the direction of a focused light beam to form a distant image. The converted light beam passes through the dichroic reflective element and is thereby output externally as a mixed output light beam.

Description

多波長光源および光源装置Multi-wavelength light source and light source device
 本発明は、例えば、プロジェクタ等の光学装置において使用可能な白色光源などのような、半導体レーザ等の発光素子を用いた多波長光源および該多波長光源を備えた光源装置に関する。 The present invention relates to a multiwavelength light source using a light emitting element such as a semiconductor laser, such as a white light source usable in an optical apparatus such as a projector, and a light source device including the multiwavelength light source.
 例えば、DLP(TM)プロジェクタや液晶プロジェクタのような画像表示用の光源装置や、フォトマスク露光装置においては、これまで、キセノンランプや超高圧水銀ランプなどの高輝度放電ランプ(HIDランプ)が使用されてきた。
 一例として、本発明の光源装置に係わる従来の光源装置の一種の一部の一形態を説明する図である、図11を用いてプロジェクタの原理について述べる(参考:特開2004-252112号公報など)。
For example, high-intensity discharge lamps (HID lamps) such as xenon lamps and ultra-high pressure mercury lamps have been used in light source devices for image display such as DLP (TM) projectors and liquid crystal projectors, and photomask exposure apparatuses. It has been.
As an example, the principle of the projector will be described with reference to FIG. 11, which is a diagram for explaining one form of a part of a conventional light source device related to the light source device of the present invention (reference: Japanese Patent Application Laid-Open No. 2004-252112, etc.) ).
 前記したように、高輝度放電ランプ等からなる光源(SjA)からの光は、凹面反射鏡やレンズ等からなる集光手段(図示を省略)の助けを借りるなどして、光均一化手段(FmA)の入射端(PmiA)に入力され、射出端(PmoA)から出力される。
 ここで、前記光均一化手段(FmA)として、例えば、光ガイドを使うことができ、これは、ロッドインテグレータ、ライトトンネルなどの名称でも呼ばれており、ガラスや樹脂などの光透過性の材料からなる角柱によって構成され、前記入射端(PmiA)に入力された光は、光ファイバと同じ原理に従って、前記光均一化手段(FmA)の側面で全反射を繰り返しながら、前記光均一化手段(FmA)の中を伝播することにより、仮に前記入射端(PmiA)に入力された光の分布にムラがあったとしても、前記射出端(PmoA)上の照度が十分に均一化されるように機能する。
As described above, light from the light source (SjA) composed of a high-intensity discharge lamp or the like is obtained with the help of a light condensing means (not shown) composed of a concave reflecting mirror, a lens, or the like. FmA) is input to the incident end (PmiA) and output from the exit end (PmoA).
Here, as the light homogenizing means (FmA), for example, a light guide can be used, which is also called a name such as a rod integrator or a light tunnel, and is a light transmissive material such as glass or resin. In accordance with the same principle as that of an optical fiber, the light homogenizing means (FmiA) repeats total reflection on the side surface of the light homogenizing means (FmA). By propagating through FmA), even if the distribution of light input to the incident end (PmiA) is uneven, the illuminance on the exit end (PmoA) is sufficiently uniformed. Function.
 なお、いま述べた光ガイドに関しては、前記した、ガラスや樹脂などの光透過性の材料からなる角柱によって構成されるものの他に、中空の角筒で、その内面が反射鏡になっており、同様に内面で反射を繰り返しながら光を伝播させ、同様の機能を果たすものもある。 As for the light guide just described, in addition to the above-described prisms made of a light-transmitting material such as glass and resin, a hollow square tube, the inner surface of which is a reflecting mirror, Similarly, there are some which perform the same function by propagating light while repeating reflection on the inner surface.
 前記射出端(PmoA)の四角形の像が、2次元光振幅変調素子(DmjA)上に結像されるよう、照明レンズ(Ej1A)を配置することにより、前記射出端(PmoA)から出力された光によって前記2次元光振幅変調素子(DmjA)が照明される。ただし、図11においては、前記照明レンズ(Ej1A)と前記2次元光振幅変調素子(DmjA)との間にミラー(MjA)を配置してある。
 そして前記2次元光振幅変調素子(DmjA)は、映像信号に従って、画素毎に光を投影レンズ(Ej2A)に入射される方向に向かわせるよう、あるいは入射されない方向に向かわせるように変調することにより、スクリーン(Tj)上に画像を表示する。
The illumination lens (Ej1A) is arranged so that a square image of the emission end (PmoA) is formed on the two-dimensional light amplitude modulation element (DmjA), and is output from the emission end (PmoA). The two-dimensional light amplitude modulation element (DmjA) is illuminated with light. However, in FIG. 11, a mirror (MjA) is disposed between the illumination lens (Ej1A) and the two-dimensional light amplitude modulation element (DmjA).
The two-dimensional light amplitude modulation element (DmjA) modulates the light so that it is directed to the direction of incidence on the projection lens (Ej2A) or not to the direction of incidence according to the video signal. The image is displayed on the screen (Tj).
 なお、前記したような2次元光振幅変調素子は、ライトバルブと呼ばれることもあり、図11の光学系の場合は、前記2次元光振幅変調素子(DmjA)として、一般にDMD(TM)(ディジタル・マイクロミラー・デバイス)が使われることが多い。 The two-dimensional light amplitude modulation element as described above is sometimes called a light valve. In the case of the optical system shown in FIG. 11, the two-dimensional light amplitude modulation element (DmjA) is generally DMD (TM) (digital).・ Micromirror devices are often used.
 光均一化手段に関しては、前記した光ガイドの他に、フライアイインテグレータという名称で呼ばれるものもあり、この光均一化手段を使ったプロジェクタについて、一例として、本発明の光源装置に係わる従来の光源装置の一種の一部の一形態を説明する図である、図12を用いてその原理を述べる(参考:特開2001-142141号公報など)。 In addition to the above-described light guide, there is a light uniforming means called a fly eye integrator. As an example of a projector using this light uniformizing means, a conventional light source related to the light source device of the present invention is used. The principle of the apparatus will be described with reference to FIG. 12, which is a diagram for explaining one form of a part of the apparatus (reference: JP-A-2001-142141, etc.).
 高輝度放電ランプ等からなる光源(SjB)からの光は、凹面反射鏡やレンズ等からなるコリメータ手段(図示を省略)の助けを借りるなどして、略平行光束として、光均一化手段たるフライアイインテグレータ(FmB)の入射端(PmiB)に入力され、射出端(PmoB)から出力される。ここで、前記フライアイインテグレータ(FmB)は、入射側の前段フライアイレンズ(F1B)と射出側の後段フライアイレンズ(F2B)と照明レンズ(Ej1B)との組合せで構成される。
 前記前段フライアイレンズ(F1B)、前記後段フライアイレンズ(F2B)ともに、同一焦点距離、同一形状の四角形のレンズを、縦横それぞれに多数並べたものとして形成されている。
Light from a light source (SjB) composed of a high-intensity discharge lamp or the like is converted into a substantially collimated light beam with the help of collimator means (not shown) composed of a concave reflecting mirror, lens, etc. It is input to the incident end (PmiB) of the eye integrator (FmB) and output from the exit end (PmoB). Here, the fly eye integrator (FmB) is composed of a combination of a front stage fly-eye lens (F1B) on the incident side, a rear stage fly-eye lens (F2B) on the exit side, and an illumination lens (Ej1B).
Both the front fly-eye lens (F1B) and the rear fly-eye lens (F2B) are formed by arranging a large number of rectangular lenses having the same focal length and the same shape in the vertical and horizontal directions.
 前記前段フライアイレンズ(F1B)の各レンズと、それぞれの後段にある、前記後段フライアイレンズ(F2B)の対応するレンズとは、ケーラー照明と呼ばれる光学系を構成しており、したがって、ケーラー照明光学系が縦横に多数並んでいることになる。
一般にケーラー照明光学系とは、2枚のレンズから構成され、前段レンズが光を集めて対象面を照明するに際し、前段レンズは、対象面に光源像を結像するのではなく、後段レンズ中央の面上に光源像を結像し、後段レンズが前段レンズの外形の四角形を対象面(照明したい面)に結像するよう配置することにより、対象面を均一に照明するものである。
 後段レンズの働きは、もしこれが無い場合は、光源が完全な点光源でなく有限の大きさを持つとき、その大きさに依存して対象面の四角形の周囲部の照度が落ちる現象を防ぐためで、後段レンズによって、光源の大きさに依存せずに、対象面の四角形の周囲部まで均一な照度にすることができる。
Each lens of the front-stage fly-eye lens (F1B) and the corresponding lens of the rear-stage fly-eye lens (F2B) in the subsequent stage constitute an optical system called Koehler illumination. A large number of optical systems are arranged vertically and horizontally.
In general, the Kohler illumination optical system is composed of two lenses. When the front lens collects light and illuminates the target surface, the front lens does not form a light source image on the target surface, but the center of the rear lens. A light source image is formed on this surface, and the rear lens is arranged so as to form an image of the quadrangle of the outer shape of the front lens on the target surface (surface to be illuminated), thereby uniformly illuminating the target surface.
The function of the latter lens is to prevent the phenomenon that the illuminance around the square of the target surface falls depending on the size when the light source is not a perfect point light source but has a finite size if it is not Thus, the rear lens can make the illuminance uniform to the periphery of the square of the target surface without depending on the size of the light source.
 ここで、図12の光学系の場合、前記フライアイインテグレータ(FmB)には略平行光束が入力されることを基本としているため、前記前段フライアイレンズ(F1B)と前記後段フライアイレンズ(F2B)との間隔は、それらの焦点距離に等しくなるように配置され、よってケーラー照明光学系としての均一照明の対象面の像は無限遠に生成される。ただし、前記後段フライアイレンズ(F2B)の後段には、前記照明レンズ(Ej1B)を配置してあるため、対象面は、無限遠から前記照明レンズ(Ej1B)の焦点面上に引き寄せられる。
 縦横に多数並んでいるケーラー照明光学系は、入射光軸(ZiB)に平行であり、それぞれの中心軸に対して略軸対称に光束が入力されるため、出力光束も略軸対称であるから、レンズ面に同じ角度で入射した光線は、レンズ面上の入射位置によらず、焦点面上の同じ点に向かうよう屈折される、というレンズの性質、即ちレンズのフーリエ変換作用により、全てのケーラー照明光学系の出力は、前記照明レンズ(Ej1B)の焦点面上の同じ対象面に結像される。
Here, in the case of the optical system of FIG. 12, the fly-eye integrator (FmB) is basically input with a substantially parallel light beam, so the front fly-eye lens (F1B) and the rear fly-eye lens (F2B). ) Are arranged to be equal to their focal lengths, so that an image of the target surface of uniform illumination as the Kohler illumination optical system is generated at infinity. However, since the illumination lens (Ej1B) is disposed at the rear stage of the rear fly-eye lens (F2B), the target surface is drawn toward the focal plane of the illumination lens (Ej1B) from infinity.
Since many Koehler illumination optical systems arranged in the vertical and horizontal directions are parallel to the incident optical axis (ZiB) and the light fluxes are input substantially axially symmetrically with respect to the respective central axes, the output light flux is also substantially axially symmetric. Because of the nature of the lens, that is, the Fourier transform action of the lens, all rays incident on the lens surface at the same angle are refracted toward the same point on the focal plane regardless of the incident position on the lens surface. The output of the Koehler illumination optical system is imaged on the same target surface on the focal plane of the illumination lens (Ej1B).
 その結果、前記前段フライアイレンズ(F1B)の各レンズ面での照度分布が全て重ね合わされ、よって、ケーラー照明光学系が1個の場合よりも照度分布がより均一となった、1個の合成四角形の像が、前記入射光軸(ZiB)上に形成されることになる。
 前記合成四角形の像の位置に2次元光振幅変調素子(DmjB)を配置することにより、前記射出端(PmoB)から出力された光によって、照明対象である前記2次元光振幅変調素子(DmjB)が照明される。ただし、照明に際しては、前記照明レンズ(Ej1B)と前記2次元光振幅変調素子(DmjB)との間に偏光ビームスプリッタ(MjB)を配置して、これにより光が前記2次元光振幅変調素子(DmjB)に向けて反射されるようにしてある。
 そして前記2次元光振幅変調素子(DmjB)は、映像信号に従って、画素毎に光の偏光方向を90度回転させる、あるいは回転させないように変調して反射することにより、回転させられた光のみが、前記偏光ビームスプリッタ(MjB)を透過して投影レンズ(Ej3B)に入射され、スクリーン(Tj)上に画像を表示する。
As a result, all the illuminance distributions on the respective lens surfaces of the preceding fly-eye lens (F1B) are superposed, so that the illuminance distribution becomes more uniform than in the case of a single Koehler illumination optical system. A square image is formed on the incident optical axis (ZiB).
By disposing a two-dimensional light amplitude modulation element (DmjB) at the position of the composite square image, the two-dimensional light amplitude modulation element (DmjB) that is an object to be illuminated by light output from the emission end (PmoB). Is illuminated. However, for illumination, a polarizing beam splitter (MjB) is disposed between the illumination lens (Ej1B) and the two-dimensional light amplitude modulation element (DmjB), so that light is transmitted to the two-dimensional light amplitude modulation element ( DmjB) is reflected.
The two-dimensional light amplitude modulation element (DmjB) rotates the polarization direction of light by 90 degrees for each pixel according to the video signal, or modulates and reflects the light so that only the rotated light is reflected. Then, the light passes through the polarizing beam splitter (MjB) and is incident on the projection lens (Ej3B) to display an image on the screen (Tj).
 なお、図12の光学系の場合、前記2次元光振幅変調素子(DmjB)として、一般にLCOS(TM)(シリコン液晶デバイス)が使われることが多い。
 このような液晶デバイスの場合、規定の偏光方向の光の成分しか有効に変調できないため、普通は、規定の偏光方向に平行な成分はそのまま透過させるが、規定の偏光方向に垂直な成分のみ偏光方向を90度回転させ、結果として全ての光を有効利用できるようにするための偏光整列機能素子(PcB)が、例えば前記後段フライアイレンズ(F2B)の後段に挿入される。
 また、前記2次元光振幅変調素子(DmjB)には略平行光が入射されるよう、例えばその直前に、フィールドレンズ(Ej2B)が挿入される。
In the case of the optical system shown in FIG. 12, generally, LCOS (TM) (silicon liquid crystal device) is often used as the two-dimensional light amplitude modulation element (DmjB).
In the case of such a liquid crystal device, since only the light component in the specified polarization direction can be effectively modulated, normally the component parallel to the specified polarization direction is transmitted as it is, but only the component perpendicular to the specified polarization direction is polarized. A polarization alignment function element (PcB) for rotating the direction by 90 degrees and, as a result, enabling effective use of all light, is inserted, for example, in the rear stage of the rear fly-eye lens (F2B).
For example, a field lens (Ej2B) is inserted immediately before the two-dimensional light amplitude modulation element (DmjB) so that substantially parallel light is incident thereon.
 なお、2次元光振幅変調素子に関しては、図12に記載したような反射型のものの他に、透過型の液晶デバイス(LCD)も、それに適合する光学配置にして使用される(参考:特開平10-133303号公報など)。 As for the two-dimensional optical amplitude modulation element, in addition to the reflective type as shown in FIG. 12, a transmission type liquid crystal device (LCD) is also used with an optical arrangement suitable for the same (reference: No. 10-133303).
 ところで、通常のプロジェクタでは、画像をカラー表示するために、例えば、前記光均一化手段の後段にカラーホイールなどの動的色フィルタを配置して、R,G,B(赤,緑,青)の色順次光束として前記2次元光振幅変調素子を照明し、時分割によってカラー表示を実現したり、あるいは、前記光均一化手段の後段にダイクロイックミラーやダイクロイックプリズムを配置してR,G,Bの3原色に色分解した光で各色独立に設けた2次元光振幅変調素子を照明し、ダイクロイックミラーやダイクロイックプリズムを配置してR,G,Bの3原色の変調光束の色合成を行うための光学系を構成するが、複雑になることを避けるため、図11、図12においては省略してある。 By the way, in a normal projector, in order to display an image in color, for example, a dynamic color filter such as a color wheel is disposed after the light uniformizing means, and R, G, B (red, green, blue) The two-dimensional light amplitude modulation element is illuminated as a color sequential light beam, and color display is realized by time division, or a dichroic mirror or dichroic prism is arranged at the subsequent stage of the light uniformizing means, and R, G, B To illuminate a two-dimensional light amplitude modulation element provided independently for each color with light separated into the three primary colors and arrange a dichroic mirror or dichroic prism to perform color synthesis of modulated light beams of the three primary colors R, G, and B Although not shown in FIGS. 11 and 12, it is omitted in order to avoid complexity.
 しかしながら、前記した高輝度放電ランプは、投入電力から光パワーへの変換効率が低い、すなわち発熱損が大きい、あるいは寿命が短い、などの欠点を有していた。
 これらの欠点を克服した代替光源として、近年、LEDや半導体レーザ等の固体光源が注目されている。
 このうち、LEDについては、放電ランプと比較して発熱損が小さく、また長寿命であるが、放射される光に関しては、放電ランプと同様に指向性が無いため、前記した光源装置や露光装置等の、特定の方向の光のみが利用可能な用途においては、光の利用効率が低いという問題があった。
However, the high-intensity discharge lamp described above has drawbacks such as low conversion efficiency from input power to optical power, that is, a large heat loss or a short life.
In recent years, solid light sources such as LEDs and semiconductor lasers have attracted attention as alternative light sources that have overcome these drawbacks.
Among them, the LED has a smaller heat loss and a longer life than the discharge lamp, but the emitted light has no directivity like the discharge lamp, so the light source device and the exposure device described above. In applications where only light in a specific direction can be used, there is a problem that the light use efficiency is low.
 一方、半導体レーザについては、LEDと同様に、発熱損が小さく、長寿命である上に、指向性が高いため、前記した光源装置や露光装置等の、特定の方向の光のみが利用可能な用途においても、光の利用効率が高いという利点がある。
 ところが、R,G,Bの3原色のそれぞれを半導体レーザで実現しようとすると問題が生ずる。
 例えば、赤色の半導体レーザとして現在容易に入手可能なものは波長帯域が635~640nmであり、視感度が低いため大きな光パワーを必要とするし、また、例えば、緑色の半導体レーザとして現在容易に入手可能なものは波長帯域が522~526nmであり、画像再生の観点からは、理想的な波長からは短過ぎる問題がある。
On the other hand, semiconductor lasers, like LEDs, have low heat loss, long life, and high directivity, so that only light in a specific direction such as the above-described light source device and exposure device can be used. In use, there is an advantage that the utilization efficiency of light is high.
However, there is a problem when trying to realize each of the three primary colors R, G, and B with a semiconductor laser.
For example, what is currently readily available as a red semiconductor laser has a wavelength band of 635 to 640 nm and requires a large optical power due to low visibility, and for example, as a green semiconductor laser, What is available has a wavelength band of 522 to 526 nm, and from the viewpoint of image reproduction, there is a problem that it is too short from an ideal wavelength.
 そのため、半導体レーザの放射光を直接使う波長帯域は青色のみとし、赤色および緑色は、成分調整によって発光波長の調整が容易な蛍光体を用いて、青色の半導体レーザ放射光を波長変換することによって実現すべく、従来より技術開発がなされて来た。
 例えば、特開2011-165555号公報には、青色で発光する半導体レーザ等の固体光源からの光を励起光として回転円板の1点に集光し、前記回転円板には、青色の補色である黄色の蛍光を発する黄色蛍光体層を設けたセグメントと青色散乱反射層を設けたセグメントとを設けることにより、黄色と青色の光束を順次発生させる白色光源に関する技術が記載されている。
 しかし、この技術の場合、固体光源からの励起光を回転円板に向かわせ、かつ回転円板からの光を出力光として抽出するための出力光分離抽出素子として、単純な偏光ダイクロイックミラーを使用しているため、回転円板から出て来る青色光のうちの、固体光源へ戻ってしまう光量の比率が高く、光の利用効率が良くない問題がある。
Therefore, the wavelength band that directly uses the emitted light of the semiconductor laser is only blue, and red and green are obtained by converting the wavelength of the emitted light of the blue semiconductor laser using a phosphor that can easily adjust the emission wavelength by adjusting the components. Technology has been developed to achieve this.
For example, in Japanese Patent Application Laid-Open No. 2011-165555, light from a solid-state light source such as a semiconductor laser emitting blue light is condensed as one excitation light at one point of a rotating disk, and the rotating disk has a blue complementary color. A technology relating to a white light source that sequentially generates yellow and blue luminous fluxes by providing a segment provided with a yellow phosphor layer emitting yellow fluorescence and a segment provided with a blue scattering reflection layer is described.
However, in this technology, a simple polarization dichroic mirror is used as an output light separation and extraction element for directing excitation light from a solid light source to a rotating disk and extracting light from the rotating disk as output light. Therefore, the ratio of the amount of light that returns to the solid light source out of the blue light coming out of the rotating disk is high, and there is a problem that the light use efficiency is not good.
 さらに、例えば特開2012-108486号公報には、前記と同様の、青色で発光する半導体レーザ等の固体光源からの光を励起光として回転円板の1点に集光し、前記回転円板には、青色の補色である黄色の蛍光を発する黄色蛍光体層を設けたセグメントと青色鏡面反射層を設けたセグメントとを設けることにより、黄色と青色の光束を順次発生させるものであるが、単純な偏光ダイクロイックミラーを使用した出力光分離抽出素子と、回転円板との間に、励起光に対する4分の1波長板を挿入することによって、回転円板から出て来た青色光のうちの、固体光源へ戻ってしまう光量の比率下げ、光の利用効率を改善する技術が記載されている。
 しかし、この技術の場合、回転円板から出て来る青色光は、散乱反射ではなく鏡面反射によって生成されるものであるため、半導体レーザからの励起光のコヒーレンシーが高く、よってスペックルノイズが多い問題がある。
Further, for example, in Japanese Patent Application Laid-Open No. 2012-108486, light from a solid light source such as a semiconductor laser emitting blue light is condensed as one excitation light onto one point of the rotating disk. Are provided with a segment provided with a yellow phosphor layer emitting yellow fluorescence, which is a complementary color of blue, and a segment provided with a blue specular reflection layer, whereby yellow and blue light fluxes are sequentially generated. By inserting a quarter-wave plate for the excitation light between the output light separation / extraction element using a simple polarization dichroic mirror and the rotation disk, the blue light emitted from the rotation disk A technique for reducing the ratio of the amount of light returning to the solid light source and improving the light use efficiency is described.
However, in the case of this technique, the blue light coming out of the rotating disk is generated by specular reflection rather than scattering reflection, so the coherency of the excitation light from the semiconductor laser is high, and thus speckle noise is high. There's a problem.
 また、例えば特開2012-119121号公報には、青色で発光する半導体レーザ等による複数の固体光源からの励起光を、前記固体光源それぞれに対応して設けた複数の凹面反射鏡(回転楕円面)によって、蛍光体の1点、もしくは近接する複数の点に集光することによって、散乱された励起光と蛍光を利用する、輝度の高い白色光源に関する技術が記載されている。
 しかし、この技術の場合、固体光源の数に等しい個数の凹面反射鏡を軸対称に3次元的に配置し、各固体光源も各凹面反射鏡に相対的な所定位置に正確に配置する必要があるため、構造が複雑になる問題がある。
 また、蛍光体から発する光の利用効率を如何にして高めるかという課題については未解決である。
Further, for example, in Japanese Patent Application Laid-Open No. 2012-119121, a plurality of concave reflecting mirrors (spheroid ellipsoids) provided with excitation light from a plurality of solid light sources by a semiconductor laser emitting blue light corresponding to each of the solid light sources. ) Describes a technology relating to a white light source with high luminance that uses scattered excitation light and fluorescence by focusing light on one point of the phosphor or a plurality of adjacent points.
However, in the case of this technique, the number of concave reflecting mirrors equal to the number of solid light sources needs to be arranged three-dimensionally symmetrically, and each solid light source needs to be accurately arranged at a predetermined position relative to each concave reflecting mirror. Therefore, there is a problem that the structure becomes complicated.
Further, the problem of how to improve the utilization efficiency of light emitted from the phosphor is not yet solved.
 また、例えば特開2013-156657号公報には、青色で発光する半導体レーザ等による複数の固体光源からの励起光を、鏡面箱に設けた小さな入口の開口を通過するようにレンズで集光して前記鏡面箱内の出口側に設けた蛍光体を発光せしめ、前記鏡面箱出口には、励起光を反射して前記鏡面箱に戻すとともに蛍光を透過するダイクロイックフィルタを設け、また前記鏡面箱が蛍光を出口側に向けて反射するように構成することにより、励起光および蛍光の利用効率を高めるようにした技術が記載されている。
 しかし、この技術の場合、ダイクロイックフィルタに到達する励起光や蛍光は散乱光となり、光の方向分布が大きいため、ダイクロイックフィルタの反射・透過の波長選択性が非常に悪くなって効率が低下すること、および、前記励起光入口開口の大きさに比して前記鏡面箱の大きさを十分に大きくしなければ、前記鏡面箱を設けることの効果が現れないが、そのようにすると前記鏡面箱の出口の面積が大きくなり、点光源性が低下することにより、結局、高い光利用効率を得ることが困難な問題がある。
Also, for example, in Japanese Patent Laid-Open No. 2013-156657, excitation light from a plurality of solid-state light sources such as a semiconductor laser emitting blue light is collected by a lens so as to pass through a small entrance opening provided in a mirror box. The phosphor provided on the exit side in the mirror box is caused to emit light, and at the exit of the mirror box, a dichroic filter that reflects excitation light and returns to the mirror box and transmits fluorescence is provided. A technique is described in which the use efficiency of excitation light and fluorescence is enhanced by reflecting the fluorescence toward the exit side.
However, in this technology, the excitation light and fluorescence that reach the dichroic filter become scattered light, and the direction distribution of the light is large, so that the wavelength selectivity of reflection / transmission of the dichroic filter becomes very poor and efficiency is lowered. If the size of the specular box is not sufficiently large compared to the size of the excitation light entrance opening, the effect of providing the specular box does not appear. Since the area of the exit becomes large and the point light source property is lowered, there is a problem that it is difficult to obtain high light utilization efficiency.
 また、例えば特開2014-082144号公報には、青色で発光する半導体レーザ等による複数の固体光源からの励起光を、前記固体光源それぞれに対応して設けたコリメータレンズで全体として一つの光束と成し、共通の凹面反射鏡によって、蛍光体の小さい領域に集光することによって、蛍光体から発する蛍光、もしくは散乱された励起光と蛍光を利用する、輝度の高い白色光源に関する技術が記載されている。
 しかし、この技術の場合、蛍光体から発する光の利用効率を如何にして高めるかという課題については未解決である。
Further, for example, in Japanese Patent Application Laid-Open No. 2014-082144, excitation light from a plurality of solid light sources such as a semiconductor laser emitting blue light is combined with one light beam as a whole by a collimator lens provided corresponding to each of the solid light sources. And a technology related to a high-brightness white light source that uses fluorescence emitted from the phosphor, or scattered excitation light and fluorescence, by condensing on a small area of the phosphor with a common concave reflecting mirror. ing.
However, in the case of this technique, the problem of how to increase the utilization efficiency of light emitted from the phosphor is not yet solved.
特開2011-165555号公報JP 2011-165555 A 特開2012-108486号公報JP 2012-108486 A 特開2012-119121号公報JP 2012-119121 A 特開2013-156657号公報JP 2013-156657 A 特開2014-082144号公報Japanese Patent Application Laid-Open No. 2014-082144
 本発明が解決しようとする課題は、発光素子から蛍光体への励起光の高い到達効率と、前記蛍光体から発した光の外部への高い取出し効率とを達成した多波長光源および光源装置を提供することにある。 A problem to be solved by the present invention is to provide a multi-wavelength light source and a light source device that achieve high arrival efficiency of excitation light from a light emitting element to a phosphor and high extraction efficiency of light emitted from the phosphor to the outside. It is to provide.
 本発明における第1の発明の多波長光源は、発光素子(Y1)と、該発光素子(Y1)から放射される放射光(Fa1)を遠方の像を形成する光束(Fbl)に変換するためのコリメータ素子(E1)との組を、1個の要素光源(U1)として、該要素光源(U1,U2,…)の複数個を並べて集積した集積光源(W)と、
 前記発光素子(Y1,Y2,…)の放射波長の光を選択的に反射する分光特性を有する領域(P1,P2,…)を、前記集積光源(W)から出力されるそれぞれの前記光束(Fb1,Fb2,…)が当たる箇所に選択的に設けたダイクロイック反射素子(M)と、
 前記光束(Fbl,Fb2,…)が前記ダイクロイック反射素子(M)によって反射されて生成された光束(Fcl,Fc2,…)を集光するための集光素子(Ef)と、
