WO2014174559A1 - Light source apparatus and image display apparatus - Google Patents

Light source apparatus and image display apparatus Download PDF

Info

Publication number
WO2014174559A1
WO2014174559A1 PCT/JP2013/061713 JP2013061713W WO2014174559A1 WO 2014174559 A1 WO2014174559 A1 WO 2014174559A1 JP 2013061713 W JP2013061713 W JP 2013061713W WO 2014174559 A1 WO2014174559 A1 WO 2014174559A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
excitation
light source
excitation light
source device
Prior art date
Application number
PCT/JP2013/061713
Other languages
French (fr)
Japanese (ja)
Inventor
啓 安達
雅千 福井
長平 小野
浩平 三好
Original Assignee
日立マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立マクセル株式会社 filed Critical 日立マクセル株式会社
Priority to PCT/JP2013/061713 priority Critical patent/WO2014174559A1/en
Publication of WO2014174559A1 publication Critical patent/WO2014174559A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B33/00Colour photography, other than mere exposure or projection of a colour film
    • G03B33/08Sequential recording or projection
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence

Definitions

  • the present invention relates to a light source device and an image display device.
  • a light source device which converts excitation light emitted from a solid state light source into visible light by a phosphor and emits light efficiently.
  • excitation light blue laser light
  • a light source is irradiated to a disc (phosphor wheel) on which a phosphor is formed, and a plurality of fluorescent lights (red light and green light) are emitted.
  • a configuration for use as illumination light is disclosed.
  • an object of the present invention is to provide a light source device in which an increase in the number of component parts is suppressed while using a plurality of light sources.
  • the light source device includes a first excitation light source that generates a first excitation light, a second excitation light source that generates a second excitation light, and first and second excitation light to excite fluorescent light.
  • a phosphor wheel having a phosphor to be generated, a first excitation light to a first emission point on the phosphor wheel, and a second excitation light to a second emission point on the phosphor wheel,
  • An optical system is provided which emits fluorescence light from the first and second light emitting points as illumination light.
  • the present invention it is possible to provide a light source device in which an increase in the number of component parts is suppressed while using a plurality of light sources.
  • FIG. 2 is a configuration diagram of a light source device in Embodiment 1.
  • FIG. FIG. 6 is a view showing an example of the spectral characteristics of a region 41 of a mirror 4;
  • FIG. 2 is a view showing a specific example of a phosphor wheel 1;
  • FIG. 2 is a view showing light emitting points 2 a and 2 b of a phosphor wheel 1.
  • FIG. 7 is a configuration diagram of a light source device in a second embodiment.
  • FIG. 7 is a configuration diagram of a light source device in a third embodiment.
  • FIG. 16 is a configuration diagram of an optical system of a projection type video display device in a fourth embodiment.
  • red, green, blue, yellow and white will be denoted as R, G, B, Y and W, respectively.
  • FIG. 1 is a block diagram of the light source device in the first embodiment.
  • the light source device 100 has an excitation light source 5 (5a and 5b) for emitting excitation light 10 (10a and 10b), mirrors 4 (4a and 4b), and a phosphor wheel 1 as main components.
  • the excitation light source 5 is one in which one or more solid light emitting elements such as a laser light emitting element are arranged, and emits, for example, B color laser light as excitation light.
  • Excitation light beams 10a and 10b (shown by solid lines) are emitted from excitation light sources 5a and 5b, respectively, collimated by collimating lenses 6a and 6b, respectively, and enter parallel mirrors 4a and 4b, respectively.
  • the excitation light emitted from one excitation light source 5 may be divided into excitation lights 10 (10a and 10b).
  • FIG. 2 shows a specific example of the mirror 4 (here, two examples).
  • the mirror 4 is composed of two areas.
  • the first region is a dichroic coating region 41 (hatched portion) having a characteristic of reflecting the wavelength region of the excitation light (B) and transmitting the wavelength region (R, Y, G) of the fluorescent light.
  • the second region is a wide wavelength transmission region 42 (white portion) transmitting both wavelength regions of excitation light and fluorescence light.
  • the first region has a smaller area than the second region.
  • excitation lights 10a and 10b are reflected by the dichroic coating regions 41 of the mirrors 4a and 4b, respectively, condensed on the condenser lenses 3a and 3b, and enter the phosphor wheel 1, respectively.
  • excitation light 10a and 10b are incident, and let light emission point 2a and 2b be points which emit fluorescence light or diffusion excitation light, respectively.
  • substantially all of the fluorescent light emitted from the light emitting points 2a and 2b and most of the diffused excitation light become illumination lights 11a and 11b respectively to the lower side of the drawing (FIG. 1).
  • the dichroic coating area 41 is divided into a checkered pattern at the center of the incident surface of the mirror 4, and the other part is a wide wavelength transmission area 42.
  • the number of divisions of the dichroic coating area 41 and the size and arrangement thereof are determined in accordance with the number, shape and position of the incident spots 45 (black) of the excitation light 10 from the excitation light source 5. Therefore, the excitation light 10 is reflected at the incident spot 45 and travels to the phosphor wheel 1 substantially all.
  • the fluorescent light or the diffused excitation light generated at the light emitting points 2 a and 2 b on the phosphor wheel 1 is expanded and incident on the spot 46 (broken line) on the incident surface of the mirror 4.
  • substantially all of the fluorescent light in the spot 46 passes through to become illumination light.
  • the light incident on the dichroic coating region 41 can not be transmitted and becomes loss of illumination light, but most of the diffused excitation light incident on the large wavelength wide wavelength transmission region 42 is transmitted. It becomes illumination light.
  • FIG. 2 (b) shows a form different from that of FIG. 2 (a).
  • the difference from FIG. 2A is that a dichroic coating region 41 is provided in a rectangular (or square) shape at the center of the incident surface of the mirror 4.
  • the incident spot 45 is small, all the spots 45 can be accommodated in one dichroic coated area 41.
  • the area of the dichroic coating region 41 can be further reduced, the loss of the illumination light by the dichroic coating region 41 is further reduced.
  • the mirror 4 of the present embodiment selectively reflects the excitation light 10 from the excitation light source 5 by providing the dichroic coating region 41 in the wide wavelength transmission region 42, and the phosphor 4 on the phosphor wheel 1. While being led to the light emitting points 2a and 2b, the diffused excitation light from the light emitting points 2a and 2b can be transmitted to form illumination lights 11a and 11b.
  • FIG. 3 is a diagram showing an example of the spectral characteristics of the dichroic coating region 41 of the mirror 4.
  • the horizontal axis represents the wavelength, and the vertical axis represents the transmittance.
  • the dichroic coating region 41 does not transmit the wavelength band of B (about 420 to 470 nm), but transmits wavelength bands (R, Y, G) larger than that.
  • Such spectral characteristics can be realized by using dielectric multilayer films (TiO 2 , SiO 2, etc.).
  • FIG. 4 is a view showing a specific example of the phosphor wheel 1.
  • the rotatable phosphor wheel 1 has a phosphor 2 that is excited by the excitation light to emit fluorescence light of a predetermined color.
  • the disc surface of the phosphor wheel 1 is divided into a plurality of regions in the circumferential direction, for example, eight segments, and each segment includes the R phosphor 21, the Y phosphor 22 and the G phosphor 23 as the phosphor 2. It is applied. Further, the remaining segments are provided with a diffuse reflector 24 which diffuses and reflects the excitation light and which has a diffusing function on a reflection mirror.
  • the fluorescent substance 2 generates fluorescent light of three colors of R, Y and G from the light emitting points 2a and 2b respectively when receiving the excitation light 10a and 10b, and the diffused reflection light diffused from the diffuse reflection part 24 is generated. In both cases, the light is made approximately parallel light by the condenser lens 3 and is incident on the mirror 4.
  • Each of the phosphors 21, 22, 23 receives the excitation light 10 and emits R, Y, G fluorescence light, respectively.
  • the diffusion function of the diffuse reflection section 34 is to mirror-reflect the base material of the phosphor wheel 1 by silver deposition or the like, attach a highly heat-resistant transmission diffusion plate on this, or diffuse it to the reflection surface (paste etc.) It can be realized by applying In this case, the diffusion plate (diffusion material) is an optical path through which the excitation light travels twice, so it is preferable to determine the degree of diffusion in consideration of this.
  • the surface of the reflecting surface itself may be provided with a fine asperity to have a function of diffusing simultaneously with reflection.
  • the phosphor plate 1 is not a diffuse reflection part, but has a specular reflection part that performs regular reflection. You may.
  • FIG. 5 is a view showing the light emitting points 2 a and 2 b on the phosphor wheel 1.
