WO2016072075A1 - Electric motor, control device, and motor control system - Google Patents

Electric motor, control device, and motor control system Download PDF

Info

Publication number
WO2016072075A1
WO2016072075A1 PCT/JP2015/005451 JP2015005451W WO2016072075A1 WO 2016072075 A1 WO2016072075 A1 WO 2016072075A1 JP 2015005451 W JP2015005451 W JP 2015005451W WO 2016072075 A1 WO2016072075 A1 WO 2016072075A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotation
coil
rotating shaft
shaft
coils
Prior art date
Application number
PCT/JP2015/005451
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤 功治
真範 安田
牧田 真治
潤 山岡
徳永 政男
悦郎 吉野
淳一 朝間
Original Assignee
株式会社デンソー
株式会社日本自動車部品総合研究所
国立大学法人静岡大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015155172A external-priority patent/JP2016093093A/en
Priority claimed from JP2015203209A external-priority patent/JP6627400B2/en
Application filed by 株式会社デンソー, 株式会社日本自動車部品総合研究所, 国立大学法人静岡大学 filed Critical 株式会社デンソー
Priority to US15/523,269 priority Critical patent/US10958133B2/en
Publication of WO2016072075A1 publication Critical patent/WO2016072075A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/16Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/22Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/09Structural association with bearings with magnetic bearings

