WO2016070394A1 - 一种呼气阀 - Google Patents

一种呼气阀 Download PDF

Info

Publication number
WO2016070394A1
WO2016070394A1 PCT/CN2014/090530 CN2014090530W WO2016070394A1 WO 2016070394 A1 WO2016070394 A1 WO 2016070394A1 CN 2014090530 W CN2014090530 W CN 2014090530W WO 2016070394 A1 WO2016070394 A1 WO 2016070394A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
sampling channel
exhalation
sampling
port
Prior art date
Application number
PCT/CN2014/090530
Other languages
English (en)
French (fr)
Inventor
姚刚
润登•欧拉
陈永辉
邬学涛
陈培涛
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=55908411&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2016070394(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 深圳迈瑞生物医疗电子股份有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to PCT/CN2014/090530 priority Critical patent/WO2016070394A1/zh
Priority to CN201480083488.7A priority patent/CN106922131B/zh
Publication of WO2016070394A1 publication Critical patent/WO2016070394A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/087Measuring breath flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/20Valves specially adapted to medical respiratory devices

Definitions

  • the present invention relates to the field of medical devices, and more particularly to an exhalation valve.
  • the exhalation valve assembly is an important part of the ventilator, and mainly implements functions such as pressure control, pressure monitoring, and flow monitoring for the patient during the exhalation phase. Because the gas flowing through the exhalation valve assembly is the gas exhaled by the patient, the exhalation valve assembly needs to be cleaned and disinfected before being used again.
  • the current exhalation valve products mainly include an integrated flow collection module, and the flow collection module is independent of the two structures outside the exhalation valve assembly.
  • the two structures mainly have the following technical defects:
  • the flow collection module is independent of the exhalation valve assembly. When connecting the patient pipeline, it is necessary to separately perform the connection operation of the flow collection module to increase the workload of the client and increase the probability of error. At the same time, the flow collection module increases the risk of cross-infection of the patient due to contact with the patient's exhaled gas, such as not being disinfected during use.
  • the exhalation valve assembly of the integrated flow collection module when controlling the PEEP valve, the airflow is susceptible to the PEEP valve, causing large fluctuations in the airflow, affecting the measurement accuracy of the flow collection module, and thus affecting the stability of the PEEP valve control.
  • the technical problem to be solved by the present invention is to provide an exhalation valve, which can improve the accuracy of the flow monitoring and the control stability of the PEEP valve; and can be quickly assembled with the collection port to realize the overall disassembly and disinfection, which is safe and reliable.
  • an embodiment of the present invention provides an exhalation valve including a valve body, wherein the valve body includes: a first valve port for inputting exhaled gas; and a second valve port for connecting the PEEP valve, An exhalation channel is provided between the first valve port and the second valve port; and a flow collection module disposed in the exhalation channel, wherein: a portion of the exhaled gas entering the exhalation channel from the first valve port is passed through the flow collection module A certain pressure difference is generated and enters the collection port, and the other portion enters the PEEP valve from the second valve port.
  • the flow collection module includes at least a throttle member and a sampling channel respectively disposed in the exhalation channel, and the sampling channel includes two sampling channel inlets respectively disposed on both sides of the throttle member.
  • the throttle piece is a metal diaphragm or a high temperature resistant cooking membrane.
  • the sampling channel includes a first sampling channel and a second sampling channel
  • the sampling channel inlet includes: Connected to a first sampling channel inlet in the first sampling channel and to a second sampling channel inlet in the second sampling channel; the first sampling channel further includes a first sampling channel outlet, and the second sampling channel further includes a second sampling channel Export.
  • the axial direction of the first sampling channel inlet or the second sampling channel inlet and the plane where the throttle member are located are in an angle range of 0°-90°
  • the first sampling channel outlet and the second sampling channel outlet are disposed on the same side of the throttle.
  • the axial direction of the outlet of the first sampling channel and the outlet of the second sampling channel is at an angle of between 75° and 90° with the plane of the throttle.
  • the exhalation valve further includes a hand wheel for fastening the valve body to the hand wheel on a breathing valve seat, the hand wheel is rotatably sleeved outside the valve body, and the collecting port is fixed on the breathing valve seat.
  • the hand wheel includes a fastening ring for holding the open end of the respiratory valve seat, and a plurality of guide edges are arranged on the fastening ring, and a guide column is arranged on the inner wall of the open end of the respiratory valve seat, wherein: the screwing hand The wheel and the guide post are slid into the opening of the guide rib to fasten the valve body to the breathing valve seat.
  • the guide rib is provided with a bump
  • the guide post is provided with a groove corresponding to the position of the bump
  • the collection port includes at least a first connector for adapting connection with the outlet of the first sampling channel and a second connector for adapting connection with the outlet of the second sampling channel; when the valve body is fastened to the respiratory valve seat
  • the axial direction of the first joint or the second joint is parallel to the axial direction of the first sampling passage outlet or the second sampling passage outlet.
  • a part of the gas of the exhaled gas entering the exhalation channel from the first valve port may generate a certain pressure difference through the flow collection module and enter the collection port, and another part of the gas enters the PEEP valve through the second valve port.
  • the flow collection module is placed in front of the PEEP valve, so that the influence of the control PEEP valve on the flow collection module is small, thereby improving the flow test accuracy and the stability of the PEEP valve control.
  • the flow collection module is disposed in the exhalation channel, it can realize high-temperature cooking and disinfection with the valve body as a whole, without separate disassembly of the flow collection module, which is safe and efficient.
  • the first sampling channel inlet and the second sampling channel inlet are respectively disposed at two sides of the throttle member, and the axial direction of the first sampling channel outlet and the second sampling channel outlet is 75° with the plane of the throttle member.
  • the angle between 90° causes the exit of the two sampling channels to be approximately the same as the direction of the expiratory flow.
  • the hand wheel is rotatably sleeved on the outside of the valve body, and the valve body can be fastened to the breathing valve seat by screwing the hand wheel, and the disassembly is convenient and the sealing is stronger.
  • FIG. 1 is a schematic view showing the structure of an exhalation valve and an exhalation valve seat according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing the structure of a first longitudinal section of an exhalation valve according to an embodiment of the present invention.
  • FIG. 3 is an enlarged schematic view of the first sampling channel of the exhalation valve shown in FIG. 2 according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural view of a second longitudinal section of an exhalation valve according to an embodiment of the present invention.
  • FIG. 5 is an enlarged schematic view showing the second sampling channel of the exhalation valve shown in FIG. 4 according to an embodiment of the present invention.
  • Fig. 6 is a structural schematic view of a hand wheel of an exhalation valve according to an embodiment of the present invention.
  • Fig. 7 is a structural schematic view showing the open end of the exhalation valve seat according to the embodiment of the present invention.
  • FIG. 1 is a schematic view showing the assembly of an exhalation valve and an exhalation valve seat according to an embodiment of the present invention.
  • the exhalation valve 1 in this embodiment can be adapted to be coupled to the exhalation valve seat 2.
  • the exhalation valve 1 in this embodiment includes a valve body (not labeled), and the valve body includes:
  • a second valve port 12 for connecting a PEEP valve (not shown), having an exhalation passage 13 between the first valve port 11 and the second valve port 12;
  • a flow collection module disposed in the exhalation channel 13, wherein: a portion of the exhaled gas entering the exhalation channel 13 from the first valve port 11 generates a certain pressure difference through the flow collection module to enter the collection port (collection seat 21), Another portion of the gas enters the PEEP valve from the second valve port 12.
  • the exhalation valve 1 is a valve body structure of a hollow cavity with a valve port at both ends, and the right end of the exhalation valve 1 is the first valve port 11 as shown in FIG. 2, that is, the patient exhaled.
  • the connection end of the gas As shown in Fig. 2, the left end of the exhalation valve 1 is the second valve port 12, that is, the connection end capable of connecting the PEEP valve.
  • the hollow chamber shown in FIG. 2 between the first valve port 11 and the second valve port 12 is an exhalation passage 13.
  • the exhalation channel 13 that is, the inside of the exhalation valve 1 is provided with a flow collection module, and the flow collection module is used as a part of the differential pressure flow detection device (not shown) of the exhalation valve of the present embodiment, and is mainly used for When the patient exhales the gas, a certain pressure difference is generated through it for the other components of the differential pressure flow detecting device, such as the electrical signal processing component, to detect the gas flow exhaled by the patient.
  • the flow collection module in this embodiment includes at least a throttle member 141 and a sampling channel 142 respectively disposed in the exhalation passage 13.
  • the sampling channel 142 includes a first sampling channel 1421 and a second sampling channel 1422.
  • the sampling channel 142 includes a first sampling channel inlet 1421a connected to the first sampling channel 1421 and a second sampling channel inlet connected to the second sampling channel 1422. 1422a, a first sampling channel inlet 1421a and a second sampling channel inlet 1422a are respectively disposed on both sides of the throttle member 13.
  • the throttle member 141 is a high temperature resistant cooking membrane in the present embodiment, which is disposed in the middle of the exhalation passage 13 and divides the exhalation passage 13 into two left and right chambers.
  • the throttle 141 may also be a metal diaphragm having a high temperature resistant cooking.
  • the first sampling channel 1421 includes a first sampling channel inlet 1421a and a first sampling channel outlet 1421b, and the first sampling channel inlet 1421a is disposed at the expiratory channel 13 near the first valve.
  • the side end of the mouth 11 is in communication with the expiratory passage 13.
  • the axial direction of the first sampling channel inlet 1421a is at an angle of between 0° and 90° with the plane in which the throttle member 141 is located.
  • the axial direction of the first sampling channel outlet 1421b is substantially perpendicular to the plane in which the throttle member 141 is located.
  • the effect of the setting is that since the flow direction of the exhaled gas entering the exhalation passage 13 from the first valve port 11 is substantially perpendicular to the plane in which the throttle member 141 is located, the above structure can make the direction and exhalation of the first sampling passage outlet 1421b.
  • the direction of the airflow is the same.
  • the sampling channel 142 further includes a second sampling channel 1422
  • the second sampling channel 1422 includes a second sampling channel inlet 1422a and a second sampling channel outlet 1422b
  • the second sampling channel inlet 1422a is set.
  • the exhalation passage 13 is adjacent to the side end of the second valve port 12 and is in communication with the exhalation passage 13.
  • the axial direction of the second sampling channel inlet 1422a and the plane in which the throttle member 141 is located The angle between 0° and 90° is at the same time, and the axial direction of the second sampling channel outlet 1422b remains substantially perpendicular to the plane in which the throttle member 141 is located.
  • the effect of the setting is that since the flow direction of the exhaled gas entering the exhalation passage 13 from the first valve port 11 is perpendicular to the plane in which the throttle member 141 is located, the above structure can make the direction of the second sampling passage outlet 1422b the same. The direction of the gas flow remains approximately the same.
  • the second sampling channel outlet 1422b is assembled with the collection port (collector 21), there is no need for other connecting tubes to connect the two. Not only can it improve operational efficiency, but it also saves operating space.
  • the exhalation valve 1 further includes a hand wheel 15 for fastening the valve body of the exhalation valve 1 to the respiratory valve seat 2.
  • the hand wheel 15 is rotatably sleeved on the outside of the valve body of the exhalation valve 1, and includes a fastening ring 151 disposed on the outer edge of the end portion, and a plurality of guide edges 1511 are provided on the fastening ring 151 The end of the guide rib 1511 is provided with a bump 1512.
  • the respiratory valve seat 2 is a structural member having an open end 22 at one end for fastening the exhalation valve 1, wherein the collection port (collection seat 21) is fastened to the side of the respiratory valve seat 2 near its open end 22 On the wall.
  • the collecting seat 21 includes a first joint 211 for fitting connection with the first sampling passage outlet 1421b and a second joint 212 for fitting connection with the second sampling passage outlet 1422b.
  • the inner diameter of the open end 22 of the respiratory valve seat 2 is substantially equal to the outer diameter of the exhalation valve 1 of the exhalation valve 1, and the inner wall of the open end 22 is provided at a plurality of places on the inner side of the open end 22 for fastening to the fastening ring 151.
  • the guide rib 1511 is adapted to the guide post 221, and the guide post 221 is provided with a groove 222 adapted to the position of the end flange 1512 of the guide rib 1511.
  • the valve body of the exhalation valve 1 when the valve body of the exhalation valve 1 is assembled with the respiratory valve seat 2, first, one end of the second valve port 12 of the valve body of the exhalation valve 1 is inserted into the breathing end by the open end 22 of the respiratory valve seat 2 In the seat 2.
  • the first sampling channel outlet 1421b of the first sampling channel 1421 is correspondingly inserted into the first joint 211, and the second sampling channel outlet 1422b of the second sampling channel 1422 is correspondingly sealed and inserted on the second joint 212.
  • the first joint 211 is kept parallel to the axial direction of the first sampling passage outlet 1421b, and the axial direction of the second joint 212 and the axial direction of the second sampling passage outlet 1422b are kept parallel.
  • the hand wheel 15 that is sleeved outside the exhalation valve 1 is screwed, and the guide post 221 on the inner wall of the open end 22 of the respiratory valve seat 2 is slid into the opening of the guide rib 1511.
  • the end projection 1512 of the guide rib 1511 is held in the recess 222 to realize the installation of the exhalation valve 1.
  • the exhalation valve 1 When the exhalation valve 1 needs to be cleaned and disinfected, it is only necessary to pull the exhalation valve 1 out of the breathing valve seat 2 The whole cleaning and disinfection can be done.
  • the flow collection module (throttle 141) need not be removed during high temperature retort sterilization, and it can be sterilized together with the exhalation valve 1. Since the throttle member 141 is disposed inside the exhalation valve 1, it is not necessary to separately sterilize the throttle member 141 of the exhalation valve 1, thereby reducing the workload of the user, and at the same time, it is possible to avoid missing the flow collection module during sterilization.
  • the patient exhaled gas will enter the exhalation passage 13 from the first valve port 11, and a certain pressure difference is generated after the throttle member 141, and a part of the gas reaches the position of the second valve port 12. Then enter the PEEP valve. Since the throttle member 141 is placed in front of the PEEP valve, the control of the PEEP valve has less influence on the flow collection module, thereby improving the flow test accuracy and the stability of the PEEP valve control. During this process, a small portion of the gas enters the collecting seat 21 through the sealed first sampling channel 1421 and the first joint 211, the sealed second sampling channel 1422 and the second joint 212, and finally passes through the sampling seat 21. Transfer, realize the unmanaged operation of the sampling channel 142 of the flow collection module.
  • the exhalation valve 1 includes a first valve port 11 for inputting exhaled gas, and a portion for exhaling gas to flow out of the exhalation valve 1.
  • the second valve port 12 and the flow collection module have an exhalation passage 13 between the first valve port 11 and the second valve port 12.
  • the flow collection module is disposed in the exhalation channel 13 and includes a throttle member 141 and two sampling air passages 1421, 1422.
  • the throttle member 141 is disposed in the exhalation passage 13, wherein the sampling air passage 13 includes an inlet 1421a, respectively.
  • outlets 1421b, 1422b, inlets 1421a, 1422a are respectively disposed on both sides of the throttle member 141 and communicate with the exhalation passage 13, the outlets 1421b, 1422b are used to lead a portion of the exhaled gas to the measurement module, and the outlets 1421b, 1422b are located at the section
  • the flow member 141 is on the same side.
  • the exhalation valve 1 is a valve body structure with a hollow cavity provided with valve ports 11 and 12 at both ends, and the hollow chamber between the first valve port 11 and the second valve port 12 is an exhalation passage 13 .
  • the exhalation channel 13 that is, the inside of the exhalation valve 1 is provided with a flow collection module, and the flow collection module is used as a part of the differential pressure flow detection device (not shown) of the exhalation valve of the present embodiment, and is mainly used for When the patient exhales the gas, a certain pressure difference is generated through it for the other components of the differential pressure flow detecting device, such as the electrical signal processing component, to detect the gas flow exhaled by the patient.
  • the flow collection module in this embodiment includes at least a throttle member 141 and a sampling channel 142 respectively disposed in the exhalation passage 13.
  • the sampling channel 142 includes a first sampling channel 1421 and a second sampling channel 1422.
  • the sampling channel 142 includes a first sampling channel inlet 1421a connected to the first sampling channel 1421 and a second sampling channel inlet connected to the second sampling channel 1422. 1422a, first sampling channel inlet 1421a And second sampling channel inlets 1422a are respectively disposed on both sides of the throttle member 13.
  • the throttle member 141 is a high temperature resistant cooking membrane in the present embodiment, which is disposed in the middle of the exhalation passage 13 and divides the exhalation passage 13 into two left and right chambers.
  • the throttle member 141 may also be a metal diaphragm having a high temperature resistant cooking or a metal diaphragm and a non-metal diaphragm suitable for sterilization in other manners.
  • the first sampling channel 1421 includes a first sampling channel inlet 1421a and a first sampling channel outlet 1421b, and the first sampling channel inlet 1421a is disposed at the expiratory channel 13 near the first valve.
  • the side end of the mouth 11 is in communication with the expiratory passage 13.
  • the axial direction of the first sampling channel inlet 1421a is at an angle of between 0° and 90° with the plane in which the throttle member 141 is located.
  • the axial direction of the first sampling channel outlet 1421b is substantially perpendicular to the plane in which the throttle member 141 is located, which is used to draw a portion of the exhaled gas out to the measurement module (or acquisition port).
  • the sampling channel 142 further includes a second sampling channel 1422
  • the second sampling channel 1422 includes a second sampling channel inlet 1422a and a second sampling channel outlet 1422b
  • the second sampling channel inlet 1422a is set.
  • the exhalation passage 13 is adjacent to the side end of the second valve port 12 and is in communication with the exhalation passage 13.
  • the axial direction of the second sampling channel inlet 1422a is at an angle of between 0° and 90° with the plane in which the throttle member 141 is located, while the axial direction of the second sampling channel outlet 1422b remains substantially the same as the plane in which the throttle member 141 is located.
  • Vertical which is used to draw a portion of the exhaled gas out to the measurement module (or acquisition port).
  • the effect of the arrangement is that since the directions of the first sampling channel outlet 1421b and the second sampling channel outlet 1422b of the above structure are also substantially the same as the direction of the expiratory flow, and the two sampling channel outlets 1421b, 1422b are located at the same throttle member 141 On the side, when the second sampling channel outlet 1422b is assembled with the collection port (collector 21), there is no need for other connecting tubes to connect the two. Not only can it improve operational efficiency, but it also saves operating space.
  • the effect of the setting is that since the flow direction of the exhaled gas entering the exhalation passage 13 from the first valve port 11 is substantially perpendicular to the plane in which the throttle member 141 is located, the above structure can make the direction and exhalation of the first sampling passage outlet 1421b.
  • the direction of the airflow is the same.
  • the first sampling channel outlet 1421b and the second sampling channel outlet 1422b are assembled with the collection port (collection seat 21), there is no need for other connecting pipes to connect the two. Not only can it improve operational efficiency, but it also saves operating space.
  • the second valve port 12 of the exhalation valve can be connected to a PEEP valve, and the exhaled gas flows through the throttle member 141 to the PEEP valve; the PEEP valve can also be disposed upstream of the throttle member 141.
  • the exhalation valve 1 further includes a hand wheel 15 for the valve body of the exhalation valve 1 Fasten the connection to the breathing valve seat 2.
  • the hand wheel 15 is rotatably sleeved on the outside of the valve body of the exhalation valve 1, and includes a fastening ring 151 disposed on the outer edge of the end portion, and a plurality of guide edges 1511 are provided on the fastening ring 151 The end of the guide rib 1511 is provided with a bump 1512.
  • the respiratory valve seat 2 is a structural member having an open end 22 at one end for fastening the exhalation valve 1, wherein the collection port (collection seat 21) is fastened to the side of the respiratory valve seat 2 near its open end 22 On the wall.
  • the collecting seat 21 includes a first joint 211 for fitting connection with the first sampling passage outlet 1421b and a second joint 212 for fitting connection with the second sampling passage outlet 1422b.
  • the inner diameter of the open end 22 of the respiratory valve seat 2 is substantially equal to the outer diameter of the exhalation valve 1 of the exhalation valve 1, and the inner wall of the open end 22 is provided at a plurality of places on the inner side of the open end 22 for fastening to the fastening ring 151.
  • the guide rib 1511 is adapted to the guide post 221, and the guide post 221 is provided with a groove 222 adapted to the position of the end flange 1512 of the guide rib 1511.
  • the first sampling channel outlet 1421b of the first sampling channel 1421 is correspondingly sealed and inserted on the first joint 211, and the second sampling channel is inserted.
  • the second sampling channel outlet 1422b of 1422 is correspondingly inserted into the second joint 212.
  • the first joint 211 is kept parallel to the axial direction of the first sampling passage outlet 1421b, and the axial direction of the second joint 212 and the axial direction of the second sampling passage outlet 1422b are kept parallel.
  • the hand wheel 15 that is sleeved outside the exhalation valve 1 is screwed, and the guide post 221 on the inner wall of the open end 22 of the respiratory valve seat 2 is slid into the opening of the guide rib 1511.
  • the end projection 1512 of the guide rib 1511 is held in the recess 222 to realize the installation of the exhalation valve 1.
  • the exhalation valve 1 When the exhalation valve 1 needs to be cleaned and disinfected, it is only necessary to pull out the exhalation valve 1 from the respiratory valve seat 2 for overall cleaning and disinfection.
  • the flow collection module (throttle 141) need not be removed during high temperature retort sterilization, and it can be sterilized together with the exhalation valve 1. Since the throttle member 141 is disposed inside the exhalation valve 1, it is not necessary to separately sterilize the throttle member 141 of the exhalation valve 1, thereby reducing the workload of the user, and at the same time, it is possible to avoid missing the flow collection module during sterilization.
  • the patient exhaled gas will enter the exhalation passage 13 from the first valve port 11, and a certain pressure difference is generated after the throttle member 141, and a part of the gas reaches the position of the second valve port 12. After the discharge. During this process, a very small portion of the gas enters the collection through the first sampling channel 1421 and the first joint 211 that are connected in a sealed manner, the second sampling channel 1422 and the second joint 212 that are connected in a sealed manner. In the seat 21, the unconnected operation of the sampling channel 142 of the flow collection module is realized by the transfer of the sampling seat 21.
  • a portion of the exhaled gas entering the exhalation passage from the first valve port may generate a certain pressure difference through the flow collection module and enter the collection port, and another portion of the gas enters the PEEP valve through the second valve port.
  • the flow collection module is placed in front of the PEEP valve, so that the control PEEP valve has less influence on the flow collection module, thereby improving the flow test accuracy and the stability of the PEEP valve control.
  • the flow collection module is disposed in the exhalation channel, it can realize high-temperature retort sterilization with the valve body as a whole, without separate disassembly of the flow detection module, which is safe and efficient.
  • the first sampling channel inlet and the second sampling channel inlet are respectively disposed at two sides of the throttle member, and the axial direction of the first sampling channel outlet and the second sampling channel outlet is 75° with the plane of the throttle member. The angle between 90°.
  • the direction of the exit of the two sampling channels is substantially the same as the direction of the expiratory airflow.
  • the hand wheel is rotatably sleeved on the outside of the valve body, and the exhalation valve can be fastened to the breathing valve seat by screwing the hand wheel, which is convenient to disassemble and has better sealing performance.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Pulmonology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Hematology (AREA)
  • Emergency Medicine (AREA)
  • Anesthesiology (AREA)
  • Physiology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

一种呼吸阀(1),包括阀体,阀体包括:用以输入呼出气体的第一阀口(11);用以连接PEEP阀的第二阀口(12),第一阀口(11)和第二阀口(12)之间具有呼气通道(13);以及设置在呼气通道(13)中的流量采集模块,由第一阀口(11)进入呼气通道(13)中的呼出气体的一部分经流量采集模块后产生一定的压差并进入采集端口,另一部分由第二阀口(12)进入PEEP阀。该呼吸阀(1)能够提升流量监测的精度和PEEP阀的控制稳定性;能够与采集端口进行快速装配,实现其可整体拆卸消毒,安全可靠。

Description

一种呼气阀 技术领域
本发明涉及医疗器械领域,尤其涉及一种呼气阀。
背景技术
呼气阀组件是呼吸机的重要组成部分,主要实现对病人在呼气阶段的压力控制、压力监测、流量监测等功能。呼气阀组件由于流经的气体都是病人呼出的气体,因此,呼气阀组件需要清洁消毒后才能再次使用。目前的呼气阀产品主要包括集成流量采集模块,以及流量采集模块独立于呼气阀组件外的两种结构。该两种结构主要存在如下技术缺陷:
1、流量采集模块独立于呼气阀组件之外,在连接病人管路时,需要单独进行流量采集模块的连管操作,增加客户端的工作量,同时增加出错的概率。同时,流量采集模块由于接触病人呼出气体,如在使用过程中未进行消毒,增加病人交叉感染的风险。
2、集成流量采集模块的呼气阀组件,在控制PEEP阀时,气流易受PEEP阀影响,造成气流波动较大,影响流量采集模块的测量精度,进而影响PEEP阀控制的稳定性。
发明内容
本发明所要解决的技术问题在于,提供一种呼气阀,提升流量监测的精度和PEEP阀的控制稳定性;能够与采集端口进行快速装配、实现其可整体拆卸消毒,安全可靠。
为了解决上述技术问题,本发明的实施例提供了一种呼气阀,包括阀体,其中阀体包括:用以输入呼出气体的第一阀口;用以连接PEEP阀的第二阀口,第一阀口和第二阀口之间具有呼气通道;以及设置在呼气通道中的流量采集模块,其中:由第一阀口进入呼气通道中的呼出气体的一部分经流量采集模块后产生一定的压差并进入采集端口,另一部分由第二阀口进入PEEP阀。
其中,流量采集模块至少包括分别设置在呼气通道中的节流件和采样通道,采样通道包括两个分别设置在节流件两侧的采样通道入口。
其中,节流件为金属膜片或者耐高温蒸煮膜片。
其中,采样通道包括第一采样通道和第二采样通道,采样通道入口包括: 连通至第一采样通道中的第一采样通道入口和连通至第二采样通道中的第二采样通道入口;第一采样通道还包括第一采样通道出口,第二采样通道还包括第二采样通道出口。
其中,第一采样通道入口或第二采样通道入口的轴向与节流件所在的平面互成的角度范围在0°-90°之间
其中,第一采样通道出口和第二采样通道出口设置在节流件的同一侧。
其中,第一采样通道出口和第二采样通道出口的轴向与节流件所在的平面成75°-90°之间的夹角。
其中,呼气阀还包括手轮,用以将阀体紧固连接在一呼吸阀座上的手轮,手轮可旋转的套接在阀体的外部,采集端口固定在呼吸阀座上。
其中,手轮包括用以卡持连接在呼吸阀座开口端上的紧固环,紧固环上的多处设有导棱,呼吸阀座开口端的内壁上设置导柱,其中:旋拧手轮,导柱由导棱的开口滑入其中,将阀体紧固在呼吸阀座上。
其中,导棱上设有凸块,导柱上设有与凸块位置相适配的凹槽。
其中,采集端口至少包括用以与第一采样通道出口相适配连接的第一接头以及用以与第二采样通道出口相适配连接的第二接头;当阀体紧固在呼吸阀座上时,第一接头或第二接头的轴向与第一采样通道出口或第二采样通道出口的轴向平行。
本发明所提供的呼气阀,具有如下有益效果:
第一、由第一阀口进入呼气通道中的呼出气体的一部分气体可经流量采集模块后产生一定的压差并进入采集端口,另一部分气体由第二阀口进入PEEP阀。按照呼出气体的流动方向,将流量采集模块设置在PEEP阀之前,使得控制PEEP阀对流量采集模块的影响较小,从而可提升流量测试精度和PEEP阀控制的稳定性。
第二,由于流量采集模块设置在呼气通道中,其可实现与阀体的整体拆卸高温蒸煮消毒,无需对流量采集模块进行单独拆卸,安全高效。
第三,第一采样通道入口和第二采样通道入口分别设置在节流件的两侧,且第一采样通道出口和第二采样通道出口的轴向与节流件所在的平面成75°-90°之间的夹角,使得两采样通道出口的方向与呼气气流的方向大致相同。在与呼气阀座进行装配时,无需其它连接管进行接连,不但可以提高操作效率, 而且更能节省操作空间。
第四,手轮可旋转的套接在阀体的外部,通过旋拧手轮便可将阀体紧固在呼吸阀座上,拆卸便捷,密封性更强。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例呼气阀与呼气阀座进行装配的结构示意图。
图2是本发明实施例呼气阀的第一纵剖面的结构示意图。
图3是本发明实施例呼气阀如图2所示第一采样通道的放大示意图。
图4是本发明实施例呼气阀的第二纵剖面的结构示意图。
图5是本发明实施例呼气阀如图4所示第二采样通道的放大示意图。
图6是本发明实施例呼气阀的手轮的结构示意图。
图7是本发明实施例呼气阀座开口端的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
结合参见图1-图7所示,为本发明呼气阀的实施例一。
如图1所示,为本发明实施例呼气阀与呼气阀座进行装配示意图。本实施例中的呼气阀1能够适配连接在呼气阀座2上。具体地,请参见图2所示,本实施例中的呼气阀1包括阀体(未标记),阀体包括:
用以输入呼出气体的第一阀口11;
用以连接PEEP阀(图未示)的第二阀口12,第一阀口11和第二阀口12之间具有呼气通道13;以及
设置在呼气通道13中的流量采集模块,其中:由第一阀口11进入呼气通道13中的呼出气体的一部分经流量采集模块后产生一定的压差进入采集端口(采集座21),另一部分气体由第二阀口12进入PEEP阀。
具体实施时,呼气阀1是两端分别设有阀口的中空腔道的阀体结构,其如图2所示呼气阀1的右侧端为第一阀口11,也就是病人呼出气体的连接端。如图2所示呼气阀1的左侧端为第二阀口12,也就是能够连接PEEP阀的连接端。第一阀口11和第二阀口12之间如图2所示的中空腔室为呼气通道13。在呼气通道13中,也就是呼气阀1的内部设置有流量采集模块,流量采集模块作为本实施例呼气阀中压差式流量检测装置(图未示)的一部分,主要用于在当病人的呼出气体后通过其时产生一定的压差,以供压差式流量检测装置的其它零部件,如电信号处理组件的处理,进而对病人呼出的气体流量进行检测。
本实施例中的流量采集模块至少包括:分别设置在呼气通道13中的节流件141和采样通道142。采样通道142包括第一采样通道1421和第二采样通道1422,采样通道142包括连通至第一采样通道1421中的第一采样通道入口1421a和连通至第二采样通道1422中的第二采样通道入口1422a,第一采样通道入口1421a和第二采样通道入口1422a分别设置在节流件13的两侧。
其中:节流件141在本实施例中为一耐高温蒸煮膜片,其设置在呼气通道13的中部,将呼气通道13区隔成左右两个腔室。其它实施方式中,节流件141还可以是具有耐高温蒸煮的金属膜片。
进一步的,请结合参见图3,本实施例中,第一采样通道1421包括第一采样通道入口1421a和第一采样通道出口1421b,第一采样通道入口1421a设置在呼气通道13靠近第一阀口11的侧端,并与呼气通道13保持连通。第一采样通道入口1421a的轴向与节流件141所在的平面成0°-90°之间的夹角。同时,第一采样通道出口1421b的轴向与节流件141所在的平面设置基本垂直。如此设置的作用是:由于由第一阀口11进入呼气通道13中呼出气体的流向与节流件141所在的平面保持基本垂直,上述结构可以使第一采样通道出口1421b的方向与呼气气流的方向相同,当第二采样通道出口1422b与采集端口(采集座21)进行装配时,无需其它连接管对两者进行接连。不但可以提高操作效率,而且更节省操作空间。
进一步的,结合参见图4-5所示,采样通道142还包括第二采样通道1422,第二采样通道1422包括第二采样通道入口1422a和第二采样通道出口1422b,第二采样通道入口1422a设置在呼气通道13靠近第二阀口12的侧端,并与呼气通道13保持连通。第二采样通道入口1422a的轴向与节流件141所在的平面 成0°-90°之间的夹角,同时,第二采样通道出口1422b的轴向与节流件141所在的平面保持基本垂直。如此设置的作用是:由于由第一阀口11进入呼气通道13中呼出气体的流向与节流件141所在的平面垂直,因此,上述结构可以使第二采样通道出口1422b的方向同样与呼气气流的方向保持大致相同。当第二采样通道出口1422b与采集端口(采集座21)进行装配时,无需其它连接管对两者进行接连。不但可以提高操作效率,而且更节省操作空间。
请结合参见图6,呼气阀1还包括手轮15,手轮15用以将呼气阀1的阀体紧固连接呼吸阀座2上。本实施例中,手轮15可旋转的套接在呼气阀1的阀体外部,其包括设置在端部外沿的紧固环151,紧固环151上的多处设有导棱1511,导棱1511的末端设有凸块1512。
进一步的,呼吸阀座2是一端设有开口端22的用以紧固呼气阀1的结构件,其中:采集端口(采集座21)紧固在呼吸阀座2靠近其开口端22的侧壁上。采集座21包括:用以与第一采样通道出口1421b相适配连接的第一接头211以及用以与第二采样通道出口1422b相适配连接的第二接头212。
请结合参见图7所示,呼吸阀座2开口端22的内径尺寸与呼气阀1手轮15的外径大致相当,其开口端22的内壁上多处设有用于与紧固环151上的导棱1511相适配的导柱221,导柱221上设有与导棱1511末端凸块1512的位置相适配的凹槽222。
本发明实施例呼气阀1的阀体与呼吸阀座2进行装配时,首先,将呼气阀1阀体的第二阀口12的一端由呼吸阀座2的开口端22插置在呼吸阀座2中。第一采样通道1421的第一采样通道出口1421b对应密封插置在第一接头211上,第二采样通道1422的第二采样通道出口1422b对应密封插置在第二接头212上。此时,第一接头211与第一采样通道出口1421b的轴向保持平行,第二接头212的轴向和第二采样通道出口1422b的轴向保持平行。紧接着,旋拧套接在呼气阀1外部的手轮15,呼吸阀座2开口端22内壁上的导柱221由导棱1511的开口滑入其中。顺时针旋转手轮15 30°,使其上的指示标识至竖直位置。此时,导棱1511末端凸块1512卡持在凹槽222中实现呼气阀1的安装。拆卸阀体时,按上述相逆的步骤逆时针旋转手轮15 30°,拔出阀体实现其相对呼吸阀座2的拆卸。
当需要对呼气阀1进行清洗消毒时,只需将呼气阀1由呼吸阀座2拔出进 行整体清洗消毒即可。在呼气阀1可支持134℃高温蒸煮消毒的情况下,高温蒸煮消毒时也无需将流量采集模块(节流件141)拆出,其可随呼气阀1一起进行消毒。由于节流件141设置在呼气阀1的内部,无需单独对呼气阀1的节流件141进行消毒,减少用户工作量,同时可以避免在消毒时遗漏流量采集模块。
本发明实施例的呼气阀在具体实施时,病人呼出气体将由第一阀口11进入呼气通道13,通过节流件141后产生一定的压差,一部分气体达到第二阀口12的位置后并由此进入PEEP阀。由于将节流件141放置在PEEP阀之前,使得控制PEEP阀对经流量采集模块的影响较小,从而可提升流量测试精度和PEEP阀控制的稳定性。在此过程中,极少部分气体分别通过密封相连的第一采样通道1421和第一接头211、密封相连的第二采样通道1422和第二接头212进入采集座21中,最终通过采样座21的转接,实现流量采集模块的采样通道142的无连管操作。
在本发明的其他一种实施方式中,结合参见图1-图2所示,呼气阀1包括用以输入呼出气体的第一阀口11、用以供呼出气体流出呼气阀1的第二阀口12和流量采集模块,第一阀口11和第二阀口12之间具有呼气通道13。流量采集模块设置在呼气通道13中,其包括节流件141及两条采样气道1421、1422,节流件141设置在呼气通道13中,其中,采样气道13分别包括入口1421a、1422a和出口1421b、1422b,入口1421a、1422a分别设置在节流件141两侧并与呼气通道13连通,出口1421b、1422b用于将部分呼出气体引出到测量模块,且出口1421b、1422b位于节流件141同一侧。
具体实施时,呼气阀1是两端分别设有阀口11、12的中空腔道的阀体结构,第一阀口11和第二阀口12之间的中空腔室为呼气通道13。在呼气通道13中,也就是呼气阀1的内部设置有流量采集模块,流量采集模块作为本实施例呼气阀中压差式流量检测装置(图未示)的一部分,主要用于在当病人的呼出气体后通过其时产生一定的压差,以供压差式流量检测装置的其它零部件,如电信号处理组件的处理,进而对病人呼出的气体流量进行检测。
本实施例中的流量采集模块至少包括:分别设置在呼气通道13中的节流件141和采样通道142。采样通道142包括第一采样通道1421和第二采样通道1422,采样通道142包括连通至第一采样通道1421中的第一采样通道入口1421a和连通至第二采样通道1422中的第二采样通道入口1422a,第一采样通道入口1421a 和第二采样通道入口1422a分别设置在节流件13的两侧。
其中:节流件141在本实施例中为一耐高温蒸煮膜片,其设置在呼气通道13的中部,将呼气通道13区隔成左右两个腔室。其它实施方式中,节流件141还可以是具有耐高温蒸煮的金属膜片或者适合其他方式进行消毒的金属膜片和非金属膜片。
进一步的,请结合参见图3,本实施例中,第一采样通道1421包括第一采样通道入口1421a和第一采样通道出口1421b,第一采样通道入口1421a设置在呼气通道13靠近第一阀口11的侧端,并与呼气通道13保持连通。第一采样通道入口1421a的轴向与节流件141所在的平面成0°-90°之间的夹角。同时,第一采样通道出口1421b的轴向与节流件141所在的平面设置基本垂直,其用于将部分呼出气体引出到测量模块(或采集端口)。
进一步的,结合参见图4-5所示,采样通道142还包括第二采样通道1422,第二采样通道1422包括第二采样通道入口1422a和第二采样通道出口1422b,第二采样通道入口1422a设置在呼气通道13靠近第二阀口12的侧端,并与呼气通道13保持连通。第二采样通道入口1422a的轴向与节流件141所在的平面成0°-90°之间的夹角,同时,第二采样通道出口1422b的轴向与节流件141所在的平面保持基本垂直,其用于将部分呼出气体引出到测量模块(或采集端口)。
如此设置的作用是:由于上述结构的第一采样通道出口1421b和第二采样通道出口1422b的方向同样与呼气气流的方向保持大致相同,且两采样通道出口1421b、1422b位于节流件141同一侧,当第二采样通道出口1422b与采集端口(采集座21)进行装配时,无需其它连接管对两者进行接连。不但可以提高操作效率,而且更节省操作空间。
如此设置的作用是:由于由第一阀口11进入呼气通道13中呼出气体的流向与节流件141所在的平面保持基本垂直,上述结构可以使第一采样通道出口1421b的方向与呼气气流的方向相同,当第一采样通道出口1421b和第二采样通道出口1422b与采集端口(采集座21)进行装配时,无需其它连接管对两者进行接连。不但可以提高操作效率,而且更节省操作空间。另外,呼气阀的第二阀口12可连接至一PEEP阀,呼出气体经过节流件141之后流向PEEP阀;也可以将PEEP阀设置在节流件141的上游位置。
请结合参见图6,呼气阀1还包括手轮15,手轮15用以将呼气阀1的阀体 紧固连接呼吸阀座2上。本实施例中,手轮15可旋转的套接在呼气阀1的阀体外部,其包括设置在端部外沿的紧固环151,紧固环151上的多处设有导棱1511,导棱1511的末端设有凸块1512。
进一步的,呼吸阀座2是一端设有开口端22的用以紧固呼气阀1的结构件,其中:采集端口(采集座21)紧固在呼吸阀座2靠近其开口端22的侧壁上。采集座21包括:用以与第一采样通道出口1421b相适配连接的第一接头211以及用以与第二采样通道出口1422b相适配连接的第二接头212。
请结合参见图7所示,呼吸阀座2开口端22的内径尺寸与呼气阀1手轮15的外径大致相当,其开口端22的内壁上多处设有用于与紧固环151上的导棱1511相适配的导柱221,导柱221上设有与导棱1511末端凸块1512的位置相适配的凹槽222。
本发明实施例呼气阀1的阀体与呼吸阀座2进行装配时,首先,将第一采样通道1421的第一采样通道出口1421b对应密封插置在第一接头211上,第二采样通道1422的第二采样通道出口1422b对应密封插置在第二接头212上。此时,第一接头211与第一采样通道出口1421b的轴向保持平行,第二接头212的轴向和第二采样通道出口1422b的轴向保持平行。紧接着,旋拧套接在呼气阀1外部的手轮15,呼吸阀座2开口端22内壁上的导柱221由导棱1511的开口滑入其中。顺时针旋转手轮15 30°,使其上的指示标识至竖直位置。此时,导棱1511末端凸块1512卡持在凹槽222中实现呼气阀1的安装。拆卸阀体时,按上述相逆的步骤逆时针旋转手轮15 30°,拔出阀体实现其相对呼吸阀座2的拆卸。
当需要对呼气阀1进行清洗消毒时,只需将呼气阀1由呼吸阀座2拔出进行整体清洗消毒即可。在呼气阀1可支持134℃高温蒸煮消毒的情况下,高温蒸煮消毒时也无需将流量采集模块(节流件141)拆出,其可随呼气阀1一起进行消毒。由于节流件141设置在呼气阀1的内部,无需单独对呼气阀1的节流件141进行消毒,减少用户工作量,同时可以避免在消毒时遗漏流量采集模块。
本发明实施例的呼气阀在具体实施时,病人呼出气体将由第一阀口11进入呼气通道13,通过节流件141后产生一定的压差,一部分气体达到第二阀口12的位置后排出。在此过程中,极少部分气体分别通过密封相连的第一采样通道1421和第一接头211、密封相连的第二采样通道1422和第二接头212进入采集 座21中,最终通过采样座21的转接,实现流量采集模块的采样通道142的无连管操作。
本发明的呼气阀,具有如下有益效果:
第一、由第一阀口进入呼气通道中的呼出气体的一部分可经流量采集模块后产生一定的压差并进入采集端口,另一部分气体由第二阀口进入PEEP阀。按照呼出气体的流动方向,将流量采集模块设置在PEEP阀之前,使得控制PEEP阀对经流量采集模块的影响较小,从而可提升流量测试精度和PEEP阀控制的稳定性。
第二,由于流量采集模块设置在呼气通道中,其可实现与阀体的整体拆卸高温蒸煮消毒,无需对流量检测模块进行单独拆卸,安全高效。
第三,第一采样通道入口和第二采样通道入口分别设置在节流件的两侧,且第一采样通道出口和第二采样通道出口的轴向与节流件所在的平面成75°-90°之间的夹角。使得两采样通道出口的方向与呼气气流的方向大致相同,在与呼气阀座进行装配时,无需其它连接管进行接连,不但可以提高操作效率,而且更能节省操作空间。
第四,手轮可旋转的套接在阀体的外部,通过旋拧手轮便可将呼气阀紧固在呼吸阀座上,拆卸便捷,密封性更强。

Claims (11)

  1. 一种呼气阀,其特征在于,包括阀体,其中阀体包括:
    用以输入呼出气体的第一阀口;
    用以连接PEEP阀的第二阀口,所述第一阀口和所述第二阀口之间具有呼气通道;以及
    设置在所述呼气通道中的流量采集模块,其中:由所述第一阀口进入所述呼气通道中的呼出气体的一部分经所述流量采集模块后产生一定的压差并进入采集端口,另一部分由所述第二阀口进入所述PEEP阀。
  2. 如权利要求1所述的呼气阀,其特征在于,所述流量采集模块至少包括分别设置在呼气通道中的节流件和采样通道,所述采样通道包括两个分别设置在所述节流件两侧的采样通道入口。
  3. 如权利要求2所述的呼气阀,其特征在于,所述节流件为金属膜片或者耐高温蒸煮膜片。
  4. 如权利要求2所述的呼气阀,其特征在于,所述采样通道包括第一采样通道和第二采样通道,所述采样通道入口包括:连通至所述第一采样通道中的第一采样通道入口和连通至所述第二采样通道中的第二采样通道入口;
    所述第一采样通道还包括第一采样通道出口,所述第二采样通道还包括第二采样通道出口。
  5. 如权利要求4所述的呼气阀,其特征在于,所述第一采样通道入口或所述第二采样通道入口的轴向与所述节流件所在的平面互成的角度范围在0°-90°之间。
  6. 如权利要求4所述的呼气阀,其特征在于,所述第一采样通道出口和所述第二采样通道出口设置在所述节流件的同一侧。
  7. 如权利要求4或6所述的呼气阀,其特征在于,所述第一采样通道出口和所述第二采样通道出口的轴向与所述节流件所在的平面成75°-90°之间的夹角。
  8. 如权利要求1所述的呼气阀,其特征在于,所述呼气阀还包括手轮,用以将所述阀体紧固连接在一呼吸阀座上,所述手轮可旋转的套接在所述阀体的外部,所述采集端口固定在所述呼吸阀座上。
  9. 如权利要求8所述的呼气阀,其特征在于,所述手轮包括用以卡持连接在所述呼吸阀座开口端上的紧固环,所述紧固环上的多处设有导棱,所述呼吸阀座开口端的内壁上设置导柱,其中:旋拧所述手轮,所述导柱由所述导棱的开口滑入其中,将所述阀体紧固在所述呼吸阀座上。
  10. 如权利要求9所述的呼气阀,其特征在于,所述导棱上设有凸块,所述导柱上设有与所述凸块位置相适配的凹槽。
  11. 如权利要求4所述的呼气阀,其特征在于,所述采集端口至少包括用以与所述第一采样通道出口相适配连接的第一接头以及用以与所述第二采样通道出口相适配连接的第二接头;
    当所述阀体紧固在一呼吸阀座上时,所述第一接头或所述第二接头的轴向与所述第一采样通道出口或所述第二采样通道出口的轴向平行。
PCT/CN2014/090530 2014-11-07 2014-11-07 一种呼气阀 WO2016070394A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2014/090530 WO2016070394A1 (zh) 2014-11-07 2014-11-07 一种呼气阀
CN201480083488.7A CN106922131B (zh) 2014-11-07 2014-11-07 一种呼气阀

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/090530 WO2016070394A1 (zh) 2014-11-07 2014-11-07 一种呼气阀

Publications (1)

Publication Number Publication Date
WO2016070394A1 true WO2016070394A1 (zh) 2016-05-12

Family

ID=55908411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/090530 WO2016070394A1 (zh) 2014-11-07 2014-11-07 一种呼气阀

Country Status (2)

Country Link
CN (1) CN106922131B (zh)
WO (1) WO2016070394A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113289194B (zh) * 2021-06-30 2022-12-09 深圳市普博医疗科技股份有限公司 一种呼气阀及呼吸机

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03114474A (ja) * 1988-12-29 1991-05-15 Mijnhardt Bv 呼吸弁
CN101554510A (zh) * 2009-05-18 2009-10-14 浙江新丰医疗器械有限公司 一种呼吸器的呼气阀
EP2319573A1 (en) * 2009-11-04 2011-05-11 Covidien AG Respiratory device for medication delivery.
CN102114293A (zh) * 2009-12-31 2011-07-06 北京谊安医疗系统股份有限公司 气道内双水平压力的控制系统和方法、呼吸机及麻醉机
CN102266635A (zh) * 2010-12-31 2011-12-07 北京谊安医疗系统股份有限公司 Peep阀及具有该peep阀的麻醉机
WO2012027107A1 (en) * 2010-08-26 2012-03-01 Baywin Too Llc Improved respiratory valve
CN202666152U (zh) * 2012-04-27 2013-01-16 上海力申科学仪器有限公司 呼气末正压阀控制结构
CN203314964U (zh) * 2013-05-31 2013-12-04 北京谊安医疗系统股份有限公司 呼气流量检测器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101884822B (zh) * 2010-07-23 2011-12-14 上海力申科学仪器有限公司 呼吸机的呼出阀
CN201921250U (zh) * 2010-09-26 2011-08-10 深圳市百格医疗技术有限公司 一种麻醉呼吸机主动式呼吸控制装置
CN203417393U (zh) * 2013-06-14 2014-02-05 北京谊安医疗系统股份有限公司 呼气阀

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03114474A (ja) * 1988-12-29 1991-05-15 Mijnhardt Bv 呼吸弁
CN101554510A (zh) * 2009-05-18 2009-10-14 浙江新丰医疗器械有限公司 一种呼吸器的呼气阀
EP2319573A1 (en) * 2009-11-04 2011-05-11 Covidien AG Respiratory device for medication delivery.
CN102114293A (zh) * 2009-12-31 2011-07-06 北京谊安医疗系统股份有限公司 气道内双水平压力的控制系统和方法、呼吸机及麻醉机
WO2012027107A1 (en) * 2010-08-26 2012-03-01 Baywin Too Llc Improved respiratory valve
CN102266635A (zh) * 2010-12-31 2011-12-07 北京谊安医疗系统股份有限公司 Peep阀及具有该peep阀的麻醉机
CN202666152U (zh) * 2012-04-27 2013-01-16 上海力申科学仪器有限公司 呼气末正压阀控制结构
CN203314964U (zh) * 2013-05-31 2013-12-04 北京谊安医疗系统股份有限公司 呼气流量检测器

Also Published As

Publication number Publication date
CN106922131A (zh) 2017-07-04
CN106922131B (zh) 2019-07-23

Similar Documents

Publication Publication Date Title
US7568483B2 (en) Patient interface with respiratory gas measurement component
US20040254491A1 (en) Gas flow diverter for respiratory monitoring device
EP1077666A1 (en) Exhalation valve for mechanical ventilator
CN104010570A (zh) 具有集成式过滤器的呼吸测量设备
US20090165785A1 (en) Anesthetic absorbing circle
TWI645171B (zh) 溫溼度感測裝置
CN101642597A (zh) 呼气阀
CN102580213B (zh) 麻醉机通气系统及其流量校准方法
WO2016070394A1 (zh) 一种呼气阀
US20160331271A1 (en) A manual resuscitator and capnograph assembly
WO2013152415A1 (en) Accurate tidal volume measurement
WO2018107567A1 (zh) 一种压力指示器
TWM546799U (zh) 流量感測器的殼體結構
CN106334247A (zh) 一种医疗呼吸机的呼出阀
CN208212279U (zh) 呼气阀及具有其的呼吸机
CN209148642U (zh) 一种气体检测仪
CN107374635B (zh) 可防止交叉感染的肺功能仪
CN104014063B (zh) 无创一氧化氮自主呼吸供给系统
CN111238581A (zh) 一种用于气体流量采集的周边取样压差传感器
CN104874084B (zh) 呼气阀及具有它的呼吸机
CN212030641U (zh) 一种用于气体流量采集的周边取样压差传感器
CN203824595U (zh) 一种多口径可变孔径流量探头
JP4288142B2 (ja) 受動的ガスサンプリングのための装置
CN219242267U (zh) 风机组件和具有其的呼吸机
WO2018041073A1 (zh) 防止交叉感染的流量传感器、方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14905529

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20/11/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14905529

Country of ref document: EP

Kind code of ref document: A1