 前記光束(Fcl,Fc2,…)が前記集光素子(Ef)によって集光されて生成された集束光束(Fd)が集光領域(Aq)を形成するときに、該集光領域(Aq)が形成される位置がその表面になるように配置され、前記発光素子(Yl,Y2,…)の放射波長の光を励起光として吸収して他の波長帯域の蛍光を放出する蛍光体(N)と、
を具備しており、
 前記蛍光体(N)の表面上の前記集光領域(Aq)から放出される蛍光と、前記集光領域(Aq)から反射される残余励起光との混合発散光束(Fe)が生成されるとともに、
 前記混合発散光束(Fe)が、前記集光素子(Ef)によって、前記集束光束(Fd)とは逆方向に伝搬されて遠方の像を形成する光束(Ff)に変換され、
 該光束(Ff)が前記ダイクロイック反射素子(M)を透過することによって、外部に混合出力光束(Fg)が出力されることを特徴とする。
The multi-wavelength light source according to the first aspect of the present invention converts the light emitting element (Y1) and the radiated light (Fa1) emitted from the light emitting element (Y1) into a light beam (Fbl) that forms a distant image. An integrated light source (W) in which a plurality of element light sources (U1, U2,...) Are arranged side by side as a single element light source (U1).
Each of the luminous fluxes (P1, P2,...) Having spectral characteristics that selectively reflects light having a radiation wavelength of the light emitting elements (Y1, Y2,...) Is output from the integrated light source (W). A dichroic reflection element (M) selectively provided at a position where Fb1, Fb2,.
A condensing element (Ef) for condensing the luminous flux (Fcl, Fc2,...) Generated by reflecting the luminous flux (Fbl, Fb2,...) By the dichroic reflecting element (M);
When the focused light beam (Fd) generated by condensing the light beam (Fcl, Fc2,...) By the light collecting element (Ef) forms the light collection region (Aq), the light collection region (Aq). Is formed such that the position where the light is formed is on the surface thereof, and the phosphor (N) that absorbs the light having the emission wavelength of the light emitting element (Y1, Y2,... )When,
It has
A mixed divergent light beam (Fe) of fluorescence emitted from the light collection region (Aq) on the surface of the phosphor (N) and residual excitation light reflected from the light collection region (Aq) is generated. With
The mixed divergent light beam (Fe) is converted by the light collecting element (Ef) into a light beam (Ff) that propagates in the opposite direction to the focused light beam (Fd) to form a distant image.
The luminous flux (Ff) is transmitted through the dichroic reflection element (M), whereby a mixed output luminous flux (Fg) is output to the outside.
 本発明における第1の発明のもう一つの形態の多波長光源は、発光素子(Y1)と、該発光素子(Y1)から放射される放射光(Fa1)を遠方の像を形成する光束(Fb1)に変換するためのコリメータ素子(E1)との組を、1個の要素光源(U1)として、該要素光源(Ul,U2,…)の複数個を並べて集積した集積光源(W)と、
 前記発光素子(Y1,Y2,…)の放射波長の光を選択的に透過する分光特性を有する領域(P1,P2,…)を、前記集積光源(W)から出力されるそれぞれの前記光束(Fb1,Fb2,…)が当たる箇所に選択的に設けたダイクロイック反射素子(M)と、
 前記光束(Fbl,Fb2,…)が前記ダイクロイック反射素子(M)を透過して生成された光束(Fcl,Fc2,…)を集光するための集光素子(Ef)と、
 前記光束(Fc1,Fc2,…)が前記集光素子(Ef)によって集光されて生成された集束光束(Fd)が集光領域(Aq)を形成するときに、該集光領域(Aq)が形成される位置がその表面になるように配置され、前記発光素子(Yl,Y2,…)の放射波長の光を励起光として吸収して他の波長帯域の蛍光を放出する蛍光体(N)と、
を具備しており、
 前記蛍光体(N)の表面上の前記集光領域(Aq)から放出される蛍光と、前記集光領域(Aq)から反射される残余励起光との混合発散光束(Fe)が生成されるとともに、
 前記混合発散光束(Fe)が、前記集光素子(Ef)によって、前記集束光束(Fd)とは逆方向に伝搬されて遠方の像を形成する光束(Ff)に変換され、
 該光束(Ff)が前記ダイクロイック反射素子(M)によって反射されることにより、外部に混合出力光束(Fg)が出力されることを特徴とするものである。
The multi-wavelength light source according to another aspect of the first aspect of the present invention is a light-emitting element (Y1) and a luminous flux (Fb1) that forms a distant image of radiated light (Fa1) emitted from the light-emitting element (Y1). And a collimator element (E1) for conversion into a single element light source (U1), and an integrated light source (W) in which a plurality of element light sources (U1, U2,...) Are arranged side by side,
The regions (P1, P2,...) Having spectral characteristics that selectively transmit light having the emission wavelength of the light emitting elements (Y1, Y2,...) Are transmitted through the respective luminous fluxes (W) output from the integrated light source (W). A dichroic reflection element (M) selectively provided at a position where Fb1, Fb2,.
A condensing element (Ef) for condensing the luminous flux (Fcl, Fc2,...) Generated by transmitting the luminous flux (Fbl, Fb2,...) Through the dichroic reflection element (M);
When the converged light beam (Fd) generated by condensing the light beams (Fc1, Fc2,...) By the light collecting element (Ef) forms the light collection region (Aq), the light collection region (Aq). Is formed such that the position where the light is formed is on the surface thereof, and the phosphor (N) which absorbs the light having the emission wavelength of the light emitting element (Yl, Y2,...) As excitation light and emits fluorescence in other wavelength bands. )When,
It has
A mixed divergent light beam (Fe) of fluorescence emitted from the light collection region (Aq) on the surface of the phosphor (N) and residual excitation light reflected from the light collection region (Aq) is generated. With
The mixed divergent light beam (Fe) is converted by the light collecting element (Ef) into a light beam (Ff) that propagates in the opposite direction to the focused light beam (Fd) to form a distant image.
The light flux (Ff) is reflected by the dichroic reflection element (M), so that a mixed output light flux (Fg) is output to the outside.
 本発明における第2の発明の多波長光源は、前記光束(Fbl,Fb2,…)における主光線(Lp1,Lp2,…)に注目したとき、前記主光線(Lp1,Lp2,…)の前記蛍光体(N)の表面において正反射された成分を、前記集光素子(Ef)によって、前記した集光時とは逆方向に伝搬して、前記ダイクロイック反射素子(M)に到達する位置には、前記領域(P1,P2,…)が形成されていないことを特徴とするものである。 The multi-wavelength light source according to the second aspect of the present invention, when focusing on the principal rays (Lp1, Lp2,...) In the luminous flux (Fbl, Fb2,...), The fluorescence of the principal rays (Lp1, Lp2,...). The component regularly reflected on the surface of the body (N) is propagated by the condensing element (Ef) in the direction opposite to that at the time of condensing and reaches the dichroic reflecting element (M). The regions (P1, P2,...) Are not formed.
 本発明における第3の発明の多波長光源は、前記集光領域(Aq)は、前記集光素子(Ef)およびそれよりも前にある光学系が形成する射出瞳であることを特徴とするものである。 The multiwavelength light source according to a third aspect of the present invention is characterized in that the condensing region (Aq) is an exit pupil formed by the condensing element (Ef) and an optical system in front thereof. Is.
 本発明における第4の発明の多波長光源は、前記蛍光体(N)は、前記集光領域(Aq)における前記蛍光体(N)の表面の法線を不変に保ったまま、法線と垂直な方向に移動可能であることを特徴とするものである。 The multi-wavelength light source according to a fourth aspect of the present invention is characterized in that the phosphor (N) is a normal line while keeping the normal of the surface of the phosphor (N) in the light collection region (Aq) unchanged. It is possible to move in a vertical direction.
 本発明における第5の発明の多波長光源は、前記蛍光体(N)は、
緑色の波長帯域に属する蛍光を放出する蛍光体と赤色の波長帯域に属する蛍光を放出する蛍光体との含有比率が、
または緑色の波長帯域に属する蛍光を放出する蛍光体と赤色の波長帯域に属する蛍光を放出する蛍光体と青色の波長帯域の光を反射する反射体との含有比率が、
前記蛍光体(N)の表面上の位置に単調に依存して分布していることを特徴とするものである。
In the multiwavelength light source according to the fifth aspect of the present invention, the phosphor (N) is:
The content ratio of the phosphor that emits fluorescence that belongs to the green wavelength band and the phosphor that emits fluorescence that belongs to the red wavelength band,
Alternatively, the content ratio of the phosphor that emits fluorescence belonging to the green wavelength band, the phosphor that emits fluorescence belonging to the red wavelength band, and the reflector that reflects light in the blue wavelength band is,
The phosphors (N) are distributed monotonically depending on the positions on the surface.
 本発明における第6の発明の多波長光源は、前記集光素子(Ef)はレンズによって構成してあり、該集光素子(Ef)の光軸に沿って、前記蛍光体(N)からの蛍光が来る方向に向かって見たとき、集積光源(Wi,Wj)が前記集光素子(Ef)の左側と右側との両方に配置され、前記ダイクロイック反射素子(M)は左側と右側との2部分から構成されており、
 左側の前記集積光源(Wi)からの光束(Fbil,Fbi2,…)のための左側のダイクロイック反射部(Mi)のダイクロイック面(Smi)と、右側の前記集積光源(Wj)からの光束(Fbj1,Fbj2,…)のための右側のダイクロイック反射部(Mj)のダイクロイック面(Smj)とを屋根型に配置することを特徴とするものである。
In the multiwavelength light source according to the sixth aspect of the present invention, the light condensing element (Ef) is constituted by a lens, and the light from the phosphor (N) along the optical axis of the light condensing element (Ef). When viewed in the direction in which the fluorescence comes, the integrated light sources (Wi, Wj) are arranged on both the left side and the right side of the light collecting element (Ef), and the dichroic reflective element (M) is arranged between the left side and the right side. It consists of two parts,
A dichroic surface (Smi) of the left dichroic reflector (Mi) for a light beam (Fbil, Fbi2,...) From the left integrated light source (Wi) and a light beam (Fbj1) from the right integrated light source (Wj). , Fbj2,...) And the dichroic surface (Smj) of the right dichroic reflector (Mj) are arranged in a roof shape.
 本発明における第7の発明の多波長光源は、左側および右側の前記集積光源(Wi,Wj)それぞれは、前記要素光源(U1,U2,…)を格子状に並べて構成してあり、前記集光素子(Ef)の光軸に垂直な平面に投影した前記領域(P1,P2,…)の並びパターンは、前記集光素子(Ef)の光軸に対して対称になる配置を基本配置として、前記したダイクロイック面(Smi,Smj)の屋根型配置における屋根の稜線の方向に対して平行または垂直な方向に、前記領域(P1,P2,…)の並びパターンの周期の4分の1だけシフトさせた配置であることを特徴とするものである。 According to a seventh aspect of the present invention, the left and right integrated light sources (Wi, Wj) are configured such that the element light sources (U1, U2,...) Are arranged in a grid pattern. The arrangement pattern of the regions (P1, P2,...) Projected on a plane perpendicular to the optical axis of the optical element (Ef) is based on an arrangement that is symmetric with respect to the optical axis of the condensing element (Ef). The period of the arrangement pattern of the regions (P1, P2,...) In a direction parallel or perpendicular to the direction of the ridgeline of the roof in the roof type arrangement of the dichroic surfaces (Smi, Smj) described above. The arrangement is shifted.
 本発明における第8の発明の光源装置は、第1の発明に記載の多波長光源と、該多波長光源から出力された混合出力光束(Fg)が入力されるフライアイインテグレータ(FmB)とから構成した光源装置であって、
 前記ダイクロイック反射素子(M)に設けた前記領域(P1,P2,…)の並びパターンを前記フライアイインテグレータ(FmB)の前段フライアイレンズ(F1B)に対して投影したときの並びパターンの方向と、前記フライアイインテグレータ(FmB)のフライアイレンズの並びの方向とが一致しないように、前記多波長光源と前記フライアイインテグレータ(FmB)とを配置することを特徴とするものである。
According to an eighth aspect of the present invention, there is provided a light source device comprising: the multi-wavelength light source according to the first aspect; and a fly eye integrator (FmB) to which a mixed output light beam (Fg) output from the multi-wavelength light source is input. A light source device comprising:
The direction of the arrangement pattern when the arrangement pattern of the regions (P1, P2,...) Provided in the dichroic reflection element (M) is projected onto the front fly-eye lens (F1B) of the fly-eye integrator (FmB); The multi-wavelength light source and the fly eye integrator (FmB) are arranged so that the directions of the fly eye lenses of the fly eye integrator (FmB) do not coincide with each other.
 発光素子から蛍光体への励起光の高い到達効率と、前記蛍光体から発した光の外部への高い取出し効率とを達成した多波長光源および光源装置を提供することができる。 It is possible to provide a multi-wavelength light source and a light source device that achieve high arrival efficiency of excitation light from the light emitting element to the phosphor and high extraction efficiency of the light emitted from the phosphor to the outside.
本発明の多波長光源を簡略化して示すブロック図を表す。The block diagram which simplifies and shows the multiwavelength light source of this invention is represented. 本発明の多波長光源を簡略化して示すブロック図を表す。The block diagram which simplifies and shows the multiwavelength light source of this invention is represented. 本発明の多波長光源の一部を簡略化して示す模式図を表す。The schematic diagram which simplifies and shows a part of multi-wavelength light source of this invention is represented. 本発明の多波長光源を簡略化して示す模式図を表す。The schematic diagram which simplifies and shows the multiwavelength light source of this invention is represented. 本発明の多波長光源の一部を簡略化して示す模式図を表す。The schematic diagram which simplifies and shows a part of multi-wavelength light source of this invention is represented. 本発明の光源装置の一部の一形態を簡略化して示す概念図を表す。The conceptual diagram which simplifies and shows one form of a part of light source device of this invention is represented. 本発明の多波長光源の実施例の一部の一形態を簡略化して示す図を表す。The figure which simplifies and shows one form of the one part of the Example of the multiwavelength light source of this invention is represented. 本発明の多波長光源の実施例の一部の一形態を簡略化して示す図を表す。The figure which simplifies and shows one form of the one part of the Example of the multiwavelength light source of this invention is represented. 本発明の多波長光源の実施例の一形態を簡略化して示す図を表す。The figure which simplifies and shows one form of the Example of the multiwavelength light source of this invention is represented. 本発明の多波長光源の実施例の一形態を簡略化して示す図を表す。The figure which simplifies and shows one form of the Example of the multiwavelength light source of this invention is represented. 本発明の光源装置に係わる従来の光源装置の一種の一部の一形態を説明する図を表す。The figure explaining one form of one kind of conventional light source device concerning the light source device of this invention is represented. 本発明の光源装置に係わる従来の光源装置の一種の一部の一形態を説明する図を表す。The figure explaining one form of one kind of conventional light source device concerning the light source device of this invention is represented.
 本発明に関する説明において、共役という用語に関しては、幾何光学分野における一般用語として、例えば、AとBとは共役である、と言うとき、少なくとも近軸理論に基づき、レンズ等の結像機能を有する光学素子の作用によってAがBに、またはBがAに結像されることを意味する。
 このとき、A,Bは像であって、孤立した点像が対象として含まれることは当然として、複数の点像からなる集合や、点像が連続的に分布した拡がりのある像も対象として含める。
In the description of the present invention, regarding the term conjugate, as a general term in the field of geometric optics, for example, when A and B are conjugate, it has an imaging function such as a lens based on at least paraxial theory. It means that A is imaged on B or B is imaged on A by the action of the optical element.
At this time, A and B are images, and it is a matter of course that isolated point images are included as targets, and a set of a plurality of point images and a spread image in which point images are continuously distributed are also targets. include.
 ここで、点像あるいは像点(すなわち像)とは、幾何光学分野における一般用語として、実際に光がその点から放射されているもの、光がその点に向かって収束して行ってスクリーンを置くと明るい点が映るもの、光がその点に向かって収束して行くように見える(が、その点は光学系の内部にあってスクリーンを置けない)もの、光がその点から放射されているように見える(が、その点は光学系の内部にあってスクリーンを置けない)もの、の何れをも含み、区別しないし、このとき、結像における収差やピント外れ等によってボケが生じ、理想的な点や回折限界像でなくなる現象は無視する。 Here, a point image or an image point (that is, an image) is a general term in the field of geometric optics, in which light is actually radiated from that point, the light converges toward that point, and the screen is A bright spot appears when placed, the light seems to converge toward that point (but the point is inside the optical system and the screen cannot be placed), the light is emitted from that point (However, the point is inside the optical system and the screen cannot be placed), and no distinction is made. At this time, blurring occurs due to aberrations or defocusing in imaging, Ignore the phenomenon of disappearing from an ideal point or diffraction limited image.
 発光素子が、半導体レーザである場合において、もし半導体レーザが1個ならば、光学系の入力像は、単に1個の点光源と考えればよく、通常は、それを光学系の光軸上に置き、また、半導体レーザからの発散光の発散方向分布の中心光線が光軸に一致する方向に向けて配置すればよい。
 しかし、半導体レーザが複数個あったり、有限の面積内に放射点が連続的に分布する光源の場合は、光学系の入射瞳や射出瞳、主光線について配慮した設計が必要になり、以下においては、このような状況について述べる。
In the case where the light emitting element is a semiconductor laser, if there is one semiconductor laser, the input image of the optical system can be considered as just one point light source, and it is usually on the optical axis of the optical system. In addition, the central beam of the diverging direction distribution of diverging light from the semiconductor laser may be arranged in a direction that coincides with the optical axis.
However, in the case of a light source that has multiple semiconductor lasers or whose radiation points are continuously distributed within a finite area, a design that takes into account the entrance pupil, exit pupil, and chief ray of the optical system is required. Describes this situation.
 一般のカメラレンズを例にとると、通常は開口絞りがレンズの内部に存在するが、光が入る側からレンズを見たときに、レンズを通して見える開口絞りの像を入射瞳、光が出る側からレンズを見たときに、レンズを通して見える開口絞りの像を射出瞳、入射瞳の中心に向かう、または射出瞳の中心から出て来る光線(通常は子午光線)を主光線と呼ぶ。また広義には、主光線以外の光線は周辺光線と呼ばれる。
 ただし、レーザのような指向性を有する光を扱う光学系では、開口絞りによって、光束を切り出す必要が無いために開口絞りが存在しない場合が多く、その場合は、光学系における光の存在形態によって、それらが定義される。
Taking an ordinary camera lens as an example, an aperture stop is usually present inside the lens, but when the lens is viewed from the side where the light enters, the image of the aperture stop that can be seen through the lens is the entrance pupil, the side from which the light exits. A light beam (usually a meridian light beam) that is directed to the center of the exit pupil or entrance pupil or that emerges from the center of the exit pupil when the lens is viewed from the lens is called a principal ray. In a broad sense, rays other than the principal ray are called peripheral rays.
However, in an optical system that handles light having directivity such as a laser, there is often no aperture stop because it is not necessary to cut out the light beam by the aperture stop, and in that case, depending on the form of light in the optical system. They are defined.
 通常は、放射点からの放射光束における、光の方向分布の中心光線を主光線とし、光学系に入射する主光線またはその延長線が光軸と交わる位置に入射瞳があり、光学系から射出する主光線またはその延長線が光軸と交わる位置に射出瞳があると考える。
 ただし、厳密な話をすると、このように定義した主光線と光軸とが、例えば調整誤差のために交わらず、ねじれの位置にあるに過ぎない場合も考えられる。
 しかし、このような現象は本質とは無関係であり、また議論しても不毛であるため、以下においては、このような現象は生じないと見なす、あるいは、主光線と光軸とが最接近する位置において交わっていると見なすことにする。
 また、光学系のなかの、光軸方向(光の伝播方向)に隣接する2個の部分光学系AとBに注目し、Aの直後にBが隣接しているとしたとき、(Aの出力像がBの入力像となるのと同様に)Aの射出瞳はBの入射瞳となるし、そもそも光学系のなかに任意に定義した部分光学系の入射瞳・射出瞳は、(開口絞りが存在すれば全てそれの像であるし、存在しなくても)全て共役のはずであるから、特に区別が必要無ければ、入射瞳・射出瞳を単に瞳と呼ぶ。
Normally, the central ray of the direction distribution of light in the luminous flux from the radiation point is the principal ray, and there is an entrance pupil at the position where the principal ray incident on the optical system or its extension intersects the optical axis, and exits from the optical system. The exit pupil is considered to be at a position where the principal ray or its extension intersects the optical axis.
However, to be exact, there may be a case where the chief ray and the optical axis defined in this way do not intersect due to, for example, an adjustment error and are only in a twisted position.
However, since this phenomenon is irrelevant in nature and is barren to the discussion, in the following, it is assumed that such a phenomenon does not occur or the principal ray and the optical axis are closest to each other Let's consider it to be crossing in position.
Further, when focusing on two partial optical systems A and B adjacent to each other in the optical axis direction (light propagation direction) in the optical system, and B is immediately adjacent to A, The exit pupil of A becomes the entrance pupil of B (in the same way as the output image becomes the input image of B), and the entrance pupil / exit pupil of the partial optical system arbitrarily defined in the optical system is (aperture) If there is a stop, it is an image of it all, and even if it does not exist, it should be conjugate. Therefore, if there is no need for distinction, the entrance pupil and the exit pupil are simply called pupils.
 本発明の説明および図面においては、光学系の光軸をz軸と呼んでいるが、もし反射鏡によって光軸が折り曲げられた場合は、元のz軸に沿う光線が反射されて進む方向もz軸と呼び、新たな座標軸を取ることはしない。なお、図4などの図面において、z軸に垂直な軸として、便宜上x軸およびy軸と表記している。 In the description and drawings of the present invention, the optical axis of the optical system is referred to as the z-axis. However, if the optical axis is bent by the reflecting mirror, the direction in which the light beam along the original z-axis is reflected and travels is also determined. It is called the z axis and does not take a new coordinate axis. In the drawings such as FIG. 4, the x axis and the y axis are expressed as axes perpendicular to the z axis for convenience.
 先ず、本発明の多波長光源を簡略化して示すブロック図である図1を用いて、本発明を実施するための形態について説明する。
 要素光源(Ul)を構成する発光素子(Yl)は、例えば降任チョッパや昇圧チョッパなどの方式の回路によって構成された、DC/DCコンバータを基本として構成されたドライバ回路(図示を省略)によって駆動されて発光し、放射光(Fa1)を放射する。
 なお、前記発光素子(Yl)の個々については、ここでは、例えば半導体レーザや、半導体レーザの放射光を、高調波発生・光パラメトリック効果などのような非線形光学現象を利用して波長変換する光源などである。
First, the form for implementing this invention is demonstrated using FIG. 1 which is a block diagram which simplifies and shows the multiwavelength light source of this invention.
The light emitting element (Yl) constituting the element light source (Ul) is driven by a driver circuit (not shown) configured based on a DC / DC converter, which is configured by a circuit of a system such as a subordinate chopper or a boost chopper, for example. And emits radiated light (Fa1).
For each of the light emitting elements (Yl), here, for example, a semiconductor laser or a light source that converts the wavelength of the emitted light of the semiconductor laser using a nonlinear optical phenomenon such as harmonic generation or optical parametric effect. Etc.
 前記放射光(Fa1)は、例えば非球面レンズからなるコリメータ素子(E1)によって、前記発光素子(Y1)の光放射領域の像と共役な遠方の像を形成する光束(Fb1)に変換される。
 該光束(Fb1)の態様の一例として、例えば平行光束となるように構成することができるし、また、平行に近い発散光束や集束光束となるように構成することもできる。
 前記要素光源(Ul)と同様の要素光源(Ul,U2,…)の複数個を集積することにより、集積光源(W)が構成され、前記要素光源(U1,U2,…)のそれぞれから光束(Fbl,Fb2,…)が出力される。
 該光束(Fb1,Fb2,…)の態様の一例として、該光束(Fbl,Fb2,…)それぞれの主光線(Lpl,Lp2,…)が、例えば互いに平行となるように構成することができるし、また、平行に近い発散的や集束的なものになるように構成することもできる。
The emitted light (Fa1) is converted into a light beam (Fb1) that forms a distant image conjugate with the image of the light emitting area of the light emitting element (Y1) by a collimator element (E1) made of, for example, an aspheric lens. .
As an example of the form of the light beam (Fb1), for example, it can be configured to be a parallel light beam, or can be configured to be a divergent light beam or a converged light beam that is nearly parallel.
By integrating a plurality of element light sources (U1, U2,...) Similar to the element light source (Ul), an integrated light source (W) is formed, and light fluxes from each of the element light sources (U1, U2,...). (Fbl, Fb2,...) Is output.
As an example of the form of the light beams (Fb1, Fb2,...), The principal rays (Lpl, Lp2,...) Of the light beams (Fbl, Fb2,...) Can be configured to be parallel to each other, for example. Also, it can be configured to be divergent or convergent near parallel.
 前記光束(Fb1,Fb2,…)は、ダイクロイック反射素子(M)に入射させられる。
 該ダイクロイック反射素子(M)には、選択的に前記発光素子(Y1,Y2,…)の放射波長の光を、可及的高い効率で反射する分光特性を有する領域(P1,P2,…)が、前記光束(Fbl,Fb2,…)が当たる箇所に、選択的に設けられている。
 また前記領域(P1,P2,…)においては、前記発光素子(Yl,Y2,…)の放射波長以外の波長の光は、可及的高い効率で透過するように形成されており、さらに前記ダイクロイック反射素子(M)は、前記領域(P1,P2,…)以外の領域においては、関連する全ての波長帯域の光が可及的高い効率で透過するように構成されている。
 したがって、前記光束(Fbl,Fb2,…)は前記ダイクロイック反射素子(M)によって反射され、光束(Fc1,Fc2,…)として、例えば凸レンズや凹面鏡などの集光機能を有する集光素子(Ef)に入射させられる。
 その結果、前記光束(Fc1,Fc2,…)は前記集光素子(Ef)によって集光され、集束光束(Fd)として蛍光体(N)に入射させられる。
The light beams (Fb1, Fb2,...) Are made incident on the dichroic reflection element (M).
The dichroic reflective element (M) has a region (P1, P2,...) Having a spectral characteristic that selectively reflects light having the emission wavelength of the light emitting elements (Y1, Y2,...) With as high efficiency as possible. Are selectively provided at the locations where the light beams (Fbl, Fb2,...) Strike.
In the region (P1, P2,...), Light having a wavelength other than the emission wavelength of the light emitting elements (Yl, Y2,...) Is formed so as to be transmitted with as high efficiency as possible. The dichroic reflective element (M) is configured to transmit light of all related wavelength bands with as high efficiency as possible in the regions other than the regions (P1, P2,...).
Therefore, the light fluxes (Fbl, Fb2,...) Are reflected by the dichroic reflection element (M), and as the light fluxes (Fc1, Fc2,...), For example, a light collecting element (Ef) having a light collecting function such as a convex lens or a concave mirror. It is made to enter.
As a result, the luminous fluxes (Fc1, Fc2,...) Are collected by the condensing element (Ef) and are incident on the phosphor (N) as a focused luminous flux (Fd).
 該蛍光体(N)の表面には、前記集束光束(Fd)の照射を受けた集光領域(Aq)が形成される。
 前記蛍光体(N)の該集光領域(Aq)においては、前記集束光束(Fd)の前記発光素子(Yl,Y2,…)の放射波長の光を励起光として吸収し、それとは異なる波長帯域の蛍光を放出する。因みに、放出される蛍光の波長は、通常は励起光よりも長くなるが、多光子蛍光によって励起光より短波長の蛍光が放出されるようにしてもよい。
 前記蛍光体(N)の表面上の前記集光領域(Aq)からは、前記した励起光が波長変換されて放出される蛍光の他に、波長変換されずに反射される残余励起光が放射され、混合発散光束(Fe)として、前記集束光束(Fd)とは逆方向に伝搬して前記集光素子(Ef)に入射する。
 なお、前記蛍光体(N)には、励起光の反射率を増すための反射体を混合することが可能である。
On the surface of the phosphor (N), a condensing region (Aq) irradiated with the focused light beam (Fd) is formed.
In the condensing region (Aq) of the phosphor (N), the light having the emission wavelength of the light emitting element (Yl, Y2,...) Of the focused light beam (Fd) is absorbed as excitation light, and the wavelength is different from that. Emits fluorescence in the band. Incidentally, the wavelength of the emitted fluorescence is usually longer than that of the excitation light, but fluorescence having a shorter wavelength than that of the excitation light may be emitted by multiphoton fluorescence.
From the condensing region (Aq) on the surface of the phosphor (N), in addition to the fluorescence emitted by wavelength conversion of the excitation light, residual excitation light reflected without wavelength conversion is emitted. As a mixed divergent light beam (Fe), it propagates in the opposite direction to the focused light beam (Fd) and enters the light collecting element (Ef).