Definitions

  • the present disclosure relates to an electric motor, a control device, and a motor control system.
  • an excitation coil for rotating the rotor and an excitation coil for the magnetic bearing are wound around a common starter.
  • the rotor is provided with a permanent magnet along with the rotating shaft.
  • a rotating magnetic field generated from an excitation coil for rotation driving is applied to the permanent magnet, thereby generating a rotational force on the rotor and the rotating shaft.
  • a magnetic force generated from an excitation coil for a magnetic bearing is applied to the permanent magnet, thereby generating a supporting force that rotatably supports the rotating shaft.
  • an object of the present disclosure is to provide an electric motor, a control device, and a motor control system that can reduce power consumption.
  • a support member that rotatably supports one side in the axial direction of the rotation shaft via a mechanical bearing;
  • a rotor attached to a rotating shaft and provided with a permanent magnet;
  • a first coil that is attached to the support member and generates a magnetic field that generates a rotational force that rotates the rotor together with the rotation shaft;
  • a second coil that is attached to the support member and generates a magnetic force between the permanent magnet and a magnetic bearing that rotatably supports the other axial side of the rotating shaft rather than the mechanical bearing.
  • the rotary shaft is configured such that the rotary shaft can tilt with respect to the rotation center line of the rotary shaft, with the mechanical bearing side as a fulcrum.
  • the current flowing through the second coil is controlled by the control device so as to prevent the axis of the rotation shaft from being inclined from the rotation center line by the electromagnetic force between the permanent magnet and the second coil.
  • the mechanical bearing means any one of a rolling bearing, a sliding bearing, and a fluid bearing.
  • the rolling bearing is a bearing that includes a raceway disposed on the outer peripheral side of the rotating shaft and a rolling element that is disposed between the rotating shaft and the track, and supports the rotating shaft by the rolling motion of the rolling element.
  • a sliding bearing is a bearing that receives a shaft on a sliding surface.
  • a fluid dynamic bearing is a bearing supported by liquid or gas.
  • the first coil is disposed closer to the rotor than the second coil.
  • the distance between the first coil and the rotor can be shortened as compared with the case where the second coil is arranged closer to the rotor than the first coil. For this reason, since the rotational torque which rotates a rotor can be raised efficiently, the power consumption consumed by a 1st coil can be reduced.
  • the first stator core is attached to the support member, the first coil is wound around, and the magnetic field generated from the first coil is allowed to pass through.
  • a second stator core attached to the support member and provided separately from the first stator core, wherein the second coil is wound to pass a magnetic field generated from the second coil, and The first coil and the second coil are arranged on the other side in the axial direction of the rotating shaft with respect to the permanent magnet.
  • the magnetic flux is saturated in the stator core when the load torque is large and the current flowing through the first coil becomes excessive. A situation in which the force for supporting the rotating shaft is reduced can be avoided. For this reason, even when the load torque increases, stable control of the rotating shaft is possible, and an increase in vibration of the rotating shaft can be suppressed.
  • a rotation shaft that is rotatably arranged around the rotation center;
  • a rotor attached to a rotating shaft and provided with a permanent magnet;
  • a first coil that is supported by the support member and is arranged in a radial direction around the rotation center with respect to the permanent magnet, and generates a rotational force that applies a magnetic field to the permanent magnet and rotates the rotor together with the rotation shaft;
  • Supported by the support member and arranged in the radial direction around the rotation center with respect to the permanent magnet generates electromagnetic force between the permanent magnet and floats around the rotation axis to rotate around the rotation center line
  • a second coil constituting a magnetic bearing to be freely supported;
  • a positional deviation detection sensor for detecting an amount of deviation of the axis of the rotation axis from the rotation center line based on a magnetic field generated from the permanent magnet, The control device controls the current flowing through the second coil based on the detection value of the misalignment detection sensor so as to prevent the axis of the rotation shaft from
  • the magnetic bearing is configured such that an electromagnetic force is generated between the second coil and the permanent magnet to float the rotating shaft and to support the rotating shaft about the rotation center line. For this reason, a rotating shaft can be rotatably supported by the magnetic bearing comprised from a 2nd coil and a permanent magnet, without using a mechanical bearing. Therefore, similarly to the first aspect, it is possible to reduce the power consumption required to support the rotating shaft.
  • the distance between the positional deviation detection sensor and the rotating shaft is larger than the distance between the positional deviation detection sensor and the permanent magnet. For this reason, since the position shift detection sensor can detect the magnetic flux from the permanent magnet satisfactorily, it is possible to accurately detect the amount of deviation of the axis of the rotation shaft from the rotation center line. As a result, the axis of the rotation axis can be brought close to the rotation center line with high accuracy.
  • a stator that forms a plurality of magnetic poles arranged in a circumferential direction around the rotation center line of the rotation shaft and supports the rotation shaft rotatably via a mechanical bearing
  • a plurality of first coils and a plurality of second coils supported by the rotating shaft A plurality of first segments supported by the rotating shaft and arranged in the circumferential direction are provided, and a plurality of first segments are connected to end portions of corresponding first coils among the plurality of first coils.
  • 1 commutator As the first commutator rotates, the first segment that contacts the plurality of first segments by sliding to the plurality of first segments is sequentially changed, and the current passes through the first segment that contacts the plurality of first coils.
  • a plurality of first brushes that output A plurality of second segments supported by the rotating shaft and arranged in the circumferential direction are provided, and a plurality of second segments are connected to end portions of corresponding second coils among the plurality of second coils.
  • Two commutators As the second commutator rotates, the second segments that slide on the plurality of second segments and contact with each other among the plurality of second segments are sequentially changed, and through the second segments that contact the plurality of second coils.
  • a plurality of second brushes for outputting current The plurality of first coils have, as electromagnetic force, a rotational force that rotates a rotation axis about a rotation center line based on currents output through segments that are in contact with the plurality of first brushes and magnetic fluxes from the plurality of magnetic poles. Occur, The plurality of second coils are displaced from the mechanical bearings of the rotating shaft by generating an electromagnetic force between the plurality of magnetic poles based on the current output through the second segment in contact with the plurality of second brushes.
  • the magnetic bearing which supports a part rotatably is comprised.
  • the mechanical bearing means any one of a rolling bearing, a sliding bearing, and a fluid bearing.
  • the rolling bearing is a bearing that includes a raceway disposed on the outer peripheral side of the rotating shaft and a rolling element that is disposed between the rotating shaft and the track, and supports the rotating shaft by the rolling motion of the rolling element.
  • a sliding bearing is a bearing that receives a shaft on a sliding surface.
  • a fluid dynamic bearing is a bearing supported by liquid or gas.
  • the extending direction of the rotation center line is a direction in which the rotation center line extends.
  • the stator is provided with a rotating shaft support member that supports the rotating shaft so as to be swingable via the mechanical bearing with a portion of the axis of the rotating shaft shifted from the mechanical bearing as a fulcrum.
  • the first and second commutators are arranged on the fulcrum side with respect to the mechanical bearing.
  • the seventh aspect of the present disclosure it is possible to suppress the displacement of the contact portion of the first commutator that contacts the first brush when the rotation shaft swings about the fulcrum. For this reason, it can suppress that the poor contact between a 1st commutator and a 1st brush arises.
  • FIG. 2 is a sectional view taken along line II-II in FIG.
  • FIG. 3 is a sectional view taken along line III-III in FIG. It is sectional drawing which shows arrangement
  • FIG. 2 is a diagram illustrating a relationship between a supporting force Fa of a rotating shaft in FIG. It is a figure which shows the relationship between the transfer function-rotation speed of the electric motor of FIG. It is a figure which shows the relationship of the vibration acceleration-rotation speed of the electric motor of FIG. 10 is a flowchart illustrating a support process of a control circuit according to a second embodiment of the present disclosure. It is a figure which shows the electromagnetic force produced by the coil for inclination control in 2nd Embodiment. It is a figure which shows the transfer function-rotation speed relationship of the electric motor in 2nd Embodiment. It is a figure showing the whole motor control system composition in a 3rd embodiment of this indication.
  • FIG. 1 is a diagram illustrating a relationship between a supporting force Fa of a rotating shaft in FIG. It is a figure which shows the relationship between the transfer function-rotation speed of the electric motor of FIG. It is a figure which shows the relationship of the vibration acceleration-rotation speed of the electric motor of
  • FIG. 6 is a cross-sectional view illustrating the arrangement of a tilt control coil and a rotation control coil according to a fourth embodiment of the present disclosure, and corresponds to FIG. 3. It is sectional drawing which shows the arrangement
  • FIG. 36 is a sectional view taken along the line XXXVI-XXXVI in FIG.
  • FIG. 37 is a cross-sectional view of a first modified example of the fifth embodiment of the present disclosure, corresponding to FIG. 36. It is a figure showing the whole motor control system composition in the 2nd modification of a 5th embodiment of this indication. It is a figure showing the whole motor control system composition in a 6th embodiment of this indication.
  • FIG. 40 is a sectional view taken along line XL-XL in FIG.
  • FIG. 40 is a sectional view taken along line XLI-XLI in FIG. 39.
  • FIG. 41 is a cross-sectional view corresponding to FIG. 40 in another embodiment of the present disclosure.
  • FIG. 42 is a cross-sectional view corresponding to FIG. 41 in another embodiment.
  • FIG. 41 is a figure showing the whole motor control system composition in an 8th embodiment of this indication.
  • FIG. 49 is a cross-sectional view of XLIX-XLIX in FIG. 48.
  • FIG. 49 is a cross-sectional view taken along line LL in FIG. 48.
  • FIG. 49 is a sectional view taken along line LII-LII in FIG. 48.
  • FIG. 60 is a flowchart showing details of steps in FIG. 60. It is a figure which shows the output value etc. of the Hall sensor in FIG. It is a figure which shows the output value etc. of the Hall sensor in FIG.
  • FIG. 49 is a diagram showing a relationship between a supporting force Fa of the rotating shaft in FIG. 48, an angle, and a rotational speed. It is a figure which shows the relationship between the transfer function-rotation speed of the electric motor of FIG. It is a figure which shows the relationship of the vibration acceleration-rotation speed of the electric motor of FIG. It is a figure showing the whole motor control system composition in the comparative example of this indication. It is a flowchart which shows the support process of the control circuit in 9th Embodiment of this indication.
  • FIG. 68 is a partially enlarged view in FIG. 67. It is a figure showing the whole motor control system composition in an 11th embodiment of this indication. It is a figure showing the whole motor control system composition in a 12th embodiment of this indication.
  • FIG. 1 shows an overall configuration of a first embodiment of a motor control system 1 of the present disclosure.
  • the motor control system 1 of this embodiment includes an electric motor 10 and a fan 20 as shown in FIG.
  • the electric motor 10 includes a rotating shaft 30, a center piece 31, a bearing 32, a holding portion 33, permanent magnets 34a and 34b, a stator 35, a rotor 36, and a hall sensor 37a. , 37b, 37c, 37d.
  • the rotary shaft 30 is a rotary shaft that transmits the rotational force of the rotor 36 to the fan 20.
  • the fan 20 is connected to the fan 20 so that the rotary shaft 30 is connected to the hole 20 a by fitting the other end of the rotary shaft 30 in the axial direction.
  • a centrifugal fan is used as the fan 20.
  • the center piece 31 is a support member including a cylindrical portion 31a and a flange portion 31b.
  • the cylinder portion 31a is formed in a cylindrical shape centered on the rotation center line M1 (see FIG. 7) of the rotation shaft 30.
  • a rotating shaft 30 is disposed in the hollow portion of the cylindrical portion 31a.
  • the flange portion 31b is formed so as to protrude outward in the radial direction from one axial direction side of the cylindrical portion 31a.
  • the center piece 31 is fixed to the plate 40.
  • the radial direction is a radial direction around the rotation center line M ⁇ b> 1 of the rotation shaft 30.
  • the bearing 32 is a mechanical bearing that rotatably supports one side in the axial direction of the rotating shaft 30.
  • the bearing 32 is disposed radially inward with respect to the cylindrical portion 31 a of the center piece 31.
  • the bearing 32 is supported by the cylinder part 31a.
  • the bearing 32 is supported by the holding plate 41 from one side in the axial direction.
  • a rolling bearing is used as the bearing 32.
  • the rolling bearing includes a track disposed on the outer peripheral side of the rotating shaft 30 and a rolling element disposed between the rotating shaft 30 and the track, and supports the rotating shaft 30 by the rolling motion of the rolling element. It is a bearing.
  • the permanent magnets 34 a and 34 b are arranged on the other side in the axial direction with respect to the bearing 32 of the rotating shaft 30.
  • the permanent magnets 34 a and 34 b are located on the radially inner side with respect to the other axial side of the stator core 52.
  • the permanent magnets 34 a and 34 b are fixed to the rotary shaft 30.
  • the permanent magnets 34a and 34b are each formed in an arc shape as shown in FIG.
  • the permanent magnets 34 a and 34 b are combined so as to cover the outer periphery of the rotating shaft 30. Out of the permanent magnets 34a and 34b, one of the permanent magnets in the radial direction forms an S pole, and the other permanent magnet in the radial direction forms an N pole.
  • the permanent magnets 34a, 34b apply magnetic flux to the hall sensors 37a, 37b, 37c, 37d.
  • the holding portion 33 is disposed between the bearing 32 and the permanent magnets 34a and 34b.
  • the restraining portion 33 is formed in a ring shape with the rotation center line M1 of the rotation shaft 30 as the center.
  • the restraining portion 33 is a bearing portion that supports the rotating shaft 30 in a state where the rotating shaft 30 is largely inclined from the rotation center line M1 of the rotating shaft 30.
  • the holding part 33 is supported by the cylinder part 31 a of the center piece 31.
  • the holding part 33 of this embodiment is formed of a resin material having lubricity.
  • the stator 35 includes coils 50a, 50b, 50c, coils 51a, 51b, 51c, and a stator core 52, as shown in FIGS.
  • the stator core 52 allows a magnetic flux (that is, a magnetic field) generated from the coils 50a, 50b, and 50c to pass therethrough. Further, the stator core 52 allows a magnetic flux (that is, a magnetic field) generated from the coils 51a, 51b, 51c to pass therethrough.
  • the stator core 52 constitutes a magnetic circuit together with the plurality of permanent magnets 61.
  • the stator core 52 includes a ring portion 53 and teeth 54a, 54b, 54c, 54d, 54e, 54f, 54g, 54h, 54i, 54j, 54k, and 54l.
  • the ring portion 53 is disposed on the outer side in the radial direction with respect to the cylindrical portion 31 a of the center piece 31.
  • the ring part 53 is fixed to the cylinder part 31a.
  • Teeth 54a, 54b,... 54l are formed so as to protrude radially outward from the ring portion 53.
  • the teeth 54a, 54b,... 54l are arranged at equal intervals in the circumferential direction around the rotation center line M1 of the rotation shaft 30.
  • Each of the teeth 54a, 54b,... 54l is formed such that the tip side extends in the circumferential direction.
  • the coils 50a, 50b, and 50c of the present embodiment are tilt control coils that generate the supporting force of the rotating shaft 30.
  • FIG. 4 shows the arrangement of the coils 50a, 50b, and 50c of this embodiment.
  • the illustration of the coils 51a, 51b, and 51c is omitted for convenience of explanation.
  • black dots indicate a state in which current flows toward the back side in the vertical direction of the paper surface
  • x indicates a state in which current flows toward the front side in the vertical direction of the paper surface.
  • the coil 50a is a U1-phase coil, and is wound around the teeth 54a, 54d, 54g, and 54j as shown in FIG.
  • the teeth 54a, 54d, 54g, 54j are arranged at the same interval in the circumferential direction around the rotation center line M1 of the rotation shaft 30.
  • the coil 50b is a V1-phase coil and is wound around the teeth 54c, 54f, 54i, and 54l.
  • the teeth 54c, 54f, 54i, 54l are arranged at the same interval in the circumferential direction around the rotation center line M1 of the rotation shaft 30.
  • the coil 50c is a W1-phase coil, and is wound around the teeth 54b, 54e, 54h, and 54k.
  • the teeth 54b, 54e, 54h, and 54k are arranged at the same interval in the circumferential direction around the rotation center line M1 of the rotation shaft 30.
  • the coil 50a constitutes a U1-phase coil
  • the coil 50b constitutes a V1-phase coil
  • the coil 50c constitutes a W1-phase coil.
  • the coils 51 a, 51 b, 51 c of the present embodiment are rotational drive coils that generate a rotating magnetic field for rotating the rotor 36.
  • FIG. 5 shows the arrangement of the coils 51a, 51b, 51c of this embodiment.
  • the illustration of the coils 50a, 50b, and 50c is omitted for convenience of explanation.
  • black dots indicate a state in which a current flows toward the back side in the vertical direction on the paper surface
  • x indicates a state in which a current flows toward the front side in the vertical direction on the paper surface.
  • the coil 51a is a U2-phase coil, and is wound around teeth 54c, 54d, 54i, 54j as shown in FIG.
  • the teeth 54c and 54d and the teeth 54i and 54j are arranged with an angle of 180 degrees offset about the rotation center line M1 of the rotation shaft 30.
  • the coil 51a wound around the tooth 54c and the coil 51a wound around the tooth 54d are wound in different directions.
  • the coil 51a wound around the teeth 54i and the coil 51a wound around the teeth 54j are wound in different directions.
  • the coil 51b is a V2-phase coil and is wound around the teeth 54a, 54b, 54g, and 54h.
  • the teeth 54a, 54b and the teeth 54g, 54h are arranged with an angle of 180 degrees offset about the rotation center line M1 of the rotation shaft 30.
  • the coil 51b wound around the teeth 54a and the coil 51b wound around the teeth 54b are wound in different directions.
  • the coil 51b wound around the tooth 54g and the coil 51b wound around the tooth 54h are wound in different directions.
  • the coil 51c is a W2-phase coil and is wound around the teeth 54e, 54f, 54k, and 54l.
  • the teeth 54e and 54f and the teeth 54k and 54l are arranged with an angle of 180 degrees offset about the rotation center line M1 of the rotation shaft 30.
  • the coil 51c wound around the tooth 54e and the coil 51c wound around the tooth 54f are wound in different directions. It is wound in a different direction from the coil 51c wound around the tooth 54k and the coil 51c wound around the tooth 54l.
  • the coils 50a, 50b, and 50c are disposed on the rotor 36 side (that is, radially outside) with respect to the coils 51a, 51b, and 51c.
  • the coils 50a, 50b, 50c and the coils 51a, 51b, 51c are wound around the common stator core 52. That is, the coils 50 a, 50 b, 50 c and the coils 51 a, 51 b, 51 c are attached to the center piece 31 via the stator core 52.
  • the current flowing through the coils 50a, 50b, and 50c and the current flowing through the coils 51a, 51b, and 51c are controlled by an electronic control unit (denoted as ECU in FIG. 1) 70.
  • the rotor 36 includes a rotor case 60 and a plurality of permanent magnets 61.
  • the rotor case 60 is formed in a cylindrical shape centered on the rotation center line M1 of the rotation shaft 30.
  • the rotor case 60 is disposed radially outside the rotation center line M1 of the rotation shaft 30 with respect to the stator core 52 and the coils 50a, 50b, 50c, 51a, 51b, 51c.
  • the other side in the axial direction is closed with a lid 60a.
  • the lid portion 60a is provided with a through hole 60b that allows the rotary shaft 30 to pass therethrough.
  • the lid 60 a of the rotor case 60 is fixed by the rotating shaft 30. That is, the rotor 36 is attached to the rotating shaft 30.
  • the plurality of permanent magnets 61 are arranged in the circumferential direction around the rotation center line M1 of the rotation shaft 30.
  • the plurality of permanent magnets 61 are arranged on the radially inner side with respect to the rotor case 60.
  • the plurality of permanent magnets 61 are fixed to the rotor case 60.
  • the plurality of permanent magnets 61 are arranged so that each magnetic pole faces in the radial direction.
  • the plurality of permanent magnets 61 are arranged so that the S poles and the N poles are alternately arranged in the circumferential direction on each magnetic pole of the plurality of permanent magnets 61.
  • twelve permanent magnets 61 are arranged.
  • the hall sensors 37a, 37b, 37c, and 37d are disposed on the outer side in the radial direction around the rotation center line M1 of the rotation shaft 30 with respect to the permanent magnets 34a and 34b. Gaps are formed between the hall sensors 37a, 37b, 37c, and 37d and the permanent magnets 34a and 34b.
  • the hall sensors 37a, 37b, 37c, and 37d are arranged at the same interval in the circumferential direction around the rotation center line M1 of the rotation shaft 30.
  • the hall sensors 37a, 37b, 37c, and 37d are fixed to the cylindrical portion 31a of the center piece 31.
  • the hall sensors 37a, 37b, 37c, and 37d are for detecting the rotational speed and inclination angle of the rotary shaft 30, and are constituted by hall elements that detect magnetic fields generated from the permanent magnets 34a and 34b.
  • the electric motor 10 configured as described above is configured such that the rotation shaft 30 can be inclined from the rotation center line M1 of the rotation shaft 30 with the bearing 32 side of the rotation shaft 30 as a fulcrum (FIGS. 6 and 7). FIG. 8).
  • the fulcrum is the origin 0
  • the rotation center line M1 of the rotation shaft 30 is the Z axis
  • the X and Y axes orthogonal to the rotation center line M1 are set, and rotation is performed with respect to the Z axis.
  • An example in which the shaft 30 is inclined at an angle ⁇ is shown.
  • (x0, y0) indicates the XY coordinates of the end on the other side in the axial direction of the rotating shaft 30 (that is, the fan 20).
  • the electronic control device 70 includes inverter circuits 71 and 72 and a control circuit 73 as shown in FIG.
  • the inverter circuit 71 includes transistors SW1, SW2, SW3, SW4, SW5, and SW6.
  • the transistors SW1 and SW2 are connected in series between the positive electrode bus 71a and the negative electrode bus 71b.
  • Transistors SW3 and SW4 are connected in series between positive electrode bus 71a and negative electrode bus 71b.
  • the transistors SW5 and SW6 are connected in series between the positive electrode bus 71a and the negative electrode bus 71b.
  • the common connection terminal T1 between the transistors SW1 and SW2 is connected to the coil 50a.
  • a common connection terminal T2 between the transistors SW3 and SW4 is connected to the coil 50b.
  • a common connection terminal T3 between the transistors SW5 and SW6 is connected to the coil 50c.
  • the coils 50a, 50b, 50c are connected by star connection.
  • the inverter circuit 72 includes transistors SY1, SY2, SY3, SY4, SY5, and SY6.
  • the transistors SY1 and SY2 are connected in series between the positive electrode bus 72a and the negative electrode bus 72b.
  • Transistors SY3 and SY4 are connected in series between positive electrode bus 72a and negative electrode bus 72b.
  • Transistors SY5 and SY6 are connected in series between positive electrode bus 72a and negative electrode bus 72b.
  • the common connection terminal D1 between the transistors SY1 and SY2 is connected to the coil 51a.
  • a common connection terminal D2 between the transistors SY3 and SY4 is connected to the coil 51b.
  • a common connection terminal D3 between the transistors SY5 and SY6 is connected to the coil 51c.
  • the coils 51a, 51b, 51c are connected by star connection.
  • the positive buses 71a and 72a are connected to the positive electrode of the DC power supply Ba.
  • the negative electrode bus lines 71b and 72b are connected to the negative electrode of the DC power supply Ba.
  • the control circuit 73 is configured by a microcomputer, a memory, and the like, and generates a rotational force for the rotor 36 and outputs a supporting force for supporting the rotary shaft 30 in accordance with a computer program stored in the memory. Execute control processing.
  • the control circuit 73 controls switching of the transistors SW1, SW2,... SW6 and the transistors SY1, SY2,... SY6 based on the output signals of the hall sensors 37a, 37b, 37c, and 37d as the control process is executed. To do.
  • the electromagnetic force fu1 is a force that moves the rotor 36 in the first direction.
  • the first direction is a direction rotated 225 ° clockwise from the X axis, where the X axis is the axis extending to the right side of the page with the axis of the rotation axis 30 as the center.
  • repulsive force and attractive force as electromagnetic force are generated between the coil 50b wound around the teeth 54c, 54f, 54i, and 54l and the plurality of permanent magnets 61.
  • the repulsive force and the attractive force generated between the coil 50b and the plurality of permanent magnets 61 are combined to generate the electromagnetic force fv1.
  • the electromagnetic force fv1 is a force that moves the rotor 36 in the second direction.
  • the second direction is a direction rotated 105 ° clockwise from the X axis.
  • repulsive force and attractive force as electromagnetic force are generated between the coil 50c wound around the teeth 54b, 54e, 54h, and 54k and the plurality of permanent magnets 61.
  • the repulsive force and the attractive force generated between the coil 50c and the plurality of permanent magnets 61 are combined to generate the electromagnetic force fw1.
  • the electromagnetic force fw1 is a force that moves the rotor 36 in the third direction.
  • the third direction is a direction rotated 15 ° counterclockwise from the X axis.
  • the direction of the electromagnetic force fu1, the direction of the electromagnetic force fv1, and the direction of the electromagnetic force fw1 are arranged at the same interval in the circumferential direction around the rotation center line M1 of the rotating shaft 30.
  • the direction of the electromagnetic force fu1 is offset by 120 ° with respect to the direction of the electromagnetic force fv1.
  • the direction of the electromagnetic force fv1 is offset by 120 ° with respect to the direction of the electromagnetic force fw1.
  • the direction of the electromagnetic force fw1 is offset by 120 ° with respect to the direction of the electromagnetic force fu1.
  • the electromagnetic forces fu1, fv1, and fw1 are unit vectors, respectively.
  • the control circuit 73 controls the transistors SW1, SW2,... SW6 to control the current flowing from the common connection terminals T1, T2, T3 to the coils 50a, 50b, 50c. For this reason, by controlling the coefficients K1, K2, and K3, the magnitude and direction of the supporting force Fa can be controlled.
  • the control circuit 73 controls the transistors SY1, SY2,... SY6, and outputs current from the common connection terminals S1, S2, S3 to the coils 51a, 51b, 51c. For this reason, rotating magnetic fields Ya, Yb, Yc are sequentially generated from the coils 51a, 51b, 51c (see FIG. 12). The rotating magnetic fields Ya, Yb, and Yc cause the plurality of permanent magnets 61 to generate a rotational force.
  • the rotating magnetic field Ya is generated from the coil 51a disposed between the teeth 54c and 54d and the coil 51a disposed between the teeth 54i and 54j.
  • the rotating magnetic field Yb is generated from a coil 51b disposed between the teeth 54g and 54h and a coil 51b disposed between the teeth 54a and 54b.
  • the rotating magnetic field Yc is generated from a coil 51c disposed between the teeth 54e and 54f and a coil 51c disposed between the teeth 54k and 54l.
  • control processing of the control circuit 73 of this embodiment will be described with reference to FIGS.
  • the control circuit 73 executes control processing according to the flowcharts of FIGS.
  • FIG. 13 is a flowchart showing the control process.
  • step 100 of FIG. 13 the magnetic fields generated by the permanent magnets 34a, 34b are detected by the hall sensors 37a, 37b, 37c, 37d.
  • the direction in which the hall sensors 37a and 37c are arranged is defined as the X direction
  • the direction in which the hall sensors 37b and 37d are arranged is defined as the Y direction.
  • the difference dS indicates rotation angle information of the rotation shaft 30. Based on the difference dS, the rotation angle (that is, the rotation position) of the rotation shaft 30 at the current time is calculated (step 110).
  • step 120 support control (step 120) for preventing the rotation shaft 30 from being inclined from the rotation center line S1 and rotation control (step 130) for rotating the rotation shaft 30 are executed in parallel. Details of support control (step 120) and rotation control (step 130) will be described later.
  • step 140 it is determined whether or not to continue the rotation of the rotating shaft 30 (step 140). Thereafter, assuming that the rotation of the rotating shaft 30 is continued, if YES is determined in the step 140, the process returns to the step 110.
  • the determination of YES in steps 100, 110, 120, 130 and 140 is repeated until a stop command for stopping the control process is input from the outside. Thereafter, when a stop command is input from the outside, it is determined as NO in step 140, and the control process is terminated.
  • FIG. 14 is a flowchart showing details of step 130 in FIG.
  • step 131 the coil to be excited is selected from the coils 51a, 51b, 51c based on the rotation angle of the rotating shaft 30 at the current time calculated in step 110.
  • the current flowing through the selected coil is calculated based on the rotation angle of the rotating shaft 30 at the current time calculated in step 110 (step 132).
  • the transistors SY1, SY2, SY3, SY4, SY5, and SY6 for outputting the calculated current to the selected coil are subjected to switching control (step 133).
  • the transistors SY1, SY2, SY3, SY4, SY5, and SY6 of the inverter circuit 71 are switched, and current is output from the common connection terminals D1, D2, and D3 to the selected coil.
  • a known rotation control process can be used for the processes in steps 131 to 133.
  • Such coil selection processing (step 131), current value calculation processing (step 132), and current output processing (step 133), Hall sensor detection processing (step 100), and rotation angle calculation processing (step 100) in FIG. Step 110) is repeated. Then, the transistors SY1, SY2, SY3, SY4, SY5, and SY6 are switched to output a three-phase alternating current from the common connection terminals D1, D2, and D3 to the coils 51a, 51b, and 51c.
  • FIG. 15 is a flowchart showing details of step 120 in FIG.
  • step 121 based on the output signals of the hall sensors 37a, 37b, 37c, and 37d, the inclination ⁇ (see FIG. 7) of the rotation shaft 30 with respect to the rotation center line M1 of the rotation shaft 30 is calculated.
  • the X coordinate of the fan 20 (the X coordinate of the other end portion in the axial direction of the rotating shaft 30).
  • the amplitude value A1 indicates the amplitude value of the difference dS at the current time.
  • ⁇ T be the time between the timing when the difference dS becomes zero and the current time.
  • the amplitude value A0 is the amplitude of the reference signal k1 when ⁇ T has elapsed from the timing when the reference signal k1 becomes zero.
  • the X coordinate (X0) increases as the difference (A1-A0) increases, and the X coordinate (X0) increases as the difference (A1-A0) decreases.
  • the output signal Ha output from the hall sensor 37a when the rotary shaft 30 rotates in a state where the axis of the rotary shaft 30 coincides with the rotation center line M1 of the rotary shaft 30 is used as the theoretical value of the output signal Ha.
  • An output signal Hc output from the hall sensor 37c when the rotary shaft 30 rotates in a state where the axis of the rotary shaft 30 coincides with the rotation center line M1 of the rotary shaft 30 is a theoretical value of the output signal Hc.
  • the output signal Hb output from the hall sensor 37b when the rotary shaft 30 rotates in a state where the axis of the rotary shaft 30 coincides with the rotation center line M1 of the rotary shaft 30 is used as a theoretical value of the output signal Hb.
  • An output signal Hd output from the Hall sensor 37d when the rotary shaft 30 rotates in a state where the axis of the rotary shaft 30 coincides with the rotation center line M1 of the rotary shaft 30 is used as a theoretical value of the output signal Hd.
  • the amplitude value B1 indicates the amplitude value of the difference dq at the current time.
  • the amplitude value B0 is the amplitude of the reference signal k2 when ⁇ T has elapsed from the timing when the reference signal k1 becomes zero.
  • the Y coordinate (Y0) increases. The smaller the difference dB, the smaller the Y coordinate (Y0).
  • the inclination ⁇ (angle) of the rotation shaft 30 with respect to the rotation center line M1 is calculated.
  • the inclination ⁇ is an angle formed between the Z axis and the axis M2 of the rotary shaft 30 in the clockwise direction from the Z axis toward the axis M2 of the rotary shaft 30 (see FIG. 7). .
  • step 122 based on the XY coordinates (X0, Y0) of the fan 20, a coil to be excited is selected from the coils 50a, 50b, 50c to bring the axis M2 of the rotating shaft 30 closer to the rotation center line M1. . That is, the coil to be energized to bring the axis M2 of the inclined rotation shaft 30 close to the rotation center line M1 is selected from the coils 50a, 50b, and 50c.
  • the coil thus selected is referred to as a selection coil.
  • step 123 it is determined whether or not the rotational speed of the rotary shaft 30 is high.
  • a difference (Ha ⁇ Hc) between the output signal Ha of the hall sensor 37a and the output signal Hc of the hall sensor 37c is obtained, and based on the change of the obtained difference (Ha ⁇ Hc) with respect to time, the rotation axis A rotational speed of 30 is calculated. It is determined whether or not the calculated rotation speed (hereinafter referred to as calculated rotation speed V) is equal to or higher than a predetermined speed.
  • Step 123 When the calculated rotational speed V is equal to or higher than the predetermined speed, YES is determined in Step 123 as the rotational speed of the rotary shaft 30 is high.
  • the output is output to the selection coil.
  • the power current is calculated based on (X0, Y0) and the gradient ⁇ (step 124).
  • step 123 when the calculated rotational speed V is less than the predetermined speed, NO is determined in step 123 as the rotational speed of the rotating shaft 30 is low.
  • the output is output to the selection coil.
  • the power current is calculated based on (X0, Y0) and the gradient ⁇ (step 126).
  • the greater the inclination ⁇ the greater the supporting force Fa necessary to bring the axis M2 of the rotary shaft 30 closer to the rotation center line M1.
  • FIG. 17 is a graph showing the relationship between the support force Fa and the tilt angle ⁇ when the vertical axis is the support force Fa, the horizontal axis is the tilt angle ⁇ , and the rotary shaft 30 is rotating at a low speed or a high speed. is there.
  • the graph When the rotary shaft 30 rotates at a low speed, the graph has a larger gradient than the graph when the rotary shaft 30 rotates at a high speed.
  • the current to be output to the selection coil is calculated based on the graph showing the relationship between the supporting force Fa and the inclination ⁇ at the time of high speed rotation in FIG. 126).
  • the current to be output to the selection coil is calculated based on the graph showing the relationship between the supporting force Fa and the inclination ⁇ during the low-speed rotation shown in FIG. 124).
  • the current to be output to the selection coil is calculated based on the rotation speed of the rotary shaft 30, (X0, Y0), and the inclination ⁇ . Accordingly, the transistors SW1, SW2,... SW6 of the inverter circuit 71 are controlled in order to output the calculated current to the selection coil. As a result, current is output from the common connection terminals T1, T2, and T3 to the selection coil. For this reason, a supporting force Fa is generated between the selection coil and the permanent magnet 61. Therefore, the rotating shaft 30 can be brought close to the rotation center line M1 by the support force Fa.
  • the center piece 31 supports the one side in the axial direction of the rotary shaft 30 via the bearing 32 so as to be rotatable.
  • the rotor 36 is fixed to the rotating shaft 30.
  • the coils 51 a, 51 b, 51 c are arranged on the centerpiece 31 side and generate a magnetic field that generates a rotational force that rotates the rotor 36 together with the rotary shaft 30.
  • the plurality of permanent magnets 61 are fixed to the rotating shaft 30 side together with the rotor case 60 to constitute the rotor 36.
  • the coils 50 a, 50 b, and 50 c are arranged on the center piece 31 side, generate electromagnetic force between the plurality of permanent magnets 61, and support a magnetic bearing that rotatably supports the other axial side of the rotary shaft 30. Constitute. Thereby, it is comprised so that the rotating shaft 30 can incline with respect to the rotation center line M1 by using the bearing 32 side among the rotating shafts 30 as a fulcrum.
  • the electronic control unit 70 controls the current output from the inverter circuit 71 to the coils 50a, 50b, and 50c for each coil so that the axis M2 of the rotary shaft 30 approaches the rotation center line M1.
  • the supporting force Fa can be generated by the electromagnetic force between the plurality of permanent magnets 61 and the coils 50a, 50b, and 50c.
  • the larger the inclination ⁇ formed between the axis M2 of the rotation shaft 30 and the rotation center line M1 the greater the supporting force Fa necessary to bring the axis M2 of the rotation shaft 30 closer to the rotation center line M1. .
  • the rotary shaft 30 is rotatably supported from the magnetic bearing constituted by the plurality of permanent magnets 61 and the coils 50a, 50b, and 50c and the bearing 32.
  • the magnetic bearing constituted by the plurality of permanent magnets 61 and the coils 50a, 50b, and 50c and the bearing 32. Therefore, one magnetic bearing is used to support the rotating shaft 30. Therefore, it is possible to provide the electric motor 10, the electronic control device 70, and the motor control system 1 that reduce the power consumption for supporting the rotating shaft 30.
  • the support force Fa when the rotary shaft 30 rotates at a high speed, the support force Fa is made smaller than when the rotary shaft 30 rotates at a low speed. For this reason, in order to generate the supporting force Fa, the electric power consumed by the coils 50a, 50b, and 50c can be reduced.
  • the horizontal axis represents the rotational speed N (that is, the rotational speed) of the rotary shaft 30.
  • the vertical axis is a transfer function indicating the vibration system of the electric motor 10.
  • the centrifugal force generated from the vibration source is input using the tilt vibration of the rotating shaft 30 as a vibration source.
  • the tilt vibration of the rotating shaft 30 is a phenomenon in which the rotating shaft 30 swings in the radial direction around the rotation center line M1 when the rotating shaft 30 rotates.
  • the vibration acceleration of a predetermined portion for example, the center piece 31
  • De indicated by a solid line is a transfer function indicating the vibration system of the electric motor 10 of the present embodiment.
  • a chain line indicates a transfer function indicating the vibration system of the electric motor 10 when the support force Fa is reduced, and a one-dot chain line indicates a transfer function indicating the vibration system of the electric motor 10 when the support force Fa is increased.
  • the peak of the transfer function when the supporting force Fa is small occurs when the rotational speed of the rotating shaft 30 is low.
  • the peak of the transfer function when the supporting force Fa is large occurs when the rotational speed of the rotating shaft 30 is high (see FIG. 18). For this reason, when the supporting force Fa is small, resonance occurs in the electric motor 10 when the rotational speed of the rotating shaft 30 is low. On the other hand, when the support force Fa is large, resonance occurs in the electric motor 10 when the rotational speed of the rotary shaft 30 is high.
  • the supporting force Fa is reduced when the rotating shaft 30 is rotating at a high speed, and the supporting force Fa is increased when the rotating shaft 30 is rotating at a low speed. That is, the magnitude of the support force Fa is switched depending on the number of rotations of the rotary shaft 30. For this reason, in the vibration system of the electric motor 10, a transfer function De with a suppressed peak is formed. Thereby, resonance can be made difficult to occur in the electric motor 10.
  • the vibration acceleration Sk generated in the electric motor 10 due to the tilt vibration of the rotating shaft 30 can be reduced over the use range of the rotation speed N (see FIG. 19).
  • the use range is a range of the rotational speed N of the rotary shaft 30 that is actually used in the electric motor 10.
  • the horizontal axis is the rotational speed N of the rotary shaft 30.
  • the vertical axis represents vibration acceleration generated in a predetermined portion (for example, the center piece 31) other than the rotating shaft 30 and the rotor 36 in the electric motor 10.
  • the chain line indicates the vibration acceleration generated in the predetermined portion of the electric motor 10 when the support force Fa is reduced, and the alternate long and short dash line indicates the vibration acceleration generated in the predetermined portion of the electric motor 10 when the support force Fa is increased.
  • SK indicated by a solid line indicates vibration acceleration generated in the predetermined portion of the electric motor 10 of the present embodiment.
  • FIG. 20 is a flowchart showing details of support control of the control circuit 73.
  • step 123 it is determined whether or not the rotational speed of the rotary shaft 30 is high.
  • the rotational speed of the rotating shaft 30 is calculated based on the difference (Ha ⁇ Hc) between the output signal Ha of the hall sensor 37a and the output signal Hc of the hall sensor 37c. It is determined whether or not the calculated rotation speed (hereinafter referred to as calculated rotation speed V) is equal to or higher than a predetermined speed.
  • Step 123 When the calculated rotational speed V is equal to or higher than the predetermined speed, YES is determined in Step 123 as the rotational speed of the rotary shaft 30 is high. In this case, in order to generate a restoring force Fb that prevents the rotation shaft 30 from being inclined from the rotation center line M1 between the coils 50a, 50b, and 50c and the plurality of permanent magnets 61, it should be output to the coils 50a, 50b, and 50c. The current is calculated (step 126A).
  • step 123 when the calculated rotational speed V is less than the predetermined speed, NO is determined in step 123 as the rotational speed of the rotating shaft 30 is low.
  • a restoring force Fb that prevents the rotation shaft 30 from being inclined from the rotation center line M1 between the coils 50a, 50b, and 50c and the plurality of permanent magnets 61, it should be output to the coils 50a, 50b, and 50c.
  • the current is calculated (step 124A).
  • the restoring force Fb of the present embodiment is an electromagnetic force that moves the fan 20 (that is, the rotating shaft 30) in the rotating direction.
  • the restoring force Fb is a restoring force when the distance between the axis of the fan 20 and the rotation center line M1 is L, the rotational speed of the fan 20 (that is, the rotating shaft 30) is V, and the damping coefficient is C.
  • Fb is an electromagnetic force determined from (L ⁇ V ⁇ C) (see FIG. 23).
  • the axial center of the fan 20 of this embodiment is the axial center of the axial direction other end side end part of the rotating shaft 30.
  • the distance L is obtained from the XY coordinates (x0, yo) of the axis of the fan 20.
  • the rotation speed V is calculated based on the difference (Ha ⁇ Hc) between the output signal Ha of the hall sensor 37a and the output signal Hc of the hall sensor 37c.
  • the rotation direction of the fan 20 (that is, the rotation shaft 30) is obtained from the XY coordinates (x0, yo) of the axis of the fan 20.
  • the current to be output to the coils 50a, 50b, and 50c is calculated based on the XY coordinates (x0, yo) and (L ⁇ V ⁇ C) of the fan 20. .
  • the current to be output to the coils 50a, 50b, and 50c increases.
  • the transistors SW1, SW2,... SW6 of the inverter circuit 71 are controlled.
  • current is output from the common connection terminals T1, T2, T3 to the coils 50a, 50b, 50c (step 125). Therefore, an electromagnetic force is generated between the coils 50a, 50b, 50c and the plurality of permanent magnets 61 as a restoring force Fb that moves the fan 20 in the rotation direction of the fan 20 around the rotation center line M1.
  • the restoring force Fb acting in the rotational direction in this way acts between the coils 50a, 50b, 50c and the plurality of permanent magnets 61. For this reason, the axis M2 of the rotating shaft 30 is prevented from being inclined from the rotation center line M1 by disturbance or the like.
  • step 123 if YES is determined in step 123 because the rotating shaft 30 is rotating at a high speed, the damping coefficient C is decreased, and the current to be output to the coils 50a, 50b, 50c is decreased (step 126A).
  • step 123 if NO is determined in step 123 because the rotating shaft 30 is rotating at a low speed, the damping coefficient C is increased to increase the current to be output to the coils 50a, 50b, and 50c (step 124A). That is, when the rotating shaft 30 rotates at a high speed, the current flowing through the coils 50a, 50b, and 50c is reduced by reducing the attenuation coefficient C compared to when the rotating shaft 30 rotates at a low speed. Can do.
  • the electronic control unit 70 controls the inverter circuit 71 so that the distance between the fan 20 and the rotation center line M1 is L and the attenuation coefficient is C
  • the rotary shaft 30 is rotatably supported from the magnetic bearing constituted by the plurality of permanent magnets 61 and the coils 50a, 50b, and 50c and the bearing 32.
  • the magnetic bearing constituted by the plurality of permanent magnets 61 and the coils 50a, 50b, and 50c and the bearing 32. Therefore, one magnetic bearing is used to support the rotating shaft 30. Therefore, power consumption for supporting the rotating shaft 30 can be reduced.
  • the current output from the inverter circuit 71 to the coils 50a, 50b, and 50c is made smaller than when the rotating shaft 30 rotates at a low speed. .
  • the restoring force Fb is made smaller than when the rotating shaft 30 rotates at low speed. Therefore, in order to generate the restoring force Fb, the power consumed by the coils 50a, 50b, and 50c can be reduced.
  • the transfer function indicating the vibration system of the electric motor 10 is the vertical axis.
  • the centrifugal force generated from the vibration source is input using the tilt vibration of the rotating shaft 30 as a vibration source.
  • the vibration acceleration of a predetermined portion (for example, the center piece 31) other than the rotating shaft 30 and the rotor 36 in the electric motor 10 is output.
  • Graph De shows a transfer function indicating the vibration system of the electric motor 10 of the present embodiment.
  • the broken line graph is a transfer function when the attenuation coefficient C is small, and the alternate long and short dash line is a transfer function when the attenuation coefficient C is large.
  • the transfer function becomes larger when the damping coefficient C (that is, the restoring force Fb) is smaller than when the damping coefficient C is large (see FIG. 22).
  • the transfer function is larger when the damping coefficient C is larger than when the damping coefficient C is small.
  • the damping coefficient C is decreased when the rotating shaft 30 is rotating at high speed, and the damping coefficient C is increased when the rotating shaft 30 is rotating at low speed. That is, the magnitude of the damping coefficient C (that is, the restoring force Fb) is switched depending on the number of rotations of the rotating shaft 30 to suppress an increase in the transfer function. Thereby, in the electric motor 10, resonance can be made difficult to occur.
  • the vibration acceleration can be reduced in the electric motor 10 over the use range of the rotation speed N as in the first embodiment. Thereby, the vibration can be reduced.
  • FIG. 23 shows the overall configuration of the third embodiment of the motor control system 1 of the present disclosure.
  • the same reference numerals as those in FIG. The present embodiment is different from the first embodiment mainly in the portion of the rotating shaft 30 that is supported by the magnetic bearing and the bearing 32.
  • the magnetic bearing supports a portion of the rotating shaft 30 on the side opposite to the fan 20 with respect to the bearing 32 by the magnetic bearing.
  • a bearing 32 is disposed on the fan 20 side with respect to the stator 35.
  • the cover part 60a of the rotor case 60 is formed so as to protrude toward the fan 20 side.
  • the rotor 36 including the fan 20, the rotating shaft 30, and the plurality of permanent magnets 61 is a rotating body, and the bearing 32 supports the center of gravity of the rotating body of the rotating shaft 30.
  • the supporting force Fa for supporting the rotating shaft 30 needs to be increased.
  • the bearing 32 supports the center of gravity side of the rotating body in the rotating shaft 30.
  • the fulcrum which the bearing 32 supports among the rotating shafts 30 can be brought close to the center of gravity of the rotating body. Therefore, the supporting force Fa can be reduced. Therefore, the power consumption consumed by the coils 50a, 50b, and 50c can be reduced.
  • the fan 20 side in the axial direction of the rotating shaft 30 is one side in the axial direction, and the side opposite to the fan 20 in the axial direction of the rotating shaft 30 is the other side in the axial direction.
  • FIG. 24 is a cross-sectional view orthogonal to the axis of the rotary shaft 30 in the electric motor 10 of the present embodiment.
  • the coil 50a is wound around the teeth 54a, 54d, 54g, and 54j.
  • the coil 50b is wound around the teeth 54c, 54f, 54i, and 54l.
  • the coil 50c is wound around the teeth 54b, 54e, 54h, and 54k.
  • the coil 51a is wound around the teeth 54c, 54d, 54i, and 54j.
  • the coil 51b is wound around the teeth 54a, 54b, 54g, and 54h.
  • the coil 51c is wound around the teeth 54e, 54f, 54k, and 54l.
  • the rotation drive coils (51a, 51b, 51c) are arranged on the rotor 36 side with respect to the inclination control coils (50a, 50b, 50c) for each tooth of the stator 35.
  • the coil 51b wound around the teeth 54a is disposed on the rotor 36 side with respect to the coil 50a.
  • the coil 51a wound around the teeth 54c is arranged on the rotor 36 side with respect to the coil 50c.
  • the coil 51c wound around the teeth 54f is disposed on the rotor 36 side with respect to the coil 50b.
  • This embodiment and the first embodiment are the same except for the arrangement in the radial direction between the coils 50a, 50b, and 50c and the coils 51a, 51b, and 51c.
  • an electromagnetic force fu1 (see FIG. 27) is generated between the coil 50a and the plurality of permanent magnets 61 based on the magnetic flux G generated by the coil 50a.
  • An electromagnetic force fv1 (see FIG. 28) is generated between the coil 50b and the plurality of permanent magnets 61 based on the magnetic flux G generated by the coil 50a.
  • An electromagnetic force fw1 (see FIG. 29) is generated between the coil 50c and the plurality of permanent magnets 61 based on the magnetic flux G generated by the coil 50a.
  • the control circuit 73 controls the current output from the inverter circuit 71 to the coils 50a, 50b, and 50c. For this reason, as the electromagnetic force between the plurality of permanent magnets 61 and the coils 50a, 50b, 50c, it is possible to generate a supporting force Fa that brings the axis M2 of the rotating shaft 30 closer to the rotation center line M1.
  • rotating magnetic fields Ya, Yb, Yc (see FIG. 29) for generating a rotating force in the plurality of permanent magnets 61 are sequentially provided. Can be generated.
  • control circuit 73 controls the current output from the inverter circuit 72 to the coils 51a, 51b, 51c, so that the rotating magnetic fields Ya, Yb, Yc are sequentially generated from the coils 51a, 51b, 51c. Therefore, a rotational force that rotates in synchronization with the rotating magnetic field is generated in the plurality of permanent magnets 61. Along with this, the rotating shaft 30 rotates together with the rotor 36.
  • the rotation driving coils (51a, 51b, 51c) are arranged on the rotor 36 side with respect to the inclination control coils (50a, 50b, 50c) for each tooth of the stator 35. ing.
  • the rotation drive coils Since the distance between (51a, 51b, 51c) and the rotor 36 can be shortened, the rotational torque for rotating the rotational torque can be efficiently increased. Therefore, a large rotational torque can be obtained with the same number of turns. Thereby, the power consumption consumed by the rotation drive coils (51a, 51b, 51c) can be reduced.
  • the rotational drive coils (51a, 51b, 51c) have a cross-sectional area that is orthogonal to the radial direction toward the radially inner side for each of the teeth (54a... 54l). Is formed to be small.
  • the rotation driving coils (51a, 51b, 51c) are wound around the inclination control coils (50a, 50b, 50c) and the teeth for each tooth. For this reason, the inclination control coils (50a, 50b, 50c) are formed so that the cross-sectional area perpendicular to the radial direction becomes smaller toward the radially outer side for each of the teeth (54a... 54l).
  • the coil 51b wound around the teeth 54a is arranged on the rotor 36 side (that is, radially outside) with respect to the coil 50a.
  • the coil 51b is wound around the coil 50a and the tooth 54a.
  • the coil 51b is formed so that the cross-sectional area decreases toward the inner side in the radial direction.
  • the coil 50a is formed so that the cross-sectional area becomes smaller toward the outer side in the radial direction.
  • the coil 51a wound around the teeth 54c is disposed on the rotor 36 side (that is, radially outside) with respect to the coil 50b.
  • the coil 51a is wound around the coil 50b and the tooth 54c.
  • the coil 51a is formed so that the cross-sectional area becomes smaller toward the inner side in the radial direction.
  • the coil 50b is formed so that a cross-sectional area may become small toward the radial direction outer side.
  • the rotation driving coils (51a, 51b, 51c) include a coil portion 511 formed along the tooth extending portion 540 for each tooth (54a.
  • the coil portion 510 is formed along the tip arc portion 541.
  • the extension part 540 of the teeth is a part formed so as to extend radially outward from the ring part 53.
  • the tip arc portion 541 of the tooth is a portion formed so as to extend in the circumferential direction from the tip side of the extending portion.
  • the inclination control coils (50a, 50b, 50c) are wound around the tooth extending portion 540 and the coil portion 511 for each tooth.
  • the coil part 510 among the coils for rotation driving is arranged on the rotor 36 side (that is, radially outside) with respect to the inclination control coil for each tooth.
  • the rotation driving coil is disposed on the teeth side (that is, on the stator core 52 side) with respect to the inclination control coil for each tooth.
  • the coils 50a and 51b wound around the teeth 54a are as follows.
  • the coil part 510 of the coil 51b is formed along the tip arc part 541 of the tooth 54a.
  • the coil part 511 of the coil 51b is formed along the extended part 540 of the tooth 54a.
  • the coil 50a is wound around the extension part 540 and the coil part 511 of the tooth 54a.
  • the coil part 510 of the coil 51b is arrange
  • the coil 51b is arranged on the teeth 54a side (that is, the stator core 52 side) with respect to the coil 50a.
  • the rotation drive coils (51a, 51b, 51c) include a coil unit 512 in addition to the coil units 510 and 511 for each tooth (54a... 54l). It is configured.
  • the coil part 510 is formed along the tip arc part 541 of the tooth.
  • the coil part 511 is formed along the extension part 540 of the teeth.
  • the coil part 512 is formed along the outer periphery of the ring part 53.
  • the coil portion 512 is disposed radially inward with respect to the inclination control coil.
  • the inclination control coils (50a, 50b, 50c) are wound around the tooth extending portion 540 and the coil portion 511 for each tooth.
  • the coil part 510 among the coils for rotation driving is arranged on the rotor 36 side (that is, radially outside) with respect to the inclination control coil for each tooth.
  • the rotation driving coil is disposed on the stator core 52 side with respect to the inclination control coil for each tooth.
  • the coils 50a and 51b wound around the teeth 54a are as follows.
  • the coil part 510 of the coil 51b is formed along the tip arc part 541 of the tooth 54a.
  • the coil part 511 of the coil 51b is formed along the extended part 540 of the tooth 54a.
  • the coil 50a is wound around the extension part 540 and the coil part 511 of the tooth 54a.
  • the coil part 512 is formed along the outer periphery of the ring part 53. That is, the coil part 512 is arrange
  • the coil portion 510 of the coil 51b is arranged on the rotor 36 side (that is, radially outside) with respect to the coil 50a.
  • the coil 51b is disposed on the stator core 52 side with respect to the coil 50a.
  • the coils 50c and 51b wound around the teeth 54b are as follows. That is, the coils 50c and 51b are wound around the teeth 54b so as to be paired.
  • the coil 51b is disposed on the rotor 36 side (that is, radially outside) with respect to the coil 50c.
  • the coils 50b and 51a wound around the teeth 54c are as follows. That is, the coils 50b and 51a are wound around the teeth 54c so as to be paired.
  • the coil 51a is disposed on the rotor 36 side (that is, radially outside) with respect to the coil 50b.
  • FIG. 35 shows the overall configuration of the motor control system 1 according to the fifth embodiment of the present disclosure.
  • 36 is a sectional view taken along line XXXVI-XXXVI in FIG. 35, the same reference numerals as those in FIG. 1 denote the same components, and the description thereof is omitted.
  • the motor control system 1 of the present embodiment is obtained by deleting the bearing 32 from the motor control system 1 of the first embodiment.
  • the coils 50a, 50b, and 50c of the present embodiment generate electromagnetic force between the plurality of permanent magnets 61 so that the rotating shaft 30 is levitated and the rotating shaft 30 is rotatable about the rotation center line M1.
  • the positions of the hall sensors 37a, 37b, 37c, and 37d are different between the motor control system 1 of the present embodiment and the motor control system 1 of the first embodiment.
  • the hall sensors 37a, 37b, 37c, and 37d of the present embodiment are radially inward with respect to the plurality of permanent magnets 61 about the rotation center line M1 and centered on the rotation center line M1 with respect to the rotation shaft 30. It is located radially outside.
  • the hall sensors 37a, 37b, 37c, and 37d are disposed between the plurality of permanent magnets 61 and the rotating shaft 30.
  • the distance between the hall sensors 37a, 37b, 37c, 37d and the rotating shaft 30 is larger than the distance between the hall sensors 37a, 37b, 37c, 37d and the plurality of permanent magnets 61.
  • the hall sensors 37a, 37b, 37c, and 37d of the present embodiment are arranged so as to be orthogonal to the rotation center line M1 and along a cross section including the center of gravity Ga.
  • the gravity center Ga means the mass gravity center of the motor control system 1.
  • Hall sensors 37a, 37b, 37c, and 37d are arranged at equal intervals in the circumferential direction around the rotation center line M1. Each of the hall sensors 37a, 37b, 37c, and 37d outputs an output signal according to the magnetic field from the plurality of permanent magnets 61. Hall sensors 37a, 37b, 37c, and 37d are arranged in a distributed manner between the tip ends of two corresponding teeth among teeth 54a, 54b,.
  • the hall sensor 37a is disposed between the teeth 54a and 54b.
  • the hall sensor 37b is disposed between the teeth 54d and 54e.
  • the hall sensor 37c is disposed between the teeth 54g and 54h.
  • the hall sensor 37d is disposed between the teeth 54j and 54k.
  • the control circuit 73 determines the rotation angle of the rotary shaft 30 based on the output signals of the hall sensors 37a, 37b, 37c, and 37d, as in the first embodiment.
  • the rotation control (step 130) is executed based on the obtained rotation angle.
  • the control circuit 73 obtains the XY coordinates (X0, Y0) and the inclination ⁇ of the fan 20 based on the output signals of the hall sensors 37a, 37b, 37c, 37d, as in the first embodiment.
  • the current flowing through the coils 50a, 50b, 50c is controlled. Thereby, an electromagnetic force is generated between the plurality of permanent magnets 61, and the rotary shaft 30 is magnetically levitated to constitute a magnetic bearing that rotatably supports the rotary shaft 30.
  • an electromagnetic force is generated between the coils 50a, 50b, 50c and the plurality of permanent magnets 61 so that the rotating shaft 30 is magnetically levitated and the rotating shaft 30 is centered on the rotation center line M1.
  • a magnetic bearing that rotatably supports the motor is configured.
  • the rotary shaft 30 can be rotatably supported by the magnetic bearing composed of the coils 50a, 50b, 50c and the plurality of permanent magnets 61 without using a mechanical bearing. Therefore, as in the first embodiment, the power consumption required to support the rotating shaft 30 can be reduced.
  • the Hall sensors 37a, 37b, 37c, and 37d of the present embodiment are arranged so as to be perpendicular to the rotation center line M1 and along a cross section (hereinafter simply referred to as a cross section) including the center of gravity Ga. Therefore, by controlling the current flowing through the coils 50a, 50b, and 50c, it is possible to control the center of gravity Ga in the motor control system 1 so as to approach the rotation center line M1. Therefore, the rotating shaft 30 can be magnetically levitated satisfactorily and the axis of the rotating shaft 30 can be brought close to the rotation center line M1.
  • the plurality of permanent magnets 61 play a role of obtaining the rotation angle of the rotary shaft 30, the XY coordinates (X0, Y0) and the inclination ⁇ of the fan 20. Yes.
  • the permanent magnet for generating the rotational force of the rotating shaft 30 and the permanent magnet 61 for obtaining the rotation angle of the rotating shaft 30, the XY coordinates (X0, Y0) of the fan 20 and the inclination ⁇ are separately provided.
  • the physique of the motor control system 1 can be reduced in size.
  • the hall sensors 37a, 37b, 37c, and 37d are disposed between the plurality of permanent magnets 61 and the rotary shaft 30.
  • the distance between the hall sensors 37a, 37b, 37c, 37d and the rotating shaft 30 is larger than the distance between the hall sensors 37a, 37b, 37c, 37d and the plurality of permanent magnets 61.
  • the hall sensors 37a, 37b, 37c, and 37d are arranged in the vicinity of the plurality of permanent magnets 61. For this reason, the hall sensors 37a, 37b, 37c, and 37d can detect the magnetic flux from the plurality of permanent magnets 61 satisfactorily. Thereby, the hall sensors 37a, 37b, 37c, and 37d can detect the rotation angle and the positional deviation of the rotating shaft 30 with high accuracy.
  • the Hall sensors 37a, 37b, 37c, and 37d of the present embodiment are distributed between the respective distal ends of two corresponding teeth among the teeth 54a, 54b,. For this reason, the size of the motor control system 1 can be further reduced.
  • the motor control system 1 of the first modification is obtained by adding Hall sensors 37e and 37f to the motor control system 1 of the first embodiment.
  • the control circuit 73 calculates the XY coordinates (X0, Y0) of the fan 20 based on the output signals of the hall sensors 37a, 37b, 37c, 37d.
  • the control circuit 73 obtains the rotation angle of the rotary shaft 30 based on the output signals of the hall sensors 37d, 37e, and 37f.
  • the hall sensor 37e of the present embodiment is disposed between the tip ends of the teeth 54b and 54c.
  • the hall sensor 37e is disposed between the tip ends of the teeth 54f and 54g.
  • the hall sensor 37d is disposed between the tip ends of the teeth 54j and 54k.
  • the hall sensors 37d, 37e, and 37f are arranged at equal intervals in the circumferential direction around the rotation center line M1.
  • the hall sensors 37a, 37b, 37c, 37d37e, and 37f of the present embodiment are arranged so as to be orthogonal to the rotation center line M1 and along a cross section that includes the center of gravity Ga.
  • the hall sensors 37a, 37b, 37c, 37d, 37e, and 37f are disposed between the plurality of permanent magnets 61 and the rotary shaft 30.
  • the distance between the hall sensors 37a, 37b, 37c, 37d, 37e, 37f and the rotary shaft 30 is larger than the distance between the hall sensors 37a, 37b, 37c, 37d, 37e, 37f and the plurality of permanent magnets 61.
  • the hall sensors 37a, 37b, 37c, 37d, 37e, and 37f are arranged in the vicinity of the plurality of permanent magnets 61. For this reason, the hall sensors 37a, 37b, 37c, 37d, 37e, and 37f can detect the magnetic flux from the plurality of permanent magnets 61 satisfactorily. Thereby, the hall sensors 37a, 37b, 37c, and 37d can detect the rotation angle and the positional deviation of the rotating shaft 30 with high accuracy.
  • the motor control system 1 of the first modification is obtained by adding a bearing 32 to the motor control system 1 of the fifth embodiment.
  • FIG. 38 shows the overall configuration of the motor control system 1 of the first modification.
  • the bearing 32 is supported by the center piece 31 and rotatably supports the rotating shaft 30.
  • FIG. 39 shows the overall configuration of the sixth embodiment of the motor control system 1 of the present disclosure.
  • 40 is a cross-sectional view taken along the line XXXX-XXX in FIG. 40 is a sectional view taken along line XXXI-XXXXI in FIG. 39, the same reference numerals as those in FIG. 1 denote the same components, and the description thereof is omitted.
  • the rotor 36 includes a rotor case 60, a plurality of permanent magnets 61a, and a plurality of permanent magnets 61b.
  • the rotor case 60 is formed in a disc shape with the axis of the rotary shaft 30 as the center.
  • the rotor case 60 supports a plurality of permanent magnets 61a and a plurality of permanent magnets 61b, respectively.
  • the plurality of permanent magnets 61a and the plurality of permanent magnets 61b are employed instead of the plurality of permanent magnets 61 in FIG.
  • the plurality of permanent magnets 61 a and the plurality of permanent magnets 61 b are arranged on one side in the axial direction with respect to the rotor case 60.
  • the plurality of permanent magnets 61a are arranged in a circumferential direction around the axis of the rotating shaft 30, respectively.
  • the plurality of permanent magnets 61b are arranged in a circumferential direction around the rotation center line M1.
  • the plurality of permanent magnets 61a are disposed radially inward with respect to the axis of the rotation shaft 30 with respect to the plurality of permanent magnets 61b.
  • the plurality of permanent magnets 61a are arranged so that each magnetic pole faces one side in the axial direction.
  • the plurality of permanent magnets 61a is arranged so that the magnetic poles of the plurality of permanent magnets 61a are alternately arranged in the circumferential direction with S and N poles.
  • twelve permanent magnets 61a are arranged.
  • the plurality of permanent magnets 61b are arranged so that each magnetic pole faces one side in the axial direction.
  • the plurality of permanent magnets 61b are arranged so that the magnetic poles of the plurality of permanent magnets 61b are alternately arranged with S poles and N poles in the circumferential direction.
  • twelve permanent magnets 61b are arranged.
  • the stator 35 of this embodiment includes coils 50a, 50b, 50c, coils 51a, 51b, 51c, and a stator core 52A, as shown in FIGS. 39 and 41.
  • the stator core 52A is employed instead of the stator core 52 of FIG.
  • the stator core 52A includes teeth 55a, 55b, 55c, 55d, 55e, 55f, 55g, 55h, 55i, 55j, 55k, 55l, and teeth 56a, 56b, 56c, 56d, 56e, 56f, 56g, 56h, 56i, 56j. , 56k, 56l.
  • Teeth 56a, 56b,..., 56l are first stator cores formed in a columnar shape in which the respective axial directions are parallel to the rotation center line M1.
  • the teeth 55a, 55b,... 55l are second stator cores arranged at the same interval in the circumferential direction around the rotation center line M1 of the rotation shaft 30.
  • the teeth 56a, 56b,... 56l are disposed radially inward with respect to the teeth 55a, 55b,.
  • the teeth 55a, 55b,... 55l are arranged on the other side in the axial direction on the plurality of permanent magnets 61b. It arrange
  • the teeth 56a, 56b,... 56l are arranged on the radially inner side with respect to the teeth 55a, 55b,.
  • the teeth 56a, 56b ... 56l and the teeth 55a, 55b ... 55l are supported by the center piece 31.
  • the teeth 56a, 56b,... 56l pass magnetic fluxes generated from the coils 51a, 51b, 51c.
  • the teeth 55a, 55b,... 55l allow the magnetic flux generated from the coils 50a, 50b, 50c to pass therethrough.
  • the teeth 56a, 56b ... 56l and the teeth 55a, 55b ... 55l are configured to be independent from each other. Therefore, the teeth 56a, 56b,... 56l that allow the magnetic flux from the coils 51a, 51b, 51c to pass through, and the teeth 55a, 55b,... 55l that allow the magnetic flux generated from the coils 50a, 50b, 50c to pass through, Are separated from each other.
  • the coil 51a is a U2 phase coil, and is wound around teeth 56c, 56d, 56i, and 56j as shown in FIG.
  • the teeth 56c, 56d and the teeth 56i, 56j are arranged with an angle of 180 degrees offset about the rotation center line M1 of the rotation shaft 30.
  • the coil 51a wound around the tooth 56c and the coil 51a wound around the tooth 56d are wound in different directions.
  • the coil 51a wound around the tooth 56i and the coil 51a wound around the tooth 56j are wound in different directions.
  • the coil 51b is a V2-phase coil and is wound around the teeth 56a, 56b, 56g, and 56h.
  • the teeth 56a, 56b and the teeth 56g, 56h are arranged with an angle of 180 degrees offset about the rotation center line M1 of the rotation shaft 30.
  • the coil 51b wound around the tooth 56a and the coil 51b wound around the tooth 56b are wound in different directions.
  • the coil 51b wound around the tooth 56g and the coil 51b wound around the tooth 56h are wound in different directions.
  • the coil 51c is a W2 phase coil and is wound around the teeth 56e, 56f, 56k, and 56l.
  • the teeth 56e, 56f and the teeth 56k, 56l are arranged with an angle of 180 degrees offset about the rotation center line M1 of the rotation shaft 30.
  • the coil 51c wound around the tooth 56e and the coil 51c wound around the tooth 56f are wound in different directions. It is wound in a different direction from the coil 51c wound around the tooth 56k and the coil 51c wound around the tooth 56l.
  • the coil 50a is a U1-phase coil and is wound around the teeth 55a, 55d, 55g, and 55j.
  • the teeth 55a, 55d, 55g, and 55j are arranged at equal intervals in the circumferential direction around the rotation center line M1 of the rotation shaft 30.
  • the coil 50b is a V1-phase coil and is wound around the teeth 55c, 55f, 55i, and 55l.
  • the teeth 55c, 55f, 55i, and 55l are arranged at equal intervals in the circumferential direction around the rotation center line M1 of the rotation shaft 30.
  • the coil 50c is a W1-phase coil, and is wound around the teeth 55b, 55e, 55h, and 55k.
  • the teeth 55b, 55e, 55h, and 55k are arranged at the same interval in the circumferential direction around the rotation center line M1 of the rotation shaft 30.
  • the coil 50a constitutes a U1-phase coil
  • the coil 50b constitutes a V1-phase coil
  • the coil 50c constitutes a W1-phase coil.
  • a rotational force that rotates the rotating shaft 30 in synchronization with the rotating magnetic field is generated from the coils 50a, 50b, and 50c in the plurality of permanent magnets 61b.
  • the coils 51a, 51b, 51c rotatably support the rotary shaft 30 by electromagnetic force acting between the plurality of permanent magnets 61a.
  • teeth 56a, 56b,... 56l that allow magnetic fluxes from the coils 51a, 51b, 51c to pass through, and teeth 55a, 55b,... 55l that allow magnetic fluxes generated from the coils 50a, 50b, and 50c to pass through. are separated from each other. For this reason, when the load torque is large and the current flowing through the coils 51a, 51b, 51c, which are the windings for rotation, becomes excessive, it is possible to avoid the situation where the magnetic flux is saturated in the stator core and the supporting force of the rotating shaft 30 is reduced. it can. For this reason, even when the load torque becomes large, stable control is possible and vibration does not increase.
  • Eb is the support force of the motor control system 1 of this embodiment.
  • Ea is a supporting force of a conventional motor control system in which coils 50a, 50b, and 50c and coils 51a, 51b, and 51c are wound around a common stator core. As can be seen from FIG. 42, the support force of the motor control system 1 of the present embodiment is stable.
  • the motor control system 1 of the present embodiment constitutes an axial gap type motor in which the stator core 52 is disposed with a gap in the axial direction of the rotary shaft 30 with respect to the plurality of permanent magnets 61a and the plurality of permanent magnets 61b. is doing. Coils 50a, 50b, and 50c that generate the supporting force of the rotating shaft 30 are disposed radially outside the coils 51a, 51b, and 51c.
  • the restoring moment with respect to the tilt of the rotating shaft 30 has a longer span than the conventional radial gap type motor.
  • the span is a distance between the rotation center line M1 and the coils 50a, 50b, and 50c.
  • the axial length of the rotary shaft 30 can be shortened, which is advantageous for flattening the motor.
  • the degree of freedom in layout is increased and the overall size of the apparatus is reduced. It is advantageous to make.
  • FIG. 43 shows the overall configuration of the electronic control unit 70 of the present embodiment. 43, the same reference numerals as those in FIG. 8 denote the same components.
  • the electronic control device 70 of the present embodiment includes inverter circuits 71A, 71B, 71C instead of the inverter circuit 71 in the electronic control device 70 of the first embodiment.
  • the inverter circuit 71A is a bridge circuit composed of transistors SW1, SW2, SW3, and SW4.
  • a coil 50a is connected between the common connection terminal T1 of the transistors SW1 and SW2 and the common connection terminal T2 of the transistors SW3 and SW4.
  • the inverter circuit 71B is a bridge circuit including transistors SW5, SW6, SW7, and SW8.
  • a coil 50b is connected between the common connection terminal T3 of the transistors SW5 and SW6 and the common connection terminal T4 of the transistors SW7 and SW8.
  • the inverter circuit 71C is a bridge circuit including transistors SW9, SW10, SW11, and SW12.
  • a coil 50c is connected between the common connection terminal T5 of the transistors SW9 and SW10 and the common connection terminal T6 of the transistors SW11 and SW12.
  • the control circuit 73 controls the values of the current flowing through the coil 50a and the direction of the current flowing through the coil 50a by controlling the transistors SW1, SW2, SW3, and SW4.
  • the control circuit 73 controls the values of the current flowing through the coil 50b and the direction of the current flowing through the coil 50b by controlling the transistors SW5, SW6, SW7, and SW8.
  • the control circuit 73 controls the values of the current flowing through the coil 50c and the direction of the current flowing through the coil 50c by controlling the transistors SW9, SW10, SW11, and SW12.
  • control circuit 73 controls the transistors SW1, SW2,... SW11, SW12, thereby independently controlling the current flowing through the coils 50a, 50b, 50c for each coil.
  • the electromagnetic force between the coil 50a and the plurality of permanent magnets 61 is the electromagnetic force fu2 (see FIG. 44)
  • the electromagnetic force between the coil 50b and the plurality of permanent magnets 61 is the electromagnetic force fv2
  • the coil 50c The electromagnetic force between the plurality of permanent magnets 61 is defined as an electromagnetic force fw2.
  • the electromagnetic force fu2, the electromagnetic force fv2, and the electromagnetic force fw2 can be controlled independently.
  • FIG. 45 is a flowchart showing details of support control of the control circuit 73.
  • step 123 it is determined whether or not the rotational speed of the rotary shaft 30 is high.
  • the rotational speed of the rotating shaft 30 is calculated based on the difference (Ha ⁇ Hc) between the output signal Ha of the hall sensor 37a and the output signal Hc of the hall sensor 37c. It is determined whether or not the calculated rotation speed (hereinafter referred to as calculated rotation speed NS) is equal to or higher than a predetermined speed.
  • Step 123 When the calculated rotational speed NS is equal to or higher than the predetermined speed, YES is determined in Step 123 as the rotational speed of the rotary shaft 30 is high. In this case, in order to generate a restoring force Fb that prevents the rotation shaft 30 from being inclined from the rotation center line S1 between the coils 50a, 50b, and 50c and the plurality of permanent magnets 61, it should be output to the coils 50a, 50b, and 50c. The current is calculated (step 126A).
  • step 123 when the calculated rotational speed NS is less than the predetermined speed, NO is determined in step 123 as the rotational speed of the rotary shaft 30 is low.
  • NO is determined in step 123 as the rotational speed of the rotary shaft 30 is low.
  • Fb restoring force
  • the transistors SW1, SW2,... SW12 are controlled in order to output the current calculated in steps 124A and 126A to the coil.
  • current is output from the inverter circuits 71A, 71B, 71C to the coils 50a, 50b, 50c (step 125).
  • an electromagnetic force as an attractive force is generated between the coils 50 a, 50 b, 50 c and the plurality of permanent magnets 61.
  • the inverter circuits 71A, 71B and 71C cause the currents of the same value to flow through the coils 50a, 50b and 50c, respectively. For this reason, the magnitude of the electromagnetic force fu2, the magnitude of the magnitude of the electromagnetic force fv2, and the magnitude of the electromagnetic force fw2 are the same.
  • the direction of the electromagnetic force fu2, the direction of the electromagnetic force fv2, and the direction of the electromagnetic force fw2 are arranged at the same interval in the circumferential direction around the rotation center of the rotary shaft 30. For this reason, the electromagnetic force fu2, the electromagnetic force fv2, and the electromagnetic force fw2 are canceled out. Therefore, the rotation shaft 30 rotates in a state where the axis S2 of the rotation shaft 30 coincides with the rotation center line S1.
  • step 126A when it is determined YES in step 123 because the rotating shaft 30 is rotating at high speed, the current to be output to the coils 50a, 50b, 50c is reduced (step 126A).
  • the electronic control unit 70 controls the inverter circuits 71A, 71B, 71C and outputs currents of the same value from the inverter circuits 71A, 71B, 71C to the coils 50a, 50b, 50c. .
  • the speed in the direction in which the rotation axis 30 tilts from the rotation center line S1 is V and the damping coefficient is C
  • the restoring force Fb determined from “V ⁇ C” is set to a plurality of permanent magnets 61 and coils 50a, 50b, 50c. Can be generated during. Thereby, even if a disturbance arises, it is prevented that the axis line S2 of the rotating shaft 30 inclines from the rotating center line S1 of the rotating shaft 30.
  • the rotary shaft 30 is rotatably supported from the magnetic bearing constituted by the plurality of permanent magnets 61 and the coils 50a, 50b, and 50c and the bearing 32.
  • the magnetic bearing constituted by the plurality of permanent magnets 61 and the coils 50a, 50b, and 50c and the bearing 32. Therefore, one magnetic bearing is used to support the rotating shaft 30. Therefore, power consumption for supporting the rotating shaft 30 can be reduced.
  • the rotating shaft 30 when the rotating shaft 30 rotates at a high speed, it is output from the inverter circuits 71A, 71B, 71C to the coils 50a, 50b, 50c compared to when the rotating shaft 30 rotates at a low speed. Reduce the current. For this reason, when the rotating shaft 30 rotates at high speed, the restoring force Fb is made smaller than when the rotating shaft 30 rotates at low speed. Therefore, in order to generate the restoring force Fb, the power consumed by the coils 50a, 50b, and 50c can be reduced.
  • the support force Fa is made smaller than when the rotary shaft 30 rotates at a low speed.
  • the damping coefficient C is made smaller than when the rotating shaft 30 rotates at a low speed, and the current flowing through the coils 50a, 50b, 50c is reduced. Make it smaller. That is, both the support force Fa and the damping coefficient C (that is, the restoring force Fb) are switched depending on the rotation speed of the rotary shaft 30.
  • a rolling bearing as the bearing 32 that is a mechanical bearing
  • a bearing 32 is used instead of this.
  • Sliding bearings and fluid bearings may be used.
  • a sliding bearing is a bearing that receives a shaft on a sliding surface.
  • a fluid dynamic bearing is a bearing supported by liquid or gas.
  • the permanent magnet 61 is disposed on the rotating shaft 30 side, and the coils 50a, 50b, 50c and the coils 51a, 51b, 51c are arranged.
  • positioned at the centerpiece 31 side was demonstrated, it may replace with this and may be performed as follows.
  • the permanent magnet 61 may be disposed on the center piece 31 side, and the coils 50a, 50b, 50c and the coils 51a, 51b, 51c may be disposed on the rotating shaft 30 side.
  • the permanent magnet for causing the rotor 36 to generate a rotational force by the coils 51a, 51b, 51c, the coil 50a The example in which the common permanent magnet 30 is used as the permanent magnet for generating the supporting force and the restoring force by the 50b and 50c has been described, but the following may be used instead. That is, a permanent magnet for generating a rotational force by the coils 51a, 51b, 51c on the rotor 36 and a permanent magnet for generating a supporting force and a restoring force by the coils 50a, 50b, 50c on the rotating shaft 30 are independent of each other. May be provided.
  • the coils 50a, 50b, and 50c may be connected so as to control the current flowing through the coils independently from the DC power source Ba to the coils 50a, 50b, and 50c.
  • the inclination angle ⁇ of the rotation shaft 30 with respect to the rotation center line M1 and the XY coordinates of the other end portion in the axial direction of the rotation shaft 30 are detected by the hall sensors 37a, 37b, 37c, 37d and the permanent magnets 34a, 34b.
  • the rotation angle of the rotary shaft 30 may be detected by a rotation sensor other than the hall sensors 37a, 37b, 37c, 37d and the permanent magnets 34a, 34b.
  • another rotation sensor may be arranged on the bearing 32 side of the rotation shaft 3.
  • the XY coordinates (X0, Y0) of the fan 20 are obtained based on the output signals of the hall sensors 37a, 37b, 37c, 37d, and the rotational speed of the rotary shaft 30 is calculated from the change with respect to time of the XY coordinates (X0, Y0). May be.
  • step 120 in the fourth embodiment the support control process of step 120 in the second embodiment is performed. For this reason, not the support force Fa but an electromagnetic force as a restoring force Fb for moving the rotating shaft 30 (that is, the fan 20) in the rotation direction of the fan 20 is generated.
  • step 120 in the second embodiment is performed.
  • the support control process in step 120 in the first embodiment and the support control process in step 120 in the second embodiment are performed in parallel.
  • step 120 in the first embodiment is performed.
  • step 120 in the second embodiment is performed.
  • the support control process in step 120 in the first embodiment and the support control process in step 120 in the second embodiment are performed in parallel. carry out.
  • the teeth 55a to 55l, the coils 50a, 50b and 50c, and the permanent magnet 61b are configured with 12 poles and 12 slots, and the teeth 56a to 56j, the coils 51a, 51b, 51c,
  • the permanent magnet 61a may be configured with 10 poles and 10 slots.
  • the number of poles of the coils 50a, 50b, 50c, which are tilt control coils that generate the supporting force of the rotating shaft 30, and the coil 51a, which is a rotation drive coil that generates a rotating magnetic field for rotating the rotor 36, are increased.
  • 51b and 51c are different from each other.
  • 12 poles means that there are 12 magnetic poles of a coil or permanent magnet.
  • the slot means a gap between two adjacent teeth among the plurality of teeth.
  • 12 slots means that the stator core is set to have 12 slots.
  • the number of poles of the coils 50a, 50b, and 50c is not limited to the number of poles of the coils 51a, 51b, and 51c, and the number of poles of the coils 50a, 50b, and 50c is set to the number of poles of the coils 51a, 51b, and 51c. It may be smaller than
  • step 120 corresponds to the rotation axis control unit
  • steps 124, 125, and 126 correspond to the first current control unit
  • step 123 corresponds to the determination unit
  • steps 124A, 125, and 126A correspond to the second current control unit. Is configured.
  • FIG. 48 shows an overall configuration of an eighth embodiment of the motor control system 1000 of the present disclosure.
  • the motor control system 1000 of this embodiment includes an electric motor 1010 and a fan 1020 as shown in FIG.
  • the electric motor 1010 includes a rotating shaft 1030, a stator 1031, a bearing body 1032a, a holding portion 1033, permanent magnets 1035a and 1035b, and an armature 1036.
  • the electric motor 1010 is provided with permanent magnets 1034a, 1034b, 1034c, 1034d and hall sensors 1037a, 1037b, 1037c, 1037d.
  • the electric motor 1010 includes brushes 1038a, 1038b, 1038c, 1038d, 1039a, 1039b, 1039c, 1039d, a brush holder 1040, springs 1041a, 1041b, 1041c, 1041d, 1042a, 1042b, 1042c. , 1042d, and commutators 1043, 1044.
  • the fan 1020 has the rotation shaft 1030 coupled to the fan 1020 by fitting the other end portion in the axial direction of the rotation shaft 1030 into the hole 1020a.
  • a centrifugal fan is used as the fan 1020.
  • one side in the axial direction is the lower side in the figure, and the other side in the axial direction is the upper side in the figure.
  • the stator 1031 constitutes a stator together with the permanent magnets 1035a and 1035b.
  • the stator 1031 is formed such that its axis coincides with the rotation center line S1 of the rotation shaft 1030.
  • the stator 1031 is a housing that includes a cylindrical portion 1031a, a lid portion 1031b, and a bottom portion 1031c.
  • the cylinder portion 1031a is formed in a cylindrical shape centered on the rotation center line S1 of the rotation shaft 1030.
  • an armature 1036, permanent magnets 1034a, 1034b, 1034c, 1034d, permanent magnets 1035a, 1035b, brushes 1038a, 1038b, 1038c, 1038d, 1039a, 1039b, 1039c, 1039d, brush holder 1040, And springs 1041a, 1041b,..., 1042d and the like are accommodated.
  • the permanent magnets 1035a and 1035b are disposed between the inner peripheral surface of the cylindrical portion 1031a and the armature 1036.
  • the permanent magnets 1035a and 1035b are fixed to the inner peripheral surface of the cylindrical portion 1031a.
  • the permanent magnets 1035a and 1035b are formed in a fan shape from the axial direction.
  • Each of the permanent magnets 1035a and 1035b forms a magnetic pole toward the radially inner side.
  • One of the permanent magnets 1035a and 1035b has an S pole, and the other permanent magnet has an N pole.
  • a protruding portion 1063 that protrudes to the other side in the axial direction is formed on the axial line side of the lid portion 1031b.
  • a through hole 1064 that penetrates in the axial direction is formed in the protrusion 1063. The rotating shaft 1030 passes through the through hole 1064.
  • the bottom portion 1031c is formed so as to close one side in the axial direction of the cylindrical portion 1031a.
  • a rotating shaft support member 1045 that supports a bearing main body 1032a described later is formed on the axis side of the bottom portion 1031c.
  • the rotation shaft support member 1045 is formed in an annular shape centered on the rotation center line S1 and includes a through hole 1066 that penetrates in the extending direction of the rotation center line S1.
  • the through hole 1066 is formed such that its axis line coincides with the rotation center line S1.
  • one axial side of the rotating shaft 1030 is located.
  • the through-hole 1066 includes an opening (hereinafter referred to as a lower opening 1046a) that opens on one side in the extending direction of the rotation center line S1 and an opening (hereinafter referred to as an opening on the other side in the extending direction of the rotation center line S1).
  • An upper opening ).
  • the extending direction of the rotation center line S1 is a direction in which the rotation center line S1 extends.
  • One side in the extending direction of the rotation center line S1 is the lower side in FIG. 48, and the other side in the extending direction of the rotation center line S1 is the lower side in FIG.
  • An inner peripheral surface 1047 that forms a through hole 1066 is provided between the upper opening and the lower opening 1046a of the rotating shaft support member 1045.
  • the inner peripheral surface 1047 is formed in an annular shape centered on the rotation center line S1, and slidably supports a bearing body 1032a described later.
  • the inner peripheral surface 1047 has a cross section including the rotation center line S1 formed in an arc shape centering on a fulcrum P1 described later.
  • the fulcrum P1 is located on the other side in the axial direction with respect to the bearing body 1032a of the axis of the rotating shaft 1030.
  • the bearing body 1032a is a mechanical bearing that rotatably supports one side of the rotating shaft 1030 in the axial direction.
  • the bearing body 1032a is disposed inside the through hole 1066 of the rotating shaft support member 1045.
  • a rolling bearing is used as the bearing body 1032a.
  • the rolling bearing includes a track disposed on the outer peripheral side of the rotating shaft 1030 and a rolling element disposed between the rotating shaft 1030 and the track.
  • the rolling bearing is well known to support the rotating shaft 1030 by rolling motion. It is a bearing.
  • the bush 1032b constitutes a bearing 1032 that rotatably supports the rotating shaft 1030 together with the bearing body 1032a.
  • the bush 1032b is a rotating shaft support member that supports the bearing body 1032a.
  • the bush 1032b is formed in an annular shape centering on the rotation center line S1.
  • the bush 1032 b includes a side surface 1048 that slides on the inner peripheral surface 1047 of the rotation shaft support member 1045.
  • the side surface 1048 has a cross section including the rotation center line S1 formed in an arc shape centered on the fulcrum P1.
  • the curvature radius r1 of the inner peripheral surface 1047 and the curvature radius r2 of the side surface 1048 are the same.
  • the curvature radius r1 is a distance between the fulcrum P1 and the inner peripheral surface 1047 in the cross section including the rotation center line S1.
  • the radius of curvature r2 is the distance between the fulcrum P1 and the side surface 1048 in the cross section including the axis of the rotating shaft 1030.
  • the bearing 1032 and the rotating shaft support member 1045 in the present embodiment constitute a bearing mechanism 1049 that supports the rotating shaft 1030 through the bearing 1032 so as to be swingable around the fulcrum P1.
  • the restraining portion 1033 is formed in an annular shape centering on the rotation center line S1 of the rotation shaft 1030.
  • a gap is formed between the holding portion 1033 and the rotating shaft 1030.
  • the holding portion 1033 is a bearing portion that supports the rotation shaft 1030 in a state where the rotation shaft 1030 is largely inclined from the rotation center line S1 of the rotation shaft 1030.
  • the holding portion 1033 is supported by the lid portion 1031b.
  • the holding part 1033 of this embodiment is formed of a resin material having lubricity.
  • Permanent magnets 1034 a, 1034 b, 1034 c, and 1034 d are arranged between the armature 1036 and the holding portion 1033 in the rotating shaft 1030. Permanent magnets 1034a, 1034b, 1034c, and 1034d are located on the base side of the protrusion 1063. Permanent magnets 1034a, 1034b, 1034c, and 1034d are fixed to rotating shaft 1030.
  • the permanent magnets 1034a, 1034b, 1034c, and 1034d are each formed in a fan shape as shown in FIG. Permanent magnets 1034a, 1034b, 1034c, and 1034d are combined so as to cover the outer periphery of rotating shaft 1030.
  • the permanent magnets 1034 a, 1034 b, 1034 c, and 1034 d each form a magnetic pole on the radially outer side centering on the axis of the rotating shaft 1030.
  • the permanent magnets 1034a, 1034b, 1034c, and 1034d are arranged such that their magnetic poles are alternately arranged in the order of S pole ⁇ N pole ⁇ S pole ⁇ N pole.
  • the permanent magnets 1034a, 1034b, 1034c, and 1034d apply magnetic flux to the hall sensors 1037a, 1037b, 1037c, and 1037d.
  • Hall sensors 1037a, 1037b, 1037c, and 1037d are arranged on the outer side in the radial direction around the rotation center line S1 of the rotation shaft 1030 with respect to the permanent magnets 1034a, 1034b, 1034c, and 1034d. Gaps are formed between the hall sensors 1037a, 1037b, 1037c, 1037d and the permanent magnets 1034a, 1034b, 1034c, 1034d.
  • the hall sensors 1037a, 1037b, 1037c, and 1037d are arranged at the same interval in the circumferential direction around the rotation center line S1 of the rotation shaft 1030.
  • the hall sensors 1037a, 1037b, 1037c, and 1037d are fixed to the cylindrical portion 1031a of the stator 1031.
  • Hall sensors 1037a, 1037b, 1037c, and 1037d are for detecting the rotation speed and inclination angle of the rotating shaft 1030, and are configured by Hall elements that detect magnetic fields generated from the permanent magnets 1034a, 1034b, 1034c, and 1034d. Yes.
  • the brushes 1038a, 1038b, 1038c, and 1038d are arranged at the same interval in the circumferential direction around the rotation center line S1.
  • the brushes 1038a, 1038b, 1038c, and 1038d are each arranged in the elongated hole portion of the brush holder 1040 and configured to be movable in the radial direction.
  • the brushes 1038a, 1038b, 1038c, and 1038d are pressed radially inward (specifically, the commutator 1043 side) by the elastic force of the corresponding spring among the springs 1041a, 1041b, 1041c, and 1041d.
  • Each of the springs 1041a, 1041b, 1041c, and 1041d is disposed in a long hole portion of the brush holder 1040.
  • the brush holder 1040 is supported by the stator 1031.
  • the brushes 1038a, 1038b, 1038c, and 1038d slide on the segments 1043a to 1043d of the commutator 1043 as the rotating shaft 1030 rotates.
  • the brushes 1039a, 1039b, 1039c, and 1039d shown in FIG. 51 are arranged in the elongated holes of the brush holder 1040, respectively, and are configured to be movable in the radial direction.
  • the brushes 1039a, 1039b, 1039c, and 1039d are pressed radially inward (specifically, the commutator 1044 side) by the elastic force of the corresponding spring among the springs 1042a, 1042b, 1042c, and 1042d.
  • Each of the springs 1042a, 1042b, 1042c, and 1042d is disposed in a long hole portion of the brush holder 1040.
  • the brushes 1039a, 1039b, 1039c, and 1039d are disposed on the other side in the axial direction with respect to the fulcrum P, and the brushes 1038a, 1038b, 1038c, and 1038d are disposed on the one side in the axial direction with respect to the fulcrum P. .
  • the commutator 1043 includes segments 1043a, 1043b, 1043c, and 1043d.
  • the segments 1043a, 1043b, 1043c, and 1043d are arranged at equal intervals in an arc shape with the axis of the rotation shaft 1030 as the center.
  • a coil 1051a is connected between the segments 1043a and 1043c. One end of the coil 1051a is connected to the segment 1043a, and the other end of the coil 1051a is connected to the segment 1043c.
  • a coil 1051b is connected between the segments 1043b and 1043d. That is, one end of the coil 1051b is connected to the segment 1043b, and the other end of the coil 1051b is connected to the segment 1043d.
  • the segments 1043a, 1043b, 1043c, and 1043d are fixed to the rotating shaft 1030 via the cylindrical member 1067.
  • the segments 1043a, 1043b, 1043c, and 1043d are each formed in a fan shape when viewed from the axial direction of the rotation shaft 1030.
  • the brushes 1039a, 1039b, 1039c, and 1039d slide on the segments 1044a to 1044d of the commutator 1043 as the rotating shaft 1030 rotates.
  • the cylindrical member 1067 is disposed on the radially outer side with the axis of the rotation shaft 1030 as the center.
  • the cylindrical member 1067 is formed in a cylindrical shape centering on the axis of the rotation shaft 1030.
  • the cylindrical member 1067 is formed so that its axis coincides with the axis of the rotation shaft 1030.
  • the cylindrical member 1067 is supported by the rotation shaft 1030.
  • the commutator 1044 includes segments 1044a, 1044b, 1044c, and 1044d.
  • the segments 1044a, 1044b, 1044c, and 1044d are arranged at equal intervals in an arc shape centered on the axis of the rotating shaft 1030.
  • a coil 1050a is connected between the segments 1044a and 1044c. That is, one end of the coil 1050a is connected to the segment 1044a, and the other end of the coil 1050a is connected to the segment 1044c.
  • a coil 1050b is connected between the segments 1044b and 1044d. That is, one end of the coil 1050b is connected to the segment 1044b, and the other end of the coil 1050b is connected to the segment 1044d.
  • the segments 1044a, 1044b, 1044c, and 1044d are fixed to the rotary shaft 1030 via the cylindrical member 1067.
  • the segments 1044a, 1044b, 1044c, and 1044d are each formed in a fan shape when viewed from the axial direction of the rotating shaft 1030.
  • the commutators 1043 and 1044 are disposed on the fulcrum P1 side with respect to the bearing 1032.
  • the commutator 1044 is located on the other side in the axial direction from the fulcrum P1.
  • the commutator 1043 is located on one side in the axial direction from the fulcrum P1.
  • the fulcrum P1 is an intermediate point between the rotation center of the commutator 1044 and the rotation center of the commutator 1043 in the axis of the rotation shaft 1030.
  • the armature 1036 includes coils 1050a, 1050b, 1051a, 1051b, and a rotor core 1052, as shown in FIG.
  • the rotor core 1052 allows a magnetic flux (that is, a magnetic field) generated from the coils 1050a and 1050b to pass therethrough. Further, the rotor core 1052 allows a magnetic flux (that is, a magnetic field) generated from the coils 1051a and 1051b to pass therethrough.
  • the rotor core 1052 constitutes a magnetic circuit together with the permanent magnets 1035a and 1035b.
  • the rotor core 1052 includes a ring portion 1053 and teeth 1054a, 1054b, 1054c, and 1054d.
  • the ring portion 1053 is disposed on the radially inner side with respect to the cylindrical portion 1031 a of the stator 1031. Ring portion 1053 is fixed to rotation shaft 1030.
  • Teeth 1054a, 1054b, 1054c, and 1054d are formed so as to protrude radially outward from the ring portion 1053. Teeth 1054a, 1054b, 1054c, and 1054d are arranged at equal intervals in the circumferential direction around the axis of rotating shaft 1030, respectively. Teeth 1054a, 1054b, 1054c, and 1054d are each formed so that the tip end side extends in the circumferential direction.
  • the coils 1050a and 1050b of the present embodiment are tilt control coils that generate the supporting force of the rotating shaft 1030.
  • a cross indicates a state in which a current flows toward the rear side in the vertical direction of the paper surface
  • a black dot indicates a state in which a current flows toward the front side in the vertical direction of the paper surface.
  • the coil 1050b is wound around the teeth 1054a and 1054c as shown in FIG.
  • the direction in which the coil 1050b winds the teeth 1054a and the direction in which the coil 1050b winds the teeth 54c are the same.
  • the teeth 1054a and 1054c are arranged with an offset of 180 degrees around the axis of the rotation shaft 1030.
  • the coil 1050a is wound around the teeth 1054b and 1054d.
  • the direction in which the coil 1050a winds the tooth 54b and the direction in which the coil 1050a winds the tooth 54d are the same.
  • the teeth 1054b and 1054d are arranged with an angle of 180 degrees offset about the axis of the rotation shaft 1030.
  • the coils 1051a and 1051b of the present embodiment are rotational driving coils that generate a rotating magnetic field for rotating the armature 1036.
  • a cross indicates a state in which a current flows toward the back side in the vertical direction of the paper surface
  • a black dot indicates a state in which a current flows toward the near side in the vertical direction of the paper surface.
  • the coil 1051a is wound around the teeth 1054a and 54b.
  • the teeth 1054a and 54b are arranged with an angle of 90 degrees offset about the axis of the rotation shaft 1030.
  • the coil 1051b is wound around the teeth 1054c and 1054d.
  • the teeth 1054c and 1054d are arranged with an angle of 90 degrees offset about the axis of the rotation shaft 1030.
  • the coils 1050a and 1050b are arranged on the stator 1031 side (that is, radially outside) with respect to the coils 1051a and 1051b.
  • the coils 1050a and 1050b and the coils 1051a and 1051b are wound around a common rotor core 1052. That is, the coils 1050 a and 1050 b and the coils 1051 a and 1051 b are attached to the rotating shaft 1030 via the rotor core 1052.
  • the current flowing through coils 1050a and 1050b and the current flowing through coils 1051a and 1051b are controlled by electronic control unit (referred to as ECU in FIG. 48) 1070.
  • the rotation shaft 1030 can be tilted from the rotation center line S1 of the rotation shaft 1030 with the fulcrum P1 between the commutators 1043 and 1044 among the axis of the rotation shaft 1030 as a fulcrum. (See FIGS. 54 and 55).
  • the fulcrum is the origin 0
  • the rotation center line S1 of the rotation shaft 1030 is the Z axis
  • the X and Y axes orthogonal to the rotation center line S1 are set, and the Z axis (that is, the rotation)
  • An example is shown in which the axis of the rotation shaft 1030 is inclined at an angle ⁇ with respect to the center line S1).
  • (x0, y0) indicates the XY coordinates of the end portion on the other side in the axial direction of the rotating shaft 1030 (that is, the fan 1020).
  • the electronic control device 1070 includes bridge circuits 1071, 1072, 1073, and a control circuit 1074 as shown in FIG.
  • the bridge circuit 1071 includes transistors SW1, SW2, SW3, and SW4.
  • the transistors SW1 and SW2 are connected in series between the positive electrode and the negative electrode of the battery Ba.
  • the common connection terminal T1 of the transistors SW1 and SW2 is connected to the brush 1039a.
  • the transistors SW3 and SW4 are connected in series between the positive electrode and the negative electrode of the battery Ba.
  • a common connection terminal T2 of the transistors SW3 and SW4 is connected to the brush 1039c.
  • the direction and current value of the current flowing through the commutator 1044 to the coil 1050a (or 1050b) are controlled by turning on and off the transistors SW1, SW2, SW3, and SW4.
  • the bridge circuit 1072 includes transistors SW5, SW6, SW7, and SW8.
  • the transistors SW5 and SW6 are connected in series between the positive electrode and the negative electrode of the battery Ba.
  • a common connection terminal T3 of the transistors SW5 and SW6 is connected to the brush 1039b.
  • the transistors SW7 and SW8 are connected in series between the positive electrode and the negative electrode of the battery Ba.
  • a common connection terminal T4 of the transistors SW7 and SW8 is connected to the brush 1039d.
  • the direction and current value of the current flowing through the commutator 1044 to the coil 1050b (or 1050a) can be controlled by turning on and off the transistors SW5, SW6, SW7, and SW8.
  • the bridge circuit 1073 includes transistors SW9, SW10, SW11, and SW12.
  • the transistors SW9 and SW10 are connected in series between the positive electrode and the negative electrode of the battery Ba.
  • a common connection terminal T5 of the transistors SW11 and SW12 is connected to the brushes 1038b and 1038c.
  • the transistors SW11 and SW12 are connected in series between the positive electrode and the negative electrode of the battery Ba.
  • a common connection terminal T6 of the transistors SW11 and SW12 is connected to the brushes 1038a and 1038d.
  • the direction and current value of the current flowing through the commutator 1043 to the coils 1051a and 1051b are controlled by turning on and off the transistors SW9, SW10, SW11, and SW12.
  • the control circuit 1074 is configured in a microcomputer, a memory, etc., and generates a rotational force for the armature 1036 and outputs a supporting force for supporting the rotating shaft 1030 according to a computer program stored in the memory. Control processing is performed.
  • the control circuit 1074 performs transistors SW1, SW2, SW3, SW4, SW5, SW6, SW7, SW8, SW9, SW10, based on the output signals of the Hall sensors 1037a, 1037b, 1037c, and 1037d as the control process is executed.
  • SW11 and SW12 are switching-controlled.
  • the control circuit 1074 controls the transistors SW9, SW10, SW11, and SW12, and outputs current from the common connection terminals T5 and T6 to the coils 1051a and 52b through the brushes 1038a, 1038b, 1038c, and 1038d and the commutator 1043.
  • the control circuit 1074 turns on the transistors SW9 and SW12 and turns off the transistors SW10 and SW11. Therefore, a current flows through the coil 1051a (or 51b) through the brushes 1038b and 1038d and the segments 1043a and 1043c (or 43b and 43d) of the commutator 1043 between the common connection terminals T5 and T6. Between the common connection terminals T5 and T6, current flows to the coil 1051a (or 1051b) through the brushes 1038a and 1038c and the segments 1043a and 1043c (or 1043b and 1043d) of the commutator 1043.
  • a rotational force as an electromagnetic force is generated in the coils 1051a and 1051b based on the current flowing in the coils 1051a and 1051b itself and the magnetic flux from the permanent magnets 1035a and 1035b.
  • This rotational force is a rotational force that rotates the armature 1036 (that is, the rotational shaft 1030) in the first rotational direction about the rotational center line S1.
  • the segments to which the brushes 1038a and 1038c come into contact sequentially change among the segments 1043a, 1043b, 1043c, and 1043d of the commutator 1043.
  • the segments that the brushes 1038b and 1038d are in contact with among the segments 1043a, 1043b, 1043c, and 1043d of the commutator 1043 are sequentially changed.
  • the coil 1051a (or 1051b) is repeatedly rotated in the first rotation direction every time the segment in contact with the brushes 1038a, 1038b, 1038c, and 1038d changes among the segments 1043a, 1043b, 1043c, and 1043d. appear.
  • the control circuit 1074 turns off the transistors SW9 and SW12 and turns on the transistors SW10 and SW11. For this reason, between the common connection terminals T5 and T6, a current flows through the coil 1051a (or 1051b) through the brushes 1038b and 1038d and the segments 1043a and 1043c (or 1043b and 1043d) of the commutator 1043. Between the common connection terminals T5 and T6, current flows to the coil 1051a (or 1051b) through the brushes 1038a and 1038c and the segments 1043a and 1043c (or 1043b and 1043d) of the commutator 1043.
  • a rotational force as an electromagnetic force is generated in the coils 1051a and 1051b based on the current flowing in the coils 1051a and 1051b itself and the magnetic flux from the permanent magnets 1035a and 1035b.
  • This rotational force is a rotational force that rotates the armature 1036 (that is, the rotational shaft 1030) in the second rotational direction about the rotational center line S1.
  • the second rotation direction is opposite to the first rotation direction.
  • the segments to which the brushes 1038a and 1038c come into contact sequentially change among the segments 1043a, 1043b, 1043c, and 1043d of the commutator 1043.
  • the segments that the brushes 1038b and 1038d are in contact with among the segments 1043a, 1043b, 1043c, and 1043d of the commutator 1043 are sequentially changed.
  • control circuit 1074 controls the transistors SW9, SW10, SW11, and SW12, thereby controlling the current values of the currents flowing through the coils 1051a and 1051b through the brushes 1038a, 1038b, 1038c, and 1038d and the commutator 1043.
  • the rotational speed of the rotating shaft 1030 that is, the armature 1036
  • the magnitude of the electromagnetic force as the rotational force acting on the coils 1051a and 1051b.
  • the axis S2 of the rotating shaft 1030 may deviate from the rotation center line S1 of the rotating shaft 1030 due to disturbance. At this time, the rotation shaft 1030 swings about the fulcrum P1 while rotating about the rotation center line S1.
  • control circuit 1074 performs switching control of the transistors SW1, SW2, SW3, and SW4, so that a current flows through the coil 1050a and moves the armature 1036 between the coil 1050a and the permanent magnets 1035a and 1035b. Electromagnetic forces f1 and f2 to be generated are generated.
  • an electromagnetic force f1 is generated between the coil 1050a wound around the teeth 1054b and 1054d and the permanent magnets 1035a and 1035b.
  • the electromagnetic force f1 is a force that moves the armature 1036 (that is, the rotating shaft 1030) to one side in the axial direction of the coil 1050a.
  • the axial direction of the coil 1050a is a direction connecting the axial lines of the teeth 1054b and 1054d.
  • the common connection terminals T1 and T2 A current can flow in the second current direction through the segments 1044a, 1044c to the coil 1050a.
  • the second current direction is a direction in which a current flows in the coil 1050a opposite to the first current direction.
  • an electromagnetic force f2 is generated between the coil 1050a and the permanent magnets 1035a and 1035b wound around the teeth 1054b and 1054d.
  • the electromagnetic force f2 is a force that moves the armature 1036 (that is, the rotating shaft 1030) to the other side in the axial direction of the coil 1050a.
  • the control circuit 1074 changes the direction in which current flows to the coil 1050a from the first current direction to the second current direction (or from the second current direction to the first current direction), so that the coil 1050a and the permanent magnets 1035a and 1035b
  • the direction of electromagnetic force generated during the period can be changed.
  • the control circuit 1074 performs switching control of the transistors SW1, SW2, SW3, and SW4 to control the current value flowing through the coil 1050a, whereby the magnitudes of the electromagnetic forces f1 and f2 acting between the coil 1050a and the permanent magnets 1035a and 1035b. Can be controlled.
  • the control circuit 1074 performs switching control of the transistors SW5, SW6, SW7, and SW8, so that a current flows through the coil 1050b to move the armature 1036 between the coil 1050b and the permanent magnets 1035a and 1035b. Is generated.
  • an electromagnetic force f3 is generated between the coil 1050b wound around the teeth 1054a and 1054c and the permanent magnets 1035a and 1035b.
  • the electromagnetic force f3 is a force that moves the armature 1036 (that is, the rotating shaft 1030) to one side in the axial direction of the coil 1050b.
  • the axial direction of the coil 1050b is a direction connecting the axial lines of the teeth 1054a and 1054c.
  • an electromagnetic force f4 is generated between the coil 1050b and the permanent magnets 1035a and 1035b wound around the teeth 1054a and 1054c.
  • the electromagnetic force f4 is a force that moves the armature 1036 (that is, the rotating shaft 1030) to the other side in the axial direction of the coil 1050b.
  • the control circuit 1074 changes the direction in which the current flows to the coil 1050b from the third current direction to the fourth current direction (or from the fourth current direction to the third current direction), so that the coil 1050b and the permanent magnets 1035a and 1035b
  • the direction of electromagnetic force generated during the period can be changed.
  • the control circuit 1074 performs switching control of the transistors SW5, SW6, SW7, and SW8 to control the current value flowing through the coil 1050b, whereby the magnitude of the electromagnetic forces f3 and f4 acting between the coil 1050b and the permanent magnets 1035a and 1035b. Can be controlled.
  • the axial direction of the coil 1050a and the axial direction of the coil 1050b are orthogonal to each other.
  • the electromagnetic forces f1, f2, f3, and f4 are set as unit vectors, respectively. Using the electromagnetic forces f1, f2, f3, f4 and the coefficients K1, K2, K3, K4 applied to the electromagnetic forces f1, f2, f3, f4 to bring the axis S2 of the rotary shaft 1030 closer to the rotation center line S1. Can be expressed by the following mathematical formula 1.
  • the control circuit 1074 controls the transistors SW1, SW2, SW3, SW4, SW5, SW6, SW7, and SW8 to control the current that flows from the common connection terminals T1, T2, T3, and T4 to the coils 1050a and 1050b. For this reason, the magnitudes of the support force Fa and the direction of the support force Fa can be controlled by controlling the coefficients K1, K2, K3, and K4.
  • control processing by the control circuit 1074 of this embodiment will be described with reference to FIGS.
  • the control circuit 1074 executes the support process according to the flowcharts of FIGS. 57 and 58 are flowcharts showing the control process.
  • step 1100 of FIG. 57 magnetic fields generated by the permanent magnets 34a and 34b are detected by the hall sensors 1037a, 1037b, 1037c, and 1037d.
  • the direction in which the hall sensors 1037a and 1037c are arranged is defined as the X direction
  • the direction in which the hall sensors 1037b and 1037d are arranged is defined as the Y direction.
  • the difference ds1 indicates rotation angle information of the rotation shaft 1030. Based on the difference ds1, the rotation angle (that is, the rotation position) of the rotation shaft 1030 at the current time is calculated (step 1110).
  • step 1120 support control (step 1120) for preventing the rotation shaft 1030 from being inclined from the rotation center line S1 and rotation control for rotating the rotation shaft 1030 (step 1130) are executed in parallel. Details of support control (step 1120) and rotation control (step 1130) will be described later.
  • step 1140 it is determined whether or not to continue the rotation of the rotating shaft 1030 (step 1140). Thereafter, assuming that the rotation of the rotating shaft 1030 is continued, if YES is determined in the step 1140, the process returns to the step 1110.
  • the YES determinations in steps 1100, 110, 120, and 130 and step 1140 are repeated until a stop command for stopping the control process is input from the outside. Thereafter, when a stop command is input from the outside, it is determined as NO in step 1140, and the control process is terminated.
  • the rotational speed of the rotating shaft 1030 is obtained by differentiating the rotation angle of the rotating shaft 1030 calculated in step 1110 with respect to time.
  • the switching SW9, SW10, SW11, SW12 the current flowing through the coils 1051a, 1051b is controlled so that the obtained rotational speed of the rotating shaft 1030 approaches the target rotational speed.
  • electromagnetic force as a rotational force is generated in the coils 1051a and 1051b by the current and the magnetic flux from the permanent magnets 1035a and 1035b.
  • the rotation angle of the rotating shaft 1030 that is, the armature 1036
  • FIG. 58 is a flowchart showing details of step 1120 in FIG.
  • step 1121 the inclination ⁇ (see FIG. 54) of the rotation shaft 1030 with respect to the rotation center line S1 of the rotation shaft 1030 is calculated based on the output signals of the hall sensors 1037a, 1037b, 1037c, and 1037d.
  • the X coordinate of the fan 1020 (the X coordinate of the other end of the rotating shaft 1030 in the axial direction) )
  • the amplitude value A1 indicates the amplitude value of the difference ds1 at the current time.
  • ⁇ T be the time between the timing when the difference ds1 becomes zero and the current time.
  • the amplitude value A0 is the amplitude of the reference signal k1 when ⁇ T has elapsed from the timing when the reference signal k1 becomes zero.
  • the X coordinate (X0) increases as the difference (A1-A0) increases, and the X coordinate (X0) increases as the difference (A1-A0) decreases.
  • the output signal Ha output from the Hall sensor 1037a when the rotation shaft 1030 rotates in a state where the axis of the rotation shaft 1030 coincides with the rotation center line S1 of the rotation shaft 1030 is used as a theoretical value of the output signal Ha.
  • the output signal Hc output from the Hall sensor 1037c when the rotation shaft 1030 rotates in a state where the axis of the rotation shaft 1030 coincides with the rotation center line S1 of the rotation shaft 1030 is the theoretical value of the output signal Hc.
  • the output signal Hb output from the Hall sensor 1037b when the rotation shaft 1030 rotates in a state where the axis of the rotation shaft 1030 coincides with the rotation center line S1 of the rotation shaft 1030 is a theoretical value of the output signal Hb.
  • the output signal Hd output from the Hall sensor 1037d when the rotation shaft 1030 rotates in a state where the axis of the rotation shaft 1030 coincides with the rotation center line S1 of the rotation shaft 1030 is the theoretical value of the output signal Hd.
  • the amplitude value B1 indicates the amplitude value of the difference dq at the current time.
  • the amplitude value B0 is the amplitude of the reference signal k2 when ⁇ T has elapsed from the timing when the reference signal k1 becomes zero.
  • the Y coordinate (Y0) increases. The smaller the difference dB, the smaller the Y coordinate (Y0).
  • the inclination ⁇ (angle) of the rotation shaft 1030 with respect to the rotation center line S1 is calculated.
  • the inclination ⁇ is an angle formed in the clockwise direction from the Z axis to the axis S2 of the rotary shaft 1030 between the Z axis and the axis S2 of the rotary shaft 1030 (see FIG. 54). .
  • step 1122 based on the XY coordinates (X0, Y0) of the fan 1020, a coil to be excited is selected from the coils 1050a and 1050b in order to bring the axis S2 of the rotation shaft 1030 close to the rotation center line S1. That is, the coil to be energized to bring the axis S2 of the inclined rotation shaft 1030 close to the rotation center line S1 is selected from the coils 1050a and 1050b.
  • the coil thus selected is referred to as a selection coil.
  • Step 1123 it is determined whether or not the rotation speed of the rotating shaft 1030 is high.
  • a difference (Ha ⁇ Hc) between the output signal Ha of the hall sensor 1037a and the output signal Hc of the hall sensor 1037c is obtained, and based on the change of the obtained difference (Ha ⁇ Hc) with respect to time, the rotation axis A rotational speed of 1030 is calculated. It is determined whether or not the calculated rotation speed (hereinafter referred to as calculated rotation speed V) is equal to or higher than a predetermined speed.
  • step 1123 When the calculated rotation speed V is equal to or higher than the predetermined speed, YES is determined in step 1123 because the rotation speed of the rotating shaft 1030 is high.
  • the current to be output to the selection coil Is calculated based on (X0, Y0) and the gradient ⁇ (step 1124).
  • step 1123 when the calculated rotational speed V is less than the predetermined speed, NO is determined in step 1123 because the rotational speed of the rotating shaft 1030 is low.
  • the current to be output to the selection coil Is calculated based on (X0, Y0) and the inclination ⁇ (step 1126).
  • the greater the inclination ⁇ the greater the support force Fa necessary to bring the axis S2 of the rotation shaft 1030 closer to the rotation center line S1.
  • the higher the rotational speed of the rotating shaft 1030 the smaller the supporting force Fa necessary to bring the axis S2 of the rotating shaft 1030 closer to the rotation center line S1. That is, when the rotation shaft 1030 rotates at a high speed, the support force Fa is smaller than when the rotation shaft 1030 rotates at a low speed (see FIG. 60).
  • FIG. 60 is a graph showing the relationship between the support force Fa and the tilt angle ⁇ when the vertical axis is the support force Fa, the horizontal axis is the tilt angle ⁇ , and the rotating shaft 1030 is rotating at low speed or high speed. is there.
  • the graph When the rotation shaft 1030 rotates at a low speed, the graph has a larger gradient than the graph when the rotation shaft 1030 rotates at a high speed.
  • the current to be output to the selection coil is calculated based on the graph showing the relationship between the supporting force Fa and the inclination ⁇ at the time of high speed rotation in FIG. 1126).
  • the current to be output to the selection coil is calculated based on the graph showing the relationship between the supporting force Fa and the inclination ⁇ during the low-speed rotation shown in FIG. 1124).
  • the current to be output to the selection coil is calculated based on the rotation speed of the rotation shaft 1030, (X0, Y0), and the inclination ⁇ . Accordingly, the transistors SW1, SW2,... SW6 of the bridge circuit 1071 are controlled in order to output the calculated current to the selection coil. As a result, current is output from the common connection terminals T1, T2, and T3 to the selection coil. For this reason, a supporting force Fa is generated between the selection coil and the permanent magnet 1035. Therefore, the rotating shaft 1030 can be brought close to the rotation center line S1 by the support force Fa.
  • the motor control system 1000 includes a stator 1031 that rotatably supports one axial side of the rotating shaft 1030 via the bearing 1032, and the stator 1031 that supports the rotating shaft 1030.
  • Permanent magnets 1035a and 1035b forming two magnetic poles arranged in the circumferential direction around the rotation center line S1.
  • the coils 1051a and 1051b are coils supported by the rotating shaft 1030, and generate an electromagnetic force that rotates the armature 1036 based on the current flowing through the coils and the magnetic flux from the permanent magnets 1035a and 1035b.
  • Coils 1050a and 1050b are supported by rotating shaft 1030 and generate an electromagnetic force between permanent magnets 1035a and 1035b to rotatably support the other axial side of rotating shaft 1030 with respect to bearing 1032.
  • Configure magnetic bearings That is, the coils 1050a and 1050b constitute a magnetic bearing that rotatably supports a portion of the axis of the rotating shaft 1030 that is displaced from the bearing 1032.
  • the commutator 1043 is supported by the rotating shaft 1030 and connected to the coils 1051a and 1051b.
  • the commutator 1044 is supported by the rotating shaft 1030 and is connected to the coils 1050a and 1050b.
  • the brushes 1039a to 1039d are pressed against the commutator 1043 by the elastic force of the springs 1042a to 1042d, and slide on the segments 1044a, 1044b, 1044c, and 1044d of the commutator 1044 as the rotating shaft 1030 rotates.
  • a current is output to the coils 1050 a and 1050 b through 1044.
  • the brushes 1038a to 1038d are pressed against the commutator 1044 by the elastic force of the springs 1041a to 1041d, and slide on the segments 1043a, 1043b, 1043c, and 1043d of the commutator 1043 as the rotating shaft 1030 rotates.
  • a current is output to the coils 1051a and 1051b through 1043.
  • the electronic control unit 1070 controls the current flowing through the coils 1050a and 1050b so that an electromagnetic force that prevents the axis of the rotation shaft 1030 from tilting from the rotation center line S1 is generated between the coils 1050a and 1050b and the permanent magnets 1035a and 1035b. It is characterized by doing.
  • the rotary shaft 1030 is rotatably supported by the magnetic bearing composed of the permanent magnets 1035a and 1035b and the coils 1050a and 1050b and the bearing 1032.
  • the magnetic bearing composed of the permanent magnets 1035a and 1035b and the coils 1050a and 1050b and the bearing 1032. Therefore, one magnetic bearing is used to support the rotating shaft 1030. Therefore, it is possible to provide the electric motor 1010, the electronic control unit 1070, and the motor control system 1000 that reduce the power consumption for supporting the rotating shaft 1030.
  • the support force Fa when the rotating shaft 1030 rotates at a high speed, the support force Fa is made smaller than when the rotating shaft 1030 rotates at a low speed. For this reason, in order to generate the supporting force Fa, the electric power consumed by the coils 1050a and 1050b can be reduced.
  • the bearing 1032c is fixed to the support member 1045A. If there is, the bearing 1032c side of the rotating shaft 1030 serves as a fulcrum P2. With this fulcrum P2 as the center, the axis of the rotation shaft 1030 is configured to be freely tilted from the rotation center line S1.
  • the tilt vibration of the rotation shaft 1030 is a phenomenon in which the axis of the rotation shaft 1030 swings in the radial direction around the rotation center line S1 when the rotation shaft 1030 rotates.
  • the rotating shaft support member 1045 is supported by the stator 1031, and the position on the other side in the axial direction with respect to the bearing 1032 of the axis of the rotating shaft 1030 is a fulcrum. Let P1.
  • the rotating shaft 1030 is supported by the bearing 1032 so as to be swingable around the fulcrum P1.
  • the commutators 1043 and 1044 are arranged on the fulcrum P1 side.
  • the fulcrum P1 is an intermediate point between the rotation center of the commutator 1044 and the rotation center of the commutator 1043 in the axis of the rotation shaft 1030. For this reason, it is possible to reliably suppress fluctuations in the contact portion between the brushes 1038a to 1038d and the segments 1043a to 1043d. Furthermore, it is possible to reliably suppress fluctuations in the contact area between the brushes 1039a to 1039d and the segments 1044a to 1044d.
  • the horizontal axis represents the rotation speed N of the rotation shaft 1030 (that is, the rotation speed).
  • the vertical axis is a transfer function indicating the vibration system of the electric motor 1010.
  • the tilt vibration of the rotating shaft 1030 is used as a vibration source, and the centrifugal force generated from this vibration source is input.
  • the tilt vibration of the rotating shaft 1030 is a phenomenon in which the rotating shaft 1030 swings in the radial direction around the rotation center line S1 when the rotating shaft 1030 rotates.
  • the vibration acceleration of a predetermined portion for example, the stator 1031
  • the armature 1036 in the electric motor 1010 is output.
  • De indicated by a solid line is a transfer function indicating the vibration system of the electric motor 1010 of the present embodiment.
  • a chain line indicates a transfer function indicating the vibration system of the electric motor 1010 when the support force Fa is reduced, and a one-dot chain line indicates a transfer function indicating the vibration system of the electric motor 1010 when the support force Fa is increased.
  • the peak of the transfer function when the supporting force Fa is small occurs when the rotational speed of the rotating shaft 1030 is low.
  • the peak of the transfer function when the support force Fa is large occurs when the rotational speed of the rotating shaft 1030 is high (see FIG. 61). For this reason, when the supporting force Fa is small, resonance occurs in the electric motor 1010 when the rotational speed of the rotating shaft 1030 is low. On the other hand, when the supporting force Fa is large, resonance occurs in the electric motor 1010 when the rotational speed of the rotating shaft 1030 is high.
  • the supporting force Fa is reduced when the rotating shaft 1030 rotates at a high speed, and the supporting force Fa is increased when the rotating shaft 1030 rotates at a low speed. That is, the magnitude of the support force Fa is switched depending on the number of rotations of the rotation shaft 1030. For this reason, in the vibration system of the electric motor 1010, a transfer function De with a suppressed peak is formed. As a result, resonance can hardly occur in the electric motor 1010.
  • the vibration acceleration Sk generated in the electric motor 1010 due to the tilt vibration of the rotation shaft 1030 can be reduced over the use range of the rotation speed N (see FIG. 62).
  • the use range is a range of the rotational speed N of the rotary shaft 1030 actually used in the electric motor 1010.
  • the horizontal axis represents the rotational speed N of the rotary shaft 1030.
  • the vertical axis represents vibration acceleration generated in a predetermined portion (for example, the stator 1031) other than the rotating shaft 1030 and the armature 1036 in the electric motor 1010.
  • the chain line indicates the vibration acceleration generated at the predetermined portion of the electric motor 1010 when the supporting force Fa is decreased, and the alternate long and short dash line indicates the vibration acceleration generated at the predetermined portion of the electric motor 1010 when the supporting force Fa is increased.
  • SK indicated by a solid line indicates vibration acceleration generated in the predetermined portion of the electric motor 1010 of the present embodiment.
  • FIG. 64 is a flowchart showing details of support control of the control circuit 1074.
  • step 1123 it is determined whether or not the rotational speed of the rotary shaft 1030 is high.
  • the difference (Ha ⁇ Hc) between the output signal Ha of the Hall sensor 1037a and the output signal Hc of the Hall sensor 1037c is obtained, and the rotation is performed based on the change of the obtained difference (Ha ⁇ Hc) with respect to time.
  • the rotational speed of the shaft 1030 is calculated. It is determined whether or not the calculated rotation speed (hereinafter referred to as calculated rotation speed V) is equal to or higher than a predetermined speed.
  • Step 1123 When the calculated rotation speed V is equal to or higher than the predetermined speed, YES is determined in step 1123 because the rotation speed of the rotating shaft 1030 is high.
  • the current to be output to the coils 1050a and 1050b is calculated in order to generate a restoring force Fb between the coils 1050a and 1050b and the permanent magnets 1035a and 1035b that prevents the rotation shaft 1030 from being inclined from the rotation center line S1. (Step 1126A).
  • step 1123 when the calculated rotational speed V is less than the predetermined speed, NO is determined in step 1123 because the rotational speed of the rotating shaft 1030 is low.
  • the current to be output to the coils 1050a and 1050b is calculated in order to generate a restoring force Fb between the coils 1050a and 1050b and the permanent magnets 1035a and 1035b that prevents the rotation shaft 1030 from being inclined from the rotation center line S1. (Step 1124A).
  • the restoring force Fb of the present embodiment is an electromagnetic force that moves the fan 1020 (that is, the rotating shaft 1030) in the rotating direction.
  • the distance between the fan 1020 and the rotation center line S1 is L
  • the rotational speed of the fan 1020 is V
  • the damping coefficient is C
  • the restoring force Fb is ( L ⁇ V ⁇ C) (see FIG. 70).
  • the axis of the fan 1020 of the present embodiment is the axis of the end of the rotating shaft 1030 on the other end side in the axial direction.
  • the distance L is obtained from the XY coordinates (x0, yo) of the fan 1020.
  • the rotation speed V is calculated based on the difference (Ha ⁇ Hc) between the output signal Ha of the Hall sensor 1037a and the output signal Hc of the Hall sensor 1037c.
  • the rotation direction of the fan 1020 (that is, the rotation shaft 1030) is obtained from the XY coordinates (x0, yo) of the axis of the fan 1020.
  • the current to be output to the coils 1050a and 1050b is calculated based on the XY coordinates (x0, yo) and (L ⁇ V ⁇ C) of the fan 1020. As the restoring force Fb increases, the current to be output to the coils 1050a and 1050b increases.
  • the transistors SW1, SW2,... SW6 of the bridge circuit 1071 are controlled.
  • current is output from the common connection terminals T1, T2, and T3 to the coils 1050a and 1050b (step 1125). Therefore, an electromagnetic force is generated between the coils 1050a and 1050b and the permanent magnets 1035a and 1035b as a restoring force Fb that moves the fan 1020 in the rotation direction of the fan 1020 around the rotation center line S1.
  • the restoring force Fb acting in the rotation direction acts between the coils 1050a and 1050b and the permanent magnets 1035a and 1035b. For this reason, the axis line S2 of the rotation shaft 1030 is prevented from being inclined from the rotation center line S1 by disturbance or the like.
  • step 1123 if YES is determined in step 1123 because the rotating shaft 1030 is rotating at a high speed, the attenuation coefficient C is decreased, and the current to be output to the coils 1050a and 1050b is decreased (step 1126A).
  • step 1124A when it is determined NO in step 1123 because the rotating shaft 1030 is rotating at a low speed, the damping coefficient C is increased and the current to be output to the coils 1050a and 1050b is increased (step 1124A). That is, when the rotating shaft 1030 rotates at a high speed, the attenuation coefficient C can be reduced and the current flowing through the coils 1050a and 1050b can be reduced compared to when the rotating shaft 1030 rotates at a low speed. .
  • the electronic control unit 1070 controls the bridge circuit 1071, and when the distance between the fan 1020 and the rotation center line S1 is L and the attenuation coefficient is C, the fan 1020.
  • the rotating shaft 1030 is rotatably supported from the magnetic bearing composed of the permanent magnets 1035a and 1035b and the coils 1050a and 1050b and the bearing body 1032a.
  • the magnetic bearing composed of the permanent magnets 1035a and 1035b and the coils 1050a and 1050b and the bearing body 1032a. Therefore, one magnetic bearing is used to support the rotating shaft 1030. Therefore, power consumption for supporting the rotating shaft 1030 can be reduced.
  • the current output from the bridge circuits 1071 and 72 to the coils 1050a and 1050b is made smaller than when the rotating shaft 1030 rotates at a low speed. .
  • the restoring force Fb is made smaller than when the rotating shaft 1030 rotates at low speed. Therefore, in order to generate the restoring force Fb, the power consumed by the coils 1050a and 1050b can be reduced.
  • a graph is shown in which the rotational speed N of the rotating shaft 1030 is the horizontal axis and the transfer function indicating the vibration system of the electric motor 1010 is the vertical axis.
  • the tilt vibration of the rotating shaft 1030 is used as a vibration source, and the centrifugal force generated from this vibration source is input.
  • the vibration acceleration of a predetermined portion for example, the stator 1031
  • the armature 1036 in the electric motor 1010 is output.
  • Graph De shows a transfer function indicating the vibration system of the electric motor 1010 of the present embodiment.
  • the broken line graph is a transfer function when the attenuation coefficient C is small, and the alternate long and short dash line is a transfer function when the attenuation coefficient C is large.
  • the transfer function becomes larger when the damping coefficient C (that is, the restoring force Fb) is smaller than when the damping coefficient C is large (see FIG. 66).
  • the transfer function is larger when the damping coefficient C is larger than when the damping coefficient C is small.
  • the damping coefficient C is decreased when the rotating shaft 1030 is rotating at high speed, and the damping coefficient C is increased when the rotating shaft 1030 is rotating at low speed. That is, the magnitude of the damping coefficient C (that is, the restoring force Fb) is switched depending on the number of rotations of the rotating shaft 1030 to suppress an increase in the transfer function. Thereby, in the electric motor 1010, resonance can be made difficult to occur.
  • the vibration acceleration can be reduced in the electric motor 1010 over the use range of the rotation speed N as in the eighth embodiment. Thereby, the vibration can be reduced.
  • FIG. 67 is a cross-sectional view showing the overall configuration of the motor control system 1000 of the tenth embodiment.
  • 68 is a partially enlarged view of FIG.
  • the present embodiment and the eighth embodiment are the same except for the side surface 1048 of the bush 1032b of the bearing 1032 except for the side surface 1048 of the bush 1032b of the bearing 1032. For this reason, the side surface 1048 of the bush 1032b of the bearing 1032 of the present embodiment will be described, and description of the other components will be omitted.
  • the side surface 1048 of the bush 1032b of the bearing 1032 is formed in an annular shape centering on the axis S2 of the rotating shaft 1030.
  • the side surface 1048 has a cross section including the axis S2 of the rotation shaft 1030 formed in an arc shape with the fulcrum P3 as the center.
  • the fulcrum P3 is located on one side in the axial direction (lower side in FIG. 68) than the fulcrum P1. For this reason, the radius (ie, curvature radius) r2 between the inner peripheral surface 1047 and the fulcrum P3 is smaller than the radius (ie, curvature radius) r1 between the side surface 1048 and the fulcrum P1.
  • the bearing mechanism 1049 in the bearing mechanism 1049, the side surface 1048 of the bearing 1032 slides with respect to the inner peripheral surface 1047 of the rotating shaft support member 1045 as the rotating shaft 1030 rotates.
  • the bearing mechanism 1049 can support the rotary shaft 1030 via the bearing 1032 so as to be swingable about the fulcrum P1 as in the eighth embodiment.
  • FIG. 69 is a cross-sectional view showing the overall configuration of the motor control system 1000 of the eleventh embodiment.
  • the present embodiment and the eighth embodiment are the same except for the inner peripheral surface 1047 of the rotating shaft support member 1045 except for the inner peripheral surface 1047 of the bush 1032b.
  • the inner peripheral surface 1047 of the bush 1032b of the present embodiment will be described, and description of other configurations will be omitted.
  • the inner peripheral surface 1047 of the bush 1032b of this embodiment is referred to as an inner peripheral surface 1047a.
  • the inner peripheral surface 1047a of the rotation shaft support member 1045 of the present embodiment is formed in an annular shape around the rotation center line S1, and a cross section perpendicular to the rotation center line S1 is formed in a circular shape. Further, the inner peripheral surface 1047a has an area of a cross section perpendicular to the rotation center line S1 in the hole 1046 from the other side (upper side in FIG. 69) of the rotation center line S1 to one side (lower side in FIG. 69). It is formed so that it becomes gradually smaller toward the side).
  • the extending direction of the rotation center line S1 is a direction in which the rotation center line S1 extends.
  • the bearing mechanism 1049 in the bearing mechanism 1049, the side surface 1048 of the bearing 1032 slides with respect to the inner peripheral surface 1047 of the rotating shaft support member 1045 as the rotating shaft 1030 rotates.
  • the bearing mechanism 1049 can support the rotary shaft 1030 via the bearing 1032 so as to be swingable about the fulcrum P1 as in the eighth embodiment.
  • FIG. 70 is a cross-sectional view showing the overall configuration of the motor control system 1000 of the eleventh embodiment.
  • the present embodiment and the eighth embodiment are the same except for the bearing mechanism 1049 except for the bearing mechanism 1049. For this reason, the bearing mechanism 1049 of this embodiment is demonstrated and description of another structure is abbreviate
  • the bearing mechanism 1049 of this embodiment includes a bearing 1032d instead of the bearing 1032 in FIG. 48, and a rotating shaft support member 1045.
  • the bearing 1032d and the rotating shaft support member 1045 constitute a bearing mechanism 1049 that supports the rotating shaft 1030 through the bearing 1032d so as to be swingable around the fulcrum P1.
  • the bearing 1032d slides with respect to the inner peripheral surface 1047 of the rotation shaft support member 1045.
  • the bearing mechanism 1049 can support the rotary shaft 1030 via the bearing 1032 so as to be swingable about the fulcrum P1 as in the eighth embodiment.
  • the bearing mechanism 1049 of this embodiment constitutes a well-known self-aligning thrust bearing that automatically aligns the axis of the rotation shaft 1030 with the rotation center line S1 when the rotation shaft 1030 rotates about the rotation center line S1. To do.
  • the supporting force Fa is made smaller than when the rotating shaft 1030 rotates at a low speed.
  • the damping coefficient C is made smaller than when the rotating shaft 1030 rotates at a low speed, and the current flowing through the coils 1050a, 1050b, and 1050c is reduced. Make it smaller. That is, both the support force Fa and the damping coefficient C (that is, the restoring force Fb) are switched depending on the rotation speed of the rotating shaft 1030.
  • bearing 1032 which is a mechanical bearing
  • a sliding bearing and a fluid bearing are used as the bearing 1032. It may be used.
  • a sliding bearing is a bearing that receives a shaft on a sliding surface.
  • a fluid dynamic bearing is a bearing supported by liquid or gas.
  • the common permanent magnets 1035a and 1035b are used as the permanent magnet that applies magnetic flux to the coils 1051a and 1051b and the permanent magnet that applies magnetic flux to the coils 1050a and 1050b on the rotating shaft 1030. Although the example used was described, it may replace with this as follows.
  • Permanent magnets that give magnetic flux to the coils 1051a and 1051b and permanent magnets that give magnetic flux to the coils 1050a and 1050b may be provided independently on the rotating shaft 1030, respectively.
  • a sensor for example, an optical encoder for obtaining the rotation speed and rotation angle of the rotating shaft 1030 is provided.
  • the inclination angle ⁇ of the rotation shaft 1030 with respect to the rotation center line S1 and the rotation axis are determined by the hall sensors 1037a, 1037b, 1037c, 1037d and the permanent magnets 1034a, 1034b, 1034c, 1034d.
  • the XY coordinates of the other end portion in the axial direction of 1030 (that is, the fan 1020) and the rotation angle of the rotation shaft 1030 have been described, the following may be used instead.
  • the hall sensors 1037a, 1037b, 1037c, and 1037d and the permanent magnets 1034a, 1034b, 1034c, and 1034d that is, by the hall sensors 1037a, 1037b, 1037c, and 1037d and the permanent magnets 1034a, 1034b, 1034c, and 1034d, the inclination angle ⁇ of the rotation shaft 1030 with respect to the rotation center line M1, and the XY coordinates of the other end in the axial direction of the rotation shaft 1030 Is detected.
  • the rotation angle of the rotating shaft 1030 may be detected by a rotation sensor other than the hall sensors 1037a, 1037b, 1037c, 1037d and the permanent magnets 34a, 34b.
  • another rotation sensor may be arranged on the bearing 1032 side of the rotation shaft 3.
  • the rotational speed of the rotating shaft 1030 is calculated based on the difference (Ha ⁇ Hc) between the output signal Ha of the Hall sensor 1037a and the output signal Hc of the Hall sensor 1037c.
  • Ha ⁇ Hc the difference between the output signal Ha of the Hall sensor 1037a and the output signal Hc of the Hall sensor 1037c.
  • the XY coordinates (X0, Y0) of the fan 1020 are obtained based on the output signals of the hall sensors 1037a, 1037b, 1037c, 1037d, and the rotational speed of the rotary shaft 1030 is calculated from the change of the XY coordinates (X0, Y0) with respect to time. May be.
  • This indication is a control device which controls the current which flows into the 2nd coil of an electric motor, and controls the current which flows into the 2nd coil, and generates the electromagnetic force which makes a rotation axis approach a rotation center line.
  • a rotation axis control unit (S1123 to S1126) that prevents the axis of the rotation axis from being inclined from the rotation center line is provided.
  • the rotation axis control unit increases the inclination angle based on the detection value of the inclination angle detection sensor (1037a, 1037b, 1037c, 1037d) that detects the inclination angle of the rotation axis with respect to the rotation center line.
  • the electromagnetic current is increased by increasing the current flowing through the second coil.
  • the rotation shaft control unit determines whether the rotation speed of the rotation shaft is equal to or higher than a predetermined speed according to a detection value of a rotation sensor (1037a, 1037b, 1037c, 1037d) that detects rotation of the rotation shaft.
  • a determination unit for determining whether or not, When the determination unit determines that the rotation speed of the rotation shaft is equal to or higher than the predetermined speed, the electromagnetic force is reduced so that the electromagnetic force is smaller than when the determination unit determines that the rotation speed of the rotation shaft is less than the predetermined speed.
  • a first current control unit (S1124, S1125, S1126) for controlling the current flowing through the two coils.
  • the control device controls the current flowing through the second coil of the electric motor, and controls the current flowing through the second coil to prevent the rotation shaft from being inclined from the rotation center line.
  • a rotation axis control unit (S1123, S1124A, S1126A, S) for generating an electromagnetic force for moving the rotation axis in the rotation direction;
  • the distance detected by the rotation sensor (1037a, 1037b, 1037c, 1037d) for detecting the distance between the rotation center line of the rotation shaft and the other side in the axial direction of the rotation shaft and the rotation speed of the rotation shaft is L
  • the electromagnetic force is a force determined by L ⁇ V ⁇ C.
  • the rotating shaft control unit determines whether or not the number of rotations of the rotating shaft is equal to or higher than a predetermined speed based on the detection value of the rotation sensor; When the determination unit determines that the rotation speed of the rotation shaft is equal to or higher than the predetermined speed, C is made smaller than when the determination unit determines that the rotation speed of the rotation shaft is less than the predetermined speed, and the first coil And a second current control unit (S1124A, S1125, S1126A) for reducing the current passed through.
  • the motor control system includes an electric motor and a control device.
  • step 1120 corresponds to the rotation axis control unit
  • steps 1124, 125, and 126 correspond to the first current control unit
  • step 1123 corresponds to the determination unit
  • steps 1124A, 125, and 126A correspond to the second current control unit. Is configured.

