WO2016070589A1 - 具有空气湿度调节功能的氢气发电系统 - Google Patents
具有空气湿度调节功能的氢气发电系统 Download PDFInfo
- Publication number
- WO2016070589A1 WO2016070589A1 PCT/CN2015/077348 CN2015077348W WO2016070589A1 WO 2016070589 A1 WO2016070589 A1 WO 2016070589A1 CN 2015077348 W CN2015077348 W CN 2015077348W WO 2016070589 A1 WO2016070589 A1 WO 2016070589A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- air
- air humidity
- hydrogen
- water
- fuel cell
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04828—Humidity; Water content
- H01M8/04835—Humidity; Water content of fuel cell reactants
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the invention relates to a hydrogen power generation system, in particular to a hydrogen power generation system with air humidity adjustment function.
- Hydrogen is one of the most ideal energy sources in the 21st century. When burning the same weight of coal, gasoline and hydrogen, hydrogen produces the most energy, and its combustion products are water, no ash and waste gas, no Pollution of the environment; while coal and oil combustion mainly produces CO 2 and SO 2 , which can produce greenhouse effect and acid rain, respectively.
- the reserves of coal and oil are limited, and hydrogen is mainly stored in water. The only product after combustion is water, which can continuously produce hydrogen and never run out.
- Hydrogen is widely distributed, and water is the large "warehouse” of hydrogen, which contains 11% hydrogen. About 1.5% of the hydrogen in the soil; hydrogen, coal, natural gas, animals and plants contain hydrogen.
- the main body of hydrogen exists in the form of compound water, and about 70% of the earth's surface is covered by water, and the water storage capacity is large. Therefore, hydrogen can be said to be an "inexhaustible and inexhaustible" energy source. If hydrogen can be produced from a suitable method, then hydrogen will also be a relatively inexpensive energy source.
- Hydrogen has a wide range of applications and strong applicability. Among them, the advanced hydrogen-oxygen fuel cell power generation system can directly convert hydrogen energy into electrical energy, making hydrogen energy utilization more convenient. At present, such a hydrogen power generation system has been used in fields such as mobile communication base stations.
- the anode of the fuel cell 2H 2 ⁇ 4H++4e-, H 2 splits into two protons and two electrons, protons pass through the proton exchange membrane (PEM), electrons pass through the anode plate, pass through the external load, and enter the cathode double A plate;
- the cathode of the fuel cell O 2 + 4e - + 4H + ⁇ 2H 2 O, protons, electrons and O 2 recombine to form H 2 O.
- the above H2 is derived from a hydrogen production facility or a hydrogen storage device, and the above O 2 is directly derived from outside air.
- the air humidity is between 0% and 90% at the specified air inlet temperature (for example, 40 ° C).
- the battery pack performance increased as the air humidity increased.
- the air humidity at the start of the fuel cell is too low, the starting performance will be far worse than the benchmark performance, resulting in a relatively long startup time to reach the maximum rated power (normal start 10) Up to 20 seconds to reach maximum power, the battery pack may need up to 3 Minutes to reach maximum power).
- the humidity of the outside air is very different.
- the outside air humidity can reach 60% or more, but in the case of fine weather or winter in the north, The humidity of the air is very low, even less than 10% humidity, which will seriously affect the performance of the fuel cell, which in turn affects the operation of the load (such as mobile communication base station).
- the technical problem to be solved by the present invention is to provide a hydrogen power generation system having an air humidity adjustment function, which can adjust the air entering the fuel cell to a humidity of 75% to 90% in view of the above-mentioned deficiencies in the prior art.
- the fuel cell can achieve the benchmark performance in a short period of time and can maximize the fuel cell performance.
- the technical solution of the present invention is:
- a hydrogen power generation system having an air humidity adjustment function comprising a fuel cell, further comprising an air humidity control device and an air pump, wherein the air humidity control device has an accommodation space, and the air humidity in the accommodation space is 75% ⁇ 90%, the air humidity adjusting pipe is installed in the accommodating space, and the air humidity adjusting pipe comprises a water-permeable and airtight pipe; the outside air is driven by the air pump to enter the fuel cell through the air humidity regulating pipe.
- the air humidity in the accommodating space is 80%.
- the fuel cell comprises a water vapor discharge channel, the air humidity control device is provided with a water gas input channel, and the water gas discharge channel is connected with the water gas input channel; in the fuel cell, the hydrogen gas reacts with the oxygen in the air electrochemically Water is generated, and the generated water and the remaining air are discharged from the water vapor discharge passage, and then enter the air humidity control device through the water gas input passage, and the air humidity control device can control the accommodation after receiving water and air from the fuel battery.
- the air humidity in the space is 75% to 90%, and excess air and water are discharged.
- the hydrogen power generation system further includes an air filter disposed at a front end of the air pump for filtering dust impurities in the outside air.
- the fuel cell further includes an air input channel and a hydrogen input channel, the air input channel being in communication with an air humidity adjustment conduit for inputting hydrogen.
- the hydrogen power generation system further includes a hydrogen generation device that is in communication with a hydrogen input passage of the fuel cell.
- the hydrogen production device is a methanol water hydrogen production device, and the methanol water hydrogen production device comprises a methanol water storage container, a raw material conveying device, a reformer and a membrane separation device, and the raw material conveying device comprises methanol water in a methanol water storage container.
- a methanol water reforming reaction takes place in the reformer to produce hydrogen gas; the produced hydrogen gas is sent to a membrane separation device which is a vacuum-plated palladium-silver alloy film on the surface of the porous ceramic.
- the separation device has a palladium-silver alloy coating layer, the palladium-silver alloy has a mass percentage of palladium of 75% to 78%, and the silver accounts for 22% to 25%; the high-purity hydrogen gas that has passed through the membrane separation device is sent to the hydrogen input channel of the fuel cell.
- the air humidity regulating pipe comprises an air inlet pipe, an air outlet pipe and a plurality of parallel air humidity exchange pipes.
- the external air enters the fuel cell through the air intake pipe, the plurality of parallel air humidity exchange pipes and the air outlet pipe, and the air enters the fuel cell.
- the humidity exchange tube is a water-permeable and gas-tight pipe.
- the wall of the air humidity exchange tube includes a porous support tube and a perfluorosulfonic acid film layer from the inside to the outside.
- the porous support tube is a porous metal support tube, or a porous polymer support tube, or a porous ceramic support tube.
- the utility model has the beneficial effects that: the air humidity control device can control the air humidity in the accommodating space to be 75% to 90%, and the air humidity adjusting pipe has a water permeable and air permeable pipe, so that when the outside air passes through the air humidity regulating pipe When entering the fuel cell, the water in the accommodation space air can penetrate into the air in the air humidity regulation pipe, so that the air humidity in the air humidity regulation pipe also reaches 75% to 90%, so that the fuel cell can be in a short time.
- the startup performance is benchmarked and the fuel cell performance is maximized.
- the air humidity control device can control the accommodation space after receiving water and air from the fuel battery.
- the air humidity in the air is 75% to 90%, and the excess air and water are discharged. Therefore, the air humidity control device does not need to be regularly added to the water source, and the water and air generated by the fuel cell can control the humidity of the air in the accommodating space to reach 75%. 90% saves manpower and avoids the problem that the air humidity control device does not work properly due to the lack of timely water addition.
- FIG. 1 is a block diagram showing the overall structure of a hydrogen power generation system of the present invention.
- FIG. 2 is a schematic structural view of the air humidity control device of FIG. 1.
- Figure 3 is a schematic cross-sectional view of an air humidity exchange tube.
- Figure 4 is a block diagram showing the structure of a hydrogen producing apparatus.
- the present invention is a hydrogen power generation system having an air humidity adjustment function, including a fuel cell 1 , and an air humidity control device 2 and an air pump 3 , wherein the air humidity control device 2 has a receiving space.
- the air humidity in the accommodating space 21 is 75% to 90%, preferably 80%, and the accommodating space 21 is installed with an air humidity adjusting pipe 22, and the air humidity adjusting pipe 22 includes a water permeable and airtight pipe; The outside air is driven by the air pump 3 to enter the fuel cell 1 via the air humidity adjusting duct 22.
- the water in the air of the accommodating space 21 can penetrate into the air in the air humidity adjusting duct 22, and the gas such as nitrogen is blocked, and cannot enter the air humidity regulation.
- the humidity of the air in the air humidity adjusting pipe 22 is also 75% to 90%, so that the fuel cell 1 can achieve the starting performance in a short time (usually 10-20 seconds) and can Fuel cell 1 achieves the highest performance.
- the fuel cell 1 includes a water vapor discharge passage 11, and the air humidity control device 2 is provided with a water gas input passage 23, and the water vapor discharge passage 11 communicates with the water gas input passage 23; In 1, the hydrogen reacts with oxygen in the air to form water.
- the electrochemical reaction consists of: at the anode of the fuel cell: 2H 2 ⁇ 4H++4e-, H 2 splits into two protons and two electrons, protons pass through the proton exchange membrane (PEM), electrons pass through the anode plate, through the outside Load and enter the cathode bipolar plate; at the cathode of the fuel cell: O 2 + 4e - + 4H + ⁇ 2H 2 O, protons, electrons and O 2 recombine to form H 2 O.
- PEM proton exchange membrane
- the water generated by the electrochemical reaction and the remaining air are discharged from the water vapor discharge passage 11, and then enter the air humidity control device 2 through the water gas input passage 23, and the air humidity control device 2 receives water and air from the fuel cell 1,
- the humidity of the air in the accommodating space 21 can be controlled to be 75% to 90%, and excess air and water are discharged. Since the air humidity control device receives water and air from the fuel cell, the humidity of the air in the accommodating space can be controlled to be 75% to 90%, and excess air and water are discharged. Therefore, the air humidity control device does not need to regularly add water to the fuel source.
- the water and air generated by the battery can control the humidity of the air in the accommodating space to reach 75% to 90%, saving manpower and avoiding the problem that the air humidity control device cannot work normally due to not adding water in time.
- the hydrogen power generation system further includes an air filter 4 disposed at a front end of the air pump 3 for filtering dust impurities in the outside air, thereby preventing the air humidity adjusting pipe 22 and the fuel.
- the inside of the battery 1 is dusty and affects the efficiency.
- the fuel cell 1 further includes an air input passage 12 and a hydrogen input passage 13 that communicates with an air humidity adjusting duct 22 for inputting hydrogen.
- the hydrogen power generation system further includes a hydrogen generation device 5 that communicates with the hydrogen input passage 13 of the fuel cell 1.
- the hydrogen generation device 5 is a methanol water hydrogen production device 5 including a methanol water storage container 51, a raw material delivery device 52, a reformer 53 and a membrane separation device 54. After the raw material conveying device 52 transports the methanol water raw material in the methanol water storage container 51 to the reformer 53, a methanol water reforming reaction occurs in the reformer 53 to obtain hydrogen gas; and the produced hydrogen gas is sent to the membrane separation device. 54.
- the membrane separation device 54 is a membrane separation device for vacuum-plating palladium-silver alloy on a porous ceramic surface.
- the coating layer is a palladium-silver alloy, and the palladium-silver alloy has a mass percentage of palladium of 75% to 78%, and silver accounts for 22% to 25%.
- the high purity hydrogen gas that has passed through the membrane separation device 54 is sent to the hydrogen input passage 13 of the fuel cell 1.
- the methanol water reforming reaction of the reformer 53 comprises: after the reformer is started, in the reformer, the methanol and the water vapor pass the catalyst under the pressure of 1-5 M Pa at a temperature of 350-409 ° C, in the catalyst.
- the air humidity adjusting duct 22 includes an air inlet pipe 221, an air outlet pipe 222, and a plurality of air humidity exchange pipes 223 arranged in parallel.
- the outside air passes through the air intake pipe 221 and a plurality of parallel air humidity exchange pipes 223 and After the air outlet pipe 222, it enters the fuel cell 1, and the air humidity exchange pipe 223 is a water-permeable and airtight pipe. Since a plurality of air humidity exchange tubes 223 are provided, the air humidity adjustment duct 22 and the air in the accommodating space 21 have a large humidity exchange area, so that the humidity exchange efficiency is higher. Further, as shown in FIG.
- the wall of the air humidity exchange tube 223 includes a porous support tube 2231 and a perfluorosulfonic acid film layer 2232 from the inside to the outside to form a Nafion tube.
- the porous support tube 2231 is preferably a porous metal support tube, or a porous polymer support tube, or a porous ceramic support tube.
- the invention discloses a hydrogen power generation system with air humidity regulation function, which can make the air humidity in the air humidity regulation pipeline reach 75% to 90%, and after the air enters the fuel cell, the fuel battery can be made in a short time.
- the startup performance achieves benchmark performance and maximizes fuel cell performance. Therefore, it has industrial applicability.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
本发明公开了一种具有空气湿度调节功能的氢气发电系统,包括燃料电池,还包括空气湿度控制装置及空气泵,所述空气湿度控制装置具有一容置空间,该容置空间中的空气湿度为75%~90%,该容置空间中安装有空气湿度调节管道,该空气湿度调节管道包括透水不透气的管道;外界空气在空气泵的驱动下,经空气湿度调节管道进入至燃料电池。本发明能将进入燃料电池的空气调节至75%~90%的湿度,使燃料电池能在短时间内使启动效能达到基准效能,并能使燃料电池工作效能达到最高。
Description
本发明涉及一种氢气发电系统,特别涉及一种具有空气湿度调节功能的氢气发电系统。
氢,是一种21世纪最理想的能源之一,在燃烧相同重量的煤、汽油和氢气的情况下,氢气产生的能量最多,而且它燃烧的产物是水,没有灰渣和废气,不会污染环境;而煤和石油燃烧生成的主要是CO2和SO2,可分别产生温室效应和酸雨。煤和石油的储量是有限的,而氢主要存于水中,燃烧后唯一的产物也是水,可源源不断地产生氢气,永远不会用完。氢的分布很广泛,水就是氢的大“仓库”,其中含有11%的氢。泥土里约有1.5%的氢;石油、煤炭、天然气、动植物体内等都含有氢。氢的主体是以化合物水的形式存在的,而地球表面约70%为水所覆盖,储水量很大,因此可以说,氢是“取之不尽、用之不竭”的能源。如果能用合适的方法从制取氢,那么氢也将是一种价格相当便宜的能源。
氢的用途很广,适用性强,其中,先进的氢-氧燃料电池发电系统还可以把氢能直接转化成电能,使氢能的利用更为方便。目前,这种氢气发电系统已在移动通信基站等领域得到使用。在燃料电池的阳极:2H2→4H++4e-,H2分裂成两个质子和两个电子,质子穿过质子交换膜(PEM),电子通过阳极板,通过外部负载,并进入阴极双极板;在燃料电池的阴极:O2+4e-+4H+→2H2O,质子、电子和O2重新结合以形成H2O。在现有技术中,上述H2来源于制氢设备或氢气储存装置,而上述O2则直接来源于外界空气。
经实验证明,在指定的空气进气口气温(例如40°C)下,空气湿度在0% 至90%
之间的情况下,进行操作演示后,发现电池组效能随着空气湿度增加而上升。此外,当燃料电池启动时的空气湿度过低,则启动效能会远差于基准效能,造成相当长的启动时间才能达至最大额定功率(正常启动10
至20 秒便可达到最大功率相比,电池组最长可能需要3
分钟才能达至最大功率)。然而,在现有技术中,由于外界空气是直接进入燃料电池,而外界空气湿度差别非常大,若是阴雨天,外界空气湿度可以达到60%以上,但若是晴朗的天气,或者北方的冬天,则空气湿度非常低,甚至不足10%的湿度,这样,会严重影响到燃料电池的效能,进而影响负载(例如移动通信基站)工作。
本发明要解决的技术问题是针对上述现有技术中的不足,提供一种具有空气湿度调节功能的氢气发电系统,该氢气发电系统能将进入燃料电池的空气调节至75%~90%的湿度,使燃料电池能在短时间内使启动效能达到基准效能,并能使燃料电池工作效能达到最高。
为解决上述技术问题,本发明的技术方案是:
一种具有空气湿度调节功能的氢气发电系统,包括燃料电池,还包括空气湿度控制装置及空气泵,所述空气湿度控制装置具有一容置空间,该容置空间中的空气湿度为75%~90%,该容置空间中安装有空气湿度调节管道,该空气湿度调节管道包括透水不透气的管道;外界空气在空气泵的驱动下,经空气湿度调节管道进入至燃料电池。
所述容置空间中的空气湿度为80%。
所述燃料电池包括水气排放通道,所述空气湿度控制装置设有水气输入通道,水气排放通道与水气输入通道相连通;在燃料电池内,氢气与空气中的氧气发生电化学反应,生成水,该生成的水及余下的空气从水气排放通道排出后,经水气输入通道进入空气湿度控制装置,该空气湿度控制装置接收来自燃料电池的水及空气后,可控制容置空间中的空气湿度为75%~90%,多余空气和水排出。
所述氢气发电系统还包括空气过滤器,该空气过滤器设置于空气泵前端,用于过滤外界空气中的灰尘杂质。
所述燃料电池还包括空气输入通道及氢气输入通道,所述空气输入通道与空气湿度调节管道相连通,所述氢气输入通道用于输入氢气。
所述氢气发电系统还包括制氢装置,该制氢装置与燃料电池的氢气输入通道相连通。
所述制氢装置为甲醇水制氢装置,该甲醇水制氢装置包括甲醇水储存容器、原料输送装置、重整器及膜分离装置,所述原料输送装置将甲醇水储存容器中的甲醇水原料输送至重整器后,在重整器内发生甲醇水重整反应,制得氢气;制得的氢气送至膜分离装置,该膜分离装置为在多孔陶瓷表面真空镀钯银合金的膜分离装置,镀膜层为钯银合金,钯银合金的质量百分比钯占75%~78%,银占22%~25%;经过膜分离装置后的高纯氢气送至燃料电池的氢气输入通道。
所述空气湿度调节管道包括进气管、出气管及若干根并列的空气湿度交换管,外界空气依次经进气管、若干根并列的空气湿度交换管及出气管后,进入至燃料电池,所述空气湿度交换管为透水不透气的管道。
所述空气湿度交换管的管壁,从内至外包括多孔支撑管及全氟磺酸膜层。
所述多孔支撑管为多孔金属支撑管,或多孔高分子支撑管,或多孔陶瓷支撑管。
本发明的有益效果是:由于空气湿度控制装置可控制容置空间中的空气湿度为75%~90%,而空气湿度调节管道具有透水不透气的管道,这样,当外界空气经空气湿度调节管道进入燃料电池时,容置空间空气中的水可渗透进空气湿度调节管道中的空气中,从而使空气湿度调节管道中的空气湿度也达到75%~90%,使燃料电池能在短时间内使启动效能达到基准效能,并能使燃料电池工作效能达到最高。此外,在本发明优选方式中,由于燃料电池的水气排放通道与空气湿度控制装置的水气输入通道相连通,该空气湿度控制装置接收来自燃料电池的水及空气后,可控制容置空间中的空气湿度为75%~90%,多余空气和水排出,因此,空气湿度控制装置无需定时加入水源,利用燃料电池产生的水及空气即可控制容置空间中的空气湿度达到75%~90%,节省了人力,避免了因未及时加水而造成空气湿度控制装置无法正常工作的问题。
图1为本发明氢气发电系统的整体结构方框图。
图2为图1中空气湿度控制装置的结构示意图。
图3为空气湿度交换管的横截面结构示意图。
图4为制氢装置的结构方框图。
图中:1.燃料电池;11.水气排放通道;12.空气输入通道;13.氢气输入通道;2.空气湿度控制装置;21.容置空间;22.空气湿度调节管道;221.进气管;222.出气管;223.空气湿度交换管;2231.多孔支撑管;2232.全氟磺酸膜层;23.水气输入通道;3.空气泵;4.空气过滤器;5.制氢装置;51.甲醇水储存容器;52.原料输送装置;53.重整器;54.膜分离装置。
下面结合附图对本发明的结构原理和工作原理作进一步详细说明。
如图1所示,本发明为一种具有空气湿度调节功能的氢气发电系统,包括燃料电池1,还包括空气湿度控制装置2及空气泵3,所述空气湿度控制装置2具有一容置空间21,该容置空间21中的空气湿度为75%~90%,优选为80%,该容置空间21中安装有空气湿度调节管道22,该空气湿度调节管道22包括透水不透气的管道;外界空气在空气泵3的驱动下,经空气湿度调节管道22进入至燃料电池1。当外界空气经空气湿度调节管道22进入燃料电池1时,容置空间21空气中的水可渗透进空气湿度调节管道22中的空气中,而氮气等气体则被阻挡,不能进入至空气湿度调节管道22中,这样使空气湿度调节管道22中的空气湿度也达到75%~90%,使燃料电池1能在短时间(通常为10-20秒)内使启动效能达到基准效能,并能使燃料电池1工作效能达到最高。
如图1所示,所述燃料电池1包括水气排放通道11,所述空气湿度控制装置2设有水气输入通道23,水气排放通道11与水气输入通道23相连通;在燃料电池1内,氢气与空气中的氧气发生电化学反应,生成水。该电化学反应包括:在燃料电池的阳极:2H2→4H++4e-,H2分裂成两个质子和两个电子,质子穿过质子交换膜(PEM),电子通过阳极板,通过外部负载,并进入阴极双极板;在燃料电池的阴极:O2+4e-+4H+→2H2O,质子、电子和O2重新结合以形成H2O。该电化学反应生成的水及余下的空气从水气排放通道11排出后,经水气输入通道23进入空气湿度控制装置2,该空气湿度控制装置2接收来自燃料电池1的水及空气后,可控制容置空间21中的空气湿度为75%~90%,多余空气和水排出。由于空气湿度控制装置接收来自燃料电池的水及空气后,可控制容置空间中的空气湿度为75%~90%,多余空气和水排出,因此,空气湿度控制装置无需定时加入水源,利用燃料电池产生的水及空气即可控制容置空间中的空气湿度达到75%~90%,节省了人力,避免了因未及时加水而造成空气湿度控制装置无法正常工作的问题。
如图1所示,所述氢气发电系统还包括空气过滤器4,该空气过滤器4设置于空气泵3前端,用于过滤外界空气中的灰尘杂质,这样可防止空气湿度调节管道22及燃料电池1内部粘满灰尘而影响效能。
如图1所示,所述燃料电池1还包括空气输入通道12及氢气输入通道13,所述空气输入通道12与空气湿度调节管道22相连通,所述氢气输入通道13用于输入氢气。进一步,所述氢气发电系统还包括制氢装置5,该制氢装置5与燃料电池1的氢气输入通道13相连通。如图4所示,所述制氢装置5为甲醇水制氢装置5,该甲醇水制氢装置5包括甲醇水储存容器51、原料输送装置52、重整器53及膜分离装置54,所述原料输送装置52将甲醇水储存容器51中的甲醇水原料输送至重整器53后,在重整器53内发生甲醇水重整反应,制得氢气;制得的氢气送至膜分离装置54,该膜分离装置54为在多孔陶瓷表面真空镀钯银合金的膜分离装置,镀膜层为钯银合金,钯银合金的质量百分比钯占75%~78%,银占22%~25%;经过膜分离装置54后的高纯氢气送至燃料电池1的氢气输入通道13。所述重整器53的甲醇水重整反应包括:重整器启动后,在重整器内,甲醇与水蒸气在350-409℃温度下1-5M
Pa的压力条件下通过催化剂,在催化剂的作用下,发生甲醇裂解反应和一氧化碳的变换反应,生成氢气和二氧化碳,这是一个多组份、多反应的气固催化反应系统;反应方程为:(1)CH3OH→CO+2H2;(2)H2O+CO→CO2+H2;(3)CH3OH+H2O→CO2+3H2;经重整反应后,氢气、二氧化碳、未反应的水蒸气及杂质气体组成的混合气体输送至膜分离装置54。
如图2所示,所述空气湿度调节管道22包括进气管221、出气管222及若干根并列的空气湿度交换管223,外界空气依次经进气管221、若干根并列的空气湿度交换管223及出气管222后,进入至燃料电池1,所述空气湿度交换管223为透水不透气的管道。由于空气湿度交换管223设置了多根,这样,空气湿度调节管道22与容置空间21中的空气具有较大的湿度交换面积,使湿度交换效率更高。进一步,如图3所示,所述空气湿度交换管223的管壁,从内至外包括多孔支撑管2231及全氟磺酸膜层2232,形成Nafion管。再进一步,多孔支撑管2231优选为多孔金属支撑管,或多孔高分子支撑管,或多孔陶瓷支撑管。
以上所述,仅是本发明较佳实施方式,凡是依据本发明的技术方案对以上的实施方式所作的任何细微修改、等同变化与修饰,均属于本发明技术方案的范围内。
本发明公开了一种具有空气湿度调节功能的氢气发电系统,能使空气湿度调节管道中的空气湿度达到75%~90%,该空气进入燃料电池后,能使燃料电池能在短时间内使启动效能达到基准效能,并能使燃料电池工作效能达到最高。因此,具有工业实用性。
Claims (10)
- 具有空气湿度调节功能的氢气发电系统,包括燃料电池,其特征在于:还包括空气湿度控制装置及空气泵,所述空气湿度控制装置具有一容置空间,该容置空间中的空气湿度为75%~90%,该容置空间中安装有空气湿度调节管道,该空气湿度调节管道包括透水不透气的管道;外界空气在空气泵的驱动下,经空气湿度调节管道进入至燃料电池。
- 根据权利要求1所述的具有空气湿度调节功能的氢气发电系统,其特征在于:所述容置空间中的空气湿度为80%。
- 根据权利要求1所述的具有空气湿度调节功能的氢气发电系统,其特征在于:所述燃料电池包括水气排放通道,所述空气湿度控制装置设有水气输入通道,水气排放通道与水气输入通道相连通;在燃料电池内,氢气与空气中的氧气发生电化学反应,生成水,该生成的水及余下的空气从水气排放通道排出后,经水气输入通道进入空气湿度控制装置,该空气湿度控制装置接收来自燃料电池的水及空气后,可控制容置空间中的空气湿度为75%~90%,多余空气和水排出。
- 根据权利要求1所述的具有空气湿度调节功能的氢气发电系统,其特征在于:所述氢气发电系统还包括空气过滤器,该空气过滤器设置于空气泵前端,用于过滤外界空气中的灰尘杂质。
- 根据权利要求1所述的具有空气湿度调节功能的氢气发电系统,其特征在于:所述燃料电池还包括空气输入通道及氢气输入通道,所述空气输入通道与空气湿度调节管道相连通,所述氢气输入通道用于输入氢气。
- 根据权利要求5所述的具有空气湿度调节功能的氢气发电系统,其特征在于:所述氢气发电系统还包括制氢装置,该制氢装置与燃料电池的氢气输入通道相连通。
- 根据权利要求6所述的具有空气湿度调节功能的氢气发电系统,其特征在于:所述制氢装置为甲醇水制氢装置,该甲醇水制氢装置包括甲醇水储存容器、原料输送装置、重整器及膜分离装置,所述原料输送装置将甲醇水储存容器中的甲醇水原料输送至重整器后,在重整器内发生甲醇水重整反应,制得氢气;制得的氢气送至膜分离装置,该膜分离装置为在多孔陶瓷表面真空镀钯银合金的膜分离装置;经过膜分离装置后的高纯氢气送至燃料电池的氢气输入通道。
- 根据权利要求1-7中任意一项所述的具有空气湿度调节功能的氢气发电系统,其特征在于:所述空气湿度调节管道包括进气管、出气管及若干根并列的空气湿度交换管,外界空气依次经进气管、若干根并列的空气湿度交换管及出气管后,进入至燃料电池,所述空气湿度交换管为透水不透气的管道。
- 根据权利要求8所述的具有空气湿度调节功能的氢气发电系统,其特征在于:所述空气湿度交换管的管壁,从内至外包括多孔支撑管及全氟磺酸膜层。
- 根据权利要求9所述的具有空气湿度调节功能的氢气发电系统,其特征在于:所述多孔支撑管为多孔金属支撑管,或多孔高分子支撑管,或多孔陶瓷支撑管。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410621889.5 | 2014-11-07 | ||
CN201410621889.5A CN104332644A (zh) | 2014-11-07 | 2014-11-07 | 具有空气湿度调节功能的氢气发电系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016070589A1 true WO2016070589A1 (zh) | 2016-05-12 |
Family
ID=52407330
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/077348 WO2016070589A1 (zh) | 2014-11-07 | 2015-04-24 | 具有空气湿度调节功能的氢气发电系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104332644A (zh) |
WO (1) | WO2016070589A1 (zh) |
Families Citing this family (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104332644A (zh) * | 2014-11-07 | 2015-02-04 | 广东合即得能源科技有限公司 | 具有空气湿度调节功能的氢气发电系统 |
CN105070930A (zh) * | 2015-07-20 | 2015-11-18 | 上海合既得动氢机器有限公司 | 甲醇水蒸气制氢发电系统及其燃料电池系统 |
CN105071742A (zh) * | 2015-08-13 | 2015-11-18 | 上海合既得动氢机器有限公司 | 一种水氢能源自供电系统及方法 |
CN105109355A (zh) * | 2015-08-24 | 2015-12-02 | 上海合既得动氢机器有限公司 | 一种多轮驱动电动车及其驱动方法 |
CN105206860A (zh) * | 2015-10-12 | 2015-12-30 | 上海合既得动氢机器有限公司 | 一种醇氢便携式洗衣机 |
CN105186020A (zh) * | 2015-10-12 | 2015-12-23 | 上海合既得动氢机器有限公司 | 一种醇氢热水器 |
CN105169559A (zh) * | 2015-10-12 | 2015-12-23 | 上海合既得动氢机器有限公司 | 一种水氢除颤仪 |
CN105186017A (zh) * | 2015-10-12 | 2015-12-23 | 上海合既得动氢机器有限公司 | 一种水氢心电监护仪 |
CN105169531A (zh) * | 2015-10-12 | 2015-12-23 | 上海合既得动氢机器有限公司 | 一种水氢注射泵 |
CN105206861A (zh) * | 2015-10-12 | 2015-12-30 | 上海合既得动氢机器有限公司 | 一种水氢取暖器 |
CN105244524A (zh) * | 2015-10-22 | 2016-01-13 | 上海合既得动氢机器有限公司 | 一种水氢计算机 |
CN105280938A (zh) * | 2015-10-22 | 2016-01-27 | 上海合既得动氢机器有限公司 | 一种水氢动力工业生产设备 |
CN105303977A (zh) * | 2015-10-22 | 2016-02-03 | 上海合既得动氢机器有限公司 | 一种水氢户外广告设备 |
CN105305545A (zh) * | 2015-10-22 | 2016-02-03 | 上海合既得动氢机器有限公司 | 一种水氢移动充电器 |
CN105289355A (zh) * | 2015-10-22 | 2016-02-03 | 上海合既得动氢机器有限公司 | 一种水氢搅拌机 |
CN105304924A (zh) * | 2015-10-22 | 2016-02-03 | 上海合既得动氢机器有限公司 | 一种水氢手术无影灯 |
CN105390718A (zh) * | 2015-11-03 | 2016-03-09 | 上海合既得动氢机器有限公司 | 无尾气排放的水氢动力列车 |
CN105261772A (zh) * | 2015-11-03 | 2016-01-20 | 上海合既得动氢机器有限公司 | 一种水氢充电桩 |
CN105390719A (zh) * | 2015-11-03 | 2016-03-09 | 上海合既得动氢机器有限公司 | 一种醇氢发电设备及其存储装置 |
CN105298188A (zh) * | 2015-11-03 | 2016-02-03 | 上海合既得动氢机器有限公司 | 一种水氢立体停车装置 |
CN105261775A (zh) * | 2015-11-03 | 2016-01-20 | 上海合既得动氢机器有限公司 | 一种电动汽车水氢充电装置 |
CN105258265A (zh) * | 2015-11-03 | 2016-01-20 | 上海合既得动氢机器有限公司 | 一种水氢加湿器 |
CN105280945A (zh) * | 2015-11-03 | 2016-01-27 | 上海合既得动氢机器有限公司 | 无尾气排放的水氢动力自行车 |
CN105304918A (zh) * | 2015-11-03 | 2016-02-03 | 上海合既得动氢机器有限公司 | 无尾气排放的水氢动力采掘机 |
CN105276662A (zh) * | 2015-11-03 | 2016-01-27 | 上海合既得动氢机器有限公司 | 一种水氢地热系统 |
CN105428674A (zh) * | 2015-11-03 | 2016-03-23 | 上海合既得动氢机器有限公司 | 无尾气排放的水氢动力摩托车 |
CN105261776A (zh) * | 2015-11-03 | 2016-01-20 | 上海合既得动氢机器有限公司 | 一种醇氢电动公共汽车 |
CN105280944A (zh) * | 2015-11-03 | 2016-01-27 | 上海合既得动氢机器有限公司 | 无尾气排放的水氢动力工程车 |
CN105270201A (zh) * | 2015-11-03 | 2016-01-27 | 上海合既得动氢机器有限公司 | 无尾气排放的水氢动力汽车 |
CN109962267A (zh) * | 2019-03-25 | 2019-07-02 | 奇瑞汽车股份有限公司 | 燃料电池汽车供氧系统及汽车 |
CN113113644B (zh) * | 2021-03-23 | 2022-04-15 | 东风汽车集团股份有限公司 | 一种氢气燃料电池系统 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3581495B2 (ja) * | 1996-09-02 | 2004-10-27 | 本田技研工業株式会社 | 燃料電池用ガスの加湿装置 |
CN101154737A (zh) * | 2006-09-28 | 2008-04-02 | 现代自动车株式会社 | 用于燃料电池的混合增湿器 |
CN101527364A (zh) * | 2008-03-06 | 2009-09-09 | 现代自动车株式会社 | 用于燃料电池的加湿系统 |
CN103022536A (zh) * | 2012-12-20 | 2013-04-03 | 上海交通大学 | 用于燃料电池的膜增湿器 |
CN104332644A (zh) * | 2014-11-07 | 2015-02-04 | 广东合即得能源科技有限公司 | 具有空气湿度调节功能的氢气发电系统 |
CN204289608U (zh) * | 2014-11-07 | 2015-04-22 | 广东合即得能源科技有限公司 | 具有空气湿度调节功能的氢气发电系统 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101278398B1 (ko) * | 2007-08-01 | 2013-06-24 | 코오롱인더스트리 주식회사 | 중공사막 및 그 제조방법 |
KR20090128005A (ko) * | 2008-06-10 | 2009-12-15 | 주식회사 코오롱 | 연료전지용 가습 시스템 및 이를 이용한 연료전지 시스템 |
CN103387210B (zh) * | 2013-08-06 | 2016-08-10 | 上海合既得动氢机器有限公司 | 甲醇水制氢系统及方法 |
CN103613069B (zh) * | 2013-11-18 | 2015-10-28 | 上海合既得动氢机器有限公司 | 能快速启动的甲醇水制氢系统及方法 |
-
2014
- 2014-11-07 CN CN201410621889.5A patent/CN104332644A/zh active Pending
-
2015
- 2015-04-24 WO PCT/CN2015/077348 patent/WO2016070589A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3581495B2 (ja) * | 1996-09-02 | 2004-10-27 | 本田技研工業株式会社 | 燃料電池用ガスの加湿装置 |
CN101154737A (zh) * | 2006-09-28 | 2008-04-02 | 现代自动车株式会社 | 用于燃料电池的混合增湿器 |
CN101527364A (zh) * | 2008-03-06 | 2009-09-09 | 现代自动车株式会社 | 用于燃料电池的加湿系统 |
CN103022536A (zh) * | 2012-12-20 | 2013-04-03 | 上海交通大学 | 用于燃料电池的膜增湿器 |
CN104332644A (zh) * | 2014-11-07 | 2015-02-04 | 广东合即得能源科技有限公司 | 具有空气湿度调节功能的氢气发电系统 |
CN204289608U (zh) * | 2014-11-07 | 2015-04-22 | 广东合即得能源科技有限公司 | 具有空气湿度调节功能的氢气发电系统 |
Also Published As
Publication number | Publication date |
---|---|
CN104332644A (zh) | 2015-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016070589A1 (zh) | 具有空气湿度调节功能的氢气发电系统 | |
CN109626368B (zh) | 一种N掺杂γ型石墨单炔碳材料及其制备方法和应用 | |
CN101306302B (zh) | 分离和净化含氢工业废气方法 | |
WO2016095392A1 (zh) | 一种甲醇水制氢发电系统及制氢发电方法 | |
WO2016070590A1 (zh) | 一种甲醇水制氢机及其制氢方法 | |
US20210285113A1 (en) | Process that can withstand high currents, for producing ammonia | |
CN103236554A (zh) | 燃料电池备用电源供氢汇流排氮气吹扫系统 | |
KR102382663B1 (ko) | 전기화학 셀 내 질화물 이온의 수송 방법 | |
CN204289608U (zh) | 具有空气湿度调节功能的氢气发电系统 | |
Hashimasa et al. | PEFC Power Generation Performance Degradation by Hydrogen Sulfide and Ammonia—Effects of Lowering Platinum Loading— | |
CN113890091A (zh) | 一种利用储氢系统解决建筑光伏消纳问题的方法 | |
CN111509279B (zh) | 原位制氢燃料电池系统 | |
CN102389823B (zh) | 一种高利用率燃料电池催化剂的制备方法 | |
CN105070928B (zh) | 一种燃料电池供氧系统及供氧方法 | |
CN204794809U (zh) | 一种能源互补自供电系统 | |
US20230167562A1 (en) | Carbon-assisted solid oxide electrolysis cell | |
Mondal et al. | A spontaneous hydrogen fuel purifier under truly ambient weather conditions | |
CN114243067A (zh) | 直接碳燃料电池 | |
CN203179987U (zh) | 燃料电池备用电源供氢汇流排氮气吹扫系统 | |
Hendriksen et al. | Electrochemical Cells for Novel Routes to Ammonia | |
Sun et al. | A cation-ion conducting direct alcohol fuel cell: Establishing pH-asymmetric to simultaneous generate electricity and hydrogen | |
CN204793043U (zh) | 一种燃料电池供氧系统 | |
CN219441225U (zh) | 一种利用绿氢制氨实现烟气脱硝的系统 | |
CN114990618B (zh) | 一种生物质碳气凝胶电催化析氘材料的制备方法及应用 | |
JPH11350972A (ja) | ガスタービン複合サイクル発電システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15857604 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15857604 Country of ref document: EP Kind code of ref document: A1 |