The phosphor (N) can be mixed with a reflector for increasing the reflectance of the excitation light.
 前記混合発散光束(Fe)が、コリメータとして機能する前記集光素子(Ef)から射出したときは、遠方の像を形成する光束(Ff)に変換され、前記ダイクロイック反射素子(M)に入射する。
 そして、励起光が波長変換された蛍光は前記ダイクロイック反射素子(M)の全体を透過して、また波長変換されなかった残余励起光は前記ダイクロイック反射素子(M)の前記領域(P1,P2,…)以外の領域を透過して、z軸方向の混合出力光束(Fg)として外部に出力される。
 かくして、前記蛍光体(N)によって励起光が波長変換された蛍光と、波長変換されなかった残余励起光との、複数の波長の光が混合された光束を出力する多波長光源が実現される。
When the mixed divergent light beam (Fe) exits from the light condensing element (Ef) functioning as a collimator, it is converted into a light beam (Ff) that forms a distant image and is incident on the dichroic reflecting element (M). .
Then, the fluorescence whose excitation light has been wavelength-converted is transmitted through the entire dichroic reflection element (M), and the remaining excitation light that has not been wavelength-converted is the region (P1, P2, P2) of the dichroic reflection element (M). ...)) And is transmitted to the outside as a mixed output light beam (Fg) in the z-axis direction.
Thus, a multi-wavelength light source that outputs a light beam in which light of a plurality of wavelengths is mixed, that is, fluorescence in which excitation light is wavelength-converted by the phosphor (N) and residual excitation light that has not been wavelength-converted, is realized. .
 以上において述べた本発明の多波長光源が発光素子から蛍光体への励起光の高い到達効率と、前記蛍光体から発した光の外部への高い取出し効率とを有する理由を、以下において説明する。
 前記ダイクロイック反射素子(M)の前記領域(P1,P2,…)は、前記発光素子(Y1,Y2,…)の放射波長の励起光を可及的高い効率で反射するように作られており、よって発光素子から蛍光体への励起光の高い到達効率が実現できる。
 また、励起光に対しては、前記ダイクロイック反射素子(M)は、前記領域(P1,P2,…)以外の領域においては、可及的高い効率で透過するように作られており、かつ、前記蛍光体(N)からの蛍光に対しては、前記領域(P1,P2,…)も他の領域も、可及的高い効率で透過するように作られており、よって前記蛍光体から発した光の外部への高い取出し効率が実現できる。
The reason why the multi-wavelength light source of the present invention described above has high arrival efficiency of excitation light from the light emitting element to the phosphor and high extraction efficiency of the light emitted from the phosphor to the outside will be described below. .
The region (P1, P2,...) Of the dichroic reflecting element (M) is formed so as to reflect the excitation light having the emission wavelength of the light emitting elements (Y1, Y2,...) As efficiently as possible. Therefore, high arrival efficiency of excitation light from the light emitting element to the phosphor can be realized.
In addition, for the excitation light, the dichroic reflection element (M) is made to transmit as efficiently as possible in a region other than the region (P1, P2,...), And With respect to the fluorescence from the phosphor (N), both the region (P1, P2,...) And other regions are made to transmit with the highest possible efficiency. High extraction efficiency can be realized.
 ただし、前記領域(P1,P2,…)については、前記光束(Fbl,Fb2,…)がはみ出さない限りにおいて、可及的狭く形成することが重要である。
 何となれば、もし前記領域(P1,P2,…)が狭過ぎれば、前記光束(Fb1,Fb2,…)がはみ出して前記蛍光体(N)に届かない成分が増加し、逆に、もし前記領域(P1,P2,…)が広過ぎれば、前記混合発散光束(Fe)のうちの波長変換されずに反射される残余励起光のうちで、前記集積光源(W)の方向に反射されてしまう成分が増加し、何れの場合も光の利用効率の低下を来すからである。
However, it is important to form the regions (P1, P2,...) As narrow as possible as long as the light beams (Fbl, Fb2,...) Do not protrude.
If the region (P1, P2,...) Is too narrow, the luminous flux (Fb1, Fb2,...) Protrudes and the component that does not reach the phosphor (N) increases. If the region (P1, P2,...) Is too wide, it is reflected in the direction of the integrated light source (W) among the residual excitation light reflected without wavelength conversion in the mixed divergent light beam (Fe). This is because the number of components increases, and in any case, the light utilization efficiency is lowered.
 なお、発光素子から蛍光体への励起光の高い到達効率の更なる実現のため、例えば、前記ダイクロイック反射素子(M)に対して前記光束(Fbl,Fb2,…)がS偏光となるように前記集積光源(W)を構成した上で、前記領域(P1,P2,…)が、前記光束(Fb1,Fb2,…)を可及的高い効率で反射せしめる偏光ビームスプリッタとして機能するように前記ダイクロイック反射素子(M)を構成するよう、工夫することができる。
 何となれば、前記光束(Fbl,Fb2,…)が前記蛍光体(N)に到達して反射される際、偏光の回転が起きるため、前記ダイクロイック反射素子(M)に戻って来たときには偏光度が低下しており、よって前記領域(P1,P2,…)を透過できる成分の割合が増えるからである。
 なお、もし前記ダイクロイック反射素子(M)に戻って来た励起光の偏光度の低下が十分でない場合は、前記ダイクロイック反射素子(M)と前記集光素子(Ef)との間に、励起光波長に関する4分の1波長板を挿入して、前記ダイクロイック反射素子(M)に戻って来た励起光の偏波を強制的に90度回転させることにより、前記領域(P1,P2,…)を透過できる成分の割合を増やすことができる。
In order to further achieve high arrival efficiency of the excitation light from the light emitting element to the phosphor, for example, the luminous flux (Fbl, Fb2,...) Is S-polarized with respect to the dichroic reflecting element (M). After configuring the integrated light source (W), the region (P1, P2,...) Functions as a polarization beam splitter that reflects the luminous flux (Fb1, Fb2,...) As efficiently as possible. A dichroic reflective element (M) can be devised.
What happens is that when the luminous flux (Fbl, Fb2,...) Reaches the phosphor (N) and is reflected, rotation of the polarized light occurs, so that when the light beam returns to the dichroic reflecting element (M), it is polarized. This is because the ratio of components that can pass through the region (P1, P2,...) Increases.
If the degree of polarization of the excitation light returning to the dichroic reflection element (M) is not sufficiently lowered, excitation light is interposed between the dichroic reflection element (M) and the condensing element (Ef). By inserting a quarter-wave plate relating to the wavelength and forcibly rotating the polarization of the excitation light returning to the dichroic reflection element (M) by 90 degrees, the region (P1, P2,...) It is possible to increase the proportion of the component that can pass through.
 先に図1に示した本多波長光源においては、前記集積光源(W)から出力された前記光束(Fbl,Fb2,…)は、先ず前記ダイクロイック反射素子(M)によって反射されるものとして説明した。
 しかし、本発明の多波長光源は、前記光束(Fbl,Fb2,…)が、先ず前記ダイクロイック反射素子(M)を透過するようにして構成することも可能であり、その場合の形態を、本発明の多波長光源を簡略化して示すブロック図である図2に示す。
 本図の多波長光源の働きは、先に行った図1に関する説明に対して、前記ダイクロイック反射素子(M)での反射と透過に関する記述について、反射を透過に、透過を反射に、それぞれ読み換えることによって理解することができる。
In the multi-wavelength light source shown in FIG. 1, the light beam (Fbl, Fb2,...) Output from the integrated light source (W) is first reflected by the dichroic reflection element (M). did.
However, the multi-wavelength light source of the present invention can be configured such that the luminous flux (Fbl, Fb2,...) First passes through the dichroic reflective element (M). FIG. 2 is a simplified block diagram showing the multi-wavelength light source of the invention.
The function of the multi-wavelength light source in this figure is to read the description of reflection and transmission at the dichroic reflection element (M), in the description of FIG. It can be understood by changing.
 具体的には、前記ダイクロイック反射素子(M)には、選択的に前記発光素子(Yl,Y2,…)の放射波長の光を、可及的高い効率で透過する分光特性を有する領域(P1,P2,…)が、前記光束(Fb1,Fb2,…)が当たる箇所に、選択的に設けられている。
 また前記領域(P1,P2,…)においては、前記発光素子(Y1,Y2,…)の放射波長以外の波長の光は、可及的高い効率で反射するように形成されており、さらに前記ダイクロイック反射素子(M)は、前記領域(P1,P2,…)以外の領域においては、関連する全ての波長帯域の光が可及的高い効率で反射するように構成されている。
Specifically, the dichroic reflective element (M) has a spectral characteristic (P1) that selectively transmits light having the emission wavelength of the light emitting elements (Yl, Y2,...) With as high efficiency as possible. , P2,... Are selectively provided at locations where the luminous fluxes (Fb1, Fb2,...) Strike.
In the region (P1, P2,...), Light having a wavelength other than the emission wavelength of the light emitting elements (Y1, Y2,...) Is formed to be reflected with as high efficiency as possible. The dichroic reflection element (M) is configured to reflect light of all related wavelength bands with as high efficiency as possible in the regions other than the regions (P1, P2,...).
 前記光束(Fbl,Fb2,…)は前記ダイクロイック反射素子(M)を透過して、光束(Fcl,Fc2,…)として、前記集光素子(Ef)に入射させられ、前記蛍光体(N)の表面に、集光領域(Aq)が形成される。
 前記集光領域(Aq)から発せられる、励起光が波長変換された蛍光と波長変換されなかった残余励起光に対しては、前記集光素子(Ef)はコリメータとして機能し、これによって前記集光領域(Aq)と共役な遠方の像を形成する光束(Ff)が射出され、該光束(Ff)は、前記ダイクロイック反射素子(M)によって反射されて、z軸方向の混合出力光束(Fg)として外部に出力される。
 かくして、前記蛍光体(N)によって励起光が波長変換された蛍光と、波長変換されなかった残余励起光との、複数の波長の光が混合された光束を出力する多波長光源が実現される。
The luminous fluxes (Fbl, Fb2,...) Are transmitted through the dichroic reflection element (M) and are incident on the light collecting elements (Ef) as luminous fluxes (Fcl, Fc2,...), And the phosphor (N). A condensing region (Aq) is formed on the surface.
The condensing element (Ef) functions as a collimator for the fluorescence emitted from the condensing region (Aq) and the residual excitation light that has not undergone wavelength conversion. A light beam (Ff) that forms a distant image conjugate with the light region (Aq) is emitted, and the light beam (Ff) is reflected by the dichroic reflection element (M) to produce a mixed output light beam (Fg) in the z-axis direction. ) Is output to the outside.
Thus, a multi-wavelength light source that outputs a light beam in which light of a plurality of wavelengths is mixed, that is, fluorescence in which excitation light is wavelength-converted by the phosphor (N) and residual excitation light that has not been wavelength-converted, is realized. .
 なお本発明に関する説明において、「透過/反射」や「反射/透過」なる記法を用いた部分については、記号「/」の右側を読む場合は他の箇所でも右側を読み、左側を読む場合は他の箇所でも左側を読むようにすることにより、正しく理解できるように記載してある。 In the description of the present invention, regarding the part using the notation of “transmission / reflection” and “reflection / transmission”, when reading the right side of the symbol “/”, read the right side in other places, and read the left side. It is written so that it can be understood correctly by reading the left side in other places.
 前記蛍光体(N)の表面については、もしそれが平坦であれば、特別の表面処理加工をしない限り、完全拡散反射面でなく、その反射特性には、正反射成分に強いピークが現れる。
 前記したように図1,図2に記載の本多波長光源においては、波長変換されなかった残余励起光は、前記ダイクロイック反射素子(M)における前記領域(P1,P2,…)以外の領域を利用して外部に出力されるため、前記ダイクロイック反射素子(M)の残余励起光の正反射成分が通過する位置には前記領域(P1,P2,…)が存在しないことが、残余励起光の利用効率を高めるために有利となる。
 つまり、前記ダイクロイック反射素子(M)は、前記光束(Fbl,Fb2,…)における主光線(Lp1,Lp2,…)に注目したとき、前記主光線(Lp1,Lp2,…)の前記蛍光体(N)の表面において正反射された成分を、前記集光素子(Ef)によって、前記した集光時とは逆方向に伝搬して、前記ダイクロイック反射素子(M)に到達する位置には、前記領域(P1,P2,…)が形成されていないように構成すればよいことが判る。
With respect to the surface of the phosphor (N), if it is flat, unless it is specially treated, it is not a perfect diffuse reflection surface, and its reflection characteristic shows a strong peak in the regular reflection component.
As described above, in the multi-wavelength light source shown in FIGS. 1 and 2, the residual excitation light that has not been wavelength-converted passes through the region other than the region (P1, P2,...) In the dichroic reflective element (M). Since it is outputted to the outside by using it, the region (P1, P2,...) Does not exist at the position where the specular reflection component of the residual pumping light of the dichroic reflecting element (M) passes. This is advantageous for increasing the utilization efficiency.
That is, when the dichroic reflective element (M) pays attention to chief rays (Lp1, Lp2,...) In the luminous fluxes (Fbl, Fb2,...), The phosphor of the chief rays (Lp1, Lp2,...) The component regularly reflected on the surface of N) is propagated by the condensing element (Ef) in the direction opposite to that at the time of condensing and reaches the dichroic reflecting element (M). It can be seen that the region (P1, P2,...) May be configured not to be formed.
 このことを、図1,図2に関して具体的に説明すると、いま、簡単のために、前記集光素子(Ef)がz軸に関して軸対称の構造を有し、かつ、前記蛍光体(N)の表面がz軸に垂直になるように設置されている場合を想定し、さらに、前記集積光源(W)の前記要素光源(U1,U2,U4,U5)から出力された前記光束(Fb1,Fb2,Fb4,Fb5)の前記主光線(Lp1,Lp2,Lp4,Lp5)が、図1,図2の紙面上に存在する光線であると想定したとき、前記主光線(Lpl,Lp2,Lp4,Lp5)を、その経路に沿って追跡すると、前記ダイクロイック反射素子(M)の前記領域(P1,P2,P4,P5)から前記集光領域(Aq)へ到達し、そして前記蛍光体(N)の表面で正反射されて前記集光領域(Aq)から前記ダイクロイック反射素子(M)に戻った際は、主光線(Lp1’,Lp2’,Lp4’,Lp5’)として前記領域(P5,P4,P2,P1)から外れた位置を通過しており、よって前記主光線(Lpl’,Lp2’,Lp4’,Lp5’)周りの強い正反射ピーク成分は、前記領域(P5,P4,P2,P1)によって前記集積光源(W)に戻されることなく、外部に出力される。 This will be specifically described with reference to FIGS. 1 and 2. For the sake of simplicity, the light collecting element (Ef) has an axisymmetric structure with respect to the z axis, and the phosphor (N). Of the integrated light source (W) and the luminous flux (Fb1, F2) output from the element light sources (U1, U2, U4, U5) of the integrated light source (W). When it is assumed that the principal rays (Lp1, Lp2, Lp4, Lp5) of Fb2, Fb4, Fb5) are rays existing on the paper surface of FIGS. 1 and 2, the principal rays (Lpl, Lp2, Lp4) When Lp5) is traced along its path, it reaches the light collection region (Aq) from the region (P1, P2, P4, P5) of the dichroic reflective element (M), and the phosphor (N) Is regularly reflected on the surface of the light collecting region ( When returning from q) to the dichroic reflective element (M), the principal rays (Lp1 ′, Lp2 ′, Lp4 ′, Lp5 ′) pass through the position deviated from the region (P5, P4, P2, P1). Therefore, a strong specular peak component around the principal ray (Lpl ′, Lp2 ′, Lp4 ′, Lp5 ′) is returned to the integrated light source (W) by the region (P5, P4, P2, P1). Without being output to the outside.
 図1または図2に記載の本多波長光源において、最も単純化・理想化した条件として、前記集積光源(W)を構成する全ての前記要素光源(U1,U2,…)のそれぞれから出力される前記光束(Fbl,Fb2,…)が、正確に平行光束を形成し(言い換えれば、正確に無限遠の出力像点を形成し)、かつ、前記光束(Fb1,Fb2,…)の全ての前記主光線(Lpl,Lp2,…)が、互いに正確に平行である(言い換えれば、前記光束(Fbl,Fb2,…)が正確に同一の無限遠の出力像点を形成する)条件を想定するならば、この場合は、前記蛍光体(N)の表面に形成される前記集光領域(Aq)は、(前記光束(Fb1,Fb2,…)が形成する前記した無限遠の出力像点と共役な)1個の点状の領域となる。
 実際の光源においては、このような単純化・理想化した条件が厳密に実現することは無く、例えば各素子の組み立て誤差や前記集光素子(Ef)の収差、回折限界などの制約によって、前記集光領域(Aq)は、複数個に分離した有限の大きさを持った光集光領域の集合体となるであろうが、光パワーが集中する小さい領域となることには違い無く、その箇所で前記蛍光体(N)の劣化が急速に進行する問題がある。
In the multi-wavelength light source shown in FIG. 1 or FIG. 2, the most simplified / idealized condition is output from each of the element light sources (U1, U2,...) Constituting the integrated light source (W). The light beams (Fbl, Fb2,...) Accurately form a parallel light beam (in other words, accurately form an output image point at infinity), and all of the light beams (Fb1, Fb2,...) Assume a condition in which the principal rays (Lpl, Lp2,...) Are exactly parallel to each other (in other words, the luminous fluxes (Fbl, Fb2,...) Form exactly the same infinite output image point). Then, in this case, the condensing region (Aq) formed on the surface of the phosphor (N) is the above-mentioned output image point at infinity formed by (the light beams (Fb1, Fb2,...)). It becomes one point-like region (conjugate).
In an actual light source, such simplified / idealized conditions are not strictly realized. For example, due to constraints such as assembly error of each element, aberration of the condensing element (Ef), diffraction limit, etc. The light condensing region (Aq) will be a collection of light condensing regions having a finite size separated into a plurality, but it must be a small region where the optical power is concentrated. There is a problem that the phosphor (N) is rapidly deteriorated at a location.
 この問題を回避するためには、前記集光領域(Aq)は、前記集光素子(Ef)およびそれよりも前にある光学系が形成する射出瞳となるように構成することが好適である。
 何となれば、瞳の位置や大きさは、光学系の基本的パラメータであり、前記蛍光体(N)の劣化の観点から必要な前記集光領域(Aq)の大きさを正確に設計して実現させることが可能であるからであり、さらに、そのように設計さえすれば、光利用効率の低下につながる余計な光学素子の追加等が不要だからである。
 このことについて、本発明の多波長光源の一部を簡略化して示す模式図である図3を用いて説明する。
 本図は、前記光束(Fc1,Fc2,…)のそれぞれが前記集光素子(Ef)によって集束光束(Fd1,Fd2,…)に変換される様子を表したものである。
In order to avoid this problem, it is preferable that the condensing region (Aq) is configured to be an exit pupil formed by the condensing element (Ef) and an optical system in front thereof. .
The position and size of the pupil are basic parameters of the optical system, and the size of the condensing region (Aq) required from the viewpoint of deterioration of the phosphor (N) is designed accurately. This is because it is possible to achieve this, and if such a design is used, it is not necessary to add an extra optical element that leads to a decrease in light utilization efficiency.
This will be described with reference to FIG. 3, which is a schematic diagram showing a part of the multi-wavelength light source of the present invention in a simplified manner.
This figure shows how each of the light beams (Fc1, Fc2,...) Is converted into a focused light beam (Fd1, Fd2,...) By the condensing element (Ef).
 前記集光領域(Aq)が射出瞳となるということは、本図のように、前記集積光源(W)から出力される前記光束(Fbl,Fb2,…)の前記主光線(Lpl,Lp2,…)の全てが、前記集光領域(Aq)の中心、すなわち前記蛍光体(N)とz軸の交点である点(Q)を通過することを意味し、また、もし前記光束(Fbl,Fb2,…)の拡がり角が全て同程度であるならば、したがって例えば前記集積光源(W)から出力された直後の前記光束(Fbl,Fb2,…)の太さが全て同程度であるならば、該光束(Fbl,Fb2,…)は、前記集光素子(Ef)を通過後は集束光束(Fd1,Fd2,…)となって、それぞれ、共通の前記点(Q)を中心とした、近似的には同程度の直径を有する光照射領域を形成する。
 なお、本図においては、前記した光照射領域の直径を矢印(A1,A2)の先端間の間隔によって表してあり、結局、これによって前記集光領域(Aq)の大きさが規定されることになる。
The fact that the condensing region (Aq) becomes an exit pupil means that the principal rays (Lpl, Lp2,...) Of the luminous flux (Fbl, Fb2,...) Output from the integrated light source (W) as shown in FIG. )) Passes through the center of the light collection region (Aq), that is, the point (Q) that is the intersection of the phosphor (N) and the z-axis, and if the luminous flux (Fbl, If the divergence angles of Fb2,... Are all the same, for example, if the thicknesses of the light beams (Fbl, Fb2,...) Immediately after being output from the integrated light source (W) are all the same, for example. The luminous fluxes (Fbl, Fb2,...) Become focused luminous fluxes (Fd1, Fd2,...) After passing through the condensing element (Ef), and each centered on the common point (Q). A light irradiation region having approximately the same diameter is formed.
In this figure, the diameter of the light irradiation region is represented by the distance between the tips of the arrows (A1, A2), and eventually the size of the light collection region (Aq) is defined. become.
 このように前記集光領域(Aq)を射出瞳とする光学系を実現するには、大きく分けて2通りの方法があり、その第1は、前記集積光源(W)からの出力である前記光束(Fb1,Fb2,…)を、射出瞳が無限遠にあり、遠方(正または負の距離の)であるが無限遠ではない同一平面上の像点を形成するテレセントリック光学系として構成するものである。
 また、その第2は、前記集積光源(W)からの出力である前記光束(Fbl,Fb2,…)を、それぞれ平行光束になるように、すなわち無限遠の像点を形成するようにした上で、射出瞳が有限位置に来るように構成するものである。
 当然、これらの中間のもの、すなわち射出瞳が有限位置にあり、かつ無限遠ではない同一平面上の像点を形成するように構成する仕方もあるが、光学系の設計や組立て調整の複雑さが増す。
There are roughly two methods for realizing the optical system having the light collection region (Aq) as the exit pupil in this way, and the first is the output from the integrated light source (W). The light beam (Fb1, Fb2,...) Is configured as a telecentric optical system that forms an image point on the same plane that has an exit pupil at infinity and is far (positive or negative distance) but not infinity. It is.
The second is that the luminous fluxes (Fbl, Fb2,...) That are the output from the integrated light source (W) are parallel luminous fluxes, that is, an infinite image point is formed. Thus, the exit pupil is configured to come to a finite position.
Of course, there is an intermediate method between them, i.e., the exit pupil is at a finite position and it is configured to form an image point on the same plane that is not infinity, but the complexity of the design and assembly adjustment of the optical system Increase.
 これらのうちで前記した第1の方法が、光学系の組立て調整が最も簡単と考えられる。
先ず、前記光束(Fb1,Fb2,…)を、遠方であるが無限遠ではない同一平面上の像点を形成するようにするためには、前記要素光源(U1,U2,…)それぞれの出力像点が所定の距離に出来るよう、前記発光素子(Yl,Y2,…)の活性領域と前記コリメータ素子(E1,E2,…)との間隔が所定間隔となるように前記要素光源(U1,U2,…)それぞれを組立てる。ただし、ここでは簡単のため、前記発光素子(Y1,Y2,…)および前記コリメータ素子(El,E2,…)の仕様は、全て同一としてある。
 そして前記集積光源(W)がテレセントリック光学系となるようにするためには、前記要素光源(Ul,U2,…)全ての前記光束(Fbl,Fb2,…)の前記主光線(Lp1,Lp2,…)が互いに平行になるよう、前記要素光源(Ul,U2,…)を組立てればよい。
Of these, the first method described above is considered to be the easiest to assemble and adjust the optical system.
First, in order to form the image points on the same plane that are far but not infinite, the output of each of the element light sources (U1, U2,...) The element light sources (U1, U1,...) Such that the distance between the active region of the light emitting elements (Y1, Y2,...) And the collimator elements (E1, E2,...) Is a predetermined distance so that the image point can be a predetermined distance. Assemble each of U2, ...). However, for simplicity, the specifications of the light emitting elements (Y1, Y2,...) And the collimator elements (El, E2,...) Are all the same.
In order for the integrated light source (W) to be a telecentric optical system, the principal rays (Lp1, Lp2,...) Of all the luminous fluxes (Fbl, Fb2,...) Of the element light sources (U1, U2,...). The element light sources (U1, U2,...) May be assembled so that.
 前記集光領域(Aq)の直径は、上で述べたテレセントリック光学系の設計指針から、初等的な近軸光学計算によって容易に求められるが、直観的に理解が容易な説明を以下に付しておく。
 瞳の位置、すなわち前記点(Q)は、前記集光素子(Ef)の焦点に生成される。
 また前記発光素子(Yl,Y2,…)の活性領域と共役な出力像点(Jl,J2,…)の、前記点(Q)からの距離(zqj)は、前記した前記コリメータ素子(El,E2,…)の焦点距離を決めれば、前記発光素子(Y1,Y2,…)の活性領域と前記コリメータ素子(E1,E2,…)との間隔によって調整可能である。
 さらに前記出力像点(Jl,J2,…)を形成する前記集束光束(Fdl,Fd2,…)の拡がり角は、前記発光素子(Yl,Y2,…)からの前記放射光(Fa1,Fa2,…)の拡がり角と前記コリメータ素子(El,E2,…)の焦点距離によって概ね決まる。
 そして前記集光領域(Aq)の直径は、図3から明らかなように、前記集束光束(Fd1,Fd2,…)の拡がり角と前記距離(zqj)から求められる。
The diameter of the light condensing region (Aq) can be easily obtained by the basic paraxial optical calculation from the design guideline of the telecentric optical system described above, but an explanation that is intuitively easy to understand is given below. Keep it.
The position of the pupil, that is, the point (Q) is generated at the focal point of the condensing element (Ef).
Further, the distance (zqj) of the output image point (Jl, J2,...) Conjugate with the active region of the light emitting element (Yl, Y2,...) From the point (Q) is the above-described collimator element (El, Y1,. If the focal distance of E2,... Is determined, it can be adjusted by the distance between the active region of the light emitting elements (Y1, Y2,...) And the collimator elements (E1, E2,...).
Further, the divergence angle of the focused light beam (Fdl, Fd2,...) That forms the output image point (Jl, J2,...) Is the radiated light (Fa1, Fa2,...) From the light emitting elements (Yl, Y2,. )) And the focal length of the collimator elements (El, E2,...).
The diameter of the condensing region (Aq) is determined from the divergence angle of the focused light beam (Fd1, Fd2,...) And the distance (zqj), as is apparent from FIG.
 因みに、本図のように、前記出力像点(J1,J2,…)が瞳の位置よりも後方(すなわち前記蛍光体(N)の内部)に形成されるようにする場合は、前記発光素子(Yl,Y2,…)の活性領域と前記コリメータ素子(E1,E2,…)との間隔は、前記コリメータ素子(El,E2,…)からの出力光束が平行光となる場合の間隔よりも短く調整することになる。
 なお、このような調整を行った場合は、前記コリメータ素子(E1,E2,…)からの出力光束は、厳密にはコリメートされているとは言えず、したがってコリメータ素子なる呼称は正しくないかも知れないが、ほぼコリメートされた光束に変換する素子であることには違い無く、また、半導体レーザの放射光に対するコリメータ素子として市販されている部品を、本多波長光源においても使用可能であるため、本明細書では、そのままコリメータ素子と呼ぶことにする。
Incidentally, when the output image point (J1, J2,...) Is formed behind the position of the pupil (that is, inside the phosphor (N)) as shown in FIG. (Y1, Y2,...) And the collimator elements (E1, E2,...) Are spaced apart from the collimator elements (E1, E2,...) When the output light beam from the collimator elements (E1, E2,. It will be adjusted shortly.
When such adjustment is performed, it cannot be said that the output light beam from the collimator elements (E1, E2,...) Is strictly collimated, and therefore the name collimator element may not be correct. However, it must be an element that converts light into a substantially collimated light beam, and parts that are commercially available as collimator elements for semiconductor laser radiation can also be used in this multi-wavelength light source. In this specification, it will be called a collimator element as it is.
 言うまでもないことであるが、本図とは逆に、前記出力像点(J1,J2,…)が瞳の位置よりも前方に形成されるようにすることもできる。
 ただし、このようにした場合、光学系の構造によっては、前記出力像点(Jl,J2,…)が、前記ダイクロイック反射素子(M)から前記集光素子(Ef)に至る光学系の内部に形成される可能性があるが、そのことによる弊害が無ければ、前記領域(P1,P2,…)の大きさを若干小さくすることができ、その分だけ光の利用効率を向上させることができる利点を得ることができる。
Needless to say, the output image points (J1, J2,...) May be formed in front of the pupil position, contrary to this figure.
However, in this case, depending on the structure of the optical system, the output image point (Jl, J2,...) May be placed inside the optical system from the dichroic reflective element (M) to the condensing element (Ef). Although there is a possibility of being formed, if there is no adverse effect, the size of the region (P1, P2,...) Can be slightly reduced, and the light utilization efficiency can be improved accordingly. Benefits can be gained.
 前記集光領域(Aq)の大きさは、大きく設定するほど、励起光の照射パワー密度が低くなるため、前記蛍光体(N)の劣化の観点からは有利であるが、前記集光領域(Aq)から発せられる、励起光が波長変換された蛍光と波長変換されなかった残余励起光の光源の大きさが大きくなるため、前記集光素子(Ef)によって生成される前記集光領域(Aq)と共役な遠方の像の大きさが大きくなり、外部に出力される前記混合出力光束(Fg)の、コリメートされた光束としての方向純度、すなわち光の質が低下するため不利となる。
 したがって、前記混合出力光束(Fg)の用途によって前記集光領域(Aq)の大きさを大きくする上限が存在し、場合によっては前記蛍光体(N)の十分な寿命が確保できない問題が生ずる可能性がある。
As the size of the condensing region (Aq) is set larger, the irradiation power density of the excitation light becomes lower, which is advantageous from the viewpoint of deterioration of the phosphor (N). Since the size of the light source of the fluorescence from which the excitation light is wavelength-converted and the residual excitation light that has not been wavelength-converted emitted from Aq) is increased, the condensing region (Aq) generated by the condensing element (Ef) ) And a distant image are large, and the mixed output light beam (Fg) output to the outside is disadvantageous because the directional purity of the collimated light beam, that is, the light quality is lowered.
Therefore, there is an upper limit for increasing the size of the light condensing region (Aq) depending on the use of the mixed output light beam (Fg). In some cases, there is a possibility that a sufficient life of the phosphor (N) cannot be secured. There is sex.
 この問題を解決するためには、前記蛍光体(N)を、前記集光領域(Aq)における前記蛍光体(N)の表面の法線を不変に保ったまま、法線と垂直な方向に移動可能であるように構成することが好適である。
 なお移動の形態としては、例えば前記蛍光体(N)を円板状に形成し、その中心軸を前記z軸に平行に配置して回転させたり、例えば前記蛍光体(N)を円柱側面に形成し、その中心軸を前記z軸に垂直に配置して回転させたり、例えば前記蛍光体(N)を平板状に形成し、前記z軸に垂直な方向に並進運動させるようにすればよい。
 また移動は、連続的またはステップ的に行うものの何れであってもよく、それを継続的に実行するものであってもよく、あるいは前記蛍光体(N)の劣化が認識された際などに間欠的に実行するものであってもよい。
 さらに移動の機構は、モータやソレノイド等の動力を備えるものであっても手動に基づくものであってもよい。
In order to solve this problem, the phosphor (N) is placed in a direction perpendicular to the normal while keeping the normal of the surface of the phosphor (N) in the light collection region (Aq) unchanged. It is preferable to be configured to be movable.
In addition, as a form of movement, for example, the phosphor (N) is formed in a disk shape, and its central axis is arranged parallel to the z-axis and rotated, for example, the phosphor (N) is arranged on the side surface of the cylinder. It may be formed and rotated with its central axis perpendicular to the z-axis, or, for example, the phosphor (N) may be formed in a flat plate shape and translated in a direction perpendicular to the z-axis. .
Further, the movement may be performed continuously or stepwise, or may be performed continuously, or intermittently when the deterioration of the phosphor (N) is recognized. It may be executed automatically.
Further, the movement mechanism may be provided with power such as a motor or a solenoid, or may be based manually.
 前記発光素子(Yl,Y2,…)として、その放射波長の帯域が青色であるものを使用し、また前記蛍光体(N)として、緑色の波長帯域に属する蛍光と赤色の波長帯域に属する蛍光とを放出するものを使用することによって、R,G,B3原色を発するように構成して白色光源を実現する用途に対し、本発明の多波長光源は、とりわけ好適である。
 なお、ここで言う白色光源とは、それから発せられる光束の色(色度)が、厳密または近似的に白色と見なせるものに限定されず、それから発せられる光束を利用する装置においてR,G,B3原色を取出し、もしR,G,B各成分の含有比率が理想的な白色からずれている場合は、余計に含まれる成分の利用効率を下げるなどして、結果的に白色光源として使用可能なものをも含めている。
As the light emitting element (Yl, Y2,...), A device whose emission wavelength band is blue is used, and as the phosphor (N), fluorescence belonging to the green wavelength band and fluorescence belonging to the red wavelength band are used. The multi-wavelength light source of the present invention is particularly suitable for applications in which a white light source is realized by using a material that emits R, G, and B3 primary colors.
The white light source referred to here is not limited to the color (chromaticity) of the light beam emitted from the light source that can be regarded as strictly white, or R, G, B3 in an apparatus using the light beam emitted therefrom. The primary color is taken out, and if the content ratio of R, G, B components deviates from the ideal white, it can be used as a white light source as a result by reducing the utilization efficiency of the extra components included Including things.
 前記蛍光体(N)としては、1種類の蛍光体が緑色の波長帯域に属する蛍光と赤色の波長帯域に属する蛍光とを放出するものでもよく、あるいは、少なくとも緑色の波長帯域に属する蛍光を発する蛍光体と赤色の波長帯域に属する蛍光を発する蛍光体とを混合したものであってもよい。
 また前記発光素子(Yl,Y2,…)の放射波長で励起された際の前記蛍光体(N)の発光スペクトルとしては、少なくとも緑色の波長帯域と赤色の波長帯域とを含む大きな連続スペクトルから成るものでもよく、あるいは、少なくとも緑色の波長帯域に属するピークと赤色の波長帯域に属するピークとを有するものでもよい。
As the phosphor (N), one type of phosphor may emit fluorescence belonging to the green wavelength band and fluorescence belonging to the red wavelength band, or emit at least fluorescence belonging to the green wavelength band. A mixture of a phosphor and a phosphor that emits fluorescence belonging to the red wavelength band may be used.
The emission spectrum of the phosphor (N) when excited by the emission wavelength of the light emitting elements (Yl, Y2,...) Is composed of a large continuous spectrum including at least a green wavelength band and a red wavelength band. Alternatively, it may have at least a peak belonging to the green wavelength band and a peak belonging to the red wavelength band.
 例えば、R,G,Bそれぞれの波長帯域の放射光を発する発光素子から成る白色光源があった場合、各色の放射光に流す電流のバランスを調整することにより、外部に出力される光束の総合的な色、すなわちR,G,B各色の成分の含有比率を調整することが可能である。
 しかし、前記した前記発光素子(Yl,Y2,…)の放射波長の帯域が青色で、前記蛍光体(N)が、緑色の蛍光を発する蛍光体と赤色の蛍光を発する蛍光体とを混合したものである場合、外部に出力される前記混合出力光束(Fg)の緑色の成分と赤色の成分の含有比率、あるいはR,G,B各色の成分の含有比率を調整することは、前記発光素子(Yl,Y2,…)に流す電流の調整によっては実現できない。
For example, when there is a white light source composed of a light emitting element that emits radiated light in each wavelength band of R, G, and B, by adjusting the balance of the currents flowing through the radiated light of each color, the total luminous flux output to the outside It is possible to adjust the content ratios of the respective colors, that is, the components of the R, G, and B colors.
However, the emission wavelength band of the light emitting element (Yl, Y2,...) Is blue, and the phosphor (N) is a mixture of a phosphor emitting green fluorescence and a phosphor emitting red fluorescence. If it is, adjusting the content ratio of the green component and the red component of the mixed output light beam (Fg) output to the outside or the content ratio of the components of R, G, B colors is the light emitting element. This cannot be realized by adjusting the current flowing through (Y1, Y2,...).
 本発明の多波長光源において、このような出力光の緑色の成分と赤色の成分の含有比率の調整を行う必要がある用途に対しては、緑色の波長帯域に属する蛍光を放出する蛍光体と赤色の波長帯域に属する蛍光を放出する蛍光体との含有比率が前記蛍光体(N)の表面上の位置に単調に依存して分布するよう、あるいは、出力光のR,G,B各色の成分の含有比率の調整を行う必要がある用途に対しては、前記蛍光体(N)が緑色の波長帯域に属する蛍光を放出する蛍光体と赤色の波長帯域に属する蛍光を放出する蛍光体と青色の波長帯域の光を反射する反射体との含有比率が前記蛍光体(N)の表面上の位置に単調に依存して分布するように前記蛍光体(N)を構成した上で、本多波長光源のなかに前記蛍光体(N)を設置する場合の位置を調整することにより、出力光の色の成分の含有比率の調整を行うことが可能となる。 In the multi-wavelength light source of the present invention, for applications where it is necessary to adjust the content ratio of the green component and the red component of the output light, a phosphor that emits fluorescence belonging to the green wavelength band, and The content ratio with the phosphor that emits fluorescence belonging to the red wavelength band is distributed monotonously depending on the position on the surface of the phosphor (N), or the R, G, B colors of the output light For applications where the content ratio of the components needs to be adjusted, the phosphor (N) emits fluorescence belonging to the green wavelength band, and phosphor emits fluorescence belonging to the red wavelength band; The phosphor (N) is configured so that the content ratio with respect to the reflector that reflects light in the blue wavelength band is monotonously distributed at positions on the surface of the phosphor (N). Position when the phosphor (N) is installed in a multi-wavelength light source By adjusting, it is possible to adjust the content ratio of the color components of the output light.
 例えば前記蛍光体(N)に関する後者の構成についての一例を具体的に述べると、前記したように蛍光体表面の法線をz軸に取り、蛍光体表面上にx軸およびy軸を取ったとき、緑色の蛍光体と赤色の蛍光体とを合せた蛍光体の含有量に対する青色の波長帯域の光を反射する反射体の含有量を、x座標には依存せずにy座標のみに単調に依存して分布し、緑色の蛍光体と赤色の蛍光体とを合せた蛍光体の含有量のうちの緑色の蛍光体の含有比率は、y座標には依存せずにx座標のみに単調に依存して分布するよう前記蛍光体(N)を構成すればよい。
 ここで、例えば、x座標に単調に依存して分布する、とは、x座標を変化させながら分布の様子を見たとき、x座標が増加すれば分布量も増加または一定(あるいは減少まはた一定)であって、増加後に減少(減少後に増加)することがないことを意味する。ただし、前記集光領域(Aq)の直径より小さい微視的な分布の様子には無頓着でよく、小さくとも前記集光領域(Aq)の直径の程度の大きさの領域に亘っての平均値としての分布量に関して単調であればよい。
For example, an example of the latter configuration relating to the phosphor (N) will be specifically described. As described above, the normal of the phosphor surface is taken on the z axis, and the x axis and the y axis are taken on the phosphor surface. The content of the reflector that reflects light in the blue wavelength band with respect to the phosphor content of the green phosphor and the red phosphor is monotonous only in the y coordinate without depending on the x coordinate. The content ratio of the green phosphor out of the total phosphor content of the green phosphor and the red phosphor is monotonous only in the x coordinate without depending on the y coordinate. The phosphor (N) may be configured to be distributed depending on.
Here, for example, “distributed monotonically depending on the x coordinate” means that the distribution amount increases or remains constant (or decreases or decreases) when the x coordinate increases when the distribution is viewed while changing the x coordinate. It means that it does not decrease after increase (increase after decrease). However, the microscopic distribution smaller than the diameter of the condensing region (Aq) may be careless, and an average value over a region that is at least as large as the diameter of the condensing region (Aq). As long as the distribution amount is monotonous.
 本発明の多波長光源のなかの構成要素のうちで、発熱によって、もしくは他の要素からのエネルギー照射を受けて昇温する要素は、集積光源と蛍光体であるため、これらの配置のバランスを考慮する必要がある。
 そのような昇温要素の配置バランスと光源としてのコンパクト化の両立を実現可能なものとして、本発明の多波長光源を簡略化して示す模式図である図4の(a)に示すように、集光素子(Ef)はレンズによって構成し、該集光素子(Ef)の光軸に沿って、蛍光体(N)からの蛍光が来る方向に向かって見たとき、集積光源(Wi,Wj)を前記集光素子(Ef)の左側と右側との両方に配置して、本多波長光源を構成することが好適である。
Among the components of the multi-wavelength light source of the present invention, the elements that rise in temperature due to heat generation or upon receiving energy irradiation from other elements are the integrated light source and the phosphor, so the balance between these arrangements must be balanced. It is necessary to consider.
As shown in FIG. 4 (a), which is a schematic diagram showing the multi-wavelength light source of the present invention in a simplified manner, as it is possible to achieve both the arrangement balance of the temperature rising elements and the compactness as the light source. The condensing element (Ef) is constituted by a lens, and when viewed in the direction in which the fluorescence from the phosphor (N) comes along the optical axis of the condensing element (Ef), the integrated light source (Wi, Wj) ) Are arranged on both the left side and the right side of the condensing element (Ef) to constitute the multi-wavelength light source.
 さらにこの場合は、図4の(a)に対する側面図である同図の(b)に示すように、ダイクロイック反射素子(M)は左側と右側との2部分から構成することとし、左側の前記集積光源(Wi)からの光束(Fbil,Fbi2,…)を反射するための左側のダイクロイック反射部(Mi)と、右側の前記集積光源(Wj)からの光束(Fbjl,Fbj2,…)を反射するための右側のダイクロイック反射部(Mj)とについては、そのダイクロイック面(Smi,Smj)を屋根型に配置することが好適である。
 本図の前記ダイクロイック反射素子(M)は、ダイクロイックプリズムによって構成する場合を描いてあるが、そのようにすることにより、前記ダイクロイック面(Smi,Smj)の接合部、すなわち屋根型配置の稜線部における、前記集光素子(Ef)からの光束の損失を、ダイクロイックミラーによって構成した場合よりも低減することが可能となる。
Further, in this case, as shown in FIG. 4B, which is a side view of FIG. 4A, the dichroic reflecting element (M) is composed of two parts, the left side and the right side. The left dichroic reflector (Mi) for reflecting the light beam (Fbil, Fbi2,...) From the integrated light source (Wi) and the light beam (Fbjl, Fbj2,...) From the right integrated light source (Wj) are reflected. For the right dichroic reflecting portion (Mj) for the purpose, it is preferable to arrange the dichroic surface (Smi, Smj) in a roof shape.
The dichroic reflecting element (M) of the figure is illustrated as being configured by a dichroic prism, but by doing so, the joint portion of the dichroic surface (Smi, Smj), that is, the ridge line portion of the roof type arrangement It is possible to reduce the loss of the luminous flux from the condensing element (Ef) in comparison with the case where it is constituted by a dichroic mirror.
 本図(b)に示すように、高さ方向(z方向)における前記光束(Fbi1,Fbi2,…)の並びと前記光束(Fbj1,Fbj2,…)の並びとは、並び周期の2分の1だけずれた位置に来るように、前記集積光源(Wi)と前記集積光源(Wj)とを配置してある。
 そのため、前記光束(Fbi1,Fbi2,…)と前記光束(Fbj1,Fbj2,…)とを選択的に反射するための前記ダイクロイック面(Smi,Smj)上の前記領域(P1,P2,…)は、本図(a)のような見方においては、対称ではなく、x方向に前記領域(P1,P2,…)の並びパターンの周期の4分の1だけシフトさせた配置となっている。
 このようにすることにより、前記光束(Fbil)の主光線(Lpil)が前記領域(P1)で反射された後、前記蛍光体(N)から正反射されて戻って来た場合の主光線(Lpil’)は、本図(a)に示すように前記領域(P1,P2,…)が形成されていない箇所を通過するため、前記したように残余励起光の利用効率を高めることが可能となる。
As shown in this figure (b), the arrangement of the luminous fluxes (Fbi1, Fbi2,...) In the height direction (z direction) and the arrangement of the luminous fluxes (Fbj1, Fbj2,...) The integrated light source (Wi) and the integrated light source (Wj) are arranged so as to be shifted by one.
Therefore, the regions (P1, P2,...) On the dichroic surfaces (Smi, Smj) for selectively reflecting the light beams (Fbi1, Fbi2,...) And the light beams (Fbj1, Fbj2,. In the view as shown in FIG. 5A, the arrangement is not symmetrical but is shifted in the x direction by a quarter of the period of the arrangement pattern of the regions (P1, P2,...).
By doing in this way, after the principal ray (Lpil) of the light beam (Fbil) is reflected by the region (P1), it is reflected regularly from the phosphor (N) and returned to the principal ray ( Lpil ′) passes through the part where the regions (P1, P2,...) Are not formed as shown in FIG. 5A, and thus it is possible to increase the utilization efficiency of the residual excitation light as described above. Become.
 図4の(a)においては、前記領域(P1,P2,…)をx方向にシフトさせたものを示したが、同じく本発明の多波長光源の一部を簡略化して示す模式図である図5の(a)に記載のように、y方向にシフトさせることによって同様に利用効率を高めることができる。
 本図のようにする場合は、前記集積光源(Wi)からの前記光束(Fbi1)の前記主光線(Lpjl)が前記領域(P1)で反射された後、前記蛍光体(N)から正反射されて戻って来た場合の主光線(Lpj1’)も、同図に示すように前記領域(P1,P2,…)が形成されていない箇所を通過する。
 なお、本図に対応する側面図は省略してあるが、高さ方向(z方向)における前記集積光源(Wi)からの前記光束(Fbil,Fbi2,…)の並びと前記集積光源(Wj)からの前記光束(Fbj1,Fbj2,…)の並びについて、図4の(b)に記載したような、並び周期の2分の1だけずれた位置に来るような配置にする必要は無い。
In FIG. 4A, the region (P1, P2,...) Is shifted in the x direction, but it is also a schematic diagram showing a part of the multi-wavelength light source of the present invention in a simplified manner. As described in FIG. 5A, the use efficiency can be similarly increased by shifting in the y direction.
In the case of this figure, after the principal ray (Lpjl) of the light beam (Fbi1) from the integrated light source (Wi) is reflected by the region (P1), it is specularly reflected from the phosphor (N). Then, the chief ray (Lpj1 ′) when it is returned passes through a portion where the region (P1, P2,...) Is not formed as shown in FIG.
Although a side view corresponding to this drawing is omitted, the arrangement of the light beams (Fbil, Fbi2,...) From the integrated light source (Wi) in the height direction (z direction) and the integrated light source (Wj). It is not necessary to arrange the light beams (Fbj1, Fbj2,...) From a position that is shifted by a half of the arrangement period as described in FIG.
 なお、図5の(a)の構成の場合において、x方向の前記領域(P1,P2,…)の間隔が狭い場合は、これらを合併させて、同図の(b)の領域(Pa,Pb,…)のようにしても構わない。
 また同様に、図4の(a)の構成の場合において、y方向の前記領域(P1,P2,…)の間隔が狭い場合は、これらを合併させて、図5の(c)の領域(Pa,Pb,…)のようにしても構わない。
In the case of the configuration of FIG. 5A, when the interval between the regions (P1, P2,...) In the x direction is narrow, these are merged to obtain the region (Pa, Pb,...
Similarly, in the case of the configuration of FIG. 4A, when the interval between the regions (P1, P2,...) In the y direction is narrow, these are merged to obtain the region (c) of FIG. Pa, Pb,...
 以上、図4の(a)および図5の(a),(b),(c)に記載した、前記領域(P1,P2,…)の並びパターンのシフトの仕方について、これを総括して述べるならぱ、以下のようになる。
 すなわち、左側および右側の前記集積光源(Wi,Wj)それぞれは、前記要素光源(U1,U2,…)を格子状に並べて構成してあり、前記集光素子(Ef)の光軸に垂直な平面に投影した前記領域(P1,P2,…)の並びパターンは、前記集光素子(Ef)の光軸に対して対称になる配置を基本配置として、前記したダイクロイック面(Smi,Smj)の屋根型配置における屋根の稜線の方向に対して平行または垂直な方向に、前記領域(P1,P2,…)の並びパターンの周期の4分の1だけシフトさせた配置とすればよい。
 そして、このような配置とすることにより、残余励起光の利用効率を高めることが可能となる。
As described above, the method of shifting the arrangement pattern of the regions (P1, P2,...) Described in (a) of FIG. 4 and (a), (b), and (c) of FIG. 5 is summarized. To say it is as follows.
That is, each of the left and right integrated light sources (Wi, Wj) is configured by arranging the element light sources (U1, U2,...) In a lattice pattern, and is perpendicular to the optical axis of the light collecting element (Ef). The arrangement pattern of the regions (P1, P2,...) Projected onto the plane is based on an arrangement that is symmetric with respect to the optical axis of the light condensing element (Ef), and the arrangement pattern of the dichroic surfaces (Smi, Smj). What is necessary is just to make arrangement | positioning shifted only 1/4 of the period of the arrangement | sequence pattern of the said area | region (P1, P2, ...) in the direction parallel or perpendicular | vertical with respect to the direction of the ridgeline of a roof type arrangement | positioning.
And it becomes possible to raise the utilization efficiency of residual excitation light by setting it as such an arrangement | positioning.
 本発明の多波長光源は、前記したロッドインテグレータやフライアイインテグレータと組み合わせて光源装置と成し、例えばプロジェクタを構成するために好適に利用可能であるが、とりわけフライアイインテグレータと組み合わせる際には、注意すべき事項がある。
 本発明の多波長光源においては、前記蛍光体(N)で波長変換されなかった残余励起光は、前記領域(P1,P2,…)を経由して出力されることはできないため、前記混合出力光束(Fg)には、図4の(a)および図5の(a),(b),(c)に記載した、前記領域(P1,P2,…)の並びパターンに対応した影ができることになる。
 前記したように、フライアイインテグレータの光均一化手段としての機能は、前記前段フライアイレンズ(F1B)の各レンズ面での照度分布が全て重ね合わせられることにより発現されるものであるから、前記フライアイインテグレータ(FmB)に前記混合出力光束(Fg)を入力した場合、前記影も重ね合わせられる。
The multi-wavelength light source of the present invention is formed into a light source device in combination with the above-described rod integrator or fly eye integrator, and can be suitably used, for example, to configure a projector, but particularly when combined with a fly eye integrator. There are things to note.
In the multi-wavelength light source of the present invention, the residual excitation light that has not been wavelength-converted by the phosphor (N) cannot be output via the region (P1, P2,...). A shadow corresponding to the arrangement pattern of the regions (P1, P2,...) Described in (a) of FIG. 4 and (a), (b), and (c) of FIG. become.
As described above, the function as the light uniformizing means of the fly eye integrator is expressed by superimposing the illuminance distribution on each lens surface of the front fly eye lens (F1B). When the mixed output light beam (Fg) is input to the fly eye integrator (FmB), the shadow is also superimposed.
 ところが、もし前記影が周期性を有するならば、条件によっては、前記フライアイインテグレータ(FmB)において、前記影の影響を強め合うように重ね合わせられることが起こり得る。
 このような不都合な前記影の重ね合わせは、2種類の並び方向、すなわち、前記ダイクロイック反射素子(M)に設けた前記領域(P1,P2,…)の並びパターンを前記フライアイインテグレータ(FmB)の前段フライアイレンズ(F1B)に対して投影したときの並びパターンの方向と、前記フライアイインテグレータ(FmB)のフライアイレンズの並びの方向とが一致する場合に、最も顕著に発生する。
 なお、いま述べた、前記領域(P1,P2,…)の並びパターンを前記前段フライアイレンズ(F1B)に対して投影するに際しては、前記多波長光源から出力される前記混合出力光束(Fg)の中心軸(z)の方向に投影する。
However, if the shadow has periodicity, depending on the conditions, the fly eye integrator (FmB) may be superposed so as to strengthen the influence of the shadow.
Such inconvenient shadow superposition is performed by changing the arrangement pattern of the regions (P1, P2,...) Provided in two types of arrangement directions, that is, the dichroic reflection element (M), to the fly eye integrator (FmB). Occurs most significantly when the direction of the alignment pattern when projected onto the first fly-eye lens (F1B) matches the direction of alignment of the fly-eye lenses of the fly-eye integrator (FmB).
When the arrangement pattern of the regions (P1, P2,...) Just described is projected onto the front fly-eye lens (F1B), the mixed output light beam (Fg) output from the multi-wavelength light source. Is projected in the direction of the central axis (z).
 したがって、この問題を回避するには、前記した2種類の並び方向が一致しないようにすればよく、このように構成した様子を、本発明の光源装置の一部の一形態を簡略化して示す概念図である図6に示す。
 本図においては、図4に記載の多波長光源の前記混合出力光束(Fg)の前記中心軸(z)に垂直にとった仮想平面(Po)に対して、前記x軸およびy軸、および前記ダイクロイック反射素子(M)と前記集光素子(Ef)とを投影したものを本発明の多波長光源の象徴として描き、また前記フライアイインテグレータ(FmB)の象徴として前記前段フライアイレンズ(F1B)のみを描いてあり、前記フライアイインテグレータ(FmB)のフライアイレンズの並びの方向であるx’軸およびy’軸に対し、x軸およびy軸が、傾きをもつように配置してあることが判る。
 当然ながら、この傾きの角度は幾らであっても構わないという訳ではなく、前記フライアイインテグレータ(FmB)において、前記影の影響を弱め合うように重ね合わせられる角度に設定する必要があり、具体的な値は実験的に求めればよい。
Therefore, in order to avoid this problem, it is only necessary that the two types of arrangement directions do not coincide with each other, and a state of such a configuration is shown in a simplified form of a part of the light source device of the present invention. FIG. 6 is a conceptual diagram.
In this figure, with respect to a virtual plane (Po) perpendicular to the central axis (z) of the mixed output light beam (Fg) of the multi-wavelength light source shown in FIG. A projection of the dichroic reflection element (M) and the condensing element (Ef) is drawn as a symbol of the multi-wavelength light source of the present invention, and the preceding fly-eye lens (F1B) is symbolized as the fly-eye integrator (FmB). ) And the x-axis and the y-axis are arranged so as to have an inclination with respect to the x′-axis and the y′-axis, which are the directions of the fly-eye lenses of the fly-eye integrator (FmB). I understand that.
Needless to say, the angle of the inclination is not limited, and the fly eye integrator (FmB) needs to be set to an angle that can be overlapped so as to weaken the influence of the shadow. A reasonable value may be obtained experimentally.
 次に、本発明の多波長光源の実施例の一部の一形態を簡略化して示す図である図7を用いて、本発明を実施するための形態について説明する。
 本図の(a)は前記要素光源(U1)のうちの1個の構成例を示すもので、発光素子(Y1)にコリメータ素子(E1)を装着するための組立て構造、(b)はコリメータ素子(E1,E2,…)が固着されたレンズホルダ(Hzl,Hz2,…)が前記発光素子(Y1,Y2,…)に装着された状態の様子、および前記発光素子(Y1,Y2,…)がヒートシンク(Hs)に実装された様子を表し、前記要素光源(U1,U2,…)の複数個を集積した前記集積光源(W)の一部を示す。
Next, the form for implementing this invention is demonstrated using FIG. 7 which is a figure which simplifies and shows one form of the Example of the multi-wavelength light source of this invention.
(A) of this figure shows one structural example of the said element light source (U1), the assembly structure for mounting | wearing a light emitting element (Y1) with a collimator element (E1), (b) is a collimator. The lens holder (Hz1, Hz2,...) To which the elements (E1, E2,...) Are fixed are mounted on the light emitting elements (Y1, Y2,...), And the light emitting elements (Y1, Y2,. ) Represents a state of being mounted on the heat sink (Hs), and shows a part of the integrated light source (W) in which a plurality of the element light sources (U1, U2,...) Are integrated.
 本図の発光素子(Yl,Y2,…)は、金属ケース部(My1,My2,…)と光透過窓部(図示を省略)とから構成される外囲器に覆われ、また通電用端子(TyA,TyB)を具備する、一般にキャン型と呼ばれる構造を有するものである。
 前記発光素子(Yl,Y2,…)の前記金属ケース部(Myl,My2,…)の構造上の基準面(Pz1,Pz2,…)に対して垂直な方向に、遠方の像点を生成する光束が射出されるよう、前記コリメータ素子(El,E2,…)を設置するために、例えば接着等の手段を用いて、先ずレンズマウント(Hzl’,Hz2’,…)に対して前記コリメータ素子(El,E2,…)を固着しておき、次に、前記発光素子(Yl,Y2,…)と固定されたレンズホルダ(Hz1,Hz2,…)に対して、例えば接着等の手段を用いて、前記レンズマウント(Hzl’,Hz2’,…)を固着することにより、前記レンズホルダ(Hzl,Hz2,…)への前記コリメータ素子(El,E2,…)の固着を実現している。
 すなわち、前記コリメータ素子(El,E2,…)を前記レンズホルダ(Hz1,Hz2,…)に固着するに際し、直接固着するのではなく、間に前記レンズマウント(Hzl’,Hz2’,…)を介在させるものである。
The light-emitting elements (Yl, Y2,...) In this figure are covered with an envelope composed of metal case parts (My1, My2,...) And a light transmission window part (not shown), and are also connected to energization terminals. (TyA, TyB) and a structure generally called a can type.
A distant image point is generated in a direction perpendicular to the structural reference planes (Pz1, Pz2,...) Of the metal case portions (Myl, My2,...) Of the light emitting elements (Yl, Y2,...). In order to install the collimator elements (El, E2,...) So that a light beam is emitted, the collimator elements are first applied to the lens mount (Hzl ′, Hz2 ′,. (El, E2,...) Are fixed, and then, for example, a means such as adhesion is used for the lens holder (Hz1, Hz2,...) Fixed to the light emitting element (Yl, Y2,...). By fixing the lens mounts (Hzl ′, Hz2 ′,...), The collimator elements (El, E2,...) Are fixed to the lens holders (Hz1, Hz2,...).
That is, when the collimator elements (El, E2,...) Are fixed to the lens holder (Hz1, Hz2,...), The lens mounts (Hzl ′, Hz2 ′,. It is something to intervene.
 このような構造とすることにより、前記レンズマウント(Hz1’,Hz2’,…)に対して、偏芯が無いように前記コリメータ素子(El,E2,…)を固着しておけば、前記発光素子(Yl,Y2,…)と固定された前記レンズホルダ(Hzl,Hz2,…)に対して、前記発光素子(Y1,Y2,…)に電流を流して発光させ、前記コリメータ素子(El,E2,…)を通過した光束が、所定のコリメート状態(発光素子の活性領域に共役な像が所定の位置に結像する状態)になるよう光学観測を行いながら光軸方向の位置(およびそれに垂直な面内の位置)を所定位置に追い込み、前記レンズマウント(Hzl’,Hz2’,…)を前記レンズホルダ(Hzl,Hz2,…)に固着することができる。
 なお、図7の(b)には、前記コリメータ素子(E1,E2,…)を固着するための接着剤ポッティング(HpA)、前記レンズマウント(Hz1’,Hz2’,…)を固着するための接着剤ポッティング(HpB)を記載してあるが、前記コリメータ素子(El,E2,…)や前記レンズマウント(Hz1’,Hz2’,…)の周囲全部に施す必要は無く、周囲の2~3箇所から数箇所でよい。
With this structure, if the collimator elements (El, E2,...) Are fixed to the lens mount (Hz1 ′, Hz2 ′,. The lens holders (Hz1, Hz2,...) Fixed to the elements (Yl, Y2,...) Are caused to emit light by passing current through the light emitting elements (Y1, Y2,...), And the collimator elements (El, Y1,. E2,...)) While performing optical observation so that the light beam that has passed through a predetermined collimated state (a state in which an image conjugate with the active region of the light emitting element is formed at a predetermined position) The lens mount (Hz1, Hz2,...) Can be fixed to the lens holder (Hz1, Hz2,...) By moving the lens mount (Hz1 ′, Hz2 ′,...) To a predetermined position.