  • the excitation lights 10 a and 10 b are respectively incident on the regions of the phosphor 2 (21, 22, 23) and the diffuse reflection part 24 of the phosphor wheel 1. Since the illumination lights 11a and 11b emitted from the light emission points 2a and 2b need to be the same color, a configuration in which the light emission points 2a and 2b are on the same color segments (21, 22, 23, 24) That is, the light emitting points 2a and 2b are arranged in a positional relationship of 180 degrees with respect to the rotation axis.
  • FIG. 5 shows that the light emitting points 2a and 2b are both on the G color phosphor 23.
  • the configuration is not limited to the above as long as the illumination lights 11a and 11b have the same color.
  • the light emitting points 2a and 2b are disposed at an arbitrary angle ⁇ with respect to the rotation axis, and the phosphor wheel 1 is configured to be a segment of the same color at every arbitrary angle ⁇ .
  • the X same colors may be provided such that the same segment comes every 360 / X degrees. Is configured so that there are segments of
  • the segments of the phosphor wheel 1 may be configured such that the colors of the illumination lights 11a and 11b differ depending on the conditions of the image display device used, or the positional relationship between the light emitting points 2a and 2b may be arranged.
  • the temperature of the phosphor 2 is increased by the increase of the incident excitation light 10, and melting or burning may occur.
  • the rotation of the phosphor wheel 1 lowers the temperature before the excitation light 10 is again incident on the same position of the phosphor 2, and the possibility of melting or burning of the phosphor 2 decreases.
  • the excitation lights 10a and 10b will be incident on the same circumference, preventing the temperature from being lowered, and the possibility of melting or burning increases.
  • the temperature of the phosphor 2 is reduced by arranging so that the locus of the light emitting point 2a (dotted line) and the locus of the light emitting point 2b (dotted chain line) do not overlap on the phosphor wheel 1. The possibility of melting or burning can be reduced.
  • the combination of the color of the excitation light and the color of the phosphor, the number of segments, and the shape (angle) of the segments are not limited to the above example, and may be appropriately changed and used according to the required specification of the illumination light. Just do it. For example, while generating B-color laser light from an excitation light source, removing Y-color phosphor from a phosphor wheel to generate R and G fluorescence light, or other colors such as cyan and magenta as a phosphor It is also possible to add. For example, while generating laser light in the ultraviolet region from the excitation light source, it is also possible to remove the diffuse reflection part from the phosphor wheel and add the phosphor of B to generate B light.
  • the number of light emitting points and the positional relationship are not limited to the above example, and may be appropriately changed and used according to the required optical specifications and external dimensions of the image display apparatus. For example, it is also possible to increase the number of light emitting points from two to four in the above example in order to increase the brightness of the image display device.
  • FIG. 6 is a block diagram of the light source device in the second embodiment.
  • the basic configuration of the light source device 100 ′ is the same as that of the first embodiment (FIG. 1), except that each segment of the phosphor wheel 1 ′ is made of a material that transmits light and does not require the mirror 4 .
  • the phosphor wheel 1 ' may be produced by any method such as attaching the phosphor 2' to the surface of a transparent device such as glass, or using a glass containing a phosphor. Furthermore, on the phosphor wheel 1 ′, a diffusion / transmission part that diffuses and transmits the excitation light 10 a and 10 b is provided.
  • the fluorescent light of R, Y, and G and the diffused excitation light are emitted to the opposite side of the excitation light source 5 across the phosphor wheel 1 and these are disposed over the phosphor wheel 1 ′.
  • the light enters a collimating lens 32 disposed on the opposite side of 5 and becomes substantially parallel light, and becomes illumination light 11.
  • FIG. 7 is a block diagram of the light source device in the third embodiment.
  • FIG. 7A is a top view of the light source device 100 '' with respect to the light emitting point 2a
  • FIG. 7B is a top view of the light source device 100 '' with respect to the light emitting point 2b.
  • FIG. 7 (a) will be described (FIG. 7 (b) is also the same as FIG. 7 (a)).
  • the light source device 100 ′ ′ of FIG. 7A has a bypass optical path for excitation light, and has an optical system that combines the illumination light from the bypass optical path with the illumination light reflected from the phosphor wheel 1 ′ ′.
  • the excitation light 10a (shown by a solid line) is emitted from the excitation light source 5a, becomes approximately parallel light by the collimator lens 6a, and enters the mirror 4a ''.
  • the mirror 4 a ′ ′ is a dichroic coated mirror having a characteristic of reflecting the wavelength range of the excitation light (B) and transmitting the wavelength range (R, Y, G) of the fluorescent light.
  • the excitation light 10a is reflected by the mirror 4a '', condensed by the condenser lens 31a '', and incident on the phosphor wheel 1 ''.
  • the phosphor wheel 1 ′ ′ has a segment of a phosphor that is excited by excitation light to reflect and emit fluorescent light of a predetermined color, and a diffuse transmission part that diffuses and transmits the excitation light.
  • fluorescent light of three colors of R, Y and G is generated from the segment of the phosphor, and the collimating lens 31a ′ ′ becomes illumination light 11a (R, Y, G) of substantially parallel light.
  • the light is incident on the mirror 4a ''.
  • the diffused excitation light transmitted through the diffusion transmitting portion is incident on the collimating lens 32a ′ ′ and becomes substantially parallel illumination light 11a (B), and mirrors 47a, 48a, 49a that reflect the wavelength range of the excitation light (B) , And enter the mirror 4a ''.
  • the illumination light 11a (B) is reflected by the mirror 4a ′ ′, and is combined with the illumination light 11a (R, Y, G) transmitted through the mirror 4a ′ ′ to become a W color illumination light 11a (W), as shown in FIG.
  • the lower part of A) is irradiated.
  • FIG. 8 is a view of the light source device of FIG. 7 as viewed from the emission direction of the illumination light 11 (W).
  • the upper part of the phosphor wheel 1 ′ ′ is shown in FIG. 7A, and the lower part is arranged with FIG. 7B, so that each phosphor system 1 ′ does not interfere with one phosphor wheel 1 ′.
  • 'Can have two light emitting points 2a and 2b.
  • the directions in which the fluorescent light (R, Y, G) and the excitation light (B) are emitted from the phosphor wheel 1 ′ ′ are not limited to those in this embodiment, and each direction may be any direction according to the situation. It goes without saying that it may be emitted to
  • FIG. 9 is a block diagram of an optical system of a projection type image display apparatus in a fourth embodiment.
  • the portion of the light source device 100 has the same configuration as that of the first embodiment (FIG. 1).
  • the illumination light (diffuse excitation light) 11 transmitted through the mirror 4 of the light source device 100 is condensed on the condensing lens 71 and is incident on the multiple reflection element 72.
  • the illumination light 11 that has entered the multiple reflection element 72 is reflected a plurality of times in the multiple reflection element 72, and becomes light having a uniform illuminance distribution.
  • the illumination light emitted from the emission aperture plane of the multiple reflection element 72 is transmitted through the condenser lens 73, reflected by the reflection mirror 74, and then irradiated onto the image display element 75 with a uniform illuminance distribution.
  • the image display element 75 is, for example, a DMD (Digital Mirror Device).
  • R light, G light, and B light are time-divisionally irradiated.
  • the excitation light source 5 is a solid light emitting element having a high response speed, and time-division control is possible, so that each color light is time-divisionally modulated by the image display element 75 for each color light.
  • Each color light reflected by the image display element 75 becomes image light, enters the projection lens 76, and is projected on a screen (not shown).
  • the image display element 75 may use a transmissive or reflective liquid crystal panel. Further, in FIG. 9, the light source device of FIG. 6 or 7 may be used instead of the light source device 100. In addition, the image display apparatus may be configured to have an optical system that combines the illumination light from the light source device of the present invention and the illumination light from another solid light emitting element such as an LED.
  • the light source device of the present embodiment is compact and can realize high luminance, and contributes to the miniaturization and high performance of the projection type image display device.
  • phosphor wheel 2 2: phosphor 2a / 2b: emission point on phosphor 3: 3: condenser lens 4: 4: mirror 5: excitation light source 6: 6: collimate lens 10: excitation light 11: illumination Light (fluorescent light and diffuse excitation light), 41: dichroic coated area (first area), 42: wide wavelength transmission area (second area), 100: light source device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Optics & Photonics (AREA)
  • Projection Apparatus (AREA)