Abstract

In this electric motor (10), electromagnetic force is generated among a plurality of permanent magnets (61) and coils (50a, 50b, 50c), and a magnetic bearing for rotatably supporting a rotating shaft (30) at the other end side in the axial direction thereof is configured. The configuration is such that it is possible for the rotating shaft (30) to incline with respect to the rotation center axis (M1), with a bearing (32) side of the rotating shaft (30) as the fulcrum. An electronic control device (70), using the electromagnetic force among the plurality of permanent magnets (61) and the coils (50a, 50b, 50c) as bearing power (Fa), controls the electrical current flowing to the coils (50a, 50b, 50c), in such a way that the axis (M2) of the rotating shaft (30) is brought near the rotation center axis (M1). In so doing, the rotating shaft (30) is rotatably supported by a single magnetic bearing and the bearing (32).

Description

電動モータ、制御装置、およびモータ制御システムElectric motor, control device, and motor control system 関連出願の相互参照Cross-reference of related applications
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2014年11月3日に出願された日本特許出願2014-223870号、2015年4月24日に出願された日本特許出願2015-89634号、2015年8月5日に出願された日本特許出願2015-155172号および2015年10月14日に出願された日本特許出願2015-203209号を基にしている。 This application includes Japanese Patent Application No. 2014-223870 filed on November 3, 2014, Japanese Patent Application No. 2015-2015 filed on April 24, 2015, the disclosure of which is incorporated herein by reference. No. 89634, Japanese Patent Application No. 2015-155172 filed on Aug. 5, 2015 and Japanese Patent Application No. 2015-203209 filed on Oct. 14, 2015.
 本開示は、電動モータ、制御装置、およびモータ制御システムに関するものである。 The present disclosure relates to an electric motor, a control device, and a motor control system.
 従来、電動モータにおいて、2つの磁気軸受けによって回転軸を回転自在に支持するようにしたものがある(例えば。特許文献1参照)。 Conventionally, there is an electric motor in which a rotating shaft is rotatably supported by two magnetic bearings (for example, see Patent Document 1).
 このものにおいて、磁気軸受け毎に、ロータの回転駆動用の励磁コイルと磁気軸受け用の励磁コイルとが共通のスタータに回巻きされている。これにより、小型化、かつ部品点数を低減することができる。 In this case, for each magnetic bearing, an excitation coil for rotating the rotor and an excitation coil for the magnetic bearing are wound around a common starter. Thereby, size reduction and a number of parts can be reduced.
 ここで、ロータには、回転軸とともに永久磁石が設けられている。そして、回転駆動用の励磁コイルから発生される回転磁界が永久磁石に与えられることにより、ロータおよび回転軸に回転力を発生させる。磁気軸受け用の励磁コイルから発生される磁界が永久磁石に与えられることにより、回転軸を回転自在に支持する支持力を発生させる。 Here, the rotor is provided with a permanent magnet along with the rotating shaft. A rotating magnetic field generated from an excitation coil for rotation driving is applied to the permanent magnet, thereby generating a rotational force on the rotor and the rotating shaft. A magnetic force generated from an excitation coil for a magnetic bearing is applied to the permanent magnet, thereby generating a supporting force that rotatably supports the rotating shaft.
特開昭59-69522号公報JP 59-69522 A
 上記特許文献1の電動モータでは、2つの磁気軸受けを用いて回転軸を支持するため、回転軸を支持するのに要する消費電力が増大化する。 In the electric motor disclosed in Patent Document 1, since the rotating shaft is supported using two magnetic bearings, power consumption required to support the rotating shaft increases.
 本開示は、上記点に鑑みて、消費電力の低減を測るようにした電動モータ、制御装置、およびモータ制御システムを提供することを目的とする。 In view of the above points, an object of the present disclosure is to provide an electric motor, a control device, and a motor control system that can reduce power consumption.
 本開示の第1の態様では、回転軸の軸線方向一方側を機械的軸受けを介して回転自在に支持する支持部材と、
 回転軸に取り付けられて、永久磁石を備えるロータと、
 支持部材に取り付けられて、ロータを回転軸とともに回転させる回転力を発生させる磁界を発生する第1コイルと、
 支持部材に取り付けられて、永久磁石との間に電磁力を発生させて、機械的軸受けよりも回転軸の軸線方向他方側を回転自在に支持する磁気軸受けを構成する第2コイルと、を備え、
 回転軸のうち機械的軸受け側を支点として当該回転軸が回転軸の回転中心線に対して傾くことが可能に構成されており、
 永久磁石および第2コイルの間の電磁力によって回転中心線から回転軸の軸線が傾くことを妨げるように第2コイルに流れる電流が制御装置によって制御されるようになっている。
In the first aspect of the present disclosure, a support member that rotatably supports one side in the axial direction of the rotation shaft via a mechanical bearing;
A rotor attached to a rotating shaft and provided with a permanent magnet;
A first coil that is attached to the support member and generates a magnetic field that generates a rotational force that rotates the rotor together with the rotation shaft;
A second coil that is attached to the support member and generates a magnetic force between the permanent magnet and a magnetic bearing that rotatably supports the other axial side of the rotating shaft rather than the mechanical bearing. ,
The rotary shaft is configured such that the rotary shaft can tilt with respect to the rotation center line of the rotary shaft, with the mechanical bearing side as a fulcrum.
The current flowing through the second coil is controlled by the control device so as to prevent the axis of the rotation shaft from being inclined from the rotation center line by the electromagnetic force between the permanent magnet and the second coil.
 第1の態様によれば、回転軸の軸線方向一方側を機械的軸受けで支持し、回転軸の軸線方向他方側を磁気軸受けで支持するので、回転軸を支持するのに要する消費電力を低減することができる。 According to the first aspect, since one side in the axial direction of the rotating shaft is supported by the mechanical bearing and the other side in the axial direction of the rotating shaft is supported by the magnetic bearing, power consumption required to support the rotating shaft is reduced. can do.
 ここで、機械的軸受けとは、転がり軸受、すべり軸受、および流体軸受のうちいずれか1つの軸受けを意味する。なお、転がり軸受は、回転軸の外周側に配置される軌道と、回転軸および軌道の間に配置される転動体とを備え、転動体が転がり運動することによって回転軸を支持する軸受けである。すべり軸受は、すべり面で軸を受ける軸受である。流体軸受は、液体、または気体によって支持される軸受である。 Here, the mechanical bearing means any one of a rolling bearing, a sliding bearing, and a fluid bearing. The rolling bearing is a bearing that includes a raceway disposed on the outer peripheral side of the rotating shaft and a rolling element that is disposed between the rotating shaft and the track, and supports the rotating shaft by the rolling motion of the rolling element. . A sliding bearing is a bearing that receives a shaft on a sliding surface. A fluid dynamic bearing is a bearing supported by liquid or gas.
 本開示の第2の態様では、第1コイルは、第2コイルよりもロータ側に配置されている。 In the second aspect of the present disclosure, the first coil is disposed closer to the rotor than the second coil.
 これにより、第2コイルを第1コイルよりもロータ側に配置する場合に比べて、第1コイルおよびロータの間の距離を短くすることができる。このため、ロータを回転させる回転トルクを効率的に高めることができるので、第1コイルで消費される消費電力を低減することができる。 Thereby, the distance between the first coil and the rotor can be shortened as compared with the case where the second coil is arranged closer to the rotor than the first coil. For this reason, since the rotational torque which rotates a rotor can be raised efficiently, the power consumption consumed by a 1st coil can be reduced.
 本開示の第3の態様では、支持部材に取り付けられて、第1コイルが回巻きされて、第1コイルから発生される磁界を通過させる第1ステータコアと、
 支持部材に取り付けられて、かつ第1ステータコアに対して分離して設けられて、第2コイルが回巻きされて、第2コイルから発生される磁界を通過させる第2ステータコアと、を備え、
 第1コイルおよび第2コイルは、永久磁石に対して回転軸の軸線方向他方側に配置されている。
In the third aspect of the present disclosure, the first stator core is attached to the support member, the first coil is wound around, and the magnetic field generated from the first coil is allowed to pass through.
A second stator core attached to the support member and provided separately from the first stator core, wherein the second coil is wound to pass a magnetic field generated from the second coil, and
The first coil and the second coil are arranged on the other side in the axial direction of the rotating shaft with respect to the permanent magnet.
 第3の態様によれば、第1ステータと第2ステータと分離して設けられているので、負荷トルクが大きく第1コイルを流れる電流が過大になった場合に、ステータコアにおいて磁束が飽和して回転軸を支持する力が低下する事態を避けることができる。そのため、負荷トルクが大きくなった場合にも、回転軸の安定制御が可能となり、回転軸の振動が増加することを抑制することができる。 According to the third aspect, since the first stator and the second stator are provided separately, the magnetic flux is saturated in the stator core when the load torque is large and the current flowing through the first coil becomes excessive. A situation in which the force for supporting the rotating shaft is reduced can be avoided. For this reason, even when the load torque increases, stable control of the rotating shaft is possible, and an increase in vibration of the rotating shaft can be suppressed.
 本開示の第4の態様では、回転中心を中心として回転自在に配置されている回転軸と、
 回転軸に取り付けられて、永久磁石を備えるロータと、
 支持部材に支持されて、永久磁石に対して回転中心を中心とする径方向に配置されて、永久磁石に磁界を付与してロータを回転軸とともに回転させる回転力を発生させる第1コイルと、
 支持部材に支持されて、永久磁石に対して回転中心を中心とする径方向に配置されて、永久磁石との間に電磁力を発生させて回転軸を浮上させて回転中心線を中心として回転自在に支持する磁気軸受けを構成する第2コイルと、
 永久磁石から発生される磁界に基づいて回転軸の軸線が回転中心線からずれた量を検出する位置ずれ検出センサと、を備え、
 永久磁石および第2コイルの間の電磁力によって回転中心線から回転軸の軸線が離れることを妨げるように制御装置が位置ずれ検出センサの検出値に基づいて第2コイルに流れる電流を制御するようになっており、
 位置ずれ検出センサは、回転中心線および永久磁石の間に配置されており、
 位置ずれ検出センサおよび回転軸の間の距離が、位置ずれ検出センサおよび永久磁石の間の距離よりも大きくなっている。
In the fourth aspect of the present disclosure, a rotation shaft that is rotatably arranged around the rotation center;
A rotor attached to a rotating shaft and provided with a permanent magnet;
A first coil that is supported by the support member and is arranged in a radial direction around the rotation center with respect to the permanent magnet, and generates a rotational force that applies a magnetic field to the permanent magnet and rotates the rotor together with the rotation shaft;
Supported by the support member and arranged in the radial direction around the rotation center with respect to the permanent magnet, generates electromagnetic force between the permanent magnet and floats around the rotation axis to rotate around the rotation center line A second coil constituting a magnetic bearing to be freely supported;
A positional deviation detection sensor for detecting an amount of deviation of the axis of the rotation axis from the rotation center line based on a magnetic field generated from the permanent magnet,
The control device controls the current flowing through the second coil based on the detection value of the misalignment detection sensor so as to prevent the axis of the rotation shaft from separating from the rotation center line due to the electromagnetic force between the permanent magnet and the second coil. And
The displacement detection sensor is arranged between the rotation center line and the permanent magnet,
The distance between the misalignment detection sensor and the rotating shaft is larger than the distance between the misalignment detection sensor and the permanent magnet.
 第4の態様によれば、第2コイルと永久磁石との間に電磁力を発生させて回転軸を浮上させて回転中心線を中心として回転自在に支持する磁気軸受けを構成する。このため、機械的軸受けを用いることなく、第2コイルと永久磁石とから構成される磁気軸受けによって回転軸を回転自在に支持することができる。したがって、第1の態様と同様に、回転軸を支持するのに要する消費電力を低減することができる。 According to the fourth aspect, the magnetic bearing is configured such that an electromagnetic force is generated between the second coil and the permanent magnet to float the rotating shaft and to support the rotating shaft about the rotation center line. For this reason, a rotating shaft can be rotatably supported by the magnetic bearing comprised from a 2nd coil and a permanent magnet, without using a mechanical bearing. Therefore, similarly to the first aspect, it is possible to reduce the power consumption required to support the rotating shaft.
 さらに本開示の第5の態様によれば、位置ずれ検出センサおよび回転軸の間の距離が、位置ずれ検出センサおよび永久磁石の間の距離よりも大きくなっている。このため、位置ずれ検出センサが永久磁石からの磁束を良好に検出することができるので、回転軸の軸線が回転中心線からずれた量を精度よく検出することができる。これにより、回転中心線に回転軸の軸線を精度よく近づけることができる。 Furthermore, according to the fifth aspect of the present disclosure, the distance between the positional deviation detection sensor and the rotating shaft is larger than the distance between the positional deviation detection sensor and the permanent magnet. For this reason, since the position shift detection sensor can detect the magnetic flux from the permanent magnet satisfactorily, it is possible to accurately detect the amount of deviation of the axis of the rotation shaft from the rotation center line. As a result, the axis of the rotation axis can be brought close to the rotation center line with high accuracy.
 本開示の第6の態様では、回転軸の回転中心線を中心とする円周方向に並べられている複数の磁極を形成し、かつ回転軸を機械的軸受けを介して回転自在に支持するステータと、
 回転軸に支持されている複数の第1コイルおよび複数の第2コイルと、
 回転軸に支持されて円周方向に並べられている複数の第1セグメントを備え、複数の第1セグメントには複数の第1コイルのうち対応する第1コイルの端部側が接続されている第1整流子と、
 第1整流子の回転に伴って複数の第1セグメントに摺動して複数の第1セグメントのうち接触する第1セグメントを順次替え、複数の第1コイルに対して接触する第1セグメントを通して電流を出力する複数の第1ブラシと、
 回転軸に支持されて円周方向に並べられている複数の第2セグメントを備え、複数の第2セグメントには複数の第2コイルのうち対応する第2コイルの端部側が接続されている第2整流子と、
 第2整流子の回転に伴って複数の第2セグメントに摺動して複数の第2セグメントのうち接触する第2セグメントを順次替えて、複数の第2コイルに対して接触する第2セグメントを通して電流を出力する複数の第2ブラシと、を備え、
 複数の第1コイルには、複数の第1ブラシから接触するセグメントを通して出力される電流と複数の磁極からの磁束とに基づいて回転中心線を中心として回転軸を回転させる回転力が電磁力として発生し、
 複数の第2コイルは、複数の第2ブラシから接触する第2セグメントを通して出力される電流に基づいて複数の磁極との間に電磁力を発生させることにより回転軸のうち機械的軸受けからずれた部位を回転自在に支持する磁気軸受けを構成する。
In a sixth aspect of the present disclosure, a stator that forms a plurality of magnetic poles arranged in a circumferential direction around the rotation center line of the rotation shaft and supports the rotation shaft rotatably via a mechanical bearing When,
A plurality of first coils and a plurality of second coils supported by the rotating shaft;
A plurality of first segments supported by the rotating shaft and arranged in the circumferential direction are provided, and a plurality of first segments are connected to end portions of corresponding first coils among the plurality of first coils. 1 commutator,
As the first commutator rotates, the first segment that contacts the plurality of first segments by sliding to the plurality of first segments is sequentially changed, and the current passes through the first segment that contacts the plurality of first coils. A plurality of first brushes that output
A plurality of second segments supported by the rotating shaft and arranged in the circumferential direction are provided, and a plurality of second segments are connected to end portions of corresponding second coils among the plurality of second coils. Two commutators,
As the second commutator rotates, the second segments that slide on the plurality of second segments and contact with each other among the plurality of second segments are sequentially changed, and through the second segments that contact the plurality of second coils. A plurality of second brushes for outputting current,
The plurality of first coils have, as electromagnetic force, a rotational force that rotates a rotation axis about a rotation center line based on currents output through segments that are in contact with the plurality of first brushes and magnetic fluxes from the plurality of magnetic poles. Occur,
The plurality of second coils are displaced from the mechanical bearings of the rotating shaft by generating an electromagnetic force between the plurality of magnetic poles based on the current output through the second segment in contact with the plurality of second brushes. The magnetic bearing which supports a part rotatably is comprised.
 第6の態様によれば、回転軸の軸線方向一方側を機械的軸受けで支持し、回転軸の軸線方向他方側を磁気軸受けで支持するので、回転軸を支持するのに要する消費電力を低減することができる。 According to the sixth aspect, since one side in the axial direction of the rotating shaft is supported by the mechanical bearing and the other side in the axial direction of the rotating shaft is supported by the magnetic bearing, power consumption required to support the rotating shaft is reduced. can do.
 但し、機械的軸受けとは、転がり軸受、すべり軸受、および流体軸受のうちいずれか1つの軸受けを意味する。なお、転がり軸受は、回転軸の外周側に配置される軌道と、回転軸および軌道の間に配置される転動体とを備え、転動体が転がり運動することによって回転軸を支持する軸受けである。すべり軸受は、すべり面で軸を受ける軸受である。流体軸受は、液体、または気体によって支持される軸受である。さらに、本開示において、回転中心線の延出方向は、回転中心線が延びる方向である。 However, the mechanical bearing means any one of a rolling bearing, a sliding bearing, and a fluid bearing. The rolling bearing is a bearing that includes a raceway disposed on the outer peripheral side of the rotating shaft and a rolling element that is disposed between the rotating shaft and the track, and supports the rotating shaft by the rolling motion of the rolling element. . A sliding bearing is a bearing that receives a shaft on a sliding surface. A fluid dynamic bearing is a bearing supported by liquid or gas. Furthermore, in the present disclosure, the extending direction of the rotation center line is a direction in which the rotation center line extends.
 本開示の第7の態様では、ステータには、回転軸の軸線のうち機械的軸受けからずれた部位を支点として回転軸を機械的軸受けを介して揺動自在に支持する回転軸支持部材が設けられており、第1、第2の整流子は、機械的軸受けに対して支点側に配置されている。 In the seventh aspect of the present disclosure, the stator is provided with a rotating shaft support member that supports the rotating shaft so as to be swingable via the mechanical bearing with a portion of the axis of the rotating shaft shifted from the mechanical bearing as a fulcrum. The first and second commutators are arranged on the fulcrum side with respect to the mechanical bearing.
 本開示の第7の態様によれば、回転軸が支点を中心として揺動した際に、第1整流子のうち第1ブラシが接触する接触部位が変位することを抑制することができる。このため、第1整流子および第1ブラシの間の接触不良が生じることを抑制することができる。 According to the seventh aspect of the present disclosure, it is possible to suppress the displacement of the contact portion of the first commutator that contacts the first brush when the rotation shaft swings about the fulcrum. For this reason, it can suppress that the poor contact between a 1st commutator and a 1st brush arises.
 これに加えて、回転軸が支点を中心として揺動した際に、第2整流子のうち第2ブラシが接触する接触部位が変位することを抑制することができる。このため、第2整流子および第2ブラシの間の接触不良が生じることを抑制することができる。 In addition to this, when the rotating shaft swings around the fulcrum, it is possible to suppress the displacement of the contact portion of the second commutator that contacts the second brush. For this reason, it can suppress that the poor contact between a 2nd commutator and a 2nd brush arises.
本開示の第1実施形態におけるモータ制御システムの全体構成を示す図である。It is a figure showing the whole motor control system composition in a 1st embodiment of this indication. 図1中II-II断面図である。FIG. 2 is a sectional view taken along line II-II in FIG. 図1中III-III断面図である。FIG. 3 is a sectional view taken along line III-III in FIG. 図1中の傾き制御用のコイルの配置を示す断面図である。It is sectional drawing which shows arrangement | positioning of the coil for inclination control in FIG. 図1中の回転制御用のコイルの配置を示す断面図である。It is sectional drawing which shows arrangement | positioning of the coil for rotation control in FIG. X-Y座標にて回転軸の傾きを示す図である。It is a figure which shows the inclination of a rotating shaft in XY coordinate. X-Y-Z座標にて回転軸の傾きを示す図である。It is a figure which shows the inclination of a rotating shaft in a XYZ coordinate. 図1中の電子制御装置の電気回路構成を示す電気回路図である。It is an electric circuit diagram which shows the electric circuit structure of the electronic controller in FIG. 第1実施形態における傾き制御用u1相コイルによって生じる電磁力を示す図である。It is a figure which shows the electromagnetic force produced by the u1 phase coil for inclination control in 1st Embodiment. 第1実施形態における傾き制御用v1相コイルによって生じる電磁力を示す図である。It is a figure which shows the electromagnetic force produced by the v1 phase coil for inclination control in 1st Embodiment. 第1実施形態における傾き制御用w1相コイルによって生じる電磁力を示す図である。It is a figure which shows the electromagnetic force produced by the w1 phase coil for inclination control in 1st Embodiment. 第1実施形態における回転制御用のコイルによって生じる電磁力を示す図である。It is a figure which shows the electromagnetic force produced by the coil for rotation control in 1st Embodiment. 図1中の電子制御装置の制御処理を示すフローチャートである。It is a flowchart which shows the control processing of the electronic controller in FIG. 図13中のステップの詳細を示すフローチャートである。It is a flowchart which shows the detail of the step in FIG. 図13中のステップの詳細を示すフローチャートである。It is a flowchart which shows the detail of the step in FIG. 図1中のホールセンサの出力値等を示す図である。It is a figure which shows the output value etc. of the Hall sensor in FIG. 図1の回転軸の支持力Fa-角度-回転数の関係を示す図である。FIG. 2 is a diagram illustrating a relationship between a supporting force Fa of a rotating shaft in FIG. 図1の電動モータの伝達関数-回転数の関係を示す図である。It is a figure which shows the relationship between the transfer function-rotation speed of the electric motor of FIG. 図1の電動モータの振動加速度-回転数の関係を示す図である。It is a figure which shows the relationship of the vibration acceleration-rotation speed of the electric motor of FIG. 本開示の第2実施形態における制御回路の支持処理を示すフローチャートである。10 is a flowchart illustrating a support process of a control circuit according to a second embodiment of the present disclosure. 第2実施形態における傾き制御用コイルによって生じる電磁力を示す図である。It is a figure which shows the electromagnetic force produced by the coil for inclination control in 2nd Embodiment. 第2実施形態における電動モータの伝達関数-回転速度の関係を示す図である。It is a figure which shows the transfer function-rotation speed relationship of the electric motor in 2nd Embodiment. 本開示の第3実施形態におけるモータ制御システムの全体構成を示す図である。It is a figure showing the whole motor control system composition in a 3rd embodiment of this indication. 本開示の第4実施形態における傾き制御用のコイルのおよび回転制御用のコイルの配置を示す断面図であって、図3に対応している。FIG. 6 is a cross-sectional view illustrating the arrangement of a tilt control coil and a rotation control coil according to a fourth embodiment of the present disclosure, and corresponds to FIG. 3. 第4実施形態における傾き制御用のコイルの配列を示す断面図である。It is sectional drawing which shows the arrangement | sequence of the coil for inclination control in 4th Embodiment. 第4実施形態における回転制御用コイルの配列を示す断面図である。It is sectional drawing which shows the arrangement | sequence of the coil for rotation control in 4th Embodiment. 第4実施形態における傾き制御用u1相コイルによって生じる電磁力を示す断面図である。It is sectional drawing which shows the electromagnetic force produced by the u1 phase coil for inclination control in 4th Embodiment. 第4実施形態における傾き制御用v1相コイルによって生じる電磁力を示す断面図である。It is sectional drawing which shows the electromagnetic force produced by the v1 phase coil for inclination control in 4th Embodiment. 第4実施形態における傾き制御用w1相コイルによって生じる電磁力を示す断面図である。It is sectional drawing which shows the electromagnetic force produced by the w1 phase coil for inclination control in 4th Embodiment. 第4実施形態における回転制御用のコイルによって生じる電磁力を示す断面図である。It is sectional drawing which shows the electromagnetic force produced by the coil for rotation control in 4th Embodiment. 本開示の第4実施形態の第1変形例における傾き制御用のコイル、および回転制御用のコイルの配置を示す断面図である。It is sectional drawing which shows arrangement | positioning of the coil for inclination control in the 1st modification of 4th Embodiment of this indication, and the coil for rotation control. 本開示の第4実施形態の第2変形例における傾き制御用のコイル、および回転制御用のコイルの配置を示す断面図である。It is sectional drawing which shows arrangement | positioning of the coil for inclination control in the 2nd modification of 4th Embodiment of this indication, and the coil for rotation control. 本開示の第4実施形態の第3変形例における傾き制御用のコイル、および回転制御用のコイルの配置を示す断面図である。It is sectional drawing which shows arrangement | positioning of the coil for inclination control in the 3rd modification of 4th Embodiment of this indication, and the coil for rotation control. 本開示の第4実施形態の第4変形例における傾き制御用のコイル、および回転制御用のコイルの配置を示す部分拡大図である。It is a partial enlarged view showing arrangement of a coil for inclination control and a coil for rotation control in the 4th modification of a 4th embodiment of this indication. 本開示の第5実施形態におけるモータ制御システムの全体構成を示す図である。It is a figure showing the whole motor control system composition in a 5th embodiment of this indication. 図35中XXXVI-XXXVI断面図である。FIG. 36 is a sectional view taken along the line XXXVI-XXXVI in FIG. 本開示の第5実施形態の第1変形例における断面図であり、図36に相当する図である。FIG. 37 is a cross-sectional view of a first modified example of the fifth embodiment of the present disclosure, corresponding to FIG. 36. 本開示の第5実施形態の第2変形例におけるモータ制御システムの全体構成を示す図である。It is a figure showing the whole motor control system composition in the 2nd modification of a 5th embodiment of this indication. 本開示の第6実施形態におけるモータ制御システムの全体構成を示す図である。It is a figure showing the whole motor control system composition in a 6th embodiment of this indication. 図39中XL-XL断面図である。FIG. 40 is a sectional view taken along line XL-XL in FIG. 図39中XLI-XLI断面図である。FIG. 40 is a sectional view taken along line XLI-XLI in FIG. 39. 本開示の第6実施形態における支持力の変動低減効果を示す図である。It is a figure which shows the fluctuation reduction effect of the supporting force in 6th Embodiment of this indication. 本開示の第7実施形態における電子制御装置の全体構成を示す図である。It is a figure showing the whole electronic control unit composition in a 7th embodiment of this indication. 第7実施形態において傾き制御用のコイルおよび複数の永久磁石との間の電磁力を示す図である。It is a figure which shows the electromagnetic force between the coil for inclination control, and a some permanent magnet in 7th Embodiment. 第7実施形態において電子制御装置による支持制御を示すフローチャートである。It is a flowchart which shows the support control by an electronic controller in 7th Embodiment. 本開示の他の実施形態において図40に相当する断面図である。FIG. 41 is a cross-sectional view corresponding to FIG. 40 in another embodiment of the present disclosure. 他の実施形態において図41に相当する断面図である。FIG. 42 is a cross-sectional view corresponding to FIG. 41 in another embodiment. 本開示の第8実施形態におけるモータ制御システムの全体構成を示す図である。It is a figure showing the whole motor control system composition in an 8th embodiment of this indication. 図48中XLIX-XLIX断面図である。FIG. 49 is a cross-sectional view of XLIX-XLIX in FIG. 48. 図48中L-L断面図である。FIG. 49 is a cross-sectional view taken along line LL in FIG. 48. 図48中LI-LI断面図である。It is LI-LI sectional drawing in FIG. 図48中LII-LII断面図である。FIG. 49 is a sectional view taken along line LII-LII in FIG. 48. 図48中の傾き制御用のコイル、および回転制御用のコイルの配置を示す断面図である。It is sectional drawing which shows arrangement | positioning of the coil for inclination control in FIG. 48, and the coil for rotation control. X-Y座標にて回転軸の傾きを示す図である。It is a figure which shows the inclination of a rotating shaft in XY coordinate. X-Y-Z座標にて回転軸の傾きを示す図である。It is a figure which shows the inclination of a rotating shaft in a XYZ coordinate. 図48中の電子制御装置の電気回路構成を示す電気回路図である。It is an electric circuit diagram which shows the electric circuit structure of the electronic controller in FIG. 図48中の電子制御装置の制御処理を示すフローチャートである。It is a flowchart which shows the control processing of the electronic controller in FIG. 図60中のステップの詳細を示すフローチャートである。61 is a flowchart showing details of steps in FIG. 60. 図48中のホールセンサの出力値等を示す図である。It is a figure which shows the output value etc. of the Hall sensor in FIG. 図48中のホールセンサの出力値等を示す図である。It is a figure which shows the output value etc. of the Hall sensor in FIG. 図48の回転軸の支持力Fa-角度-回転数の関係を示す図である。FIG. 49 is a diagram showing a relationship between a supporting force Fa of the rotating shaft in FIG. 48, an angle, and a rotational speed. 図48の電動モータの伝達関数-回転数の関係を示す図である。It is a figure which shows the relationship between the transfer function-rotation speed of the electric motor of FIG. 図48の電動モータの振動加速度-回転数の関係を示す図である。It is a figure which shows the relationship of the vibration acceleration-rotation speed of the electric motor of FIG. 本開示の比較例におけるモータ制御システムの全体構成を示す図である。It is a figure showing the whole motor control system composition in the comparative example of this indication. 本開示の第9実施形態における制御回路の支持処理を示すフローチャートである。It is a flowchart which shows the support process of the control circuit in 9th Embodiment of this indication. 第9実施形態における傾き制御用コイルによって生じる電磁力を示す図である。It is a figure which shows the electromagnetic force produced by the coil for inclination control in 9th Embodiment. 第9実施形態における電動モータの伝達関数-回転速度の関係を示す図である。It is a figure which shows the transfer function-rotation speed relationship of the electric motor in 9th Embodiment. 本開示の第10実施形態におけるモータ制御システムの全体構成を示す図である。It is a figure showing the whole motor control system composition in a 10th embodiment of this indication. 図67中部分拡大図である。FIG. 68 is a partially enlarged view in FIG. 67. 本開示の第11実施形態におけるモータ制御システムの全体構成を示す図である。It is a figure showing the whole motor control system composition in an 11th embodiment of this indication. 本開示の第12実施形態におけるモータ制御システムの全体構成を示す図である。It is a figure showing the whole motor control system composition in a 12th embodiment of this indication.
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、説明の簡略化を図るべく、図中、同一符号を付してある。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the following embodiments, parts that are the same or equivalent to each other are given the same reference numerals in the drawings in order to simplify the description.
 (第1実施形態)
 図1に本開示のモータ制御システム1の第1実施形態の全体構成を示す。
(First embodiment)
FIG. 1 shows an overall configuration of a first embodiment of a motor control system 1 of the present disclosure.
 本実施形態のモータ制御システム1は、図1に示すように、電動モータ10、およびファン20を備える。 The motor control system 1 of this embodiment includes an electric motor 10 and a fan 20 as shown in FIG.
 電動モータ10は、図1、図2、および図3に示すように、回転軸30、センターピース31、軸受け32、抑え部33、永久磁石34a、34b、ステータ35、ロータ36、およびホールセンサ37a、37b、37c、37dを備える。 As shown in FIGS. 1, 2, and 3, the electric motor 10 includes a rotating shaft 30, a center piece 31, a bearing 32, a holding portion 33, permanent magnets 34a and 34b, a stator 35, a rotor 36, and a hall sensor 37a. , 37b, 37c, 37d.
 回転軸30は、ロータ36の回転力をファン20に伝える回転軸である。ファン20は、その穴部20aに回転軸30の軸線方向他方側端部が嵌合されることにより、ファン20に回転軸30が連結されている。本実施形態では、ファン20として、例えば、遠心ファンが用いられている。 The rotary shaft 30 is a rotary shaft that transmits the rotational force of the rotor 36 to the fan 20. The fan 20 is connected to the fan 20 so that the rotary shaft 30 is connected to the hole 20 a by fitting the other end of the rotary shaft 30 in the axial direction. In the present embodiment, for example, a centrifugal fan is used as the fan 20.
 センターピース31は、筒部31a、およびフランジ部31bを備える支持部材である。筒部31aは、回転軸30の回転中心線M1(図7参照)を中心とする筒状に形成されている。筒部31aの中空部内には、回転軸30が配置されている。フランジ部31bは、筒部31aの軸線方向一方側から径方向の外側に突起するように形成されている。センターピース31は、プレート40に固定されている。径方向とは、回転軸30の回転中心線M1を中心とする径方向である。 The center piece 31 is a support member including a cylindrical portion 31a and a flange portion 31b. The cylinder portion 31a is formed in a cylindrical shape centered on the rotation center line M1 (see FIG. 7) of the rotation shaft 30. A rotating shaft 30 is disposed in the hollow portion of the cylindrical portion 31a. The flange portion 31b is formed so as to protrude outward in the radial direction from one axial direction side of the cylindrical portion 31a. The center piece 31 is fixed to the plate 40. The radial direction is a radial direction around the rotation center line M <b> 1 of the rotation shaft 30.
 軸受け32は、回転軸30の軸線方向一方側を回転自在に支持する機械的軸受けである。軸受け32は、センターピース31の筒部31aに対して径方向内側に配置されている。軸受け32は、筒部31aにより支持されている。軸受け32は、抑え板41によって軸線方向一方側から支持されている。本実施形態では、軸受け32として、例えば、転がり軸受が使用されている。転がり軸受は、回転軸30の外周側に配置される軌道と、回転軸30および軌道の間に配置される転動体とを備え、転動体が転がり運動することによって回転軸30を支持する周知の軸受けである。 The bearing 32 is a mechanical bearing that rotatably supports one side in the axial direction of the rotating shaft 30. The bearing 32 is disposed radially inward with respect to the cylindrical portion 31 a of the center piece 31. The bearing 32 is supported by the cylinder part 31a. The bearing 32 is supported by the holding plate 41 from one side in the axial direction. In the present embodiment, for example, a rolling bearing is used as the bearing 32. The rolling bearing includes a track disposed on the outer peripheral side of the rotating shaft 30 and a rolling element disposed between the rotating shaft 30 and the track, and supports the rotating shaft 30 by the rolling motion of the rolling element. It is a bearing.
 永久磁石34a、34bは、回転軸30のうち軸受け32に対して軸線方向他方側に配置されている。永久磁石34a、34bは、ステータコア52のうち軸方向他方側に対して径方向内側に位置する。永久磁石34a、34bは、回転軸30に固定されている。永久磁石34a、34bは、図2に示すように、それぞれ、円弧状に形成されている。永久磁石34a、34bは、回転軸30の外周を覆うように組み合わされている。永久磁石34a、34bのうち一方の永久磁石の径方向外側はS極を形成し、他方の永久磁石の径方向外側はN極を形成する。永久磁石34a、34bは、ホールセンサ37a、37b、37c、37dに磁束を付与する。 The permanent magnets 34 a and 34 b are arranged on the other side in the axial direction with respect to the bearing 32 of the rotating shaft 30. The permanent magnets 34 a and 34 b are located on the radially inner side with respect to the other axial side of the stator core 52. The permanent magnets 34 a and 34 b are fixed to the rotary shaft 30. The permanent magnets 34a and 34b are each formed in an arc shape as shown in FIG. The permanent magnets 34 a and 34 b are combined so as to cover the outer periphery of the rotating shaft 30. Out of the permanent magnets 34a and 34b, one of the permanent magnets in the radial direction forms an S pole, and the other permanent magnet in the radial direction forms an N pole. The permanent magnets 34a, 34b apply magnetic flux to the hall sensors 37a, 37b, 37c, 37d.
 抑え部33は、軸受け32および永久磁石34a、34bの間に配置されている。抑え部33は、回転軸30の回転中心線M1を中心とするリング状に形成されている。 The holding portion 33 is disposed between the bearing 32 and the permanent magnets 34a and 34b. The restraining portion 33 is formed in a ring shape with the rotation center line M1 of the rotation shaft 30 as the center.
 抑え部33および回転軸30の間には、隙間が形成されている。抑え部33は、後述するように、回転軸30の回転中心線M1から回転軸30が大きく傾いた状態で回転軸30を支える軸受け部である。抑え部33は、センターピース31の筒部31aによって支持されている。本実施形態の抑え部33は、潤滑性を有する樹脂材料によって形成されている。 A gap is formed between the holding portion 33 and the rotating shaft 30. As will be described later, the restraining portion 33 is a bearing portion that supports the rotating shaft 30 in a state where the rotating shaft 30 is largely inclined from the rotation center line M1 of the rotating shaft 30. The holding part 33 is supported by the cylinder part 31 a of the center piece 31. The holding part 33 of this embodiment is formed of a resin material having lubricity.
 ステータ35は、図1および図3に示すように、コイル50a、50b、50c、コイル51a、51b、51c、およびステータコア52を備える。 The stator 35 includes coils 50a, 50b, 50c, coils 51a, 51b, 51c, and a stator core 52, as shown in FIGS.
 ステータコア52は、コイル50a、50b、50cから発生する磁束(すなわち、磁界)を通過させるものである。さらに、ステータコア52は、コイル51a、51b、51cから発生する磁束(すなわち、磁界)を通過させるものである。ステータコア52は、複数の永久磁石61とともに磁気回路を構成する。 The stator core 52 allows a magnetic flux (that is, a magnetic field) generated from the coils 50a, 50b, and 50c to pass therethrough. Further, the stator core 52 allows a magnetic flux (that is, a magnetic field) generated from the coils 51a, 51b, 51c to pass therethrough. The stator core 52 constitutes a magnetic circuit together with the plurality of permanent magnets 61.
 具体的には、ステータコア52は、図3に示すように、リング部53、およびティース54a、54b、54c、54d、54e、54f、54g、54h、54i、54j、54k、54lを備える。リング部53は、センターピース31の筒部31aに対して径方向の外側に配置されている。リング部53は、筒部31aに固定されている。 Specifically, as shown in FIG. 3, the stator core 52 includes a ring portion 53 and teeth 54a, 54b, 54c, 54d, 54e, 54f, 54g, 54h, 54i, 54j, 54k, and 54l. The ring portion 53 is disposed on the outer side in the radial direction with respect to the cylindrical portion 31 a of the center piece 31. The ring part 53 is fixed to the cylinder part 31a.
 ティース54a、54b、・・・54lは、リング部53から径方向外側に突出するように形成されている。ティース54a、54b、・・・54lは、それぞれ、回転軸30の回転中心線M1を中心とする円周方向に同一間隔で並べられている。ティース54a、54b、・・・54lは、それぞれ先端側が円周方向に延びるように形成されている。 Teeth 54a, 54b,... 54l are formed so as to protrude radially outward from the ring portion 53. The teeth 54a, 54b,... 54l are arranged at equal intervals in the circumferential direction around the rotation center line M1 of the rotation shaft 30. Each of the teeth 54a, 54b,... 54l is formed such that the tip side extends in the circumferential direction.
 本実施形態のコイル50a、50b、50cは、回転軸30の支持力を発生させる傾き制御用コイルである。図4に本実施形態のコイル50a、50b、50cの配置を示す。図4では、説明の便宜上、コイル51a、51b、51cの図示を省略する。図4において、コイル50a、50b、50cにおいて、黒点は紙面垂直方向奥側に向けて電流が流れる状態を示し、×印は、紙面垂直方向手前側に向けて電流が流れる状態を示している。 The coils 50a, 50b, and 50c of the present embodiment are tilt control coils that generate the supporting force of the rotating shaft 30. FIG. 4 shows the arrangement of the coils 50a, 50b, and 50c of this embodiment. In FIG. 4, the illustration of the coils 51a, 51b, and 51c is omitted for convenience of explanation. In FIG. 4, in the coils 50a, 50b, and 50c, black dots indicate a state in which current flows toward the back side in the vertical direction of the paper surface, and x indicates a state in which current flows toward the front side in the vertical direction of the paper surface.
 まず、コイル50aは、U1相コイルであって、図4に示すように、ティース54a、54d、54g、54jに回巻きされている。ティース54a、54d、54g、54jは、回転軸30の回転中心線M1を中心とする円周方向に同一間隔で並べられている。 First, the coil 50a is a U1-phase coil, and is wound around the teeth 54a, 54d, 54g, and 54j as shown in FIG. The teeth 54a, 54d, 54g, 54j are arranged at the same interval in the circumferential direction around the rotation center line M1 of the rotation shaft 30.
 コイル50bは、V1相コイルであって、ティース54c、54f、54i、54lに、回巻きされている。ティース54c、54f、54i、54lは、回転軸30の回転中心線M1を中心とする円周方向に同一間隔で並べられている。 The coil 50b is a V1-phase coil and is wound around the teeth 54c, 54f, 54i, and 54l. The teeth 54c, 54f, 54i, 54l are arranged at the same interval in the circumferential direction around the rotation center line M1 of the rotation shaft 30.
 コイル50cは、W1相コイルであって、ティース54b、54e、54h、54kに、回巻きされている。ティース54b、54e、54h、54kは、回転軸30の回転中心線M1を中心とする円周方向に同一間隔で並べられている。 The coil 50c is a W1-phase coil, and is wound around the teeth 54b, 54e, 54h, and 54k. The teeth 54b, 54e, 54h, and 54k are arranged at the same interval in the circumferential direction around the rotation center line M1 of the rotation shaft 30.
 なお、コイル50aはU1相コイルを構成し、コイル50bはV1相コイルを構成し、コイル50cはW1相コイルを構成している。 Note that the coil 50a constitutes a U1-phase coil, the coil 50b constitutes a V1-phase coil, and the coil 50c constitutes a W1-phase coil.
 本実施形態のコイル51a、51b、51cは、ロータ36を回転させるための回転磁界を発生する回転駆動用コイルである。図5に本実施形態のコイル51a、51b、51cの配置を示す。図5では、説明の便宜上、コイル50a、50b、50cの図示を省略する。図5において、コイル51a、51b、51cにおいて、黒点は紙面垂直方向奥側に向けて電流が流れる状態を示し、×印は、紙面垂直方向手前側に向けて電流が流れる状態を示している。 The coils 51 a, 51 b, 51 c of the present embodiment are rotational drive coils that generate a rotating magnetic field for rotating the rotor 36. FIG. 5 shows the arrangement of the coils 51a, 51b, 51c of this embodiment. In FIG. 5, the illustration of the coils 50a, 50b, and 50c is omitted for convenience of explanation. In FIG. 5, in the coils 51 a, 51 b, 51 c, black dots indicate a state in which a current flows toward the back side in the vertical direction on the paper surface, and x indicates a state in which a current flows toward the front side in the vertical direction on the paper surface.
 コイル51aは、U2相コイルであって、図5に示すように、ティース54c、54d、54i、54jに回巻きされている。ティース54c、54dとティース54i、54jとは、回転軸30の回転中心線M1を中心として角度180度オフセットして配置されている。 The coil 51a is a U2-phase coil, and is wound around teeth 54c, 54d, 54i, 54j as shown in FIG. The teeth 54c and 54d and the teeth 54i and 54j are arranged with an angle of 180 degrees offset about the rotation center line M1 of the rotation shaft 30.
 ここで、ティース54cに回巻きされるコイル51aとティース54dに回巻きされるコイル51aとは、異なる方向に巻かれている。ティース54iに巻回巻きされるコイル51aとティース54jに回巻きされるコイル51aとは、異なる方向に巻かれている。 Here, the coil 51a wound around the tooth 54c and the coil 51a wound around the tooth 54d are wound in different directions. The coil 51a wound around the teeth 54i and the coil 51a wound around the teeth 54j are wound in different directions.
 コイル51bは、V2相コイルであって、ティース54a、54b、54g、54hに回巻きされている。ティース54a、54bとティース54g、54hとは、回転軸30の回転中心線M1を中心として角度180度オフセットして配置されている。 The coil 51b is a V2-phase coil and is wound around the teeth 54a, 54b, 54g, and 54h. The teeth 54a, 54b and the teeth 54g, 54h are arranged with an angle of 180 degrees offset about the rotation center line M1 of the rotation shaft 30.
 ここで、ティース54aに回巻きされているコイル51bとティース54bに回巻きされているコイル51bとは、異なる方向に巻かれている。ティース54gに回巻きされているコイル51bとティース54hに回巻きされているコイル51bとは、異なる方向に巻かれている。 Here, the coil 51b wound around the teeth 54a and the coil 51b wound around the teeth 54b are wound in different directions. The coil 51b wound around the tooth 54g and the coil 51b wound around the tooth 54h are wound in different directions.
 コイル51cは、W2相コイルであって、ティース54e、54f、54k、54lに回巻きされている。ティース54e、54fとティース54k、54lとは、回転軸30の回転中心線M1を中心として角度180度オフセットして配置されている。 The coil 51c is a W2-phase coil and is wound around the teeth 54e, 54f, 54k, and 54l. The teeth 54e and 54f and the teeth 54k and 54l are arranged with an angle of 180 degrees offset about the rotation center line M1 of the rotation shaft 30.
 ここで、ティース54eに回巻きされているコイル51cとティース54fに回巻きされているコイル51cとは、異なる方向に巻かれている。ティース54kに回巻きされているコイル51cとティース54lに回巻きされているコイル51cと異なる方向に巻かれている。 Here, the coil 51c wound around the tooth 54e and the coil 51c wound around the tooth 54f are wound in different directions. It is wound in a different direction from the coil 51c wound around the tooth 54k and the coil 51c wound around the tooth 54l.
 本実施形態では、コイル50a、50b、50cは、コイル51a、51b、51cに対して、ロータ36側(すなわち、径方向外側)に配置されている。 In this embodiment, the coils 50a, 50b, and 50c are disposed on the rotor 36 side (that is, radially outside) with respect to the coils 51a, 51b, and 51c.
 このようにコイル50a、50b、50cとコイル51a、51b、51cとは、共通のステータコア52に回巻きされている。つまり、コイル50a、50b、50cとコイル51a、51b、51cとは、ステータコア52を介してセンターピース31に取り付けられている。そして、コイル50a、50b、50cに流れる電流とコイル51a、51b、51cに流れる電流とは、電子制御装置(図1中ECUと記す)70により制御される。 Thus, the coils 50a, 50b, 50c and the coils 51a, 51b, 51c are wound around the common stator core 52. That is, the coils 50 a, 50 b, 50 c and the coils 51 a, 51 b, 51 c are attached to the center piece 31 via the stator core 52. The current flowing through the coils 50a, 50b, and 50c and the current flowing through the coils 51a, 51b, and 51c are controlled by an electronic control unit (denoted as ECU in FIG. 1) 70.
 ロータ36は、ロータケース60、および複数の永久磁石61を備える。ロータケース60は、回転軸30の回転中心線M1を中心とする筒状に形成されている。ロータケース60は、ステータコア52およびコイル50a、50b、50c、51a、51b、51cに対して回転軸30の回転中心線M1を中心として径方向外側に配置されている。 The rotor 36 includes a rotor case 60 and a plurality of permanent magnets 61. The rotor case 60 is formed in a cylindrical shape centered on the rotation center line M1 of the rotation shaft 30. The rotor case 60 is disposed radially outside the rotation center line M1 of the rotation shaft 30 with respect to the stator core 52 and the coils 50a, 50b, 50c, 51a, 51b, 51c.
 図1のロータケース60のうち軸線方向他方側が蓋部60aで塞がれている。蓋部60aには、回転軸30を貫通させる貫通穴60bが設けられている。ロータケース60の蓋部60aが回転軸30により固定されている。つまり、ロータ36は、回転軸30に取り付けられている。 1 in the rotor case 60 of FIG. 1, the other side in the axial direction is closed with a lid 60a. The lid portion 60a is provided with a through hole 60b that allows the rotary shaft 30 to pass therethrough. The lid 60 a of the rotor case 60 is fixed by the rotating shaft 30. That is, the rotor 36 is attached to the rotating shaft 30.
 複数の永久磁石61は、回転軸30の回転中心線M1を中心とする円周方向に並べられている。複数の永久磁石61は、ロータケース60に対して径方向内側に配置されている。複数の永久磁石61は、ロータケース60に固定されている。複数の永久磁石61は、それぞれの磁極が径方向に向くように配置されている。複数の永久磁石61のそれぞれの磁極は、S極、およびN極が円周方向で交互に並ぶように複数の永久磁石61が配置されている。本実施形態では、12個の永久磁石61が配置されている。 The plurality of permanent magnets 61 are arranged in the circumferential direction around the rotation center line M1 of the rotation shaft 30. The plurality of permanent magnets 61 are arranged on the radially inner side with respect to the rotor case 60. The plurality of permanent magnets 61 are fixed to the rotor case 60. The plurality of permanent magnets 61 are arranged so that each magnetic pole faces in the radial direction. The plurality of permanent magnets 61 are arranged so that the S poles and the N poles are alternately arranged in the circumferential direction on each magnetic pole of the plurality of permanent magnets 61. In the present embodiment, twelve permanent magnets 61 are arranged.
 ホールセンサ37a、37b、37c、37dは、永久磁石34a、34bに対して、回転軸30の回転中心線M1を中心とする径方向外側に配置されている。ホールセンサ37a、37b、37c、37dと永久磁石34a、34bとの間には、隙間が形成されている。ホールセンサ37a、37b、37c、37dは、回転軸30の回転中心線M1を中心とする円周方向に同一間隔で並べられている。ホールセンサ37a、37b、37c、37dは、センターピース31の筒部31aに固定されている。ホールセンサ37a、37b、37c、37dは、回転軸30の回転速度、および傾き角度を検出するためのもので、永久磁石34a、34bから生じる磁界を検出するホール素子から構成されている。 The hall sensors 37a, 37b, 37c, and 37d are disposed on the outer side in the radial direction around the rotation center line M1 of the rotation shaft 30 with respect to the permanent magnets 34a and 34b. Gaps are formed between the hall sensors 37a, 37b, 37c, and 37d and the permanent magnets 34a and 34b. The hall sensors 37a, 37b, 37c, and 37d are arranged at the same interval in the circumferential direction around the rotation center line M1 of the rotation shaft 30. The hall sensors 37a, 37b, 37c, and 37d are fixed to the cylindrical portion 31a of the center piece 31. The hall sensors 37a, 37b, 37c, and 37d are for detecting the rotational speed and inclination angle of the rotary shaft 30, and are constituted by hall elements that detect magnetic fields generated from the permanent magnets 34a and 34b.
 このように構成された電動モータ10では、回転軸30のうち軸受け32側を支点として、回転軸30の回転中心線M1から回転軸30が傾くことが可能に構成される(図6、図7、図8参照)。 The electric motor 10 configured as described above is configured such that the rotation shaft 30 can be inclined from the rotation center line M1 of the rotation shaft 30 with the bearing 32 side of the rotation shaft 30 as a fulcrum (FIGS. 6 and 7). FIG. 8).
 図6、図7では、前記支点を原点0とし、回転軸30の回転中心線M1をZ軸とし、回転中心線M1に直交するX軸とY軸とを設定し、Z軸に対して回転軸30が角度θ傾いた例を示している。図6中の(x0、y0)は、回転軸30のうち軸線方向他方側の端部(すなわち、ファン20)のX-Y座標を示している。 6 and 7, the fulcrum is the origin 0, the rotation center line M1 of the rotation shaft 30 is the Z axis, the X and Y axes orthogonal to the rotation center line M1 are set, and rotation is performed with respect to the Z axis. An example in which the shaft 30 is inclined at an angle θ is shown. In FIG. 6, (x0, y0) indicates the XY coordinates of the end on the other side in the axial direction of the rotating shaft 30 (that is, the fan 20).
 次に、本実施形態のモータ制御システム1の電気的構成について説明する。 Next, the electrical configuration of the motor control system 1 of the present embodiment will be described.
 電子制御装置70は、図8に示すように、インバータ回路71、72、および制御回路73を備える。 The electronic control device 70 includes inverter circuits 71 and 72 and a control circuit 73 as shown in FIG.
 インバータ回路71は、トランジスタSW1、SW2、SW3、SW4、SW5、SW6を備える。 The inverter circuit 71 includes transistors SW1, SW2, SW3, SW4, SW5, and SW6.
 トランジスタSW1、SW2は、正極母線71aおよび負極母線71bの間に直列接続されている。トランジスタSW3、SW4は、正極母線71aおよび負極母線71bの間に直列接続されている。トランジスタSW5、SW6は、正極母線71aおよび負極母線71bの間に直列接続されている。 The transistors SW1 and SW2 are connected in series between the positive electrode bus 71a and the negative electrode bus 71b. Transistors SW3 and SW4 are connected in series between positive electrode bus 71a and negative electrode bus 71b. The transistors SW5 and SW6 are connected in series between the positive electrode bus 71a and the negative electrode bus 71b.
 トランジスタSW1、SW2の間の共通接続端子T1は、コイル50aに接続されている。トランジスタSW3、SW4の間の共通接続端子T2は、コイル50bに接続されている。トランジスタSW5、SW6の間の共通接続端子T3は、コイル50cに接続されている。コイル50a、50b、50cは、スター結線により接続されている。 The common connection terminal T1 between the transistors SW1 and SW2 is connected to the coil 50a. A common connection terminal T2 between the transistors SW3 and SW4 is connected to the coil 50b. A common connection terminal T3 between the transistors SW5 and SW6 is connected to the coil 50c. The coils 50a, 50b, 50c are connected by star connection.
 インバータ回路72は、トランジスタSY1、SY2、SY3、SY4、SY5、SY6を備える。 The inverter circuit 72 includes transistors SY1, SY2, SY3, SY4, SY5, and SY6.
 トランジスタSY1、SY2は、正極母線72aおよび負極母線72bの間に直列接続されている。トランジスタSY3、SY4は、正極母線72aおよび負極母線72bの間に直列接続されている。トランジスタSY5、SY6は、正極母線72aおよび負極母線72bの間に直列接続されている。 The transistors SY1 and SY2 are connected in series between the positive electrode bus 72a and the negative electrode bus 72b. Transistors SY3 and SY4 are connected in series between positive electrode bus 72a and negative electrode bus 72b. Transistors SY5 and SY6 are connected in series between positive electrode bus 72a and negative electrode bus 72b.
 トランジスタSY1、SY2の間の共通接続端子D1は、コイル51aに接続されている。トランジスタSY3、SY4の間の共通接続端子D2は、コイル51bに接続されている。トランジスタSY5、SY6の間の共通接続端子D3は、コイル51cに接続されている。コイル51a、51b、51cは、スター結線により接続されている。正極母線71a、72aは、直流電源Baの正極電極に接続されている。負極母線71b、72bは、直流電源Baの負極電極に接続されている。 The common connection terminal D1 between the transistors SY1 and SY2 is connected to the coil 51a. A common connection terminal D2 between the transistors SY3 and SY4 is connected to the coil 51b. A common connection terminal D3 between the transistors SY5 and SY6 is connected to the coil 51c. The coils 51a, 51b, 51c are connected by star connection. The positive buses 71a and 72a are connected to the positive electrode of the DC power supply Ba. The negative electrode bus lines 71b and 72b are connected to the negative electrode of the DC power supply Ba.
 制御回路73は、マイクロコンピュータやメモリ等に構成されているもので、メモリに記憶されているコンピュータプログラムにしたがって、ロータ36に回転力を発生させるとともに、回転軸30を支持する支持力を出力する制御処理を実行する。そして、制御回路73は、制御処理の実行に伴って、ホールセンサ37a、37b、37c、37dの出力信号に基づいて、トランジスタSW1、SW2・・SW6、およびトランジスタSY1、SY2・・SY6をスイッチング制御する。 The control circuit 73 is configured by a microcomputer, a memory, and the like, and generates a rotational force for the rotor 36 and outputs a supporting force for supporting the rotary shaft 30 in accordance with a computer program stored in the memory. Execute control processing. The control circuit 73 controls switching of the transistors SW1, SW2,... SW6 and the transistors SY1, SY2,... SY6 based on the output signals of the hall sensors 37a, 37b, 37c, and 37d as the control process is executed. To do.
 共通接続端子T1、T2、T3からコイル50aに電流が出力されたときには、図9に示すように、コイル50aおよび複数の永久磁石61の間には、コイル50aによって生じる磁束Gに基づいて、電磁力としての反発力、吸引力が発生する。 When current is output to the coil 50a from the common connection terminals T1, T2, T3, as shown in FIG. 9, between the coil 50a and the plurality of permanent magnets 61, electromagnetic waves are generated based on the magnetic flux G generated by the coil 50a. A repulsive force and a suction force are generated as force.
 具体的には、ティース54a、54d、54g、54jに回巻きされるコイル50aと複数の永久磁石61との間には、電磁力としての反発力、吸引力が発生する。このようなコイル50aと複数の永久磁石61との間に生じる反発力、吸引力が合成されて電磁力fu1が発生する。電磁力fu1は、ロータ36を第1方向に移動させる力である。第1方向は、回転軸30の軸線を中心として紙面右側に延びる軸をX軸としたとき、X軸から時計回り方向に225°回転した方向である。 Specifically, repulsive force and attractive force as electromagnetic force are generated between the coil 50a wound around the teeth 54a, 54d, 54g, and 54j and the plurality of permanent magnets 61. The repulsive force and the attractive force generated between the coil 50a and the plurality of permanent magnets 61 are combined to generate the electromagnetic force fu1. The electromagnetic force fu1 is a force that moves the rotor 36 in the first direction. The first direction is a direction rotated 225 ° clockwise from the X axis, where the X axis is the axis extending to the right side of the page with the axis of the rotation axis 30 as the center.
 なお、図9、図10、図11において、径方向外側を向いた矢印が反発力を示し、径方向内側を向いた矢印が吸引力を示している。 In FIG. 9, FIG. 10, and FIG. 11, the arrow pointing radially outward indicates the repulsive force, and the arrow pointing radially inward indicates the suction force.
 共通接続端子T1、T2、T3からコイル50bに電流が出力されたときには、図10に示すように、コイル50bおよび複数の永久磁石61の間には、複数の永久磁石61によって生じる磁束Gに基づいて、電磁力としての反発力、吸引力が発生する。 When current is output from the common connection terminals T1, T2, T3 to the coil 50b, the magnetic flux G generated by the plurality of permanent magnets 61 is between the coil 50b and the plurality of permanent magnets 61, as shown in FIG. As a result, repulsive force and attractive force are generated as electromagnetic force.
 具体的には、ティース54c、54f、54i、54lに回巻きされるコイル50bと複数の永久磁石61との間には、電磁力としての反発力、吸引力が発生する。このようなコイル50bと複数の永久磁石61との間に生じる反発力、吸引力が合成されて電磁力fv1が発生する。電磁力fv1は、ロータ36を第2方向に移動させる力である。第2方向は、上記X軸から時計回り方向に105°回転した方向である。 Specifically, repulsive force and attractive force as electromagnetic force are generated between the coil 50b wound around the teeth 54c, 54f, 54i, and 54l and the plurality of permanent magnets 61. The repulsive force and the attractive force generated between the coil 50b and the plurality of permanent magnets 61 are combined to generate the electromagnetic force fv1. The electromagnetic force fv1 is a force that moves the rotor 36 in the second direction. The second direction is a direction rotated 105 ° clockwise from the X axis.
 共通接続端子T1、T2、T3からコイル50cに電流が出力されたときには、図11に示すように、コイル50cおよび複数の永久磁石61の間には、複数の永久磁石61によって生じる磁束Gに基づいて、電磁力として反発力、吸引力が発生する。 When current is output from the common connection terminals T1, T2, and T3 to the coil 50c, the magnetic flux G generated by the plurality of permanent magnets 61 is between the coil 50c and the plurality of permanent magnets 61, as shown in FIG. Thus, repulsive force and attractive force are generated as electromagnetic force.
 具体的には、ティース54b、54e、54h、54kに回巻きされるコイル50cと複数の永久磁石61との間には、電磁力としての反発力、吸引力が発生する。このようなコイル50cと複数の永久磁石61との間に生じる反発力、吸引力が合成されて電磁力fw1が発生する。電磁力fw1は、ロータ36を第3方向に移動させる力である。第3方向は、上記X軸から反時計回り方向に15°回転した方向である。 Specifically, repulsive force and attractive force as electromagnetic force are generated between the coil 50c wound around the teeth 54b, 54e, 54h, and 54k and the plurality of permanent magnets 61. The repulsive force and the attractive force generated between the coil 50c and the plurality of permanent magnets 61 are combined to generate the electromagnetic force fw1. The electromagnetic force fw1 is a force that moves the rotor 36 in the third direction. The third direction is a direction rotated 15 ° counterclockwise from the X axis.
 ここで、電磁力fu1の方向、電磁力fv1の方向、および電磁力fw1の方向は、回転軸30の回転中心線M1を中心とする円周方向に同一間隔で並べられている。具体的には、電磁力fu1の方向は、電磁力fv1の方向に対して角度120℃オフセットしている。電磁力fv1の方向は、電磁力fw1の方向に対して角度120℃オフセットしている。電磁力fw1の方向は、電磁力fu1の方向に対して角度120℃オフセットしている。ここで、電磁力fu1、fv1、fw1をそれぞれ単位ベクトルとする。 Here, the direction of the electromagnetic force fu1, the direction of the electromagnetic force fv1, and the direction of the electromagnetic force fw1 are arranged at the same interval in the circumferential direction around the rotation center line M1 of the rotating shaft 30. Specifically, the direction of the electromagnetic force fu1 is offset by 120 ° with respect to the direction of the electromagnetic force fv1. The direction of the electromagnetic force fv1 is offset by 120 ° with respect to the direction of the electromagnetic force fw1. The direction of the electromagnetic force fw1 is offset by 120 ° with respect to the direction of the electromagnetic force fu1. Here, the electromagnetic forces fu1, fv1, and fw1 are unit vectors, respectively.
 このような電磁力fu1、fv1、fw1、および電磁力fu1、fv1、fw1に掛ける係数K1、K2、K3を用いて、回転中心線M1に回転軸30の軸線M2(図7参照)を近づけるための支持力Faを下記の数式1で表すことができる。 Using such electromagnetic forces fu1, fv1, fw1 and coefficients K1, K2, K3 applied to the electromagnetic forces fu1, fv1, fw1 to bring the axis M2 (see FIG. 7) of the rotary shaft 30 closer to the rotation center line M1. Can be expressed by the following mathematical formula 1.
 Fa=K1・fu1+K2・fv1+K3・fw1・・・(数式1)
 制御回路73がトランジスタSW1、SW2・・SW6を制御して共通接続端子T1、T2、T3からコイル50a、50b、50cに流す電流を制御する。このため、係数K1、K2、K3が制御されることにより、支持力Faの大きさ、および方向をそれぞれ制御することができる。
Fa = K1 · fu1 + K2 · fv1 + K3 · fw1 (Formula 1)
The control circuit 73 controls the transistors SW1, SW2,... SW6 to control the current flowing from the common connection terminals T1, T2, T3 to the coils 50a, 50b, 50c. For this reason, by controlling the coefficients K1, K2, and K3, the magnitude and direction of the supporting force Fa can be controlled.
 制御回路73がトランジスタSY1、SY2・・SY6を制御して共通接続端子S1、S2、S3からコイル51a、51b、51cに電流が出力される。このため、コイル51a、51b、51cから回転磁界Ya、Yb、Ycが順次に発生する(図12参照)。回転磁界Ya、Yb、Ycは、複数の永久磁石61に回転力を発生させる。 The control circuit 73 controls the transistors SY1, SY2,... SY6, and outputs current from the common connection terminals S1, S2, S3 to the coils 51a, 51b, 51c. For this reason, rotating magnetic fields Ya, Yb, Yc are sequentially generated from the coils 51a, 51b, 51c (see FIG. 12). The rotating magnetic fields Ya, Yb, and Yc cause the plurality of permanent magnets 61 to generate a rotational force.
 回転磁界Yaは、ティース54c、54dの間に配置されるコイル51aとティース54i、54jの間に配置されるコイル51aとから発生される。回転磁界Ybは、ティース54g、54hの間に配置されるコイル51bとティース54a、54bの間に配置されるコイル51bとから発生される。回転磁界Ycは、ティース54e、54fの間に配置されるコイル51cとティース54k、54lの間に配置されるコイル51cとから発生される。 The rotating magnetic field Ya is generated from the coil 51a disposed between the teeth 54c and 54d and the coil 51a disposed between the teeth 54i and 54j. The rotating magnetic field Yb is generated from a coil 51b disposed between the teeth 54g and 54h and a coil 51b disposed between the teeth 54a and 54b. The rotating magnetic field Yc is generated from a coil 51c disposed between the teeth 54e and 54f and a coil 51c disposed between the teeth 54k and 54l.
 次に、本実施形態の制御回路73の制御処理について図13~図17を参照して説明する。 Next, control processing of the control circuit 73 of this embodiment will be described with reference to FIGS.
 制御回路73は、図13~図15のフローチャートにしたがって制御処理を実行する。図13は制御処理を示すフローチャートである。 The control circuit 73 executes control processing according to the flowcharts of FIGS. FIG. 13 is a flowchart showing the control process.
 まず、図13のステップ100において、ホールセンサ37a、37b、37c、37dにより永久磁石34a、34bによって生じる磁界を検出する。 First, in step 100 of FIG. 13, the magnetic fields generated by the permanent magnets 34a, 34b are detected by the hall sensors 37a, 37b, 37c, 37d.
 ここで、X-Y座標において、ホールセンサ37a、37cが並ぶ方向をX方向とし、ホールセンサ37b、37dが並ぶ方向をY方向とする。ホールセンサ37aの出力信号Haとホールセンサ37cの出力信号Hcとの差分dS(=Ha-Hc:図16参照)を求める。当該差分dSは、回転軸30の回転角度情報を示す。そして、この差分dSに基づいて、現時刻の回転軸30の回転角度(すなわち、回転位置)を算出する(ステップ110)。 Here, in the XY coordinates, the direction in which the hall sensors 37a and 37c are arranged is defined as the X direction, and the direction in which the hall sensors 37b and 37d are arranged is defined as the Y direction. A difference dS (= Ha−Hc: see FIG. 16) between the output signal Ha of the hall sensor 37a and the output signal Hc of the hall sensor 37c is obtained. The difference dS indicates rotation angle information of the rotation shaft 30. Based on the difference dS, the rotation angle (that is, the rotation position) of the rotation shaft 30 at the current time is calculated (step 110).
 次に、回転軸30が回転中心線S1から傾くことを妨げる支持制御(ステップ120)と、回転軸30を回転させる回転制御(ステップ130)とを並列的に実行する。なお、支持制御(ステップ120)、および回転制御(ステップ130)の詳細は後述する。次に、回転軸30の回転を続行するか否かを判定する(ステップ140)。その後、回転軸30の回転を続行するとして、ステップ140でYESと判定すると、ステップ110に戻る。次いで、制御処理を停止させる停止指令が外部から入力されるまで、ステップ100、110、120、130、およびステップ140のYES判定を繰り返す。その後、停止指令が外部から入力されると、ステップ140でN0と判定して、制御処理を終了する。 Next, support control (step 120) for preventing the rotation shaft 30 from being inclined from the rotation center line S1 and rotation control (step 130) for rotating the rotation shaft 30 are executed in parallel. Details of support control (step 120) and rotation control (step 130) will be described later. Next, it is determined whether or not to continue the rotation of the rotating shaft 30 (step 140). Thereafter, assuming that the rotation of the rotating shaft 30 is continued, if YES is determined in the step 140, the process returns to the step 110. Next, the determination of YES in steps 100, 110, 120, 130 and 140 is repeated until a stop command for stopping the control process is input from the outside. Thereafter, when a stop command is input from the outside, it is determined as NO in step 140, and the control process is terminated.
 次に、回転制御(ステップ130)について図14を参照して説明する。図14は図13中ステップ130の詳細を示すフローチャートである。 Next, rotation control (step 130) will be described with reference to FIG. FIG. 14 is a flowchart showing details of step 130 in FIG.
 まず、ステップ131において、上記ステップ110で算出される現時刻の回転軸30の回転角度に基づいて、コイル51a、51b、51cのうち励磁すべきコイルを選択する。この選択したコイルに流す電流を、上記ステップ110で算出された現時刻の回転軸30の回転角度に基づいて算出する(ステップ132)。その後、この算出した電流を上記選択したコイルに出力するためのトランジスタSY1、SY2、SY3、SY4、SY5、SY6をスイッチング制御する(ステップ133)。これにより、インバータ回路71のトランジスタSY1、SY2、SY3、SY4、SY5、SY6がスイッチングして、共通接続端子D1、D2、D3から上記選択したコイルに電流を出力する。ステップ131~133の処理は周知の回転制御処理を用いることができる。 First, in step 131, the coil to be excited is selected from the coils 51a, 51b, 51c based on the rotation angle of the rotating shaft 30 at the current time calculated in step 110. The current flowing through the selected coil is calculated based on the rotation angle of the rotating shaft 30 at the current time calculated in step 110 (step 132). Thereafter, the transistors SY1, SY2, SY3, SY4, SY5, and SY6 for outputting the calculated current to the selected coil are subjected to switching control (step 133). Thereby, the transistors SY1, SY2, SY3, SY4, SY5, and SY6 of the inverter circuit 71 are switched, and current is output from the common connection terminals D1, D2, and D3 to the selected coil. A known rotation control process can be used for the processes in steps 131 to 133.
 このようなコイルの選択処理(ステップ131)、電流値の算出処理(ステップ132)、および電流出力処理(ステップ133)と、図13のホールセンサ検出処理(ステップ100)、および回転角度算出処理(ステップ110)を繰り返す。すると、トランジスタSY1、SY2、SY3、SY4、SY5、SY6がスイッチングして、共通接続端子D1、D2、D3からコイル51a、51b、51cに三相交流電流を出力する。 Such coil selection processing (step 131), current value calculation processing (step 132), and current output processing (step 133), Hall sensor detection processing (step 100), and rotation angle calculation processing (step 100) in FIG. Step 110) is repeated. Then, the transistors SY1, SY2, SY3, SY4, SY5, and SY6 are switched to output a three-phase alternating current from the common connection terminals D1, D2, and D3 to the coils 51a, 51b, and 51c.
 このため、コイル51a、51b、51cから回転磁界が発生する。このため、複数の永久磁石61には、回転磁界に同期して回転する回転力が発生する。これに伴い、回転軸30は、ロータ36とともに回転する。 Therefore, a rotating magnetic field is generated from the coils 51a, 51b, 51c. Therefore, a rotational force that rotates in synchronization with the rotating magnetic field is generated in the plurality of permanent magnets 61. Along with this, the rotating shaft 30 rotates together with the rotor 36.
 次に、支持制御(ステップ120)について図15を参照して説明する。図15は、図13中ステップ120の詳細を示すフローチャートである。 Next, support control (step 120) will be described with reference to FIG. FIG. 15 is a flowchart showing details of step 120 in FIG.
 まず、ステップ121において、ホールセンサ37a、37b、37c、37dの出力信号に基づいて、回転軸30の回転中心線M1に対する回転軸30の傾きθ(図7参照)を算出する。 First, in step 121, based on the output signals of the hall sensors 37a, 37b, 37c, and 37d, the inclination θ (see FIG. 7) of the rotation shaft 30 with respect to the rotation center line M1 of the rotation shaft 30 is calculated.
 具体的には、現時刻におけるホールセンサ37aの出力信号Haと現時刻におけるホールセンサ37cの出力信号Hcとの差分dS(=Ha-Hc)を求める。そして、差分dSの振幅値A1と基準信号k1の振幅値A0の差分dA(=A1-A0:図16)によって、ファン20のX座標(回転軸30の軸線方向他方側端部のX座標)を求める。 Specifically, the difference dS (= Ha−Hc) between the output signal Ha of the hall sensor 37a at the current time and the output signal Hc of the hall sensor 37c at the current time is obtained. Then, based on the difference dA (= A1-A0: FIG. 16) between the amplitude value A1 of the difference dS and the amplitude value A0 of the reference signal k1, the X coordinate of the fan 20 (the X coordinate of the other end portion in the axial direction of the rotating shaft 30). Ask for.
 ここで、振幅値A1は、現時刻における差分dSの振幅値を示す。差分dSが零になったタイミングと現時刻との間の時間をΔTとする。振幅値A0は、基準信号k1が零になるタイミングからΔT経過したときの基準信号k1の振幅である。 Here, the amplitude value A1 indicates the amplitude value of the difference dS at the current time. Let ΔT be the time between the timing when the difference dS becomes zero and the current time. The amplitude value A0 is the amplitude of the reference signal k1 when ΔT has elapsed from the timing when the reference signal k1 becomes zero.
 そして、差分(A1-A0)が大きくなるほど、X座標(X0)が大きくなり、差分(A1-A0)が小さくなるほど、X座標(X0)が大きくなる。基準信号k1は、ホールセンサ37aの出力信号Haの理論値とホールセンサ37cの出力信号Hcの理論値との差分(=出力信号Haの理論値-出力信号Hcの理論値)である。 The X coordinate (X0) increases as the difference (A1-A0) increases, and the X coordinate (X0) increases as the difference (A1-A0) decreases. The reference signal k1 is a difference (= theoretical value of the output signal Ha−theoretical value of the output signal Hc) between the theoretical value of the output signal Ha of the Hall sensor 37a and the theoretical value of the output signal Hc of the Hall sensor 37c.
 ここで、回転軸30の軸線が回転軸30の回転中心線M1に一致した状態で回転軸30が回転した際のホールセンサ37aから出力される出力信号Haを出力信号Haの理論値としている。回転軸30の軸線が回転軸30の回転中心線M1に一致した状態で回転軸30が回転した際のホールセンサ37cから出力される出力信号Hcを出力信号Hcの理論値としている。 Here, the output signal Ha output from the hall sensor 37a when the rotary shaft 30 rotates in a state where the axis of the rotary shaft 30 coincides with the rotation center line M1 of the rotary shaft 30 is used as the theoretical value of the output signal Ha. An output signal Hc output from the hall sensor 37c when the rotary shaft 30 rotates in a state where the axis of the rotary shaft 30 coincides with the rotation center line M1 of the rotary shaft 30 is a theoretical value of the output signal Hc.
 現時刻におけるホールセンサ37bの出力信号Hbと現時刻におけるホールセンサ37dの出力信号Hdとの差分dq(=Hb-Hd)を求め、この差分dqの振幅B1と基準信号k2の振幅値B0との差分dB(=B1-B0)に基づいて、ファン20のY座標(すなわち、回転軸30の軸線方向他方側端部のY座標)を求める。 A difference dq (= Hb−Hd) between the output signal Hb of the hall sensor 37b at the current time and the output signal Hd of the hall sensor 37d at the current time is obtained, and the amplitude B1 of the difference dq and the amplitude value B0 of the reference signal k2 are obtained. Based on the difference dB (= B1−B0), the Y coordinate of the fan 20 (that is, the Y coordinate of the other end portion in the axial direction of the rotating shaft 30) is obtained.
 基準信号k2は、ホールセンサ37bの出力信号Hbの理論値とホールセンサ37dの出力信号Hdの理論値との差分(=出力信号Hbの理論値-出力信号Hdの理論値)である。ここで、回転軸30の軸線が回転軸30の回転中心線M1に一致した状態で回転軸30が回転した際のホールセンサ37bから出力される出力信号Hbを出力信号Hbの理論値としている。回転軸30の軸線が回転軸30の回転中心線M1に一致した状態で回転軸30が回転した際のホールセンサ37dから出力される出力信号Hdを出力信号Hdの理論値としている。 The reference signal k2 is a difference (= theoretical value of the output signal Hb−theoretical value of the output signal Hd) between the theoretical value of the output signal Hb of the Hall sensor 37b and the theoretical value of the output signal Hd of the Hall sensor 37d. Here, the output signal Hb output from the hall sensor 37b when the rotary shaft 30 rotates in a state where the axis of the rotary shaft 30 coincides with the rotation center line M1 of the rotary shaft 30 is used as a theoretical value of the output signal Hb. An output signal Hd output from the Hall sensor 37d when the rotary shaft 30 rotates in a state where the axis of the rotary shaft 30 coincides with the rotation center line M1 of the rotary shaft 30 is used as a theoretical value of the output signal Hd.
 振幅値B1は、現時刻における差分dqの振幅値を示す。振幅値B0は、上記基準信号k1が零になるタイミングからΔT経過したときの基準信号k2の振幅である。そして、差分dBが大きくなるほど、Y座標(Y0)が大きくなる。差分dBが小さくなるほど、Y座標(Y0)が小さくなる。 The amplitude value B1 indicates the amplitude value of the difference dq at the current time. The amplitude value B0 is the amplitude of the reference signal k2 when ΔT has elapsed from the timing when the reference signal k1 becomes zero. As the difference dB increases, the Y coordinate (Y0) increases. The smaller the difference dB, the smaller the Y coordinate (Y0).
 このように求められたファン20のXY座標(X0、Y0)に基づいて回転中心線M1に対する回転軸30の傾きθ(角度)を算出する。なお、本実施形態では、傾きθは、Z軸および回転軸30の軸線M2の間でZ軸から回転軸30の軸線M2に向けて時計回り方向に形成される角度である(図7参照)。 Based on the XY coordinates (X0, Y0) of the fan 20 thus obtained, the inclination θ (angle) of the rotation shaft 30 with respect to the rotation center line M1 is calculated. In the present embodiment, the inclination θ is an angle formed between the Z axis and the axis M2 of the rotary shaft 30 in the clockwise direction from the Z axis toward the axis M2 of the rotary shaft 30 (see FIG. 7). .
 次に、ステップ122において、ファン20のXY座標(X0、Y0)に基づいて、回転中心線M1に対する回転軸30の軸線M2を近づけるために励磁すべきコイルをコイル50a、50b、50cから選択する。つまり、傾いた回転軸30の軸線M2を回転中心線M1に近づけるのに通電すべきコイルをコイル50a、50b、50cから選択する。以下、このように選択したコイルを選択コイルという。 Next, in step 122, based on the XY coordinates (X0, Y0) of the fan 20, a coil to be excited is selected from the coils 50a, 50b, 50c to bring the axis M2 of the rotating shaft 30 closer to the rotation center line M1. . That is, the coil to be energized to bring the axis M2 of the inclined rotation shaft 30 close to the rotation center line M1 is selected from the coils 50a, 50b, and 50c. Hereinafter, the coil thus selected is referred to as a selection coil.
 次に、ステップ123において、回転軸30の回転速度が高速であるか否かを判定する。 Next, in step 123, it is determined whether or not the rotational speed of the rotary shaft 30 is high.
 具体的には、ホールセンサ37aの出力信号Haとホールセンサ37cの出力信号Hcとの差分(Ha-Hc)を求め、この求めた差分(Ha-Hc)の時間に対する変化に基づいて、回転軸30の回転速度を算出する。この算出した回転速度(以下、算出回転速度Vという)が所定速度以上であるか否かを判定する。 Specifically, a difference (Ha−Hc) between the output signal Ha of the hall sensor 37a and the output signal Hc of the hall sensor 37c is obtained, and based on the change of the obtained difference (Ha−Hc) with respect to time, the rotation axis A rotational speed of 30 is calculated. It is determined whether or not the calculated rotation speed (hereinafter referred to as calculated rotation speed V) is equal to or higher than a predetermined speed.
 算出回転速度Vが所定速度以上であるとき、回転軸30の回転速度が高速であるとしてステップ123でYESと判定する。この場合、回転軸30の軸線M2を回転中心線M1に近づけるのに必要な支持力Faをコイル50a、50b、50cおよび複数の永久磁石61の間で発生させるために、上記選択コイルに出力するべき電流を、(X0、Y0)および傾きθに基づいて算出する(ステップ124)。 When the calculated rotational speed V is equal to or higher than the predetermined speed, YES is determined in Step 123 as the rotational speed of the rotary shaft 30 is high. In this case, in order to generate the supporting force Fa necessary for bringing the axis M2 of the rotating shaft 30 close to the rotation center line M1 between the coils 50a, 50b, 50c and the plurality of permanent magnets 61, the output is output to the selection coil. The power current is calculated based on (X0, Y0) and the gradient θ (step 124).
 一方、算出回転速度Vが所定速度未満であるとき、回転軸30の回転速度が低速であるとしてステップ123でNOと判定する。この場合、回転軸30の軸線M2を回転中心線M1に近づけるのに必要な支持力Faをコイル50a、50b、50cおよび複数の永久磁石61の間で発生させるために、上記選択コイルに出力するべき電流を、(X0、Y0)および傾きθに基づいて算出する(ステップ126)。 On the other hand, when the calculated rotational speed V is less than the predetermined speed, NO is determined in step 123 as the rotational speed of the rotating shaft 30 is low. In this case, in order to generate the supporting force Fa necessary for bringing the axis M2 of the rotating shaft 30 close to the rotation center line M1 between the coils 50a, 50b, 50c and the plurality of permanent magnets 61, the output is output to the selection coil. The power current is calculated based on (X0, Y0) and the gradient θ (step 126).
 ここで、傾きθが大きいほど、回転軸30の軸線M2を回転中心線M1に近づけるのに必要な支持力Faは、大きくなる。これに加えて、回転軸30の回転速度が高くなる程、回転軸30の軸線M2を回転中心線M1に近づけるのに必要な支持力Faは、小さくなる。すなわち、回転軸30が高速で回転しているときには、回転軸30が低速で回転しているときに比べて、支持力Faは、小さくなる(図17参照)。 Here, the greater the inclination θ, the greater the supporting force Fa necessary to bring the axis M2 of the rotary shaft 30 closer to the rotation center line M1. In addition to this, the higher the rotational speed of the rotary shaft 30, the smaller the supporting force Fa necessary to bring the axis M2 of the rotary shaft 30 closer to the rotation center line M1. That is, when the rotary shaft 30 rotates at a high speed, the support force Fa is smaller than when the rotary shaft 30 rotates at a low speed (see FIG. 17).
 図17は、縦軸を支持力Faとし、横軸を傾き角度θとし、回転軸30が低速、或いは高速で回転している場合において、支持力Faと傾き角度θとの関係を示すグラフである。回転軸30が低速で回転しているときグラフは、回転軸30が高速で回転しているときのグラフよりも勾配が大きい。 FIG. 17 is a graph showing the relationship between the support force Fa and the tilt angle θ when the vertical axis is the support force Fa, the horizontal axis is the tilt angle θ, and the rotary shaft 30 is rotating at a low speed or a high speed. is there. When the rotary shaft 30 rotates at a low speed, the graph has a larger gradient than the graph when the rotary shaft 30 rotates at a high speed.
 そこで、回転軸30が高速で回転しているときに、図17の高速回転時の支持力Fa-傾きθの関係を示すグラフに基づいて、上記選択コイルに出力するべき電流を算出する(ステップ126)。 Therefore, when the rotary shaft 30 is rotating at high speed, the current to be output to the selection coil is calculated based on the graph showing the relationship between the supporting force Fa and the inclination θ at the time of high speed rotation in FIG. 126).
 一方、回転軸30が低速で回転しているときに、図17の低速回転時の支持力Fa-傾きθの関係を示すグラフに基づいて、上記選択コイルに出力するべき電流を算出する(ステップ124)。 On the other hand, when the rotary shaft 30 is rotating at a low speed, the current to be output to the selection coil is calculated based on the graph showing the relationship between the supporting force Fa and the inclination θ during the low-speed rotation shown in FIG. 124).
 このように回転軸30の回転速度、(X0、Y0)、および傾きθに基づいて、上記選択コイルに出力するべき電流を算出する。これに伴い、この算出した電流を上記選択コイルに出力するために、インバータ回路71のトランジスタSW1、SW2・・・SW6を制御する。これにより、共通接続端子T1、T2、T3から上記選択コイルに電流が出力される。このため、選択コイルおよび永久磁石61の間で支持力Faが発生する。よって、支持力Faによって回転中心線M1に回転軸30を近づけることができる。 Thus, the current to be output to the selection coil is calculated based on the rotation speed of the rotary shaft 30, (X0, Y0), and the inclination θ. Accordingly, the transistors SW1, SW2,... SW6 of the inverter circuit 71 are controlled in order to output the calculated current to the selection coil. As a result, current is output from the common connection terminals T1, T2, and T3 to the selection coil. For this reason, a supporting force Fa is generated between the selection coil and the permanent magnet 61. Therefore, the rotating shaft 30 can be brought close to the rotation center line M1 by the support force Fa.
 ここで、同一傾き角度θの場合において回転軸30が低速で回転している場合には、回転軸30が高速で回転している場合に比べて、選択コイルおよび永久磁石61の間で支持力Faが大きくなる。 Here, in the case of the same tilt angle θ, when the rotating shaft 30 rotates at a low speed, the supporting force between the selection coil and the permanent magnet 61 is larger than when the rotating shaft 30 rotates at a high speed. Fa becomes large.
 以上説明した本実施形態によれば、電動モータ10では、センターピース31が、回転軸30の軸線方向一方側を軸受け32を介して回転自在に支持する。ロータ36は、回転軸30に固定されている。コイル51a、51b、51cは、センターピース31側に配置されて、ロータ36を回転軸30とともに回転させる回転力を発生させる磁界を発生する。複数の永久磁石61は、ロータケース60とともに回転軸30側に固定されて、ロータ36を構成する。コイル50a、50b、50cは、センターピース31側に配置されて、複数の永久磁石61との間に電磁力を発生させて、回転軸30の軸線方向他方側を回転自在に支持する磁気軸受けを構成する。これにより、回転軸30のうち軸受け32側を支点として回転軸30が回転中心線M1に対して傾くことが可能に構成されている。 According to the present embodiment described above, in the electric motor 10, the center piece 31 supports the one side in the axial direction of the rotary shaft 30 via the bearing 32 so as to be rotatable. The rotor 36 is fixed to the rotating shaft 30. The coils 51 a, 51 b, 51 c are arranged on the centerpiece 31 side and generate a magnetic field that generates a rotational force that rotates the rotor 36 together with the rotary shaft 30. The plurality of permanent magnets 61 are fixed to the rotating shaft 30 side together with the rotor case 60 to constitute the rotor 36. The coils 50 a, 50 b, and 50 c are arranged on the center piece 31 side, generate electromagnetic force between the plurality of permanent magnets 61, and support a magnetic bearing that rotatably supports the other axial side of the rotary shaft 30. Constitute. Thereby, it is comprised so that the rotating shaft 30 can incline with respect to the rotation center line M1 by using the bearing 32 side among the rotating shafts 30 as a fulcrum.
 電子制御装置70は、回転軸30の軸線M2を回転中心線M1に近づけるようにインバータ回路71からコイル50a、50b、50cに出力する電流をコイル毎に制御する。このため、複数の永久磁石61およびコイル50a、50b、50cの間の電磁力により支持力Faを発生させることができる。このとき、回転軸30の軸線M2と回転中心線M1との間に形成される傾きθが大きいほど、回転軸30の軸線M2を回転中心線M1に近づけるために必要な支持力Faを大きくする。 The electronic control unit 70 controls the current output from the inverter circuit 71 to the coils 50a, 50b, and 50c for each coil so that the axis M2 of the rotary shaft 30 approaches the rotation center line M1. For this reason, the supporting force Fa can be generated by the electromagnetic force between the plurality of permanent magnets 61 and the coils 50a, 50b, and 50c. At this time, the larger the inclination θ formed between the axis M2 of the rotation shaft 30 and the rotation center line M1, the greater the supporting force Fa necessary to bring the axis M2 of the rotation shaft 30 closer to the rotation center line M1. .
 以上により、複数の永久磁石61およびコイル50a、50b、50cから構成される磁気軸受けと軸受け32とから回転軸30が回転自在に支持されることになる。これにより、回転軸30を支えるために1つの磁気軸受けを用いることになる。したがって、回転軸30を支えるための消費電力を低減するようにした電動モータ10、電子制御装置70、およびモータ制御システム1を提供することができる。 As described above, the rotary shaft 30 is rotatably supported from the magnetic bearing constituted by the plurality of permanent magnets 61 and the coils 50a, 50b, and 50c and the bearing 32. Thus, one magnetic bearing is used to support the rotating shaft 30. Therefore, it is possible to provide the electric motor 10, the electronic control device 70, and the motor control system 1 that reduce the power consumption for supporting the rotating shaft 30.
 本実施形態では、回転軸30が高速で回転しているときには、回転軸30が低速で回転しているときに比べて、支持力Faを小さくしている。このため、支持力Faを発生させるために、コイル50a、50b、50cで消費される電力を低減することができる。 In this embodiment, when the rotary shaft 30 rotates at a high speed, the support force Fa is made smaller than when the rotary shaft 30 rotates at a low speed. For this reason, in order to generate the supporting force Fa, the electric power consumed by the coils 50a, 50b, and 50c can be reduced.
 図18において、横軸は、回転軸30の回転数N(すなわち、回転速度)である。縦軸は、電動モータ10の振動系を示す伝達関数である。伝達関数では、回転軸30の傾き振動を振動源としてこの振動源から生じる遠心力を入力としている。回転軸30の傾き振動とは、回転軸30が回転する際に、回転中心線M1を中心とする径方向に回転軸30が揺れ動く現象のことである。伝達関数では、電動モータ10のうち回転軸30およびロータ36以外の所定部位(例えば、センターピース31)の振動加速度を出力としている。 18, the horizontal axis represents the rotational speed N (that is, the rotational speed) of the rotary shaft 30. The vertical axis is a transfer function indicating the vibration system of the electric motor 10. In the transfer function, the centrifugal force generated from the vibration source is input using the tilt vibration of the rotating shaft 30 as a vibration source. The tilt vibration of the rotating shaft 30 is a phenomenon in which the rotating shaft 30 swings in the radial direction around the rotation center line M1 when the rotating shaft 30 rotates. In the transfer function, the vibration acceleration of a predetermined portion (for example, the center piece 31) other than the rotating shaft 30 and the rotor 36 in the electric motor 10 is output.
 実線で示すDeは、本実施形態の電動モータ10の振動系を示す伝達関数である。鎖線は支持力Faを小さくしたときの電動モータ10の振動系を示す伝達関数であり、一点鎖線は支持力Faを大きくしたときの電動モータ10の振動系を示す伝達関数を示している。 De indicated by a solid line is a transfer function indicating the vibration system of the electric motor 10 of the present embodiment. A chain line indicates a transfer function indicating the vibration system of the electric motor 10 when the support force Fa is reduced, and a one-dot chain line indicates a transfer function indicating the vibration system of the electric motor 10 when the support force Fa is increased.
 ここで、支持力Faが小さい場合の伝達関数のピークは、回転軸30の回転数が低速であるときに生じている。支持力Faが大きい場合の伝達関数のピークは、回転軸30の回転数が高速であるときに生じている(図18参照)。このため、支持力Faが小さい場合には、回転軸30の回転数が低速であるときに電動モータ10に共振が生じる。一方、支持力Faが大きいときには、回転軸30の回転数が高速であるときに電動モータ10に共振が生じる。 Here, the peak of the transfer function when the supporting force Fa is small occurs when the rotational speed of the rotating shaft 30 is low. The peak of the transfer function when the supporting force Fa is large occurs when the rotational speed of the rotating shaft 30 is high (see FIG. 18). For this reason, when the supporting force Fa is small, resonance occurs in the electric motor 10 when the rotational speed of the rotating shaft 30 is low. On the other hand, when the support force Fa is large, resonance occurs in the electric motor 10 when the rotational speed of the rotary shaft 30 is high.
 そこで、本実施形態では、回転軸30が高速で回転しているとき支持力Faを小さくし、回転軸30が低速で回転しているとき支持力Faを大きくする。すなわち、回転軸30の回転数によって、支持力Faの大きさを切り替えている。このため、電動モータ10の振動系において、ピークを抑えた伝達関数Deを形成することになる。これにより、電動モータ10において共振が生じ難くすることができる。 Therefore, in the present embodiment, the supporting force Fa is reduced when the rotating shaft 30 is rotating at a high speed, and the supporting force Fa is increased when the rotating shaft 30 is rotating at a low speed. That is, the magnitude of the support force Fa is switched depending on the number of rotations of the rotary shaft 30. For this reason, in the vibration system of the electric motor 10, a transfer function De with a suppressed peak is formed. Thereby, resonance can be made difficult to occur in the electric motor 10.
 以上により、回転軸30の傾き振動が起因して、電動モータ10に生じる振動加速度Skを回転速度Nの使用範囲に亘って低減することができる(図19参照)。使用範囲は、電動モータ10において実際に使用される回転軸30の回転数Nの範囲である。 As described above, the vibration acceleration Sk generated in the electric motor 10 due to the tilt vibration of the rotating shaft 30 can be reduced over the use range of the rotation speed N (see FIG. 19). The use range is a range of the rotational speed N of the rotary shaft 30 that is actually used in the electric motor 10.
 なお、図19において、横軸は、回転軸30の回転数Nである。縦軸は、電動モータ10のうち回転軸30、ロータ36以外の所定部位(例えば、センターピース31)に生じる振動加速度である。鎖線は支持力Faを小さくしたとき電動モータ10の上記所定部位に生じる振動加速度を示し、一点鎖線は支持力Faを大きくしたときに電動モータ10のうち上記所定部位に生じる振動加速度を示している。実線で示すSKは、本実施形態の電動モータ10の上記所定部位に生じる振動加速度を示す。 In FIG. 19, the horizontal axis is the rotational speed N of the rotary shaft 30. The vertical axis represents vibration acceleration generated in a predetermined portion (for example, the center piece 31) other than the rotating shaft 30 and the rotor 36 in the electric motor 10. The chain line indicates the vibration acceleration generated in the predetermined portion of the electric motor 10 when the support force Fa is reduced, and the alternate long and short dash line indicates the vibration acceleration generated in the predetermined portion of the electric motor 10 when the support force Fa is increased. . SK indicated by a solid line indicates vibration acceleration generated in the predetermined portion of the electric motor 10 of the present embodiment.
 (第2実施形態)
 上記第1実施形態では、回転軸30の軸線M2が回転中心線M1から傾くことを妨げるために、回転軸30の軸線M2を回転中心線M1に近づける支持力Faを発生させた例について説明したが、これに代えて、回転軸30をその回転方向に移動させる復元力Fbを発生させる本第2実施形態について説明する。
(Second Embodiment)
In the first embodiment, the example in which the supporting force Fa that causes the axis M2 of the rotating shaft 30 to approach the rotation center line M1 is generated in order to prevent the axis M2 of the rotating shaft 30 from being inclined from the rotation center line M1 has been described. However, instead of this, a second embodiment in which a restoring force Fb that moves the rotating shaft 30 in the rotating direction is generated will be described.
 本実施形態と上記第1実施形態とは、制御回路73の支持制御(ステップ120)が相違する。そこで、以下、本実施形態の支持制御(ステップ120)について説明する。図20は、制御回路73の支持制御の詳細を示すフローチャートである。 The support control (step 120) of the control circuit 73 is different between the present embodiment and the first embodiment. Therefore, the support control (step 120) of this embodiment will be described below. FIG. 20 is a flowchart showing details of support control of the control circuit 73.
 まず、ステップ123において、回転軸30の回転速度が高速であるか否かを判定する。 First, in step 123, it is determined whether or not the rotational speed of the rotary shaft 30 is high.
 具体的には、ホールセンサ37aの出力信号Haとホールセンサ37cの出力信号Hcとの差分(Ha-Hc)に基づいて、回転軸30の回転速度を算出する。この算出した回転速度(以下、算出回転速度Vという)が所定速度以上であるか否かを判定する。 Specifically, the rotational speed of the rotating shaft 30 is calculated based on the difference (Ha−Hc) between the output signal Ha of the hall sensor 37a and the output signal Hc of the hall sensor 37c. It is determined whether or not the calculated rotation speed (hereinafter referred to as calculated rotation speed V) is equal to or higher than a predetermined speed.
 算出回転速度Vが所定速度以上であるとき、回転軸30の回転速度が高速であるとしてステップ123でYESと判定する。この場合、回転中心線M1から回転軸30を傾くことを妨げる復元力Fbをコイル50a、50b、50cおよび複数の永久磁石61の間で発生させるために、コイル50a、50b、50cに出力するべき電流を算出する(ステップ126A)。 When the calculated rotational speed V is equal to or higher than the predetermined speed, YES is determined in Step 123 as the rotational speed of the rotary shaft 30 is high. In this case, in order to generate a restoring force Fb that prevents the rotation shaft 30 from being inclined from the rotation center line M1 between the coils 50a, 50b, and 50c and the plurality of permanent magnets 61, it should be output to the coils 50a, 50b, and 50c. The current is calculated (step 126A).
 一方、算出回転速度Vが所定速度未満であるとき、回転軸30の回転速度が低速であるとしてステップ123でNOと判定する。この場合、回転中心線M1から回転軸30を傾くことを妨げる復元力Fbをコイル50a、50b、50cおよび複数の永久磁石61の間で発生させるために、コイル50a、50b、50cに出力するべき電流を算出する(ステップ124A)。 On the other hand, when the calculated rotational speed V is less than the predetermined speed, NO is determined in step 123 as the rotational speed of the rotating shaft 30 is low. In this case, in order to generate a restoring force Fb that prevents the rotation shaft 30 from being inclined from the rotation center line M1 between the coils 50a, 50b, and 50c and the plurality of permanent magnets 61, it should be output to the coils 50a, 50b, and 50c. The current is calculated (step 124A).
 本実施形態の復元力Fbは、ファン20(すなわち、回転軸30)を回転方向に移動させる電磁力である。復元力Fbは、ファン20の軸心と回転中心線M1との間の距離をLとし、ファン20(すなわち、回転軸30)の回転数をVとし、減衰係数をCとしたとき、復元力Fbは(L×V×C)から定まる電磁力である(図23参照)。本実施形態のファン20の軸心は、回転軸30の軸方向他端側端部の軸心である。 The restoring force Fb of the present embodiment is an electromagnetic force that moves the fan 20 (that is, the rotating shaft 30) in the rotating direction. The restoring force Fb is a restoring force when the distance between the axis of the fan 20 and the rotation center line M1 is L, the rotational speed of the fan 20 (that is, the rotating shaft 30) is V, and the damping coefficient is C. Fb is an electromagnetic force determined from (L × V × C) (see FIG. 23). The axial center of the fan 20 of this embodiment is the axial center of the axial direction other end side end part of the rotating shaft 30.
 ここで、距離Lは、ファン20の軸心のXY座標(x0、yo)によって求められる。X座標(x0)は、上記第1実施形態で説明したように、ホールセンサ37aの出力信号Haとホールセンサ37cの出力信号Hcとの差分ds(=Ha-Hc)に基づいて求められる。Y座標(yo)は、ホールセンサ37bの出力信号Hbとホールセンサ37dの出力信号Hdとの差分dq(=Hb-Hd)に基づいて求められる。回転数Vは、上述の如く、ホールセンサ37aの出力信号Haとホールセンサ37cの出力信号Hcとの差分(Ha-Hc)に基づいて算出される。ファン20(すなわち、回転軸30)の回転方向は、ファン20の軸心のXY座標(x0、yo)によって求められる。 Here, the distance L is obtained from the XY coordinates (x0, yo) of the axis of the fan 20. As described in the first embodiment, the X coordinate (x0) is obtained based on the difference ds (= Ha−Hc) between the output signal Ha of the Hall sensor 37a and the output signal Hc of the Hall sensor 37c. The Y coordinate (yo) is obtained based on the difference dq (= Hb−Hd) between the output signal Hb of the hall sensor 37b and the output signal Hd of the hall sensor 37d. As described above, the rotation speed V is calculated based on the difference (Ha−Hc) between the output signal Ha of the hall sensor 37a and the output signal Hc of the hall sensor 37c. The rotation direction of the fan 20 (that is, the rotation shaft 30) is obtained from the XY coordinates (x0, yo) of the axis of the fan 20.
 そこで、本実施形態では、ステップ124A、126Aにおいて、ファン20のXY座標(x0、yo)、および(L×V×C)に基づいて、コイル50a、50b、50cに出力するべき電流を算出する。復元力Fbが大きくなるほど、コイル50a、50b、50cに出力するべき電流は大きくなる。 Therefore, in the present embodiment, in steps 124A and 126A, the current to be output to the coils 50a, 50b, and 50c is calculated based on the XY coordinates (x0, yo) and (L × V × C) of the fan 20. . As the restoring force Fb increases, the current to be output to the coils 50a, 50b, and 50c increases.
 このようにステップ124A、126Aで算出した電流をコイルに出力するために、インバータ回路71のトランジスタSW1、SW2・・・SW6を制御する。これにより、共通接続端子T1、T2、T3からコイル50a、50b、50cに電流が出力される(ステップ125)。このため、コイル50a、50b、50cおよび複数の永久磁石61の間には、回転中心線M1を中心とするファン20の回転方向にファン20を移動させる復元力Fbとしての電磁力が発生する。 Thus, in order to output the current calculated in steps 124A and 126A to the coil, the transistors SW1, SW2,... SW6 of the inverter circuit 71 are controlled. As a result, current is output from the common connection terminals T1, T2, T3 to the coils 50a, 50b, 50c (step 125). Therefore, an electromagnetic force is generated between the coils 50a, 50b, 50c and the plurality of permanent magnets 61 as a restoring force Fb that moves the fan 20 in the rotation direction of the fan 20 around the rotation center line M1.
 このように回転方向に作用する復元力Fbは、コイル50a、50b、50cおよび複数の永久磁石61の間に作用する。このため、外乱等によって回転中心線M1から回転軸30の軸線M2が傾くことが妨げられる。 The restoring force Fb acting in the rotational direction in this way acts between the coils 50a, 50b, 50c and the plurality of permanent magnets 61. For this reason, the axis M2 of the rotating shaft 30 is prevented from being inclined from the rotation center line M1 by disturbance or the like.
 ここで、回転軸30の回転数が高くなる程、回転中心線M1から回転軸30から傾くことを妨げるのに必要な復元力Fbは、小さくなる。すなわち、回転軸30が高速で回転しているときには、回転軸30が低速で回転しているときに比べて、上記必要な復元力Fbは、小さくなる。 Here, the higher the rotational speed of the rotating shaft 30, the smaller the restoring force Fb necessary to prevent the rotating shaft 30 from being inclined from the rotating center line M1. That is, when the rotating shaft 30 rotates at a high speed, the necessary restoring force Fb is smaller than when the rotating shaft 30 rotates at a low speed.
 そこで、回転軸30が高速で回転しているとしてステップ123でYESと判定したときには、減衰係数Cを小さくして、コイル50a、50b、50cに出力するべき電流を小さくする(ステップ126A)。一方、回転軸30が低速で回転しているとしてステップ123でNOと判定したときには、減衰係数Cを大きくして、コイル50a、50b、50cに出力するべき電流を大きくする(ステップ124A)。つまり、回転軸30が高速で回転しているときには、回転軸30が低速で回転しているときに比べて、減衰係数Cを小さくして、コイル50a、50b、50cに流れる電流を小さくすることができる。 Therefore, if YES is determined in step 123 because the rotating shaft 30 is rotating at a high speed, the damping coefficient C is decreased, and the current to be output to the coils 50a, 50b, 50c is decreased (step 126A). On the other hand, if NO is determined in step 123 because the rotating shaft 30 is rotating at a low speed, the damping coefficient C is increased to increase the current to be output to the coils 50a, 50b, and 50c (step 124A). That is, when the rotating shaft 30 rotates at a high speed, the current flowing through the coils 50a, 50b, and 50c is reduced by reducing the attenuation coefficient C compared to when the rotating shaft 30 rotates at a low speed. Can do.
 以上説明した本実施形態によれば、電子制御装置70は、インバータ回路71を制御して、ファン20と回転中心線M1との間の距離をLとし、減衰係数をCとしたとき、ファン20の回転方向に移動させる復元力Fb(=L×V×C)をコイル50a、50b、50cおよび複数の永久磁石61の間に発生させる。これにより、外乱が生じても、回転軸30の回転中心線M1から回転軸30の軸線M2が傾くことが妨げられる。 According to the present embodiment described above, when the electronic control unit 70 controls the inverter circuit 71 so that the distance between the fan 20 and the rotation center line M1 is L and the attenuation coefficient is C, the fan 20 A restoring force Fb (= L × V × C) is generated between the coils 50 a, 50 b, 50 c and the plurality of permanent magnets 61. Thereby, even if disturbance arises, it is prevented that the axis line M2 of the rotating shaft 30 inclines from the rotating center line M1 of the rotating shaft 30. FIG.
 以上により、複数の永久磁石61およびコイル50a、50b、50cから構成される磁気軸受けと軸受け32とから回転軸30が回転自在に支持されることになる。これにより、回転軸30を支えるために1つの磁気軸受けを用いることになる。したがって、回転軸30を支えるための消費電力を低減することができる。 As described above, the rotary shaft 30 is rotatably supported from the magnetic bearing constituted by the plurality of permanent magnets 61 and the coils 50a, 50b, and 50c and the bearing 32. Thus, one magnetic bearing is used to support the rotating shaft 30. Therefore, power consumption for supporting the rotating shaft 30 can be reduced.
 本実施形態では、回転軸30が高速で回転しているときには、回転軸30が低速で回転しているときに比べて、インバータ回路71からコイル50a、50b、50cに出力される電流を小さくする。このため、回転軸30が高速で回転しているときには、回転軸30が低速で回転しているときに比べて、復元力Fbを小さくしている。したがって、復元力Fbを発生させるために、コイル50a、50b、50cで消費される電力を低減することができる。 In the present embodiment, when the rotating shaft 30 rotates at a high speed, the current output from the inverter circuit 71 to the coils 50a, 50b, and 50c is made smaller than when the rotating shaft 30 rotates at a low speed. . For this reason, when the rotating shaft 30 rotates at high speed, the restoring force Fb is made smaller than when the rotating shaft 30 rotates at low speed. Therefore, in order to generate the restoring force Fb, the power consumed by the coils 50a, 50b, and 50c can be reduced.
 図22において、回転軸30の回転数Nを横軸とし、電動モータ10の振動系を示す伝達関数を縦軸としたグラフを示す。伝達関数では、回転軸30の傾き振動を振動源としてこの振動源から生じる遠心力を入力としている。伝達関数では、電動モータ10のうち回転軸30およびロータ36以外の所定部位(例えば、センターピース31)の振動加速度を出力としている。 22 shows a graph in which the rotational speed N of the rotary shaft 30 is the horizontal axis and the transfer function indicating the vibration system of the electric motor 10 is the vertical axis. In the transfer function, the centrifugal force generated from the vibration source is input using the tilt vibration of the rotating shaft 30 as a vibration source. In the transfer function, the vibration acceleration of a predetermined portion (for example, the center piece 31) other than the rotating shaft 30 and the rotor 36 in the electric motor 10 is output.
 グラフDeは、本実施形態の電動モータ10の振動系を示す伝達関数を示す。鎖線のグラフは、減衰係数Cが小さい場合の伝達関数であり、一点鎖線は減衰係数Cが大きい場合の伝達関数である。 Graph De shows a transfer function indicating the vibration system of the electric motor 10 of the present embodiment. The broken line graph is a transfer function when the attenuation coefficient C is small, and the alternate long and short dash line is a transfer function when the attenuation coefficient C is large.
 ここで、回転軸30が低速で回転しているときには、減衰係数C(すなわち、復元力Fb)が小さい方が、減衰係数Cが大きい場合に比べて、伝達関数が大きくなる(図22参照)。一方、回転軸30が高速で回転しているときには、減衰係数Cが小さい場合に比べて、減衰係数Cが大きい場合の方が、伝達関数が大きくなる。 Here, when the rotating shaft 30 is rotating at a low speed, the transfer function becomes larger when the damping coefficient C (that is, the restoring force Fb) is smaller than when the damping coefficient C is large (see FIG. 22). . On the other hand, when the rotating shaft 30 is rotating at high speed, the transfer function is larger when the damping coefficient C is larger than when the damping coefficient C is small.
 そこで、本実施形態では、回転軸30が高速で回転しているとき減衰係数Cを小さくし、回転軸30が低速で回転しているとき減衰係数Cを大きくする。すなわち、回転軸30の回転数によって、減衰係数C(すなわち、復元力Fb)の大きさを切り替えて、伝達関数が大きくなることを抑制する。これにより、電動モータ10において、共振が生じ難くすることができる。 Therefore, in the present embodiment, the damping coefficient C is decreased when the rotating shaft 30 is rotating at high speed, and the damping coefficient C is increased when the rotating shaft 30 is rotating at low speed. That is, the magnitude of the damping coefficient C (that is, the restoring force Fb) is switched depending on the number of rotations of the rotating shaft 30 to suppress an increase in the transfer function. Thereby, in the electric motor 10, resonance can be made difficult to occur.
 以上により、減衰家数Cを回転数Nによって切り替えるので、上記第1実施形態と同様に、回転数Nの使用範囲に亘って、電動モータ10において振動加速度を低減することができる。これにより、低振動化を図ることができる。 As described above, since the attenuation house number C is switched by the rotation speed N, the vibration acceleration can be reduced in the electric motor 10 over the use range of the rotation speed N as in the first embodiment. Thereby, the vibration can be reduced.
 (第3実施形態)
 上記第1、第2の実施形態では、回転軸30のうち軸受け32に対してファン20側の部位を磁気軸受けによって支持した例について説明したが、これに代えて、本第3実施形態では、回転軸30のうち軸受け32に対してファン20と反対側の部位を磁気軸受けによって支持した例について説明する。
(Third embodiment)
In the first and second embodiments, the example in which the part on the fan 20 side with respect to the bearing 32 of the rotating shaft 30 is supported by the magnetic bearing has been described, but instead, in the third embodiment, An example in which a part of the rotating shaft 30 opposite to the fan 20 with respect to the bearing 32 is supported by a magnetic bearing will be described.
 図23に本開示のモータ制御システム1の本第3実施形態の全体構成を示す。図23において、図1と同一符号は、同一のものを示し、その説明を省略する。本実施形態と上記第1実施形態とは、主に、回転軸30のうち磁気軸受けおよび軸受け32が支持する部位が相違する。 FIG. 23 shows the overall configuration of the third embodiment of the motor control system 1 of the present disclosure. In FIG. 23, the same reference numerals as those in FIG. The present embodiment is different from the first embodiment mainly in the portion of the rotating shaft 30 that is supported by the magnetic bearing and the bearing 32.
 本実施形態では、磁気軸受けが、回転軸30のうち軸受け32に対してファン20と反対側の部位を磁気軸受けによって支持する。ステータ35に対して軸受け32がファン20側に配置される。このため、ロータケース60の蓋部60aは、ファン20側に突起するように形成されている。 In this embodiment, the magnetic bearing supports a portion of the rotating shaft 30 on the side opposite to the fan 20 with respect to the bearing 32 by the magnetic bearing. A bearing 32 is disposed on the fan 20 side with respect to the stator 35. For this reason, the cover part 60a of the rotor case 60 is formed so as to protrude toward the fan 20 side.
 本実施形態では、ファン20、回転軸30、および複数の永久磁石61を含むロータ36を回転体とし、回転軸30のうち回転体の重心側を軸受け32が支持する。 In this embodiment, the rotor 36 including the fan 20, the rotating shaft 30, and the plurality of permanent magnets 61 is a rotating body, and the bearing 32 supports the center of gravity of the rotating body of the rotating shaft 30.
 ここで、回転軸30のうち軸受け32が支持する支点と回転体の重心とが離れると、回転軸30を支持する支持力Faを大きくする必要がある。これに対して、本実施形態では、上述の如く、回転軸30のうち回転体の重心側を軸受け32が支持する。このため、回転軸30のうち軸受け32が支持する支点と回転体の重心とを近づけることができる。したがって、支持力Faを小さくすることができる。よって、コイル50a、50b、50cで消費される消費電力を低下することができる。 Here, when the fulcrum supported by the bearing 32 of the rotating shaft 30 is separated from the center of gravity of the rotating body, the supporting force Fa for supporting the rotating shaft 30 needs to be increased. In contrast, in the present embodiment, as described above, the bearing 32 supports the center of gravity side of the rotating body in the rotating shaft 30. For this reason, the fulcrum which the bearing 32 supports among the rotating shafts 30 can be brought close to the center of gravity of the rotating body. Therefore, the supporting force Fa can be reduced. Therefore, the power consumption consumed by the coils 50a, 50b, and 50c can be reduced.
 なお、説明の便宜上、回転軸30の軸線方向のうちファン20側を軸線方向一方側とし、回転軸30の軸線方向のうちファン20と反対側を軸線方向他方側としている。 For convenience of explanation, the fan 20 side in the axial direction of the rotating shaft 30 is one side in the axial direction, and the side opposite to the fan 20 in the axial direction of the rotating shaft 30 is the other side in the axial direction.
 (第4実施形態)
 上記第1、第2実施形態では、回転駆動用コイル(51a、51b、51c)に対して傾き制御用コイル(50a、50b、50c)をロータ36側に配置した例について説明したが、これに代えて、回転駆動用コイル(51a、51b、51c)を傾き制御用コイル(50a、50b、50c)に対してロータ36側に配置した本第4実施形態について説明する。
(Fourth embodiment)
In the first and second embodiments, the example in which the inclination control coils (50a, 50b, 50c) are arranged on the rotor 36 side with respect to the rotation drive coils (51a, 51b, 51c) has been described. Instead, a description will be given of the fourth embodiment in which the rotation drive coils (51a, 51b, 51c) are arranged on the rotor 36 side with respect to the inclination control coils (50a, 50b, 50c).
 図24は、本実施形態の電動モータ10において回転軸30の軸線に直交する断面図である。 FIG. 24 is a cross-sectional view orthogonal to the axis of the rotary shaft 30 in the electric motor 10 of the present embodiment.
 本実施形態では、上記第1実施形態と同様、図24~図26に示すように、コイル50aは、ティース54a、54d、54g、54jに回巻きされている。コイル50bは、ティース54c、54f、54i、54lに、回巻きされている。コイル50cは、ティース54b、54e、54h、54kに、回巻きされている。 In this embodiment, as in the first embodiment, as shown in FIGS. 24 to 26, the coil 50a is wound around the teeth 54a, 54d, 54g, and 54j. The coil 50b is wound around the teeth 54c, 54f, 54i, and 54l. The coil 50c is wound around the teeth 54b, 54e, 54h, and 54k.
 コイル51aは、ティース54c、54d、54i、54jに回巻きされている。コイル51bは、ティース54a、54b、54g、54hに回巻きされている。コイル51cは、ティース54e、54f、54k、54lに回巻きされている。 The coil 51a is wound around the teeth 54c, 54d, 54i, and 54j. The coil 51b is wound around the teeth 54a, 54b, 54g, and 54h. The coil 51c is wound around the teeth 54e, 54f, 54k, and 54l.
 本実施形態では、回転駆動用コイル(51a、51b、51c)は、ステータ35のティース毎に、傾き制御用コイル(50a、50b、50c)に対してロータ36側に配置されている。 In this embodiment, the rotation drive coils (51a, 51b, 51c) are arranged on the rotor 36 side with respect to the inclination control coils (50a, 50b, 50c) for each tooth of the stator 35.
 例えば、ティース54aに回巻されているコイル51bは、コイル50aに対してロータ36側に配置されている。ティース54cに回巻されているコイル51aは、コイル50cに対してロータ36側に配置されている。ティース54fに回巻されているコイル51cは、コイル50bに対してロータ36側に配置されている。 For example, the coil 51b wound around the teeth 54a is disposed on the rotor 36 side with respect to the coil 50a. The coil 51a wound around the teeth 54c is arranged on the rotor 36 side with respect to the coil 50c. The coil 51c wound around the teeth 54f is disposed on the rotor 36 side with respect to the coil 50b.
 本実施形態と上記第1実施形態とではコイル50a、50b、50cとコイル51a、51b、51cとの間で径方向の配列が異なるだけで、その他の構成は同じである。 This embodiment and the first embodiment are the same except for the arrangement in the radial direction between the coils 50a, 50b, and 50c and the coils 51a, 51b, and 51c.
 このため、上記第1実施形態と同様に、コイル50aおよび複数の永久磁石61の間には、コイル50aによって生じる磁束Gに基づいて電磁力fu1(図27参照)が発生する。コイル50bおよび複数の永久磁石61の間には、コイル50aによって生じる磁束Gに基づいて電磁力fv1(図28参照)が発生する。コイル50cおよび複数の永久磁石61の間には、コイル50aによって生じる磁束Gに基づいて電磁力fw1(図29参照)が発生する。 Therefore, similarly to the first embodiment, an electromagnetic force fu1 (see FIG. 27) is generated between the coil 50a and the plurality of permanent magnets 61 based on the magnetic flux G generated by the coil 50a. An electromagnetic force fv1 (see FIG. 28) is generated between the coil 50b and the plurality of permanent magnets 61 based on the magnetic flux G generated by the coil 50a. An electromagnetic force fw1 (see FIG. 29) is generated between the coil 50c and the plurality of permanent magnets 61 based on the magnetic flux G generated by the coil 50a.
 そこで、上記第1実施形態と同様、制御回路73がインバータ回路71からコイル50a、50b、50cに出力する電流を制御する。このため、複数の永久磁石61およびコイル50a、50b、50cの間の電磁力として、回転軸30の軸線M2を回転中心線M1に近づける支持力Faを発生させることができる。 Therefore, as in the first embodiment, the control circuit 73 controls the current output from the inverter circuit 71 to the coils 50a, 50b, and 50c. For this reason, as the electromagnetic force between the plurality of permanent magnets 61 and the coils 50a, 50b, 50c, it is possible to generate a supporting force Fa that brings the axis M2 of the rotating shaft 30 closer to the rotation center line M1.
 さらに、本実施形態のコイル51a、51b、51cは、上記第1実施形態と同様に、複数の永久磁石61に回転力を発生させるための回転磁界Ya、Yb、Yc(図29参照)が順次に発生させることができる。 Further, in the coils 51a, 51b, 51c of this embodiment, as in the first embodiment, rotating magnetic fields Ya, Yb, Yc (see FIG. 29) for generating a rotating force in the plurality of permanent magnets 61 are sequentially provided. Can be generated.
 そこで、制御回路73がインバータ回路72からコイル51a、51b、51cに出力する電流を制御することにより、コイル51a、51b、51cから回転磁界Ya、Yb、Ycが順次に発生させる。このため、複数の永久磁石61には、回転磁界に同期して回転する回転力が発生する。これに伴い、回転軸30は、ロータ36とともに回転する。 Therefore, the control circuit 73 controls the current output from the inverter circuit 72 to the coils 51a, 51b, 51c, so that the rotating magnetic fields Ya, Yb, Yc are sequentially generated from the coils 51a, 51b, 51c. Therefore, a rotational force that rotates in synchronization with the rotating magnetic field is generated in the plurality of permanent magnets 61. Along with this, the rotating shaft 30 rotates together with the rotor 36.
 以上説明した本実施形態によれば、回転駆動用コイル(51a、51b、51c)は、ステータ35のティース毎に、傾き制御用コイル(50a、50b、50c)に対してロータ36側に配置されている。このため、傾き制御用コイル(50a、50b、50c)を回転駆動用コイル(51a、51b、51c)に対してロータ側(すなわち、径方向外側)に配置する場合に比べて、回転駆動用コイル(51a、51b、51c)およびロータ36の間の距離を短くすることができるので、回転用トルクを回転させる回転トルクを効率的に高めることができる。したがって、同じ巻数で大きな回転用トルクを得られる。これにより、回転駆動用コイル(51a、51b、51c)で消費される消費電力を低減することができる。 According to the present embodiment described above, the rotation driving coils (51a, 51b, 51c) are arranged on the rotor 36 side with respect to the inclination control coils (50a, 50b, 50c) for each tooth of the stator 35. ing. For this reason, compared with the case where the inclination control coils (50a, 50b, 50c) are arranged on the rotor side (that is, radially outside) with respect to the rotation drive coils (51a, 51b, 51c), the rotation drive coils. Since the distance between (51a, 51b, 51c) and the rotor 36 can be shortened, the rotational torque for rotating the rotational torque can be efficiently increased. Therefore, a large rotational torque can be obtained with the same number of turns. Thereby, the power consumption consumed by the rotation drive coils (51a, 51b, 51c) can be reduced.
 上記第4実施形態では、回転駆動用コイル(51a、51b、51c)を傾き制御用コイル(50a、50b、50c)に対してロータ36側(すなわち、径方向外側)に配置した例について説明したが、これに加えて、次の第1~第4変形例のようにしてもよい。 In the fourth embodiment, the example in which the rotation drive coils (51a, 51b, 51c) are arranged on the rotor 36 side (that is, radially outside) with respect to the inclination control coils (50a, 50b, 50c) has been described. However, in addition to this, the following first to fourth modifications may be employed.
 (第1変形例)
 第1変形例では、図31に示すように、回転駆動用コイル(51a、51b、51c)は、ティース(54a・・・54l)毎に、径方向内側に向かうほど径方向に直交する断面積が小さくなるように形成されている。回転駆動用コイル(51a、51b、51c)は、ティース毎に、傾き制御用コイル(50a、50b、50c)およびティースに対して回巻きされている。このため、傾き制御用コイル(50a、50b、50c)は、ティース(54a・・・54l)毎に、径方向外側に向かうほど径方向に直交する断面積が小さくなるように形成されている。
(First modification)
In the first modified example, as shown in FIG. 31, the rotational drive coils (51a, 51b, 51c) have a cross-sectional area that is orthogonal to the radial direction toward the radially inner side for each of the teeth (54a... 54l). Is formed to be small. The rotation driving coils (51a, 51b, 51c) are wound around the inclination control coils (50a, 50b, 50c) and the teeth for each tooth. For this reason, the inclination control coils (50a, 50b, 50c) are formed so that the cross-sectional area perpendicular to the radial direction becomes smaller toward the radially outer side for each of the teeth (54a... 54l).
 例えば、ティース54aに回巻きされているコイル51bは、コイル50aに対してロータ36側(すなわち、径方向外側)に配置されている。コイル51bは、コイル50aおよびティース54aに対して回巻きされている。コイル51bは、径方向内側に向かうほど断面積が小さくなるように形成されている。コイル50aは、径方向外側に向かうほど断面積が小さくなるように形成されている。 For example, the coil 51b wound around the teeth 54a is arranged on the rotor 36 side (that is, radially outside) with respect to the coil 50a. The coil 51b is wound around the coil 50a and the tooth 54a. The coil 51b is formed so that the cross-sectional area decreases toward the inner side in the radial direction. The coil 50a is formed so that the cross-sectional area becomes smaller toward the outer side in the radial direction.
 例えば、ティース54cに回巻きされているコイル51aは、コイル50bに対してロータ36側(すなわち、径方向外側)に配置されている。コイル51aは、コイル50bおよびティース54cに対して回巻きされている。コイル51aは、径方向内側に向かうほど断面積が小さくなるように形成されている。そして、コイル50bは、径方向外側に向かうほど断面積が小さくなるように形成されている。 For example, the coil 51a wound around the teeth 54c is disposed on the rotor 36 side (that is, radially outside) with respect to the coil 50b. The coil 51a is wound around the coil 50b and the tooth 54c. The coil 51a is formed so that the cross-sectional area becomes smaller toward the inner side in the radial direction. And the coil 50b is formed so that a cross-sectional area may become small toward the radial direction outer side.
 (第2変形例)
 第2変形例では、図32に示すように、回転駆動用コイル(51a、51b、51c)は、ティース(54a・・・54l)毎に、ティースに沿うように回巻きされている。
(Second modification)
In the second modification, as shown in FIG. 32, the rotation drive coils (51a, 51b, 51c) are wound around the teeth (54a... 54l) along the teeth.
 具体的には、回転駆動用コイル(51a、51b、51c)は、ティース(54a・・・54l)毎に、ティースの延出部540に沿うように形成されているコイル部511と、ティースの先端円弧部541に沿うように形成されているコイル部510とから構成される。 Specifically, the rotation driving coils (51a, 51b, 51c) include a coil portion 511 formed along the tooth extending portion 540 for each tooth (54a. The coil portion 510 is formed along the tip arc portion 541.
 ティースの延出部540は、リング部53から径方向外側に延びるように形成されている部位である。ティースの先端円弧部541は、延出部の先端側から円周方向に延びるように形成されている部位である。 The extension part 540 of the teeth is a part formed so as to extend radially outward from the ring part 53. The tip arc portion 541 of the tooth is a portion formed so as to extend in the circumferential direction from the tip side of the extending portion.
 この場合、傾き制御用コイル(50a、50b、50c)は、ティース毎に、ティースの延出部540およびコイル部511に対して回巻きされている。これにより、回転駆動用コイルのうちコイル部510は、ティース毎に、傾き制御用コイルに対してロータ36側(すなわち、径方向外側)に配置されていることになる。これに加えて、回転駆動用コイルは、ティース毎に、傾き制御用コイルに対してティース側(すなわち、ステータコア52側)に配置されていることになる。 In this case, the inclination control coils (50a, 50b, 50c) are wound around the tooth extending portion 540 and the coil portion 511 for each tooth. Thereby, the coil part 510 among the coils for rotation driving is arranged on the rotor 36 side (that is, radially outside) with respect to the inclination control coil for each tooth. In addition, the rotation driving coil is disposed on the teeth side (that is, on the stator core 52 side) with respect to the inclination control coil for each tooth.
 例えば、ティース54aに回巻きされているコイル50a、51bは、次のようになっている。 For example, the coils 50a and 51b wound around the teeth 54a are as follows.
 コイル51bのコイル部510は、ティース54aの先端円弧部541に沿うように形成されている。コイル51bのコイル部511は、ティース54aの延出部540に沿うように形成されている。コイル50aは、ティース54aの延出部540およびコイル部511に対して回巻きされている。これにより、コイル51bのコイル部510は、コイル50aに対してロータ36側(すなわち、径方向外側)に配置されていることになる。これに加えて、コイル51bは、コイル50aに対してティース54a側(すなわち、ステータコア52側)に配置されていることになる。 The coil part 510 of the coil 51b is formed along the tip arc part 541 of the tooth 54a. The coil part 511 of the coil 51b is formed along the extended part 540 of the tooth 54a. The coil 50a is wound around the extension part 540 and the coil part 511 of the tooth 54a. Thereby, the coil part 510 of the coil 51b is arrange | positioned with respect to the coil 50a at the rotor 36 side (namely, radial direction outer side). In addition to this, the coil 51b is arranged on the teeth 54a side (that is, the stator core 52 side) with respect to the coil 50a.
 (第3変形例)
 第3変形例では、図33に示すように、回転駆動用コイル(51a、51b、51c)は、ティース(54a・・・54l)毎に、コイル部510、511以外に、コイル部512を備える構成になっている。
(Third Modification)
In the third modification, as shown in FIG. 33, the rotation drive coils (51a, 51b, 51c) include a coil unit 512 in addition to the coil units 510 and 511 for each tooth (54a... 54l). It is configured.
 ここで、コイル部510は、ティースの先端円弧部541に沿うように形成されている。コイル部511は、ティースの延出部540に沿うように形成されている。コイル部512は、リング部53の外周に沿うように形成されている。コイル部512は、傾き制御用コイルに対して径方向内側に配置されている。 Here, the coil part 510 is formed along the tip arc part 541 of the tooth. The coil part 511 is formed along the extension part 540 of the teeth. The coil part 512 is formed along the outer periphery of the ring part 53. The coil portion 512 is disposed radially inward with respect to the inclination control coil.
 この場合も、上記(b)と同様に、傾き制御用コイル(50a、50b、50c)は、ティース毎に、ティースの延出部540およびコイル部511に対して回巻きされている。これにより、回転駆動用コイルのうちコイル部510は、ティース毎に、傾き制御用コイルに対してロータ36側(すなわち、径方向外側)に配置されていることになる。これに加えて、回転駆動用コイルは、ティース毎に、傾き制御用コイルに対してステータコア52側に配置されている。 Also in this case, similarly to the above (b), the inclination control coils (50a, 50b, 50c) are wound around the tooth extending portion 540 and the coil portion 511 for each tooth. Thereby, the coil part 510 among the coils for rotation driving is arranged on the rotor 36 side (that is, radially outside) with respect to the inclination control coil for each tooth. In addition, the rotation driving coil is disposed on the stator core 52 side with respect to the inclination control coil for each tooth.
 例えば、ティース54aに回巻きされているコイル50a、51bは、次のようになっている。 For example, the coils 50a and 51b wound around the teeth 54a are as follows.
 コイル51bのコイル部510は、ティース54aの先端円弧部541に沿うように形成されている。コイル51bのコイル部511は、ティース54aの延出部540に沿うように形成されている。コイル50aは、ティース54aの延出部540およびコイル部511に対して回巻きされている。コイル部512は、リング部53の外周に沿うように形成されている。すなわち、コイル部512は、コイル50aに対して径方向内側に配置されている。 The coil part 510 of the coil 51b is formed along the tip arc part 541 of the tooth 54a. The coil part 511 of the coil 51b is formed along the extended part 540 of the tooth 54a. The coil 50a is wound around the extension part 540 and the coil part 511 of the tooth 54a. The coil part 512 is formed along the outer periphery of the ring part 53. That is, the coil part 512 is arrange | positioned at the radial inside with respect to the coil 50a.
 これにより、コイル51bのコイル部510は、コイル50aに対してロータ36側(すなわち、径方向外側)に配置されていることになる。これに加えて、コイル51bは、コイル50aに対してステータコア52側に配置されていることになる。 Thereby, the coil portion 510 of the coil 51b is arranged on the rotor 36 side (that is, radially outside) with respect to the coil 50a. In addition, the coil 51b is disposed on the stator core 52 side with respect to the coil 50a.
 (第4変形例)
 第4変形例では、図34に示すように、回転駆動用コイル(51a、51b、51c)と傾き制御用コイル(50a、50b、50c)とがティース(54a・・・54l)毎に、対になるようにティース(54a・・・54l)に巻かれている。
(Fourth modification)
In the fourth modified example, as shown in FIG. 34, the rotation drive coils (51a, 51b, 51c) and the inclination control coils (50a, 50b, 50c) are paired for each tooth (54a... 54l). It is wound around the teeth (54a ... 54l).
 例えば、ティース54bに回巻きされているコイル50c、51bは、次のようになっている。すなわち、コイル50c、51bは、対になるようにティース54bに巻かれている。コイル51bは、コイル50cに対してロータ36側(すなわち、径方向外側)に配置されている。 For example, the coils 50c and 51b wound around the teeth 54b are as follows. That is, the coils 50c and 51b are wound around the teeth 54b so as to be paired. The coil 51b is disposed on the rotor 36 side (that is, radially outside) with respect to the coil 50c.
 例えば、ティース54cに回巻きされているコイル50b、51aは、次のようになっている。すなわち、コイル50b、51aは、対になるようにティース54cに巻かれている。コイル51aは、コイル50bに対してロータ36側(すなわち、径方向外側)に配置されている。 For example, the coils 50b and 51a wound around the teeth 54c are as follows. That is, the coils 50b and 51a are wound around the teeth 54c so as to be paired. The coil 51a is disposed on the rotor 36 side (that is, radially outside) with respect to the coil 50b.
 (第5実施形態)
 上記第1実施形態では、機械的軸受けと磁気軸受けとによって回転軸30を回転自在に支持した例について説明したが、これに代えて、機械的軸受けと磁気軸受けのうち磁気軸受けのみによって回転軸30を回転自在に支持した例について説明する。
(Fifth embodiment)
In the first embodiment, the example in which the rotating shaft 30 is rotatably supported by the mechanical bearing and the magnetic bearing has been described, but instead, the rotating shaft 30 is constituted by only the magnetic bearing of the mechanical bearing and the magnetic bearing. An example in which is rotatably supported will be described.
 図35に本開示の第5実施形態のモータ制御システム1の全体構成を示す。図36は、図35中のXXXVI-XXXVI断面図である。図35において、図1と同一の符号は、同一のものを示し、その説明を省略する。 FIG. 35 shows the overall configuration of the motor control system 1 according to the fifth embodiment of the present disclosure. 36 is a sectional view taken along line XXXVI-XXXVI in FIG. 35, the same reference numerals as those in FIG. 1 denote the same components, and the description thereof is omitted.
 本実施形態のモータ制御システム1は、上記第1実施形態のモータ制御システム1から軸受け32を削除したものである。 The motor control system 1 of the present embodiment is obtained by deleting the bearing 32 from the motor control system 1 of the first embodiment.
 そこで、本実施形態のコイル50a、50b、50cは、複数の永久磁石61との間に電磁力を発生させて、回転軸30を浮上させて回転軸30を回転中心線M1を中心として回転自在に支持する磁気軸受けを構成する。 Therefore, the coils 50a, 50b, and 50c of the present embodiment generate electromagnetic force between the plurality of permanent magnets 61 so that the rotating shaft 30 is levitated and the rotating shaft 30 is rotatable about the rotation center line M1. To constitute a magnetic bearing to be supported.
 本実施形態のモータ制御システム1と上記第1実施形態のモータ制御システム1とでは、ホールセンサ37a、37b、37c、37dの位置が相違している。 The positions of the hall sensors 37a, 37b, 37c, and 37d are different between the motor control system 1 of the present embodiment and the motor control system 1 of the first embodiment.
 本実施形態のホールセンサ37a、37b、37c、37dは、複数の永久磁石61に対して回転中心線M1を中心とする径方向内側で、かつ回転軸30に対して回転中心線M1を中心とする径方向外側に位置する。 The hall sensors 37a, 37b, 37c, and 37d of the present embodiment are radially inward with respect to the plurality of permanent magnets 61 about the rotation center line M1 and centered on the rotation center line M1 with respect to the rotation shaft 30. It is located radially outside.
 つまり、ホールセンサ37a、37b、37c、37dは、複数の永久磁石61および回転軸30の間に配置されている。ホールセンサ37a、37b、37c、37dおよび回転軸30の間の距離は、ホールセンサ37a、37b、37c、37dおよび複数の永久磁石61の間の距離よりも大きい。 That is, the hall sensors 37a, 37b, 37c, and 37d are disposed between the plurality of permanent magnets 61 and the rotating shaft 30. The distance between the hall sensors 37a, 37b, 37c, 37d and the rotating shaft 30 is larger than the distance between the hall sensors 37a, 37b, 37c, 37d and the plurality of permanent magnets 61.
 本実施形態のホールセンサ37a、37b、37c、37dは、回転中心線M1に対して直交し、かつ重心Gaを含む断面に沿うように配置されている。重心Gaとは、モータ制御システム1の質量重心を意味する。 The hall sensors 37a, 37b, 37c, and 37d of the present embodiment are arranged so as to be orthogonal to the rotation center line M1 and along a cross section including the center of gravity Ga. The gravity center Ga means the mass gravity center of the motor control system 1.
 ホールセンサ37a、37b、37c、37dは、回転中心線M1を中心とする円周方向に等間隔で並べられている。ホールセンサ37a、37b、37c、37dは、それぞれ、複数の永久磁石61からの磁界に応じて出力信号を出力する。ホールセンサ37a、37b、37c、37dは、ティース54a、54b・・・54lのうち対応する2つのティースのそれぞれの先端側の間に分散して配置されている。 Hall sensors 37a, 37b, 37c, and 37d are arranged at equal intervals in the circumferential direction around the rotation center line M1. Each of the hall sensors 37a, 37b, 37c, and 37d outputs an output signal according to the magnetic field from the plurality of permanent magnets 61. Hall sensors 37a, 37b, 37c, and 37d are arranged in a distributed manner between the tip ends of two corresponding teeth among teeth 54a, 54b,.
 ホールセンサ37aは、ティース54a、54bの間に配置されている。ホールセンサ37bは、ティース54d、54eの間に配置されている。ホールセンサ37cは、ティース54g、54hの間に配置されている。ホールセンサ37dは、ティース54j、54kの間に配置されている。 The hall sensor 37a is disposed between the teeth 54a and 54b. The hall sensor 37b is disposed between the teeth 54d and 54e. The hall sensor 37c is disposed between the teeth 54g and 54h. The hall sensor 37d is disposed between the teeth 54j and 54k.
 このよう構成される本実施形態のモータ制御システム1において、制御回路73は、上記第1実施形態と同様、ホールセンサ37a、37b、37c、37dの出力信号に基づいて回転軸30の回転角度を求め、この求めた回転角度に基づいて回転制御(ステップ130)を実行する。これに並行して、制御回路73は、上記第1実施形態と同様、ホールセンサ37a、37b、37c、37dの出力信号に基づいてファン20のXY座標(X0、Y0)および傾きθを求め、この求めたXY座標(X0、Y0)および傾きθに基づいてコイル50a、50b、50cに流す電流を制御する。これにより、複数の永久磁石61との間に電磁力を発生させて、回転軸30を磁気浮上させて回転軸30を回転自在に支持する磁気軸受けを構成する。 In the motor control system 1 of this embodiment configured as described above, the control circuit 73 determines the rotation angle of the rotary shaft 30 based on the output signals of the hall sensors 37a, 37b, 37c, and 37d, as in the first embodiment. The rotation control (step 130) is executed based on the obtained rotation angle. In parallel with this, the control circuit 73 obtains the XY coordinates (X0, Y0) and the inclination θ of the fan 20 based on the output signals of the hall sensors 37a, 37b, 37c, 37d, as in the first embodiment. Based on the obtained XY coordinates (X0, Y0) and the inclination θ, the current flowing through the coils 50a, 50b, 50c is controlled. Thereby, an electromagnetic force is generated between the plurality of permanent magnets 61, and the rotary shaft 30 is magnetically levitated to constitute a magnetic bearing that rotatably supports the rotary shaft 30.
 以上説明した本実施形態によれば、コイル50a、50b、50cと複数の永久磁石61との間に電磁力を発生させて回転軸30を磁気浮上させて回転中心線M1を中心として回転軸30を回転自在に支持する磁気軸受けを構成する。このことにより、機械的軸受けを用いることなく、コイル50a、50b、50cと複数の永久磁石61とから構成される磁気軸受けによって、回転軸30を回転自在に支持することができる。したがって、上記第1実施形態と同様に、回転軸30を支持するのに要する消費電力を低減することができる。 According to the present embodiment described above, an electromagnetic force is generated between the coils 50a, 50b, 50c and the plurality of permanent magnets 61 so that the rotating shaft 30 is magnetically levitated and the rotating shaft 30 is centered on the rotation center line M1. A magnetic bearing that rotatably supports the motor is configured. As a result, the rotary shaft 30 can be rotatably supported by the magnetic bearing composed of the coils 50a, 50b, 50c and the plurality of permanent magnets 61 without using a mechanical bearing. Therefore, as in the first embodiment, the power consumption required to support the rotating shaft 30 can be reduced.
 特に、本実施形態のホールセンサ37a、37b、37c、37dは、回転中心線M1に対して直交し、かつ重心Gaを含む断面(以下、単に断面という)に沿うように配置されている。このため、コイル50a、50b、50cに流れる電流を制御することにより、モータ制御システム1のうち重心Gaを回転中心線M1に近づけるように制御することが可能になる。したがって、回転軸30を良好に磁気浮上させて回転軸30の軸線を回転中心線M1に近づけることができる。 In particular, the Hall sensors 37a, 37b, 37c, and 37d of the present embodiment are arranged so as to be perpendicular to the rotation center line M1 and along a cross section (hereinafter simply referred to as a cross section) including the center of gravity Ga. Therefore, by controlling the current flowing through the coils 50a, 50b, and 50c, it is possible to control the center of gravity Ga in the motor control system 1 so as to approach the rotation center line M1. Therefore, the rotating shaft 30 can be magnetically levitated satisfactorily and the axis of the rotating shaft 30 can be brought close to the rotation center line M1.
 本実施形態では、複数の永久磁石61は、回転軸30の回転力を発生させる役割以外に、回転軸30の回転角度やファン20のXY座標(X0、Y0)および傾きθを求める役割を果たしている。このため、回転軸30の回転力を発生させるための永久磁石と回転軸30の回転角度やファン20のXY座標(X0、Y0)および傾きθを求めるための永久磁石61とを別々に設ける場合に比べて、モータ制御システム1の体格を小型化することができる。 In the present embodiment, in addition to the role of generating the rotational force of the rotary shaft 30, the plurality of permanent magnets 61 play a role of obtaining the rotation angle of the rotary shaft 30, the XY coordinates (X0, Y0) and the inclination θ of the fan 20. Yes. For this reason, the permanent magnet for generating the rotational force of the rotating shaft 30 and the permanent magnet 61 for obtaining the rotation angle of the rotating shaft 30, the XY coordinates (X0, Y0) of the fan 20 and the inclination θ are separately provided. As compared with the above, the physique of the motor control system 1 can be reduced in size.
 本実施形態では、ホールセンサ37a、37b、37c、37dは、複数の永久磁石61および回転軸30の間に配置されている。ホールセンサ37a、37b、37c、37dおよび回転軸30の間の距離は、ホールセンサ37a、37b、37c、37dおよび複数の永久磁石61の間の距離よりも大きい。 In the present embodiment, the hall sensors 37a, 37b, 37c, and 37d are disposed between the plurality of permanent magnets 61 and the rotary shaft 30. The distance between the hall sensors 37a, 37b, 37c, 37d and the rotating shaft 30 is larger than the distance between the hall sensors 37a, 37b, 37c, 37d and the plurality of permanent magnets 61.
 つまり、ホールセンサ37a、37b、37c、37dは、複数の永久磁石61の近傍に配置されている。このため、ホールセンサ37a、37b、37c、37dは、複数の永久磁石61のからの磁束を良好に検出することができる。これにより、ホールセンサ37a、37b、37c、37dは、回転軸30の回転角度や位置ズレを精読良く検出することができる。 That is, the hall sensors 37a, 37b, 37c, and 37d are arranged in the vicinity of the plurality of permanent magnets 61. For this reason, the hall sensors 37a, 37b, 37c, and 37d can detect the magnetic flux from the plurality of permanent magnets 61 satisfactorily. Thereby, the hall sensors 37a, 37b, 37c, and 37d can detect the rotation angle and the positional deviation of the rotating shaft 30 with high accuracy.
 本実施形態のホールセンサ37a、37b、37c、37dは、ティース54a、54b・・・54lのうち対応する2つのティースのそれぞれの先端側の間に分散して配置されている。このため、モータ制御システム1の体格をより一層、小型化にすることができる。 The Hall sensors 37a, 37b, 37c, and 37d of the present embodiment are distributed between the respective distal ends of two corresponding teeth among the teeth 54a, 54b,. For this reason, the size of the motor control system 1 can be further reduced.
 (第5実施形態の第1変形例)
 本第1変形例のモータ制御システム1は、図37に示すように上記第1実施形態のモータ制御システム1に、ホールセンサ37e、37fを追加したものである。
(First Modification of Fifth Embodiment)
As shown in FIG. 37, the motor control system 1 of the first modification is obtained by adding Hall sensors 37e and 37f to the motor control system 1 of the first embodiment.
 本実施形態のモータ制御システム1では、制御回路73は、ホールセンサ37a、37b、37c、37dの出力信号に基づいてファン20のXY座標(X0、Y0)を算出する。制御回路73は、ホールセンサ37d、37e、37fの出力信号に基づいて回転軸30の回転角度を求める。 In the motor control system 1 of the present embodiment, the control circuit 73 calculates the XY coordinates (X0, Y0) of the fan 20 based on the output signals of the hall sensors 37a, 37b, 37c, 37d. The control circuit 73 obtains the rotation angle of the rotary shaft 30 based on the output signals of the hall sensors 37d, 37e, and 37f.
 本実施形態のホールセンサ37eは、ティース54b、54cのそれぞれの先端側の間に配置されている。ホールセンサ37eは、ティース54f、54gのそれぞれの先端側の間に配置されている。ホールセンサ37dは、ティース54j、54kのそれぞれの先端側の間に配置されている。ホールセンサ37d、37e、37fは、回転中心線M1を中心とする円周方向に等間隔で並べられている。 The hall sensor 37e of the present embodiment is disposed between the tip ends of the teeth 54b and 54c. The hall sensor 37e is disposed between the tip ends of the teeth 54f and 54g. The hall sensor 37d is disposed between the tip ends of the teeth 54j and 54k. The hall sensors 37d, 37e, and 37f are arranged at equal intervals in the circumferential direction around the rotation center line M1.
 本実施形態のホールセンサ37a、37b、37c、37d37e、37fは、回転中心線M1に対して直交し、かつ重心Gaを含む断面に沿うように配置されている。 The hall sensors 37a, 37b, 37c, 37d37e, and 37f of the present embodiment are arranged so as to be orthogonal to the rotation center line M1 and along a cross section that includes the center of gravity Ga.
 本実施形態では、ホールセンサ37a、37b、37c、37d、37e、37fは、複数の永久磁石61および回転軸30の間に配置されている。ホールセンサ37a、37b、37c、37d、37e、37fおよび回転軸30の間の距離は、ホールセンサ37a、37b、37c、37d、37e、37fおよび複数の永久磁石61の間の距離よりも大きい。 In this embodiment, the hall sensors 37a, 37b, 37c, 37d, 37e, and 37f are disposed between the plurality of permanent magnets 61 and the rotary shaft 30. The distance between the hall sensors 37a, 37b, 37c, 37d, 37e, 37f and the rotary shaft 30 is larger than the distance between the hall sensors 37a, 37b, 37c, 37d, 37e, 37f and the plurality of permanent magnets 61.
 つまり、ホールセンサ37a、37b、37c、37d、37e、37fは、複数の永久磁石61の近傍に配置されている。このため、ホールセンサ37a、37b、37c、37d、37e、37fは、複数の永久磁石61のからの磁束を良好に検出することができる。これにより、ホールセンサ37a、37b、37c、37dは、回転軸30の回転角度や位置ズレを精読良く検出することができる。 That is, the hall sensors 37a, 37b, 37c, 37d, 37e, and 37f are arranged in the vicinity of the plurality of permanent magnets 61. For this reason, the hall sensors 37a, 37b, 37c, 37d, 37e, and 37f can detect the magnetic flux from the plurality of permanent magnets 61 satisfactorily. Thereby, the hall sensors 37a, 37b, 37c, and 37d can detect the rotation angle and the positional deviation of the rotating shaft 30 with high accuracy.
 (第5実施形態の第2変形例)
 本第1変形例のモータ制御システム1は、上記第5実施形態のモータ制御システム1に軸受け32を追加したものである。図38に本第1変形例のモータ制御システム1の全体構成を示す。軸受け32は、センターピース31により支持されて、回転軸30を回転自在に支持する。
(Second Modification of Fifth Embodiment)
The motor control system 1 of the first modification is obtained by adding a bearing 32 to the motor control system 1 of the fifth embodiment. FIG. 38 shows the overall configuration of the motor control system 1 of the first modification. The bearing 32 is supported by the center piece 31 and rotatably supports the rotating shaft 30.
 (第6実施形態)
 上記第1実施形態では、ステータ35の径方向外側にロータ36の永久磁石61を配置した例について説明したが、これに代えて、ステータ35の軸線方向他方側にロータ36の永久磁石61を配置したモータ制御システム1について説明する。
(Sixth embodiment)
In the first embodiment, the example in which the permanent magnet 61 of the rotor 36 is arranged on the radially outer side of the stator 35 has been described. Instead, the permanent magnet 61 of the rotor 36 is arranged on the other side in the axial direction of the stator 35. The motor control system 1 will be described.
 図39に本開示のモータ制御システム1の第6実施形態の全体構成を示す。図40は図39中のXXXX-XXXX断面図である。図40は図39中のXXXXI-XXXXI断面図である。図39において、図1と同一の符号は、同一のものを示し、その説明を省略する。 FIG. 39 shows the overall configuration of the sixth embodiment of the motor control system 1 of the present disclosure. 40 is a cross-sectional view taken along the line XXXX-XXXX in FIG. 40 is a sectional view taken along line XXXXI-XXXXI in FIG. 39, the same reference numerals as those in FIG. 1 denote the same components, and the description thereof is omitted.
 本実施形態のモータ制御システム1では、ロータ36は、ロータケース60、複数の永久磁石61a、および複数の永久磁石61bを備える。 In the motor control system 1 of the present embodiment, the rotor 36 includes a rotor case 60, a plurality of permanent magnets 61a, and a plurality of permanent magnets 61b.
 ロータケース60は、図39に示すように、回転軸30の軸線を中心とする円盤状に形成されている。ロータケース60は、複数の永久磁石61a、および複数の永久磁石61bをそれぞれ支持する。複数の永久磁石61aおよび複数の永久磁石61bは、図1の複数の永久磁石61に代わりに採用されている。複数の永久磁石61aおよび複数の永久磁石61bは、ロータケース60に対して軸線方向一方側に配置されている。 As shown in FIG. 39, the rotor case 60 is formed in a disc shape with the axis of the rotary shaft 30 as the center. The rotor case 60 supports a plurality of permanent magnets 61a and a plurality of permanent magnets 61b, respectively. The plurality of permanent magnets 61a and the plurality of permanent magnets 61b are employed instead of the plurality of permanent magnets 61 in FIG. The plurality of permanent magnets 61 a and the plurality of permanent magnets 61 b are arranged on one side in the axial direction with respect to the rotor case 60.
 複数の永久磁石61aは、それぞれ、回転軸30の軸線を中心とする円周方向に並べられている。複数の永久磁石61bは、それぞれ、回転中心線M1を中心とする円周方向に並べられている。複数の永久磁石61aは、複数の永久磁石61bに対して回転軸30の軸線を中心とする径方向内側に配置されている。 The plurality of permanent magnets 61a are arranged in a circumferential direction around the axis of the rotating shaft 30, respectively. The plurality of permanent magnets 61b are arranged in a circumferential direction around the rotation center line M1. The plurality of permanent magnets 61a are disposed radially inward with respect to the axis of the rotation shaft 30 with respect to the plurality of permanent magnets 61b.
 複数の永久磁石61aは、それぞれの磁極が軸線方向一方側に向くように配置されている。複数の永久磁石61aのそれぞれの磁極は、S極、およびN極が円周方向で交互に並ぶように複数の永久磁石61aが配置されている。本実施形態では、12個の永久磁石61aが配置されている。 The plurality of permanent magnets 61a are arranged so that each magnetic pole faces one side in the axial direction. The plurality of permanent magnets 61a is arranged so that the magnetic poles of the plurality of permanent magnets 61a are alternately arranged in the circumferential direction with S and N poles. In the present embodiment, twelve permanent magnets 61a are arranged.
 複数の永久磁石61bは、それぞれの磁極が軸線方向一方側に向くように配置されている。複数の永久磁石61bのそれぞれの磁極は、S極、およびN極が円周方向で交互に並ぶように複数の永久磁石61bが配置されている。本実施形態では、12個の永久磁石61bが配置されている。 The plurality of permanent magnets 61b are arranged so that each magnetic pole faces one side in the axial direction. The plurality of permanent magnets 61b are arranged so that the magnetic poles of the plurality of permanent magnets 61b are alternately arranged with S poles and N poles in the circumferential direction. In the present embodiment, twelve permanent magnets 61b are arranged.
 本実施形態のステータ35は、図39および図41に示すように、コイル50a、50b、50c、コイル51a、51b、51c、およびステータコア52Aを備える。 The stator 35 of this embodiment includes coils 50a, 50b, 50c, coils 51a, 51b, 51c, and a stator core 52A, as shown in FIGS. 39 and 41.
 ステータコア52Aは、図1のステータコア52に代えて採用されている。ステータコア52Aは、ティース55a、55b、55c、55d、55e、55f、55g、55h、55i、55j、55k、55l、およびティース56a、56b、56c、56d、56e、56f、56g、56h、56i、56j、56k、56lを備える。 The stator core 52A is employed instead of the stator core 52 of FIG. The stator core 52A includes teeth 55a, 55b, 55c, 55d, 55e, 55f, 55g, 55h, 55i, 55j, 55k, 55l, and teeth 56a, 56b, 56c, 56d, 56e, 56f, 56g, 56h, 56i, 56j. , 56k, 56l.
 ティース56a、56b・・・56lは、それぞれの軸線方向が回転中心線M1に平行なる円柱状に形成されている第1ステータコアである。ティース55a、55b・・・55lは、回転軸30の回転中心線M1を中心とする円周方向に同一間隔で並べられている第2ステータコアである。ティース56a、56b・・・56lは、ティース55a、55b・・・55lに対して回転軸30の軸線を中心とする径方向内側に配置されている。 Teeth 56a, 56b,..., 56l are first stator cores formed in a columnar shape in which the respective axial directions are parallel to the rotation center line M1. The teeth 55a, 55b,... 55l are second stator cores arranged at the same interval in the circumferential direction around the rotation center line M1 of the rotation shaft 30. The teeth 56a, 56b,... 56l are disposed radially inward with respect to the teeth 55a, 55b,.
 ティース55a、55b・・・55lに対して軸線方向他方側に、複数の永久磁石61bに配置されている。ティース56a、56b・・・56lに対して軸線方向他方側に、複数の永久磁石61aに配置されている。 The teeth 55a, 55b,... 55l are arranged on the other side in the axial direction on the plurality of permanent magnets 61b. It arrange | positions at the some permanent magnet 61a in the axial direction other side with respect to the teeth 56a, 56b ... 56l.
 ティース56a、56b・・・56lは、ティース55a、55b・・・55lに対して径方向内側に配置されている。ティース56a、56b・・・56lおよびティース55a、55b・・・55lは、センターピース31によって支持されている。 The teeth 56a, 56b,... 56l are arranged on the radially inner side with respect to the teeth 55a, 55b,. The teeth 56a, 56b ... 56l and the teeth 55a, 55b ... 55l are supported by the center piece 31.
 本実施形態では、ティース56a、56b・・・56lは、コイル51a、51b、51cから発生される磁束を通過させるものである。ティース55a、55b・・・55lは、コイル50a、50b、50cから発生される磁束を通過させるものである。 In the present embodiment, the teeth 56a, 56b,... 56l pass magnetic fluxes generated from the coils 51a, 51b, 51c. The teeth 55a, 55b,... 55l allow the magnetic flux generated from the coils 50a, 50b, 50c to pass therethrough.
 ここで、ティース56a、56b・・・56lとティース55a、55b・・・55lとは、互いに独立するように構成されている。このため、コイル51a、51b、51cからの磁束を通過させるティース56a、56b・・・56lと、コイル50a、50b、50cから発生される磁束を通過させるティース55a、55b・・・55lとが、互いに分離されている。 Here, the teeth 56a, 56b ... 56l and the teeth 55a, 55b ... 55l are configured to be independent from each other. Therefore, the teeth 56a, 56b,... 56l that allow the magnetic flux from the coils 51a, 51b, 51c to pass through, and the teeth 55a, 55b,... 55l that allow the magnetic flux generated from the coils 50a, 50b, 50c to pass through, Are separated from each other.
 コイル51aは、U2相コイルであって、図41に示すように、ティース56c、56d、56i、56jに回巻きされている。ティース56c、56dとティース56i、56jとは、回転軸30の回転中心線M1を中心として角度180度オフセットして配置されている。 The coil 51a is a U2 phase coil, and is wound around teeth 56c, 56d, 56i, and 56j as shown in FIG. The teeth 56c, 56d and the teeth 56i, 56j are arranged with an angle of 180 degrees offset about the rotation center line M1 of the rotation shaft 30.
 ここで、ティース56cに回巻きされるコイル51aとティース56dに回巻きされるコイル51aとは、異なる方向に巻かれている。ティース56iに巻回巻きされるコイル51aとティース56jに回巻きされるコイル51aとは、異なる方向に巻かれている。 Here, the coil 51a wound around the tooth 56c and the coil 51a wound around the tooth 56d are wound in different directions. The coil 51a wound around the tooth 56i and the coil 51a wound around the tooth 56j are wound in different directions.
 コイル51bは、V2相コイルであって、ティース56a、56b、56g、56hに回巻きされている。ティース56a、56bとティース56g、56hとは、回転軸30の回転中心線M1を中心として角度180度オフセットして配置されている。 The coil 51b is a V2-phase coil and is wound around the teeth 56a, 56b, 56g, and 56h. The teeth 56a, 56b and the teeth 56g, 56h are arranged with an angle of 180 degrees offset about the rotation center line M1 of the rotation shaft 30.
 ここで、ティース56aに回巻きされているコイル51bとティース56bに回巻きされているコイル51bとは、異なる方向に巻かれている。ティース56gに回巻きされているコイル51bとティース56hに回巻きされているコイル51bとは、異なる方向に巻かれている。 Here, the coil 51b wound around the tooth 56a and the coil 51b wound around the tooth 56b are wound in different directions. The coil 51b wound around the tooth 56g and the coil 51b wound around the tooth 56h are wound in different directions.
 コイル51cは、W2相コイルであって、ティース56e、56f、56k、56lに回巻きされている。ティース56e、56fとティース56k、56lとは、回転軸30の回転中心線M1を中心として角度180度オフセットして配置されている。 The coil 51c is a W2 phase coil and is wound around the teeth 56e, 56f, 56k, and 56l. The teeth 56e, 56f and the teeth 56k, 56l are arranged with an angle of 180 degrees offset about the rotation center line M1 of the rotation shaft 30.
 ここで、ティース56eに回巻きされているコイル51cとティース56fに回巻きされているコイル51cとは、異なる方向に巻かれている。ティース56kに回巻きされているコイル51cとティース56lに回巻きされているコイル51cと異なる方向に巻かれている。 Here, the coil 51c wound around the tooth 56e and the coil 51c wound around the tooth 56f are wound in different directions. It is wound in a different direction from the coil 51c wound around the tooth 56k and the coil 51c wound around the tooth 56l.
 コイル50aは、U1相コイルであって、ティース55a、55d、55g、55jに回巻きされている。ティース55a、55d、55g、55jは、回転軸30の回転中心線M1を中心とする円周方向に同一間隔で並べられている。 The coil 50a is a U1-phase coil and is wound around the teeth 55a, 55d, 55g, and 55j. The teeth 55a, 55d, 55g, and 55j are arranged at equal intervals in the circumferential direction around the rotation center line M1 of the rotation shaft 30.
 コイル50bは、V1相コイルであって、ティース55c、55f、55i、55lに、回巻きされている。ティース55c、55f、55i、55lは、回転軸30の回転中心線M1を中心とする円周方向に同一間隔で並べられている。 The coil 50b is a V1-phase coil and is wound around the teeth 55c, 55f, 55i, and 55l. The teeth 55c, 55f, 55i, and 55l are arranged at equal intervals in the circumferential direction around the rotation center line M1 of the rotation shaft 30.
 コイル50cは、W1相コイルであって、ティース55b、55e、55h、55kに、回巻きされている。ティース55b、55e、55h、55kは、回転軸30の回転中心線M1を中心とする円周方向に同一間隔で並べられている。 The coil 50c is a W1-phase coil, and is wound around the teeth 55b, 55e, 55h, and 55k. The teeth 55b, 55e, 55h, and 55k are arranged at the same interval in the circumferential direction around the rotation center line M1 of the rotation shaft 30.
 なお、コイル50aはU1相コイルを構成し、コイル50bはV1相コイルを構成し、コイル50cはW1相コイルを構成している。 Note that the coil 50a constitutes a U1-phase coil, the coil 50b constitutes a V1-phase coil, and the coil 50c constitutes a W1-phase coil.
 このように構成される本実施形態では、複数の永久磁石61bには、コイル50a、50b、50cから回転磁界に同期して回転軸30を回転させる回転力が発生する。コイル51a、51b、51cは、複数の永久磁石61aとの間で作用する電磁力によって回転軸30を回転自在に支持する。 In the present embodiment configured as described above, a rotational force that rotates the rotating shaft 30 in synchronization with the rotating magnetic field is generated from the coils 50a, 50b, and 50c in the plurality of permanent magnets 61b. The coils 51a, 51b, 51c rotatably support the rotary shaft 30 by electromagnetic force acting between the plurality of permanent magnets 61a.
 本実施形態では、コイル51a、51b、51cからの磁束を通過させるティース56a、56b・・・56lと、コイル50a、50b、50cから発生される磁束を通過させるティース55a、55b・・・55lとが互いに分離されている。このため、負荷トルクが大きく回転用巻線であるコイル51a、51b、51cを流れる電流が過大になった場合に、ステータコアにおいて磁束が飽和し回転軸30の支持力が低下する事態を避けることができる。そのため、負荷トルクが大きくなった場合にも、安定制御が可能となり、振動が増加することは無い。 In this embodiment, teeth 56a, 56b,... 56l that allow magnetic fluxes from the coils 51a, 51b, 51c to pass through, and teeth 55a, 55b,... 55l that allow magnetic fluxes generated from the coils 50a, 50b, and 50c to pass through. Are separated from each other. For this reason, when the load torque is large and the current flowing through the coils 51a, 51b, 51c, which are the windings for rotation, becomes excessive, it is possible to avoid the situation where the magnetic flux is saturated in the stator core and the supporting force of the rotating shaft 30 is reduced. it can. For this reason, even when the load torque becomes large, stable control is possible and vibration does not increase.
 図42において、縦軸が支持力であり、横軸が回転軸30の回転角度である。図42中Ebが本実施形態のモータ制御システム1の支持力である。図42中Eaが共通のステータコアにコイル50a、50b、50cとコイル51a、51b、51cとを回巻きした従来型のモータ制御システムの支持力である。図42から分かるように、本実施形態のモータ制御システム1の支持力が安定している。 42, the vertical axis is the support force, and the horizontal axis is the rotation angle of the rotary shaft 30. In FIG. 42, Eb is the support force of the motor control system 1 of this embodiment. In FIG. 42, Ea is a supporting force of a conventional motor control system in which coils 50a, 50b, and 50c and coils 51a, 51b, and 51c are wound around a common stator core. As can be seen from FIG. 42, the support force of the motor control system 1 of the present embodiment is stable.
 また、本実施形態のモータ制御システム1は、複数の永久磁石61aおよび複数の永久磁石61bに対してステータコア52が回転軸30の軸線方向に隙間を介して配置されているアキシャルギャップ型モータを構成している。回転軸30の支持力を発生させるコイル50a、50b、50cがコイル51a、51b、51cに対して径方向外側に配置されている。 Further, the motor control system 1 of the present embodiment constitutes an axial gap type motor in which the stator core 52 is disposed with a gap in the axial direction of the rotary shaft 30 with respect to the plurality of permanent magnets 61a and the plurality of permanent magnets 61b. is doing. Coils 50a, 50b, and 50c that generate the supporting force of the rotating shaft 30 are disposed radially outside the coils 51a, 51b, and 51c.
 そのため、ファン20のアンバランスによる遠心力よって回転軸30の傾きが生じた場合には、回転軸30の傾きに対する復元モーメントでは、従来のラジアルギャップ型モータに比べてスパンが長くなる。スパンとは、回転中心線M1とコイル50a、50b、50cとの間の距離である。このため、回転軸30の支持力は小さいもので良く、コイル50a、50b、50cに流すべき支持電流を低減できる。そのため、コイル50a、50b、50cを小型化できる。 Therefore, when the tilt of the rotating shaft 30 is caused by the centrifugal force due to the unbalance of the fan 20, the restoring moment with respect to the tilt of the rotating shaft 30 has a longer span than the conventional radial gap type motor. The span is a distance between the rotation center line M1 and the coils 50a, 50b, and 50c. For this reason, the supporting force of the rotating shaft 30 may be small, and the supporting current to be passed through the coils 50a, 50b, 50c can be reduced. Therefore, the coils 50a, 50b, and 50c can be reduced in size.
 更に、アキシャルギャップ型モータの利点として、回転軸30の軸線方向の長さを短くできるためモータ扁平化に有利であり、送風機等にて用いる場合に、レイアウトの自由度が増し、装置全体の小型化に有利である。 Further, as an advantage of the axial gap type motor, the axial length of the rotary shaft 30 can be shortened, which is advantageous for flattening the motor. When used in a blower or the like, the degree of freedom in layout is increased and the overall size of the apparatus is reduced. It is advantageous to make.
 (第7実施形態)
 本第7実施形態のモータ制御システム1では、上記第1実施形態のモータ制御システム1において、コイル50a、50b、50cに流れる電流を独立して制御する例について説明する。
(Seventh embodiment)
In the motor control system 1 of the seventh embodiment, an example in which the current flowing through the coils 50a, 50b, and 50c is independently controlled in the motor control system 1 of the first embodiment will be described.
 図43に本実施形態の電子制御装置70の全体構成を示す。図43において、図8と同一符号は、同一のものを示す。 FIG. 43 shows the overall configuration of the electronic control unit 70 of the present embodiment. 43, the same reference numerals as those in FIG. 8 denote the same components.
 本実施形態の電子制御装置70は、上記第1実施形態の電子制御装置70において、インバータ回路71に代わるインバータ回路71A、71B、71Cを備える。 The electronic control device 70 of the present embodiment includes inverter circuits 71A, 71B, 71C instead of the inverter circuit 71 in the electronic control device 70 of the first embodiment.
 インバータ回路71Aは、トランジスタSW1、SW2、SW3、SW4から構成されるブリッジ回路である。トランジスタSW1、SW2の共通接続端子T1とトランジスタSW3、SW4の共通接続端子T2との間にコイル50aが接続されている。 The inverter circuit 71A is a bridge circuit composed of transistors SW1, SW2, SW3, and SW4. A coil 50a is connected between the common connection terminal T1 of the transistors SW1 and SW2 and the common connection terminal T2 of the transistors SW3 and SW4.
 インバータ回路71Bは、トランジスタSW5、SW6、SW7、SW8から構成されるブリッジ回路である。トランジスタSW5、SW6の共通接続端子T3とトランジスタSW7、SW8の共通接続端子T4との間にコイル50bが接続されている。 The inverter circuit 71B is a bridge circuit including transistors SW5, SW6, SW7, and SW8. A coil 50b is connected between the common connection terminal T3 of the transistors SW5 and SW6 and the common connection terminal T4 of the transistors SW7 and SW8.
 インバータ回路71Cは、トランジスタSW9、SW10、SW11、SW12から構成されるブリッジ回路である。トランジスタSW9、SW10の共通接続端子T5とトランジスタSW11、SW12の共通接続端子T6との間にコイル50cが接続されている。 The inverter circuit 71C is a bridge circuit including transistors SW9, SW10, SW11, and SW12. A coil 50c is connected between the common connection terminal T5 of the transistors SW9 and SW10 and the common connection terminal T6 of the transistors SW11 and SW12.
 制御回路73は、トランジスタSW1、SW2、SW3、SW4を制御することにより、コイル50aに流れる電流値、およびコイル50aに流れる電流の向きを制御する。 The control circuit 73 controls the values of the current flowing through the coil 50a and the direction of the current flowing through the coil 50a by controlling the transistors SW1, SW2, SW3, and SW4.
 制御回路73は、トランジスタSW5、SW6、SW7、SW8を制御することにより、コイル50bに流れる電流値、およびコイル50bに流れる電流の向きを制御する。 The control circuit 73 controls the values of the current flowing through the coil 50b and the direction of the current flowing through the coil 50b by controlling the transistors SW5, SW6, SW7, and SW8.
 制御回路73は、トランジスタSW9、SW10、SW11、SW12を制御することにより、コイル50cに流れる電流値、およびコイル50cに流れる電流の向きを制御する。 The control circuit 73 controls the values of the current flowing through the coil 50c and the direction of the current flowing through the coil 50c by controlling the transistors SW9, SW10, SW11, and SW12.
 このように制御回路73がトランジスタSW1、SW2・・・SW11、SW12を制御することにより、コイル50a、50b、50cに流れる電流をコイル毎に独立して制御する。 Thus, the control circuit 73 controls the transistors SW1, SW2,... SW11, SW12, thereby independently controlling the current flowing through the coils 50a, 50b, 50c for each coil.
 以上により、コイル50aおよび複数の永久磁石61との間の電磁力を電磁力fu2(図44参照)とし、コイル50bおよび複数の永久磁石61との間の電磁力を電磁力fv2とし、コイル50cおよび複数の永久磁石61との間の電磁力を電磁力fw2とする。この際に、電磁力fu2、電磁力fv2、および電磁力fw2を独立して制御することができる。 Thus, the electromagnetic force between the coil 50a and the plurality of permanent magnets 61 is the electromagnetic force fu2 (see FIG. 44), the electromagnetic force between the coil 50b and the plurality of permanent magnets 61 is the electromagnetic force fv2, and the coil 50c The electromagnetic force between the plurality of permanent magnets 61 is defined as an electromagnetic force fw2. At this time, the electromagnetic force fu2, the electromagnetic force fv2, and the electromagnetic force fw2 can be controlled independently.
 このよう構成される本実施形態では、制御回路73の支持制御(ステップ120)を次のように実施することができる。以下、本実施形態の支持制御(ステップ120)について説明する。図45は、制御回路73の支持制御の詳細を示すフローチャートである。 In the present embodiment configured as described above, the support control (step 120) of the control circuit 73 can be performed as follows. Hereinafter, the support control (step 120) of this embodiment will be described. FIG. 45 is a flowchart showing details of support control of the control circuit 73.
 まず、ステップ123において、回転軸30の回転速度が高速であるか否かを判定する。 First, in step 123, it is determined whether or not the rotational speed of the rotary shaft 30 is high.
 具体的には、ホールセンサ37aの出力信号Haとホールセンサ37cの出力信号Hcとの差分(Ha-Hc)に基づいて、回転軸30の回転速度を算出する。この算出した回転速度(以下、算出回転速度NSという)が所定速度以上であるか否かを判定する。 Specifically, the rotational speed of the rotating shaft 30 is calculated based on the difference (Ha−Hc) between the output signal Ha of the hall sensor 37a and the output signal Hc of the hall sensor 37c. It is determined whether or not the calculated rotation speed (hereinafter referred to as calculated rotation speed NS) is equal to or higher than a predetermined speed.
 算出回転速度NSが所定速度以上であるとき、回転軸30の回転速度が高速であるとしてステップ123でYESと判定する。この場合、回転中心線S1から回転軸30を傾くことを妨げる復元力Fbをコイル50a、50b、50cおよび複数の永久磁石61の間で発生させるために、コイル50a、50b、50cに出力するべき電流を算出する(ステップ126A)。 When the calculated rotational speed NS is equal to or higher than the predetermined speed, YES is determined in Step 123 as the rotational speed of the rotary shaft 30 is high. In this case, in order to generate a restoring force Fb that prevents the rotation shaft 30 from being inclined from the rotation center line S1 between the coils 50a, 50b, and 50c and the plurality of permanent magnets 61, it should be output to the coils 50a, 50b, and 50c. The current is calculated (step 126A).
 一方、算出回転速度NSが所定速度未満であるとき、回転軸30の回転速度が低速であるとしてステップ123でNOと判定する。この場合、回転中心線S1から回転軸30を傾くことを妨げる復元力Fbをコイル50a、50b、50cおよび複数の永久磁石61の間で発生させるために、コイル50a、50b、50cに出力するべき電流を算出する(ステップ124A)。 On the other hand, when the calculated rotational speed NS is less than the predetermined speed, NO is determined in step 123 as the rotational speed of the rotary shaft 30 is low. In this case, in order to generate a restoring force Fb that prevents the rotation shaft 30 from being inclined from the rotation center line S1 between the coils 50a, 50b, and 50c and the plurality of permanent magnets 61, it should be output to the coils 50a, 50b, and 50c. The current is calculated (step 124A).
 このようにステップ124A、126Aで算出した電流をコイルに出力するために、トランジスタSW1、SW2・・・SW12を制御する。これにより、インバータ回路71A、71B、71Cからコイル50a、50b、50cに電流が出力される(ステップ125)。このため、コイル50a、50b、50cおよび複数の永久磁石61の間に吸引力としての電磁力が発生する。 In this way, the transistors SW1, SW2,... SW12 are controlled in order to output the current calculated in steps 124A and 126A to the coil. As a result, current is output from the inverter circuits 71A, 71B, 71C to the coils 50a, 50b, 50c (step 125). For this reason, an electromagnetic force as an attractive force is generated between the coils 50 a, 50 b, 50 c and the plurality of permanent magnets 61.
 上記ステップ124A、126Aにおいて、インバータ回路71A、71B、71Cによってコイル50a、50b、50cにそれぞれ同一値の電流を流す。このため、電磁力fu2の大きさと、電磁力fv2の大きさの大きさと、電磁力fw2の大きさとがそれぞれ同一になる。 In the above steps 124A and 126A, the inverter circuits 71A, 71B and 71C cause the currents of the same value to flow through the coils 50a, 50b and 50c, respectively. For this reason, the magnitude of the electromagnetic force fu2, the magnitude of the magnitude of the electromagnetic force fv2, and the magnitude of the electromagnetic force fw2 are the same.
 このとき、電磁力fu2の方向、電磁力fv2の方向、電磁力fw2の方向は、回転軸30の回転中心を中心とする円周方向に同一間隔で並べられる。このため、電磁力fu2、電磁力fv2、および電磁力fw2が打ち消される。したがって、回転軸30の軸線S2が回転中心線S1に一致した状態で、回転軸30が回転する。 At this time, the direction of the electromagnetic force fu2, the direction of the electromagnetic force fv2, and the direction of the electromagnetic force fw2 are arranged at the same interval in the circumferential direction around the rotation center of the rotary shaft 30. For this reason, the electromagnetic force fu2, the electromagnetic force fv2, and the electromagnetic force fw2 are canceled out. Therefore, the rotation shaft 30 rotates in a state where the axis S2 of the rotation shaft 30 coincides with the rotation center line S1.
 このとき、外乱によって、回転軸30のうち軸受け32側を支点として回転軸30の回転中心線S1から回転軸30の軸線S2が傾いた場合に、回転中心線S1から回転軸30が傾く方向の回転軸30の速度をVとし、減衰係数をCとすると「V×C」から定める復元力Fbが発生する。これにより、外乱が生じても、回転軸30の回転中心線S1から回転軸30の軸線S2が傾くことが妨げられる。 At this time, when the axis S2 of the rotary shaft 30 tilts from the rotation center line S1 of the rotary shaft 30 with the bearing 32 side of the rotary shaft 30 as a fulcrum due to disturbance, the rotary shaft 30 in the direction in which the rotary shaft 30 tilts from the rotary center line S1. When the speed of the rotating shaft 30 is V and the damping coefficient is C, a restoring force Fb determined from “V × C” is generated. Thereby, even if a disturbance arises, it is prevented that the axis line S2 of the rotating shaft 30 inclines from the rotating center line S1 of the rotating shaft 30.
 ここで、回転軸30の回転速度が高くなる程、回転軸30の軸線S2を回転中心線S1に近づけるのに必要な復元力Fbは、小さくなる。すなわち、回転軸30が高速で回転しているときには、回転軸30が低速で回転しているときに比べて、上記必要な復元力Fbは、小さくなる。 Here, the higher the rotational speed of the rotating shaft 30, the smaller the restoring force Fb required to bring the axis S2 of the rotating shaft 30 closer to the rotation center line S1. That is, when the rotating shaft 30 rotates at a high speed, the necessary restoring force Fb is smaller than when the rotating shaft 30 rotates at a low speed.
 そこで、回転軸30が高速で回転しているとしてステップ123でYESと判定したときには、コイル50a、50b、50cに出力するべき電流を小さくする(ステップ126A)。一方、回転軸30が低速で回転しているとしてステップ123でNOと判定したときには、コイル50a、50b、50cに出力するべき電流を大きくする(ステップ124A)。つまり、回転軸30が高速で回転しているときには、回転軸30が低速で回転しているときに比べて、コイル50a、50b、50cに流れる電流を小さくすることができる。よって、回転軸30が高速で回転しているときには、回転軸30が低速で回転しているときに比べて、復元力Fb(=V×C)を規定する減衰係数Cを小さくすることができる。 Therefore, when it is determined YES in step 123 because the rotating shaft 30 is rotating at high speed, the current to be output to the coils 50a, 50b, 50c is reduced (step 126A). On the other hand, when it is determined NO in step 123 because the rotating shaft 30 is rotating at a low speed, the current to be output to the coils 50a, 50b, and 50c is increased (step 124A). That is, when the rotary shaft 30 rotates at a high speed, the current flowing through the coils 50a, 50b, and 50c can be reduced compared to when the rotary shaft 30 rotates at a low speed. Therefore, when the rotating shaft 30 rotates at a high speed, the damping coefficient C that defines the restoring force Fb (= V × C) can be made smaller than when the rotating shaft 30 rotates at a low speed. .
 以上説明した本実施形態によれば、電子制御装置70は、インバータ回路71A、71B、71Cを制御して、インバータ回路71A、71B、71Cからコイル50a、50b、50cに同一値の電流を出力する。このため、回転中心線S1から回転軸30が傾く方向の速度をVとし、減衰係数をCとすると、「V×C」から定める復元力Fbを複数の永久磁石61およびコイル50a、50b、50cの間に発生させることができる。これにより、外乱が生じても、回転軸30の回転中心線S1から回転軸30の軸線S2が傾くことが妨げられる。 According to the present embodiment described above, the electronic control unit 70 controls the inverter circuits 71A, 71B, 71C and outputs currents of the same value from the inverter circuits 71A, 71B, 71C to the coils 50a, 50b, 50c. . For this reason, if the speed in the direction in which the rotation axis 30 tilts from the rotation center line S1 is V and the damping coefficient is C, the restoring force Fb determined from “V × C” is set to a plurality of permanent magnets 61 and coils 50a, 50b, 50c. Can be generated during. Thereby, even if a disturbance arises, it is prevented that the axis line S2 of the rotating shaft 30 inclines from the rotating center line S1 of the rotating shaft 30.
 以上により、複数の永久磁石61およびコイル50a、50b、50cから構成される磁気軸受けと軸受け32とから回転軸30が回転自在に支持されることになる。これにより、回転軸30を支えるために1つの磁気軸受けを用いることになる。したがって、回転軸30を支えるための消費電力を低減することができる。 As described above, the rotary shaft 30 is rotatably supported from the magnetic bearing constituted by the plurality of permanent magnets 61 and the coils 50a, 50b, and 50c and the bearing 32. Thus, one magnetic bearing is used to support the rotating shaft 30. Therefore, power consumption for supporting the rotating shaft 30 can be reduced.
 本実施形態では、回転軸30が高速で回転しているときには、回転軸30が低速で回転しているときに比べて、インバータ回路71A、71B、71Cからコイル50a、50b、50cに出力される電流を小さくする。このため、回転軸30が高速で回転しているときには、回転軸30が低速で回転しているときに比べて、復元力Fbを小さくしている。したがって、復元力Fbを発生させるために、コイル50a、50b、50cで消費される電力を低減することができる。 In the present embodiment, when the rotating shaft 30 rotates at a high speed, it is output from the inverter circuits 71A, 71B, 71C to the coils 50a, 50b, 50c compared to when the rotating shaft 30 rotates at a low speed. Reduce the current. For this reason, when the rotating shaft 30 rotates at high speed, the restoring force Fb is made smaller than when the rotating shaft 30 rotates at low speed. Therefore, in order to generate the restoring force Fb, the power consumed by the coils 50a, 50b, and 50c can be reduced.
 (他の実施形態)
 (1)本開示を実施するにあたり、上記第1、第2の実施形態を組み合わせて実施してもよい。すなわち、上記第1実施形態におけるステップ120の支持制御処理と、上記第2実施形態におけるステップ120の支持制御処理とを並列に実施する。このため、電子制御装置70がコイル50a、50b、50cに流す電流を制御することにより、回転軸30の軸線M2を回転中心線M1に近づける支持力Faと回転軸30を回転方向に移動させる復元力Fb(=L×V×C)とを発生させる。
(Other embodiments)
(1) In carrying out the present disclosure, the first and second embodiments may be combined. That is, the support control process in step 120 in the first embodiment and the support control process in step 120 in the second embodiment are performed in parallel. For this reason, the electronic controller 70 controls the currents that flow through the coils 50a, 50b, and 50c, thereby restoring the supporting force Fa that brings the axis M2 of the rotating shaft 30 closer to the rotation center line M1 and the rotating shaft 30 in the rotational direction. Force Fb (= L × V × C) is generated.
 このとき、回転軸30が高速で回転しているときには、回転軸30が低速で回転しているときに比べて、支持力Faを小さする。これに加えて、回転軸30が高速で回転しているときには、回転軸30が低速で回転しているときに比べて、減衰係数Cを小さくして、コイル50a、50b、50cに流れる電流を小さくする。つまり、支持力Faおよび減衰係数C(すなわち、復元力Fb)の両方を回転軸30の回転速度によって切り替えることになる。 At this time, when the rotary shaft 30 rotates at a high speed, the support force Fa is made smaller than when the rotary shaft 30 rotates at a low speed. In addition to this, when the rotating shaft 30 rotates at a high speed, the damping coefficient C is made smaller than when the rotating shaft 30 rotates at a low speed, and the current flowing through the coils 50a, 50b, 50c is reduced. Make it smaller. That is, both the support force Fa and the damping coefficient C (that is, the restoring force Fb) are switched depending on the rotation speed of the rotary shaft 30.
 (2)上記第3実施形態では、回転軸30のうち回転体の重心側を軸受け32が支持した例について説明したが、これに代えて、上記第1、第2の実施形態では、回転軸30のうち回転体の重心側を軸受け32が支持してもよい。 (2) In the third embodiment, the example in which the bearing 32 supports the center of gravity side of the rotating body in the rotating shaft 30 has been described. Instead, in the first and second embodiments, the rotating shaft is supported. The bearing 32 may support the center of gravity side of the rotating body 30.
 (3)上記第1~第4の実施形態、および第1~第4変形例では、本開示の電動モータ10として同期型の三相交流モータを構成した例について説明したが、これに代えて、誘導型の電動機、或いは直流電動機を本開示の電動モータ10としてもよい。 (3) In the first to fourth embodiments and the first to fourth modified examples, the example in which the synchronous three-phase AC motor is configured as the electric motor 10 of the present disclosure has been described. Alternatively, an induction motor or a DC motor may be used as the electric motor 10 of the present disclosure.
 (4)上記第1~第4実施形態、および第1~第4変形例では、機械的軸受けである軸受け32として、転がり軸受を用いた例について説明したが、これに代えて、軸受け32として、すべり軸受、および流体軸受を用いてもよい。すべり軸受は、すべり面で軸を受ける軸受である。流体軸受は、液体、または気体によって支持される軸受である。 (4) In the first to fourth embodiments and the first to fourth modifications, an example using a rolling bearing as the bearing 32 that is a mechanical bearing has been described. However, instead of this, a bearing 32 is used. Sliding bearings and fluid bearings may be used. A sliding bearing is a bearing that receives a shaft on a sliding surface. A fluid dynamic bearing is a bearing supported by liquid or gas.
 (5)上記第1~第4実施形態、および第1~第4変形例では、永久磁石61を回転軸30側に配置して、コイル50a、50b、50c、およびコイル51a、51b、51cをセンターピース31側に配置した例について説明したが、これに代えて、次のようにしてもよい。 (5) In the first to fourth embodiments and the first to fourth modifications, the permanent magnet 61 is disposed on the rotating shaft 30 side, and the coils 50a, 50b, 50c and the coils 51a, 51b, 51c are arranged. Although the example arrange | positioned at the centerpiece 31 side was demonstrated, it may replace with this and may be performed as follows.
 すなわち、永久磁石61をセンターピース31側に配置して、コイル50a、50b、50cおよびコイル51a、51b、51cを回転軸30側に配置してもよい。 That is, the permanent magnet 61 may be disposed on the center piece 31 side, and the coils 50a, 50b, 50c and the coils 51a, 51b, 51c may be disposed on the rotating shaft 30 side.
 (6)上記第1~第4実施形態、および第1~第4変形例では、ロータ36にコイル51a、51b、51cによって回転力を発生させるための永久磁石と、回転軸30にコイル50a、50b、50cによって支持力や復元力を発生させるための永久磁石として、共通の永久磁石30を用いた例について説明したが、これに代えて、次のようにしてもよい。すなわち、ロータ36にコイル51a、51b、51cによって回転力を発生させるための永久磁石と、回転軸30にコイル50a、50b、50cによって支持力や復元力を発生させるための永久磁石とをそれぞれ独立して設けてもよい。 (6) In the first to fourth embodiments and the first to fourth modifications, the permanent magnet for causing the rotor 36 to generate a rotational force by the coils 51a, 51b, 51c, the coil 50a, The example in which the common permanent magnet 30 is used as the permanent magnet for generating the supporting force and the restoring force by the 50b and 50c has been described, but the following may be used instead. That is, a permanent magnet for generating a rotational force by the coils 51a, 51b, 51c on the rotor 36 and a permanent magnet for generating a supporting force and a restoring force by the coils 50a, 50b, 50c on the rotating shaft 30 are independent of each other. May be provided.
 (7)上記第1~第4実施形態、および第1~第4変形例では、コイル50a、50b、50cをスター結線で接続した例について説明したが、これに代えて、コイル50a、50b、50cをデルタ結線で接続してもよい。 (7) In the first to fourth embodiments and the first to fourth modified examples, the example in which the coils 50a, 50b, and 50c are connected by star connection has been described. Instead, the coils 50a, 50b, 50c may be connected by a delta connection.
 或いは、直流電源Baからコイル50a、50b、50cに対してコイル毎に独立してコイルに流れる電流を制御するようにコイル50a、50b、50cを接続してもよい。 Alternatively, the coils 50a, 50b, and 50c may be connected so as to control the current flowing through the coils independently from the DC power source Ba to the coils 50a, 50b, and 50c.
 (8)上記第1~第4実施形態、および第1~第4変形例では、コイル51a、51b、51cをスター結線で接続した例について説明したが、これに代えて、コイル51a、51b、51cをデルタ結線で接続してもよい。 (8) In the first to fourth embodiments and the first to fourth modified examples, the example in which the coils 51a, 51b, and 51c are connected by star connection has been described. Instead, the coils 51a, 51b, 51c may be connected by a delta connection.
 (9)上記第1~第4の実施形態、および第1~第4変形例では、ホールセンサ37a、37b、37c、37dで回転軸30の回転速度や回転角度を求める例について説明したが、これに代えて、次のようにしてもよい。(a)ホールセンサ37a、37b、37c、37d以外に回転軸30の回転速度や回転角度を求めるセンサ(例えば、光学式エンコーダ)を設ける。(b)インバータ回路72からコイル51a、51b、51cに流れる三相交流電流Iと、直流電源Baからインバータ回路72への出力電圧Vとを検出し、これら検出される三相交流電流Iと出力電圧Vとに基づいて回転軸30の回転角度、ひいては回転速度を求めるようにしてもよい。 (9) In the first to fourth embodiments and the first to fourth modified examples, the example in which the rotation speed and the rotation angle of the rotating shaft 30 are obtained by the Hall sensors 37a, 37b, 37c, and 37d has been described. Instead of this, the following may be used. (A) In addition to the hall sensors 37a, 37b, 37c, and 37d, a sensor (for example, an optical encoder) that determines the rotation speed and rotation angle of the rotary shaft 30 is provided. (B) The three-phase AC current I flowing from the inverter circuit 72 to the coils 51a, 51b, 51c and the output voltage V from the DC power supply Ba to the inverter circuit 72 are detected, and the detected three-phase AC current I and the output are detected. Based on the voltage V, the rotation angle of the rotating shaft 30 and thus the rotation speed may be obtained.
 (10)上記第1~第4の実施形態、および第1~第4変形例では、ホールセンサ37a、37b、37c、37dおよび永久磁石34a、34bによって、回転中心線M1に対する回転軸30の傾き角度θ、回転軸30の軸線方向他方側端部(すなわち、ファン20)のXY座標、および回転軸30の回転角度を検出した例について説明したが、これに代えて、次のようにしてもよい。 (10) In the first to fourth embodiments and the first to fourth modifications, the inclination of the rotation shaft 30 with respect to the rotation center line M1 by the hall sensors 37a, 37b, 37c, 37d and the permanent magnets 34a, 34b. Although the example in which the angle θ, the XY coordinate of the other end portion in the axial direction of the rotation shaft 30 (that is, the fan 20), and the rotation angle of the rotation shaft 30 are detected has been described, instead of this, the following may be performed. Good.
 すなわち、ホールセンサ37a、37b、37c、37dおよび永久磁石34a、34bによって、回転中心線M1に対する回転軸30の傾き角度θ、および回転軸30の軸線方向他方側端部のXY座標を検出する。 That is, the inclination angle θ of the rotation shaft 30 with respect to the rotation center line M1 and the XY coordinates of the other end portion in the axial direction of the rotation shaft 30 are detected by the hall sensors 37a, 37b, 37c, 37d and the permanent magnets 34a, 34b.
 さらに、ホールセンサ37a、37b、37c、37dおよび永久磁石34a、34b以外の他の回転センサによって、回転軸30の回転角度を検出してもよい。この場合には、他の回転センサを回転軸3のうち軸受け32側に配置してもよい。 Furthermore, the rotation angle of the rotary shaft 30 may be detected by a rotation sensor other than the hall sensors 37a, 37b, 37c, 37d and the permanent magnets 34a, 34b. In this case, another rotation sensor may be arranged on the bearing 32 side of the rotation shaft 3.
 (11)上記第1~第4の実施形態、および第1~第4変形例では、ホールセンサ37aの出力信号Haとホールセンサ37cの出力信号Hcとの差分(Ha-Hc)に基づいて、回転軸30の回転速度を算出した例について説明したが、これに代えて、次のようにしてもよい。 (11) In the first to fourth embodiments and the first to fourth modifications, based on the difference (Ha−Hc) between the output signal Ha of the hall sensor 37a and the output signal Hc of the hall sensor 37c, Although the example which calculated the rotational speed of the rotating shaft 30 was demonstrated, it may replace with this and may be as follows.
 すなわち、ホールセンサ37a、37b、37c、37dの出力信号に基づいてファン20のXY座標(X0、Y0)を求め、XY座標(X0、Y0)の時間に対する変化から回転軸30の回転速度を算出してもよい。 That is, the XY coordinates (X0, Y0) of the fan 20 are obtained based on the output signals of the hall sensors 37a, 37b, 37c, 37d, and the rotational speed of the rotary shaft 30 is calculated from the change with respect to time of the XY coordinates (X0, Y0). May be.
 (12)上記第4実施形態では、複数の永久磁石61およびコイル50a、50b、50cの間の電磁力として、回転軸30の軸線M2を回転中心線M1に近づける支持力Faを発生させる例について説明したが、これに代えて、次の(a)、(b)のようにしてもよい。 (12) In the fourth embodiment, as an example of generating the supporting force Fa that brings the axis M2 of the rotating shaft 30 closer to the rotation center line M1 as the electromagnetic force between the plurality of permanent magnets 61 and the coils 50a, 50b, and 50c. Although described, instead of this, the following (a) and (b) may be used.
 (a)上記第4実施形態において、上記第2実施形態におけるステップ120の支持制御処理を実施する。このため、支持力Faではなく、ファン20の回転方向に回転軸30(すなわち、ファン20)を移動させる復元力Fbとしての電磁力を発生させる。 (A) In the fourth embodiment, the support control process of step 120 in the second embodiment is performed. For this reason, not the support force Fa but an electromagnetic force as a restoring force Fb for moving the rotating shaft 30 (that is, the fan 20) in the rotation direction of the fan 20 is generated.
 同様に、上記第1~第4変形例においても、上記第2実施形態におけるステップ120の支持制御処理を実施する。 Similarly, also in the first to fourth modifications, the support control process of step 120 in the second embodiment is performed.
 (b)上記第4実施形態において、上記第1実施形態におけるステップ120の支持制御処理と、上記第2実施形態におけるステップ120の支持制御処理とを並列に実施する。このため、支持力Faおよび復元力Fbの双方を回転軸30(すなわち、ファン20)に発生させる。つまり、支持力Faおよび減衰係数C(すなわち、復元力Fb)の両方を回転軸30の回転速度によって切り替えることになる。 (B) In the fourth embodiment, the support control process in step 120 in the first embodiment and the support control process in step 120 in the second embodiment are performed in parallel. For this reason, both the support force Fa and the restoring force Fb are generated on the rotating shaft 30 (that is, the fan 20). That is, both the support force Fa and the damping coefficient C (that is, the restoring force Fb) are switched depending on the rotation speed of the rotary shaft 30.
 同様に、上記第1~第4変形例においても、上記第1実施形態におけるステップ120の支持制御処理と、上記第2実施形態におけるステップ120の支持制御処理とを並列に実施する。 Similarly, also in the first to fourth modifications, the support control process in step 120 in the first embodiment and the support control process in step 120 in the second embodiment are performed in parallel.
 (13)本開示を実施するにあたり、上記第3実施形態のモータ制御システム1において、上記第1実施形態におけるステップ120の支持制御処理を実施する。 (13) In carrying out the present disclosure, in the motor control system 1 of the third embodiment, the support control process of step 120 in the first embodiment is performed.
 (14)本開示を実施するにあたり、上記第3実施形態のモータ制御システム1において、上記第2実施形態におけるステップ120の支持制御処理を実施する。 (14) In carrying out the present disclosure, in the motor control system 1 of the third embodiment, the support control process of step 120 in the second embodiment is performed.
 (15)本開示を実施するにあたり、上記第3実施形態のモータ制御システム1において、上記第1実施形態におけるステップ120の支持制御処理と上記第2実施形態におけるステップ120の支持制御処理を並列に実施する。 (15) In carrying out the present disclosure, in the motor control system 1 of the third embodiment, the support control process in step 120 in the first embodiment and the support control process in step 120 in the second embodiment are performed in parallel. carry out.
 (16)上記第7実施形態では、上記第1実施形態のモータ制御システム1において、コイル50a、50b、50cに流れる電流を独立して制御する例について説明したが、上記第2~6モータ制御システム1において、コイル50a、50b、50cに流れる電流を独立して制御してもよい。 (16) In the seventh embodiment, the example in which the currents flowing through the coils 50a, 50b, and 50c are independently controlled in the motor control system 1 of the first embodiment has been described. In the system 1, the current flowing through the coils 50a, 50b, and 50c may be controlled independently.
 (17)上記第7実施形態では、ティース55a~55l、56a~56l、コイル50a、50b、50c、51a、51b、51c、および永久磁石61a、61bを12極12スロットで構成した例について説明したが、これに代えて、次のようにしてもよい。 (17) In the seventh embodiment, the example in which the teeth 55a to 55l, 56a to 56l, the coils 50a, 50b, 50c, 51a, 51b, 51c, and the permanent magnets 61a, 61b are configured with 12 poles and 12 slots has been described. However, the following may be used instead.
 すなわち、図46、図47に示すように、ティース55a~55l、コイル50a、50b、50c、および永久磁石61bを12極12スロットで構成し、かつティース56a~56j、コイル51a、51b、51c、および永久磁石61aを10極10スロットで構成してもよい。 That is, as shown in FIGS. 46 and 47, the teeth 55a to 55l, the coils 50a, 50b and 50c, and the permanent magnet 61b are configured with 12 poles and 12 slots, and the teeth 56a to 56j, the coils 51a, 51b, 51c, The permanent magnet 61a may be configured with 10 poles and 10 slots.
 このことにより、回転軸30の支持力を発生させる傾き制御用コイルであるコイル50a、50b、50cの極数と、ロータ36を回転させるための回転磁界を発生する回転駆動用コイルであるコイル51a、51b、51cの極数と、を互いに相違させることになる。 As a result, the number of poles of the coils 50a, 50b, 50c, which are tilt control coils that generate the supporting force of the rotating shaft 30, and the coil 51a, which is a rotation drive coil that generates a rotating magnetic field for rotating the rotor 36, are increased. , 51b and 51c are different from each other.
 なお、12極とは、コイルの磁極、或いは永久磁石の磁極が12個あることを意味する。スロットは、複数のティースのうち隣り合う2つのティースの間の隙間を意味する。12スロットは、12個のスロットを有するようにステータコアが設定されていることを意味する。 In addition, 12 poles means that there are 12 magnetic poles of a coil or permanent magnet. The slot means a gap between two adjacent teeth among the plurality of teeth. 12 slots means that the stator core is set to have 12 slots.
 これにより、コイル50a、50b、50cが回巻きされるティースの振動の位相と、コイル51a、51b、51cが回巻きされるティースの振動の位相とをずらし、かつ高次成分の振動ピークの重複を避けることができるため、トルク変動、磁気音を低減することができる。 Thereby, the phase of the vibration of the teeth around which the coils 50a, 50b, 50c are wound and the phase of the vibration of the teeth around which the coils 51a, 51b, 51c are wound are shifted, and the vibration peaks of higher order components are overlapped. Therefore, torque fluctuations and magnetic noise can be reduced.
 なお、コイル50a、50b、50cの極数をコイル51a、51b、51cの極数に比べて大きくする場合に限らず、コイル50a、50b、50cの極数をコイル51a、51b、51cの極数に比べて小さくしてもよい。 The number of poles of the coils 50a, 50b, and 50c is not limited to the number of poles of the coils 51a, 51b, and 51c, and the number of poles of the coils 50a, 50b, and 50c is set to the number of poles of the coils 51a, 51b, and 51c. It may be smaller than
 次に、上記第1~第4の実施形態の構成要素と本開示との間の対応関係について説明する。 Next, the correspondence between the components of the first to fourth embodiments and the present disclosure will be described.
 まず、ステップ120が回転軸制御部に対応し、ステップ124、125、126が第1電流制御部に対応し、ステップ123が判定部に対応し、ステップ124A、125、126Aが第2電流制御部を構成している。 First, step 120 corresponds to the rotation axis control unit, steps 124, 125, and 126 correspond to the first current control unit, step 123 corresponds to the determination unit, and steps 124A, 125, and 126A correspond to the second current control unit. Is configured.
 (第8実施形態)
 図48に本開示のモータ制御システム1000の第8実施形態の全体構成を示す。
(Eighth embodiment)
FIG. 48 shows an overall configuration of an eighth embodiment of the motor control system 1000 of the present disclosure.
 本実施形態のモータ制御システム1000は、図48に示すように、電動モータ1010、およびファン1020を備える。 48. The motor control system 1000 of this embodiment includes an electric motor 1010 and a fan 1020 as shown in FIG.
 電動モータ1010は、図48、図49、および図52に示すように、回転軸1030、ステータ1031、軸受け本体1032a、抑え部1033、永久磁石1035a、1035b、および電機子1036を備える。 48, 49, and 52, the electric motor 1010 includes a rotating shaft 1030, a stator 1031, a bearing body 1032a, a holding portion 1033, permanent magnets 1035a and 1035b, and an armature 1036.
 電動モータ1010には、図48および図49に示すように、永久磁石1034a、1034b、1034c、1034d、およびホールセンサ1037a、1037b、1037c、1037dが設けられている。 48 and 49, the electric motor 1010 is provided with permanent magnets 1034a, 1034b, 1034c, 1034d and hall sensors 1037a, 1037b, 1037c, 1037d.
 電動モータ1010は、図50および図51に示すように、ブラシ1038a、1038b、1038c、1038d、1039a、1039b、1039c、1039d、ブラシホルダ1040、バネ1041a、1041b、1041c、1041d、1042a、1042b、1042c、1042d、および整流子1043、1044を備える。 As shown in FIGS. 50 and 51, the electric motor 1010 includes brushes 1038a, 1038b, 1038c, 1038d, 1039a, 1039b, 1039c, 1039d, a brush holder 1040, springs 1041a, 1041b, 1041c, 1041d, 1042a, 1042b, 1042c. , 1042d, and commutators 1043, 1044.
 図48の回転軸1030は、電機子1036の回転力をファン1020に出力する回転軸である。ファン1020は、その穴部1020aに回転軸1030の軸線方向他方側端部が嵌合されることにより、ファン1020に回転軸1030が連結されている。本実施形態では、ファン1020として、例えば、遠心ファンが用いられている。 48 is a rotary shaft that outputs the rotational force of the armature 1036 to the fan 1020. The fan 1020 has the rotation shaft 1030 coupled to the fan 1020 by fitting the other end portion in the axial direction of the rotation shaft 1030 into the hole 1020a. In the present embodiment, for example, a centrifugal fan is used as the fan 1020.
 なお、図48において、軸方向一方側を図中下側とし、軸方向他方側を図中上側としている。 In FIG. 48, one side in the axial direction is the lower side in the figure, and the other side in the axial direction is the upper side in the figure.
 ステータ1031は、永久磁石1035a、1035bとともに固定子を構成する。ステータ1031は、その軸線が回転軸1030の回転中心線S1と一致するように形成されている。ステータ1031は、筒部1031a、蓋部1031b、底部1031cを備える筐体である。筒部1031aは、回転軸1030の回転中心線S1を中心とする筒状に形成されている。筒部1031aの中空部内には、電機子1036、永久磁石1034a、1034b、1034c、1034d、永久磁石1035a、1035b、ブラシ1038a、1038b、1038c、1038d、1039a、1039b、1039c、1039d、ブラシホルダ1040、およびバネ1041a、1041b、・・・、1042dなどが収納されている。 The stator 1031 constitutes a stator together with the permanent magnets 1035a and 1035b. The stator 1031 is formed such that its axis coincides with the rotation center line S1 of the rotation shaft 1030. The stator 1031 is a housing that includes a cylindrical portion 1031a, a lid portion 1031b, and a bottom portion 1031c. The cylinder portion 1031a is formed in a cylindrical shape centered on the rotation center line S1 of the rotation shaft 1030. In the hollow portion of the cylindrical portion 1031a, an armature 1036, permanent magnets 1034a, 1034b, 1034c, 1034d, permanent magnets 1035a, 1035b, brushes 1038a, 1038b, 1038c, 1038d, 1039a, 1039b, 1039c, 1039d, brush holder 1040, And springs 1041a, 1041b,..., 1042d and the like are accommodated.
 永久磁石1035a、1035bは、図52に示すように、筒部1031aの内周面と電機子1036との間に配置されている。永久磁石1035a、1035bは、筒部1031aの内周面に固定されている。永久磁石1035a、1035bは、軸方向から扇状に形成されている。永久磁石1035a、1035bは、それぞれ、径方向内側に向けて磁極を形成している。永久磁石1035a、1035bのうち一方の磁極がS極となり、他方の永久磁石の磁極がN極となっている。 As shown in FIG. 52, the permanent magnets 1035a and 1035b are disposed between the inner peripheral surface of the cylindrical portion 1031a and the armature 1036. The permanent magnets 1035a and 1035b are fixed to the inner peripheral surface of the cylindrical portion 1031a. The permanent magnets 1035a and 1035b are formed in a fan shape from the axial direction. Each of the permanent magnets 1035a and 1035b forms a magnetic pole toward the radially inner side. One of the permanent magnets 1035a and 1035b has an S pole, and the other permanent magnet has an N pole.
 図48の蓋部1031bは、筒部1031aの軸方向他方側を塞ぐように形成されている。蓋部1031bのうち軸線側には、軸方向他方側に突起する突起部1063が形成されている。突起部1063には、軸方向に貫通する貫通孔1064が形成されている。貫通孔1064には、回転軸1030が貫通している。 48 is formed so as to close the other axial side of the cylindrical portion 1031a. A protruding portion 1063 that protrudes to the other side in the axial direction is formed on the axial line side of the lid portion 1031b. A through hole 1064 that penetrates in the axial direction is formed in the protrusion 1063. The rotating shaft 1030 passes through the through hole 1064.
 底部1031cは、筒部1031aの軸方向一方側を塞ぐように形成されている。底部1031cのうち軸線側には、後述する軸受け本体1032aを支持する回転軸支持部材1045が形成されている。 The bottom portion 1031c is formed so as to close one side in the axial direction of the cylindrical portion 1031a. A rotating shaft support member 1045 that supports a bearing main body 1032a described later is formed on the axis side of the bottom portion 1031c.
 回転軸支持部材1045は、回転中心線S1を中心とする環状に形成されて、回転中心線S1の延出方向に貫通する貫通孔1066を備える。貫通孔1066は、その軸線が回転中心線S1に一致するように形成されている。貫通孔1066内には、回転軸1030の軸方向一方側が位置する。貫通孔1066は、回転中心線S1の延出方向一方側に開口する開口部(以下、下側開口部1046aという)と、回転中心線S1の延出方向他方側に開口する開口部(以下、上側開口部という)とを備える。 The rotation shaft support member 1045 is formed in an annular shape centered on the rotation center line S1 and includes a through hole 1066 that penetrates in the extending direction of the rotation center line S1. The through hole 1066 is formed such that its axis line coincides with the rotation center line S1. In the through hole 1066, one axial side of the rotating shaft 1030 is located. The through-hole 1066 includes an opening (hereinafter referred to as a lower opening 1046a) that opens on one side in the extending direction of the rotation center line S1 and an opening (hereinafter referred to as an opening on the other side in the extending direction of the rotation center line S1). An upper opening).
 なお、回転中心線S1の延出方向とは、回転中心線S1が延びる方向である。回転中心線S1の延出方向一方側は、図48中下側であり、回転中心線S1の延出方向他方側は、図48中下側である。 Note that the extending direction of the rotation center line S1 is a direction in which the rotation center line S1 extends. One side in the extending direction of the rotation center line S1 is the lower side in FIG. 48, and the other side in the extending direction of the rotation center line S1 is the lower side in FIG.
 回転軸支持部材1045のうち上側開口部および下側開口部1046aの間には、貫通孔1066を形成する内周面1047が設けられている。内周面1047は、回転中心線S1を中心とする環状に形成されて、後述する軸受け本体1032aを摺動自在に支持する。内周面1047は、回転中心線S1を含む断面が後述する支点P1を中心とする円弧状に形成されている。 An inner peripheral surface 1047 that forms a through hole 1066 is provided between the upper opening and the lower opening 1046a of the rotating shaft support member 1045. The inner peripheral surface 1047 is formed in an annular shape centered on the rotation center line S1, and slidably supports a bearing body 1032a described later. The inner peripheral surface 1047 has a cross section including the rotation center line S1 formed in an arc shape centering on a fulcrum P1 described later.
 支点P1は、回転軸1030の軸線のうち軸受け本体1032aに対して軸方向他方側に位置する。 The fulcrum P1 is located on the other side in the axial direction with respect to the bearing body 1032a of the axis of the rotating shaft 1030.
 軸受け本体1032aは、回転軸1030の軸線方向一方側を回転自在に支持する機械的軸受けである。軸受け本体1032aは、回転軸支持部材1045の貫通孔1066の内側に配置されている。本実施形態では、軸受け本体1032aとして、例えば、転がり軸受が使用されている。転がり軸受は、回転軸1030の外周側に配置される軌道と、回転軸1030および軌道の間に配置される転動体とを備え、転動体が転がり運動することによって回転軸1030を支持する周知の軸受けである。 The bearing body 1032a is a mechanical bearing that rotatably supports one side of the rotating shaft 1030 in the axial direction. The bearing body 1032a is disposed inside the through hole 1066 of the rotating shaft support member 1045. In the present embodiment, for example, a rolling bearing is used as the bearing body 1032a. The rolling bearing includes a track disposed on the outer peripheral side of the rotating shaft 1030 and a rolling element disposed between the rotating shaft 1030 and the track. The rolling bearing is well known to support the rotating shaft 1030 by rolling motion. It is a bearing.
 ブッシュ1032bは、軸受け本体1032aとともに回転軸1030を回転自在に支持する軸受け1032を構成する。ブッシュ1032bは、軸受け本体1032aを支える回転軸支持部材である。ブッシュ1032bは、回転中心線S1を中心とする環状に形成されている。ブッシュ1032bは、回転軸支持部材1045の内周面1047に摺動する側面1048を備える。側面1048は、回転中心線S1を含む断面が、支点P1を中心とする円弧状に形成されている。 The bush 1032b constitutes a bearing 1032 that rotatably supports the rotating shaft 1030 together with the bearing body 1032a. The bush 1032b is a rotating shaft support member that supports the bearing body 1032a. The bush 1032b is formed in an annular shape centering on the rotation center line S1. The bush 1032 b includes a side surface 1048 that slides on the inner peripheral surface 1047 of the rotation shaft support member 1045. The side surface 1048 has a cross section including the rotation center line S1 formed in an arc shape centered on the fulcrum P1.
 本実施形態では、内周面1047の曲率半径r1と側面1048の曲率半径r2とが同一になっている。曲率半径r1は、回転中心線S1を含む断面において、支点P1と内周面1047との間の距離である。曲率半径r2は、回転軸1030の軸線を含む断面において、支点P1と側面1048との間の距離である。 In this embodiment, the curvature radius r1 of the inner peripheral surface 1047 and the curvature radius r2 of the side surface 1048 are the same. The curvature radius r1 is a distance between the fulcrum P1 and the inner peripheral surface 1047 in the cross section including the rotation center line S1. The radius of curvature r2 is the distance between the fulcrum P1 and the side surface 1048 in the cross section including the axis of the rotating shaft 1030.
 本実施形態における軸受け1032および回転軸支持部材1045は、軸受け1032を介して回転軸1030を支点P1を中心とする揺動自在に支持する軸受け機構1049を構成する。 The bearing 1032 and the rotating shaft support member 1045 in the present embodiment constitute a bearing mechanism 1049 that supports the rotating shaft 1030 through the bearing 1032 so as to be swingable around the fulcrum P1.
 図48の抑え部1033は、貫通孔1064のうち内周側に配置されている。抑え部1033は、回転軸1030の回転中心線S1を中心とする環状に形成されている。抑え部1033および回転軸1030の間には、隙間が形成されている。抑え部1033は、後述するように、回転軸1030の回転中心線S1から回転軸1030が大きく傾いた状態で回転軸1030を支える軸受け部である。抑え部1033は、蓋部1031bによって支持されている。本実施形態の抑え部1033は、潤滑性を有する樹脂材料によって形成されている。 48 is disposed on the inner peripheral side of the through-hole 1064. The restraining portion 1033 is formed in an annular shape centering on the rotation center line S1 of the rotation shaft 1030. A gap is formed between the holding portion 1033 and the rotating shaft 1030. As will be described later, the holding portion 1033 is a bearing portion that supports the rotation shaft 1030 in a state where the rotation shaft 1030 is largely inclined from the rotation center line S1 of the rotation shaft 1030. The holding portion 1033 is supported by the lid portion 1031b. The holding part 1033 of this embodiment is formed of a resin material having lubricity.
 永久磁石1034a、1034b、1034c、1034dは、回転軸1030のうち電機子1036および抑え部1033の間に配置されている。永久磁石1034a、1034b、1034c、1034dは、突起部1063の基部側に位置する。永久磁石1034a、1034b、1034c、1034dは、回転軸1030に固定されている。 Permanent magnets 1034 a, 1034 b, 1034 c, and 1034 d are arranged between the armature 1036 and the holding portion 1033 in the rotating shaft 1030. Permanent magnets 1034a, 1034b, 1034c, and 1034d are located on the base side of the protrusion 1063. Permanent magnets 1034a, 1034b, 1034c, and 1034d are fixed to rotating shaft 1030.
 永久磁石1034a、1034b、1034c、1034dは、図49に示すように、それぞれ、扇状に形成されている。永久磁石1034a、1034b、1034c、1034dは、回転軸1030の外周を覆うように組み合わされている。永久磁石1034a、1034b、1034c、1034dは、それぞれ、回転軸1030の軸線を中心とする径方向外側に磁極を形成している。永久磁石1034a、1034b、1034c、1034dは、それぞれの磁極がS極→N極→S極→N極の順に交互に並ぶように配置されている。永久磁石1034a、1034b、1034c、1034dは、ホールセンサ1037a、1037b、1037c、1037dに磁束を付与する。 The permanent magnets 1034a, 1034b, 1034c, and 1034d are each formed in a fan shape as shown in FIG. Permanent magnets 1034a, 1034b, 1034c, and 1034d are combined so as to cover the outer periphery of rotating shaft 1030. The permanent magnets 1034 a, 1034 b, 1034 c, and 1034 d each form a magnetic pole on the radially outer side centering on the axis of the rotating shaft 1030. The permanent magnets 1034a, 1034b, 1034c, and 1034d are arranged such that their magnetic poles are alternately arranged in the order of S pole → N pole → S pole → N pole. The permanent magnets 1034a, 1034b, 1034c, and 1034d apply magnetic flux to the hall sensors 1037a, 1037b, 1037c, and 1037d.
 ホールセンサ1037a、1037b、1037c、1037dは、永久磁石1034a、1034b、1034c、1034dに対して、回転軸1030の回転中心線S1を中心とする径方向外側に配置されている。ホールセンサ1037a、1037b、1037c、1037dと永久磁石1034a、1034b、1034c、1034dとの間には、隙間が形成されている。ホールセンサ1037a、1037b、1037c、1037dは、回転軸1030の回転中心線S1を中心とする円周方向に同一間隔で並べられている。ホールセンサ1037a、1037b、1037c、1037dは、ステータ1031の筒部1031aに固定されている。ホールセンサ1037a、1037b、1037c、1037dは、回転軸1030の回転速度、および傾き角度を検出するためのもので、永久磁石1034a、1034b、1034c、1034dから生じる磁界を検出するホール素子から構成されている。 Hall sensors 1037a, 1037b, 1037c, and 1037d are arranged on the outer side in the radial direction around the rotation center line S1 of the rotation shaft 1030 with respect to the permanent magnets 1034a, 1034b, 1034c, and 1034d. Gaps are formed between the hall sensors 1037a, 1037b, 1037c, 1037d and the permanent magnets 1034a, 1034b, 1034c, 1034d. The hall sensors 1037a, 1037b, 1037c, and 1037d are arranged at the same interval in the circumferential direction around the rotation center line S1 of the rotation shaft 1030. The hall sensors 1037a, 1037b, 1037c, and 1037d are fixed to the cylindrical portion 1031a of the stator 1031. Hall sensors 1037a, 1037b, 1037c, and 1037d are for detecting the rotation speed and inclination angle of the rotating shaft 1030, and are configured by Hall elements that detect magnetic fields generated from the permanent magnets 1034a, 1034b, 1034c, and 1034d. Yes.
 図50のブラシ1038a、1038b、1038c、1038dは、電機子1036および軸受け1032の間に配置されている。ブラシ1038a、1038b、1038c、1038dは、回転中心線S1を中心とする円周方向に同一間隔に並べられている。 50 are arranged between the armature 1036 and the bearing 1032. The brushes 1038a, 1038b, 1038c, and 1038d in FIG. The brushes 1038a, 1038b, 1038c, and 1038d are arranged at the same interval in the circumferential direction around the rotation center line S1.
 ブラシ1038a、1038b、1038c、1038dは、それぞれ、ブラシホルダ1040の長穴部内に配置されて径方向に移動可能に構成されている。ブラシ1038a、1038b、1038c、1038dは、バネ1041a、1041b、1041c、1041dのうち対応するバネの弾性力によって径方向内側(具体的には、整流子1043側)に押し付けられている。バネ1041a、1041b、1041c、1041dは、それぞれ、ブラシホルダ1040の長穴部内に配置されている。ブラシホルダ1040は、ステータ1031によって支持されている。ブラシ1038a、1038b、1038c、1038dは、回転軸1030の回転に伴って、整流子1043のセグメント1043a~1043dに摺動する。 The brushes 1038a, 1038b, 1038c, and 1038d are each arranged in the elongated hole portion of the brush holder 1040 and configured to be movable in the radial direction. The brushes 1038a, 1038b, 1038c, and 1038d are pressed radially inward (specifically, the commutator 1043 side) by the elastic force of the corresponding spring among the springs 1041a, 1041b, 1041c, and 1041d. Each of the springs 1041a, 1041b, 1041c, and 1041d is disposed in a long hole portion of the brush holder 1040. The brush holder 1040 is supported by the stator 1031. The brushes 1038a, 1038b, 1038c, and 1038d slide on the segments 1043a to 1043d of the commutator 1043 as the rotating shaft 1030 rotates.
 図51のブラシ1039a、1039b、1039c、1039dは、それぞれ、ブラシホルダ1040の長穴部内に配置されて径方向に移動可能に構成されている。ブラシ1039a、1039b、1039c、1039dは、バネ1042a、1042b、1042c、1042dのうち対応するバネの弾性力によって径方向内側(具体的には、整流子1044側)に押し付けられている。バネ1042a、1042b、1042c、1042dは、それぞれ、ブラシホルダ1040の長穴部内に配置されている。 51, the brushes 1039a, 1039b, 1039c, and 1039d shown in FIG. 51 are arranged in the elongated holes of the brush holder 1040, respectively, and are configured to be movable in the radial direction. The brushes 1039a, 1039b, 1039c, and 1039d are pressed radially inward (specifically, the commutator 1044 side) by the elastic force of the corresponding spring among the springs 1042a, 1042b, 1042c, and 1042d. Each of the springs 1042a, 1042b, 1042c, and 1042d is disposed in a long hole portion of the brush holder 1040.
 ここで、ブラシ1039a、1039b、1039c、1039dは、支点Pに対して軸方向他方側に配置され、ブラシ1038a、1038b、1038c、1038dは、支点Pに対して軸方向一方側に配置されている。 Here, the brushes 1039a, 1039b, 1039c, and 1039d are disposed on the other side in the axial direction with respect to the fulcrum P, and the brushes 1038a, 1038b, 1038c, and 1038d are disposed on the one side in the axial direction with respect to the fulcrum P. .
 整流子1043は、セグメント1043a、1043b、1043c、1043dを備える。セグメント1043a、1043b、1043c、1043dは、回転軸1030の軸線を中心とする円弧状に等間隔で並べられている。セグメント1043a、1043cの間には、コイル1051aが接続されている。コイル1051aの一端部は、セグメント1043aに接続され、コイル1051aの他端部は、セグメント1043cに接続されている。 The commutator 1043 includes segments 1043a, 1043b, 1043c, and 1043d. The segments 1043a, 1043b, 1043c, and 1043d are arranged at equal intervals in an arc shape with the axis of the rotation shaft 1030 as the center. A coil 1051a is connected between the segments 1043a and 1043c. One end of the coil 1051a is connected to the segment 1043a, and the other end of the coil 1051a is connected to the segment 1043c.
 セグメント1043b、1043dの間には、コイル1051bが接続されている。すなわち、コイル1051bの一端部がセグメント1043bに接続され、コイル1051bの他端部がセグメント1043dに接続されている。 A coil 1051b is connected between the segments 1043b and 1043d. That is, one end of the coil 1051b is connected to the segment 1043b, and the other end of the coil 1051b is connected to the segment 1043d.
 セグメント1043a、1043b、1043c、1043dは、筒部材1067を介して回転軸1030に固定されている。セグメント1043a、1043b、1043c、1043dは、それぞれ、回転軸1030の軸方向から視て扇状に形成されている。ブラシ1039a、1039b、1039c、1039dは、回転軸1030の回転に伴って、整流子1043のセグメント1044a~1044dに摺動する。 The segments 1043a, 1043b, 1043c, and 1043d are fixed to the rotating shaft 1030 via the cylindrical member 1067. The segments 1043a, 1043b, 1043c, and 1043d are each formed in a fan shape when viewed from the axial direction of the rotation shaft 1030. The brushes 1039a, 1039b, 1039c, and 1039d slide on the segments 1044a to 1044d of the commutator 1043 as the rotating shaft 1030 rotates.
 筒部材1067は、回転軸1030の軸線を中心とする径方向外側に配置されている。筒部材1067は、回転軸1030の軸線を中心とする筒状に形成されている。筒部材1067は、その軸線が回転軸1030の軸線に一致するように形成されている。筒部材1067は、回転軸1030によって支持されている。 The cylindrical member 1067 is disposed on the radially outer side with the axis of the rotation shaft 1030 as the center. The cylindrical member 1067 is formed in a cylindrical shape centering on the axis of the rotation shaft 1030. The cylindrical member 1067 is formed so that its axis coincides with the axis of the rotation shaft 1030. The cylindrical member 1067 is supported by the rotation shaft 1030.
 整流子1044は、セグメント1044a、1044b、1044c、1044dを備える。セグメント1044a、1044b、1044c、1044dは、回転軸1030の軸線を中心とする円弧状に等間隔で並べられている。セグメント1044a、1044cの間には、コイル1050aが接続されている。すなわち、コイル1050aの一端部がセグメント1044aに接続され、コイル1050aの他端部がセグメント1044cに接続されている。 The commutator 1044 includes segments 1044a, 1044b, 1044c, and 1044d. The segments 1044a, 1044b, 1044c, and 1044d are arranged at equal intervals in an arc shape centered on the axis of the rotating shaft 1030. A coil 1050a is connected between the segments 1044a and 1044c. That is, one end of the coil 1050a is connected to the segment 1044a, and the other end of the coil 1050a is connected to the segment 1044c.
 セグメント1044b、1044dの間には、コイル1050bが接続されている。すなわち、コイル1050bの一端部がセグメント1044bに接続され、コイル1050bの他端部がセグメント1044dに接続されている。 A coil 1050b is connected between the segments 1044b and 1044d. That is, one end of the coil 1050b is connected to the segment 1044b, and the other end of the coil 1050b is connected to the segment 1044d.
 セグメント1044a、1044b、1044c、1044dは、筒部材1067を介して回転軸1030に固定されている。セグメント1044a、1044b、1044c、1044dは、それぞれ、回転軸1030の軸方向から視て扇状に形成されている。 The segments 1044a, 1044b, 1044c, and 1044d are fixed to the rotary shaft 1030 via the cylindrical member 1067. The segments 1044a, 1044b, 1044c, and 1044d are each formed in a fan shape when viewed from the axial direction of the rotating shaft 1030.
 本実施形態では、整流子1043、1044は、軸受け1032に対して支点P1側に配置されている。整流子1044は、支点P1よりも軸方向他方側に位置する。整流子1043は支点P1よりも軸方向一方側に位置する。支点P1は、回転軸1030の軸線のうち、整流子1044の回転中心と整流子1043の回転中心との間の中間点である。 In this embodiment, the commutators 1043 and 1044 are disposed on the fulcrum P1 side with respect to the bearing 1032. The commutator 1044 is located on the other side in the axial direction from the fulcrum P1. The commutator 1043 is located on one side in the axial direction from the fulcrum P1. The fulcrum P1 is an intermediate point between the rotation center of the commutator 1044 and the rotation center of the commutator 1043 in the axis of the rotation shaft 1030.
 電機子1036は、図52に示すように、コイル1050a、1050b、1051a、1051b、およびロータコア1052を備える。 The armature 1036 includes coils 1050a, 1050b, 1051a, 1051b, and a rotor core 1052, as shown in FIG.
 ロータコア1052は、コイル1050a、1050bから発生する磁束(すなわち、磁界)を通過させるものである。さらに、ロータコア1052は、コイル1051a、1051bから発生する磁束(すなわち、磁界)を通過させるものである。ロータコア1052は、永久磁石1035a、1035bとともに磁気回路を構成する。 The rotor core 1052 allows a magnetic flux (that is, a magnetic field) generated from the coils 1050a and 1050b to pass therethrough. Further, the rotor core 1052 allows a magnetic flux (that is, a magnetic field) generated from the coils 1051a and 1051b to pass therethrough. The rotor core 1052 constitutes a magnetic circuit together with the permanent magnets 1035a and 1035b.
 具体的には、ロータコア1052は、リング部1053、およびティース1054a、1054b、1054c、1054dを備える。リング部1053は、ステータ1031の筒部1031aに対して径方向内側に配置されている。リング部1053は、回転軸1030に固定されている。 Specifically, the rotor core 1052 includes a ring portion 1053 and teeth 1054a, 1054b, 1054c, and 1054d. The ring portion 1053 is disposed on the radially inner side with respect to the cylindrical portion 1031 a of the stator 1031. Ring portion 1053 is fixed to rotation shaft 1030.
 ティース1054a、1054b、1054c、1054dは、リング部1053から径方向外側に突出するように形成されている。ティース1054a、1054b、1054c、1054dは、それぞれ、回転軸1030の軸線を中心とする円周方向に同一間隔で並べられている。ティース1054a、1054b、1054c、1054dは、それぞれ先端部側が円周方向に延びるように形成されている。 Teeth 1054a, 1054b, 1054c, and 1054d are formed so as to protrude radially outward from the ring portion 1053. Teeth 1054a, 1054b, 1054c, and 1054d are arranged at equal intervals in the circumferential direction around the axis of rotating shaft 1030, respectively. Teeth 1054a, 1054b, 1054c, and 1054d are each formed so that the tip end side extends in the circumferential direction.
 本実施形態のコイル1050a、1050bは、回転軸1030の支持力を発生させる傾き制御用コイルである。図53において、コイル1050a、1050bにおいて、×印は紙面垂直方向奥側に向けて電流が流れる状態を示し、黒点は、紙面垂直方向手前側に向けて電流が流れる状態を示している。 The coils 1050a and 1050b of the present embodiment are tilt control coils that generate the supporting force of the rotating shaft 1030. In FIG. 53, in the coils 1050a and 1050b, a cross indicates a state in which a current flows toward the rear side in the vertical direction of the paper surface, and a black dot indicates a state in which a current flows toward the front side in the vertical direction of the paper surface.
 まず、コイル1050bは、図53に示すように、ティース1054a、1054cに回巻きされている。コイル1050bがティース1054aを巻く方向とコイル1050bがティース54cを巻く方向とは同一になっている。ティース1054a、1054cは、回転軸1030の軸線を中心として角度180度オフセットして配置されている。 First, the coil 1050b is wound around the teeth 1054a and 1054c as shown in FIG. The direction in which the coil 1050b winds the teeth 1054a and the direction in which the coil 1050b winds the teeth 54c are the same. The teeth 1054a and 1054c are arranged with an offset of 180 degrees around the axis of the rotation shaft 1030.
 コイル1050aは、ティース1054b、1054dに、回巻きされている。コイル1050aがティース54bを巻く方向とコイル1050aがティース54dを巻く方向とは同一になっている。ティース1054b、1054dは、回転軸1030の軸線を中心として角度180度オフセットして配置されている。 The coil 1050a is wound around the teeth 1054b and 1054d. The direction in which the coil 1050a winds the tooth 54b and the direction in which the coil 1050a winds the tooth 54d are the same. The teeth 1054b and 1054d are arranged with an angle of 180 degrees offset about the axis of the rotation shaft 1030.
 本実施形態のコイル1051a、1051bは、電機子1036を回転させるための回転磁界を発生する回転駆動用コイルである。 The coils 1051a and 1051b of the present embodiment are rotational driving coils that generate a rotating magnetic field for rotating the armature 1036.
 図53において、コイル1051a、1051bにおいて、×印は、紙面垂直方向奥側に向けて電流が流れる状態を示し、黒点は、紙面垂直方向手前側に向けて電流が流れる状態を示している。 53, in the coils 1051a and 1051b, a cross indicates a state in which a current flows toward the back side in the vertical direction of the paper surface, and a black dot indicates a state in which a current flows toward the near side in the vertical direction of the paper surface.
 コイル1051aは、ティース1054a、54bに回巻きされている。ティース1054a、54bは、回転軸1030の軸線を中心として角度90度オフセットして配置されている。 The coil 1051a is wound around the teeth 1054a and 54b. The teeth 1054a and 54b are arranged with an angle of 90 degrees offset about the axis of the rotation shaft 1030.
 コイル1051bは、ティース1054c、1054dに回巻きされている。ティース1054c、1054dは、回転軸1030の軸線を中心として角度90度オフセットして配置されている。 The coil 1051b is wound around the teeth 1054c and 1054d. The teeth 1054c and 1054d are arranged with an angle of 90 degrees offset about the axis of the rotation shaft 1030.
 本実施形態では、コイル1050a、1050bは、コイル1051a、1051bに対して、ステータ1031側(すなわち、径方向外側)に配置されている。 In the present embodiment, the coils 1050a and 1050b are arranged on the stator 1031 side (that is, radially outside) with respect to the coils 1051a and 1051b.
 このようにコイル1050a、1050bとコイル1051a、1051bとは、共通のロータコア1052に回巻きされている。つまり、コイル1050a、1050bとコイル1051a、1051bとは、ロータコア1052を介して回転軸1030に取り付けられている。そして、コイル1050a、1050bに流れる電流とコイル1051a、1051bに流れる電流とは、電子制御装置(図48中ECUと記す)1070により制御される。 Thus, the coils 1050a and 1050b and the coils 1051a and 1051b are wound around a common rotor core 1052. That is, the coils 1050 a and 1050 b and the coils 1051 a and 1051 b are attached to the rotating shaft 1030 via the rotor core 1052. The current flowing through coils 1050a and 1050b and the current flowing through coils 1051a and 1051b are controlled by electronic control unit (referred to as ECU in FIG. 48) 1070.
 このように構成された電動モータ1010では、回転軸1030の軸線のうち整流子1043、1044の間の支点P1を支点として、回転軸1030の回転中心線S1から回転軸1030が傾くことが可能に構成される(図54、図55参照)。 In the electric motor 1010 configured as described above, the rotation shaft 1030 can be tilted from the rotation center line S1 of the rotation shaft 1030 with the fulcrum P1 between the commutators 1043 and 1044 among the axis of the rotation shaft 1030 as a fulcrum. (See FIGS. 54 and 55).
 図54、図55では、前記支点を原点0とし、回転軸1030の回転中心線S1をZ軸とし、回転中心線S1に直交するX軸とY軸とを設定し、Z軸(すなわち、回転中心線S1)に対して回転軸1030の軸線が角度θ傾いた例を示している。図54中の(x0、y0)は、回転軸1030のうち軸線方向他方側の端部(すなわち、ファン1020)のX-Y座標を示している。 54 and 55, the fulcrum is the origin 0, the rotation center line S1 of the rotation shaft 1030 is the Z axis, the X and Y axes orthogonal to the rotation center line S1 are set, and the Z axis (that is, the rotation) An example is shown in which the axis of the rotation shaft 1030 is inclined at an angle θ with respect to the center line S1). In FIG. 54, (x0, y0) indicates the XY coordinates of the end portion on the other side in the axial direction of the rotating shaft 1030 (that is, the fan 1020).
 次に、本実施形態のモータ制御システム1000の電気的構成について図56を参照して説明する。 Next, the electrical configuration of the motor control system 1000 of this embodiment will be described with reference to FIG.
 電子制御装置1070は、図56に示すように、ブリッジ回路1071、1072、1073、および制御回路1074を備える。ブリッジ回路1071は、トランジスタSW1、SW2、SW3、SW4を備える。トランジスタSW1、SW2は、バッテリBaの正極電極と負極電極との間で直列接続されている。トランジスタSW1、SW2の共通接続端子T1は、ブラシ1039aに接続されている。 The electronic control device 1070 includes bridge circuits 1071, 1072, 1073, and a control circuit 1074 as shown in FIG. The bridge circuit 1071 includes transistors SW1, SW2, SW3, and SW4. The transistors SW1 and SW2 are connected in series between the positive electrode and the negative electrode of the battery Ba. The common connection terminal T1 of the transistors SW1 and SW2 is connected to the brush 1039a.
 トランジスタSW3、SW4は、バッテリBaの正極電極と負極電極との間で直列接続されている。トランジスタSW3、SW4の共通接続端子T2は、ブラシ1039cに接続されている。 The transistors SW3 and SW4 are connected in series between the positive electrode and the negative electrode of the battery Ba. A common connection terminal T2 of the transistors SW3 and SW4 is connected to the brush 1039c.
 このことにより、トランジスタSW1、SW2、SW3、SW4のオン、オフによって、整流子1044を通してコイル1050a(或いは、1050b)に流れる電流の方向、および電流値を制御することになる。 Thus, the direction and current value of the current flowing through the commutator 1044 to the coil 1050a (or 1050b) are controlled by turning on and off the transistors SW1, SW2, SW3, and SW4.
 ブリッジ回路1072は、トランジスタSW5、SW6、SW7、SW8を備える。トランジスタSW5、SW6は、バッテリBaの正極電極と負極電極との間で直列接続されている。トランジスタSW5、SW6の共通接続端子T3は、ブラシ1039bに接続されている。トランジスタSW7、SW8は、バッテリBaの正極電極と負極電極との間で直列接続されている。トランジスタSW7、SW8の共通接続端子T4は、ブラシ1039dに接続されている。 The bridge circuit 1072 includes transistors SW5, SW6, SW7, and SW8. The transistors SW5 and SW6 are connected in series between the positive electrode and the negative electrode of the battery Ba. A common connection terminal T3 of the transistors SW5 and SW6 is connected to the brush 1039b. The transistors SW7 and SW8 are connected in series between the positive electrode and the negative electrode of the battery Ba. A common connection terminal T4 of the transistors SW7 and SW8 is connected to the brush 1039d.
 このことにより、トランジスタSW5、SW6、SW7、SW8のオン、オフによって、整流子1044を通してコイル1050b(或いは、1050a)に流れる電流の方向、および電流値を制御することができる。 Thus, the direction and current value of the current flowing through the commutator 1044 to the coil 1050b (or 1050a) can be controlled by turning on and off the transistors SW5, SW6, SW7, and SW8.
 ブリッジ回路1073は、トランジスタSW9、SW10、SW11、SW12を備える。トランジスタSW9、SW10は、バッテリBaの正極電極と負極電極との間で直列接続されている。トランジスタSW11、SW12の共通接続端子T5は、ブラシ1038b、1038cに接続されている。 The bridge circuit 1073 includes transistors SW9, SW10, SW11, and SW12. The transistors SW9 and SW10 are connected in series between the positive electrode and the negative electrode of the battery Ba. A common connection terminal T5 of the transistors SW11 and SW12 is connected to the brushes 1038b and 1038c.
 トランジスタSW11、SW12は、バッテリBaの正極電極と負極電極との間で直列接続されている。トランジスタSW11、SW12の共通接続端子T6は、ブラシ1038a、1038dに接続されている。 The transistors SW11 and SW12 are connected in series between the positive electrode and the negative electrode of the battery Ba. A common connection terminal T6 of the transistors SW11 and SW12 is connected to the brushes 1038a and 1038d.
 このことにより、トランジスタSW9、SW10、SW11、SW12のオン、オフによって、整流子1043を通してコイル1051a、1051bに流れる電流の方向、および電流値を制御することになる。 Thus, the direction and current value of the current flowing through the commutator 1043 to the coils 1051a and 1051b are controlled by turning on and off the transistors SW9, SW10, SW11, and SW12.
 制御回路1074は、マイクロコンピュータやメモリ等に構成されているもので、メモリに記憶されているコンピュータプログラムにしたがって、電機子1036に回転力を発生させるとともに、回転軸1030を支持する支持力を出力するための制御処理を実行する。制御回路1074は、制御処理の実行に伴って、ホールセンサ1037a、1037b、1037c、1037dの出力信号に基づいて、トランジスタSW1、SW2、SW3、SW4、SW5、SW6、SW7、SW8、SW9、SW10、SW11、SW12をスイッチング制御する。 The control circuit 1074 is configured in a microcomputer, a memory, etc., and generates a rotational force for the armature 1036 and outputs a supporting force for supporting the rotating shaft 1030 according to a computer program stored in the memory. Control processing is performed. The control circuit 1074 performs transistors SW1, SW2, SW3, SW4, SW5, SW6, SW7, SW8, SW9, SW10, based on the output signals of the Hall sensors 1037a, 1037b, 1037c, and 1037d as the control process is executed. SW11 and SW12 are switching-controlled.
 制御回路1074がトランジスタSW9、SW10、SW11、SW12を制御して共通接続端子T5、T6からブラシ1038a、1038b、1038c、1038dおよび整流子1043を通してコイル1051a、52bに電流を出力する。 The control circuit 1074 controls the transistors SW9, SW10, SW11, and SW12, and outputs current from the common connection terminals T5 and T6 to the coils 1051a and 52b through the brushes 1038a, 1038b, 1038c, and 1038d and the commutator 1043.
 例えば、制御回路1074がトランジスタSW9、SW12をオンして、トランジスタSW10、SW11をオフする。このため、共通接続端子T5、T6の間において、ブラシ1038b、1038dおよび整流子1043のセグメント1043a、1043c(或いは、43b、43d)を通してコイル1051a(或いは、51b)に電流が流がれる。共通接続端子T5、T6の間において、ブラシ1038a、1038cおよび整流子1043のセグメント1043a、1043c(或いは、1043b、1043d)を通してコイル1051a(或いは、1051b)に電流が流れる。 For example, the control circuit 1074 turns on the transistors SW9 and SW12 and turns off the transistors SW10 and SW11. Therefore, a current flows through the coil 1051a (or 51b) through the brushes 1038b and 1038d and the segments 1043a and 1043c (or 43b and 43d) of the commutator 1043 between the common connection terminals T5 and T6. Between the common connection terminals T5 and T6, current flows to the coil 1051a (or 1051b) through the brushes 1038a and 1038c and the segments 1043a and 1043c (or 1043b and 1043d) of the commutator 1043.
 このとき、コイル1051a、1051bには、コイル1051a、1051b自体に流れる電流と永久磁石1035a、1035bからの磁束とに基づいて電磁力としての回転力が発生する。この回転力は、電機子1036(すなわち、回転軸1030)を回転中心線S1を中心として第1回転方向に回転させる回転力である。 At this time, a rotational force as an electromagnetic force is generated in the coils 1051a and 1051b based on the current flowing in the coils 1051a and 1051b itself and the magnetic flux from the permanent magnets 1035a and 1035b. This rotational force is a rotational force that rotates the armature 1036 (that is, the rotational shaft 1030) in the first rotational direction about the rotational center line S1.
 ここで、回転軸1030の回転に伴って、整流子1043のセグメント1043a、1043b、1043c、1043dのうちブラシ1038a、1038cがそれぞれ接触するセグメントが順次交替する。回転軸1030の回転に伴って、整流子1043のセグメント1043a、1043b、1043c、1043dのうちブラシ1038b、1038dがそれぞれ接触するセグメントが順次交替する。 Here, as the rotating shaft 1030 rotates, the segments to which the brushes 1038a and 1038c come into contact sequentially change among the segments 1043a, 1043b, 1043c, and 1043d of the commutator 1043. As the rotary shaft 1030 rotates, the segments that the brushes 1038b and 1038d are in contact with among the segments 1043a, 1043b, 1043c, and 1043d of the commutator 1043 are sequentially changed.
 これにより、セグメント1043a、1043b、1043c、1043dうちブラシ1038a、1038b、1038c、1038dが接触するセグメントが替わる毎に、コイル1051a(或いは、1051b)には、繰り返し第1回転方向に回転させる回転力が発生する。 As a result, the coil 1051a (or 1051b) is repeatedly rotated in the first rotation direction every time the segment in contact with the brushes 1038a, 1038b, 1038c, and 1038d changes among the segments 1043a, 1043b, 1043c, and 1043d. appear.
 一方、制御回路1074がトランジスタSW9、SW12をオフして、トランジスタSW10、SW11をオンする。このため、共通接続端子T5、T6の間において、ブラシ1038b、1038dおよび整流子1043のセグメント1043a、1043c(或いは、1043b、1043d)を通してコイル1051a(或いは、1051b)に電流が流がれる。共通接続端子T5、T6の間において、ブラシ1038a、1038cおよび整流子1043のセグメント1043a、1043c(或いは、1043b、1043d)を通してコイル1051a(或いは、1051b)に電流が流れる。 On the other hand, the control circuit 1074 turns off the transistors SW9 and SW12 and turns on the transistors SW10 and SW11. For this reason, between the common connection terminals T5 and T6, a current flows through the coil 1051a (or 1051b) through the brushes 1038b and 1038d and the segments 1043a and 1043c (or 1043b and 1043d) of the commutator 1043. Between the common connection terminals T5 and T6, current flows to the coil 1051a (or 1051b) through the brushes 1038a and 1038c and the segments 1043a and 1043c (or 1043b and 1043d) of the commutator 1043.
 このとき、コイル1051a、1051bには、コイル1051a、1051b自体に流れる電流と永久磁石1035a、1035bからの磁束とに基づいて、電磁力としての回転力が発生する。この回転力は、電機子1036(すなわち、回転軸1030)を回転中心線S1を中心として第2回転方向に回転させる回転力である。第2回転方向は、第1回転方向と逆方向である。 At this time, a rotational force as an electromagnetic force is generated in the coils 1051a and 1051b based on the current flowing in the coils 1051a and 1051b itself and the magnetic flux from the permanent magnets 1035a and 1035b. This rotational force is a rotational force that rotates the armature 1036 (that is, the rotational shaft 1030) in the second rotational direction about the rotational center line S1. The second rotation direction is opposite to the first rotation direction.
 ここで、回転軸1030の回転に伴って、整流子1043のセグメント1043a、1043b、1043c、1043dのうちブラシ1038a、1038cがそれぞれ接触するセグメントが順次交替する。回転軸1030の回転に伴って、整流子1043のセグメント1043a、1043b、1043c、1043dのうちブラシ1038b、1038dがそれぞれ接触するセグメントが順次交替する。 Here, as the rotating shaft 1030 rotates, the segments to which the brushes 1038a and 1038c come into contact sequentially change among the segments 1043a, 1043b, 1043c, and 1043d of the commutator 1043. As the rotary shaft 1030 rotates, the segments that the brushes 1038b and 1038d are in contact with among the segments 1043a, 1043b, 1043c, and 1043d of the commutator 1043 are sequentially changed.
 これにより、セグメント1043a、1043b、1043c、1043dうちブラシ1038a、1038b、1038c、1038dが接触するセグメントが替わる毎に、コイル1051a(或いは、1051b)には、繰り返し、第2回転方向に回転させる回転力が発生する。 Thus, each time the segment in contact with the brushes 1038a, 1038b, 1038c, and 1038d of the segments 1043a, 1043b, 1043c, and 1043d is changed, the coil 1051a (or 1051b) is repeatedly rotated in the second rotational direction. Occurs.
 ここで、制御回路1074がトランジスタSW9、SW10、SW11、SW12を制御することにより、ブラシ1038a、1038b、1038c、1038dおよび整流子1043を通してコイル1051a、1051bに流れる電流の電流値を制御する。このことにより、コイル1051a、1051bに作用する回転力としての電磁力の大きさを制御することにより、回転軸1030(すなわち、電機子1036)の回転速度を制御することができる。 Here, the control circuit 1074 controls the transistors SW9, SW10, SW11, and SW12, thereby controlling the current values of the currents flowing through the coils 1051a and 1051b through the brushes 1038a, 1038b, 1038c, and 1038d and the commutator 1043. Thereby, the rotational speed of the rotating shaft 1030 (that is, the armature 1036) can be controlled by controlling the magnitude of the electromagnetic force as the rotational force acting on the coils 1051a and 1051b.
 また、外乱により回転軸1030の軸線S2が回転軸1030の回転中心線S1がずれる場合がある。このとき、回転軸1030は、回転中心線S1を中心として回転しながら、支点P1を中心として揺動する。 Also, the axis S2 of the rotating shaft 1030 may deviate from the rotation center line S1 of the rotating shaft 1030 due to disturbance. At this time, the rotation shaft 1030 swings about the fulcrum P1 while rotating about the rotation center line S1.
 これに対して、制御回路1074がトランジスタSW1、SW2、SW3、SW4をスイッチング制御することにより、コイル1050aに電流を流して、コイル1050aと永久磁石1035a、1035bとの間にて電機子1036を移動させる電磁力f1、f2を発生させる。 On the other hand, the control circuit 1074 performs switching control of the transistors SW1, SW2, SW3, and SW4, so that a current flows through the coil 1050a and moves the armature 1036 between the coil 1050a and the permanent magnets 1035a and 1035b. Electromagnetic forces f1 and f2 to be generated are generated.
 具体的には、次の(a)(b)(c)(d)の通りになる。(a)ブラシ1039aがセグメント1044aに接触し、かつブラシ1039cがセグメント1044cに接触した状態で、トランジスタSW1、SW4がオンし、かつトランジスタSW2、SW3がオフしたときに、共通接続端子T1、T2からセグメント1044a、1044cを通してコイル1050aに対して電流を第1電流方向に流すことができる。(b)ブラシ1039cがセグメント1044aに接触し、かつブラシ1039aがセグメント1044cに接触した状態で、トランジスタSW1、SW4がオフし、かつトランジスタSW2、SW3がオンしたときに、共通接続端子T1、T2からセグメント1044a、1044cを通してコイル1050aに対して電流を第1電流方向に流すことができる。 Specifically, the following (a) (b) (c) (d) will be performed. (A) When the transistors SW1 and SW4 are turned on and the transistors SW2 and SW3 are turned off while the brush 1039a is in contact with the segment 1044a and the brush 1039c is in contact with the segment 1044c, the common connection terminals T1 and T2 A current can be passed in the first current direction to the coil 1050a through the segments 1044a and 1044c. (B) When the transistors SW1 and SW4 are turned off and the transistors SW2 and SW3 are turned on while the brush 1039c is in contact with the segment 1044a and the brush 1039a is in contact with the segment 1044c, the common connection terminals T1 and T2 A current can be passed in the first current direction to the coil 1050a through the segments 1044a and 1044c.
 このようにコイル1050aに対して電流を第1電流方向に流すことにより、ティース1054b、1054dに回巻きされるコイル1050aと永久磁石1035a、1035bとの間には、電磁力f1が発生する。電磁力f1は、電機子1036(すなわち、回転軸1030)をコイル1050aの軸線方向一方側に移動させる力である。コイル1050aの軸線方向は、ティース1054b、1054dの軸線を結ぶ方向である。(c)ブラシ1039aがセグメント1044aに接触し、かつブラシ1039cがセグメント1044cに接触した状態で、トランジスタSW1、SW4がオフし、かつトランジスタSW2、SW3がオンしたときに、共通接続端子T1、T2からセグメント1044a、1044cを通してコイル1050aに対して電流を第2電流方向に流すことができる。第2電流方向は、コイル1050aに対して第1電流方向と逆に電流が流れる方向である。(d)ブラシ1039cがセグメント1044aに接触し、かつブラシ1039aがセグメント1044cに接触した状態で、トランジスタSW1、SW4がオンし、かつトランジスタSW2、SW3がオフしたときに、共通接続端子T1、T2からセグメント1044a、1044cを通してコイル1050aに電流を第2電流方向に流すことができる。 In this way, by passing a current through the coil 1050a in the first current direction, an electromagnetic force f1 is generated between the coil 1050a wound around the teeth 1054b and 1054d and the permanent magnets 1035a and 1035b. The electromagnetic force f1 is a force that moves the armature 1036 (that is, the rotating shaft 1030) to one side in the axial direction of the coil 1050a. The axial direction of the coil 1050a is a direction connecting the axial lines of the teeth 1054b and 1054d. (C) When the transistors SW1 and SW4 are turned off and the transistors SW2 and SW3 are turned on while the brush 1039a is in contact with the segment 1044a and the brush 1039c is in contact with the segment 1044c, the common connection terminals T1 and T2 A current can flow in the second current direction through the segments 1044a, 1044c to the coil 1050a. The second current direction is a direction in which a current flows in the coil 1050a opposite to the first current direction. (D) When the transistors SW1 and SW4 are turned on and the transistors SW2 and SW3 are turned off while the brush 1039c is in contact with the segment 1044a and the brush 1039a is in contact with the segment 1044c, the common connection terminals T1 and T2 A current can be passed through coil 1050a through segments 1044a and 1044c in the second current direction.
 このようにコイル1050aに対して電流を第2電流方向に流すことにより、ティース1054b、1054dに回巻きされるコイル1050aと永久磁石1035a、1035bとの間には、電磁力f2が発生する。電磁力f2は、電機子1036(すなわち、回転軸1030)をコイル1050aの軸線方向他方側に移動させる力である。 In this way, by passing a current in the second current direction through the coil 1050a, an electromagnetic force f2 is generated between the coil 1050a and the permanent magnets 1035a and 1035b wound around the teeth 1054b and 1054d. The electromagnetic force f2 is a force that moves the armature 1036 (that is, the rotating shaft 1030) to the other side in the axial direction of the coil 1050a.
 制御回路1074がコイル1050aに対して電流が流れる方向を第1電流方向から第2電流方向(或いは、第2電流方向から第1電流方向)に変えることにより、コイル1050aと永久磁石1035a、1035bとの間に発生する電磁力の方向を変えることができる。制御回路1074がトランジスタSW1、SW2、SW3、SW4をスイッチング制御してコイル1050aに流れる電流値を制御することにより、コイル1050aと永久磁石1035a、1035bとの間に作用する電磁力f1、f2の大きさを制御することができる。 The control circuit 1074 changes the direction in which current flows to the coil 1050a from the first current direction to the second current direction (or from the second current direction to the first current direction), so that the coil 1050a and the permanent magnets 1035a and 1035b The direction of electromagnetic force generated during the period can be changed. The control circuit 1074 performs switching control of the transistors SW1, SW2, SW3, and SW4 to control the current value flowing through the coil 1050a, whereby the magnitudes of the electromagnetic forces f1 and f2 acting between the coil 1050a and the permanent magnets 1035a and 1035b. Can be controlled.
 制御回路1074がトランジスタSW5、SW6、SW7、SW8をスイッチング制御することにより、コイル1050bに電流を流してコイル1050bと永久磁石1035a、1035bとの間にて電機子1036を移動させる電磁力f3、f4を発生させる。 The control circuit 1074 performs switching control of the transistors SW5, SW6, SW7, and SW8, so that a current flows through the coil 1050b to move the armature 1036 between the coil 1050b and the permanent magnets 1035a and 1035b. Is generated.
 具体的には、次の(e)(f)(g)(h)の通りになる。(e)ブラシ1039bがセグメント1044bに接触し、かつブラシ1039dがセグメント1044dに接触した状態で、トランジスタSW5、SW8がオンし、かつトランジスタSW6、SW7がオフしたときに、共通接続端子T3、T4からセグメント1044b、1044dを通してコイル1050bに対して電流を第3電流方向に流すことができる。(f)ブラシ1039dがセグメント1044bに接触し、かつブラシ1039bがセグメント1044dに接触した状態で、トランジスタSW5、SW8がオフし、かつトランジスタSW6、SW7がオンしたときに、共通接続端子T3、T4からセグメント1044b、1044dを通してコイル1050bに対して電流を第3電流方向に流すことができる。 Specifically, the following (e) (f) (g) (h) will be performed. (E) When the transistors SW5 and SW8 are turned on and the transistors SW6 and SW7 are turned off while the brush 1039b is in contact with the segment 1044b and the brush 1039d is in contact with the segment 1044d, the common connection terminals T3 and T4 A current can be passed through the segments 1044b, 1044d to the coil 1050b in the third current direction. (F) When the transistors SW5 and SW8 are turned off and the transistors SW6 and SW7 are turned on with the brush 1039d in contact with the segment 1044b and the brush 1039b in contact with the segment 1044d, the common connection terminals T3 and T4 A current can be passed through the segments 1044b, 1044d to the coil 1050b in the third current direction.
 このようにコイル1050bに対して電流を第3電流方向に流すことにより、ティース1054a、1054cに回巻きされるコイル1050bと永久磁石1035a、1035bとの間には、電磁力f3が発生する。電磁力f3は、電機子1036(すなわち、回転軸1030)をコイル1050bの軸線方向一方側に移動させる力である。コイル1050bの軸線方向は、ティース1054a、1054cの軸線を結ぶ方向である。(g)ブラシ1039bがセグメント1044bに接触し、かつブラシ1039dがセグメント1044dに接触した状態で、トランジスタSW5、SW8がオフし、かつトランジスタSW6、SW7がオンしたときに、共通接続端子T3、T4からセグメント1044b、1044dを通してコイル1050bに対して電流を第4電流方向に流すことができる。第4電流方向とは、第3電流方向に対して逆の方向である。(h)ブラシ1039dがセグメント1044bに接触し、かつブラシ1039bがセグメント1044dに接触した状態で、トランジスタSW5、SW8がオンし、かつトランジスタSW6、SW7がオフしたときに、共通接続端子T3、T4からセグメント1044b、1044dを通してコイル1050bに対して電流を第4電流方向に流すことができる。 In this way, by passing a current through the coil 1050b in the third current direction, an electromagnetic force f3 is generated between the coil 1050b wound around the teeth 1054a and 1054c and the permanent magnets 1035a and 1035b. The electromagnetic force f3 is a force that moves the armature 1036 (that is, the rotating shaft 1030) to one side in the axial direction of the coil 1050b. The axial direction of the coil 1050b is a direction connecting the axial lines of the teeth 1054a and 1054c. (G) When the transistors SW5 and SW8 are turned off and the transistors SW6 and SW7 are turned on while the brush 1039b is in contact with the segment 1044b and the brush 1039d is in contact with the segment 1044d, the common connection terminals T3 and T4 A current can be passed through the segments 1044b, 1044d to the coil 1050b in the fourth current direction. The fourth current direction is a direction opposite to the third current direction. (H) When the transistors SW5 and SW8 are turned on and the transistors SW6 and SW7 are turned off while the brush 1039d is in contact with the segment 1044b and the brush 1039b is in contact with the segment 1044d, the common connection terminals T3 and T4 A current can be passed through the segments 1044b, 1044d to the coil 1050b in the fourth current direction.
 このようにコイル1050bに対して電流を第4電流方向に流すことにより、ティース1054a、1054cに回巻きされるコイル1050bと永久磁石1035a、1035bとの間には、電磁力f4が発生する。電磁力f4は、電機子1036(すなわち、回転軸1030)をコイル1050bの軸線方向他方側に移動させる力である。 In this way, by flowing a current in the fourth current direction to the coil 1050b, an electromagnetic force f4 is generated between the coil 1050b and the permanent magnets 1035a and 1035b wound around the teeth 1054a and 1054c. The electromagnetic force f4 is a force that moves the armature 1036 (that is, the rotating shaft 1030) to the other side in the axial direction of the coil 1050b.
 制御回路1074がコイル1050bに対して電流が流れる方向を第3電流方向から第4電流方向(或いは、第4電流方向から第3電流方向)に変えることにより、コイル1050bと永久磁石1035a、1035bとの間に発生する電磁力の方向を変えることができる。制御回路1074がトランジスタSW5、SW6、SW7、SW8をスイッチング制御してコイル1050bに流れる電流値を制御することにより、コイル1050bと永久磁石1035a、1035bとの間に作用する電磁力f3、f4の大きさを制御することができる。 The control circuit 1074 changes the direction in which the current flows to the coil 1050b from the third current direction to the fourth current direction (or from the fourth current direction to the third current direction), so that the coil 1050b and the permanent magnets 1035a and 1035b The direction of electromagnetic force generated during the period can be changed. The control circuit 1074 performs switching control of the transistors SW5, SW6, SW7, and SW8 to control the current value flowing through the coil 1050b, whereby the magnitude of the electromagnetic forces f3 and f4 acting between the coil 1050b and the permanent magnets 1035a and 1035b. Can be controlled.
 ここで、コイル1050aの軸線方向とコイル1050bの軸線方向とは直交する方向である。電磁力f1、f2、f3、f4をそれぞれ単位ベクトルとする。このような電磁力f1、f2、f3、f4および電磁力f1、f2、f3、f4に掛ける係数K1、K2、K3、K4を用いて、回転中心線S1に回転軸1030の軸線S2を近づけるための支持力Faを下記の数式1で表すことができる。 Here, the axial direction of the coil 1050a and the axial direction of the coil 1050b are orthogonal to each other. The electromagnetic forces f1, f2, f3, and f4 are set as unit vectors, respectively. Using the electromagnetic forces f1, f2, f3, f4 and the coefficients K1, K2, K3, K4 applied to the electromagnetic forces f1, f2, f3, f4 to bring the axis S2 of the rotary shaft 1030 closer to the rotation center line S1. Can be expressed by the following mathematical formula 1.
 Fa=K1・f1+K2・f2+K3・f3+K4・f4・・・(数式1)
 制御回路1074がトランジスタSW1、SW2、SW3、SW4、SW5、SW6、SW7、SW8を制御して共通接続端子T1、T2、T3、T4からコイル1050a、1050bに流す電流を制御する。このため、係数K1、K2、K3、K4が制御されることにより、支持力Faの大きさ、および支持力Faの方向を制御することができる。
Fa = K1 · f1 + K2 · f2 + K3 · f3 + K4 · f4 (Equation 1)
The control circuit 1074 controls the transistors SW1, SW2, SW3, SW4, SW5, SW6, SW7, and SW8 to control the current that flows from the common connection terminals T1, T2, T3, and T4 to the coils 1050a and 1050b. For this reason, the magnitudes of the support force Fa and the direction of the support force Fa can be controlled by controlling the coefficients K1, K2, K3, and K4.
 次に、本実施形態の制御回路1074による制御処理について図57~図62を参照して説明する。 Next, control processing by the control circuit 1074 of this embodiment will be described with reference to FIGS.
 制御回路1074は、図57、図58のフローチャートにしたがって支持処理を実行する。図57、図58は制御処理を示すフローチャートである。 The control circuit 1074 executes the support process according to the flowcharts of FIGS. 57 and 58 are flowcharts showing the control process.
 まず、図57のステップ1100において、ホールセンサ1037a、1037b、1037c、1037dにより永久磁石34a、34bによって生じる磁界を検出する。 First, in step 1100 of FIG. 57, magnetic fields generated by the permanent magnets 34a and 34b are detected by the hall sensors 1037a, 1037b, 1037c, and 1037d.
 ここで、X-Y座標において、ホールセンサ1037a、1037cが並ぶ方向をX方向とし、ホールセンサ1037b、1037dが並ぶ方向をY方向とする。ホールセンサ1037aの出力信号Haとホールセンサ1037cの出力信号Hcとの差分ds1(=Ha-Hc:図63参照)を求める。当該差分ds1は、回転軸1030の回転角度情報を示す。そして、この差分ds1に基づいて、現時刻の回転軸1030の回転角度(すなわち、回転位置)を算出する(ステップ1110)。 Here, in the XY coordinates, the direction in which the hall sensors 1037a and 1037c are arranged is defined as the X direction, and the direction in which the hall sensors 1037b and 1037d are arranged is defined as the Y direction. A difference ds1 (= Ha−Hc: see FIG. 63) between the output signal Ha of the Hall sensor 1037a and the output signal Hc of the Hall sensor 1037c is obtained. The difference ds1 indicates rotation angle information of the rotation shaft 1030. Based on the difference ds1, the rotation angle (that is, the rotation position) of the rotation shaft 1030 at the current time is calculated (step 1110).
 次に、回転軸1030が回転中心線S1から傾くことを妨げる支持制御(ステップ1120)と、回転軸1030を回転させる回転制御(ステップ1130)とを並列的に実行する。なお、支持制御(ステップ1120)、および回転制御(ステップ1130)の詳細は後述する。次に、回転軸1030の回転を続行するか否かを判定する(ステップ1140)。その後、回転軸1030の回転を続行するとして、ステップ1140でYESと判定すると、ステップ1110に戻る。次いで、制御処理を停止させる停止指令が外部から入力されるまで、ステップ1100、110、120、130、およびステップ1140のYES判定を繰り返す。その後、停止指令が外部から入力されると、ステップ1140でN0と判定して、制御処理を終了する。 Next, support control (step 1120) for preventing the rotation shaft 1030 from being inclined from the rotation center line S1 and rotation control for rotating the rotation shaft 1030 (step 1130) are executed in parallel. Details of support control (step 1120) and rotation control (step 1130) will be described later. Next, it is determined whether or not to continue the rotation of the rotating shaft 1030 (step 1140). Thereafter, assuming that the rotation of the rotating shaft 1030 is continued, if YES is determined in the step 1140, the process returns to the step 1110. Next, the YES determinations in steps 1100, 110, 120, and 130 and step 1140 are repeated until a stop command for stopping the control process is input from the outside. Thereafter, when a stop command is input from the outside, it is determined as NO in step 1140, and the control process is terminated.
 次に、回転制御(ステップ1130)について説明する。 Next, rotation control (step 1130) will be described.
 まず、上記ステップ1110で算出される回転軸1030の回転角度を時間で微分して回転軸1030の回転速度を求める。これに加えて、スイッチングSW9、SW10、SW11、SW12を制御することにより、前記求めた回転軸1030の回転速度を目標回転速度に近づけるようにコイル1051a、1051bに流れる電流を制御する。このため、コイル1051a、1051bには、当該電流と永久磁石1035a、1035bからの磁束によって回転力としての電磁力が発生する。このため、回転軸1030(すなわち、電機子1036)の回転角度を目標回転速度に近づけることができる。 First, the rotational speed of the rotating shaft 1030 is obtained by differentiating the rotation angle of the rotating shaft 1030 calculated in step 1110 with respect to time. In addition to this, by controlling the switching SW9, SW10, SW11, SW12, the current flowing through the coils 1051a, 1051b is controlled so that the obtained rotational speed of the rotating shaft 1030 approaches the target rotational speed. For this reason, electromagnetic force as a rotational force is generated in the coils 1051a and 1051b by the current and the magnetic flux from the permanent magnets 1035a and 1035b. For this reason, the rotation angle of the rotating shaft 1030 (that is, the armature 1036) can be brought close to the target rotation speed.
 次に、支持制御(ステップ1120)について図58を参照して説明する。図58は、図57中ステップ1120の詳細を示すフローチャートである。 Next, support control (step 1120) will be described with reference to FIG. FIG. 58 is a flowchart showing details of step 1120 in FIG.
 まず、ステップ1121において、ホールセンサ1037a、1037b、1037c、1037dの出力信号に基づいて、回転軸1030の回転中心線S1に対する回転軸1030の傾きθ(図54参照)を算出する。 First, in step 1121, the inclination θ (see FIG. 54) of the rotation shaft 1030 with respect to the rotation center line S1 of the rotation shaft 1030 is calculated based on the output signals of the hall sensors 1037a, 1037b, 1037c, and 1037d.
 具体的には、現時刻におけるホールセンサ1037aの出力信号Haと現時刻におけるホールセンサ1037cの出力信号Hcとの差分ds1(=Ha-Hc)を求める。そして、差分ds1の振幅値A1と基準信号k1の振幅値A0の差分dA(=A1-A0:図59A参照)によって、ファン1020のX座標(回転軸1030の軸線方向他方側端部のX座標)を求める。 Specifically, the difference ds1 (= Ha−Hc) between the output signal Ha of the hall sensor 1037a at the current time and the output signal Hc of the hall sensor 1037c at the current time is obtained. Then, based on the difference dA (= A1-A0: see FIG. 59A) between the amplitude value A1 of the difference ds1 and the amplitude value A0 of the reference signal k1, the X coordinate of the fan 1020 (the X coordinate of the other end of the rotating shaft 1030 in the axial direction) )
 ここで、振幅値A1は、現時刻における差分ds1の振幅値を示す。差分ds1が零になったタイミングと現時刻との間の時間をΔTとする。振幅値A0は、基準信号k1が零になるタイミングからΔT経過したときの基準信号k1の振幅である。 Here, the amplitude value A1 indicates the amplitude value of the difference ds1 at the current time. Let ΔT be the time between the timing when the difference ds1 becomes zero and the current time. The amplitude value A0 is the amplitude of the reference signal k1 when ΔT has elapsed from the timing when the reference signal k1 becomes zero.
 そして、差分(A1-A0)が大きくなるほど、X座標(X0)が大きくなり、差分(A1-A0)が小さくなるほど、X座標(X0)が大きくなる。基準信号k1は、ホールセンサ1037aの出力信号Haの理論値とホールセンサ1037cの出力信号Hcの理論値との差分(=出力信号Haの理論値-出力信号Hcの理論値)である。 The X coordinate (X0) increases as the difference (A1-A0) increases, and the X coordinate (X0) increases as the difference (A1-A0) decreases. The reference signal k1 is a difference (= theoretical value of the output signal Ha−theoretical value of the output signal Hc) between the theoretical value of the output signal Ha of the Hall sensor 1037a and the theoretical value of the output signal Hc of the Hall sensor 1037c.
 ここで、回転軸1030の軸線が回転軸1030の回転中心線S1に一致した状態で回転軸1030が回転した際のホールセンサ1037aから出力される出力信号Haを出力信号Haの理論値としている。回転軸1030の軸線が回転軸1030の回転中心線S1に一致した状態で回転軸1030が回転した際のホールセンサ1037cから出力される出力信号Hcを出力信号Hcの理論値としている。 Here, the output signal Ha output from the Hall sensor 1037a when the rotation shaft 1030 rotates in a state where the axis of the rotation shaft 1030 coincides with the rotation center line S1 of the rotation shaft 1030 is used as a theoretical value of the output signal Ha. The output signal Hc output from the Hall sensor 1037c when the rotation shaft 1030 rotates in a state where the axis of the rotation shaft 1030 coincides with the rotation center line S1 of the rotation shaft 1030 is the theoretical value of the output signal Hc.
 さらに、現時刻におけるホールセンサ1037bの出力信号Hbと現時刻におけるホールセンサ1037dの出力信号Hdとの差分dq(=Hb-Hd)を求め、この差分dqの振幅B1と基準信号k2の振幅値B0との差分dB(=B1-B0:図59B参照)に基づいて、ファン1020のY座標(すなわち、回転軸1030の軸線方向他方側端部のY座標)を求める。 Further, a difference dq (= Hb−Hd) between the output signal Hb of the hall sensor 1037b at the current time and the output signal Hd of the hall sensor 1037d at the current time is obtained, and the amplitude B1 of the difference dq and the amplitude value B0 of the reference signal k2 are obtained. The Y coordinate of the fan 1020 (that is, the Y coordinate of the other end portion in the axial direction of the rotating shaft 1030) is obtained based on the difference dB (= B1-B0: see FIG. 59B).
 基準信号k2は、ホールセンサ1037bの出力信号Hbの理論値とホールセンサ1037dの出力信号Hdの理論値との差分(=出力信号Hbの理論値-出力信号Hdの理論値)である。ここで、回転軸1030の軸線が回転軸1030の回転中心線S1に一致した状態で回転軸1030が回転した際のホールセンサ1037bから出力される出力信号Hbを出力信号Hbの理論値としている。回転軸1030の軸線が回転軸1030の回転中心線S1に一致した状態で回転軸1030が回転した際のホールセンサ1037dから出力される出力信号Hdを出力信号Hdの理論値としている。 The reference signal k2 is a difference (= theoretical value of the output signal Hb−theoretical value of the output signal Hd) between the theoretical value of the output signal Hb of the Hall sensor 1037b and the theoretical value of the output signal Hd of the Hall sensor 1037d. Here, the output signal Hb output from the Hall sensor 1037b when the rotation shaft 1030 rotates in a state where the axis of the rotation shaft 1030 coincides with the rotation center line S1 of the rotation shaft 1030 is a theoretical value of the output signal Hb. The output signal Hd output from the Hall sensor 1037d when the rotation shaft 1030 rotates in a state where the axis of the rotation shaft 1030 coincides with the rotation center line S1 of the rotation shaft 1030 is the theoretical value of the output signal Hd.
 振幅値B1は、現時刻における差分dqの振幅値を示す。振幅値B0は、上記基準信号k1が零になるタイミングからΔT経過したときの基準信号k2の振幅である。そして、差分dBが大きくなるほど、Y座標(Y0)が大きくなる。差分dBが小さくなるほど、Y座標(Y0)が小さくなる。 The amplitude value B1 indicates the amplitude value of the difference dq at the current time. The amplitude value B0 is the amplitude of the reference signal k2 when ΔT has elapsed from the timing when the reference signal k1 becomes zero. As the difference dB increases, the Y coordinate (Y0) increases. The smaller the difference dB, the smaller the Y coordinate (Y0).
 このように求められたファン1020のXY座標(X0、Y0)に基づいて回転中心線S1に対する回転軸1030の傾きθ(角度)を算出する。なお、本実施形態では、傾きθは、Z軸および回転軸1030の軸線S2の間でZ軸から回転軸1030の軸線S2に向けて時計回り方向に形成される角度である(図54参照)。 Based on the XY coordinates (X0, Y0) of the fan 1020 thus obtained, the inclination θ (angle) of the rotation shaft 1030 with respect to the rotation center line S1 is calculated. In the present embodiment, the inclination θ is an angle formed in the clockwise direction from the Z axis to the axis S2 of the rotary shaft 1030 between the Z axis and the axis S2 of the rotary shaft 1030 (see FIG. 54). .
 次に、ステップ1122において、ファン1020のXY座標(X0、Y0)に基づいて、回転中心線S1に対する回転軸1030の軸線S2を近づけるために励磁すべきコイルをコイル1050a、1050bから選択する。つまり、傾いた回転軸1030の軸線S2を回転中心線S1に近づけるのに通電すべきコイルをコイル1050a、1050bから選択する。以下、このように選択したコイルを選択コイルという。 Next, in step 1122, based on the XY coordinates (X0, Y0) of the fan 1020, a coil to be excited is selected from the coils 1050a and 1050b in order to bring the axis S2 of the rotation shaft 1030 close to the rotation center line S1. That is, the coil to be energized to bring the axis S2 of the inclined rotation shaft 1030 close to the rotation center line S1 is selected from the coils 1050a and 1050b. Hereinafter, the coil thus selected is referred to as a selection coil.
 次に、ステップ1123において、回転軸1030の回転速度が高速であるか否かを判定する。 Next, in Step 1123, it is determined whether or not the rotation speed of the rotating shaft 1030 is high.
 具体的には、ホールセンサ1037aの出力信号Haとホールセンサ1037cの出力信号Hcとの差分(Ha-Hc)を求め、この求めた差分(Ha-Hc)の時間に対する変化に基づいて、回転軸1030の回転速度を算出する。この算出した回転速度(以下、算出回転速度Vという)が所定速度以上であるか否かを判定する。 Specifically, a difference (Ha−Hc) between the output signal Ha of the hall sensor 1037a and the output signal Hc of the hall sensor 1037c is obtained, and based on the change of the obtained difference (Ha−Hc) with respect to time, the rotation axis A rotational speed of 1030 is calculated. It is determined whether or not the calculated rotation speed (hereinafter referred to as calculated rotation speed V) is equal to or higher than a predetermined speed.
 算出回転速度Vが所定速度以上であるとき、回転軸1030の回転速度が高速であるとしてステップ1123でYESと判定する。この場合、回転軸1030の軸線S2を回転中心線S1に近づけるのに必要な支持力Faをコイル1050a、1050bおよび永久磁石1035a、1035bの間で発生させるために、上記選択コイルに出力するべき電流を、(X0、Y0)および傾きθに基づいて算出する(ステップ1124)。 When the calculated rotation speed V is equal to or higher than the predetermined speed, YES is determined in step 1123 because the rotation speed of the rotating shaft 1030 is high. In this case, in order to generate the supporting force Fa necessary for bringing the axis S2 of the rotating shaft 1030 close to the rotating center line S1 between the coils 1050a and 1050b and the permanent magnets 1035a and 1035b, the current to be output to the selection coil Is calculated based on (X0, Y0) and the gradient θ (step 1124).
 一方、算出回転速度Vが所定速度未満であるとき、回転軸1030の回転速度が低速であるとしてステップ1123でNOと判定する。この場合、回転軸1030の軸線S2を回転中心線S1に近づけるのに必要な支持力Faをコイル1050a、1050bおよび永久磁石1035a、1035bの間で発生させるために、上記選択コイルに出力するべき電流を、(X0、Y0)および傾きθに基づいて算出する(ステップ1126)。 On the other hand, when the calculated rotational speed V is less than the predetermined speed, NO is determined in step 1123 because the rotational speed of the rotating shaft 1030 is low. In this case, in order to generate the supporting force Fa necessary for bringing the axis S2 of the rotating shaft 1030 close to the rotating center line S1 between the coils 1050a and 1050b and the permanent magnets 1035a and 1035b, the current to be output to the selection coil Is calculated based on (X0, Y0) and the inclination θ (step 1126).
 ここで、傾きθが大きいほど、回転軸1030の軸線S2を回転中心線S1に近づけるのに必要な支持力Faは、大きくなる。これに加えて、回転軸1030の回転速度が高くなる程、回転軸1030の軸線S2を回転中心線S1に近づけるのに必要な支持力Faは、小さくなる。すなわち、回転軸1030が高速で回転しているときには、回転軸1030が低速で回転しているときに比べて、支持力Faは、小さくなる(図60参照)。 Here, the greater the inclination θ, the greater the support force Fa necessary to bring the axis S2 of the rotation shaft 1030 closer to the rotation center line S1. In addition to this, the higher the rotational speed of the rotating shaft 1030, the smaller the supporting force Fa necessary to bring the axis S2 of the rotating shaft 1030 closer to the rotation center line S1. That is, when the rotation shaft 1030 rotates at a high speed, the support force Fa is smaller than when the rotation shaft 1030 rotates at a low speed (see FIG. 60).
 図60は、縦軸を支持力Faとし、横軸を傾き角度θとし、回転軸1030が低速、或いは高速で回転している場合において、支持力Faと傾き角度θとの関係を示すグラフである。回転軸1030が低速で回転しているときグラフは、回転軸1030が高速で回転しているときのグラフよりも勾配が大きい。 FIG. 60 is a graph showing the relationship between the support force Fa and the tilt angle θ when the vertical axis is the support force Fa, the horizontal axis is the tilt angle θ, and the rotating shaft 1030 is rotating at low speed or high speed. is there. When the rotation shaft 1030 rotates at a low speed, the graph has a larger gradient than the graph when the rotation shaft 1030 rotates at a high speed.
 そこで、回転軸1030が高速で回転しているときに、図60の高速回転時の支持力Fa-傾きθの関係を示すグラフに基づいて、上記選択コイルに出力するべき電流を算出する(ステップ1126)。 Therefore, when the rotating shaft 1030 rotates at a high speed, the current to be output to the selection coil is calculated based on the graph showing the relationship between the supporting force Fa and the inclination θ at the time of high speed rotation in FIG. 1126).
 一方、回転軸1030が低速で回転しているときに、図60の低速回転時の支持力Fa-傾きθの関係を示すグラフに基づいて、上記選択コイルに出力するべき電流を算出する(ステップ1124)。 On the other hand, when the rotary shaft 1030 is rotating at a low speed, the current to be output to the selection coil is calculated based on the graph showing the relationship between the supporting force Fa and the inclination θ during the low-speed rotation shown in FIG. 1124).
 このように回転軸1030の回転速度、(X0、Y0)、および傾きθに基づいて、上記選択コイルに出力するべき電流を算出する。これに伴い、この算出した電流を上記選択コイルに出力するために、ブリッジ回路1071のトランジスタSW1、SW2・・・SW6を制御する。これにより、共通接続端子T1、T2、T3から上記選択コイルに電流が出力される。このため、選択コイルおよび永久磁石1035の間で支持力Faが発生する。よって、支持力Faによって回転中心線S1に回転軸1030を近づけることができる。 Thus, the current to be output to the selection coil is calculated based on the rotation speed of the rotation shaft 1030, (X0, Y0), and the inclination θ. Accordingly, the transistors SW1, SW2,... SW6 of the bridge circuit 1071 are controlled in order to output the calculated current to the selection coil. As a result, current is output from the common connection terminals T1, T2, and T3 to the selection coil. For this reason, a supporting force Fa is generated between the selection coil and the permanent magnet 1035. Therefore, the rotating shaft 1030 can be brought close to the rotation center line S1 by the support force Fa.
 ここで、同一傾き角度θの場合において回転軸1030が低速で回転している場合には、回転軸1030が高速で回転している場合に比べて、選択コイルおよび永久磁石1035の間で支持力Faが大きくなる。 Here, in the case of the same tilt angle θ, when the rotating shaft 1030 rotates at a low speed, the supporting force between the selection coil and the permanent magnet 1035 is larger than when the rotating shaft 1030 rotates at a high speed. Fa becomes large.
 以上説明した本実施形態によれば、モータ制御システム1000は、回転軸1030の軸方向一方側を軸受け1032を介して回転自在に支持するステータ1031と、ステータ1031によって支持されて、回転軸1030の回転中心線S1を中心とする円周方向に並べられている2つの磁極を形成する永久磁石1035a、1035bとを備える。コイル1051a、1051bは、回転軸1030に支持されているコイルであって、このコイルに流れる電流と永久磁石1035a、1035bからの磁束とに基づいて電機子1036を回転させる電磁力を発生させる。コイル1050a、1050bは、回転軸1030に支持されて、永久磁石1035a、1035bとの間に電磁力を発生させることにより回転軸1030のうち軸受け1032に対して軸方向他方側を回転自在に支持する磁気軸受けを構成する。すなわち、コイル1050a、1050bは、回転軸1030の軸線のうち軸受け1032からずれた部位を回転自在に支持する磁気軸受けを構成する。 According to the present embodiment described above, the motor control system 1000 includes a stator 1031 that rotatably supports one axial side of the rotating shaft 1030 via the bearing 1032, and the stator 1031 that supports the rotating shaft 1030. Permanent magnets 1035a and 1035b forming two magnetic poles arranged in the circumferential direction around the rotation center line S1. The coils 1051a and 1051b are coils supported by the rotating shaft 1030, and generate an electromagnetic force that rotates the armature 1036 based on the current flowing through the coils and the magnetic flux from the permanent magnets 1035a and 1035b. Coils 1050a and 1050b are supported by rotating shaft 1030 and generate an electromagnetic force between permanent magnets 1035a and 1035b to rotatably support the other axial side of rotating shaft 1030 with respect to bearing 1032. Configure magnetic bearings. That is, the coils 1050a and 1050b constitute a magnetic bearing that rotatably supports a portion of the axis of the rotating shaft 1030 that is displaced from the bearing 1032.
 整流子1043は、回転軸1030に支持されて、コイル1051a、1051bに接続されている。整流子1044は、回転軸1030に支持されて、コイル1050a、1050bに接続されている。ブラシ1039a~1039dは、バネ1042a~1042dの弾性力によって整流子1043側に押し付けられて、回転軸1030の回転に伴って整流子1044のセグメント1044a、1044b、1044c、1044dに摺動して整流子1044を通してコイル1050a、1050bに電流を出力する。 The commutator 1043 is supported by the rotating shaft 1030 and connected to the coils 1051a and 1051b. The commutator 1044 is supported by the rotating shaft 1030 and is connected to the coils 1050a and 1050b. The brushes 1039a to 1039d are pressed against the commutator 1043 by the elastic force of the springs 1042a to 1042d, and slide on the segments 1044a, 1044b, 1044c, and 1044d of the commutator 1044 as the rotating shaft 1030 rotates. A current is output to the coils 1050 a and 1050 b through 1044.
 ブラシ1038a~1038dは、バネ1041a~1041dの弾性力によって整流子1044側に押し付けられて、回転軸1030の回転に伴って整流子1043のセグメント1043a、1043b、1043c、1043dに摺動して整流子1043を通してコイル1051a、1051bに電流を出力する。 The brushes 1038a to 1038d are pressed against the commutator 1044 by the elastic force of the springs 1041a to 1041d, and slide on the segments 1043a, 1043b, 1043c, and 1043d of the commutator 1043 as the rotating shaft 1030 rotates. A current is output to the coils 1051a and 1051b through 1043.
 電子制御装置1070は、回転中心線S1から回転軸1030の軸線が傾くことを妨げる電磁力がコイル1050a、1050bおよび永久磁石1035a、1035bの間に発生させるようにコイル1050a、1050bに流れる電流を制御することを特徴とする。 The electronic control unit 1070 controls the current flowing through the coils 1050a and 1050b so that an electromagnetic force that prevents the axis of the rotation shaft 1030 from tilting from the rotation center line S1 is generated between the coils 1050a and 1050b and the permanent magnets 1035a and 1035b. It is characterized by doing.
 以上により、永久磁石1035a、1035bおよびコイル1050a、1050bから構成される磁気軸受けと軸受け1032とから回転軸1030が回転自在に支持されることになる。これにより、回転軸1030を支えるために1つの磁気軸受けを用いることになる。したがって、回転軸1030を支えるための消費電力を低減するようにした電動モータ1010、電子制御装置1070、およびモータ制御システム1000を提供することができる。 As described above, the rotary shaft 1030 is rotatably supported by the magnetic bearing composed of the permanent magnets 1035a and 1035b and the coils 1050a and 1050b and the bearing 1032. Thus, one magnetic bearing is used to support the rotating shaft 1030. Therefore, it is possible to provide the electric motor 1010, the electronic control unit 1070, and the motor control system 1000 that reduce the power consumption for supporting the rotating shaft 1030.
 本実施形態では、回転軸1030が高速で回転しているときには、回転軸1030が低速で回転しているときに比べて、支持力Faを小さくしている。このため、支持力Faを発生させるために、コイル1050a、1050bで消費される電力を低減することができる。 In this embodiment, when the rotating shaft 1030 rotates at a high speed, the support force Fa is made smaller than when the rotating shaft 1030 rotates at a low speed. For this reason, in order to generate the supporting force Fa, the electric power consumed by the coils 1050a and 1050b can be reduced.
 ここで、図63に示すように、回転軸1030の軸方向一方側を軸受け1032cを介して回転自在に支持部材1045Aを支持する電動モータ1010Aにおいて、軸受け1032cが支持部材1045Aに対して固定されている場合には、回転軸1030のうち軸受け1032c側が支点P2となる。この支点P2を中心として、回転軸1030の軸線が回転中心線S1から傾くことが自在に構成されていることになる。このため、回転軸1030が回転する際に傾き振動が生じると、ブラシ1038a~1038dがバネ1041a~1041dの弾性力に伴って変位したり、ブラシ1039a~1039dがバネ1042a~1042dの弾性力に伴って変位する。回転軸1030の傾き振動とは、回転軸1030が回転する際に、回転中心線S1を中心とする径方向に回転軸1030の軸線が揺れ動く現象のことである。 Here, as shown in FIG. 63, in the electric motor 1010A that rotatably supports the support member 1045A on one axial side of the rotation shaft 1030 via the bearing 1032c, the bearing 1032c is fixed to the support member 1045A. If there is, the bearing 1032c side of the rotating shaft 1030 serves as a fulcrum P2. With this fulcrum P2 as the center, the axis of the rotation shaft 1030 is configured to be freely tilted from the rotation center line S1. Therefore, if tilt vibration occurs when the rotating shaft 1030 rotates, the brushes 1038a to 1038d are displaced with the elastic force of the springs 1041a to 1041d, or the brushes 1039a to 1039d are moved with the elastic force of the springs 1042a to 1042d. To displace. The tilt vibration of the rotation shaft 1030 is a phenomenon in which the axis of the rotation shaft 1030 swings in the radial direction around the rotation center line S1 when the rotation shaft 1030 rotates.
 したがって、ブラシ1038a~1038dと整流子1043のセグメント1043a~1043dとの間の接触不良が生じたり、ブラシ1039a~39dと整流子1044のセグメント1044a~1044dとの間の接触不良が生じる恐れがある。 Therefore, there is a risk of poor contact between the brushes 1038a to 1038d and the segments 1043a to 1043d of the commutator 1043, or poor contact between the brushes 1039a to 39d and the segments 1044a to 1044d of the commutator 1044.
 これに対して、本実施形態では、軸受け機構1049では、回転軸支持部材1045は、ステータ1031によって支持されて、かつ回転軸1030の軸線のうち軸受け1032に対して軸方向他方側の位置を支点P1とする。この支点P1を中心として回転軸1030を軸受け1032を介して揺動自在に支持する。これに加えて、整流子1043、1044は、支点P1側に配置されている。 On the other hand, in the present embodiment, in the bearing mechanism 1049, the rotating shaft support member 1045 is supported by the stator 1031, and the position on the other side in the axial direction with respect to the bearing 1032 of the axis of the rotating shaft 1030 is a fulcrum. Let P1. The rotating shaft 1030 is supported by the bearing 1032 so as to be swingable around the fulcrum P1. In addition to this, the commutators 1043 and 1044 are arranged on the fulcrum P1 side.
 このため、ブラシ1038a~1038dとセグメント1043a~1043dとの間の接触部位の変動を抑えることができる。よって、ブラシ1038a~1038dとセグメント1043a~1043dとの間の接触が良好になる。さらに、ブラシ1039a~39dとセグメント1044a~1044dとの間の接触部位の変動を抑えることができる。よって、ブラシ1039a~39dと整流子1044のセグメント1044a~1044dとの間の接触が良好になる。 For this reason, it is possible to suppress fluctuations in the contact portion between the brushes 1038a to 1038d and the segments 1043a to 1043d. Therefore, the contact between the brushes 1038a to 1038d and the segments 1043a to 1043d is improved. Furthermore, it is possible to suppress fluctuations in the contact area between the brushes 1039a to 39d and the segments 1044a to 1044d. Therefore, the contact between the brushes 1039a to 39d and the segments 1044a to 1044d of the commutator 1044 is improved.
 特に、本実施形態では、支点P1は、回転軸1030の軸線のうち、整流子1044の回転中心と整流子1043の回転中心との間の中間点である。このため、ブラシ1038a~1038dとセグメント1043a~1043dとの間の接触部位の変動を確実に抑えることができる。さらに、ブラシ1039a~1039dとセグメント1044a~1044dとの間の接触部位の変動を確実に抑えることができる。 In particular, in this embodiment, the fulcrum P1 is an intermediate point between the rotation center of the commutator 1044 and the rotation center of the commutator 1043 in the axis of the rotation shaft 1030. For this reason, it is possible to reliably suppress fluctuations in the contact portion between the brushes 1038a to 1038d and the segments 1043a to 1043d. Furthermore, it is possible to reliably suppress fluctuations in the contact area between the brushes 1039a to 1039d and the segments 1044a to 1044d.
 図61において、横軸は、回転軸1030の回転数N(すなわち、回転速度)である。縦軸は、電動モータ1010の振動系を示す伝達関数である。伝達関数では、回転軸1030の傾き振動を振動源としてこの振動源から生じる遠心力を入力としている。回転軸1030の傾き振動とは、回転軸1030が回転する際に、回転中心線S1を中心とする径方向に回転軸1030が揺れ動く現象のことである。伝達関数では、電動モータ1010のうち回転軸1030および電機子1036以外の所定部位(例えば、ステータ1031)の振動加速度を出力としている。 61, the horizontal axis represents the rotation speed N of the rotation shaft 1030 (that is, the rotation speed). The vertical axis is a transfer function indicating the vibration system of the electric motor 1010. In the transfer function, the tilt vibration of the rotating shaft 1030 is used as a vibration source, and the centrifugal force generated from this vibration source is input. The tilt vibration of the rotating shaft 1030 is a phenomenon in which the rotating shaft 1030 swings in the radial direction around the rotation center line S1 when the rotating shaft 1030 rotates. In the transfer function, the vibration acceleration of a predetermined portion (for example, the stator 1031) other than the rotating shaft 1030 and the armature 1036 in the electric motor 1010 is output.
 実線で示すDeは、本実施形態の電動モータ1010の振動系を示す伝達関数である。鎖線は支持力Faを小さくしたときの電動モータ1010の振動系を示す伝達関数であり、一点鎖線は支持力Faを大きくしたときの電動モータ1010の振動系を示す伝達関数を示している。 De indicated by a solid line is a transfer function indicating the vibration system of the electric motor 1010 of the present embodiment. A chain line indicates a transfer function indicating the vibration system of the electric motor 1010 when the support force Fa is reduced, and a one-dot chain line indicates a transfer function indicating the vibration system of the electric motor 1010 when the support force Fa is increased.
 ここで、支持力Faが小さい場合の伝達関数のピークは、回転軸1030の回転数が低速であるときに生じている。支持力Faが大きい場合の伝達関数のピークは、回転軸1030の回転数が高速であるときに生じている(図61参照)。このため、支持力Faが小さい場合には、回転軸1030の回転数が低速であるときに電動モータ1010に共振が生じる。一方、支持力Faが大きいときには、回転軸1030の回転数が高速であるときに電動モータ1010に共振が生じる。 Here, the peak of the transfer function when the supporting force Fa is small occurs when the rotational speed of the rotating shaft 1030 is low. The peak of the transfer function when the support force Fa is large occurs when the rotational speed of the rotating shaft 1030 is high (see FIG. 61). For this reason, when the supporting force Fa is small, resonance occurs in the electric motor 1010 when the rotational speed of the rotating shaft 1030 is low. On the other hand, when the supporting force Fa is large, resonance occurs in the electric motor 1010 when the rotational speed of the rotating shaft 1030 is high.
 そこで、本実施形態では、回転軸1030が高速で回転しているとき支持力Faを小さくし、回転軸1030が低速で回転しているとき支持力Faを大きくする。すなわち、回転軸1030の回転数によって、支持力Faの大きさを切り替えている。このため、電動モータ1010の振動系において、ピークを抑えた伝達関数Deを形成することになる。これにより、電動モータ1010において共振が生じ難くすることができる。 Therefore, in the present embodiment, the supporting force Fa is reduced when the rotating shaft 1030 rotates at a high speed, and the supporting force Fa is increased when the rotating shaft 1030 rotates at a low speed. That is, the magnitude of the support force Fa is switched depending on the number of rotations of the rotation shaft 1030. For this reason, in the vibration system of the electric motor 1010, a transfer function De with a suppressed peak is formed. As a result, resonance can hardly occur in the electric motor 1010.
 以上により、回転軸1030の傾き振動が起因して、電動モータ1010に生じる振動加速度Skを回転速度Nの使用範囲に亘って低減することができる(図62参照)。使用範囲は、電動モータ1010において実際に使用される回転軸1030の回転数Nの範囲である。 As described above, the vibration acceleration Sk generated in the electric motor 1010 due to the tilt vibration of the rotation shaft 1030 can be reduced over the use range of the rotation speed N (see FIG. 62). The use range is a range of the rotational speed N of the rotary shaft 1030 actually used in the electric motor 1010.
 なお、図62において、横軸は、回転軸1030の回転数Nである。縦軸は、電動モータ1010のうち回転軸1030、電機子1036以外の所定部位(例えば、ステータ1031)に生じる振動加速度である。鎖線は支持力Faを小さくしたとき電動モータ1010の上記所定部位に生じる振動加速度を示し、一点鎖線は支持力Faを大きくしたときに電動モータ1010のうち上記所定部位に生じる振動加速度を示している。実線で示すSKは、本実施形態の電動モータ1010の上記所定部位に生じる振動加速度を示す。 In FIG. 62, the horizontal axis represents the rotational speed N of the rotary shaft 1030. The vertical axis represents vibration acceleration generated in a predetermined portion (for example, the stator 1031) other than the rotating shaft 1030 and the armature 1036 in the electric motor 1010. The chain line indicates the vibration acceleration generated at the predetermined portion of the electric motor 1010 when the supporting force Fa is decreased, and the alternate long and short dash line indicates the vibration acceleration generated at the predetermined portion of the electric motor 1010 when the supporting force Fa is increased. . SK indicated by a solid line indicates vibration acceleration generated in the predetermined portion of the electric motor 1010 of the present embodiment.
 (第9実施形態)
 上記第8実施形態では、回転軸1030の軸線S2が回転中心線S1から傾くことを妨げるために、回転軸1030の軸線S2を回転中心線S1に近づける支持力Faを発生させた例について説明したが、これに代えて、回転軸1030をその回転方向に移動させる復元力Fbを発生させる本第9実施形態について説明する。
(Ninth embodiment)
In the eighth embodiment, the example in which the supporting force Fa that causes the axis S2 of the rotation shaft 1030 to approach the rotation center line S1 is generated in order to prevent the axis S2 of the rotation shaft 1030 from tilting from the rotation center line S1 has been described. However, instead of this, a description will be given of the ninth embodiment in which a restoring force Fb for moving the rotating shaft 1030 in the rotating direction is generated.
 本実施形態と上記第8実施形態とは、制御回路1074の支持制御(ステップ1120)が相違する。そこで、以下、本実施形態の支持制御(ステップ1120)について説明する。図64は、制御回路1074の支持制御の詳細を示すフローチャートである。 The support control (step 1120) of the control circuit 1074 is different between the present embodiment and the eighth embodiment. Therefore, support control (step 1120) of the present embodiment will be described below. FIG. 64 is a flowchart showing details of support control of the control circuit 1074.
 まず、ステップ1123において、回転軸1030の回転速度が高速であるか否かを判定する。 First, in step 1123, it is determined whether or not the rotational speed of the rotary shaft 1030 is high.
 具体的には、ホールセンサ1037aの出力信号Haとホールセンサ1037cの出力信号Hcとの差分(Ha-Hc)を求めるとともに、この求めた差分(Ha-Hc)の時間に対する変化に基づいて、回転軸1030の回転速度を算出する。この算出した回転速度(以下、算出回転速度Vという)が所定速度以上であるか否かを判定する。 Specifically, the difference (Ha−Hc) between the output signal Ha of the Hall sensor 1037a and the output signal Hc of the Hall sensor 1037c is obtained, and the rotation is performed based on the change of the obtained difference (Ha−Hc) with respect to time. The rotational speed of the shaft 1030 is calculated. It is determined whether or not the calculated rotation speed (hereinafter referred to as calculated rotation speed V) is equal to or higher than a predetermined speed.
 算出回転速度Vが所定速度以上であるとき、回転軸1030の回転速度が高速であるとしてステップ1123でYESと判定する。この場合、回転中心線S1から回転軸1030を傾くことを妨げる復元力Fbをコイル1050a、1050bおよび永久磁石1035a、1035bの間で発生させるために、コイル1050a、1050bに出力するべき電流を算出する(ステップ1126A)。 When the calculated rotation speed V is equal to or higher than the predetermined speed, YES is determined in step 1123 because the rotation speed of the rotating shaft 1030 is high. In this case, the current to be output to the coils 1050a and 1050b is calculated in order to generate a restoring force Fb between the coils 1050a and 1050b and the permanent magnets 1035a and 1035b that prevents the rotation shaft 1030 from being inclined from the rotation center line S1. (Step 1126A).
 一方、算出回転速度Vが所定速度未満であるとき、回転軸1030の回転速度が低速であるとしてステップ1123でNOと判定する。この場合、回転中心線S1から回転軸1030を傾くことを妨げる復元力Fbをコイル1050a、1050bおよび永久磁石1035a、1035bの間で発生させるために、コイル1050a、1050bに出力するべき電流を算出する(ステップ1124A)。 On the other hand, when the calculated rotational speed V is less than the predetermined speed, NO is determined in step 1123 because the rotational speed of the rotating shaft 1030 is low. In this case, the current to be output to the coils 1050a and 1050b is calculated in order to generate a restoring force Fb between the coils 1050a and 1050b and the permanent magnets 1035a and 1035b that prevents the rotation shaft 1030 from being inclined from the rotation center line S1. (Step 1124A).
 本実施形態の復元力Fbは、ファン1020(すなわち、回転軸1030)を回転方向に移動させる電磁力である。復元力Fbは、ファン1020と回転中心線S1との間の距離をLとし、ファン1020(すなわち、回転軸1030)の回転数をVとし、減衰係数をCとしたとき、復元力Fbは(L×V×C)から定まる電磁力である(図70参照)。本実施形態のファン1020の軸心は、回転軸1030の軸方向他端部側端部の軸心である。 The restoring force Fb of the present embodiment is an electromagnetic force that moves the fan 1020 (that is, the rotating shaft 1030) in the rotating direction. When the distance between the fan 1020 and the rotation center line S1 is L, the rotational speed of the fan 1020 (that is, the rotating shaft 1030) is V, and the damping coefficient is C, the restoring force Fb is ( L × V × C) (see FIG. 70). The axis of the fan 1020 of the present embodiment is the axis of the end of the rotating shaft 1030 on the other end side in the axial direction.
 ここで、距離Lは、ファン1020のXY座標(x0、yo)によって求められる。X座標(x0)は、上記第8実施形態で説明したように、ホールセンサ1037aの出力信号Haとホールセンサ1037cの出力信号Hcとの差分ds(=Ha-Hc)に基づいて求められる。Y座標(yo)は、ホールセンサ1037bの出力信号Hbとホールセンサ1037dの出力信号Hdとの差分dq(=Hb-Hd)に基づいて求められる。回転数Vは、上述の如く、ホールセンサ1037aの出力信号Haとホールセンサ1037cの出力信号Hcとの差分(Ha-Hc)に基づいて算出される。ファン1020(すなわち、回転軸1030)の回転方向は、ファン1020の軸心のXY座標(x0、yo)によって求められる。 Here, the distance L is obtained from the XY coordinates (x0, yo) of the fan 1020. As described in the eighth embodiment, the X coordinate (x0) is obtained based on the difference ds (= Ha−Hc) between the output signal Ha of the hall sensor 1037a and the output signal Hc of the hall sensor 1037c. The Y coordinate (yo) is obtained based on the difference dq (= Hb−Hd) between the output signal Hb of the hall sensor 1037b and the output signal Hd of the hall sensor 1037d. As described above, the rotation speed V is calculated based on the difference (Ha−Hc) between the output signal Ha of the Hall sensor 1037a and the output signal Hc of the Hall sensor 1037c. The rotation direction of the fan 1020 (that is, the rotation shaft 1030) is obtained from the XY coordinates (x0, yo) of the axis of the fan 1020.
 そこで、本実施形態では、ステップ1124A、126Aにおいて、ファン1020のXY座標(x0、yo)、および(L×V×C)に基づいて、コイル1050a、1050bに出力するべき電流を算出する。復元力Fbが大きくなるほど、コイル1050a、1050bに出力するべき電流は大きくなる。 Therefore, in this embodiment, in steps 1124A and 126A, the current to be output to the coils 1050a and 1050b is calculated based on the XY coordinates (x0, yo) and (L × V × C) of the fan 1020. As the restoring force Fb increases, the current to be output to the coils 1050a and 1050b increases.
 このようにステップ1124A、126Aで算出した電流をコイルに出力するために、ブリッジ回路1071のトランジスタSW1、SW2・・・SW6を制御する。これにより、共通接続端子T1、T2、T3からコイル1050a、1050bに電流が出力される(ステップ1125)。このため、コイル1050a、1050bおよび永久磁石1035a、1035bの間には、回転中心線S1を中心とするファン1020の回転方向にファン1020を移動させる復元力Fbとしての電磁力が発生する。 Thus, in order to output the current calculated in steps 1124A and 126A to the coil, the transistors SW1, SW2,... SW6 of the bridge circuit 1071 are controlled. As a result, current is output from the common connection terminals T1, T2, and T3 to the coils 1050a and 1050b (step 1125). Therefore, an electromagnetic force is generated between the coils 1050a and 1050b and the permanent magnets 1035a and 1035b as a restoring force Fb that moves the fan 1020 in the rotation direction of the fan 1020 around the rotation center line S1.
 このように回転方向に作用する復元力Fbは、コイル1050a、1050bおよび永久磁石1035a、1035bの間に作用する。このため、外乱等によって回転中心線S1から回転軸1030の軸線S2が傾くことが妨げられる。 Thus, the restoring force Fb acting in the rotation direction acts between the coils 1050a and 1050b and the permanent magnets 1035a and 1035b. For this reason, the axis line S2 of the rotation shaft 1030 is prevented from being inclined from the rotation center line S1 by disturbance or the like.
 ここで、回転軸1030の回転数が高くなる程、回転中心線S1から回転軸1030から傾くことを妨げるのに必要な復元力Fbは、小さくなる。すなわち、回転軸1030が高速で回転しているときには、回転軸1030が低速で回転しているときに比べて、上記必要な復元力Fbは、小さくなる。 Here, the higher the rotational speed of the rotating shaft 1030, the smaller the restoring force Fb necessary to prevent the rotating shaft 1030 from tilting from the rotating shaft 1030. That is, when the rotating shaft 1030 rotates at a high speed, the necessary restoring force Fb is smaller than when the rotating shaft 1030 rotates at a low speed.
 そこで、回転軸1030が高速で回転しているとしてステップ1123でYESと判定したときには、減衰係数Cを小さくして、コイル1050a、1050bに出力するべき電流を小さくする(ステップ1126A)。一方、回転軸1030が低速で回転しているとしてステップ1123でNOと判定したときには、減衰係数Cを大きくして、コイル1050a、1050bに出力するべき電流を大きくする(ステップ1124A)。つまり、回転軸1030が高速で回転しているときには、回転軸1030が低速で回転しているときに比べて、減衰係数Cを小さくして、コイル1050a、1050bに流れる電流を小さくすることができる。 Therefore, if YES is determined in step 1123 because the rotating shaft 1030 is rotating at a high speed, the attenuation coefficient C is decreased, and the current to be output to the coils 1050a and 1050b is decreased (step 1126A). On the other hand, when it is determined NO in step 1123 because the rotating shaft 1030 is rotating at a low speed, the damping coefficient C is increased and the current to be output to the coils 1050a and 1050b is increased (step 1124A). That is, when the rotating shaft 1030 rotates at a high speed, the attenuation coefficient C can be reduced and the current flowing through the coils 1050a and 1050b can be reduced compared to when the rotating shaft 1030 rotates at a low speed. .
 以上説明した本実施形態によれば、電子制御装置1070は、ブリッジ回路1071を制御して、ファン1020と回転中心線S1との間の距離をLとし、減衰係数をCとしたとき、ファン1020の回転方向に移動させる復元力Fb(=L×V×C)をコイル1050a、1050bおよび永久磁石1035a、1035bの間に発生させる。これにより、外乱が生じても、回転軸1030の回転中心線S1から回転軸1030の軸線S2が傾くことが妨げられる。 According to the present embodiment described above, the electronic control unit 1070 controls the bridge circuit 1071, and when the distance between the fan 1020 and the rotation center line S1 is L and the attenuation coefficient is C, the fan 1020. A restoring force Fb (= L × V × C) that moves in the rotation direction is generated between the coils 1050a and 1050b and the permanent magnets 1035a and 1035b. This prevents the axis S2 of the rotation shaft 1030 from being inclined from the rotation center line S1 of the rotation shaft 1030 even if disturbance occurs.
 以上により、永久磁石1035a、1035bおよびコイル1050a、1050bから構成される磁気軸受けと軸受け本体1032aとから回転軸1030が回転自在に支持されることになる。これにより、回転軸1030を支えるために1つの磁気軸受けを用いることになる。したがって、回転軸1030を支えるための消費電力を低減することができる。 As described above, the rotating shaft 1030 is rotatably supported from the magnetic bearing composed of the permanent magnets 1035a and 1035b and the coils 1050a and 1050b and the bearing body 1032a. Thus, one magnetic bearing is used to support the rotating shaft 1030. Therefore, power consumption for supporting the rotating shaft 1030 can be reduced.
 本実施形態では、回転軸1030が高速で回転しているときには、回転軸1030が低速で回転しているときに比べて、ブリッジ回路1071、72からコイル1050a、1050bに出力される電流を小さくする。このため、回転軸1030が高速で回転しているときには、回転軸1030が低速で回転しているときに比べて、復元力Fbを小さくしている。したがって、復元力Fbを発生させるために、コイル1050a、1050bで消費される電力を低減することができる。 In the present embodiment, when the rotating shaft 1030 rotates at a high speed, the current output from the bridge circuits 1071 and 72 to the coils 1050a and 1050b is made smaller than when the rotating shaft 1030 rotates at a low speed. . For this reason, when the rotating shaft 1030 rotates at high speed, the restoring force Fb is made smaller than when the rotating shaft 1030 rotates at low speed. Therefore, in order to generate the restoring force Fb, the power consumed by the coils 1050a and 1050b can be reduced.
 図66において、回転軸1030の回転数Nを横軸とし、電動モータ1010の振動系を示す伝達関数を縦軸としたグラフを示す。伝達関数では、回転軸1030の傾き振動を振動源としてこの振動源から生じる遠心力を入力としている。伝達関数では、電動モータ1010のうち回転軸1030および電機子1036以外の所定部位(例えば、ステータ1031)の振動加速度を出力としている。 66, a graph is shown in which the rotational speed N of the rotating shaft 1030 is the horizontal axis and the transfer function indicating the vibration system of the electric motor 1010 is the vertical axis. In the transfer function, the tilt vibration of the rotating shaft 1030 is used as a vibration source, and the centrifugal force generated from this vibration source is input. In the transfer function, the vibration acceleration of a predetermined portion (for example, the stator 1031) other than the rotating shaft 1030 and the armature 1036 in the electric motor 1010 is output.
 グラフDeは、本実施形態の電動モータ1010の振動系を示す伝達関数を示す。鎖線のグラフは、減衰係数Cが小さい場合の伝達関数であり、一点鎖線は減衰係数Cが大きい場合の伝達関数である。 Graph De shows a transfer function indicating the vibration system of the electric motor 1010 of the present embodiment. The broken line graph is a transfer function when the attenuation coefficient C is small, and the alternate long and short dash line is a transfer function when the attenuation coefficient C is large.
 ここで、回転軸1030が低速で回転しているときには、減衰係数C(すなわち、復元力Fb)が小さい方が、減衰係数Cが大きい場合に比べて、伝達関数が大きくなる(図66参照)。一方、回転軸1030が高速で回転しているときには、減衰係数Cが小さい場合に比べて、減衰係数Cが大きい場合の方が、伝達関数が大きくなる。 Here, when the rotating shaft 1030 rotates at a low speed, the transfer function becomes larger when the damping coefficient C (that is, the restoring force Fb) is smaller than when the damping coefficient C is large (see FIG. 66). . On the other hand, when the rotating shaft 1030 is rotating at high speed, the transfer function is larger when the damping coefficient C is larger than when the damping coefficient C is small.
 そこで、本実施形態では、回転軸1030が高速で回転しているとき減衰係数Cを小さくし、回転軸1030が低速で回転しているとき減衰係数Cを大きくする。すなわち、回転軸1030の回転数によって、減衰係数C(すなわち、復元力Fb)の大きさを切り替えて、伝達関数が大きくなることを抑制する。これにより、電動モータ1010において、共振が生じ難くすることができる。 Therefore, in this embodiment, the damping coefficient C is decreased when the rotating shaft 1030 is rotating at high speed, and the damping coefficient C is increased when the rotating shaft 1030 is rotating at low speed. That is, the magnitude of the damping coefficient C (that is, the restoring force Fb) is switched depending on the number of rotations of the rotating shaft 1030 to suppress an increase in the transfer function. Thereby, in the electric motor 1010, resonance can be made difficult to occur.
 以上により、減衰家数Cを回転数Nによって切り替えるので、上記第8実施形態と同様に、回転数Nの使用範囲に亘って、電動モータ1010において振動加速度を低減することができる。これにより、低振動化を図ることができる。 As described above, since the attenuation house number C is switched depending on the rotation speed N, the vibration acceleration can be reduced in the electric motor 1010 over the use range of the rotation speed N as in the eighth embodiment. Thereby, the vibration can be reduced.
 (第10実施形態)
 上記第8実施形態では、内周面1047の曲率半径r1と側面1048の曲率半径r2とを同一にした例について説明したが、これに代えて、内周面1047の曲率半径r1よりも側面1048の曲率半径r2を小さくした本第10実施形態について図67、図68を参照して説明する。
(10th Embodiment)
In the eighth embodiment, the example in which the curvature radius r1 of the inner peripheral surface 1047 and the curvature radius r2 of the side surface 1048 are the same has been described, but instead, the side surface 1048 is more than the curvature radius r1 of the inner peripheral surface 1047. The tenth embodiment in which the radius of curvature r2 is reduced will be described with reference to FIGS. 67 and 68. FIG.
 図67は、本第10実施形態のモータ制御システム1000の全体構成を示す断面図である。図68は、図67の部分拡大図である。 FIG. 67 is a cross-sectional view showing the overall configuration of the motor control system 1000 of the tenth embodiment. 68 is a partially enlarged view of FIG.
 本実施形態と上記第8実施形態とは、軸受け1032のブッシュ1032bの側面1048が相違するだけで、軸受け1032のブッシュ1032bの側面1048以外の構成は、同じである。このため、本実施形態の軸受け1032のブッシュ1032bの側面1048について説明し、その他の構成の説明を省略する。 The present embodiment and the eighth embodiment are the same except for the side surface 1048 of the bush 1032b of the bearing 1032 except for the side surface 1048 of the bush 1032b of the bearing 1032. For this reason, the side surface 1048 of the bush 1032b of the bearing 1032 of the present embodiment will be described, and description of the other components will be omitted.
 軸受け1032のブッシュ1032bの側面1048は、回転軸1030の軸線S2を中心とする環状に形成されている。側面1048は、その回転軸1030の軸線S2を含む断面が、支点P3を中心とする円弧状に形成されている。支点P3は、支点P1よりも軸方向一方側(図68中下側)に位置する。このため、内周面1047および支点P3の間の半径(すなわち、曲率半径)r2は、側面1048および支点P1の間の半径(すなわち、曲率半径)r1よりも小さくなる。 The side surface 1048 of the bush 1032b of the bearing 1032 is formed in an annular shape centering on the axis S2 of the rotating shaft 1030. The side surface 1048 has a cross section including the axis S2 of the rotation shaft 1030 formed in an arc shape with the fulcrum P3 as the center. The fulcrum P3 is located on one side in the axial direction (lower side in FIG. 68) than the fulcrum P1. For this reason, the radius (ie, curvature radius) r2 between the inner peripheral surface 1047 and the fulcrum P3 is smaller than the radius (ie, curvature radius) r1 between the side surface 1048 and the fulcrum P1.
 このように構成される本実施形態では、軸受け機構1049では、回転軸1030の回転に伴って軸受け1032の側面1048が回転軸支持部材1045の内周面1047に対して摺動する。このことにより、軸受け機構1049が、上記第8実施形態と同様に、回転軸1030を軸受け1032を介して支点P1を中心として揺動自在に支持することができる。 In this embodiment configured as described above, in the bearing mechanism 1049, the side surface 1048 of the bearing 1032 slides with respect to the inner peripheral surface 1047 of the rotating shaft support member 1045 as the rotating shaft 1030 rotates. As a result, the bearing mechanism 1049 can support the rotary shaft 1030 via the bearing 1032 so as to be swingable about the fulcrum P1 as in the eighth embodiment.
 (第11実施形態)
 上記第8実施形態では、回転軸支持部材1045の内周面1047を球面状に形成した例について説明したが、これに代えて、本第11実施形態では、回転軸支持部材1045の内周面1047を図69のように構成する。
(Eleventh embodiment)
In the eighth embodiment, the example in which the inner peripheral surface 1047 of the rotary shaft support member 1045 is formed in a spherical shape has been described. Instead, in the eleventh embodiment, the inner peripheral surface of the rotary shaft support member 1045 is used. 1047 is configured as shown in FIG.
 図69は、本第11実施形態のモータ制御システム1000の全体構成を示す断面図である。 FIG. 69 is a cross-sectional view showing the overall configuration of the motor control system 1000 of the eleventh embodiment.
 本実施形態と上記第8実施形態とは、回転軸支持部材1045の内周面1047が相違するだけで、ブッシュ1032bの内周面1047以外の構成は、同じである。このため、本実施形態のブッシュ1032bの内周面1047について説明し、その他の構成の説明を省略する。以下、説明の便宜上、本実施形態のブッシュ1032bの内周面1047を内周面1047aとする。 The present embodiment and the eighth embodiment are the same except for the inner peripheral surface 1047 of the rotating shaft support member 1045 except for the inner peripheral surface 1047 of the bush 1032b. For this reason, the inner peripheral surface 1047 of the bush 1032b of the present embodiment will be described, and description of other configurations will be omitted. Hereinafter, for convenience of explanation, the inner peripheral surface 1047 of the bush 1032b of this embodiment is referred to as an inner peripheral surface 1047a.
 本実施形態の回転軸支持部材1045の内周面1047aは、回転中心線S1を中心として環状に形成されて、かつ回転中心線S1に直交する断面が円形状に形成されている。さらに、内周面1047aは穴部1046のうち回転中心線S1に直交する断面の面積が回転中心線S1の延出方向他方側(図69中上側)から延出方向一方側(図69中下側)に向かうほど徐々に小さくなるように形成されている。回転中心線S1の延出方向は、回転中心線S1が延びる方向である。 The inner peripheral surface 1047a of the rotation shaft support member 1045 of the present embodiment is formed in an annular shape around the rotation center line S1, and a cross section perpendicular to the rotation center line S1 is formed in a circular shape. Further, the inner peripheral surface 1047a has an area of a cross section perpendicular to the rotation center line S1 in the hole 1046 from the other side (upper side in FIG. 69) of the rotation center line S1 to one side (lower side in FIG. 69). It is formed so that it becomes gradually smaller toward the side). The extending direction of the rotation center line S1 is a direction in which the rotation center line S1 extends.
 このように構成されている本実施形態では、軸受け機構1049では、回転軸1030の回転に伴って軸受け1032の側面1048が回転軸支持部材1045の内周面1047に対して摺動する。このことにより、軸受け機構1049が、上記第8実施形態と同様に、回転軸1030を軸受け1032を介して支点P1を中心として揺動自在に支持することができる。 In this embodiment configured as described above, in the bearing mechanism 1049, the side surface 1048 of the bearing 1032 slides with respect to the inner peripheral surface 1047 of the rotating shaft support member 1045 as the rotating shaft 1030 rotates. As a result, the bearing mechanism 1049 can support the rotary shaft 1030 via the bearing 1032 so as to be swingable about the fulcrum P1 as in the eighth embodiment.
 (第12実施形態)
 本第12実施形態では、上記第8実施形態のモータ制御システム1000において、軸受け機構1049として自動調心スラスト軸受けを構成する例について説明する。
(Twelfth embodiment)
In the twelfth embodiment, an example in which a self-aligning thrust bearing is configured as the bearing mechanism 1049 in the motor control system 1000 of the eighth embodiment will be described.
 図70は、本第11実施形態のモータ制御システム1000の全体構成を示す断面図である。 FIG. 70 is a cross-sectional view showing the overall configuration of the motor control system 1000 of the eleventh embodiment.
 本実施形態と上記第8実施形態とは、軸受け機構1049が相違するだけで、軸受け機構1049以外の構成は、同じである。このため、本実施形態の軸受け機構1049について説明し、その他の構成の説明を省略する。 The present embodiment and the eighth embodiment are the same except for the bearing mechanism 1049 except for the bearing mechanism 1049. For this reason, the bearing mechanism 1049 of this embodiment is demonstrated and description of another structure is abbreviate | omitted.
 本実施形態の軸受け機構1049は、図48の軸受け1032に代わる軸受け1032d、および回転軸支持部材1045を備える。 The bearing mechanism 1049 of this embodiment includes a bearing 1032d instead of the bearing 1032 in FIG. 48, and a rotating shaft support member 1045.
 軸受け1032dおよび回転軸支持部材1045は、軸受け1032dを介して回転軸1030を支点P1を中心とする揺動自在に支持する軸受け機構1049を構成する。 The bearing 1032d and the rotating shaft support member 1045 constitute a bearing mechanism 1049 that supports the rotating shaft 1030 through the bearing 1032d so as to be swingable around the fulcrum P1.
 回転軸1030が回転中心線S1を中心として回転する際に、軸受け1032dが回転軸支持部材1045の内周面1047に対して摺動する。このことにより、軸受け機構1049が、上記第8実施形態と同様に、回転軸1030を軸受け1032を介して支点P1を中心として揺動自在に支持することができる。 When the rotation shaft 1030 rotates around the rotation center line S1, the bearing 1032d slides with respect to the inner peripheral surface 1047 of the rotation shaft support member 1045. As a result, the bearing mechanism 1049 can support the rotary shaft 1030 via the bearing 1032 so as to be swingable about the fulcrum P1 as in the eighth embodiment.
 本実施形態の軸受け機構1049は、回転軸1030が回転中心線S1を中心として回転する際に、回転軸1030の軸線を自動的に回転中心線S1に一致させる周知の自動調心スラスト軸受けを構成する。 The bearing mechanism 1049 of this embodiment constitutes a well-known self-aligning thrust bearing that automatically aligns the axis of the rotation shaft 1030 with the rotation center line S1 when the rotation shaft 1030 rotates about the rotation center line S1. To do.
 (他の実施形態)
 (1)本開示を実施する際に、上記第8、第9の実施形態を組み合わせて実施してもよい。すなわち、上記第8実施形態におけるステップ1120の支持制御処理と、上記第9実施形態におけるステップ1120の支持制御処理とを並列に実施する。このため、電子制御装置1070がコイル1050a、1050b、50cに流す電流を制御することにより、回転軸1030の軸線M2を回転中心線M1に近づける支持力Faと回転軸1030を回転方向に移動させる復元力Fb(=L×V×C)とを発生させる。
(Other embodiments)
(1) When implementing the present disclosure, the eighth and ninth embodiments may be combined. That is, the support control process in step 1120 in the eighth embodiment and the support control process in step 1120 in the ninth embodiment are performed in parallel. For this reason, the electronic controller 1070 controls the current that flows through the coils 1050a, 1050b, and 50c, thereby restoring the supporting force Fa that brings the axis M2 of the rotation shaft 1030 closer to the rotation center line M1 and the rotation shaft 1030 in the rotation direction. Force Fb (= L × V × C) is generated.
 このとき、回転軸1030が高速で回転しているときには、回転軸1030が低速で回転しているときに比べて、支持力Faを小さする。これに加えて、回転軸1030が高速で回転しているときには、回転軸1030が低速で回転しているときに比べて、減衰係数Cを小さくして、コイル1050a、1050b、1050cに流れる電流を小さくする。つまり、支持力Faおよび減衰係数C(すなわち、復元力Fb)の両方を回転軸1030の回転速度によって切り替えることになる。 At this time, when the rotating shaft 1030 rotates at a high speed, the supporting force Fa is made smaller than when the rotating shaft 1030 rotates at a low speed. In addition, when the rotating shaft 1030 rotates at a high speed, the damping coefficient C is made smaller than when the rotating shaft 1030 rotates at a low speed, and the current flowing through the coils 1050a, 1050b, and 1050c is reduced. Make it smaller. That is, both the support force Fa and the damping coefficient C (that is, the restoring force Fb) are switched depending on the rotation speed of the rotating shaft 1030.
 (2)上記第8~第12の実施形態では、本開示の電動モータ1010として直流電動機を用いた例について説明したが、これに代えて、同期型の三相交流モータの電動モータ1010としてもよい。 (2) In the eighth to twelfth embodiments, the example in which the DC motor is used as the electric motor 1010 of the present disclosure has been described. However, instead of this, the electric motor 1010 of a synchronous three-phase AC motor may be used. Good.
 (3)上記第8~第12の実施形態では、機械的軸受けである軸受け1032として、転がり軸受を用いた例について説明したが、これに代えて、軸受け1032として、すべり軸受、および流体軸受を用いてもよい。すべり軸受は、すべり面で軸を受ける軸受である。流体軸受は、液体、または気体によって支持される軸受である。 (3) In the eighth to twelfth embodiments, the example in which the rolling bearing is used as the bearing 1032 which is a mechanical bearing has been described. Instead, a sliding bearing and a fluid bearing are used as the bearing 1032. It may be used. A sliding bearing is a bearing that receives a shaft on a sliding surface. A fluid dynamic bearing is a bearing supported by liquid or gas.
 (4)上記第8~第12の実施形態では、コイル1051a、1051bに磁束を与える永久磁石と、回転軸1030にコイル1050a、1050bに磁束を与える永久磁石として、共通の永久磁石1035a、1035bを用いた例について説明したが、これに代えて、次のようにしてもよい。 (4) In the eighth to twelfth embodiments, the common permanent magnets 1035a and 1035b are used as the permanent magnet that applies magnetic flux to the coils 1051a and 1051b and the permanent magnet that applies magnetic flux to the coils 1050a and 1050b on the rotating shaft 1030. Although the example used was described, it may replace with this as follows.
 コイル1051a、1051bに磁束を与える永久磁石と、回転軸1030にコイル1050a、1050bに磁束を与える永久磁石とをそれぞれ独立して設けてもよい。 Permanent magnets that give magnetic flux to the coils 1051a and 1051b and permanent magnets that give magnetic flux to the coils 1050a and 1050b may be provided independently on the rotating shaft 1030, respectively.
 (5)上記第8~第12の実施形態では、ホールセンサ1037a、1037b、1037c、1037dで回転軸1030の回転速度や回転角度を求める例について説明したが、これに代えて、次のようにしてもよい。 (5) In the eighth to twelfth embodiments, the example in which the Hall sensor 1037a, 1037b, 1037c, 1037d obtains the rotation speed and rotation angle of the rotating shaft 1030 has been described. May be.
 すなわち、ホールセンサ1037a、1037b、1037c、1037d以外に回転軸1030の回転速度や回転角度を求めるセンサ(例えば、光学式エンコーダ)を設ける。 That is, in addition to the hall sensors 1037a, 1037b, 1037c, and 1037d, a sensor (for example, an optical encoder) for obtaining the rotation speed and rotation angle of the rotating shaft 1030 is provided.
 (6)上記第8~第12の実施形態では、ホールセンサ1037a、1037b、1037c、1037dおよび永久磁石1034a、1034b、1034c、1034dによって、回転軸1030の回転中心線S1に対する傾き角度θ、回転軸1030の軸線方向他方側端部(すなわち、ファン1020)のXY座標、および回転軸1030の回転角度を検出した例について説明したが、これに代えて、次のようにしてもよい。 (6) In the eighth to twelfth embodiments, the inclination angle θ of the rotation shaft 1030 with respect to the rotation center line S1 and the rotation axis are determined by the hall sensors 1037a, 1037b, 1037c, 1037d and the permanent magnets 1034a, 1034b, 1034c, 1034d. Although the example in which the XY coordinates of the other end portion in the axial direction of 1030 (that is, the fan 1020) and the rotation angle of the rotation shaft 1030 are detected has been described, the following may be used instead.
 すなわち、ホールセンサ1037a、1037b、1037c、1037dおよび永久磁石1034a、1034b、1034c、1034dによって、回転中心線M1に対する回転軸1030の傾き角度θ、および回転軸1030の軸線方向他方側端部のXY座標を検出する。 That is, by the hall sensors 1037a, 1037b, 1037c, and 1037d and the permanent magnets 1034a, 1034b, 1034c, and 1034d, the inclination angle θ of the rotation shaft 1030 with respect to the rotation center line M1, and the XY coordinates of the other end in the axial direction of the rotation shaft 1030 Is detected.
 さらに、ホールセンサ1037a、1037b、1037c、1037dおよび永久磁石34a、34b以外の他の回転センサによって、回転軸1030の回転角度を検出してもよい。この場合には、他の回転センサを回転軸3のうち軸受け1032側に配置してもよい。 Furthermore, the rotation angle of the rotating shaft 1030 may be detected by a rotation sensor other than the hall sensors 1037a, 1037b, 1037c, 1037d and the permanent magnets 34a, 34b. In this case, another rotation sensor may be arranged on the bearing 1032 side of the rotation shaft 3.
 (7)上記第8~第12の実施形態では、ホールセンサ1037aの出力信号Haとホールセンサ1037cの出力信号Hcとの差分(Ha-Hc)に基づいて、回転軸1030の回転速度を算出した例について説明したが、これに代えて、次のようにしてもよい。 (7) In the eighth to twelfth embodiments, the rotational speed of the rotating shaft 1030 is calculated based on the difference (Ha−Hc) between the output signal Ha of the Hall sensor 1037a and the output signal Hc of the Hall sensor 1037c. Although an example has been described, the following may be used instead.
 すなわち、ホールセンサ1037a、1037b、1037c、1037dの出力信号に基づいてファン1020のXY座標(X0、Y0)を求め、XY座標(X0、Y0)の時間に対する変化から回転軸1030の回転速度を算出してもよい。 That is, the XY coordinates (X0, Y0) of the fan 1020 are obtained based on the output signals of the hall sensors 1037a, 1037b, 1037c, 1037d, and the rotational speed of the rotary shaft 1030 is calculated from the change of the XY coordinates (X0, Y0) with respect to time. May be.
 このように構成される第8~第12の実施形態および他の実施形態において、次のように本開示を表現することができる。(a)本開示は、電動モータの第2コイルに流れる電流を制御する制御装置であって、第2コイルに流れる電流を制御して、回転中心線に回転軸を近づける電磁力を発生させることにより、回転中心線から回転軸の軸線が傾くことを妨げる回転軸制御部(S1123~S1126)を備える。(b)本開示では、回転軸制御部は、回転中心線に対する回転軸の傾き角度を検出する傾き角度検出センサ(1037a、1037b、1037c、1037d)の検出値に基づいて、傾き角度が大きくなるほど、第2コイルに流す電流を大きくして電磁力を大きくする。(c)本開示では、回転軸制御部は、回転軸の回転を検出する回転センサ(1037a、1037b、1037c、1037d)の検出値に応じて、回転軸の回転数が所定速度以上であるか否かを判定する判定部(S1123)と、
 回転軸の回転数が所定速度以上であると判定部が判定したときには、回転軸の回転数が所定速度未満であると判定部が判定したときに比べて、電磁力が小さくなるように、第2コイルに流す電流を制御する第1電流制御部(S1124、S1125、S1126)と、を備える。(d)本開示では、電動モータの第2コイルに流れる電流を制御する制御装置であって、第2コイルに流す電流を制御して、回転軸が回転中心線から傾くことを妨げるために、回転軸をその回転方向に移動させる電磁力を発生させる回転軸制御部(S1123、S1124A、S1126A、S)を備え、
 回転軸の回転中心線と回転軸の軸線方向他方側との間の距離と回転軸の回転数とをそれぞれ検出するための回転センサ(1037a、1037b、1037c、1037d)により検出される距離をLとし、回転センサにより検出される回転軸の回転数をVとし、係数をCとしたとき、電磁力は、L×V×Cによって定まる力である。(e)本開示では、回転軸制御部は、回転センサの検出値に基づいて、回転軸の回転数が所定速度以上であるか否かを判定する判定部(S1123)と、
 回転軸の回転数が所定速度以上であると判定部が判定したときには、回転軸の回転数が所定速度未満であると判定部が判定したときに比べて、Cを小さくして、第1コイルに流す電流を小さくする第2電流制御部(S1124A、S1125、S1126A)と、を備える。(f)本開示では、モータ制御システムにおいて、電動モータ、および制御装置を備える。
In the eighth to twelfth embodiments and other embodiments configured as described above, the present disclosure can be expressed as follows. (A) This indication is a control device which controls the current which flows into the 2nd coil of an electric motor, and controls the current which flows into the 2nd coil, and generates the electromagnetic force which makes a rotation axis approach a rotation center line. Thus, a rotation axis control unit (S1123 to S1126) that prevents the axis of the rotation axis from being inclined from the rotation center line is provided. (B) In the present disclosure, the rotation axis control unit increases the inclination angle based on the detection value of the inclination angle detection sensor (1037a, 1037b, 1037c, 1037d) that detects the inclination angle of the rotation axis with respect to the rotation center line. The electromagnetic current is increased by increasing the current flowing through the second coil. (C) In the present disclosure, the rotation shaft control unit determines whether the rotation speed of the rotation shaft is equal to or higher than a predetermined speed according to a detection value of a rotation sensor (1037a, 1037b, 1037c, 1037d) that detects rotation of the rotation shaft. A determination unit (S1123) for determining whether or not,
When the determination unit determines that the rotation speed of the rotation shaft is equal to or higher than the predetermined speed, the electromagnetic force is reduced so that the electromagnetic force is smaller than when the determination unit determines that the rotation speed of the rotation shaft is less than the predetermined speed. A first current control unit (S1124, S1125, S1126) for controlling the current flowing through the two coils. (D) In the present disclosure, the control device controls the current flowing through the second coil of the electric motor, and controls the current flowing through the second coil to prevent the rotation shaft from being inclined from the rotation center line. A rotation axis control unit (S1123, S1124A, S1126A, S) for generating an electromagnetic force for moving the rotation axis in the rotation direction;
The distance detected by the rotation sensor (1037a, 1037b, 1037c, 1037d) for detecting the distance between the rotation center line of the rotation shaft and the other side in the axial direction of the rotation shaft and the rotation speed of the rotation shaft is L Where the rotational speed of the rotary shaft detected by the rotation sensor is V and the coefficient is C, the electromagnetic force is a force determined by L × V × C. (E) In the present disclosure, the rotating shaft control unit determines whether or not the number of rotations of the rotating shaft is equal to or higher than a predetermined speed based on the detection value of the rotation sensor;
When the determination unit determines that the rotation speed of the rotation shaft is equal to or higher than the predetermined speed, C is made smaller than when the determination unit determines that the rotation speed of the rotation shaft is less than the predetermined speed, and the first coil And a second current control unit (S1124A, S1125, S1126A) for reducing the current passed through. (F) In the present disclosure, the motor control system includes an electric motor and a control device.
 次に、上記第8~第12の実施形態の構成要素と本開示との間の対応関係について説明する。 Next, a correspondence relationship between the constituent elements of the eighth to twelfth embodiments and the present disclosure will be described.
 まず、ステップ1120が回転軸制御部に対応し、ステップ1124、125、126が第1電流制御部に対応し、ステップ1123が判定部に対応し、ステップ1124A、125、126Aが第2電流制御部を構成している。 First, step 1120 corresponds to the rotation axis control unit, steps 1124, 125, and 126 correspond to the first current control unit, step 1123 corresponds to the determination unit, and steps 1124A, 125, and 126A correspond to the second current control unit. Is configured.
 なお、本開示は上記した実施形態に限定されるものではなく、適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記各実施形態において、実施形態の構成要素の個数等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。

 
Note that the present disclosure is not limited to the above-described embodiment, and can be modified as appropriate. Further, the above embodiments are not irrelevant to each other, and can be combined as appropriate unless the combination is clearly impossible. In each of the above-described embodiments, it is needless to say that elements constituting the embodiment are not necessarily essential unless explicitly stated as essential and clearly considered essential in principle. Yes. Further, in each of the above embodiments, unless a numerical value such as the number of components of the embodiment is mentioned, it is indicated that it is particularly essential, and unless it is clearly limited to a specific number in principle. It is not limited to that particular number.

Claims (35)

  1.  回転軸(30)の軸線方向一方側を機械的軸受け(32)を介して回転自在に支持する支持部材(31)と、
     前記回転軸に取り付けられて、永久磁石(61)を備えるロータ(36)と、
     前記支持部材に取り付けられて、前記ロータを前記回転軸とともに回転させる回転力を発生させる磁界を発生する第1コイル(51a、51b、51c)と、
     前記支持部材に取り付けられて、前記永久磁石との間に吸引力としての電磁力を発生させて、前記機械的軸受けよりも前記回転軸の軸線方向他方側を回転自在に支持する磁気軸受けを構成する第2コイル(50a、50b、50c)と、を備え、
     前記回転軸のうち前記機械的軸受け側を支点として当該回転軸が前記回転軸の回転中心に対して傾くことが可能に構成されており、
     前記永久磁石および前記第2コイルの間の前記電磁力によって前記回転中心に前記回転軸の軸線を近づけるように前記第2コイルに流れる電流が制御装置(70)によって制御されるようになっている電動モータ。
    A support member (31) that rotatably supports one side in the axial direction of the rotation shaft (30) via a mechanical bearing (32);
    A rotor (36) attached to the rotating shaft and comprising a permanent magnet (61);
    A first coil (51a, 51b, 51c) that is attached to the support member and generates a magnetic field that generates a rotational force that rotates the rotor together with the rotation shaft;
    A magnetic bearing that is attached to the support member and generates an electromagnetic force as an attractive force between the permanent magnet and rotatably supports the other axial side of the rotating shaft relative to the mechanical bearing. A second coil (50a, 50b, 50c)
    The rotary shaft is configured such that the rotary shaft can be inclined with respect to the rotation center of the rotary shaft, with the mechanical bearing side as a fulcrum.
    The current flowing through the second coil is controlled by the control device (70) so that the axis of the rotation shaft approaches the rotation center by the electromagnetic force between the permanent magnet and the second coil. Electric motor.
  2.  回転軸(30)の軸線方向一方側を機械的軸受け(32)を介して回転自在に支持する支持部材(31)と、
     前記回転軸に取り付けられて、永久磁石(61)を備えるロータ(36)と、
     前記支持部材に取り付けられて、前記ロータを前記回転軸とともに回転させる回転力を発生させる磁界を発生する第1コイル(51a、51b、51c)と、
     前記支持部材に取り付けられて、前記永久磁石との間に電磁力を発生させて、前記機械的軸受けよりも前記回転軸の軸線方向他方側を回転自在に支持する磁気軸受けを構成する第2コイル(50a、50b、50c)と、を備え、
     前記回転軸のうち前記機械的軸受け側を支点として当該回転軸が前記回転軸の回転中心線に対して傾くことが可能に構成されており、
     前記永久磁石および前記第2コイルの間の前記電磁力によって前記回転中心線から前記回転軸の軸線が傾くことを妨げるように前記第2コイルに流れる電流が制御装置(70)によって制御されるようになっている電動モータ。
    A support member (31) that rotatably supports one side in the axial direction of the rotation shaft (30) via a mechanical bearing (32);
    A rotor (36) attached to the rotating shaft and comprising a permanent magnet (61);
    A first coil (51a, 51b, 51c) that is attached to the support member and generates a magnetic field that generates a rotational force that rotates the rotor together with the rotation shaft;
    A second coil that is attached to the support member and that forms a magnetic bearing that generates an electromagnetic force between the permanent magnet and rotatably supports the other axial side of the rotating shaft relative to the mechanical bearing. (50a, 50b, 50c)
    The rotary shaft is configured such that the rotary shaft can be inclined with respect to the rotation center line of the rotary shaft, with the mechanical bearing side as a fulcrum.
    The current flowing through the second coil is controlled by the control device (70) so as to prevent the axis of the rotation shaft from being inclined from the rotation center line by the electromagnetic force between the permanent magnet and the second coil. Electric motor that is.
  3.  前記支持部材に取り付けられて、前記第1コイル(51a、51b、51c)が巻かれて、前記第1コイルから発生される磁界を通過させる第1ステータコア(56a~56l)と、
     前記支持部材に取り付けられて、かつ前記第1ステータコアに対して分離して設けられて、前記第2コイル(50a、50b、50c)が巻かれて、前記第2コイルから発生される磁界を通過させる第2ステータコア(55a~55l)と、を備え、
     前記第1コイルおよび第2コイルは、前記永久磁石に対して前記軸線方向一方側に配置されている請求項2に記載の電動モータ。
    A first stator core (56a to 56l) attached to the support member and wound with the first coil (51a, 51b, 51c) to pass a magnetic field generated from the first coil;
    The second coil (50a, 50b, 50c) is wound around the second stator (50a, 50b, 50c) attached to the support member and separated from the first stator core, and passes through the magnetic field generated from the second coil. A second stator core (55a to 55l) to be made,
    The electric motor according to claim 2, wherein the first coil and the second coil are disposed on one side in the axial direction with respect to the permanent magnet.
  4.  前記ロータには、前記永久磁石としての第1永久磁石(61a)および第2永久磁石(61b)が設けられており、
     前記第1永久磁石は、前記第1コイルから発生する磁界により前記回転力を発生し、
     前記第2永久磁石は、前記第2コイルとの間に電磁力を発生させて前記磁気軸受けを構成する請求項3に記載の電動モータ。
    The rotor is provided with a first permanent magnet (61a) and a second permanent magnet (61b) as the permanent magnet,
    The first permanent magnet generates the rotational force by a magnetic field generated from the first coil,
    The electric motor according to claim 3, wherein the second permanent magnet constitutes the magnetic bearing by generating an electromagnetic force between the second permanent magnet and the second coil.
  5.  前記第1コイルの極数と前記第2コイルの極数とが相違している請求項3または4に記載の電動モータ。 The electric motor according to claim 3 or 4, wherein the number of poles of the first coil is different from the number of poles of the second coil.
  6.  回転中心(M1)を中心として回転自在に配置されている回転軸(30)と、
     前記回転軸に取り付けられて、永久磁石(61)を備えるロータ(36)と、
     支持部材(31)に支持されて、前記永久磁石に対して前記回転中心を中心とする径方向に配置されて、前記永久磁石に磁界を付与して前記ロータを前記回転軸とともに回転させる回転力を発生させる第1コイル(51a、51b、51c)と、
     前記支持部材に支持されて、前記永久磁石に対して前記回転中心を中心とする径方向に配置されて、前記永久磁石との間に電磁力を発生させて前記回転軸を浮上させて前記回転中心線を中心として回転自在に支持する磁気軸受けを構成する第2コイル(50a、50b、50c)と、
     前記永久磁石から発生される磁界に基づいて前記回転軸の軸線が前記回転中心線からずれた量を検出する位置ずれ検出センサ(37a、37b、37c、37d)と、を備え、
     前記永久磁石および前記第2コイルの間の前記電磁力によって前記回転中心線から前記回転軸の軸線が離れることを妨げるように制御装置(70)が前記位置ずれ検出センサの検出値に基づいて前記第2コイルに流れる電流を制御するようになっており、
     前記位置ずれ検出センサは、前記回転軸および前記永久磁石の間に配置されており、
     前記位置ずれ検出センサおよび前記回転軸の間の距離が、前記位置ずれ検出センサおよび前記永久磁石の間の距離よりも大きくなっている電動モータ。
    A rotation shaft (30) arranged to be rotatable about the rotation center (M1);
    A rotor (36) attached to the rotating shaft and comprising a permanent magnet (61);
    A rotational force that is supported by a support member (31) and is arranged in a radial direction around the rotation center with respect to the permanent magnet, and applies a magnetic field to the permanent magnet to rotate the rotor together with the rotation shaft. A first coil (51a, 51b, 51c) for generating
    It is supported by the support member and is arranged in a radial direction with the rotation center as a center with respect to the permanent magnet, and generates an electromagnetic force between the permanent magnet and the rotation shaft is lifted to rotate the rotation. A second coil (50a, 50b, 50c) constituting a magnetic bearing rotatably supported around a center line;
    A displacement detection sensor (37a, 37b, 37c, 37d) for detecting an amount of deviation of the axis of the rotation shaft from the rotation center line based on a magnetic field generated from the permanent magnet;
    Based on the detection value of the displacement detection sensor, the control device (70) prevents the axis of the rotation shaft from separating from the rotation center line due to the electromagnetic force between the permanent magnet and the second coil. The current flowing through the second coil is controlled,
    The displacement detection sensor is disposed between the rotating shaft and the permanent magnet,
    An electric motor in which a distance between the misalignment detection sensor and the rotation shaft is larger than a distance between the misalignment detection sensor and the permanent magnet.
  7.  前記支持部材に支持されて、前記回転軸を中心とする周方向に並べられて前記径方向外側にそれぞれ突出するように形成されている複数のティース(54a~54l)を備え、前記複数のティースのそれぞれには、前記第1コイルおよび前記第2コイルが巻かれており、
     前記永久磁石は、前記複数のティースに対して前記径方向外側に配置されており、
     前記検出センサは、前記複数のティースのうちいずれか2つのティースのそれぞれの間に配置されている請求項6に記載の電動モータ。
    A plurality of teeth (54a to 54l) supported by the support member and arranged in a circumferential direction around the rotation axis and projecting outward in the radial direction; Each of which is wound with the first coil and the second coil,
    The permanent magnet is disposed on the radially outer side with respect to the plurality of teeth,
    The electric motor according to claim 6, wherein the detection sensor is disposed between any two of the plurality of teeth.
  8.  前記回転軸の回転角度を検出する角度検出センサ(37e、37f、37d)を備え、
     前記制御装置は、前記角度検出センサの検出値に基づいて前記ロータに前記回転力を発生させるように前記第1コイルに流れる電流を制御する請求項7に記載の電動モータ。
    Provided with angle detection sensors (37e, 37f, 37d) for detecting the rotation angle of the rotation shaft,
    The electric motor according to claim 7, wherein the control device controls a current flowing through the first coil so as to cause the rotor to generate the rotational force based on a detection value of the angle detection sensor.
  9.  前記角度検出センサは、前記永久磁石から発生される磁界に基づいて前記回転軸の回転角度を検出し、
     前記角度検出センサは、前記回転軸および前記永久磁石の間に配置されており、
     前記位置ずれ検出センサおよび前記回転軸の間の距離が、前記位置ずれ検出センサおよび前記永久磁石の距離よりも大きくなっている請求項8に記載の電動モータ。
    The angle detection sensor detects a rotation angle of the rotation shaft based on a magnetic field generated from the permanent magnet,
    The angle detection sensor is disposed between the rotating shaft and the permanent magnet,
    The electric motor according to claim 8, wherein a distance between the misregistration detection sensor and the rotating shaft is larger than a distance between the misregistration detection sensor and the permanent magnet.
  10.  前記第1コイルおよび前記第2コイルは、前記永久磁石に対して前記回転中心線を中心とする径方向に配置されている請求項1または2に記載の電動モータ。 The electric motor according to claim 1 or 2, wherein the first coil and the second coil are arranged in a radial direction centered on the rotation center line with respect to the permanent magnet.
  11.  前記第1コイルは、前記第2コイルよりも前記ロータ側に配置されている請求項10に記載の電動モータ。 The electric motor according to claim 10, wherein the first coil is disposed closer to the rotor than the second coil.
  12.  前記第1、第2のコイルから発生する磁界を通過させるステータコア(52)を備え、
     前記ステータコアには、前記第1、第2のコイルがそれぞれ巻かれており、
     前記第1コイルは、前記第2コイルに対して前記ステータコア側に配置されている請求項11に記載の電動モータ。
    A stator core (52) that allows a magnetic field generated from the first and second coils to pass therethrough;
    The stator coil is wound with the first and second coils, respectively.
    The electric motor according to claim 11, wherein the first coil is disposed on the stator core side with respect to the second coil.
  13.  前記ステータコアは、前記回転中心線を中心としてリング状に形成されているリング部(53)と、前記リング部から前記回転中心線を中心とする径方向外側に突起し、かつ前記回転中心線を中心とする円周方向に等間隔に並べられている複数のティース(54a、54b・・・・54l)と、を備え、
     前記第1、第2のコイルは、前記複数のティースのそれぞれに巻かれており、
     前記第1コイルは、前記ティース毎に、前記第2コイルに対して前記ティース側に配置されていることにより、前記第1コイルは、前記第2コイルに対して前記ステータコア側に配置されている請求項12に記載の電動モータ。
    The stator core has a ring portion (53) formed in a ring shape around the rotation center line, projects radially outward from the ring portion around the rotation center line, and the rotation center line A plurality of teeth (54a, 54b,..., 54l) arranged at equal intervals in the circumferential direction around the center,
    The first and second coils are wound around each of the plurality of teeth,
    The first coil is disposed on the teeth side with respect to the second coil for each of the teeth, so that the first coil is disposed on the stator core side with respect to the second coil. The electric motor according to claim 12.
  14.  前記第1、第2のコイルは、対になるように巻かれている請求項11または12に記載の電動モータ。 The electric motor according to claim 11 or 12, wherein the first and second coils are wound in pairs.
  15.  前記永久磁石は、前記第1コイルから発生させられる磁界によって前記ロータを前記回転軸とともに回転させる回転力を発生させるものである請求項1ないし14のいずれか1つに記載の電動モータ。 15. The electric motor according to claim 1, wherein the permanent magnet generates a rotational force that rotates the rotor together with the rotating shaft by a magnetic field generated from the first coil.
  16.  回転軸(30)の軸線方向一方側を機械的軸受け(32)を介して回転自在に支持する支持部材(31)と、
     前記回転軸に取り付けられて、永久磁石(61)を備えるロータ(36)と、
     前記支持部材に取り付けられて、前記ロータを前記回転軸とともに回転させる回転力を発生させる磁界を発生する第1コイル(51a、51b、51c)と、
     前記支持部材に取り付けられて、前記永久磁石との間に電磁力を発生させて、前記回転軸の軸線方向他方側を回転自在に支持する磁気軸受けを構成する第2コイル(50a、50b、50c)と、を備え、
     前記回転軸のうち前記機械的軸受け側を支点として当該回転軸が前記回転軸の回転中心線に対して傾くことが可能に構成されている電動モータ(10)の制御装置であって、
     前記永久磁石および前記第2コイルの間の前記電磁力によって前記回転中心線に前記回転軸の軸線を近づけるように、前記第2コイルに流す電流を制御する回転軸制御部(S120)を備える制御装置。
    A support member (31) that rotatably supports one side in the axial direction of the rotation shaft (30) via a mechanical bearing (32);
    A rotor (36) attached to the rotating shaft and comprising a permanent magnet (61);
    A first coil (51a, 51b, 51c) that is attached to the support member and generates a magnetic field that generates a rotational force that rotates the rotor together with the rotation shaft;
    Second coils (50a, 50b, 50c) which are attached to the support member and constitute magnetic bearings that generate electromagnetic force between the permanent magnet and rotatably support the other axial side of the rotary shaft. ) And
    A control device for an electric motor (10) configured such that the rotary shaft can tilt with respect to a rotation center line of the rotary shaft with the mechanical bearing side of the rotary shaft as a fulcrum,
    Control provided with a rotation axis control unit (S120) for controlling a current flowing through the second coil so that the axis of the rotation axis approaches the rotation center line by the electromagnetic force between the permanent magnet and the second coil. apparatus.
  17.  前記回転軸制御部は、前記回転中心線に対する前記回転軸の傾き角度を検出する傾き角度検出センサの検出値に基づいて、前記傾き角度が大きくなるほど、前記第2コイルに流す電流を大きくして前記電磁力を大きくする請求項16に記載の制御装置。 The rotation axis control unit increases the current passed through the second coil as the inclination angle increases based on a detection value of an inclination angle detection sensor that detects an inclination angle of the rotation axis with respect to the rotation center line. The control device according to claim 16, wherein the electromagnetic force is increased.
  18.  前記回転軸制御部は、
     前記回転軸の回転を検出する回転センサの検出値に応じて、前記回転軸の回転速度が所定速度以上であるか否かを判定する判定部(S123)と、
     前記回転軸の回転速度が所定速度以上であると前記判定部が判定したときには、前記回転軸の回転速度が所定速度未満であると前記判定部が判定したときに比べて、前記電磁力が小さくなるように、前記第2コイルに流す電流を制御する第1電流制御部(S124、S125、S126)と、
     を備える請求項17に記載の制御装置。
    The rotation axis controller is
    A determination unit (S123) that determines whether the rotation speed of the rotation shaft is equal to or higher than a predetermined speed according to a detection value of a rotation sensor that detects rotation of the rotation shaft;
    When the determination unit determines that the rotation speed of the rotation shaft is equal to or higher than a predetermined speed, the electromagnetic force is smaller than when the determination unit determines that the rotation speed of the rotation shaft is less than a predetermined speed. A first current control unit (S124, S125, S126) for controlling the current flowing through the second coil,
    The control device according to claim 17.
  19.  前記回転軸制御部は、前記第2コイルに流す電流を制御して、前記回転中心線に前記回転軸の軸線を近づける前記電磁力と前記回転軸をその回転方向に移動させる前記電磁力とを発生させるものであり、
     前記回転軸の回転中心線と前記回転軸の軸線方向他方側との間の距離と前記回転軸の回転速度とをそれぞれ検出するための回転センサにより検出される前記距離をLとし、前記回転センサにより検出される前記回転軸の回転速度をVとし、係数をCとしたとき、前記回転軸をその回転方向に移動させる前記電磁力は、L×V×Cによって定まる力である請求項18に記載の制御装置。
    The rotating shaft control unit controls the current flowing through the second coil to generate the electromagnetic force that brings the axis of the rotating shaft closer to the rotation center line and the electromagnetic force that moves the rotating shaft in the rotation direction. Is generated,
    The distance detected by a rotation sensor for detecting the distance between the rotation center line of the rotation shaft and the other side in the axial direction of the rotation shaft and the rotation speed of the rotation shaft is L, and the rotation sensor 19. The electromagnetic force for moving the rotation shaft in the rotation direction when the rotation speed of the rotation shaft detected by V is V and the coefficient is C is a force determined by L × V × C. The control device described.
  20.  前記回転軸制御部は、
     前記回転センサの検出値に基づいて、前記回転軸の回転速度が所定速度以上であるか否かを判定する判定部(S123)と、
     前記回転軸の回転速度が所定速度以上であると前記判定部が判定したときには、前記回転軸の回転速度が所定速度未満であると前記判定部が判定したときに比べて、前記Cを小さくして前記複数の第2コイルに流す電流を小さくする第2電流制御部(S124A、S125、S126A)と、
     を備える請求項19に記載の制御装置。
    The rotation axis controller is
    A determination unit (S123) for determining whether or not the rotation speed of the rotation shaft is equal to or higher than a predetermined speed based on a detection value of the rotation sensor;
    When the determination unit determines that the rotation speed of the rotation shaft is equal to or higher than a predetermined speed, the C is made smaller than when the determination unit determines that the rotation speed of the rotation shaft is less than a predetermined speed. A second current control unit (S124A, S125, S126A) for reducing the current flowing through the plurality of second coils;
    The control device according to claim 19.
  21.  回転軸(30)の軸線方向一方側を機械的軸受け(32)を介して回転自在に支持する支持部材(31)と、
     前記回転軸に取り付けられて、永久磁石(61)を備えるロータ(36)と、
     前記支持部材に取り付けられて、前記ロータを前記回転軸とともに回転させる回転力を発生させる磁界を発生する第1コイル(51a、51b、51c)と、
     前記支持部材に取り付けられて、前記永久磁石との間に電磁力を発生させて、前記回転軸の軸線方向他方側を回転自在に支持する磁気軸受けを構成する第2コイル(50a、50b、50c)と、を備え、
     前記回転軸のうち前記機械的軸受け側を支点として当該回転軸が前記回転軸の回転中心線に対して傾くことが可能に構成されている電動モータ(10)の制御装置であって、
     前記永久磁石および前記第2コイルの間の前記電磁力によって前記回転中心線から前記回転軸の軸線が傾くことを妨げるように、前記第2コイルに流す電流を制御する回転軸制御部(S120)を備える制御装置。
    A support member (31) that rotatably supports one side in the axial direction of the rotation shaft (30) via a mechanical bearing (32);
    A rotor (36) attached to the rotating shaft and comprising a permanent magnet (61);
    A first coil (51a, 51b, 51c) that is attached to the support member and generates a magnetic field that generates a rotational force that rotates the rotor together with the rotation shaft;
    Second coils (50a, 50b, 50c) which are attached to the support member and constitute magnetic bearings that generate electromagnetic force between the permanent magnet and rotatably support the other axial side of the rotary shaft. ) And
    A control device for an electric motor (10) configured such that the rotary shaft can tilt with respect to a rotation center line of the rotary shaft with the mechanical bearing side of the rotary shaft as a fulcrum,
    A rotating shaft control unit (S120) that controls a current flowing through the second coil so as to prevent the axis of the rotating shaft from being inclined from the rotation center line by the electromagnetic force between the permanent magnet and the second coil. A control device comprising:
  22.  前記回転軸制御部は、前記第2コイルに流す電流を制御して、前記回転軸が前記回転中心線から傾くことを妨げるために、前記回転軸をその回転方向に移動させる前記電磁力を発生させるものであり、
     前記回転軸の回転中心線と前記回転軸の軸線方向他方側との間の距離と前記回転軸の回転速度とをそれぞれ検出するための回転センサにより検出される前記距離をLとし、前記回転センサにより検出される前記回転軸の回転速度をVとし、係数をCとしたとき、前記電磁力は、L×V×Cによって定まる力である請求項21に記載の制御装置。
    The rotating shaft control unit generates an electromagnetic force that moves the rotating shaft in a rotating direction in order to prevent the rotating shaft from tilting from the rotation center line by controlling a current flowing through the second coil. It is what
    The distance detected by a rotation sensor for detecting the distance between the rotation center line of the rotation shaft and the other side in the axial direction of the rotation shaft and the rotation speed of the rotation shaft is L, and the rotation sensor The control device according to claim 21, wherein the electromagnetic force is a force determined by L × V × C, where V is a rotation speed of the rotating shaft detected by the equation (1) and C is a coefficient.
  23.  前記回転軸制御部は、
     前記回転センサの検出値に基づいて、前記回転軸の回転速度が所定速度以上であるか否かを判定する判定部(S123)と、
     前記回転軸の回転速度が所定速度以上であると前記判定部が判定したときには、前記回転軸の回転速度が所定速度未満であると前記判定部が判定したときに比べて、前記Cを小さくして前記複数の第2コイルに流す電流を小さくする第2電流制御部(S124A、S125、S126A)と、
     を備える請求項22に記載の制御装置。
    The rotation axis controller is
    A determination unit (S123) for determining whether or not the rotation speed of the rotation shaft is equal to or higher than a predetermined speed based on a detection value of the rotation sensor;
    When the determination unit determines that the rotation speed of the rotation shaft is equal to or higher than a predetermined speed, the C is made smaller than when the determination unit determines that the rotation speed of the rotation shaft is less than a predetermined speed. A second current control unit (S124A, S125, S126A) for reducing the current flowing through the plurality of second coils;
    The control device according to claim 22.
  24.  前記機械的軸受けは、前記回転軸の軸線方向一方側において、前記永久磁石を含む前記ロータと前記回転軸とを備える回転体の重心側を回転自在に支持する請求項16ないし23のいずれか1つに記載の制御装置。 The mechanical bearing rotatably supports a center of gravity side of a rotating body including the rotor including the permanent magnet and the rotating shaft on one side in the axial direction of the rotating shaft. The control device according to one.
  25.  請求項16ないし24のいずれか1つに記載の前記電動モータ、および前記制御装置を備えるモータ制御システム。 A motor control system comprising the electric motor according to any one of claims 16 to 24 and the control device.
  26.  回転軸(1030)の回転中心線(S1)を中心とする円周方向に並べられている複数の磁極を形成し、かつ前記回転軸を機械的軸受け(1032)を介して回転自在に支持するステータ(1031)と、
     前記回転軸に支持されている複数の第1コイル(1051a、1051b)および複数の第2コイル(1050a、1050b)と、
     前記回転軸に支持されて前記円周方向に並べられている複数の第1セグメント(1043a~1043d)を備え、前記複数の第1セグメントには前記複数の第1コイルのうち対応する第1コイルの端部側が接続されている第1整流子(1043)と、
     前記第1整流子の回転に伴って前記複数の第1セグメントに摺動して前記複数の第1セグメントのうち接触する第1セグメントを順次替え、前記複数の第1コイルに対して前記接触する第1セグメントを通して電流を出力する複数の第1ブラシ(1038a~1038d)と、
     前記回転軸に支持されて前記円周方向に並べられている複数の第2セグメント(1044a~1044d)を備え、前記複数の第2セグメントには前記複数の第2コイルのうち対応する第2コイルの端部側が接続されている第2整流子(1044)と、
     前記第2整流子の回転に伴って前記複数の第2セグメントに摺動して前記複数の第2セグメントのうち接触する第2セグメントを順次替えて、前記複数の第2コイルに対して前記接触する第2セグメントを通して電流を出力する複数の第2ブラシ(1039a~1039d)と、を備え、
     前記複数の第1コイルには、前記複数の第1ブラシから前記接触するセグメントを通して出力される電流と前記複数の磁極からの磁束とに基づいて前記回転中心線を中心として前記回転軸を回転させる回転力が電磁力として発生し、
     前記複数の第2コイルは、前記複数の第2ブラシから前記接触する第2セグメントを通して出力される電流に基づいて前記複数の磁極との間に電磁力を発生させることにより前記回転軸のうち前記機械的軸受けからずれた部位を回転自在に支持する磁気軸受けを構成する電動モータ。
    A plurality of magnetic poles arranged in the circumferential direction around the rotation center line (S1) of the rotation shaft (1030) are formed, and the rotation shaft is rotatably supported via a mechanical bearing (1032). A stator (1031);
    A plurality of first coils (1051a, 1051b) and a plurality of second coils (1050a, 1050b) supported by the rotating shaft;
    A plurality of first segments (1043a to 1043d) supported by the rotating shaft and arranged in the circumferential direction are provided, and the first coils corresponding to the first coils are included in the plurality of first segments. The first commutator (1043) to which the end side of the
    As the first commutator rotates, the first segments that slide into the plurality of first segments and contact with each other among the plurality of first segments are sequentially changed, and the contact with the plurality of first coils is made. A plurality of first brushes (1038a to 1038d) for outputting a current through the first segment;
    A plurality of second segments (1044a to 1044d) supported by the rotating shaft and arranged in the circumferential direction are provided, and the plurality of second segments correspond to second coils among the plurality of second coils. A second commutator (1044) to which the end side of the
    As the second commutator rotates, the second segments that slide in the plurality of second segments and contact with each other among the plurality of second segments are sequentially changed, and the contact with the plurality of second coils is performed. A plurality of second brushes (1039a to 1039d) for outputting current through the second segment
    The plurality of first coils rotate the rotation shaft about the rotation center line based on currents output from the plurality of first brushes through the contacting segments and magnetic fluxes from the plurality of magnetic poles. Rotational force is generated as electromagnetic force,
    The plurality of second coils generate an electromagnetic force between the plurality of magnetic poles based on a current output from the plurality of second brushes through the contacted second segment, and thereby out of the rotating shafts. An electric motor constituting a magnetic bearing that rotatably supports a portion deviated from a mechanical bearing.
  27.  前記ステータには、前記回転軸の軸線のうち前記機械的軸受けからずれた部位を支点として前記回転軸を前記機械的軸受けを介して揺動自在に支持する回転軸支持部材(1045)が設けられており、
     前記第1、第2の整流子は、前記機械的軸受けに対して前記支点側に配置されている請求項26に記載の電動モータ。
    The stator is provided with a rotating shaft support member (1045) that supports the rotating shaft so as to be swingable via the mechanical bearing with a portion of the axis of the rotating shaft that is displaced from the mechanical bearing as a fulcrum. And
    27. The electric motor according to claim 26, wherein the first and second commutators are disposed on the fulcrum side with respect to the mechanical bearing.
  28.  前記複数の第1ブラシを前記複数の第1セグメント側に弾性力によって押す第1弾性部材(1041a~1041d)と、
     前記複数の第2ブラシを前記複数の第2セグメント側に弾性力によって押す第2弾性部材(1042a~1042d)と、を備える請求項27に記載の電動モータ。
    First elastic members (1041a to 1041d) that push the plurality of first brushes toward the plurality of first segments by an elastic force;
    28. The electric motor according to claim 27, further comprising second elastic members (1042a to 1042d) that push the plurality of second brushes toward the plurality of second segments by an elastic force.
  29.  前記回転軸支持部材は、前記回転中心線の延出方向一方側に凹んで、かつ前記回転中心線の延出方向他方側に開口する穴部(1046)を形成する内周面(1047)を備え、
     前記内周面は、前記回転中心線を中心として環状に形成されて、かつ前記回転中心線を含む断面が前記支点を中心とする円弧状に形成されており、
     前記機械的軸受けには、前記回転軸の軸線を中心として環状に形成されて、前記支点を中心とする円弧状に形成されている側面(1048)が形成されており、
     前記回転軸の揺動に伴って前記機械的軸受けの前記側面が前記回転軸支持部材の前記内周面に対して摺動することにより、前記回転軸支持部材が前記回転軸を前記機械的軸受けを介して揺動自在に支持する請求項27または28に記載の電動モータ。
    The rotating shaft support member has an inner peripheral surface (1047) that is recessed on one side in the extending direction of the rotation center line and that forms a hole (1046) that opens on the other side in the extending direction of the rotation center line. Prepared,
    The inner peripheral surface is formed in an annular shape around the rotation center line, and a cross section including the rotation center line is formed in an arc shape centered on the fulcrum,
    The mechanical bearing has a side surface (1048) formed in an annular shape around the axis of the rotating shaft and formed in an arc shape around the fulcrum,
    As the rotary shaft swings, the side surface of the mechanical bearing slides with respect to the inner peripheral surface of the rotary shaft support member, so that the rotary shaft support member moves the rotary shaft to the mechanical bearing. 29. The electric motor according to claim 27 or 28, wherein the electric motor is supported so as to be swingable.
  30.  前記回転軸支持部材は、前記回転中心線の延出方向一方側に凹んで、かつ前記回転中心線の延出方向他方側に開口する穴部(1046)を形成する内周面(1047)を備え、
     前記内周面は、前記回転中心線を中心として環状に形成されて、かつ前記回転中心線を含む断面が前記支点を中心とする円弧状に形成されており、
     前記機械的軸受けには、前記回転軸の軸線を中心として環状に形成されて、前記軸線のうち所定位置(P2)を中心とする円弧状に形成されている側面(1048)が形成されており、
     前記所定位置(P2)を中心とする前記側面(1048)の曲率半径(r2)は、前記支点(P1)を中心とする前記内周面の曲率半径(r1)未満であり、
     前記回転軸の揺動に伴って前記機械的軸受けの前記側面が前記回転軸支持部材の前記内周面に対して摺動することにより、前記回転軸支持部材が前記回転軸を前記機械的軸受けを介して揺動自在に支持する請求項27または28に記載の電動モータ。
    The rotating shaft support member has an inner peripheral surface (1047) that is recessed on one side in the extending direction of the rotation center line and that forms a hole (1046) that opens on the other side in the extending direction of the rotation center line. Prepared,
    The inner peripheral surface is formed in an annular shape around the rotation center line, and a cross section including the rotation center line is formed in an arc shape centered on the fulcrum,
    The mechanical bearing has a side surface (1048) formed in an annular shape centering on the axis of the rotating shaft and formed in an arc shape centered on a predetermined position (P2) of the axis. ,
    The curvature radius (r2) of the side surface (1048) centered on the predetermined position (P2) is less than the curvature radius (r1) of the inner peripheral surface centered on the fulcrum (P1),
    As the rotary shaft swings, the side surface of the mechanical bearing slides with respect to the inner peripheral surface of the rotary shaft support member, so that the rotary shaft support member moves the rotary shaft to the mechanical bearing. 29. The electric motor according to claim 27 or 28, wherein the electric motor is supported so as to be swingable.
  31.  前記回転軸支持部材は、前記回転中心線の延出方向一方側に凹んで、かつ前記回転中心線の延出方向他方側に開口する穴部(1046)を形成する内周面(1047)を備え、
     前記内周面は、前記回転中心線を中心として環状に形成されて、かつ前記穴部のうち前記回転中心線に直交する断面の面積が前記延出方向他方側から前記延出方向一方側に向かうほど徐々に小さくなるように形成されており、
     前記機械的軸受けには、前記回転軸の軸線を中心として環状に形成されて、前記支点を中心とする円弧状に形成されている側面(1048)が形成されており、
     前記回転軸の揺動に伴って前記機械的軸受けの前記側面が前記回転軸支持部材の前記内周面に対して摺動することにより、前記回転軸支持部材が前記回転軸を前記機械的軸受けを介して揺動自在に支持する請求項27または28に記載の電動モータ。
    The rotating shaft support member has an inner peripheral surface (1047) that is recessed on one side in the extending direction of the rotation center line and that forms a hole (1046) that opens on the other side in the extending direction of the rotation center line. Prepared,
    The inner peripheral surface is formed in an annular shape around the rotation center line, and an area of a cross section perpendicular to the rotation center line in the hole portion is changed from the other side in the extension direction to the one side in the extension direction. It is formed so that it gets smaller gradually toward
    The mechanical bearing has a side surface (1048) formed in an annular shape around the axis of the rotating shaft and formed in an arc shape around the fulcrum,
    As the rotary shaft swings, the side surface of the mechanical bearing slides with respect to the inner peripheral surface of the rotary shaft support member, so that the rotary shaft support member moves the rotary shaft to the mechanical bearing. 29. The electric motor according to claim 27 or 28, wherein the electric motor is supported so as to be swingable.
  32.  前記第1、第2の整流子のうち一方の整流子は、前記支点に対して軸方向一方側に配置され、他方の整流子が前記支点に対して軸方向他方側に配置されている請求項27ないし31のいずれか1つに記載の電動モータ。 One commutator of the first and second commutators is disposed on one axial side with respect to the fulcrum, and the other commutator is disposed on the other axial side with respect to the fulcrum. Item 32. The electric motor according to any one of Items 27 to 31.
  33.  前記支点は、前記回転軸の軸線のうち前記第1、第2の整流子の回転中心の間の中間点である請求項32に記載の電動モータ。 The electric motor according to claim 32, wherein the fulcrum is an intermediate point between the rotation centers of the first and second commutators in the axis of the rotation shaft.
  34.  前記第1、第2の整流子は、前記第1、第2のコイルと前記機械的軸受けとの間に配置されている請求項26ないし33のいずれか1つに記載の電動モータ。 The electric motor according to any one of claims 26 to 33, wherein the first and second commutators are disposed between the first and second coils and the mechanical bearing.
  35.  前記回転軸支持部材および前記機械的軸受けは、前記回転軸が回転する際に前記回転軸の軸線を自動的に前記回転中心線に近づける自動調心スラスト軸受けを構成する請求項27に記載の電動モータ。

     
    28. The electric motor according to claim 27, wherein the rotating shaft support member and the mechanical bearing constitute a self-aligning thrust bearing that automatically brings the axis of the rotating shaft closer to the rotation center line when the rotating shaft rotates. motor.

PCT/JP2015/005451 2014-11-03 2015-10-29 Electric motor, control device, and motor control system WO2016072075A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/523,269 US10958133B2 (en) 2014-11-03 2015-10-29 Electric motor, control device, and motor control system

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2014-223870 2014-11-03
JP2014223870 2014-11-03
JP2015089634 2015-04-24
JP2015-089634 2015-04-24
JP2015155172A JP2016093093A (en) 2014-11-03 2015-08-05 Electric motor
JP2015-155172 2015-08-05
JP2015-203209 2015-10-14
JP2015203209A JP6627400B2 (en) 2014-11-03 2015-10-14 Electric motor, control device, and motor control system

Publications (1)

Publication Number Publication Date
WO2016072075A1 true WO2016072075A1 (en) 2016-05-12

Family

ID=55908818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005451 WO2016072075A1 (en) 2014-11-03 2015-10-29 Electric motor, control device, and motor control system

Country Status (1)

Country Link
WO (1) WO2016072075A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111173839A (en) * 2020-02-05 2020-05-19 何凡 Rotor multi-source constraint explosion-proof motor using magnetic fluid bearing
CN111350759A (en) * 2020-04-26 2020-06-30 程小荣 Transmission shaft assembly of permanent magnet suspension bearing support

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08338432A (en) * 1995-06-14 1996-12-24 Ntn Corp Magnetic bearing spindle device
JP2002291199A (en) * 2000-12-23 2002-10-04 Data Strage Inst Spindle having magnetic and fluid bearings
JP2003314550A (en) * 2002-04-18 2003-11-06 Sankyo Seiki Mfg Co Ltd Magnetic bearing unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08338432A (en) * 1995-06-14 1996-12-24 Ntn Corp Magnetic bearing spindle device
JP2002291199A (en) * 2000-12-23 2002-10-04 Data Strage Inst Spindle having magnetic and fluid bearings
JP2003314550A (en) * 2002-04-18 2003-11-06 Sankyo Seiki Mfg Co Ltd Magnetic bearing unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111173839A (en) * 2020-02-05 2020-05-19 何凡 Rotor multi-source constraint explosion-proof motor using magnetic fluid bearing
CN111350759A (en) * 2020-04-26 2020-06-30 程小荣 Transmission shaft assembly of permanent magnet suspension bearing support

Similar Documents

Publication Publication Date Title
JP6627400B2 (en) Electric motor, control device, and motor control system
US6707200B2 (en) Integrated magnetic bearing
KR100403857B1 (en) Motor of magnetic lifting type
US9954416B2 (en) Actuator, stator, motor, rotational-to-linear motion conversion mechanism, and linear actuator
CN104533945B (en) One kind realizes rotor five-degree magnetic suspension structure by axial mixed magnetic bearing
KR20110115077A (en) Direct acting rotating actuator
US10612638B2 (en) Speed reducer with electric motor
US7847453B2 (en) Bearingless step motor
JP2015114209A (en) Encoder and electric machinery
WO2016072075A1 (en) Electric motor, control device, and motor control system
JP2005121157A (en) Magnetic bearing and motor device for artificial heart
JP6638465B2 (en) Electric motor and motor control system
JP4081828B2 (en) Concentric multi-axis motor
JP2016093093A (en) Electric motor
JP2011259638A (en) Bearingless motor
JP6628388B2 (en) Bearingless motor
JP4220859B2 (en) Magnetic bearing
JP6590070B2 (en) Electric motor system
JP7301698B2 (en) MOTOR, MOTOR DRIVE CONTROL DEVICE, AND MOTOR DRIVE CONTROL METHOD
JP2008141908A (en) Brushless motor and electric power steering system equipped with it
JP2016208734A (en) Electric motor, control device, and motor control system
JP7336329B2 (en) MOTOR, MOTOR DRIVE CONTROL DEVICE, AND MOTOR DRIVE CONTROL METHOD
JP2015114208A (en) Encoder and electric machinery
JP2015231242A (en) Dc motor and control method of dc motor
JP5538821B2 (en) Rotating motor control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15856435

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15523269

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15856435

Country of ref document: EP

Kind code of ref document: A1