In FIG. 7B, adhesive potting (HpA) for fixing the collimator elements (E1, E2,...) And lens mounts (Hz1 ′, Hz2 ′,...) Are fixed. Although adhesive potting (HpB) is described, it is not necessary to apply it to the entire periphery of the collimator element (El, E2,...) Or the lens mount (Hz1 ′, Hz2 ′,...). A few places are enough.
 以上のようにして前記要素光源(U1,U2,…)の個々のものを構成し、これらを共通の前記ヒートシンク(Hs)に集積して実装することにより、前記集積光源(W)の1個を構成することができる。
 なお、前記ヒートシンク(Hs)がアルミニウム等の金属材料から作られる場合、これと前記金属ケース部(Myl,My2,…)の間に介在することになる前記レンズホルダ(Hzl,Hz2,…)が絶縁性部材である必要がある場合は、例えば熱伝導性の良いセラミックなどの材料により構成する。
As described above, each of the element light sources (U1, U2,...) Is configured, and these are integrated and mounted on the common heat sink (Hs), whereby one of the integrated light sources (W). Can be configured.
When the heat sink (Hs) is made of a metal material such as aluminum, the lens holder (Hz1, Hz2,...) Interposed between the heat sink (Hs) and the metal case (Myl, My2,...) When it is necessary to be an insulating member, it is made of a material such as ceramic having good thermal conductivity.
 図7では、前記発光素子(Yl)と前記コリメータ素子(El)とを組み立てて、実体としての前記要素光源(Ul)を構成し、それらの複数個を集積して前記集積光源(W)を構成するものの一例を示した。
 しかし本発明の多波長光源においては、複数の発光素子(Yl,Y2,…)からなる発光素子集合体と、複数のコリメータ素子(El,E2,…)からなるコリメータ素子集合体とを組合せて1個の集積光源(W)を構成することにより、結果的に1個の発光素子(Y1)と1個のコリメータ素子(E1)とから成る前記要素光源(U1)が、概念上のものとして形成され、前記集積光源(W)は、これらを集積したものと見なせるようにしてもよい。
 これに関し、本発明の多波長光源の実施例の一部の一形態を簡略化して示す図である図8を用いて簡単に説明する。
In FIG. 7, the light emitting element (Yl) and the collimator element (El) are assembled to constitute the element light source (Ul) as an entity, and a plurality of them are integrated to form the integrated light source (W). An example of what is configured is shown.
However, in the multi-wavelength light source of the present invention, a light emitting element assembly composed of a plurality of light emitting elements (Y1, Y2,...) And a collimator element assembly composed of a plurality of collimator elements (E1, E2,...) Are combined. By constructing one integrated light source (W), as a result, the element light source (U1) composed of one light emitting element (Y1) and one collimator element (E1) The integrated light source (W) formed may be regarded as an integrated unit.
In this regard, a simple explanation will be given with reference to FIG. 8, which is a diagram showing a simplified form of a part of the embodiment of the multi-wavelength light source of the present invention.
 本図の(a)は発光素子(Yl,Y2,…)を収納したパッケージ(Py)の外観であり、(b)は前記パッケージ(Py)の内部構造を表し、(c)は前記パッケージ(Py)とコリメータ素子アレイ(Exy)とを組み合わせて構成した集積光源(W)である。
 ヒートシンク(Hs)は、金属等の熱伝導性の良い材料で構成され、パッケージ(Py)の底面を形成しており、固定用穴(Ph)を介して前記ヒートシンク(Hs)がさらに大きいヒートシンクに固定され、一体となってヒートシンクとして機能するようにしてもよい。
 金属やセラミック等を材料とするカバー(Pc)には、発光素子(Y1,Y2,・・・)から発せられた光束を取り出すための窓(Pw)が設けられ、前記ヒートシンク(Hs)と接合されてハーメチックシール構造とする。
(A) of this figure is the external appearance of the package (Py) containing the light emitting elements (Yl, Y2,...), (B) shows the internal structure of the package (Py), and (c) shows the package (Py). Py) is an integrated light source (W) configured by combining a collimator element array (Exy).
The heat sink (Hs) is made of a material having good thermal conductivity such as metal and forms the bottom surface of the package (Py). The heat sink (Hs) is a larger heat sink through the fixing hole (Ph). It may be fixed and integrated to function as a heat sink.
The cover (Pc) made of metal, ceramic, or the like is provided with a window (Pw) for taking out a light beam emitted from the light emitting elements (Y1, Y2,...) And joined to the heat sink (Hs). And a hermetic seal structure.
 前記カバー(Pc)の内部においては、パッケージ(Py)の構造上の基準面Pzである前記ヒートシンク(Hs)の一面上に接着等の手段を用いて、例えば窒化アルミニウム等の熱伝導性の良い絶縁材基板(Pih)が固定されており、該絶縁材基板(Pih)の上には、直接に、あるいは構造物を介して、接着等の手段を用いて、前記発光素子(Yl,Y2,…)が固着されている。
 なお、前記カバー(Pc)内部の空間には、前記発光素子(Y1,Y2,…)等の劣化を防ぐため、不活性ガス等の気体が封入されている。
 なお、本発明の多波長光源は、パッケージ(Py)の複数個から構成されるようにしてもよい。
Inside the cover (Pc), by using means such as adhesion on one surface of the heat sink (Hs) which is the reference surface Pz on the structure of the package (Py), for example, heat conductivity such as aluminum nitride is good. An insulating substrate (Pih) is fixed, and the light emitting elements (Yl, Y2, Y2, Y2, Y2, Y2, Y2) are bonded on the insulating substrate (Pih) directly or via a structure by using means such as adhesion. ...) is fixed.
Note that a gas such as an inert gas is enclosed in the space inside the cover (Pc) in order to prevent deterioration of the light emitting elements (Y1, Y2,...).
Note that the multi-wavelength light source of the present invention may be composed of a plurality of packages (Py).
 前記パッケージ(Py)の前記窓(Pw)の外側から見ると、それぞれの前記発光素子(Y1,Y2,…)の発光領域は、同一平面内に独立して縦横に並ぶ点像集合と見なすことができる。
 この点像集合の各点像に対応させて、前記コリメータ素子(E1,E2,…)に相当する、それぞれ独立した部分レンズ(Eml,Em2,…)を並べて前記コリメータ素子アレイ(Exy)を構成し、前記窓(Pw)の外側に配置することにより、各点像からの光束を、前記光束(Fbil,Fbi2,…)に相当する、本多波長光源の前記ダイクロイック反射素子(M)に入力するものとして適合する光束に変換することができる。
 なお、部分レンズ(Em1,Em2,…)が2次元アレイ状に並んだ前記コリメータ素子アレイ(Exy)は、前記したフライアイレンズの製作技術と同様の技術により、一体のものとして成型することが好適である。
 このとき、部分レンズ(Eml,Em2,…)を2次元アレイ状に並べて一体のものとして構成した前記コリメータ素子アレイ(Exy)が、前記窓(Pw)を兼ねるように前記パッケージ(Py)を構成してもよい。
When viewed from the outside of the window (Pw) of the package (Py), the light emitting regions of the respective light emitting elements (Y1, Y2,...) Are regarded as point image sets arranged vertically and horizontally independently in the same plane. Can do.
Corresponding to each point image of this point image set, the collimator element array (Exy) is configured by arranging independent partial lenses (Eml, Em2,...) Corresponding to the collimator elements (E1, E2,...). Then, by arranging it outside the window (Pw), the light flux from each point image is input to the dichroic reflection element (M) of the multi-wavelength light source corresponding to the light flux (Fbil, Fbi2,...). It can be converted into a luminous flux suitable for what it does.
The collimator element array (Exy) in which the partial lenses (Em1, Em2,...) Are arranged in a two-dimensional array can be molded as a single unit by a technique similar to the fly eye lens manufacturing technique described above. Is preferred.
At this time, the package (Py) is configured so that the collimator element array (Exy) configured by arranging the partial lenses (Eml, Em2,...) In a two-dimensional array as an integral one also serves as the window (Pw). May be.
 次に、本発明の多波長光源の実施例の一形態を簡略化して示す図である図9について説明する。
 本図の多波長光源は、図4に記載の多波長光源を基本として、より実際的なものに改めたものとして描いてあり、(a)は正面図、(b)は側面図である。
 集積光源(Wi1,Wi2,Wj1,Wj2)および蛍光体(N)は、本多波長光源のべースを兼ねた、共通のヒートシンク(Bh)に対し、熱的に良好な接触を保つよさに固定してある。
 さらに該ヒートシンク(Bh)は、空冷式や水冷式の、あるいはぺルチェ素子等による冷却構造体に固定される。
 本図のダイクロイック反射素子(M)は、薄い2枚の平板からなるダイクロイック反射部(Mi,Mj)を組み合わせて構成してある。
Next, FIG. 9 which is a diagram showing a simplified form of an embodiment of the multi-wavelength light source of the present invention will be described.
The multi-wavelength light source of this figure is drawn as a more practical one based on the multi-wavelength light source shown in FIG. 4, (a) is a front view, and (b) is a side view.
The integrated light sources (Wi1, Wi2, Wj1, Wj2) and the phosphor (N) maintain good thermal contact with the common heat sink (Bh), which also serves as the base of the multi-wavelength light source. It is fixed.
Further, the heat sink (Bh) is fixed to a cooling structure of an air cooling type, a water cooling type, or a Peltier element.
The dichroic reflecting element (M) in this figure is configured by combining dichroic reflecting portions (Mi, Mj) made of two thin flat plates.
 また集光素子(Ef)は、平行光束を集束光束に変換するための球面または非球面のレンズ(Efl)と、集束光束を、より大きな拡がり角を有する集束光束に変換するための、2段のアプラナティックレンズ(Ef2,Ef3)(所謂ルボシェッツレンズ)から構成するように描いてある。
 励起光が波長変換された蛍光は、前記集光領域(Aq)から指向性無く発散されるため、前記集光素子(Ef)は、可及的大きな立体角の発散光をコリメートできることが、光の利用効率を高める上で必要であり、本図に記載した前記集光素子(Ef)は、この必要性を満足させるのに好適な構成である。
 なお、前記集光領域(Aq)から発散される励起光が波長変換された蛍光、および波長変換されなかった残余励起光の全てが、高品質にコリメートされるためには、前記集光素子(Ef)は、2色または3色の色収差補正がなされていることが望ましいが、このように、少なくとも3枚のレンズに分割し、適当な硝材を使用して収差補正設計することにより、原理的にはそれが可能となる。
The condensing element (Ef) includes a spherical or aspherical lens (Efl) for converting a parallel light beam into a focused light beam, and a two-stage for converting the focused light beam into a focused light beam having a larger divergence angle. The aplanatic lens (Ef2, Ef3) (so-called luboschets lens) is drawn.
Since the fluorescence whose excitation light has undergone wavelength conversion is diverged from the condensing region (Aq) without directivity, the condensing element (Ef) is capable of collimating divergent light with a solid angle as large as possible. The condensing element (Ef) described in this figure is a configuration suitable for satisfying this necessity.
In addition, in order to collimate the fluorescence in which the excitation light emitted from the light collection region (Aq) is wavelength-converted and the residual excitation light that has not been wavelength-converted with high quality, the light-collecting element ( Ef) is preferably corrected for chromatic aberration of two colors or three colors. In this way, it is divided into at least three lenses and is designed to correct aberrations using an appropriate glass material. It will be possible.
 前記集積光源(Wi1,Wi2,Wj1,Wj2)から出力される各光束の並びに対しては、そのx方向への並びピッチが小さくなく、そのままでは光源のコンパクト化を阻害するため、短冊状の複数の45度ミラーを、x方向の配置間隔とz方向の配置間隔を相違させて並べて配置した階段状ミラー(Mil,Mi2,…,Mj1,Mj2,…)を設けてある。
 このようにすることにより、前記ダイクロイック反射素子(M)に入射される光束のz方向への並びピッチを十分に小さくすることができたため、前記ダイクロイック反射素子(M)に設ける、励起光を選択的に反射するための領域(Pa,Pb,…)は、前記した合併したものとすることができる。
With respect to the arrangement of the light beams output from the integrated light sources (Wi1, Wi2, Wj1, Wj2), the arrangement pitch in the x direction is not small. The step-like mirrors (Mil, Mi2,..., Mj1, Mj2,...) In which the 45-degree mirrors are arranged with the arrangement interval in the x direction different from the arrangement interval in the z direction are provided.
In this way, the arrangement pitch in the z direction of the light beams incident on the dichroic reflection element (M) can be made sufficiently small, so the excitation light provided on the dichroic reflection element (M) is selected. The regions (Pa, Pb,...) For reflective reflection can be merged as described above.
 本図では、前記ダイクロイック反射素子(M)に入射される光束のy方向への並び間隔が均等ではなく、そのために前記領域(Pa,Pb,…)のy方向への並び間隔が均等ではないものを例示したが、z軸に対して対称な配置に対してシフトさせた配置としているため、前記集積光源(Wi)からの主光線(Lpil)が前記領域(Pa)で反射された後、前記蛍光体(N)から正反射されて戻って来た場合の主光線(Lpil’)は、前記領域(Pa,Pb,…)が形成されていない箇所を通過し、よって残余励起光の利用効率が向上する。
 なお、前記集積光源(Wi1,Wi2)との間隔、および前記集積光源(Wj1,Wj2)との間隔を、前記集積光源(Wi1,Wi2)が接触し、また前記集積光源(Wj1,Wj2)が接触するまで調整しても、前記ダイクロイック反射素子(M)に入射される光束のy方向への並び間隔を均等にできない場合は、図において2点鎖線で示したような、平行平板ガラスから成るビームシフト素子(Es)を、その表面がz軸に平行になるように配置してz軸回りに角度を調整することにより、前記ダイクロイック反射素子(M)に入射される光束のy方向への並び間隔を均等にすることが可能である(ただし、前記ビームシフト素子(Es)は、前記集積光源(Wi2,Wj2)両方からの光束、または前記集積光源(Wi1,Wi2,Wj1,Wj2)全てからの光束に配置する。) 。
In this figure, the arrangement intervals in the y direction of the light beams incident on the dichroic reflection element (M) are not uniform, and therefore the arrangement intervals in the y direction of the regions (Pa, Pb,...) Are not uniform. However, since the principal ray (Lpil) from the integrated light source (Wi) is reflected by the region (Pa), since the arrangement is shifted with respect to the arrangement symmetrical to the z axis, The principal ray (Lpil ′) when it is reflected back from the phosphor (N) passes through a portion where the region (Pa, Pb,...) Is not formed, and thus the remaining excitation light is used. Efficiency is improved.
The integrated light sources (Wi1, Wi2) are in contact with each other and the integrated light sources (Wj1, Wj2) are in contact with each other with respect to the integrated light sources (Wi1, Wi2) and the integrated light sources (Wj1, Wj2). If the arrangement interval in the y direction of the light beams incident on the dichroic reflection element (M) cannot be made uniform even if it is adjusted until contact is made, it is made of parallel flat glass as shown by a two-dot chain line in the figure. The beam shift element (Es) is arranged so that the surface thereof is parallel to the z-axis, and the angle is adjusted around the z-axis, whereby the light beam incident on the dichroic reflection element (M) in the y-direction. It is possible to make the arrangement interval uniform (however, the beam shift element (Es) is a beam from both the integrated light sources (Wi2, Wj2) or the integrated light sources (Wi1, Wi2,). j1, Wj2) is arranged on the light beam from all.).
 前記集積光源(Wil,Wi2,Wjl,Wj2)を市販品によって実現する場合は、日亜化学工業株式会社製のNUBM05(品名「青色レーザダイオードバンク」)が使用可能である。
 なお、この市販集積光源の場合、標準では、各出力ビームが無限遠像点を形成する光束になるようにするためのコリメータレンズが、個々の半導体レーザに組み付けられているため、先に述べた、前記集光領域(Aq)を射出瞳とする光学系を実現する第1の方法を実施する場合は、前記出力ビームのそれぞれに、規定位置の有限距離の像点を形成する光束に変換するための変換レンズを挿入すればよい。
 その場合、前記コリメータ素子アレイ(Exy)と同様な、前記変換レンズを2次元アレイ状に並べて一体に成形したレンズアレイとして製作することが好適である。
When the integrated light source (Wil, Wi2, Wjl, Wj2) is realized by a commercial product, NUBM05 (product name “blue laser diode bank”) manufactured by Nichia Corporation can be used.
In the case of this commercially available integrated light source, the collimator lens for making each output beam become a light beam forming an infinite image point is assembled in each semiconductor laser as a standard. When the first method for realizing an optical system using the light collection region (Aq) as an exit pupil is performed, the output beam is converted into a light beam that forms an image point of a finite distance at a specified position. For this purpose, a conversion lens may be inserted.
In this case, it is preferable that the conversion lens is manufactured as a lens array in which the conversion lenses are arranged in a two-dimensional array and integrally molded, similar to the collimator element array (Exy).
 ところで、図9の(a)においては、前記集積光源(Wi1,Wi2)から成る左側の要素光源集合、および前記集積光源(Wj1,Wj2)から成る右側の要素光源集合それぞれは、x軸およびy軸の方向に、それぞれ4個および4個の並びからなる要素光源のマトリクスによって形成されているものを例示した。
 ここで、本多波長光源の出力光量を増すために、前記した要素光源マトリクスのx軸方向の並び個数を増そうとする場合は、それに合わせて前記階段状ミラー(Mil,Mi2,…,Mj1,Mj2,…)の個数を増すことになるが、その際、もし、前記ダイクロイック反射素子(M)や前記集光素子(Ef)の大きさを大きくしたくない場合は、同図の(b)から判るように、z軸方向における前記階段状ミラー(Mil,Mi2,…,Mj1,Mj2,…)の並びピッチを短縮しなければならない。
By the way, in FIG. 9A, the left element light source set composed of the integrated light sources (Wi1, Wi2) and the right element light source set composed of the integrated light sources (Wj1, Wj2) are respectively represented by the x-axis and y-axis. In the axial direction, an element formed by a matrix of element light sources composed of four and four arrays is illustrated.
Here, in order to increase the number of elements in the x-axis direction in order to increase the output light quantity of the multi-wavelength light source, the stepped mirrors (Mil, Mi2,..., Mj1) are adjusted accordingly. , Mj2,...). In this case, if it is not desired to increase the size of the dichroic reflecting element (M) or the condensing element (Ef), (b) in FIG. ), The arrangement pitch of the stepped mirrors (Mil, Mi2,..., Mj1, Mj2,...) In the z-axis direction must be shortened.
 このとき、もし、前記階段状ミラー(Mil,Mi2,…,Mj1,Mj2,…)のz軸方向の並びピッチが、各要素光源の光束の太さ(図1で言えば前記光束(Fbl,Fb2,…)の太さ、すなわち直径)に対して余裕が無いならば、階段状ミラーのz軸方向並びピッチの短縮と同時に、各要素光源の光束太さの縮小をも行う必要がある。
 そして、各要素光源の光束太さを縮小するためには、各要素光源のコリメータ素子(図1で言えば前記コリメータ素子(El,E2,…))の焦点距離を短縮すればよい。
At this time, if the pitch of the step-like mirrors (Mil, Mi2,..., Mj1, Mj2,...) In the z-axis direction is the thickness of the light flux of each element light source (in FIG. 1, the light flux (Fbl, If there is no allowance for the thickness (ie, diameter) of Fb2,...), It is necessary to reduce the luminous flux thickness of each element light source simultaneously with the reduction of the pitch in the z-axis direction of the stepped mirrors.
In order to reduce the beam thickness of each element light source, the focal length of the collimator elements (the collimator elements (El, E2,...) In FIG. 1) of each element light source may be shortened.
 ただし、前記したような市販集積光源を使用する場合に、標準の光束の太さを縮小するときは、本発明の多波長光源の実施例の一形態を簡略化して示す図である図10に記載のように、集積光源(Wi1’,Wj1’)の出力ビームのそれぞれに、光束太さを縮小するためのビームコンプレッサレンズ(Gil,Gi2,…,Gj1,Gj2,…)を挿入すればよい。
 ここで、前記ビームコンプレッサレンズ(Gil,Gi2,…,Gj1,Gj2,…)の個々は、ビームの入射側面が凸球面で、射出側面が凹球面であり、アフォーカル系(望遠系、すなわち焦点距離が無限大)の1枚のメニスカスレンズによって構成する場合を描いてあるが、凸レンズと凹レンズとの2枚のレンズを共焦点配置して構成してもよい。
 なお、先に述べた、前記集光領域(Aq)を射出瞳とする光学系を実現する第1の方法を合わせて実施する場合は、前記ビームコンプレッサレンズ(Gil,Gi2,…,Gj1,Gj2,…)が、前記した規定位置の有限距離の像点を形成する光束に変換するための変換レンズをも兼ねるよう、前記ビームコンプレッサレンズ(Gil,Gi2,…,Gj1,Gj2,…)には、無限大ではなく、正または負の、適当な値の有限の焦点距離を与えることが好適である。
However, when using a commercially available integrated light source as described above, when reducing the thickness of a standard light beam, FIG. 10 is a diagram showing a simplified form of an embodiment of the multi-wavelength light source of the present invention. As described, beam compressor lenses (Gil, Gi2,..., Gj1, Gj2,...) For reducing the beam thickness may be inserted into the output beams of the integrated light sources (Wi1 ′, Wj1 ′). .
Here, each of the beam compressor lenses (Gil, Gi2,..., Gj1, Gj2,...) Has a convex spherical surface on the incident side of the beam and a concave spherical surface on the exit side. Although a case where the lens is constituted by one meniscus lens having an infinite distance) is illustrated, two lenses of a convex lens and a concave lens may be arranged confocally.
In the case where the first method for realizing the optical system having the light collection region (Aq) as the exit pupil described above is also performed, the beam compressor lenses (Gil, Gi2,..., Gj1, Gj2 ,... Also serves as a conversion lens for converting into a light beam that forms an image point of a finite distance at the specified position as described above, the beam compressor lenses (Gil, Gi2,..., Gj1, Gj2,...) It is preferable to provide a finite focal length of an appropriate value, positive or negative, not infinite.
 いま述べた構成においては、前記ビームコンプレッサレンズ(Gil,Gi2,…,Gj1,Gj2,…)を、前記集積光源(Wi1’,Wj1’)の出力ビームのそれぞれに対して設けるものとして説明した。
 しかし、前記集積光源(Wi1’,Wj1’)の出力ビームの太さのうち、図10の紙面に垂直な方向、すなわちy軸方向の太さ成分については、それを縮小する特段の必要性は無いため、前記ビームコンプレッサレンズ(Gil,Gi2,…,Gj1,Gj2,…)は、y軸方向の母線を有するシリンドリカルレンズに置き換えることができることが判る。
 そして、図9の(a)においては、前記階段状ミラー(Mil,Mi2,…,Mj1,Mj2,…)がy軸方向に延在して、y軸方向に並ぶ複数のビームを一括して反射したように、前記シリンドリカルレンズについても、その母線がy軸方向に延在する構造とすることにより、y軸方向に並ぶ複数のビームに対してx軸方向の太さを一括して縮小させるものとすることが可能である。
 なお、この様子を図示するとしても、図10の前記ビームコンプレッサレンズ(Gil,Gi2,…,Gj1,Gj2,…)を前記シリンドリカルレンズと見立てれば、全く同様の図となるため、図示を省略する。
In the configuration just described, the beam compressor lens (Gil, Gi2,..., Gj1, Gj2,...) Is described as being provided for each output beam of the integrated light source (Wi1 ′, Wj1 ′).
However, among the thicknesses of the output beams of the integrated light sources (Wi1 ′, Wj1 ′), there is a special need to reduce the thickness component in the direction perpendicular to the paper surface of FIG. Therefore, the beam compressor lens (Gil, Gi2,..., Gj1, Gj2,...) Can be replaced with a cylindrical lens having a generatrix in the y-axis direction.
9A, the step-like mirrors (Mil, Mi2,..., Mj1, Mj2,...) Extend in the y-axis direction, and a plurality of beams arranged in the y-axis direction are collectively displayed. As reflected, the cylindrical lens also has a structure in which the generatrix extends in the y-axis direction, whereby the thickness in the x-axis direction is collectively reduced with respect to a plurality of beams arranged in the y-axis direction. Can be.
Even if this state is illustrated, since the beam compressor lens (Gil, Gi2,..., Gj1, Gj2,...) In FIG. To do.
 ここで、先に述べた、前記集光領域(Aq)を射出瞳とする光学系を実現する第1の方法に関して補足しておく。
 図9の(b)や図10に記載した多波長光源の場合、前記階段状ミラー(Mil,Mi2,…,Mj1,Mj2,…)を使用しているため、集積光源内の各要素光源から前記集光素子(Ef)に至る距離は均等ではない(ただし、ここで言う距離とは、例えば各要素光源のコリメータ素子の出力側主平面から前記集光素子(Ef)の入力側主平面との間の距離とすればよい。)。
 そのため、各要素光源からの光束に挿入する、前記した規定位置の有限距離の像点を形成する光束に変換するための変換レンズの焦点距離が、要素光源によらず同一であれば、前記集光素子(Ef)からの前記出力像点(J1,J2,…)の並びが、図3に記載したような前記集光素子(Ef)の軸(すなわちz軸)に対して垂直のものから外れ、傾いてしまう現象を生ずる可能性がある。
Here, it supplements regarding the 1st method of implement | achieving the optical system which mentioned the above-mentioned condensing area | region (Aq) as an exit pupil mentioned above.
In the case of the multi-wavelength light source shown in FIG. 9B or FIG. 10, since the stepped mirrors (Mil, Mi2,..., Mj1, Mj2,...) Are used, each element light source in the integrated light source is used. The distances to the condensing element (Ef) are not uniform (however, the distance referred to here is, for example, from the output-side main plane of the collimator element of each element light source to the input-side main plane of the condensing element (Ef)) And the distance between them.)
Therefore, if the focal length of the conversion lens that is inserted into the light beam from each element light source and converts to a light beam that forms an image point of a finite distance at the specified position is the same regardless of the element light source, The arrangement of the output image points (J1, J2,...) From the optical element (Ef) is perpendicular to the axis of the condensing element (Ef) as shown in FIG. There is a possibility of causing a phenomenon of falling off and tilting.
 しかし、通常この傾きは小さく、よって、前記集光領域(Aq)の部分において、この傾きに起因して、前記集束光束(Fd1,Fd2,…)毎の集光領域の大きさが設計目標からズレる量は小さいため、この現象は無視してよい。
 因みに、前記した傾きが小さい理由は、前記出力像点(Jl,J2,…)を結像する前記集光素子(Ef)は縮小光学系であり、一般に結像時の縦倍率は横倍率の2乗であるから、前記出力像点(JI,J2,…)の並びのz軸方向の奥行きは、さらに縮小されるからである。
However, this inclination is usually small. Therefore, in the condensing area (Aq) portion, due to this inclination, the size of the condensing area for each of the focused light beams (Fd1, Fd2,...) Since the amount of deviation is small, this phenomenon can be ignored.
Incidentally, the reason why the inclination is small is that the condensing element (Ef) that forms the output image point (Jl, J2,...) Is a reduction optical system. This is because the depth in the z-axis direction of the arrangement of the output image points (JI, J2,...) Is further reduced because it is square.
 なお、小さいと雖もこの現象を排除したい場合は、前記した集積光源内の各要素光源から前記集光素子(Ef)に至る距離に応じて、前記した規定位置の有限距離の像点を形成する光束に変換するための変換レンズの焦点距離を調整すればよい。 If it is desired to eliminate this phenomenon if it is small, an image point of a finite distance at the specified position is formed according to the distance from each element light source in the integrated light source to the light collecting element (Ef). What is necessary is just to adjust the focal distance of the conversion lens for converting into the light beam which carries out.
 なお、前記集光領域(Aq)が、光パワーが集中する小さい領域となることを、先に述べた前記集光領域(Aq)を射出瞳とする光学系を実現する以外の方法によって避けたい場合は、例えば図10に記載した位置に拡散板(Bi,Bj)を挿入することにより、それを実現することができる。 Note that it is desired to avoid that the light condensing region (Aq) becomes a small region where the optical power is concentrated by a method other than realizing the optical system having the light condensing region (Aq) as the exit pupil described above. In this case, for example, it can be realized by inserting a diffusion plate (Bi, Bj) at the position shown in FIG.
 本発明は、プロジェクタ等の光学装置において使用可能な白色光源などのような、半導体レーザ等の発光素子を用いた多波長光源を設計・製造する産業において利用可能である。 The present invention can be used in industries that design and manufacture multi-wavelength light sources using light emitting elements such as semiconductor lasers, such as white light sources that can be used in optical devices such as projectors.
 A1    矢印
 A2    矢印
 Aq    集光領域
 Bh    ヒートシンク
 Bi    拡散板
 Bj    拡散板
 DmjA  2次元光振幅変調素子
 DmjB  2次元光振幅変調素子
 E1    コリメータ素子
 E2    コリメータ素子
 Ef    集光素子
 Ef1   レンズ
 Ef2   アプラナティックレンズ
 Ef3   アプラナティックレンズ
 Ej1A  照明レンズ
 Ej1B  照明レンズ
 Ej2A  投影レンズ
 Ej2B  フィールドレンズ
 Ej3B  投影レンズ
 Em1   部分レンズ
 Em2   部分レンズ
 Es    ビームシフト素子
 Exy   コリメータ素子アレイ
 F1B   前段フライアイレンズ
 F2B   後段フライアイレンズ
 Fa1   放射光
 Fa2   放射光
 Fb1   光束
 Fb2   光束
 Fb4   光束
 Fb5   光束
 Fbi1  光束
 Fbi2  光束
 Fbj1  光束
 Fbj2  光束
 Fc1   光束
 Fc2   光束
 Fd    集束光束
 Fd1   集束光束
 Fd2   集束光束
 Fe    混合発散光束
 Ff    光束
 Fg    混合出力光束
 FmA   光均一化手段
 Fmb   フライアイインテグレータ
 Gi1   ビームコンプレッサレンズ
 Gi2   ビームコンプレッサレンズ
 Gj1   ビームコンプレッサレンズ
 Gj2   ビームコンプレッサレンズ
 HpA   接着剤ポッティング
 HpB   接着剤ポッティング
 Hs    ヒートシンク
 Hz1   レンズホルダ
 Hz1’  レンズマウント
 Hz2   レンズホルダ
 Hz2’  レンズマウント
 J1    出力像点
 J2    出力像点
 Lp1   主光線
 Lp1’  主光線
 Lp2   主光線
 Lp2’  主光線
 Lp4   主光線
 Lp4’  主光線
 Lp5   主光線
 Lp5’  主光線
 Lpi1  主光線
 Lpi1’ 主光線
 Lpj1  主光線
 Lpj1’ 主光線
 M     ダイクロイック反射素子
 Mi    ダイクロイック反射部
 Mi1   階段状ミラ一
 Mi2   階段状ミラ一
 Mj    ダイクロイック反射部
 Mj1   階段状ミラ一
 Mj2   階段状ミラ一
 MjA   ミラー
 MjB   偏光ビームスプリッタ
 My1   金属ケース部
 My2   金属ケース部
 N     蛍光体
 P1    領域
 P2    領域
 P4    領域
 P5    領域
 Pa    領域
 Pb    領域
 Pc    カバー
 PcB   偏光整列機能素子
 Ph    固定用穴
 Pih   絶縁材基板
 PmiA  入射端
 PmiB  入射端
 PmoA  射出端
 PmoB  射出端
 Po    仮想平面
 Pw    窓
 Py    パッケージ
 Pz    基準面
 Pz1   基準面
 Pz2   基準面
 Q     点
 SjA   光源
 SjB   光源
 Smi   ダイクロイック面
 Smj   ダイクロイック面
 Tj    スクリーン
 TyA   通電用端子
 TyB   通電用端子
 U1    要素光源
 U2    要素光源
 U4    要素光源
 U5    要素光源
 W     集積光源
 Wi    集積光源
 Wi1   集積光源
 Wi1’  集積光源
 Wi2   集積光源
 Wj    集積光源
 Wj1   集積光源
 Wj1’  集積光源
 Wj2   集積光源
 Y1    発光素子
 Y2    発光素子
 z     中心軸
 ZiB   入射光軸
 zqj   距離
                                                                                
A1 arrow A2 arrow Aq Condensing region Bh Heat sink Bi Diffusion plate Bj Diffusion plate DmjA Two-dimensional light amplitude modulation element DmjB Two-dimensional light amplitude modulation element E1 Collimator element E2 Collimator element Ef Condensing element Ef1 Lens Ef2 Aplanatic lens Ef3 Tick lens Ej1A Illumination lens Ej1B Illumination lens Ej2A Projection lens Ej2B Field lens Ej3B Projection lens Em1 Partial lens Em2 Partial lens Es Beam collimator element Exy Collimator element array F1B Pre-stage fly-eye lens F2B Sub-stage fly-eye light Fa1 Luminous flux Fb4 luminous flux Fb5 luminous flux Fbi1 luminous flux Fbi2 luminous flux Fbj1 luminous flux Fbj2 luminous flux Fc1 luminous flux Fc2 luminous flux Fd focused luminous flux Fd1 focused luminous flux Fd2 focused luminous flux Fe mixed divergent luminous flux Ff luminous flux Fg mixed output luminous flux FmA light uniformizing means Fmb fly eye integrator Gi1 beam compressor lens Gi2 beam compressor lens Gj1 beam compressor lens HjA beam compressor lens Hp Agent potting HpB Adhesive potting Hs Heat sink Hz1 Lens holder Hz1 'Lens mount Hz2 Lens holder Hz2' Lens mount J1 Output image point J2 Output image point Lp1 Primary ray Lp1 'Main ray Lp2 Main ray Lp2' Main ray Lp4 Main ray Lp4 'Main ray Ray Lp5 chief ray Lp5 'chief ray Lpi1 chief ray Lpi1' chief ray Lpj1 chief ray L j1 'principal ray M dichroic reflection element Mi dichroic reflection part Mi1 step-like mirror Mi2 step-like mirror Mj dichroic reflection part Mj1 step-like mirror Mj2 step-like mirror MjA mirror MjB polarization beam splitter My1 metal case part My1 metal case part My1 N phosphor P1 region P2 region P4 region P5 region Pa region Pb region Pc cover PcB Polarization alignment functional element Ph fixing hole Pih insulating material substrate PmiA incident end PmiB incident end PmoA exit end PmoB exit end Po virtual plane Pw window Py package Pz Reference surface Pz1 Reference surface Pz2 Reference surface Q point SjA Light source SjB Light source Smi Dichroic surface Smj Dichroic surface Tj Screen T A energization terminal TyB energization terminal U1 element light source U2 element light source U4 element light source U5 element light source W integrated light source Wi integrated light source Wi1 integrated light source Wi1 ′ integrated light source Wi2 integrated light source Wj integrated light source Wj1 integrated light source Wj1 ′ integrated light source Yj2 integrated light source Yj2 Light-emitting element Y2 Light-emitting element z Central axis ZiB Incident optical axis zqj Distance

Claims (8)

  1.  発光素子(Y1)と、該発光素子(Y1)から放射される放射光(Fa1)を遠方の像を形成する光束(Fb1)に変換するためのコリメータ素子(E1)との組を、1個の要素光源(U1)として、該要素光源(U1,U2,…)の複数個を並べて集積した集積光源(W)と、
     前記発光素子(Y1,Y2,…)の放射波長の光を選択的に反射/透過する分光特性を有する領域(P1,P2,…)を、前記集積光源(W)から出力されるそれぞれの前記光束(Fb1,Fb2,…)が当たる箇所に選択的に設けたダイクロイック反射素子(M)と、
     前記光束(Fb1,Fb2,…)が前記ダイクロイック反射素子(M)によって反射/透過されて生成された光束(Fc1,Fc2,…)を集光するための集光素子(Ef)と、
     前記光束(Fc1,Fc2,…)が前記集光素子(Ef)によって集光されて生成された集束光束(Fd)が集光領域(Aq)を形成するときに、該集光領域(Aq)が形成される位置がその表面になるように配置され、前記発光素子(Y1,Y2,…)の放射波長の光を励起光として吸収して他の波長帯域の蛍光を放出する蛍光体(N)と、
    を具備しており、
     前記蛍光体(N)の表面上の前記集光領域(Aq)から放出される蛍光と、前記集光領域(Aq)から反射される残余励起光との混合発散光束(Fe)が生成されるとともに、
     前記混合発散光束(Fe)が、前記集光素子(Ef)によって、前記集束光束(Fd)とは逆方向に伝搬されて遠方の像を形成する光束(Ff)に変換され、
     該光束(Ff)が前記ダイクロイック反射素子(M)によって透過/反射されて、外部に混合出力光束(Fg)が出力されることを特徴とする多波長光源。
    One set of a light emitting element (Y1) and a collimator element (E1) for converting radiated light (Fa1) emitted from the light emitting element (Y1) into a light beam (Fb1) that forms a distant image As an element light source (U1), an integrated light source (W) in which a plurality of element light sources (U1, U2,.
    Each of the regions (P1, P2,...) Having spectral characteristics for selectively reflecting / transmitting light having the emission wavelength of the light emitting elements (Y1, Y2,...) Is output from the integrated light source (W). A dichroic reflection element (M) selectively provided at a position where the light beam (Fb1, Fb2,...) Is applied;
    A condensing element (Ef) for condensing the luminous fluxes (Fc1, Fc2,...) Generated by reflecting / transmitting the luminous fluxes (Fb1, Fb2,...) By the dichroic reflecting element (M);
    When the converged light beam (Fd) generated by condensing the light beams (Fc1, Fc2,...) By the light collecting element (Ef) forms the light collection region (Aq), the light collection region (Aq). Is formed such that the position where the light is formed is on the surface thereof, and the phosphor (N) that absorbs the light having the emission wavelength of the light emitting element (Y1, Y2,...) As the excitation light and emits the fluorescence in the other wavelength band. )When,
    It has
    A mixed divergent light beam (Fe) of fluorescence emitted from the light collection region (Aq) on the surface of the phosphor (N) and residual excitation light reflected from the light collection region (Aq) is generated. With
    The mixed divergent light beam (Fe) is converted by the light collecting element (Ef) into a light beam (Ff) that propagates in the opposite direction to the focused light beam (Fd) to form a distant image.
    The multi-wavelength light source characterized in that the luminous flux (Ff) is transmitted / reflected by the dichroic reflection element (M) and a mixed output luminous flux (Fg) is output to the outside.
  2.  前記光束(Fb1,Fb2,…)における主光線(Lp1,Lp2,…)に注目したとき、前記主光線(Lp1,Lp2,…)の前記蛍光体(N)の表面において正反射された成分を、前記集光素子(Ef)によって、前記した集光時とは逆方向に伝搬して、前記ダイクロイック反射素子(M)に到達する位置には、前記領域(P1,P2,…)が形成されていないことを特徴とする請求項1に記載の多波長光源。 When attention is paid to principal rays (Lp1, Lp2,...) In the luminous fluxes (Fb1, Fb2,...), The components of the principal rays (Lp1, Lp2,...) That are regularly reflected on the surface of the phosphor (N) are obtained. The region (P1, P2,...) Is formed at a position where the light condensing element (Ef) propagates in the opposite direction to the time of condensing and reaches the dichroic reflecting element (M). The multiwavelength light source according to claim 1, wherein the multiwavelength light source is not.
  3.  前記集光領域(Aq)は、前記集光素子(Ef)およびそれよりも前にある光学系が形成する射出瞳であることを特徴とする請求項1に記載の多波長光源。 The multi-wavelength light source according to claim 1, wherein the condensing region (Aq) is an exit pupil formed by the condensing element (Ef) and an optical system in front of the condensing element (Ef).
  4.  前記蛍光体(N)は、前記集光領域(Aq)における前記蛍光体(N)の表面の法線を不変に保ったまま、法線と垂直な方向に移動可能であることを特徴とする請求項1に記載の多波長光源。 The phosphor (N) is movable in a direction perpendicular to the normal while keeping the normal of the surface of the phosphor (N) in the light collection region (Aq) unchanged. The multi-wavelength light source according to claim 1.
  5.  前記蛍光体(N)は、
     緑色の波長帯域に属する蛍光を放出する蛍光体と赤色の波長帯域に属する蛍光を放出する蛍光体との含有比率が、
    または緑色の波長帯域に属する蛍光を放出する蛍光体と赤色の波長帯域に属する蛍光を放出する蛍光体と青色の波長帯域の光を反射する反射体との含有比率が、
    前記蛍光体(N)の表面上の位置に単調に依存して分布していることを特徴とする請求項4に記載の多波長光源。
    The phosphor (N) is:
    The content ratio of the phosphor that emits fluorescence that belongs to the green wavelength band and the phosphor that emits fluorescence that belongs to the red wavelength band,
    Alternatively, the content ratio of the phosphor that emits fluorescence belonging to the green wavelength band, the phosphor that emits fluorescence belonging to the red wavelength band, and the reflector that reflects light in the blue wavelength band is,
    The multi-wavelength light source according to claim 4, wherein the multi-wavelength light source is monotonously distributed at positions on the surface of the phosphor (N).
  6.  前記集光素子(Ef)はレンズによって構成してあり、
     該集光素子(Ef)の光軸に沿って、前記蛍光体(N)からの蛍光が来る方向に向かって見たとき、集積光源(Wi,Wj)が前記集光素子(Ef)の左側と右側との両方に配置され、前記ダイクロイック反射素子(M)は左側と右側との2部分から構成されており、
     左側の前記集積光源(Wi)からの光束(Fbi1,Fbi2,…)のための左側のダイクロイック反射部(Mi)のダイクロイック面(Smi)と、右側の前記集積光源(Wj)からの光束(Fbj1,Fbj2,…)のための右側のダイクロイック反射部(Mj)のダイクロイック面(Smj)とを屋根型に配置することを特徴とする請求項1または請求項2に記載の多波長光源。
    The condensing element (Ef) is constituted by a lens,
    When viewed in the direction in which the fluorescence from the phosphor (N) comes along the optical axis of the light collecting element (Ef), the integrated light source (Wi, Wj) is on the left side of the light collecting element (Ef). The dichroic reflective element (M) is composed of two parts, a left side and a right side,
    A dichroic surface (Smi) of the left dichroic reflector (Mi) for a light beam (Fbi1, Fbi2,...) From the left integrated light source (Wi) and a light beam (Fbj1) from the right integrated light source (Wj). , Fbj2,..., And the dichroic surface (Smj) of the right dichroic reflector (Mj) for the multi-wavelength light source according to claim 1 or 2.
  7.  左側および右側の前記集積光源(Wi,Wj)それぞれは、前記要素光源(U1,U2,…)を格子状に並べて構成してあり、前記集光素子(Ef)の光軸に垂直な平面に投影した前記領域(P1,P2,…)の並びパターンは、前記集光素子(Ef)の光軸に対して対称になる配置を基本配置として、前記したダイクロイック面(Smi,Smj)の屋根型配置における屋根の稜線の方向に対して平行または垂直な方向に、前記領域(P1,P2,…)の並びパターンの周期の4分の1だけシフトさせた配置であることを特徴とする請求項6に記載の多波長光源。 Each of the integrated light sources (Wi, Wj) on the left side and the right side is configured by arranging the element light sources (U1, U2,...) In a lattice pattern, and in a plane perpendicular to the optical axis of the light collecting element (Ef). The projected pattern of the regions (P1, P2,...) Is based on an arrangement that is symmetric with respect to the optical axis of the light collecting element (Ef), and the roof type of the dichroic surface (Smi, Smj). The arrangement is shifted by a quarter of the period of the arrangement pattern of the regions (P1, P2, ...) in a direction parallel or perpendicular to the direction of the ridgeline of the roof in the arrangement. 6. The multi-wavelength light source according to 6.
  8.  請求項1に記載の多波長光源と、該多波長光源から出力された混合出力光束(Fg)が入力されるフライアイインテグレータ(FmB)とから構成した光源装置であって、
     前記ダイクロイック反射素子(M)に設けた前記領域(P1,P2,…)の並びパターンを前記フライアイインテグレータ(FmB)の前段フライアイレンズ(F1B)に対して投影したときの並びパターンの方向と、前記フライアイインテグレータ(FmB)のフライアイレンズの並びの方向とが一致しないように、前記多波長光源と前記フライアイインテグレータ(FmB)とを配置することを特徴とする光源装置。
                                                                                    
    A light source device comprising the multi-wavelength light source according to claim 1 and a fly-eye integrator (FmB) to which a mixed output light beam (Fg) output from the multi-wavelength light source is input,
    The direction of the arrangement pattern when the arrangement pattern of the regions (P1, P2,...) Provided in the dichroic reflection element (M) is projected onto the front fly-eye lens (F1B) of the fly-eye integrator (FmB); The light source device is characterized in that the multi-wavelength light source and the fly eye integrator (FmB) are arranged so that the direction of arrangement of the fly eye lenses of the fly eye integrator (FmB) does not match.
PCT/JP2015/080732 2014-11-05 2015-10-30 Multi-wavelength light source and light source device WO2016072360A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014225305 2014-11-05
JP2014-225305 2014-11-05
JP2015070871A JP6428437B2 (en) 2014-11-05 2015-03-31 Multi-wavelength light source and light source device
JP2015-070871 2015-03-31

Publications (1)

Publication Number Publication Date
WO2016072360A1 true WO2016072360A1 (en) 2016-05-12

Family

ID=55909085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080732 WO2016072360A1 (en) 2014-11-05 2015-10-30 Multi-wavelength light source and light source device

Country Status (1)

Country Link
WO (1) WO2016072360A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021084449A1 (en) * 2019-11-01 2021-05-06 Ricoh Company, Ltd. Light-source device, image projection apparatus, and light-source optical system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011164151A (en) * 2010-02-04 2011-08-25 Sony Corp Illumination device and projection type image display device
JP2012004009A (en) * 2010-06-18 2012-01-05 Sony Corp Lighting system and image display device
WO2013047542A1 (en) * 2011-09-26 2013-04-04 日立コンシューマエレクトロニクス株式会社 Light source device
JP2013178290A (en) * 2010-06-30 2013-09-09 Jvc Kenwood Corp Light source device and illuminating device
JP2014075221A (en) * 2012-10-03 2014-04-24 Mitsubishi Electric Corp Light source device
WO2014174559A1 (en) * 2013-04-22 2014-10-30 日立マクセル株式会社 Light source apparatus and image display apparatus
WO2014174560A1 (en) * 2013-04-22 2014-10-30 日立マクセル株式会社 Light source device and projection type image display device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011164151A (en) * 2010-02-04 2011-08-25 Sony Corp Illumination device and projection type image display device
JP2012004009A (en) * 2010-06-18 2012-01-05 Sony Corp Lighting system and image display device
JP2013178290A (en) * 2010-06-30 2013-09-09 Jvc Kenwood Corp Light source device and illuminating device
WO2013047542A1 (en) * 2011-09-26 2013-04-04 日立コンシューマエレクトロニクス株式会社 Light source device
JP2014075221A (en) * 2012-10-03 2014-04-24 Mitsubishi Electric Corp Light source device
WO2014174559A1 (en) * 2013-04-22 2014-10-30 日立マクセル株式会社 Light source apparatus and image display apparatus
WO2014174560A1 (en) * 2013-04-22 2014-10-30 日立マクセル株式会社 Light source device and projection type image display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021084449A1 (en) * 2019-11-01 2021-05-06 Ricoh Company, Ltd. Light-source device, image projection apparatus, and light-source optical system

Similar Documents

Publication Publication Date Title
CN107357122B (en) Light source device and projector
JP6424828B2 (en) Light source device and image display device
JP5456688B2 (en) Light source device and projection display device used in projection system
JP6236811B2 (en) Light source unit, illumination device, and image projection device
JP6349784B2 (en) Light source unit, illumination device, and image projection device
US10372028B2 (en) Light source device and projection type display apparatus
JP2007294337A (en) Lighting system and projector
JPWO2012053057A1 (en) Illumination device and projection display device using the same
JPWO2020137749A1 (en) Light source device and projection type image display device
US11677914B2 (en) Light-source device and image forming apparatus including same
US10564531B2 (en) Light source device and projector
JP2021092761A (en) Light source device and image projection device
JP2017027903A (en) Illumination device and projector
JP2020086261A (en) Light source optical system, light source device and image projection
JP2019078947A (en) Light source device and projector
US10634981B2 (en) Light source device and projection type display apparatus
JP6428437B2 (en) Multi-wavelength light source and light source device
JP2018021990A (en) Light source device and projector
US20170242266A1 (en) Illumination device and projector
WO2016072360A1 (en) Multi-wavelength light source and light source device
WO2013118272A1 (en) Illumination optical system and projection-type display device
JP7149457B2 (en) Light source device and projection type image display device
JP2006337428A (en) Illuminating optical system, optical engine and projection image display apparatus
JP7338409B2 (en) Light source device, image projection device and light source optical system
JP7428070B2 (en) Light source optical system, light source device and image projection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15856825

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15856825

Country of ref document: EP

Kind code of ref document: A1