Abstract

Provided is a light source apparatus wherein an increase of the number of constituting components is suppressed, while using a plurality of light sources. This light source apparatus is provided with: a first excitation light source that generates first excitation light; a second excitation light source that generates second excitation light; a fluorescent wheel having a fluorescent material that generates fluorescent light by being excited by means of the first and second excitation light; and an optical system, which guides the first excitation light to a first light emitting point on the fluorescent wheel, and the second excitation light to a second light emitting point on the fluorescent wheel, and which outputs fluorescent light from the first and second light emitting points as lighting light. The fluorescent wheel may be provided with a diffusion section that diffuses the first and second excitation light and generates diffused excitation light. Furthermore, the optical system may output, as the lighting light, the fluorescent light from the first and second light emitting points, and the diffused excitation light.

Description

光源装置及び映像表示装置Light source device and image display device
 本発明は、光源装置及び映像表示装置に関する。 The present invention relates to a light source device and an image display device.
 当該技術分野において、固体光源から出射する励起光を蛍光体により可視光に変換して効率良く発光する光源装置が提案されている。特許文献1には、光源から出射した励起光(青色レーザー光)を、蛍光体が形成された円板(蛍光体ホイール)に照射し、複数の蛍光光(赤色光、緑色光)を発光させて照明光として用いる構成が開示されている。 In the relevant technical field, a light source device has been proposed which converts excitation light emitted from a solid state light source into visible light by a phosphor and emits light efficiently. In Patent Document 1, excitation light (blue laser light) emitted from a light source is irradiated to a disc (phosphor wheel) on which a phosphor is formed, and a plurality of fluorescent lights (red light and green light) are emitted. A configuration for use as illumination light is disclosed.
特開2011-13313号公報JP, 2011-13313, A
 特許文献1の光源装置において、明るさを向上させるためには、光源装置を複数用いる構成とすることが考えられる。しかし、単純に光源を複数用いるだけでは、構成部品点数が増加し、映像表示装置の外形寸法の増大や価格が高くなる課題がある。 In the light source device of Patent Document 1, in order to improve the brightness, it is conceivable to use a plurality of light source devices. However, simply using a plurality of light sources causes a problem that the number of component parts increases and the external dimensions of the image display apparatus increase and the cost increases.
 そこで、本発明の目的は、複数の光源を用いつつ、構成部品点数の増加を抑えた光源装置を提供することにある。 Therefore, an object of the present invention is to provide a light source device in which an increase in the number of component parts is suppressed while using a plurality of light sources.
 上記課題を解決するため、本発明の望ましい態様の一つは次の通りである。当該光源装置は、第1の励起光を発生する第1の励起光源と、第2の励起光を発生する第2の励起光源と、第1及び第2の励起光に励起されて蛍光光を発生する蛍光体を有する蛍光体ホイールと、第1の励起光を蛍光体ホイール上の第1の発光点へ、第2の励起光を蛍光体ホイール上の第2の発光点へ導くと共に、当該第1及び第2の発光点からの蛍光光を照明光として出射する光学系を備える。 In order to solve the above-mentioned subject, one of the desirable modes of the present invention is as follows. The light source device includes a first excitation light source that generates a first excitation light, a second excitation light source that generates a second excitation light, and first and second excitation light to excite fluorescent light. A phosphor wheel having a phosphor to be generated, a first excitation light to a first emission point on the phosphor wheel, and a second excitation light to a second emission point on the phosphor wheel, An optical system is provided which emits fluorescence light from the first and second light emitting points as illumination light.
 本発明によれば、複数の光源を用いつつ、構成部品点数の増大を抑えた光源装置を提供することができる。 According to the present invention, it is possible to provide a light source device in which an increase in the number of component parts is suppressed while using a plurality of light sources.
実施例1における光源装置の構成図。FIG. 2 is a configuration diagram of a light source device in Embodiment 1. ミラー4の具体例を示す図。The figure which shows the example of the mirror 4. FIG. ミラー4の領域41の分光特性の一例を示す図。FIG. 6 is a view showing an example of the spectral characteristics of a region 41 of a mirror 4; 蛍光体ホイール1の具体例を示す図。FIG. 2 is a view showing a specific example of a phosphor wheel 1; 蛍光体ホイール1の発光点2aと2bを示す図。FIG. 2 is a view showing light emitting points 2 a and 2 b of a phosphor wheel 1. 実施例2における光源装置の構成図。FIG. 7 is a configuration diagram of a light source device in a second embodiment. 実施例3における光源装置の構成図。FIG. 7 is a configuration diagram of a light source device in a third embodiment. 照明光11(W)の出射方向から見た図7の光源装置を示す図。The figure which shows the light source device of FIG. 7 seen from the radiation | emission direction of the illumination light 11 (W). 実施例4における投写型映像表示装置の光学系の構成図。FIG. 16 is a configuration diagram of an optical system of a projection type video display device in a fourth embodiment.
 以下、本発明の実施形態について、図面を参照して説明する。以下では、赤、緑、青、黄、白を、それぞれ、R、G、B、Y、Wと表記する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Hereinafter, red, green, blue, yellow and white will be denoted as R, G, B, Y and W, respectively.
 図1は、実施例1における光源装置の構成図である。光源装置100は、主な構成要素として、励起光10(10aと10b)を出射する励起光源5(5aと5b)、ミラー4(4aと4b)、及び、蛍光体ホイール1を有する。励起光源5はレーザー発光素子などの固体発光素子が1個以上配置されたものであり、励起光として例えばB色レーザー光を出射する。励起光10aと10b(実線で示す)は、各々励起光源5aと5bから出射し、各々コリメートレンズ6aと6bにより略平行光となり、各々ミラー4aと4bに入射する。尚、一つの励起光源5から出射した励起光を分割して励起光10(10aと10b)としても良い。 FIG. 1 is a block diagram of the light source device in the first embodiment. The light source device 100 has an excitation light source 5 (5a and 5b) for emitting excitation light 10 (10a and 10b), mirrors 4 (4a and 4b), and a phosphor wheel 1 as main components. The excitation light source 5 is one in which one or more solid light emitting elements such as a laser light emitting element are arranged, and emits, for example, B color laser light as excitation light. Excitation light beams 10a and 10b (shown by solid lines) are emitted from excitation light sources 5a and 5b, respectively, collimated by collimating lenses 6a and 6b, respectively, and enter parallel mirrors 4a and 4b, respectively. The excitation light emitted from one excitation light source 5 may be divided into excitation lights 10 (10a and 10b).
 図2は、ミラー4の具体例(ここでは2つの例)を示す図である。ミラー4は2つの領域から構成される。第1の領域は、励起光(B)の波長域を反射し、蛍光光の波長域(R、Y、G)を透過する特性を有するダイクロイックコート領域41(斜線部)である。第2の領域は、励起光と蛍光光の両方の波長域を透過する広波長透過領域42(白色部)である。第1の領域は第2の領域よりも狭い面積とする。 FIG. 2 shows a specific example of the mirror 4 (here, two examples). The mirror 4 is composed of two areas. The first region is a dichroic coating region 41 (hatched portion) having a characteristic of reflecting the wavelength region of the excitation light (B) and transmitting the wavelength region (R, Y, G) of the fluorescent light. The second region is a wide wavelength transmission region 42 (white portion) transmitting both wavelength regions of excitation light and fluorescence light. The first region has a smaller area than the second region.
 励起光10aと10bは、各々ミラー4aと4bのダイクロイックコート領域41にて反射し、各々集光レンズ3aと3bに集光されて、各々蛍光体ホイール1に入射する。ここで、励起光10aと10bが入射し、蛍光光もしくは拡散励起光を発光する点を、各々発光点2a、2bとする。そして、発光点2aと2bから出射した蛍光光の略全てと拡散励起光の大部分は、各々照明光11aと11bとなって図面(図1)下方に出射する。 The excitation lights 10a and 10b are reflected by the dichroic coating regions 41 of the mirrors 4a and 4b, respectively, condensed on the condenser lenses 3a and 3b, and enter the phosphor wheel 1, respectively. Here, excitation light 10a and 10b are incident, and let light emission point 2a and 2b be points which emit fluorescence light or diffusion excitation light, respectively. Then, substantially all of the fluorescent light emitted from the light emitting points 2a and 2b and most of the diffused excitation light become illumination lights 11a and 11b respectively to the lower side of the drawing (FIG. 1).
 図2(a)の例では、ミラー4の入射面の中央部に、ダイクロイックコート領域41を市松模様に分割して設け、他の部分を広波長透過領域42とする。ダイクロイックコート領域41の分割数と各サイズと配置は、励起光源5からの励起光10の入射スポット45(黒色)の数と形状と位置に合わせて決定する。従って、励起光10は入射スポット45で反射して、略全て蛍光体ホイール1へ向かう。 In the example shown in FIG. 2A, the dichroic coating area 41 is divided into a checkered pattern at the center of the incident surface of the mirror 4, and the other part is a wide wavelength transmission area 42. The number of divisions of the dichroic coating area 41 and the size and arrangement thereof are determined in accordance with the number, shape and position of the incident spots 45 (black) of the excitation light 10 from the excitation light source 5. Therefore, the excitation light 10 is reflected at the incident spot 45 and travels to the phosphor wheel 1 substantially all.
 一方、蛍光体ホイール1上の発光点2aと2bで発生した蛍光光又は拡散励起光は、ミラー4の入射面のスポット46(破線)に拡大されて入射する。このうち蛍光光はスポット46内の略全てが透過して照明光となる。一方、拡散励起光のうち、ダイクロイックコート領域41に入射した光は透過できずに照明光の損失分となるが、大面積の広波長透過領域42に入射した大部分の拡散励起光は透過して照明光となる。 On the other hand, the fluorescent light or the diffused excitation light generated at the light emitting points 2 a and 2 b on the phosphor wheel 1 is expanded and incident on the spot 46 (broken line) on the incident surface of the mirror 4. Among them, substantially all of the fluorescent light in the spot 46 passes through to become illumination light. On the other hand, among the diffused excitation light, the light incident on the dichroic coating region 41 can not be transmitted and becomes loss of illumination light, but most of the diffused excitation light incident on the large wavelength wide wavelength transmission region 42 is transmitted. It becomes illumination light.
 図2(b)の例では、図2(a)とは別の形態を示している。図2(a)との違いは、ミラー4の入射面の中心部に、長方形(又は正方形)状にダイクロイックコート領域41を設けている点である。この場合、入射スポット45が小さいため、全てのスポット45を1つのダイクロイックコート領域41に収納できる。図2(a)と比較し、ダイクロイックコート領域41の面積をより小さくできるので、ダイクロイックコート領域41による照明光の損失分はより少なくなる。 The example of FIG. 2 (b) shows a form different from that of FIG. 2 (a). The difference from FIG. 2A is that a dichroic coating region 41 is provided in a rectangular (or square) shape at the center of the incident surface of the mirror 4. In this case, since the incident spot 45 is small, all the spots 45 can be accommodated in one dichroic coated area 41. As compared with FIG. 2A, since the area of the dichroic coating region 41 can be further reduced, the loss of the illumination light by the dichroic coating region 41 is further reduced.
 このように、本実施例のミラー4は、広波長透過領域42の中に選択的にダイクロイックコート領域41を設けることにより、励起光源5からの励起光10を反射して蛍光体ホイール1上の発光点2aと2bへ導くと共に、当該発光点2aと2bからの拡散励起光を透過して照明光11aと11bとすることができる。 As described above, the mirror 4 of the present embodiment selectively reflects the excitation light 10 from the excitation light source 5 by providing the dichroic coating region 41 in the wide wavelength transmission region 42, and the phosphor 4 on the phosphor wheel 1. While being led to the light emitting points 2a and 2b, the diffused excitation light from the light emitting points 2a and 2b can be transmitted to form illumination lights 11a and 11b.
 図3は、ミラー4のダイクロイックコート領域41の分光特性の一例を示す図で、横軸に波長、縦軸に透過率を示す。ダイクロイックコート領域41では、Bの波長域(約420~470nm)を透過せず、それより大きい波長域(R、Y、G)を透過する。このような分光特性は、誘電体多層膜(TiO、SiO等)を用いて実現できる。 FIG. 3 is a diagram showing an example of the spectral characteristics of the dichroic coating region 41 of the mirror 4. The horizontal axis represents the wavelength, and the vertical axis represents the transmittance. The dichroic coating region 41 does not transmit the wavelength band of B (about 420 to 470 nm), but transmits wavelength bands (R, Y, G) larger than that. Such spectral characteristics can be realized by using dielectric multilayer films (TiO 2 , SiO 2, etc.).
 図4は、蛍光体ホイール1の具体例を示す図である。回転可能な蛍光体ホイール1は、励起光に励起されて所定色の蛍光光を発光する蛍光体2を有する。蛍光体ホイール1の円板面は、円周方向に複数の領域、例えば、8セグメントに分割され、各セグメントには蛍光体2として、R蛍光体21、Y蛍光体22、G蛍光体23が塗布される。又、残りのセグメントには、励起光を拡散して反射するための、反射ミラーに拡散機能を施した拡散反射部24が設けられる。蛍光体2は、励起光10aと10bを受けると、各々発光点2aと2bからR、Y、Gの3色の蛍光光が発生し、拡散反射部24からは拡散された拡散励起光が発生し、何れも集光レンズ3で略平行光となりミラー4に入射する。 FIG. 4 is a view showing a specific example of the phosphor wheel 1. The rotatable phosphor wheel 1 has a phosphor 2 that is excited by the excitation light to emit fluorescence light of a predetermined color. The disc surface of the phosphor wheel 1 is divided into a plurality of regions in the circumferential direction, for example, eight segments, and each segment includes the R phosphor 21, the Y phosphor 22 and the G phosphor 23 as the phosphor 2. It is applied. Further, the remaining segments are provided with a diffuse reflector 24 which diffuses and reflects the excitation light and which has a diffusing function on a reflection mirror. The fluorescent substance 2 generates fluorescent light of three colors of R, Y and G from the light emitting points 2a and 2b respectively when receiving the excitation light 10a and 10b, and the diffused reflection light diffused from the diffuse reflection part 24 is generated. In both cases, the light is made approximately parallel light by the condenser lens 3 and is incident on the mirror 4.
 各蛍光体21、22、23は、励起光10を受けて、各々、R、Y、Gの蛍光光を発光する。拡散反射部34の拡散機能は、蛍光体ホイール1の基材を銀蒸着等で鏡面反射とし、この上に耐熱性の高い透過拡散板を貼り付けることや、反射面に拡散材(ペースト等)を塗布することで実現できる。この場合、拡散板(拡散材)は励起光が往復2回通る光路となるので、それを考慮して拡散度を決めると良い。もしくは、反射面自体の表面に微細な凹凸を施し、反射と同時に拡散させる機能を持たせても良い。このように拡散反射部24にて反射する励起光を拡散させることで、レーザー光中のスペックルノイズを除去する効果がある。又、蛍光体ホイール1が回転することで、スペックルノイズを除去する効果は更に大きくなる。尚、本実施例ではスペックルノイズを除去させるために励起光10を蛍光体ホイール1上で拡散させているが、蛍光体プレート1は拡散反射部ではなく、正反射をする鏡面反射部を有しても良い。 Each of the phosphors 21, 22, 23 receives the excitation light 10 and emits R, Y, G fluorescence light, respectively. The diffusion function of the diffuse reflection section 34 is to mirror-reflect the base material of the phosphor wheel 1 by silver deposition or the like, attach a highly heat-resistant transmission diffusion plate on this, or diffuse it to the reflection surface (paste etc.) It can be realized by applying In this case, the diffusion plate (diffusion material) is an optical path through which the excitation light travels twice, so it is preferable to determine the degree of diffusion in consideration of this. Alternatively, the surface of the reflecting surface itself may be provided with a fine asperity to have a function of diffusing simultaneously with reflection. By diffusing the excitation light reflected by the diffuse reflection unit 24 in this manner, there is an effect of removing speckle noise in the laser light. Further, as the phosphor wheel 1 rotates, the effect of removing speckle noise is further enhanced. Although the excitation light 10 is diffused on the phosphor wheel 1 in order to remove speckle noise in this embodiment, the phosphor plate 1 is not a diffuse reflection part, but has a specular reflection part that performs regular reflection. You may.
 図5は、蛍光体ホイール1上の発光点2aと2bを示す図である。励起光10aと10bは、各々蛍光体ホイール1の蛍光体2(21,22,23)及び拡散反射部24の何れかの領域に入射する。発光点2aと2bから出射する照明光11aと11bの色は同じにする必要があるため、発光点2aと2bが同じ色のセグメント(21,22,23,24)上になるような構成、即ち、発光点2aと2bが回転軸に対して180度の位置関係に配置される構成としている。図5では、発光点2aと2bが共にG色蛍光体23上にあることを示している。 FIG. 5 is a view showing the light emitting points 2 a and 2 b on the phosphor wheel 1. The excitation lights 10 a and 10 b are respectively incident on the regions of the phosphor 2 (21, 22, 23) and the diffuse reflection part 24 of the phosphor wheel 1. Since the illumination lights 11a and 11b emitted from the light emission points 2a and 2b need to be the same color, a configuration in which the light emission points 2a and 2b are on the same color segments (21, 22, 23, 24) That is, the light emitting points 2a and 2b are arranged in a positional relationship of 180 degrees with respect to the rotation axis. FIG. 5 shows that the light emitting points 2a and 2b are both on the G color phosphor 23.
 尚、照明光11aと11bの色が同じとなるような構成であれば、上記に限るものではない。例えば、発光点2aと2bを回転軸に対して任意の角度αに配置するし、蛍光体ホイール1は任意の角度α毎に同じ色のセグメントとなる構成とする。又、例えば、2個以上の励起光源5を備え、等間隔に2個以上(X個)の発光点が存在する場合は、360/X度毎に同じセグメントが来るようにX個の同じ色のセグメントが存在するような構成とする。 The configuration is not limited to the above as long as the illumination lights 11a and 11b have the same color. For example, the light emitting points 2a and 2b are disposed at an arbitrary angle α with respect to the rotation axis, and the phosphor wheel 1 is configured to be a segment of the same color at every arbitrary angle α. Also, for example, when two or more excitation light sources 5 are provided and two or more (X) light emitting points are present at equal intervals, the X same colors may be provided such that the same segment comes every 360 / X degrees. Is configured so that there are segments of
 又、使用する映像表示装置の条件によっては照明光11aと11bの色が異なるように蛍光体ホイール1のセグメントを構成したり、発光点2aと2bの位置関係を配置しても良い。 Further, the segments of the phosphor wheel 1 may be configured such that the colors of the illumination lights 11a and 11b differ depending on the conditions of the image display device used, or the positional relationship between the light emitting points 2a and 2b may be arranged.
 蛍光体2は入射する励起光10が増加することにより温度が上昇し、溶融や焼損が発生する可能性がある。蛍光体ホイール1が回転することで、蛍光体2の同じ場所へ再び励起光10が入射するまでに温度が低下し、蛍光体2の溶融や焼損の可能性は下がる。尚、発光点2aと2bが同じ円周上にあると、励起光10aと10bが同じ円周上に入射し、温度の低下が妨げられ、溶融や焼損が発生する可能性が高くなるが、図5に示すように蛍光体ホイール1上の、発光点2aの軌跡(破線)と発光点2bの軌跡(一点鎖線)を重ならないように配置する事で、蛍光体2の温度を低減し、溶融や焼損の可能性を下げることができる。 The temperature of the phosphor 2 is increased by the increase of the incident excitation light 10, and melting or burning may occur. The rotation of the phosphor wheel 1 lowers the temperature before the excitation light 10 is again incident on the same position of the phosphor 2, and the possibility of melting or burning of the phosphor 2 decreases. If the light emitting points 2a and 2b are on the same circumference, the excitation lights 10a and 10b will be incident on the same circumference, preventing the temperature from being lowered, and the possibility of melting or burning increases. As shown in FIG. 5, the temperature of the phosphor 2 is reduced by arranging so that the locus of the light emitting point 2a (dotted line) and the locus of the light emitting point 2b (dotted chain line) do not overlap on the phosphor wheel 1. The possibility of melting or burning can be reduced.
 尚、励起光の色と蛍光体の色の組み合わせ、セグメント数、セグメントの形状(角度)は、上記例に限定されるものではなく、要求される照明光の仕様に応じて適宜変更して用いれば良い。例えば、励起光源からB色レーザー光を発生しつつ、蛍光体ホイールからY色蛍光体を削除してR及びGの蛍光光を発生させること、あるいは蛍光体としてシアン、マゼンタ等のその他の色を追加することも可能である。例えば、励起光源から紫外域のレーザー光を発生しつつ、蛍光体ホイールから拡散反射部を削除してBの蛍光体を追加しBの光を発生させることも可能である。 The combination of the color of the excitation light and the color of the phosphor, the number of segments, and the shape (angle) of the segments are not limited to the above example, and may be appropriately changed and used according to the required specification of the illumination light. Just do it. For example, while generating B-color laser light from an excitation light source, removing Y-color phosphor from a phosphor wheel to generate R and G fluorescence light, or other colors such as cyan and magenta as a phosphor It is also possible to add. For example, while generating laser light in the ultraviolet region from the excitation light source, it is also possible to remove the diffuse reflection part from the phosphor wheel and add the phosphor of B to generate B light.
 又、発光点の数、位置関係は、上記例に限定されるものではなく要求される映像表示装置の光学仕様や外形寸法仕様に応じて適宜変更して用いれば良い。例えば映像表示装置の高輝度化のために、発光点を上記例の2か所から4か所に増やすことも可能である。 Further, the number of light emitting points and the positional relationship are not limited to the above example, and may be appropriately changed and used according to the required optical specifications and external dimensions of the image display apparatus. For example, it is also possible to increase the number of light emitting points from two to four in the above example in order to increase the brightness of the image display device.
 実施例2では、蛍光体ホイールを挟んで励起光源の反対側に照明光が出射する場合について述べる。図6は、実施例2における光源装置の構成図である。光源装置100’の基本構成は実施例1(図1)と同様であるが、蛍光体ホイール1’の各セグメントが光を透過する材質でできている点とミラー4を必要としない点が異なる。 In the second embodiment, the case where the illumination light is emitted to the opposite side of the excitation light source with the phosphor wheel in between will be described. FIG. 6 is a block diagram of the light source device in the second embodiment. The basic configuration of the light source device 100 ′ is the same as that of the first embodiment (FIG. 1), except that each segment of the phosphor wheel 1 ′ is made of a material that transmits light and does not require the mirror 4 .
 蛍光体ホイール1’はガラスなどの透明機材のホイール表面に蛍光体2’を貼付する、又は蛍光体を含有しているガラスを用いて作製するなど任意の方法で作製してよい。更に、蛍光体ホイール1’上に、励起光10aと10bを拡散して透過する拡散透過部を設ける。 The phosphor wheel 1 'may be produced by any method such as attaching the phosphor 2' to the surface of a transparent device such as glass, or using a glass containing a phosphor. Furthermore, on the phosphor wheel 1 ′, a diffusion / transmission part that diffuses and transmits the excitation light 10 a and 10 b is provided.
 実施例2では、R、Y、Gの蛍光光、及び、拡散励起光が、蛍光体ホイール1を挟んで励起光源5の反対側に出射し、これらが蛍光体ホイール1’を挟んで励起光源5の反対側に配置されたコリメートレンズ32に入射して略平行光となり、照明光11となる。 In the second embodiment, the fluorescent light of R, Y, and G and the diffused excitation light are emitted to the opposite side of the excitation light source 5 across the phosphor wheel 1 and these are disposed over the phosphor wheel 1 ′. The light enters a collimating lens 32 disposed on the opposite side of 5 and becomes substantially parallel light, and becomes illumination light 11.
 実施例3では、励起光(B色光)の迂回光路を設けた光学系について述べる。図7は、実施例3における光源装置の構成図である。図7(a)は発光点2aに関して光源装置100’’を上から見た図、図7(b)は発光点2bに関して光源装置100’’を上から見た図である。ここでは、図7(a)について説明する(図7(b)も図7(a)と同様)。 In the third embodiment, an optical system provided with a bypass optical path for excitation light (B-color light) will be described. FIG. 7 is a block diagram of the light source device in the third embodiment. FIG. 7A is a top view of the light source device 100 '' with respect to the light emitting point 2a, and FIG. 7B is a top view of the light source device 100 '' with respect to the light emitting point 2b. Here, FIG. 7 (a) will be described (FIG. 7 (b) is also the same as FIG. 7 (a)).
 図7(a)の光源装置100’’は、励起光の迂回光路を有し、当該迂回光路からの照明光を、蛍光体ホイール1’’から反射した照明光と合成する光学系を有する。励起光10a(実線で示す)は、励起光源5aから出射し、コリメートレンズ6aにより略平行光となり、ミラー4a’’に入射する。ミラー4a’’は励起光(B)の波長域を反射し、蛍光光の波長域(R、Y、G)を透過する特性を有するダイクロイックコートミラーである。 The light source device 100 ′ ′ of FIG. 7A has a bypass optical path for excitation light, and has an optical system that combines the illumination light from the bypass optical path with the illumination light reflected from the phosphor wheel 1 ′ ′. The excitation light 10a (shown by a solid line) is emitted from the excitation light source 5a, becomes approximately parallel light by the collimator lens 6a, and enters the mirror 4a ''. The mirror 4 a ′ ′ is a dichroic coated mirror having a characteristic of reflecting the wavelength range of the excitation light (B) and transmitting the wavelength range (R, Y, G) of the fluorescent light.
 励起光10aは、ミラー4a’’にて反射し、集光レンズ31a’’にて集光されて、蛍光体ホイール1’’に入射する。蛍光体ホイール1’’は励起光に励起されて所定色の蛍光光を反射して照射する蛍光体のセグメントと、励起光を拡散して透過する拡散透過部を有する。励起光10aを受けると、蛍光体のセグメントからはR、Y、Gの3色の蛍光光が発生し、集光レンズ31a’’で略平行光の照明光11a(R、Y、G)となりミラー4a’’に入射する。 The excitation light 10a is reflected by the mirror 4a '', condensed by the condenser lens 31a '', and incident on the phosphor wheel 1 ''. The phosphor wheel 1 ′ ′ has a segment of a phosphor that is excited by excitation light to reflect and emit fluorescent light of a predetermined color, and a diffuse transmission part that diffuses and transmits the excitation light. When the excitation light 10a is received, fluorescent light of three colors of R, Y and G is generated from the segment of the phosphor, and the collimating lens 31a ′ ′ becomes illumination light 11a (R, Y, G) of substantially parallel light. The light is incident on the mirror 4a ''.
 一方、拡散透過部を透過した拡散励起光は、コリメートレンズ32a’’に入射して略平行の照明光11a(B)となり、励起光(B)の波長域を反射するミラー47a、48a、49aで反射してミラー4a’’に入射する。照明光11a(B)はミラー4a’’で反射し、ミラー4a’’を透過した照明光11a(R、Y、G)と合成されて、W色の照明光11a(W)となり図7(A)の下部に照射される。 On the other hand, the diffused excitation light transmitted through the diffusion transmitting portion is incident on the collimating lens 32a ′ ′ and becomes substantially parallel illumination light 11a (B), and mirrors 47a, 48a, 49a that reflect the wavelength range of the excitation light (B) , And enter the mirror 4a ''. The illumination light 11a (B) is reflected by the mirror 4a ′ ′, and is combined with the illumination light 11a (R, Y, G) transmitted through the mirror 4a ′ ′ to become a W color illumination light 11a (W), as shown in FIG. The lower part of A) is irradiated.
 図8は図7の光源装置を照明光11(W)の出射方向から見た図である。図8において、蛍光体ホイール1’’の上部を図7(A)とし、下部を図7(B)と配置とすることで、各々の光学系が干渉することなく一つの蛍光体ホイール1’’上に2つの発光点2aと2bを有することができる。 FIG. 8 is a view of the light source device of FIG. 7 as viewed from the emission direction of the illumination light 11 (W). In FIG. 8, the upper part of the phosphor wheel 1 ′ ′ is shown in FIG. 7A, and the lower part is arranged with FIG. 7B, so that each phosphor system 1 ′ does not interfere with one phosphor wheel 1 ′. 'Can have two light emitting points 2a and 2b.
 尚、蛍光体ホイール1’’での蛍光光(R、Y、G)と励起光(B)の出射される方向は本実施例に限定されるものではなく、各々状況に応じて任意の方向に出射されて良いことは言うまでもない。 The directions in which the fluorescent light (R, Y, G) and the excitation light (B) are emitted from the phosphor wheel 1 ′ ′ are not limited to those in this embodiment, and each direction may be any direction according to the situation. It goes without saying that it may be emitted to
 実施例4では、上記光源装置を投写型映像表示装置に適用した例について述べる。図9は、実施例4における投写型映像表示装置の光学系の構成図である。このうち光源装置100の部分は実施例1(図1)と同様の構成である。光源装置100のミラー4を透過した照明光(拡散励起光)11は、集光レンズ71に集光され、多重反射素子72に入射する。 In the fourth embodiment, an example in which the light source device is applied to a projection type video display device will be described. FIG. 9 is a block diagram of an optical system of a projection type image display apparatus in a fourth embodiment. Among them, the portion of the light source device 100 has the same configuration as that of the first embodiment (FIG. 1). The illumination light (diffuse excitation light) 11 transmitted through the mirror 4 of the light source device 100 is condensed on the condensing lens 71 and is incident on the multiple reflection element 72.
 多重反射素子72に入射した照明光11は、多重反射素子72内で複数回反射し、均一照度分布を有する光となる。多重反射素子72の出射開口面から出射した照明光は、集光レンズ73を透過し、反射ミラー74で反射後、映像表示素子75上に均一な照度分布で照射される。 The illumination light 11 that has entered the multiple reflection element 72 is reflected a plurality of times in the multiple reflection element 72, and becomes light having a uniform illuminance distribution. The illumination light emitted from the emission aperture plane of the multiple reflection element 72 is transmitted through the condenser lens 73, reflected by the reflection mirror 74, and then irradiated onto the image display element 75 with a uniform illuminance distribution.
 映像表示素子75には、例えば、DMD(Digital Mirror Device)がある。この場合、R光、G光、B光を時分割で照射する方式となる。励起光源5は応答速度の速い固体発光素子であり、時分割制御可能であるため、各色光は映像表示素子75により、各色光毎に時分割で変調される。映像表示素子75で反射された各色光は映像光となり、投写レンズ76に入射し、図示しないスクリーン上に投写される。 The image display element 75 is, for example, a DMD (Digital Mirror Device). In this case, R light, G light, and B light are time-divisionally irradiated. The excitation light source 5 is a solid light emitting element having a high response speed, and time-division control is possible, so that each color light is time-divisionally modulated by the image display element 75 for each color light. Each color light reflected by the image display element 75 becomes image light, enters the projection lens 76, and is projected on a screen (not shown).
 尚、映像表示素子75は、透過型や反射型の液晶パネルを用いても良い。又、図9において、光源装置100に代えて図6や図7の光源装置を用いても良い。又、映像表示装置において本発明の光源装置からの照明光と、他の固体発光素子、例えばLEDなどからの照明光を合成する光学系を持つ構成にしても良い。 The image display element 75 may use a transmissive or reflective liquid crystal panel. Further, in FIG. 9, the light source device of FIG. 6 or 7 may be used instead of the light source device 100. In addition, the image display apparatus may be configured to have an optical system that combines the illumination light from the light source device of the present invention and the illumination light from another solid light emitting element such as an LED.
 本実施例の光源装置は小型で高輝度化を実現することができ、投写型映像表示装置の小型化と高性能化に寄与する。 The light source device of the present embodiment is compact and can realize high luminance, and contributes to the miniaturization and high performance of the projection type image display device.
1:蛍光体ホイール、2:蛍光体、2a/2b:蛍光体上の発光点、3:集光レンズ、4:ミラー、5:励起光源、6:コリメートレンズ、10:励起光、11:照明光(蛍光光及び拡散励起光)、41:ダイクロイックコート領域(第1の領域)、42:広波長透過領域(第2の領域)、100:光源装置。 1: phosphor wheel 2: 2: phosphor 2a / 2b: emission point on phosphor 3: 3: condenser lens 4: 4: mirror 5: excitation light source 6: 6: collimate lens 10: excitation light 11: illumination Light (fluorescent light and diffuse excitation light), 41: dichroic coated area (first area), 42: wide wavelength transmission area (second area), 100: light source device.

Claims (10)

  1.  第1の励起光を発生する第1の励起光源と、
     第2の励起光を発生する第2の励起光源と、
     前記第1及び第2の励起光に励起されて蛍光光を発生する蛍光体を有する蛍光体ホイールと、
     前記第1の励起光を前記蛍光体ホイール上の第1の発光点へ、前記第2の励起光を前記蛍光体ホイール上の第2の発光点へ導くと共に、当該第1及び第2の発光点からの蛍光光を照明光として出射する光学系を備える、光源装置。
    A first excitation light source generating a first excitation light;
    A second excitation light source generating a second excitation light;
    A phosphor wheel having a phosphor which is excited by the first and second excitation lights to generate fluorescence light;
    The first excitation light is directed to a first light emitting point on the phosphor wheel, the second excitation light is directed to a second light emitting point on the phosphor wheel, and the first and second light emissions are provided. A light source device comprising an optical system that emits fluorescence light from a point as illumination light.
  2.  前記蛍光体ホイールは、更に、前記第1及び第2の励起光を拡散して拡散励起光を発生する拡散部を備える、請求項1記載の光源装置。 The light source device according to claim 1, wherein the phosphor wheel further includes a diffusion unit that diffuses the first and second excitation lights to generate diffused excitation light.
  3.  前記光学系は、前記第1及び第2の発光点からの蛍光光及び拡散励起光を照明光として出射する、請求項2記載の光源装置。 The light source device according to claim 2, wherein the optical system emits fluorescence light and diffused excitation light from the first and second light emitting points as illumination light.
  4.  前記照明光は、前記蛍光体ホイールを挟んで前記第1及び第2の励起光源と同一の側に出射する、請求項1乃至3何れか一に記載の光源装置。 The light source device according to any one of claims 1 to 3, wherein the illumination light is emitted to the same side as the first and second excitation light sources with the phosphor wheel interposed therebetween.
  5.  前記照明光は、前記蛍光体ホイールを挟んで前記第1及び第2の励起光源と反対側に出射する、請求項1乃至3何れか一に記載の光源装置。 The light source device according to any one of claims 1 to 3, wherein the illumination light is emitted to the opposite side of the first and second excitation light sources with the phosphor wheel interposed therebetween.
  6.  前記蛍光体ホイールを挟んで前記第1及び第2の励起光源の反対側から、前記第1及び第2の励起光源側にかけて、励起光の迂回光路を更に備える、請求項1乃至3何れか一に記載の光源装置。 The optical path according to any one of claims 1 to 3, further comprising a bypass optical path for excitation light from the opposite side of the first and second excitation light sources with the phosphor wheel interposed therebetween to the first and second excitation light sources. The light source device as described in.
  7.  前記第1及び第2の発光点からの蛍光光、及び、前記迂回光路を経由した拡散励起光を照明光として出射する、請求項6記載の光源装置。 The light source device according to claim 6, wherein the fluorescent light from the first and second light emitting points and the diffused excitation light having passed through the bypass light path are emitted as illumination light.
  8.  前記第1及び第2の発光点は、前記蛍光体ホイール上の同一円周上に位置しないように構成される、請求項1乃至7何れか一に記載の光源装置。 The light source device according to any one of claims 1 to 7, wherein the first and second light emitting points are configured not to be located on the same circumference on the phosphor wheel.
  9.  前記第1及び第2の発光点は、同じ色の照明光を出射するように配置される、請求項1乃至8何れか一に記載の光源装置。 The light source device according to any one of claims 1 to 8, wherein the first and second light emitting points are arranged to emit illumination light of the same color.
  10.  請求項1乃至9何れか一に記載の光源装置と、
     前記複数の照明光を合成する照明手段と、
     入力信号に応じて各色光を変調する映像表示素子と、
     前記映像表示素子により変調された光を投写する投写手段と、を備える映像表示装置。
    The light source device according to any one of claims 1 to 9.
    Illumination means for combining the plurality of illumination lights;
    An image display element that modulates each color light according to an input signal;
    And a projection unit configured to project light modulated by the image display element.
PCT/JP2013/061713 2013-04-22 2013-04-22 Light source apparatus and image display apparatus WO2014174559A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/061713 WO2014174559A1 (en) 2013-04-22 2013-04-22 Light source apparatus and image display apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/061713 WO2014174559A1 (en) 2013-04-22 2013-04-22 Light source apparatus and image display apparatus

Publications (1)

Publication Number Publication Date
WO2014174559A1 true WO2014174559A1 (en) 2014-10-30

Family

ID=51791170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061713 WO2014174559A1 (en) 2013-04-22 2013-04-22 Light source apparatus and image display apparatus

Country Status (1)

Country Link
WO (1) WO2014174559A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015138600A (en) * 2014-01-21 2015-07-30 Zero Lab株式会社 photosynthesis unit
WO2016072360A1 (en) * 2014-11-05 2016-05-12 ウシオ電機株式会社 Multi-wavelength light source and light source device
JP2016095486A (en) * 2014-11-05 2016-05-26 ウシオ電機株式会社 Multiwavelength light source and light source device
EP3070525A1 (en) * 2015-03-20 2016-09-21 Delta Electronics, Inc. Optical device
JP2017062294A (en) * 2015-09-24 2017-03-30 セイコーエプソン株式会社 Light source device, light source unit and projector
JP2017062943A (en) * 2015-09-25 2017-03-30 ウシオ電機株式会社 Light source device
JP2017181578A (en) * 2016-03-28 2017-10-05 ウシオ電機株式会社 Optical device
CN108267913A (en) * 2016-12-30 2018-07-10 中强光电股份有限公司 Light source module and projection arrangement
JPWO2018042560A1 (en) * 2016-08-31 2018-12-06 Necディスプレイソリューションズ株式会社 Projector and drive control method
US11493838B2 (en) 2015-03-20 2022-11-08 Delta Electronics, Inc. Optical device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011124002A (en) * 2009-12-08 2011-06-23 Stanley Electric Co Ltd Light source device and lighting system
JP2011191466A (en) * 2010-03-15 2011-09-29 Panasonic Corp Illumination device and projection type image display device
JP2012003923A (en) * 2010-06-16 2012-01-05 Sony Corp Lighting device and image display device
JP2012004009A (en) * 2010-06-18 2012-01-05 Sony Corp Lighting system and image display device
JP2012053162A (en) * 2010-08-31 2012-03-15 Sanyo Electric Co Ltd Projection type video display device
WO2012042563A1 (en) * 2010-09-29 2012-04-05 日立コンシューマエレクトロニクス株式会社 Projector image displaying device
JP2012137608A (en) * 2010-12-27 2012-07-19 Seiko Epson Corp Light source device and projector
JP2012185402A (en) * 2011-03-07 2012-09-27 Seiko Epson Corp Light emitting element and method for producing the same, light source device, and projector
JP2012247491A (en) * 2011-05-25 2012-12-13 Panasonic Corp Lighting device and projection display unit having the lighting device
JP2013047777A (en) * 2011-07-22 2013-03-07 Ricoh Co Ltd Illumination device, projection device, and control method of projection device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011124002A (en) * 2009-12-08 2011-06-23 Stanley Electric Co Ltd Light source device and lighting system
JP2011191466A (en) * 2010-03-15 2011-09-29 Panasonic Corp Illumination device and projection type image display device
JP2012003923A (en) * 2010-06-16 2012-01-05 Sony Corp Lighting device and image display device
JP2012004009A (en) * 2010-06-18 2012-01-05 Sony Corp Lighting system and image display device
JP2012053162A (en) * 2010-08-31 2012-03-15 Sanyo Electric Co Ltd Projection type video display device
WO2012042563A1 (en) * 2010-09-29 2012-04-05 日立コンシューマエレクトロニクス株式会社 Projector image displaying device
JP2012137608A (en) * 2010-12-27 2012-07-19 Seiko Epson Corp Light source device and projector
JP2012185402A (en) * 2011-03-07 2012-09-27 Seiko Epson Corp Light emitting element and method for producing the same, light source device, and projector
JP2012247491A (en) * 2011-05-25 2012-12-13 Panasonic Corp Lighting device and projection display unit having the lighting device
JP2013047777A (en) * 2011-07-22 2013-03-07 Ricoh Co Ltd Illumination device, projection device, and control method of projection device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015138600A (en) * 2014-01-21 2015-07-30 Zero Lab株式会社 photosynthesis unit
WO2016072360A1 (en) * 2014-11-05 2016-05-12 ウシオ電機株式会社 Multi-wavelength light source and light source device
JP2016095486A (en) * 2014-11-05 2016-05-26 ウシオ電機株式会社 Multiwavelength light source and light source device
EP3070525A1 (en) * 2015-03-20 2016-09-21 Delta Electronics, Inc. Optical device
CN105988274A (en) * 2015-03-20 2016-10-05 台达电子工业股份有限公司 Optical device
JP2016177286A (en) * 2015-03-20 2016-10-06 台達電子工業股▲ふん▼有限公司Deltaelectronics,Inc. Optical device
US11493838B2 (en) 2015-03-20 2022-11-08 Delta Electronics, Inc. Optical device
US10088130B2 (en) 2015-03-20 2018-10-02 Delta Electronics, Inc. Optical device
WO2017051534A1 (en) * 2015-09-24 2017-03-30 セイコーエプソン株式会社 Light source device, light source unit, and projector
JP2017062294A (en) * 2015-09-24 2017-03-30 セイコーエプソン株式会社 Light source device, light source unit and projector
JP2017062943A (en) * 2015-09-25 2017-03-30 ウシオ電機株式会社 Light source device
JP2017181578A (en) * 2016-03-28 2017-10-05 ウシオ電機株式会社 Optical device
JPWO2018042560A1 (en) * 2016-08-31 2018-12-06 Necディスプレイソリューションズ株式会社 Projector and drive control method
US10725364B2 (en) 2016-08-31 2020-07-28 Nec Display Solutions, Ltd. Projector and drive control method
CN108267913A (en) * 2016-12-30 2018-07-10 中强光电股份有限公司 Light source module and projection arrangement
CN108267913B (en) * 2016-12-30 2021-06-08 中强光电股份有限公司 Light source module and projection device

Similar Documents

Publication Publication Date Title
WO2014174559A1 (en) Light source apparatus and image display apparatus
JP6085025B2 (en) Light source device and projection display device
JP5997077B2 (en) Light source device
US9348204B2 (en) Light source module with wavelength conversion module and projection apparatus
JP5664222B2 (en) Light source device and projector
KR20170056494A (en) Light source device and image display apparatus
JP6039053B2 (en) Light source device
WO2012002254A1 (en) Light source device and lighting device
WO2014041636A1 (en) Illuminating optical device, projector, and method for controlling illuminating optical device
WO2014192115A1 (en) Light source device, and projection-type display device
WO2015111145A1 (en) Light source device and image display device using same
US20180149955A1 (en) Illumination device and projector
US9891514B2 (en) Light source apparatus and projection display apparatus
US11215910B2 (en) Light source device and projection display apparatus having a laser optical system, a fluorescence optical system, and a light combiner
US11340445B2 (en) Phosphor wheel device
JP6796751B2 (en) Light source device and projection type image display device
US20160223893A1 (en) Projection display apparatus
WO2016021002A1 (en) Light source device, projector, and method for controlling light source device
JP6330147B2 (en) Light source device and projection display device
JP2015184407A (en) Illumination device and image display device
JP7330787B2 (en) Light source device and image projection device provided with the same
KR20190010549A (en) Light source device and projection display device
JP6928780B2 (en) Projection type image display device
US10845691B2 (en) Light source device and projector
JP6358082B2 (en) Light source device and projector provided with light source device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13883054

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13883054

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP