JP2011259638A - Bearingless motor - Google Patents

Bearingless motor Download PDF

Info

Publication number
JP2011259638A
JP2011259638A JP2010133145A JP2010133145A JP2011259638A JP 2011259638 A JP2011259638 A JP 2011259638A JP 2010133145 A JP2010133145 A JP 2010133145A JP 2010133145 A JP2010133145 A JP 2010133145A JP 2011259638 A JP2011259638 A JP 2011259638A
Authority
JP
Japan
Prior art keywords
rotor
stator
bearingless motor
axis
along
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010133145A
Other languages
Japanese (ja)
Other versions
JP5545053B2 (en
Inventor
Junichi Asama
淳一 朝間
Akira Chiba
明 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shizuoka University NUC
Original Assignee
Shizuoka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shizuoka University NUC filed Critical Shizuoka University NUC
Priority to JP2010133145A priority Critical patent/JP5545053B2/en
Publication of JP2011259638A publication Critical patent/JP2011259638A/en
Application granted granted Critical
Publication of JP5545053B2 publication Critical patent/JP5545053B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/0493Active magnetic bearings for rotary movement integrated in an electrodynamic machine, e.g. self-bearing motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2380/00Electrical apparatus
    • F16C2380/26Dynamo-electric machines or combinations therewith, e.g. electro-motors and generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/0485Active magnetic bearings for rotary movement with active support of three degrees of freedom

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a bearingless motor which can miniaturize a device including a drive circuit and whose power consumption can be reduced.SOLUTION: A bearingless motor 1 includes: rotors 4 where two turntables 6A and 6B in which parallel flat faces 7A and 7B are formed are coupled by a couplings shaft 5 extending along an axial direction vertical to the flat faces 7A and 7B; a plurality of permanent magnets 9 and 10 arranged along a peripheral edge on the flat faces 7A and 7B of the two turntables 6A and 6B; a stator 2 which is arranged to confront with the flat face 7A of the turntable 6A and includes a magnetic material; a stator 3 which is installed to confront with the flat face 7B of the turntable 6b and includes the magnetic material; and coils 15 which are divisionally wound to the stator 3 in an arranging direction of the permanent magnets 9 and 10 and generate a magnetic field toward the flat face 7B of the turntable 6B.

Description

本発明は、回転子が磁気浮上することにより非接触で支持されたベアリングレスモータに関するものである。   The present invention relates to a bearingless motor that is supported in a non-contact manner by a magnetic levitation of a rotor.

従来から、回転子が磁気浮上することにより非接触で支持されるベアリングレスモータが知られている。多くのベアリングレスモータは、固定子に施された回転制御用のコイルに加え、磁気浮上用のコイルが設けられている。この磁気浮上用のコイルに電流が流されることにより、回転子と固定子との間のギャップにおける磁束密度を不均衡にすることで回転子の半径方向に磁気力が作用される。さらに、回転子の半径方向の変位がセンサで計測され、その計測結果を基に磁気力が調整されることで、回転子の半径方向の2自由度運動が能動的に制御される。このようなベアリングレスモータは、摩擦力が生じない、摩耗粉が発生しにくいなどの利点があり、半導体製造工程や医療分野において使用される各種ポンプ、人工衛星に内蔵されるリアクションホイール等への応用が期待されている。   Conventionally, a bearingless motor that is supported in a non-contact manner by a magnetic levitation of a rotor is known. Many bearingless motors are provided with a magnetic levitation coil in addition to a rotation control coil applied to the stator. When a current is passed through the magnetic levitation coil, a magnetic force is applied in the radial direction of the rotor by making the magnetic flux density in the gap between the rotor and the stator unbalanced. Further, the displacement in the radial direction of the rotor is measured by a sensor, and the magnetic force is adjusted based on the measurement result, whereby the two-degree-of-freedom motion in the radial direction of the rotor is actively controlled. Such a bearingless motor has advantages such as no frictional force and less generation of wear powder. It can be applied to various pumps used in semiconductor manufacturing processes and medical fields, and reaction wheels built into satellites. Application is expected.

下記特許文献1には、ベアリングレスモータを用いた電磁機械の構成の一例が記載されている。この電磁機械は、2機の従来のベアリングレスモータとスラスト磁気軸受とが組み合わされており、回転子の主軸に沿ってz軸、主軸に垂直な方向に沿ってx、y軸を設定したときに、x、y、z、θx、θyの方向の5自由度運動を制御可能な構成を有している。   The following Patent Document 1 describes an example of a configuration of an electromagnetic machine using a bearingless motor. This electromagnetic machine is a combination of two conventional bearingless motors and a thrust magnetic bearing. When the z axis is set along the main axis of the rotor and the x and y axes are set along the direction perpendicular to the main axis, In addition, it has a configuration capable of controlling a five-degree-of-freedom motion in the directions of x, y, z, θx, and θy.

特開2009−192041号公報JP 2009-192041 A

上述した従来の5自由度制御型の電磁機械では、5自由度制御及び回転制御用にインバータが4台、磁気力のフィードバック制御のために回転子の変位を検出する変位センサが最低5個必要である。その結果、消費電力の増大、及び装置の大型化を招きやすい。   In the conventional 5-degree-of-freedom control type electromagnetic machine described above, 4 inverters are required for 5-degree-of-freedom control and rotation control, and at least 5 displacement sensors are required to detect the displacement of the rotor for feedback control of magnetic force. It is. As a result, the power consumption is increased and the size of the apparatus is easily increased.

そこで、本発明は、かかる課題に鑑みて為されたものであり、駆動回路を含めた装置の小型化及び低消費電力化を図ることが可能なベアリングレスモータを提供することを目的とする。   Therefore, the present invention has been made in view of such problems, and an object thereof is to provide a bearingless motor capable of reducing the size and power consumption of a device including a drive circuit.

上記課題を解決するため、本発明のベアリングレスモータは、互いに平行な面が形成された2つの回転部材が、面に垂直な軸方向に沿って延在する連結部材によって連結されて成る回転子と、2つの回転部材のうちの一方の回転部材の面に設けられた第1の永久磁石と、2つの回転部材のうちの他方の回転部材の面上において、円周に沿って複数配列された第2の永久磁石と、一方の回転部材の面に対面するように設けられた磁性材料を含む第1の固定子と、他方の回転部材の面に対面するように設けられた磁性材料を含む第2の固定子と、第2の固定子に対して、第2の永久磁石の配列方向に複数分割して巻き付けられ、他方の回転部材の面に向けて磁界を発生させるコイルと、を備える。   In order to solve the above-mentioned problems, a bearingless motor according to the present invention is a rotor in which two rotating members each having a plane parallel to each other are connected by a connecting member extending along an axial direction perpendicular to the plane. And a plurality of first permanent magnets provided on the surface of one rotating member of the two rotating members, and a plurality of the permanent magnets arranged along the circumference on the surface of the other rotating member of the two rotating members. A first stator including a second permanent magnet, a magnetic material provided so as to face the surface of one rotating member, and a magnetic material provided so as to face the surface of the other rotating member. A second stator including a coil wound around the second stator in a plurality of divided directions in the arrangement direction of the second permanent magnets and generating a magnetic field toward the surface of the other rotating member. Prepare.

このようなベアリングレスモータによれば、回転子の主軸に沿った方向をZ軸方向、Z軸に垂直な方向をX軸方向及びY軸方向とした場合に、X軸方向、Y軸方向、X軸を中心にしたθx方向、及びY軸を中心にしたθy方向の回転子の4自由度運動は、2つの回転部材の面に設けられた永久磁石と2つの固定子との間の磁気結合により、受動的に抑制される。併せて、回転子のZ軸方向の運動は、片方の回転部材の永久磁石に対向する第2の固定子に巻き付けられた複数のコイルに流す励磁電流を調整することにより、能動的に制御されると同時に、第2の固定子の複数のコイルの励磁電流を制御することにより回転子が回転駆動される。これにより、能動的に制御する対象の運動方向を最小の1自由度に低減することができ、ベアリングレスモータに接続するインバータや内蔵する変位センサの数を削減することができ、駆動回路を含めた装置の小型化及び低消費電力化が可能になる。   According to such a bearingless motor, when the direction along the main axis of the rotor is the Z-axis direction and the directions perpendicular to the Z-axis are the X-axis direction and the Y-axis direction, the X-axis direction, the Y-axis direction, The four-degree-of-freedom motion of the rotor in the θx direction centered on the X axis and the θy direction centered on the Y axis is the magnetic force between the permanent magnets provided on the surfaces of the two rotating members and the two stators. By binding, it is suppressed passively. At the same time, the movement of the rotor in the Z-axis direction is actively controlled by adjusting the excitation current flowing through the plurality of coils wound around the second stator facing the permanent magnet of one of the rotating members. At the same time, the rotor is driven to rotate by controlling the excitation currents of the plurality of coils of the second stator. As a result, the direction of movement of the object to be actively controlled can be reduced to a minimum of one degree of freedom, the number of inverters connected to the bearingless motor and the number of built-in displacement sensors can be reduced, and the drive circuit is included. The device can be reduced in size and power consumption.

回転子は、円板状の2つの回転部材が、軸方向に沿って延在する柱状の連結部材によって連結されて成る、ことが好ましい。この場合、回転子の主軸方向の長さが大きくなった場合に加工が容易になるとともに、回転子の面への永久磁石の取り付け作業が容易となる。   The rotor is preferably formed by connecting two disk-shaped rotating members by columnar connecting members extending in the axial direction. In this case, when the length of the rotor in the main axis direction becomes large, the processing becomes easy and the work of attaching the permanent magnet to the surface of the rotor becomes easy.

また、第1の永久磁石は、一方の回転部材の面の縁部に沿ってリング状に設けられ、第2の永久磁石は、他方の回転部材の面の縁部に沿ってリング状に並ぶように複数設けられ、第1の固定子は、第1の永久磁石に向けて伸びる突起部を有し、第2の固定子は、第2の永久磁石に向けて伸びる複数の突起部を有し、コイルは、第2の固定子の複数の突起部に巻き付けられている、ことも好ましい。こうすれば、2つの回転部材の永久磁石と2つの固定子との間の磁気結合が面上で均等に形成されることで、回転子の4自由度運動を効率的に抑制することができるとともに、回転駆動時に回転子に働くモーメントを大きくすることができる。   The first permanent magnet is provided in a ring shape along the edge of the surface of one rotating member, and the second permanent magnet is arranged in a ring shape along the edge of the surface of the other rotating member. The first stator has a protrusion that extends toward the first permanent magnet, and the second stator has a plurality of protrusions that extend toward the second permanent magnet. And it is also preferable that the coil is wound around the several projection part of the 2nd stator. In this way, the magnetic coupling between the permanent magnets of the two rotating members and the two stators is evenly formed on the surface, so that the four-degree-of-freedom motion of the rotor can be efficiently suppressed. At the same time, the moment acting on the rotor at the time of rotational driving can be increased.

さらに、回転子の軸方向に沿った長さL、及び回転子の面の軸方向に対して垂直な方向の幅Dが、下記式;
2×D<L
の関係を有する、ことも好ましい。このような構成を採れば、回転子の4自由度の運動の受動的な抑制効果をより強固にすることができる。
Furthermore, the length L along the axial direction of the rotor and the width D in the direction perpendicular to the axial direction of the surface of the rotor are represented by the following formula:
2 x D <L
It is also preferable to have the following relationship. By adopting such a configuration, it is possible to further strengthen the passive suppression effect of the four-degree-of-freedom movement of the rotor.

本発明によるベアリングレスモータによれば、駆動回路を含めた装置の小型化及び低消費電力化を図ることができる。   According to the bearingless motor of the present invention, it is possible to reduce the size and power consumption of the device including the drive circuit.

本発明の好適な一実施形態であるベアリングレスモータを示す斜視図である。It is a perspective view showing a bearingless motor which is a preferred embodiment of the present invention. 図1のベアリングレスモータの分解斜視図である。It is a disassembled perspective view of the bearingless motor of FIG. 図2の回転子の両端面の構造を示す平面図である。It is a top view which shows the structure of the both end surfaces of the rotor of FIG. 図2の一方の固定子の構造を示す図であり、(a)は、固定子の側面図、(b)は、固定子の平面図である。It is a figure which shows the structure of one stator of FIG. 2, (a) is a side view of a stator, (b) is a top view of a stator. 図2の他方の固定子の平面図である。FIG. 3 is a plan view of the other stator of FIG. 2. 図2の回転子が固定子によって保持された状態を示す側面図である。FIG. 3 is a side view showing a state where the rotor of FIG. 2 is held by a stator. 図2の回転子が固定子によって保持された状態を示す側面図である。FIG. 3 is a side view showing a state where the rotor of FIG. 2 is held by a stator. 図2の回転子が固定子によって保持された状態を示す側面図である。FIG. 3 is a side view showing a state where the rotor of FIG. 2 is held by a stator. 図2の回転子が固定子によって保持された状態を示す側面図である。FIG. 3 is a side view showing a state where the rotor of FIG. 2 is held by a stator. 図2のコイルに供給される電流の時間波形を示す図である。It is a figure which shows the time waveform of the electric current supplied to the coil of FIG. 回転子に対して固定されたd軸及びq軸と、固定子に対して固定されたX軸及びY軸との位置関係を示す図である。It is a figure which shows the positional relationship of the d-axis and q axis | shaft fixed with respect to the rotor, and the X-axis and Y-axis fixed with respect to the stator. 図1のベアリングレスモータに使用される制御回路の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the control circuit used for the bearingless motor of FIG. 本発明の変形例の固定子の構造を示す断面図である。It is sectional drawing which shows the structure of the stator of the modification of this invention.

以下、図面を参照しつつ本発明に係るベアリングレスモータの好適な実施形態について詳細に説明する。なお、図面の説明においては同一又は相当部分には同一符号を付し、重複する説明を省略する。   Hereinafter, preferred embodiments of a bearingless motor according to the present invention will be described in detail with reference to the drawings. In the description of the drawings, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted.

まず、本発明にかかるベアリングレスモータの構成について、図面を参照しながら説明する。本発明のベアリングレスモータは、回転子が磁気浮上することにより固定子により非接触で支持されるモータである。   First, the structure of the bearingless motor according to the present invention will be described with reference to the drawings. The bearingless motor of the present invention is a motor that is supported in a non-contact manner by a stator by the magnetic levitation of a rotor.

(ベアリングレスモータの構成)
図1は、本発明の好適な一実施形態であるベアリングレスモータ1を示す斜視図、図2は、図1のベアリングレスモータ1の分解斜視図、図3は、図1の回転子4の両端面の構造を示す平面図、図4(a)及び図4(b)は、それぞれ、図1の一方の固定子2の側面図及び平面図、図5は、図1の他方の固定子3の平面図である。これらの図に示すように、ベアリングレスモータ1は、図示しない固定部材によって固定された2つの固定子2,3の間に回転子4が磁気力によって支持されて構成されている。このベアリングレスモータ1は、回転子に回転力を付与するものであり、この回転子の回転力は、固定子の中心部に貫通孔を設けると共に、回転子と結合され上記貫通孔を通した軸を設け、その軸の結合部に対して反対側の端部に取り付けた回転皿を回転することにより利用される。また、回転子の回転力は、回転子の軸にインペラを取り付け流体を駆動するなどの方法によって利用されることも考えられる。
(Configuration of bearingless motor)
1 is a perspective view showing a bearingless motor 1 according to a preferred embodiment of the present invention, FIG. 2 is an exploded perspective view of the bearingless motor 1 of FIG. 1, and FIG. 3 is a view of the rotor 4 of FIG. 4A and 4B are a side view and a plan view of one stator 2 in FIG. 1, respectively, and FIG. 5 is the other stator in FIG. 3 is a plan view of FIG. As shown in these drawings, the bearingless motor 1 includes a rotor 4 supported by a magnetic force between two stators 2 and 3 fixed by a fixing member (not shown). The bearingless motor 1 applies a rotational force to the rotor, and the rotational force of the rotor is provided with a through hole at the center of the stator and is coupled with the rotor through the through hole. It is used by providing a shaft and rotating a rotating plate attached to the end opposite to the coupling portion of the shaft. It is also conceivable that the rotational force of the rotor is used by a method of attaching an impeller to the rotor shaft and driving a fluid.

回転子4は、略円柱状を成して2つの固定子2,3の間に延在する連結軸(連結部材)5の両端に、円形の平坦面7A,7Bをそれぞれ固定子2,3側に有する2つの円板状の回転板(回転部材)6A,6Bが連結されて構成されている。詳細には、回転子4は、回転板6A,6Bの平坦面7A,7Bの中心が連結軸5の中心軸上に位置し、且つ、2つの平坦面7A,7Bが連結軸5の中心軸に垂直になるように、言い換えれば、2つの平坦面7A,7Bが互いに平行になるように構成されている。   The rotor 4 is formed in a substantially cylindrical shape with circular flat surfaces 7A and 7B on both ends of a connecting shaft (connecting member) 5 extending between the two stators 2 and 3, respectively. Two disk-shaped rotating plates (rotating members) 6A and 6B on the side are connected to each other. Specifically, in the rotor 4, the centers of the flat surfaces 7 </ b> A and 7 </ b> B of the rotating plates 6 </ b> A and 6 </ b> B are located on the central axis of the connecting shaft 5, and the two flat surfaces 7 </ b> A and 7 </ b> B In other words, the two flat surfaces 7A and 7B are configured to be parallel to each other.

この回転子4の回転板6A,6Bの平坦面7A,7Bには、それぞれの平坦面7A,7Bの円形の周縁部8A,8Bに沿って、2つの永久磁石9,10が配列されて固定されている。これらの2つの永久磁石9,10は、リング形状を2つに分割した形状を有する板状のネオジム磁石等の永久磁石であり、それぞれ、平坦面7A,7Bに垂直な方向に互いに逆方向に着磁されている。これにより、永久磁石9,10が、平坦面7A,7B上に並べて固定されることにより、全体として平坦面7A,7Bの周縁部8A,8Bに沿ったリング形状を形成する。さらに、平坦面7A,7Bには、その周縁部8A,8Bに沿って異なる磁極が交互に配置される。   Two permanent magnets 9 and 10 are arranged and fixed on the flat surfaces 7A and 7B of the rotating plates 6A and 6B of the rotor 4 along the circular peripheral edges 8A and 8B of the flat surfaces 7A and 7B, respectively. Has been. These two permanent magnets 9 and 10 are permanent magnets such as a plate-like neodymium magnet having a shape obtained by dividing the ring shape into two, and are respectively opposite to each other in a direction perpendicular to the flat surfaces 7A and 7B. Magnetized. As a result, the permanent magnets 9 and 10 are arranged and fixed on the flat surfaces 7A and 7B, thereby forming a ring shape along the peripheral portions 8A and 8B of the flat surfaces 7A and 7B as a whole. Furthermore, different magnetic poles are alternately arranged along the peripheral portions 8A and 8B on the flat surfaces 7A and 7B.

ここで、回転子4の固定子2,3間における位置安定化の観点からは、回転子4の平坦面7A,7Bの間の連結軸5の中心軸に沿った長さLと、回転板6A,6Bの平坦面7A,7Bの連結軸5の中心軸に対して垂直な方向の幅(直径)Dとが、下記式(1);
2×D<L …(1)
の関係を有するように設定されていることが好適である。このように設定することにより、回転子4の4自由度運動に対して、磁気結合によって回転子4の位置が確実に安定化される。例えば、固定子2,3及び回転子4の直径Dが25mm、回転子4の長さLが75mm、永久磁石9,10の厚さが5mm、左右の固定子2,3と回転子4とのギャップが0.6mmに設計される。
Here, from the viewpoint of stabilizing the position between the stators 2 and 3 of the rotor 4, the length L along the central axis of the connecting shaft 5 between the flat surfaces 7A and 7B of the rotor 4 and the rotating plate The width (diameter) D in the direction perpendicular to the central axis of the connecting shaft 5 of the flat surfaces 7A and 7B of 6A and 6B is the following formula (1);
2 × D <L (1)
It is preferable to set so as to have the following relationship. By setting in this way, the position of the rotor 4 is reliably stabilized by magnetic coupling with respect to the four-degree-of-freedom movement of the rotor 4. For example, the diameters D of the stators 2 and 3 and the rotor 4 are 25 mm, the length L of the rotor 4 is 75 mm, the thicknesses of the permanent magnets 9 and 10 are 5 mm, the left and right stators 2 and 3 and the rotor 4 The gap is designed to be 0.6mm.

固定子2は、回転板6Aの平坦面7Aとほぼ同一形状を有し、平坦面7Aと対面するように配置される底面板11と、底面板11の周縁部に沿って等間隔に並ぶように一体的に形成され、底面板11から平坦面7A上の永久磁石9,10に向けて伸びる6つの突起部12とを有している。この固定子2は、回転板6Aの永久磁石9,10との間で吸引力が作用するように、少なくとも突起部12の部分は、電磁軟鉄、炭素鋼、圧粉磁心等の磁性材料によって構成されている。   The stator 2 has substantially the same shape as the flat surface 7A of the rotating plate 6A, and is arranged at equal intervals along the peripheral edge of the bottom plate 11 and the bottom plate 11 disposed so as to face the flat surface 7A. And six protrusions 12 extending from the bottom plate 11 toward the permanent magnets 9 and 10 on the flat surface 7A. In this stator 2, at least a portion of the protrusion 12 is made of a magnetic material such as electromagnetic soft iron, carbon steel, or a dust core so that an attractive force acts between the permanent magnets 9 and 10 of the rotating plate 6A. Has been.

固定子3は、回転板6Bの平坦面7Bとほぼ同一形状を有し、平坦面7Bと対面するように配置される底面板13と、底面板13の周縁部に沿って等間隔に並ぶように一体的に形成され、底面板13から平坦面7B上の永久磁石9,10に向けて伸びる6つの突起部14とを有している。さらに、固定子3のそれぞれの突起部14には、複数のコイル15が、回転板6Bの永久磁石9,10の配列方向に沿って分割して巻き付けられている。これらのコイル15は、回転子4を回転駆動すると共に固定子2,3の間に安定して非接触で狭持するために設けられており、回転板6Bの平坦面7Bに向けて磁界を発生させる役割を有する。この固定子3は、コイル15と共に電磁石として機能するように、少なくとも突起部14の部分は、電磁軟鉄、炭素鋼、圧粉磁心等等の磁性材料によって構成されている。   The stator 3 has substantially the same shape as the flat surface 7B of the rotating plate 6B, and is arranged at equal intervals along the peripheral edge of the bottom plate 13 and the bottom plate 13 arranged to face the flat surface 7B. And six protrusions 14 extending from the bottom plate 13 toward the permanent magnets 9 and 10 on the flat surface 7B. Furthermore, a plurality of coils 15 are wound around each protrusion 14 of the stator 3 along the arrangement direction of the permanent magnets 9 and 10 of the rotating plate 6B. These coils 15 are provided for rotationally driving the rotor 4 and stably holding it between the stators 2 and 3 in a non-contact manner, and apply a magnetic field toward the flat surface 7B of the rotating plate 6B. Have a role to generate. The stator 3 functions as an electromagnet together with the coil 15, and at least the portion of the protrusion 14 is made of a magnetic material such as electromagnetic soft iron, carbon steel, or a dust core.

(回転子の磁気浮上及び駆動のメカニズム)
上記構成のベアリングレスモータ1においては、回転子4の4自由度の運動は受動的に安定化(抑制)させることが可能である。すなわち、固定子2の突起部12と回転子4の永久磁石9,10との間には所定の磁束密度で磁界が発生し、この磁界により磁気結合が形成されている。同時に、固定子3の突起部14と回転子4の永久磁石9,10との間は、複数のコイル15に永久磁石9,10の位置に対応した電流を流すことにより、固定子2と回転子4との間の中心軸方向の吸引力とつり合う吸引力を発生させる磁気結合が形成されている(詳細は後述する)。ここで、回転子4の中心軸に沿ってZ軸を設定し、Z軸に垂直にX軸及びY軸を設定すると(図2)、回転子4のX軸方向又はY軸方向に沿った並進運動に対しては、固定子2,3と回転子4の間で復元力Fが働く(図6)。また、回転子4の中心点を回転中心とし、X軸又はY軸を回転軸とした回転子4のθx,θy方向の回転運動に対しても、固定子2,3と回転子4の間に復元トルクTが働く(図7)。その結果、回転子4のX,Y,θx,θyの4自由度運動は、回転子4と2つの固定子2,3との間の磁気結合によって受動的に安定化される。
(Mechanism of rotor magnetic levitation and drive)
In the bearingless motor 1 configured as described above, the motion of the four degrees of freedom of the rotor 4 can be passively stabilized (suppressed). That is, a magnetic field is generated with a predetermined magnetic flux density between the protrusion 12 of the stator 2 and the permanent magnets 9 and 10 of the rotor 4, and magnetic coupling is formed by this magnetic field. At the same time, between the protrusion 14 of the stator 3 and the permanent magnets 9 and 10 of the rotor 4, a current corresponding to the position of the permanent magnets 9 and 10 is passed through the plurality of coils 15 to rotate with the stator 2. A magnetic coupling that generates an attraction force that balances the attraction force in the central axis direction with the child 4 is formed (details will be described later). Here, when the Z axis is set along the central axis of the rotor 4 and the X axis and the Y axis are set perpendicular to the Z axis (FIG. 2), the X axis direction or the Y axis direction of the rotor 4 is set. for translation, the restoring force F R is exerted between the stator 2 and the rotor 4 (Fig. 6). Further, the rotational movement in the θx and θy directions of the rotor 4 with the center point of the rotor 4 as the rotation center and the X axis or the Y axis as the rotation axis is also between the stators 2 and 3 and the rotor 4. restoring torque T R acting on (Figure 7). As a result, the four-degree-of-freedom motion of the rotor 4 in X, Y, θx, and θy is passively stabilized by the magnetic coupling between the rotor 4 and the two stators 2 and 3.

これに対して、回転子4のZ軸方向に沿った並進運動は、仮にコイル15に供給する電流を制御しない場合には、中立の位置から少しでも回転子4が動くと動いた方向に向けて吸引力が発生してしまうため不安定となってしまう。そのため、ベアリングレスモータ1のコイル15には、回転子4のZ軸方向に沿った並進運動に伴い、複数のコイル15に供給する電流が帰還制御される。すなわち、回転子4が中立の位置からZ軸方向に沿って移動した場合には、その変位が変位センサによって検出され、検出結果に応じてコイル15の電流が調整されることによって回転子4と固定子3との間のギャップの磁束密度が増減される。例えば、回転子4が+Z軸方向に移動した場合には、回転子4と固定子3との間のギャップの磁束密度が強められることにより、回転子4に対して−Z方向に吸引力F−Zが作用して位置が能動的に安定化される(図8;強め界磁)。一方、回転子4が−Z軸方向に移動した場合には、回転子4と固定子3との間のギャップの磁束密度が弱められることにより、回転子4に対して+Z方向に吸引力F+Zが作用して位置が能動的に安定化される(図9;弱め界磁)。 On the other hand, the translational motion along the Z-axis direction of the rotor 4 is directed to the direction in which the rotor 4 moves when the rotor 4 moves from the neutral position even if the current supplied to the coil 15 is not controlled. As a result, a suction force is generated, resulting in instability. Therefore, the current supplied to the plurality of coils 15 is feedback-controlled in the coil 15 of the bearingless motor 1 along with the translational motion of the rotor 4 along the Z-axis direction. That is, when the rotor 4 moves from the neutral position along the Z-axis direction, the displacement is detected by the displacement sensor, and the current of the coil 15 is adjusted according to the detection result, so that the rotor 4 The magnetic flux density in the gap with the stator 3 is increased or decreased. For example, when the rotor 4 moves in the + Z-axis direction, the magnetic flux density in the gap between the rotor 4 and the stator 3 is increased, so that the attractive force F in the −Z direction with respect to the rotor 4 is increased. -Z acts to actively stabilize the position (FIG. 8; strong field). On the other hand, when the rotor 4 moves in the −Z-axis direction, the magnetic flux density in the gap between the rotor 4 and the stator 3 is weakened, so that the attractive force F in the + Z direction with respect to the rotor 4 is reduced. + Z acts to actively stabilize the position (FIG. 9; field weakening).

図10には、6つのコイル15に供給される電流の時間波形の一例を示している。同図に示すように、コイル15には、インバータから三相交流電流I,I,Iが供給され、底面板13の中心を挟んで互いに反対側に位置する2つのコイル15に対して、同一の電流値で反対向きの磁界を発生させるような電流が供給される。 FIG. 10 shows an example of a time waveform of the current supplied to the six coils 15. As shown in the figure, the coil 15 is supplied with three-phase alternating currents I U , I V , and I W from the inverter, and with respect to the two coils 15 positioned on opposite sides of the center of the bottom plate 13. Thus, a current that generates a magnetic field in the opposite direction with the same current value is supplied.

この三相交流電流I,I,Iの帰還制御時には、回転板6Bの平坦面7B上の中心に原点が設定され、平坦面7Bに沿った永久磁石9,10によって発生する磁界の方向にd軸、平坦面7Bに沿ったd軸と垂直な方向にq軸が設定される。そして、固定子3によって発生する磁界ベクトルのd軸成分及びq軸成分の大きさを調整するように、三相交流電流I,I,Iが制御される。このd軸成分は、回転子4と固定子3との間の磁束密度に対応し、q軸成分は、回転子4に働くトルクに対応する。図11には、回転子4に対して固定されたd軸及びq軸と、固定子3に対して固定されたX軸及びY軸との位置関係を示している。同図に示すように、帰還制御により磁界ベクトルのd軸方向及びq軸成分が調整されると、その調整値と回転子4の回転角度θに応じて磁界ベクトルのX軸成分及びY軸成分が決定される。それに応じて、磁界ベクトルのX軸成分及びY軸成分が三相交流電流I,I,Iの設定値に変換される。例えば、強め界磁が必要な場合は、磁界ベクトルのd軸成分が増加され、弱め界磁が必要な場合は、磁界ベクトルのd軸成分が減少される。また、磁界ベクトルのq軸成分は、回転子4の回転数を所定値に維持するように調整される。 At the time of feedback control of the three-phase alternating currents I U , I V , and I W , the origin is set at the center on the flat surface 7B of the rotating plate 6B, and the magnetic field generated by the permanent magnets 9 and 10 along the flat surface 7B. The d axis is set in the direction, and the q axis is set in the direction perpendicular to the d axis along the flat surface 7B. Then, the three-phase alternating currents I U , I V , and I W are controlled so as to adjust the magnitudes of the d-axis component and the q-axis component of the magnetic field vector generated by the stator 3. This d-axis component corresponds to the magnetic flux density between the rotor 4 and the stator 3, and the q-axis component corresponds to the torque acting on the rotor 4. FIG. 11 shows the positional relationship between the d-axis and q-axis fixed to the rotor 4 and the X-axis and Y-axis fixed to the stator 3. As shown in the figure, when the d-axis direction and the q-axis component of the magnetic field vector are adjusted by feedback control, the X-axis component and the Y-axis component of the magnetic field vector according to the adjustment value and the rotation angle θ of the rotor 4. Is determined. Accordingly, the X-axis component and the Y-axis component of the magnetic field vector are converted into set values for the three-phase alternating currents I U , I V , I W. For example, when a strong field is required, the d-axis component of the magnetic field vector is increased, and when a weak field is required, the d-axis component of the magnetic field vector is decreased. Further, the q-axis component of the magnetic field vector is adjusted so as to maintain the rotational speed of the rotor 4 at a predetermined value.

(ベアリングレスモータの制御回路の構成)
次に、ベアリングレスモータ1に用いられるインバータを含む制御回路20の構成について説明する。図12は、制御回路20の概略構成を示すブロック図である。
(Configuration of control circuit for bearingless motor)
Next, the configuration of the control circuit 20 including an inverter used for the bearingless motor 1 will be described. FIG. 12 is a block diagram illustrating a schematic configuration of the control circuit 20.

制御回路20には、ベアリングレスモータ1に取り付けられた角度センサ21及び変位センサ22によって回転子4の回転角度θ及びZ軸方向の位置Zが入力される。入力された位置Zを基に予め設定された目標値Zとの差分が取得されて、PID制御器23に入力される。PID制御器23は、この差分値を基に、固定子3に発生させる磁界ベクトルのd軸成分に対応するd軸電流目標値をPID制御により算出し、変換器24に出力する。また、入力された回転角度θから微分器25によって回転数ωが取得されて、この回転数ωと予め設定された目標値ωとの差分が取得されて、PI制御器26に入力される。PI制御器26は、この差分値を基に、磁界ベクトルのq軸成分に対応するq軸電流目標値をPI制御により算出し、変換器24に出力する。 The rotation angle θ of the rotor 4 and the position Z 1 in the Z-axis direction are input to the control circuit 20 by the angle sensor 21 and the displacement sensor 22 attached to the bearingless motor 1. A difference from the preset target value Z 0 based on the input position Z 1 is acquired and input to the PID controller 23. Based on this difference value, the PID controller 23 calculates a d-axis current target value corresponding to the d-axis component of the magnetic field vector generated in the stator 3 by PID control, and outputs it to the converter 24. Also, the rotational speed ω is acquired by the differentiator 25 from the input rotational angle θ, and the difference between the rotational speed ω and a preset target value ω 0 is acquired and input to the PI controller 26. . Based on this difference value, the PI controller 26 calculates a q-axis current target value corresponding to the q-axis component of the magnetic field vector by PI control, and outputs it to the converter 24.

変換器24は、d軸電流目標値及びq軸電流目標値を、角度θを参照した座標変換により磁界ベクトルのX軸成分に対応するX軸電流目標値及びY軸電流目標値に変換する(下記式(1)参照)。

Figure 2011259638

同時に、変換器27は、現在ベアリングレスモータ1に供給されている三相交流電流I,I,Iをモニタし、それらの値をX軸成分値及びY軸成分値に変換する(下記式(2)参照)。
Figure 2011259638

変換器24から出力されたX軸電流目標値及びY軸電流目標値をもとにして、変換器27から出力されたX軸成分値及びY軸成分値との差分が算出されて、それらの差分値はPI制御器28,29にそれぞれ入力される。 The converter 24 converts the d-axis current target value and the q-axis current target value into an X-axis current target value and a Y-axis current target value corresponding to the X-axis component of the magnetic field vector by coordinate conversion with reference to the angle θ ( (See the following formula (1)).
Figure 2011259638

At the same time, the converter 27 monitors the three-phase AC currents I U , I V and I W currently supplied to the bearingless motor 1 and converts these values into X-axis component values and Y-axis component values ( (See the following formula (2)).
Figure 2011259638

Based on the X-axis current target value and the Y-axis current target value output from the converter 24, a difference between the X-axis component value and the Y-axis component value output from the converter 27 is calculated, and those differences are calculated. The difference values are input to the PI controllers 28 and 29, respectively.

PI制御器28、29は、入力された差分を基に、PI制御によりX軸電流の増減値及びY軸電流の増減値をそれぞれ決定し、それらの値を変換器30に出力する。変換器30は、入力されたX軸電流の増減値及びY軸電流の増減値を基に、三相交流電流I,I,Iの位相関係及び電流振幅を決定する(下記式(3)参照)。

Figure 2011259638

そして、インバータ31が、変換器30から入力された設定値に応じて、三相交流電流I,I,Iを生成して、ベアリングレスモータ1のコイル15に供給する。 Based on the input difference, the PI controllers 28 and 29 determine the increase / decrease value of the X-axis current and the increase / decrease value of the Y-axis current, respectively, by PI control, and output these values to the converter 30. The converter 30 determines the phase relationship and current amplitude of the three-phase alternating currents I U , I V , I W based on the input increase / decrease value of the X-axis current and the increase / decrease value of the Y-axis current (the following formula ( 3)).
Figure 2011259638

Then, the inverter 31 generates three-phase alternating currents I U , I V , I W according to the set values input from the converter 30 and supplies them to the coil 15 of the bearingless motor 1.

以上説明したベアリングレスモータ1によれば、X軸方向、Y軸方向、θx方向、及びθy方向の回転子4の4自由度運動は、2つの回転板6A,6Bの平坦面7A,7Bに設けられた永久磁石9,10と2つの固定子2,3との間の磁気結合により、受動的に抑制される。併せて、回転子4のZ軸方向の運動は、回転板6Bの永久磁石9,10に対向する固定子3に巻き付けられた複数のコイル15に流す励磁電流を調整することにより、能動的に制御されると同時に、固定子3の複数のコイル15の励磁電流を制御することにより回転子4が回転駆動される。これにより、能動的に制御する対象の回転子4の運動方向を最小の1自由度に低減することができ、ベアリングレスモータ1に接続するインバータや内蔵する変位センサの数を削減することができ、駆動回路を含めた装置の小型化及び低消費電力化が可能になる。   According to the bearingless motor 1 described above, the four-degree-of-freedom motion of the rotor 4 in the X-axis direction, the Y-axis direction, the θx direction, and the θy direction is applied to the flat surfaces 7A and 7B of the two rotary plates 6A and 6B. It is passively suppressed by the magnetic coupling between the provided permanent magnets 9 and 10 and the two stators 2 and 3. At the same time, the movement of the rotor 4 in the Z-axis direction is actively performed by adjusting the excitation current flowing through the coils 15 wound around the stator 3 facing the permanent magnets 9 and 10 of the rotating plate 6B. Simultaneously with the control, the rotor 4 is driven to rotate by controlling the excitation currents of the plurality of coils 15 of the stator 3. As a result, the direction of motion of the rotor 4 to be actively controlled can be reduced to a minimum of one degree of freedom, and the number of inverters connected to the bearingless motor 1 and the number of built-in displacement sensors can be reduced. Thus, it is possible to reduce the size and power consumption of the device including the drive circuit.

また、回転子4は、円板状の2つの回転板6A,6Bが、Z軸方向に沿って延在する柱状の連結軸5によって連結されているので、回転子4のZ軸方向の長さが大きくなった場合に加工が容易になるとともに、平坦面7A,7Bへの永久磁石の取り付け作業が容易となる。   Further, since the rotor 4 has two disk-shaped rotating plates 6A and 6B connected by a columnar connecting shaft 5 extending along the Z-axis direction, the length of the rotor 4 in the Z-axis direction is long. When the thickness increases, the processing becomes easy, and the attachment work of the permanent magnet to the flat surfaces 7A and 7B becomes easy.

また、回転板6A,6Bの永久磁石9,10は、平坦面7A,7Bの縁部に沿ってリング状に配列して設けられ、固定子2は平坦面7Aに向けて伸びる突起部12を有し、固定子3は平坦面7Bに向けて伸びる複数のコイル15が巻き付けられた突起部14を有している。このような構造により、2つの回転板6A,6Bの永久磁石9,10と2つの固定子2,3との間の磁気結合が平坦面7A,7Bの周縁に沿って均等に形成されることで、回転子4の4自由度運動を効率的に抑制することができるとともに、回転駆動時に回転子4に働くモーメントを大きくすることができる。   Further, the permanent magnets 9 and 10 of the rotating plates 6A and 6B are arranged in a ring shape along the edges of the flat surfaces 7A and 7B, and the stator 2 has protrusions 12 extending toward the flat surface 7A. The stator 3 has a protrusion 14 around which a plurality of coils 15 extending toward the flat surface 7B are wound. With such a structure, the magnetic coupling between the permanent magnets 9 and 10 of the two rotating plates 6A and 6B and the two stators 2 and 3 is evenly formed along the peripheral edges of the flat surfaces 7A and 7B. Thus, the four-degree-of-freedom motion of the rotor 4 can be efficiently suppressed, and the moment acting on the rotor 4 at the time of rotational driving can be increased.

さらに、回転子4のZ軸方向に沿った長さLと、及び回転子4のZ軸方向に対して垂直な方向の幅Dが、上記式(1)の関係を満たすことで、回転子4の4自由度の運動の受動的な抑制効果をより強固にすることができる。   Furthermore, when the length L along the Z-axis direction of the rotor 4 and the width D of the rotor 4 in the direction perpendicular to the Z-axis direction satisfy the relationship of the above formula (1), the rotor Thus, it is possible to further strengthen the passive suppression effect of the four-degree-of-freedom motion.

なお、本発明は、前述した実施形態に限定されるものではない。例えば、回転板6A上の永久磁石は、任意の数に分割されていてもよい。逆に、回転板6A上の永久磁石は、分割されていなくてもよく、全体に亘って着磁方向が同一方向であってもよい。また、固定子2の突起部12の個数は任意の個数に変更してもよいし、底面板11の周縁部に沿って筒状に一体的に形成されていてもよい。   In addition, this invention is not limited to embodiment mentioned above. For example, the permanent magnet on the rotating plate 6A may be divided into an arbitrary number. Conversely, the permanent magnet on the rotating plate 6A may not be divided, and the magnetization direction may be the same direction throughout. Further, the number of the protrusions 12 of the stator 2 may be changed to an arbitrary number, or may be integrally formed in a cylindrical shape along the peripheral edge of the bottom plate 11.

また、回転板6B上の永久磁石は、平坦面7Bの周縁部に沿って均等に配列されている限り、任意の数に分割されていてもよい。このとき、永久磁石は、固定子3が発生する磁界の極数と同一になり、平坦面7Bの周縁部8Bに沿って異なる磁極が並ぶように、任意の数交互に配置されていればよい。また、固定子2の突起部12の個数は、回転板6B上の永久磁石に対向して底面板13の周縁部に沿って均等に並ぶように、任意の個数に変更してもよい。   Further, the permanent magnets on the rotating plate 6B may be divided into an arbitrary number as long as they are evenly arranged along the peripheral edge of the flat surface 7B. At this time, the permanent magnets may be arranged alternately in any number so that the number of poles of the magnetic field generated by the stator 3 is the same, and different magnetic poles are arranged along the peripheral edge 8B of the flat surface 7B. . Further, the number of the projecting portions 12 of the stator 2 may be changed to an arbitrary number so as to be evenly arranged along the peripheral edge portion of the bottom plate 13 so as to face the permanent magnets on the rotating plate 6B.

また、回転子を構成する2つの回転板の形状としては円板状に限定されるものではなく、永久磁石を取り付ける面を有する形状であれば、図13に示すような他の形状を採用してもよい。同図に示す本発明の変形例である回転板106Bは、略半球状を成しており、その周縁部に永久磁石9,10を配置するための平坦部107Bが形成されている。   Further, the shape of the two rotating plates constituting the rotor is not limited to the disc shape, and other shapes as shown in FIG. 13 are adopted as long as the shape has a surface to which the permanent magnet is attached. May be. A rotating plate 106B, which is a modification of the present invention shown in the figure, has a substantially hemispherical shape, and a flat portion 107B for disposing the permanent magnets 9 and 10 is formed on the peripheral edge thereof.

1…ベアリングレスモータ、2,3…固定子、4…回転子、5…連結軸(連結部材)、6A,6B…回転板(回転部材)、7A,7B…平坦面、9,10…永久磁石、12,14…突起部、15…コイル。   DESCRIPTION OF SYMBOLS 1 ... Bearingless motor, 2, 3 ... Stator, 4 ... Rotor, 5 ... Connecting shaft (connecting member), 6A, 6B ... Rotating plate (rotating member), 7A, 7B ... Flat surface, 9, 10 ... Permanent Magnet, 12, 14 ... protrusion, 15 ... coil.

Claims (4)

互いに平行な面が形成された2つの回転部材が、前記面に垂直な軸方向に沿って延在する連結部材によって連結されて成る回転子と、
前記2つの回転部材のうちの一方の回転部材の前記面に設けられた第1の永久磁石と、
前記2つの回転部材のうちの他方の回転部材の前記面上において、円周に沿って複数配列された第2の永久磁石と、
前記一方の回転部材の前記面に対面するように設けられた磁性材料を含む第1の固定子と、
前記他方の回転部材の前記面に対面するように設けられた磁性材料を含む第2の固定子と、
前記第2の固定子に対して、前記第2の永久磁石の配列方向に複数分割して巻き付けられ、前記他方の回転部材の前記面に向けて磁界を発生させるコイルと、
を備えることを特徴とするベアリングレスモータ。
A rotor formed by connecting two rotating members each having a plane parallel to each other by a connecting member extending along an axial direction perpendicular to the plane;
A first permanent magnet provided on the surface of one of the two rotating members;
A plurality of second permanent magnets arranged along a circumference on the surface of the other rotating member of the two rotating members;
A first stator including a magnetic material provided to face the surface of the one rotating member;
A second stator including a magnetic material provided to face the surface of the other rotating member;
A coil that is divided into a plurality of portions in the arrangement direction of the second permanent magnet and wound around the second stator and generates a magnetic field toward the surface of the other rotating member;
A bearingless motor comprising:
前記回転子は、円板状の前記2つの回転部材が、前記軸方向に沿って延在する柱状の前記連結部材によって連結されて成る、
ことを特徴とする請求項1記載のベアリングレスモータ。
The rotor is formed by connecting the two disk-shaped rotating members by the columnar connecting members extending along the axial direction.
The bearingless motor according to claim 1.
前記第1の永久磁石は、前記一方の回転部材の前記面の縁部に沿ってリング状に設けられ、
前記第2の永久磁石は、前記他方の回転部材の前記面の縁部に沿ってリング状に並ぶように複数設けられ、
前記第1の固定子は、前記第1の永久磁石に向けて伸びる突起部を有し、
前記第2の固定子は、前記第2の永久磁石に向けて伸びる複数の突起部を有し、
前記コイルは、前記第2の固定子の前記複数の突起部に巻き付けられている、
ことを特徴とする請求項2記載のベアリングレスモータ。
The first permanent magnet is provided in a ring shape along an edge of the surface of the one rotating member,
A plurality of the second permanent magnets are provided so as to be arranged in a ring shape along the edge of the surface of the other rotating member,
The first stator has a protrusion extending toward the first permanent magnet,
The second stator has a plurality of protrusions extending toward the second permanent magnet,
The coil is wound around the plurality of protrusions of the second stator.
The bearingless motor according to claim 2.
前記回転子の前記軸方向に沿った長さL、及び前記回転子の前記面の前記軸方向に対して垂直な方向の幅Dが、下記式;
2×D<L
の関係を有する、
ことを特徴とする請求項1〜3のいずれか1項に記載のベアリングレスモータ。
A length L along the axial direction of the rotor and a width D in a direction perpendicular to the axial direction of the surface of the rotor are represented by the following formula:
2 x D <L
Having a relationship
The bearingless motor according to any one of claims 1 to 3, wherein the bearingless motor is provided.
JP2010133145A 2010-06-10 2010-06-10 Bearingless motor Expired - Fee Related JP5545053B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010133145A JP5545053B2 (en) 2010-06-10 2010-06-10 Bearingless motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010133145A JP5545053B2 (en) 2010-06-10 2010-06-10 Bearingless motor

Publications (2)

Publication Number Publication Date
JP2011259638A true JP2011259638A (en) 2011-12-22
JP5545053B2 JP5545053B2 (en) 2014-07-09

Family

ID=45475180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010133145A Expired - Fee Related JP5545053B2 (en) 2010-06-10 2010-06-10 Bearingless motor

Country Status (1)

Country Link
JP (1) JP5545053B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112865421A (en) * 2020-12-21 2021-05-28 山东大学 Five-degree-of-freedom single-winding bearingless magnetic suspension motor
WO2023189970A1 (en) * 2022-03-30 2023-10-05 国立大学法人群馬大学 Magnetic levitation motor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106992644B (en) * 2017-04-26 2019-03-05 江苏大学 A kind of five degree of freedom composite excitation magnetic suspension switched reluctance motor
CN110994885B (en) * 2019-12-13 2021-03-23 武汉理工大学 Magnetic suspension disc type motor for unmanned aerial vehicle

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3731984A (en) * 1970-10-22 1973-05-08 H Habermann Magnetic bearing block device for supporting a vertical shaft adapted for rotating at high speed
JPS56115193A (en) * 1980-02-15 1981-09-10 Seiko Instr & Electronics Ltd Controlling system for magnetic bearing
JPH05227712A (en) * 1992-02-12 1993-09-03 Yukimasa Yokomoto Dc motor
US5495221A (en) * 1994-03-09 1996-02-27 The Regents Of The University Of California Dynamically stable magnetic suspension/bearing system
JPH1084661A (en) * 1996-09-10 1998-03-31 Ebara Corp Magnetic levitation motor
JPH11218130A (en) * 1998-01-29 1999-08-10 Tadashi Fukao Disc type rotating machine without bearing
JP2002153028A (en) * 2000-11-14 2002-05-24 Mitsubishi Heavy Ind Ltd Permanent magnet motor for multiple output
US20030164654A1 (en) * 2002-02-25 2003-09-04 Thaxton Edgar S. Axially segmented permanent magnet synchronous machine with integrated magnetic bearings and active stator control of the axial degree-of-freedom
JP2005522166A (en) * 2002-03-27 2005-07-21 ザ・ティムケン・カンパニー Electric motor integrated in vehicle wheel
JP2006136062A (en) * 2004-11-02 2006-05-25 Tokyo Univ Of Science Bearingless electromagnetic rotating device
JP2009192041A (en) * 2008-02-18 2009-08-27 Tokyo Univ Of Science Thrust force generation device, electromagnetic machine applying thrust force generation device
JP2010141992A (en) * 2008-12-10 2010-06-24 Jtekt Corp Rotating motor

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3731984A (en) * 1970-10-22 1973-05-08 H Habermann Magnetic bearing block device for supporting a vertical shaft adapted for rotating at high speed
JPS56115193A (en) * 1980-02-15 1981-09-10 Seiko Instr & Electronics Ltd Controlling system for magnetic bearing
JPH05227712A (en) * 1992-02-12 1993-09-03 Yukimasa Yokomoto Dc motor
US5495221A (en) * 1994-03-09 1996-02-27 The Regents Of The University Of California Dynamically stable magnetic suspension/bearing system
JPH1084661A (en) * 1996-09-10 1998-03-31 Ebara Corp Magnetic levitation motor
JPH11218130A (en) * 1998-01-29 1999-08-10 Tadashi Fukao Disc type rotating machine without bearing
JP2002153028A (en) * 2000-11-14 2002-05-24 Mitsubishi Heavy Ind Ltd Permanent magnet motor for multiple output
US20030164654A1 (en) * 2002-02-25 2003-09-04 Thaxton Edgar S. Axially segmented permanent magnet synchronous machine with integrated magnetic bearings and active stator control of the axial degree-of-freedom
JP2005522166A (en) * 2002-03-27 2005-07-21 ザ・ティムケン・カンパニー Electric motor integrated in vehicle wheel
JP2006136062A (en) * 2004-11-02 2006-05-25 Tokyo Univ Of Science Bearingless electromagnetic rotating device
JP2009192041A (en) * 2008-02-18 2009-08-27 Tokyo Univ Of Science Thrust force generation device, electromagnetic machine applying thrust force generation device
JP2010141992A (en) * 2008-12-10 2010-06-24 Jtekt Corp Rotating motor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112865421A (en) * 2020-12-21 2021-05-28 山东大学 Five-degree-of-freedom single-winding bearingless magnetic suspension motor
CN112865421B (en) * 2020-12-21 2024-04-09 山东大学 Five-degree-of-freedom single-winding bearingless magnetic suspension motor
WO2023189970A1 (en) * 2022-03-30 2023-10-05 国立大学法人群馬大学 Magnetic levitation motor

Also Published As

Publication number Publication date
JP5545053B2 (en) 2014-07-09

Similar Documents

Publication Publication Date Title
Nussbaumer et al. Magnetically levitated slice motors—An overview
KR100403857B1 (en) Motor of magnetic lifting type
Asama et al. Development of a one-axis actively regulated bearingless motor with a repulsive type passive magnetic bearing
US20020105241A1 (en) Integrated magnetic bearing
Asama et al. Evaluation of a bearingless PM motor with wide magnetic gaps
JP6327887B2 (en) Electric motor and electric motor system
JPS61218355A (en) Magnetically levitating actuator having rotation positioning function
TWI475783B (en) Method and apparatus for commutating a reduced complexity self-bearing motor
Yang Electromagnetic actuator implementation and control for resonance vibration reduction in miniature magnetically levitated rotating machines
WO2011114912A1 (en) Bearingless motor
JP5963134B2 (en) Axial maglev motor
JP5545053B2 (en) Bearingless motor
JP3712073B2 (en) Spiral linear motor
Asama et al. Suspension performance of a two-axis actively regulated consequent-pole bearingless motor
KR101194909B1 (en) Dual coil bobbin and spherical motor having the same
Asama et al. A novel concept of a single-drive bearingless motor
Ueno et al. Stability of a tilt-controlling axial gap self-bearing motor with single-stator
JP2000184655A (en) Magnetically levitating motor
Kumashiro et al. Optimization of stack length in magnetic-geared motor with magnetically suspended high-speed rotor
JP2015528276A (en) Actuator consisting of two magnetic bearing motors
JP6628388B2 (en) Bearingless motor
US20220166298A1 (en) Rotary motor and robot
JP2016163495A (en) Dynamo-electric motor and dynamo-electric motor system
JP2011024385A (en) Double rotor structure magnetic support motor and turntable mounted with the same
Ueno et al. Analysis and control of radial force and tilt moment for an axial-gap self-bearing motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140428

R150 Certificate of patent or registration of utility model

Ref document number: 5545053

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees