WO2016070325A1 - 通信方法、基站和终端设备 - Google Patents
通信方法、基站和终端设备 Download PDFInfo
- Publication number
- WO2016070325A1 WO2016070325A1 PCT/CN2014/090245 CN2014090245W WO2016070325A1 WO 2016070325 A1 WO2016070325 A1 WO 2016070325A1 CN 2014090245 W CN2014090245 W CN 2014090245W WO 2016070325 A1 WO2016070325 A1 WO 2016070325A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- terminal device
- access
- base station
- probability distribution
- distribution information
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 87
- 238000004891 communication Methods 0.000 title claims abstract description 65
- 238000009826 distribution Methods 0.000 claims abstract description 165
- 230000011664 signaling Effects 0.000 abstract description 20
- 230000008569 process Effects 0.000 description 27
- 238000010586 diagram Methods 0.000 description 14
- 230000005540 biological transmission Effects 0.000 description 11
- 238000013461 design Methods 0.000 description 11
- 230000006870 function Effects 0.000 description 8
- 230000007246 mechanism Effects 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- 238000004422 calculation algorithm Methods 0.000 description 4
- 238000012790 confirmation Methods 0.000 description 4
- 238000005315 distribution function Methods 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 230000000750 progressive effect Effects 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 238000012804 iterative process Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000010295 mobile communication Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920001690 polydopamine Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- URWAJWIAIPFPJE-YFMIWBNJSA-N sisomycin Chemical compound O1C[C@@](O)(C)[C@H](NC)[C@@H](O)[C@H]1O[C@@H]1[C@@H](O)[C@H](O[C@@H]2[C@@H](CC=C(CN)O2)N)[C@@H](N)C[C@H]1N URWAJWIAIPFPJE-YFMIWBNJSA-N 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/08—Non-scheduled access, e.g. ALOHA
Definitions
- Embodiments of the present invention relate to the field of communications, and, more particularly, to a communication method, a base station, and a terminal device.
- Massive Access International: Massive Access
- the large-scale access scenario has the following characteristics: 1. The number of potential access users is large and dynamic; Second, the access network has a complex structure, the topology is variable, and the channel characteristics are dynamically changed. 3.
- the service type is complex, and different users access data. There are significant differences in volume and latency requirements.
- the base station predetermines and allocates communication resources (such as time, frequency, code, etc.) used for communication by each terminal device, a large amount of signaling overhead is required.
- the system needs a communication method based on the new access mechanism to reduce the signaling overhead of the system.
- the embodiments of the present invention provide a communication method, a base station, and a terminal device, which can reduce signaling overhead of the system.
- an embodiment of the present invention provides a communication method, including:
- the access degree probability distribution information used by the terminal device to communicate the system state information including the total number of users, or at least one of a data volume to be transmitted, a signal to noise ratio SNR, and a quality of service QoS, and a total number of users;
- the access degree probability distribution information is used to indicate a probability corresponding to the terminal device when the data is respectively sent by using the specific one or more access degrees;
- determining the access degree probability distribution information used by the terminal device to communicate according to the system state information including:
- the method further includes:
- the encoding code rate of the terminal device is determined according to the system throughput requirement; the encoding code rate is sent to the terminal device, and the encoding code rate is used to indicate the encoding code rate used by the terminal device for encoding.
- the method after receiving the data that is sent by the terminal device according to the access degree probability distribution information, the method further includes:
- the feedback information is sent to the terminal device.
- the sending the access degree probability distribution information to the terminal device includes:
- the access degree probability distribution information is transmitted to the terminal device by means of broadcast.
- an embodiment of the present invention provides a communication method, including: receiving, by a base station, access degree probability distribution information used by a terminal device for communication, where the access degree probability distribution information is used to indicate that the terminal device has a specific one or more The probability that the access degree corresponds to when the data is sent separately;
- the data to be transmitted is respectively sent to the base station by using a specific one or more access degrees and corresponding probabilities.
- the method before the data to be sent is sent to the base station by using a specific one or more access degrees and a corresponding probability according to the access degree probability distribution information, the method also includes:
- the base station Receiving an encoding code rate from the base station, the encoding code rate being determined by the base station according to the system throughput requirement;
- the coded bits are modulated to obtain a sequence of modulation symbols.
- the information about the access degree probability distribution information is sent to the base station by using a specific one or more access degrees and corresponding probabilities.
- Data including:
- Determining, according to the probability distribution information of the access degree, the degree of access d, d when the data is sent is a non-negative integer
- the d symbols are selected from the sequence of modulation symbols for linear addition, and the linearly added result is sent to the base station.
- the specific one or more access degrees and the corresponding probability are obtained according to the access degree probability distribution information.
- the method further includes:
- the sending of the data to be transmitted to the base station is stopped.
- an embodiment of the present invention provides a base station, including:
- a determining unit configured to determine, according to system state information, an access degree probability distribution information used by the terminal device to communicate, where the system state information includes a total number of users, or at least one of a data volume to be transmitted, a signal to noise ratio SNR, and a quality of service QoS. And the total number of users;
- a sending unit configured to send the access degree probability distribution information to the terminal device, where the access degree probability distribution information is used to indicate a probability corresponding to the terminal device when the data is respectively sent by using the specific one or more access degrees;
- the receiving unit is configured to receive data that is sent by the terminal device according to the access degree probability distribution information.
- the determining unit is specifically configured to:
- the probability distribution information of the access degree used when the terminal device communicates is determined.
- the determining unit is further configured to determine a coding rate of the terminal device according to the system throughput requirement
- the sending unit is further configured to send, to the terminal device, an encoding code rate, where the encoding code rate is used to indicate an encoding code rate used by the terminal device to perform encoding.
- the sending unit is further configured to: when the data sent by the terminal device is successfully decoded, send the feedback information to the terminal device.
- the sending unit is specifically configured to send the access degree probability distribution information to the terminal device by using a broadcast manner.
- an embodiment of the present invention provides a terminal device, including:
- a receiving unit configured to receive, by the base station, access degree probability distribution information used when the terminal device communicates, where the access degree probability distribution information is used to indicate a probability corresponding to the terminal device when the data is sent by using the specific one or more access degrees respectively;
- a sending unit configured to send data to be sent to the base station by using a specific one or more access degrees and a corresponding probability according to the access degree probability distribution information.
- the terminal device further includes a coding unit and a modulation unit, where
- the receiving unit is further configured to receive an encoding code rate from the base station, where the encoding code rate is determined by the base station according to a system throughput requirement;
- a coding unit configured to encode the code to be transmitted as a fixed code rate to obtain a coded bit
- a modulating unit configured to modulate the coded bits to obtain a sequence of modulation symbols.
- the sending unit is specifically configured to:
- Determining, according to the probability distribution information of the access degree, the degree of access d, d when the data is sent is a non-negative integer
- the d symbols are selected from the data to be transmitted for linear addition, and the linearly added result is sent to the base station.
- the sending unit is further configured to: when the terminal device receives the feedback information from the base station, stop sending the data to be sent to the base station.
- the terminal device receives the access degree probability distribution information from the base station. Then, according to the access degree probability distribution information, the corresponding time-frequency resource is used to transmit data, instead of the base station allocating a fixed time-frequency resource to the terminal device. That is to say, the base station only needs to send the access degree probability distribution information to the terminal device, instead of transmitting multiple signaling signals indicating the time-frequency resources used by the terminal device for communication, thereby reducing the signaling overhead of the system.
- FIG. 1 shows a wireless communication system to which an embodiment of the present invention is applicable.
- FIG. 2 is a schematic flow chart of a communication method according to an embodiment of the present invention.
- FIG. 3 is a schematic diagram of the evolution of external information according to an embodiment of the present invention.
- FIG. 4 is a schematic structural diagram of a factor graph of an embodiment of the present invention.
- FIG. 5 is a schematic flowchart of a communication method according to another embodiment of the present invention.
- FIG. 6 is a schematic flowchart of a communication method according to another embodiment of the present invention.
- FIG. 7 is a schematic block diagram of a base station according to an embodiment of the present invention.
- FIG. 8 is a schematic block diagram of a terminal device according to an embodiment of the present invention.
- FIG. 9 is a schematic block diagram of a base station according to another embodiment of the present invention.
- FIG. 10 is a schematic block diagram of a terminal device according to another embodiment of the present invention.
- a component can be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
- an application running on a computing device and a computing device can be a component.
- One or more components can reside within a process and/or execution thread, and the components can be located on one computer and/or distributed between two or more computers.
- these components can execute from various computer readable media having various data structures stored thereon.
- a component may, for example, be based on signals having one or more data packets (eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems) Communicate through local and/or remote processes.
- data packets eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems
- the term "article of manufacture” as used in this application encompasses a computer program accessible from any computer-readable device, carrier, or media.
- the computer readable medium may include, but is not limited to, a magnetic storage device (for example, a hard disk, a floppy disk, or a magnetic tape), and an optical disk (for example, a CD (Compact Disk), a DVD (Digital Versatile Disk). Etc.), smart cards and flash memory devices (for example, EPROM (Erasable Programmable Read-Only Memory, Erasable programmable read-only memory), card, stick or key drive, etc.).
- various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
- the term "machine-readable medium” may include, but is not limited to, a wireless channel and various other mediums capable of storing, containing, and/or carrying instructions and/or data.
- GSM Global System of Mobile communication
- CDMA Code Division Multiple Access
- WCDMA Wideband Code Division Multiple Access
- General Packet Radio Service English: General Packet Radio Service, GPRS for short
- LTE Long Term Evolution
- LTE frequency division duplex English: Frequency Division Duplex, FDD for short
- LTE time division duplex English: Time Division Duplex, TDD for short
- UMTS Universal Mobile Telecommunication System
- WiMAX Worldwide Interoperability for Microwave Access
- the terminal device may be referred to as a user equipment (English: User Equipment, UE for short), and may also be called a terminal (Terminal) or a mobile station (English: Mobile Station, referred to as MS) ), mobile terminal (Mobile Terminal), etc.
- the terminal device may be a device that accesses the communication network, such as a sensor node, a car, or the like, or a device on which the communication network can be connected for communication.
- the terminal device can communicate with one or more core networks via a radio access network (English: Radio Access Network, RAN for short), for example, the terminal device can be a mobile phone (or "cellular" phone), with mobile Terminal computer, etc.
- the terminal device can also be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges voice and/or data with the wireless access network.
- the base station may be a base station in GSM or CDMA (English: Base Transceiver Station, BTS for short), or may be a base station in WCDMA (English: NodeB, NB for short), or may be in LTE.
- the evolved base station (English: Evolutional Node B, referred to as: ENB or e-NodeB), the present invention is not limited.
- FIG. 1 shows a wireless communication system to which an embodiment of the present invention is applicable.
- the wireless communication system 100 includes a base station 102 that can include multiple antenna groups.
- Each antenna group may include one or more antennas, for example, one antenna group may include antennas 104 and 106, and another antenna group may include an antenna. 108 and 110, the additional set may include antennas 112 and 114.
- Two antennas are shown in Figure 1 for each antenna group, although more or fewer antennas may be used for each group.
- Base station 102 can additionally include a transmitter chain and a receiver chain, as will be understood by those of ordinary skill in the art, which can include multiple components associated with signal transmission and reception (e.g., processor, modulator, multiplexer, demodulation) , demultiplexer or antenna, etc.).
- Base station 102 can communicate with one or more terminal devices, such as access terminal 116 and access terminal 122. However, it will be appreciated that base station 102 can communicate with any number of access terminals similar to access terminal 116 or 122. Access terminals 116 and 122 can be, for example, cellular telephones, smart phones, portable computers, handheld communication devices, handheld computing devices, satellite radios, global positioning systems, PDAs, and/or any other for communicating over wireless communication system 100. Suitable for equipment. As shown, access terminal 116 is in communication with antennas 112 and 114, with antennas 112 and 114 transmitting information to access terminal 116 over forward link 118 and receiving information from access terminal 116 over reverse link 120.
- access terminal 122 is in communication with antennas 104 and 106, wherein antennas 104 and 106 transmit information to access terminal 122 over forward link 124 and receive information from access terminal 122 over reverse link 126.
- FDD Frequency Division Duplex
- the forward link 118 can utilize a different frequency band than that used by the reverse link 120, and the forward link 124 can utilize the reverse link 126. Different frequency bands used.
- the forward link 118 and the reverse link 120 can use a common frequency band, and the forward link 124 and the reverse link 126 can use a common frequency band.
- Each set of antennas and/or regions designed for communication is referred to as a sector of base station 102.
- the antenna group can be designed to communicate with access terminals in sectors of the coverage area of base station 102.
- the transmit antenna of base station 102 may utilize beamforming to improve the signal to noise ratio of forward links 118 and 124.
- the base station 102 uses beamforming to transmit signals to the randomly dispersed access terminals 116 and 122 in the relevant coverage area, the base station 102 uses a single antenna to transmit signals to all of its access terminals. Mobile devices are subject to less interference.
- base station 102, access terminal 116 or access terminal 122 may be a wireless communication transmitting device and/or a wireless communication receiving device.
- the wireless communication transmitting device can encode the data for transmission.
- the wireless communication transmitting device may acquire (eg, generate, receive from other communication devices, or store in memory, etc.) a certain number of data bits to be transmitted over the channel to the wireless communication receiving device.
- Such data bits can be included in the transport block of data (or multiple In a transport block, a transport block can be segmented to produce a plurality of code blocks.
- the wireless communication transmitting apparatus may encode each code block using an encoder (not shown).
- wireless communication system 100 in FIG. 1 is only an example, and the communication system to which the embodiment of the present invention is applicable is not limited thereto.
- the number of terminal devices e.g., access terminal 116 or access terminal 122
- the base station predetermines and allocates communication resources (such as time, frequency, code, etc.) used by each terminal device for communication, a large amount of signaling overhead is required.
- the embodiment of the invention provides a communication method, which can reduce the signaling overhead of the system.
- the communication method of the embodiment of the present invention will be described in detail below. It should be noted that these examples are only intended to assist those skilled in the art to better understand the embodiments of the present invention and not to limit the scope of the embodiments of the present invention.
- FIG. 2 is a schematic flow chart of a communication method according to an embodiment of the present invention.
- the method of Figure 2 can be performed by a base station, such as base station 102 shown in Figure 1 .
- the 201 Determine, according to the system state information, the access degree probability distribution information used by the terminal device to communicate, where the system state information includes the total number of users, or the amount of data to be transmitted, and a signal to noise ratio (English: Signal to Noise Ratio, SNR for short) And at least one of the quality of service (English: Quality of Service, QoS for short) and the total number of users.
- the system state information includes the total number of users, or the amount of data to be transmitted, and a signal to noise ratio (English: Signal to Noise Ratio, SNR for short) And at least one of the quality of service (English: Quality of Service, QoS for short) and the total number of users.
- the access degree probability distribution information is used to indicate a probability corresponding to the terminal device when the data is separately sent by using the specific one or more access degrees.
- the access degree probability distribution information includes one or more specific access degrees and corresponding probabilities.
- the terminal device transmits data to the base station according to the specified specific access degree and the corresponding probability.
- the access degree probability distribution information may be expressed in the form of a table, or may be represented by a function expression, which is not limited by the embodiment of the present invention.
- the access degree distribution function Where d is the access degree, p d is the corresponding probability, and N is the length of the coded bit.
- the terminal device receives the access degree probability distribution information from the base station. Then, according to the access degree probability distribution information, the corresponding time-frequency resource is used to transmit data, instead of the base station allocating a fixed time-frequency resource to the terminal device. That is to say, the base station only needs to send the access degree probability distribution information to the terminal device instead of sending multiple signaling indications.
- the base station since the base station is not required to allocate communication resources for each terminal device in advance.
- the probability corresponding to one or more access degrees in the access degree probability distribution information needs to be adjusted, and the system design is simple and the system efficiency is high.
- the target average access degree of the terminal device when determining, according to the system state information, the access degree probability distribution information used by the terminal device to communicate, may be determined according to the system state information. Then, according to the target average access degree, the access degree probability distribution information used when the terminal device communicates is determined.
- the base station may determine the average access degree of the terminal device according to the total number of users in the system state information. Assuming that the amount of data sent by each terminal device is the same, the system load threshold can be divided by the total number of users, and the quotient value is used as the target average access degree.
- the base station may adjust the foregoing quotient as the final target average access degree by using the foregoing quotient as a reference, combining at least one of the amount of data to be transmitted, the signal to noise ratio SNR, and the quality of service. In this way, the base station can determine the probability distribution information of the access degree used when the terminal device communicates according to the foregoing various information, thereby further improving system performance.
- the quotient value is increased as the target average access degree; or when the QoS requirement is high, the quotient value is reduced as the target average access degree.
- the base station can determine the access degree probability distribution information of the terminal device according to the target average access degree.
- the M access degrees included in the access degree probability distribution information and the corresponding probability thereof satisfy the following two conditions:
- the foregoing method for determining the access degree probability distribution information is exemplified. It should be understood that the scope of protection of the embodiments of the present invention is not limited thereto. Assuming that the target average access degree is 3, the following two types of information can be used as the access degree probability distribution information in the embodiment of the present invention:
- the first type of information includes four access degrees 0, 2, 4, and 6, and the corresponding probabilities are 0.3, 0.2, 0.2, and 0.3, respectively;
- the second type of information includes an access degree of 3, and the corresponding probability is 1.
- the second information may be selected as the access degree probability distribution information.
- the first type of information may be selected as the access degree probability distribution information.
- the access degree probability distribution information may be determined in combination with the propagation of the external information.
- the degree of access of the time-frequency resource block increases, the convergence point of the external information increases first and then remains substantially unchanged. That is to say, under the premise of ensuring the sparseness of the factor graph, the access degree is increased, and the performance of the system is increased or remains unchanged.
- the access probability is greater than a certain threshold, the sparsity of the factor graph will decrease, and the decoding complexity of the base station will increase.
- FIG. 3 is a schematic diagram of the evolution of external information according to an embodiment of the present invention.
- the abscissa indicates the total access degree of the time-frequency resource block
- the ordinate indicates the outer information convergence point.
- the convergence point of the external information rapidly becomes saturated.
- the convergence point of the external information is progressive performance, and the access probability corresponding to the 99% of the progressive performance convergence point is called the saturation point.
- the access degree When the access degree is less than the saturation point, the access degree is increased, the convergence point of the external information is increased, and the system performance is increased.
- the access probability is greater than the saturation point, the access probability is increased, and the convergence point of the external information is basically unchanged, but the complexity of the system will continue to increase.
- the target average access degree can be determined according to the saturation point, and then the access degree probability distribution information is determined according to the target average access degree, thereby ensuring system capacity and low decoding complexity.
- the base station may further determine an encoding code rate of the terminal device according to the system throughput requirement. Then, the encoding code rate is sent to the terminal device, and the encoding code rate is used to indicate the encoding code rate used when the terminal device performs encoding.
- the base station maximizes the throughput by optimizing the optimal LDPC code rate and then transmits the LDPC code rate to the terminal device.
- the terminal device performs LDPC encoding based on the code rate.
- the mechanism does not need to specifically design a signature matrix, and can achieve similar performance to SCMA.
- the feedback information is sent to the terminal device.
- the base station after the base station can correctly decode the data sent by the terminal device, that is, after the base station successfully decodes the data sent by the terminal device, the base station sends the feedback information to the terminal device.
- the feedback letter The information can be confirmation information. In this way, after receiving the feedback information, the terminal device can stop the transmission of the data.
- the base station uses an iterative algorithm for decoding. Specifically, the base station can perform iterative decoding based on the Factor Graph shown in FIG. 4, thereby recovering data of each user.
- the base station receives the demodulation and obtains demodulation information corresponding to each time-frequency resource block. Assuming that there are data transmitted by m UEs on the time-frequency resource block, the base station can form a unified Tanner graph according to the linear additive relationship of the m user access processes, the linear superposition relationship of the channels, and the verification relationship of the encoder. (a type of factor graph).
- the Tanner graph includes three types of nodes, a Low Density Parity Check Code (English: Low Density Parity Check Code, LDPC) check node (C_node), an LDPC variable node (V_node), and a resource block node ( RB_node).
- LDPC Low Density Parity Check Code
- C_node Low Density Parity Check Code
- V_node LDPC variable node
- RB_node resource block node
- L(c ji ) denote the soft information output from the node j of the C_node to the variable node i
- L(q ij ) is the soft information that the variable node i outputs to the other node j.
- V j denotes a set of all variable nodes connected to the check node j.
- V_node LLR Update the relationship of V_node LLR as shown in formula (5):
- h i,t is the channel gain
- g i,t is the weight selected by the user, n t ⁇ N(0, ⁇ 2 ).
- L(r ti ) be the LLR value of the node i of the RB_node outputting the node i of the V_node.
- the update relationship is as follows:
- a user signal iterative decoding recovery algorithm can be constructed.
- the base station continuously receives the aliased data packets sent by multiple terminal devices, and runs an iterative decoding algorithm for multi-user detection and data recovery. After decoding the data sent by a terminal device successfully, the sequence corresponding to the terminal device is eliminated in the Tanner graph, and an acknowledgement ACK signal is sent to the terminal device to stop the terminal device from transmitting.
- the random access of the terminal device naturally forms a distributed rate-free code
- the base station only needs to perform iterative decoding based on a Tanner graph, and the number of iterations is reduced, thereby reducing the translation of the system. Code complexity.
- the access degree probability distribution information when the access degree probability distribution information is sent to the terminal device, the access degree probability distribution information is sent to the terminal device by using a broadcast manner.
- the base station assumes the same access degree probability distribution information used by each user, and transmits the access degree probability distribution information to each terminal device in a broadcast manner.
- FIG. 5 is a schematic flowchart of a communication method according to another embodiment of the present invention.
- the method of FIG. 5 can be performed by a terminal device, such as access terminal 116 or access terminal 122 shown in FIG.
- the access degree probability distribution information includes one or more specific access degrees and corresponding probabilities.
- the terminal device transmits data to the base station according to the specified specific access degree and the corresponding probability.
- the access degree probability distribution information may be expressed in the form of a table, or may be represented by a function expression, which is not limited by the embodiment of the present invention.
- the access degree distribution function Where d is the access degree, p d is the corresponding probability, and N is the length of the coded bit.
- the access degree probability distribution information includes three access degrees d 1 , d 2 , and d 3 , and the corresponding probabilities are p 1 , p 2 , and p 3 , respectively .
- p 1 + p 2 + p 3 1.
- the terminal device transmits data to the base station by using the three access degrees d 1 , d 2 , and d 3 respectively , and the number of times the data is transmitted by each access degree is determined according to the corresponding probability.
- the terminal device receives the access degree probability distribution information from the base station. Then, according to the access degree probability distribution information, the corresponding time-frequency resource is used to transmit data, instead of the base station allocating a fixed time-frequency resource to the terminal device. That is to say, the base station only needs to send the access degree probability distribution information to the terminal device, instead of transmitting multiple signaling signals indicating the time-frequency resources used by the terminal device for communication, thereby reducing the signaling overhead of the system.
- the base station since the base station is not required to allocate communication resources for each terminal device in advance.
- the probability corresponding to one or more access degrees in the access degree probability distribution information needs to be adjusted, and the system design is simple and the system efficiency is high.
- the coded rate is received from the base station, and the code is encoded.
- the code rate is determined by the base station based on system throughput requirements.
- the coded rate is used as a fixed code rate, and the data to be transmitted is encoded to obtain coded bits.
- right The coded bits are modulated to obtain a sequence of modulation symbols.
- the base station maximizes the throughput by optimizing the optimal LDPC code rate and then transmits the LDPC code rate to the terminal device.
- the terminal device performs LDPC encoding based on the code rate.
- the mechanism does not need to specifically design a signature matrix, and can achieve similar performance to SCMA.
- the terminal device may obtain the probability according to the access degree.
- the distribution information determines the access degree d, d when the data is transmitted this time is a non-negative integer. Then, d symbols are selected from the sequence of modulation symbols for linear addition, and the result of linear addition is sent to the base station.
- the random access of the terminal device naturally forms a distributed rateless code, and the system can adaptively approach the channel capacity.
- linear addition includes both direct addition and weighted addition. If the terminal device uses the weighted addition method, the weight map can be used to influence the Tanner graph described above, so that the Tanner graph is more sparse, thereby accelerating the convergence of the iterative decoding.
- the terminal device uses LDPC to encode data to obtain coded bits.
- the coded bits are then symbol mapped to obtain a series of modulation symbols.
- the terminal device determines the access degree d when the data is transmitted this time according to the access degree probability distribution information.
- d symbols are selected from the aforementioned modulation symbols for linear addition.
- the linearly added symbols are transmitted to the base station through the time-frequency resources occupied by the system.
- the terminal device repeats the aforementioned process of determining the access degree and transmitting a modulation symbol of a corresponding length until the data transmission is completed.
- the information to be sent is sent to the base station by using a specific one or more access degrees and a corresponding probability according to the access degree probability distribution information, when the feedback information is received from the base station, Stop sending data to be sent to the base station.
- the base station after the base station can correctly decode the data sent by the terminal device, that is, after the base station successfully decodes the data sent by the terminal device, the base station sends the feedback information to the terminal device.
- the feedback information may be confirmation information.
- the terminal device after receiving the feedback information, the terminal device can stop the transmission of the data.
- FIG. 6 is a schematic flowchart of a communication method according to another embodiment of the present invention.
- the communication method of the embodiment of the present invention is further described below with reference to FIG. It should be noted that these examples are only intended to assist those skilled in the art to better understand the embodiments of the present invention and not to limit the scope of the embodiments of the present invention.
- UE 1, UE 2, ..., UE M accesses the base station for communication.
- the data to be sent of UE 1 is The length is K 1 bit, which is input to the encoder for encoding to obtain coded bits. Performing symbol mapping on coded bits to obtain a series of modulation symbols
- the degree generator determines the degree d 1 of the current transmission based on the access degree probability distribution information received from the access degree probability distribution controller on the base station side.
- Data selector MUX from modulation symbol The d 1 symbols are input to the adder, linearly added, and finally transmitted to the channel time-frequency resource block.
- UE 1 repeats the foregoing process until the aforementioned data to be transmitted is successfully transmitted.
- the data to be sent of UE M is The length is K M bits, and the input is encoded to encode to obtain coded bits.
- the coded bits are symbol mapped to obtain a series of modulation symbols.
- the length is N M bits.
- the degree generator determines the degree of transmission d M , the data selector MUX from the modulation symbol according to the access degree probability distribution information received from the access degree probability distribution controller of the base station side
- the d M symbols are selected and input to the adder, and are linearly added, and finally transmitted to the channel time-frequency resource block.
- UE M repeats the foregoing process until the aforementioned modulation symbols are successfully transmitted
- the access degree probability distribution controller of the base station determines the access degree probability distribution information, and transmits the corresponding access degree probability distribution information to the degree generators of the respective UEs.
- the base station demodulates the data received from the UE, and obtains demodulation information corresponding to each time-frequency resource block. Then, according to the check relationship of the encoder, the linear addition relationship of each UE access process, and the linear superposition relationship of the channels, a unified factor graph (eg, Tanner graph) is constructed, and the multi-user is iterated on the factor graph. Detection decoding.
- the base station successfully decodes a message of one UE, it sends an acknowledgement message to the UE. At the same time, the current receiving sequence of the user is eliminated from the factor graph. In this way, the base station performs iterative decoding based on a factor graph, which does not require complicated multi-user detection and SISO decoder iterative process, thereby reducing decoding complexity.
- FIG. 7 is a schematic block diagram of a base station according to an embodiment of the present invention.
- the base station in FIG. 7 includes a determining unit 701, a transmitting unit 702, and a receiving unit 703.
- the determining unit 701 is configured to determine, according to the system state information, the access degree probability distribution information used by the terminal device to communicate, where the system state information includes the total number of users, or the amount of data to be transmitted, the signal to noise ratio SNR, and the quality of service QoS. One and the total number of users.
- the sending unit 702 is configured to send the access degree probability distribution information to the terminal device, where the access degree probability distribution information is used to indicate a probability corresponding to the terminal device when the data is separately transmitted by using the specific one or more access degrees.
- the access degree probability distribution information includes one or more specific access degrees and corresponding probabilities.
- the terminal device transmits data to the base station according to the specified specific access degree and the corresponding probability.
- the access degree probability distribution information may be expressed in the form of a table, or may be represented by a function expression, which is not limited by the embodiment of the present invention.
- the access degree distribution function Where d is the access degree, p d is the corresponding probability, and N is the length of the coded bit.
- the receiving unit 703 is configured to receive data that is sent by the terminal device according to the access degree probability distribution information.
- the terminal device receives the access degree probability distribution information from the base station. Then, according to the access degree probability distribution information, the corresponding time-frequency resource is used to transmit data, instead of the base station allocating a fixed time-frequency resource to the terminal device. That is to say, the base station only needs to send the access degree probability distribution information to the terminal device, instead of transmitting multiple signaling signals indicating the time-frequency resources used by the terminal device for communication, thereby reducing the signaling overhead of the system.
- the base station since the base station is not required to allocate communication resources for each terminal device in advance.
- the probability corresponding to one or more access degrees in the access degree probability distribution information needs to be adjusted, and the system design is simple and the system efficiency is high.
- the determining unit 701 is specifically configured to determine, according to the system state information, a target average access degree of the terminal device. Then, according to the target average access degree, the access degree probability distribution information used when the terminal device communicates is determined.
- the base station may determine the average access degree of the terminal device according to the total number of users in the system state information. Assuming that the amount of data sent by each terminal device is the same, the system load threshold can be divided by the total number of users, and the quotient value is used as the target average access degree.
- the base station may adjust the foregoing quotient as the final target average access degree by using the foregoing quotient as a reference, combining at least one of the amount of data to be transmitted, the signal to noise ratio SNR, and the quality of service. In this way, the base station can determine the probability distribution information of the access degree used when the terminal device communicates according to the foregoing various information, thereby further improving system performance.
- the quotient value is increased as the target average access degree; or when the QoS requirement is high, the quotient value is reduced as the target average access degree.
- the base station can determine the access degree probability of the terminal device according to the target average access degree Distribution information.
- the M access degrees included in the access degree probability distribution information and the corresponding probability thereof satisfy the following two conditions:
- the foregoing method for determining the access degree probability distribution information is exemplified. It should be understood that the scope of protection of the embodiments of the present invention is not limited thereto. Assuming that the target average access degree is 3, the following two types of information can be used as the access degree probability distribution information in the embodiment of the present invention:
- the first type of information includes four access degrees 0, 2, 4, and 6, and the corresponding probabilities are 0.3, 0.2, 0.2, and 0.3, respectively;
- the second type of information includes an access degree of 3, and the corresponding probability is 1.
- the second information may be selected as the access degree probability distribution information.
- the first type of information may be selected as the access degree probability distribution information.
- the access degree probability distribution information may be determined in combination with the propagation of the external information.
- the degree of access of the time-frequency resource block increases, the convergence point of the external information increases first and then remains substantially unchanged. That is to say, under the premise of ensuring the sparseness of the factor graph, the access degree is increased, and the performance of the system is increased or remains unchanged.
- the access probability is greater than a certain threshold, the sparsity of the factor graph will decrease, and the decoding complexity of the base station will increase.
- FIG. 3 is a schematic diagram of the evolution of external information according to an embodiment of the present invention.
- the abscissa indicates the total access degree of the time-frequency resource block
- the ordinate indicates the outer information convergence point.
- the convergence point of the external information rapidly becomes saturated.
- the convergence point of the external information is progressive performance, and the access probability corresponding to the 99% of the progressive performance convergence point is called the saturation point.
- the access degree When the access degree is less than the saturation point, the access degree is increased, the convergence point of the external information is increased, and the system performance is increased.
- the access probability is greater than the saturation point, the access probability is increased, and the convergence point of the external information is basically unchanged, but the complexity of the system will continue to increase.
- the target average access degree can be determined according to the saturation point, and then the access degree probability distribution information is determined according to the target average access degree, thereby ensuring system capacity and low decoding complexity.
- the determining unit 701 is further configured to use, according to a system throughput requirement, Determine the code rate of the terminal device.
- the sending unit 702 is further configured to send, to the terminal device, an encoding code rate, where the encoding code rate is used to indicate an encoding code rate used by the terminal device to perform encoding.
- the base station maximizes the throughput by optimizing the optimal LDPC code rate and then transmits the LDPC code rate to the terminal device.
- the terminal device performs LDPC encoding based on the code rate.
- the mechanism does not need to specifically design a signature matrix, and can achieve similar performance to SCMA.
- the sending unit 702 is further configured to: when the data sent by the terminal device is successfully decoded, send the feedback information to the terminal device.
- the base station after the base station can correctly decode the data sent by the terminal device, that is, after the base station successfully decodes the data sent by the terminal device, the base station sends the feedback information to the terminal device.
- the feedback information may be confirmation information.
- the terminal device after receiving the feedback information, the terminal device can stop the transmission of the data.
- the sending unit 702 is specifically configured to send the access degree probability distribution information to the terminal device by using a broadcast manner.
- the base station assumes the same access degree probability distribution information used by each user, and transmits the access degree probability distribution information to each terminal device in a broadcast manner.
- FIG. 8 is a schematic block diagram of a terminal device according to an embodiment of the present invention.
- the terminal device in FIG. 8 includes a receiving unit 801 and a transmitting unit 802.
- the receiving unit 801 is configured to receive, by the base station, the access degree probability distribution information used when the terminal device communicates, where the access degree probability distribution information is used to indicate a probability corresponding to the terminal device transmitting the data by using the specific one or more access degrees respectively. .
- the access degree probability distribution information includes one or more specific access degrees and corresponding probabilities.
- the terminal device transmits data to the base station according to the specified specific access degree and the corresponding probability.
- the access degree probability distribution information may be expressed in the form of a table, or may be represented by a function expression, which is not limited by the embodiment of the present invention.
- the access degree distribution function Where d is the access degree, p d is the corresponding probability, and N is the length of the coded bit.
- the sending unit 802 is configured to send, to the base station, the data to be sent, respectively, according to the access degree probability distribution information, with a specific one or more access degrees and a corresponding probability.
- the access degree probability distribution information includes three access degrees d 1 , d 2 , and d 3 , and the corresponding probabilities are p 1 , p 2 , and p 3 , respectively .
- p 1 + p 2 + p 3 1.
- the terminal device transmits data to the base station by using the three access degrees d 1 , d 2 , and d 3 respectively , and the number of times the data is transmitted by each access degree is determined according to the corresponding probability.
- the terminal device receives the access degree probability distribution information from the base station. Then, according to the access degree probability distribution information, the corresponding time-frequency resource is used to transmit data, instead of the base station allocating a fixed time-frequency resource to the terminal device. That is to say, the base station only needs to send the access degree probability distribution information to the terminal device, instead of transmitting multiple signaling signals indicating the time-frequency resources used by the terminal device for communication, thereby reducing the signaling overhead of the system.
- the base station since the base station is not required to allocate communication resources for each terminal device in advance.
- the probability corresponding to one or more access degrees in the access degree probability distribution information needs to be adjusted, and the system design is simple and the system efficiency is high.
- the terminal device further includes an encoding unit 803 and a modulation unit 804.
- the receiving unit 801 is further configured to receive an encoding code rate from the base station, where the encoding code rate is determined by the base station according to a system throughput requirement.
- the encoding unit 803 is configured to encode the data to be transmitted as the fixed code rate as the fixed code rate to obtain coded bits.
- a modulating unit configured to modulate the coded bits to obtain a sequence of modulation symbols.
- the base station maximizes the throughput by optimizing the optimal LDPC code rate and then transmits the LDPC code rate to the terminal device.
- the terminal device performs LDPC encoding based on the code rate.
- the mechanism does not need to specifically design a signature matrix, and can achieve similar performance to SCMA.
- the sending unit 802 is specifically configured to determine, according to the access degree probability distribution information, the access degree d, d when the data is sent this time is a non-negative integer. Then, d symbols are selected from the sequence of modulation symbols for linear addition, and the result of linear addition is sent to the base station.
- linear addition includes both direct addition and weighted addition. If the terminal device uses the weighted addition method, the weight can be used to influence the Tanner graph described above. The Tanner graph is made more sparse, which accelerates the convergence of iterative decoding.
- the terminal device uses LDPC to encode data to obtain coded bits.
- the coded bits are then symbol mapped to obtain a series of modulation symbols.
- the terminal device determines the access degree d when the data is transmitted this time according to the access degree probability distribution information.
- d symbols are selected from the aforementioned modulation symbols for linear addition.
- the linearly added symbols are transmitted to the base station through the time-frequency resources occupied by the system.
- the terminal device repeats the aforementioned process of determining the access degree and transmitting a modulation symbol of a corresponding length until the data transmission is completed.
- the sending unit 802 is further configured to stop sending data to be sent to the base station when the terminal device receives the feedback information from the base station.
- the base station after the base station can correctly decode the data sent by the terminal device, that is, after the base station successfully decodes the data sent by the terminal device, the base station sends the feedback information to the terminal device.
- the feedback information may be confirmation information.
- the terminal device after receiving the feedback information, the terminal device can stop the transmission of the data.
- FIG. 9 is a schematic block diagram of a base station according to another embodiment of the present invention.
- base station 90 of FIG. 9 can be used to implement the steps and methods in the foregoing method embodiments.
- base station 90 includes an antenna 901, a transmitter 902, a receiver 903, a processor 904, and a memory 905.
- Processor 904 controls the operation of base station 90 and can be used to process signals.
- Memory 905 can include read only memory and random access memory and provides instructions and data to processor 904.
- Transmitter 902 and receiver 903 can be coupled to antenna 901.
- the various components of base station 90 are coupled together by a bus system 909, which in addition to the data bus includes a power bus, a control bus, and a status signal bus. However, for clarity of description, various buses are labeled as bus system 909 in the figure.
- base station 90 can be base station 102 shown in FIG.
- the memory 905 can store instructions to perform the following process:
- the access degree probability distribution information used by the terminal device to communicate the system state information including the total number of users, or at least one of a data volume to be transmitted, a signal to noise ratio SNR, and a quality of service QoS, and a total number of users;
- the access degree probability distribution information is used to indicate a probability corresponding to the terminal device when the data is respectively sent by using the specific one or more access degrees;
- the terminal device receives the access degree probability distribution information from the base station. Then, according to the access degree probability distribution information, occupy corresponding time-frequency resources Instead of transmitting a fixed time-frequency resource to the terminal device by the base station, the data is transmitted. That is to say, the base station only needs to send the access degree probability distribution information to the terminal device, instead of transmitting multiple signaling signals indicating the time-frequency resources used by the terminal device for communication, thereby reducing the signaling overhead of the system.
- the base station since the base station is not required to allocate communication resources for each terminal device in advance.
- the probability corresponding to one or more access degrees in the access degree probability distribution information needs to be adjusted, and the system design is simple and the system efficiency is high.
- the memory 905 may also store instructions to perform the following process:
- Determining the access degree probability distribution information used by the terminal device according to the system status information determining the target average access degree of the terminal device according to the system status information; determining the connection used by the terminal device according to the target average access degree Into the probability distribution information.
- the memory 905 may also store instructions to perform the following process:
- the encoding code rate of the terminal device is determined according to the system throughput requirement; the encoding code rate is sent to the terminal device, and the encoding code rate is used to indicate the encoding code rate used by the terminal device for encoding.
- the memory 905 may also store instructions to perform the following process:
- the feedback information is sent to the terminal device.
- the memory 905 may also store instructions to perform the following process:
- the access degree probability distribution information is transmitted to the terminal device.
- the access degree probability distribution information is transmitted to the terminal device by means of broadcast.
- FIG. 10 is a schematic block diagram of a terminal device according to another embodiment of the present invention.
- the terminal device 100 of FIG. 10 can be used to implement the steps and methods in the foregoing method embodiments.
- the terminal device 100 includes an antenna 1001, a transmitter 1002, a receiver 1003, a processor 1004, and a memory 1005.
- the processor 1004 controls the operation of the terminal device 100 and can be used to process signals.
- Memory 1005 can include read only memory and random access memory and provides instructions and data to processor 1004.
- Transmitter 1002 and receiver 1003 can be coupled to antenna 1001.
- the various components of terminal device 100 are coupled together by a bus system 1009, which in addition to the data bus includes a power bus, a control bus, and a status signal bus. However, for clarity of description, various buses are labeled as bus system 1009 in the figure.
- the terminal device 100 can be the access terminal 116 or the access terminal 122 shown in FIG.
- the memory 1005 can store instructions to perform the following process:
- the data to be transmitted is respectively sent to the base station by using a specific one or more access degrees and corresponding probabilities.
- the terminal device receives the access degree probability distribution information from the base station. Then, according to the access degree probability distribution information, the corresponding time-frequency resource is used to transmit data, instead of the base station allocating a fixed time-frequency resource to the terminal device. That is to say, the base station only needs to send the access degree probability distribution information to the terminal device, instead of transmitting multiple signaling signals indicating the time-frequency resources used by the terminal device for communication, thereby reducing the signaling overhead of the system.
- the base station since the base station is not required to allocate communication resources for each terminal device in advance.
- the probability corresponding to one or more access degrees in the access degree probability distribution information needs to be adjusted, and the system design is simple and the system efficiency is high.
- the memory 1005 may also store instructions to perform the following process:
- the base station Receiving an encoding code rate from the base station, the encoding code rate being determined by the base station according to the system throughput requirement;
- the coded bits are modulated to obtain a sequence of modulation symbols.
- the memory 1005 may also store instructions to perform the following process:
- the access degree when the data to be transmitted is respectively sent to the base station by using the specific one or more access degrees and the corresponding probability, the access degree when the data is transmitted is determined according to the access degree probability distribution information.
- d is a non-negative integer; d symbols are selected from the sequence of modulation symbols for linear addition, and the result of linear addition is sent to the base station.
- the memory 1005 may also store instructions to perform the following process:
- the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
- the implementation process constitutes any limitation.
- the disclosed systems, devices, and methods may be implemented in other manners.
- the device embodiments described above are merely illustrative.
- the division of the unit is only a logical function division.
- there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
- the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
- the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
- each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
- the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
- the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
- the technical solution of the present invention contributes in essence or to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
- a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
- the foregoing storage medium includes: a U disk, a mobile hard disk, and a read only memory (English: Read-Only Memory (ROM), Random Access Memory (English: Random Access Memory, RAM), disk or optical disk, and other media that can store program code.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本发明公开了一种通信方法、基站和终端设备。该方法包括:根据系统状态信息,确定终端设备通信时使用的接入度数概率分布信息,系统状态信息包括用户总数,或待传输的数据量、信噪比SNR和服务质量QoS中的至少一种以及用户总数;向终端设备发送接入度数概率分布信息,接入度数概率分布信息用于指示终端设备以特定的一个或多个接入度数分别发送数据时对应的概率;接收终端设备根据接入度数概率分布信息发送的数据。本发明实施例能够降低系统的信令开销。
Description
本发明实施例涉及通信领域,并且更具体地,涉及一种通信方法、基站和终端设备。
随着物联网、车联网以及自组织网络等技术的发展,小区密集化是未来网络的趋势。大规模接入(英文:Massive Access)是未来网络的典型场景之一。大规模接入场景有如下特点:一、潜在接入用户数目较大且动态变化;二、接入网结构复杂、拓扑多变,信道特性动态变化;三、业务类型复杂,不同用户接入数据量和时延要求等都存在显著差异。
在大规模接入场景下,若由基站预先确定并分配每个终端设备通信时使用的通信资源(如,时间、频率、码等资源),需要大量的信令开销。在这种场景下,系统需要一种基于新的接入机制的通信方法,来降低系统的信令开销。
发明内容
本发明实施例提供了一种通信方法、基站和终端设备,能够降低系统的信令开销。
第一方面,本发明实施例提供了一种通信方法,包括:
根据系统状态信息,确定终端设备通信时使用的接入度数概率分布信息,系统状态信息包括用户总数,或待传输的数据量、信噪比SNR和服务质量QoS中的至少一种以及用户总数;
向终端设备发送接入度数概率分布信息,接入度数概率分布信息用于指示终端设备以特定的一个或多个接入度数分别发送数据时对应的概率;
接收终端设备根据接入度数概率分布信息发送的数据。
结合第一方面,在第一方面的第一种实现方式中,根据系统状态信息,确定终端设备通信时使用的接入度数概率分布信息,包括:
根据系统状态信息,确定终端设备的目标平均接入度数;
根据目标平均接入度数,确定终端设备通信时使用的接入度数概率分布
信息。
结合第一方面及其上述实现方式,在第一方面的第二种实现方式中,该方法还包括:
根据系统吞吐率要求,确定终端设备的编码码率;向终端设备发送编码码率,编码码率用于指示终端设备进行编码时使用的编码码率。
结合第一方面及其上述实现方式,在第一方面的第三种实现方式中,在接收终端设备根据接入度数概率分布信息发送的数据之后,该方法还包括:
当成功译码终端设备发送的数据时,向终端设备发送反馈信息。
结合第一方面及其上述实现方式,在第一方面的第四种实现方式中,向终端设备发送接入度数概率分布信息,包括:
通过广播的方式向终端设备发送接入度数概率分布信息。
第二方面,本发明实施例提供了一种通信方法,包括:从基站接收终端设备通信时使用的接入度数概率分布信息,接入度数概率分布信息用于指示终端设备以特定的一个或多个接入度数分别发送数据时对应的概率;
根据接入度数概率分布信息,以特定的一个或多个接入度数以及对应的概率分别向基站发送待发送的数据。
结合第二方面,在第二方面的第一种实现方式中,在根据接入度数概率分布信息,以特定的一个或多个接入度数以及对应的概率分别向基站发送待发送的数据之前,该方法还包括:
从基站接收编码码率,编码码率为基站根据系统吞吐率要求确定的;
将编码码率作为固定码率,对待发送的数据进行编码,得到编码比特;
对编码比特进行调制,得到调制符号序列。
结合第二方面及其上述实现方式,在第二方面的第二种实现方式中,根据接入度数概率分布信息,以特定的一个或多个接入度数以及对应的概率分别向基站发送待发送的数据,包括:
根据接入度数概率分布信息,确定本次发送数据时的接入度数d,d为非负整数;
从调制符号序列中选择d个符号进行线性相加,并向基站发送线性相加后的结果。
结合第二方面及其上述实现方式,在第二方面的第三种实现方式中,在根据接入度数概率分布信息,以特定的一个或多个接入度数以及对应的概率
分别向基站发送待发送的数据之后,该方法还包括:
当从基站接收到反馈信息时,停止向基站发送待发送的数据。
第三方面,本发明实施例提供了一种基站,包括:
确定单元,用于根据系统状态信息,确定终端设备通信时使用的接入度数概率分布信息,系统状态信息包括用户总数,或待传输的数据量、信噪比SNR和服务质量QoS中的至少一种以及用户总数;
发送单元,用于向终端设备发送接入度数概率分布信息,接入度数概率分布信息用于指示终端设备以特定的一个或多个接入度数分别发送数据时对应的概率;
接收单元,用于接收终端设备根据接入度数概率分布信息发送的数据。
结合第三方面,在第三方面的第一种实现方式中,确定单元具体用于,
根据系统状态信息,确定终端设备的目标平均接入度数;
根据目标平均接入度数,确定终端设备通信时使用的接入度数概率分布信息。
结合第三方面及其上述实现方式,在第三方面的第二种实现方式中,确定单元,还用于根据系统吞吐率要求,确定终端设备的编码码率;
发送单元,还用于向终端设备发送编码码率,编码码率用于指示终端设备进行编码时使用的编码码率。
结合第三方面及其上述实现方式,在第三方面的第三种实现方式中,发送单元还用于,当成功译码终端设备发送的数据时,向终端设备发送反馈信息。
结合第三方面及其上述实现方式,在第三方面的第四种实现方式中,发送单元具体用于,通过广播的方式向终端设备发送接入度数概率分布信息。
第四方面,本发明实施例提供了一种终端设备,包括:
接收单元,用于从基站接收终端设备通信时使用的接入度数概率分布信息,接入度数概率分布信息用于指示终端设备以特定的一个或多个接入度数分别发送数据时对应的概率;
发送单元,用于根据接入度数概率分布信息,以特定的一个或多个接入度数以及对应的概率分别向基站发送待发送的数据。
结合第四方面,在第四方面的第一种实现方式中,该终端设备还包括编码单元和调制单元,
接收单元,还用于从基站接收编码码率,编码码率为基站根据系统吞吐率要求确定的;
编码单元,用于将编码码率作为固定码率,对待发送的数据进行编码,得到编码比特;
调制单元,用于对编码比特进行调制,得到调制符号序列。
结合第四方面及其上述实现方式,在第四方面的第二种实现方式中,发送单元具体用于,
根据接入度数概率分布信息,确定本次发送数据时的接入度数d,d为非负整数;
从待发送的数据中选择d个符号进行线性相加,并向基站发送线性相加后的结果。
结合第四方面及其上述实现方式,在第四方面的第三种实现方式中,发送单元还用于,当终端设备从基站接收到反馈信息时,停止向基站发送待发送的数据。
基于上述技术方案,在本发明实施例中,终端设备从基站接收接入度数概率分布信息。然后,根据该接入度数概率分布信息,占用相应的时频资源发送数据,而不是由基站为终端设备分配固定的时频资源。也就是说,基站只需要向终端设备发送接入度数概率分布信息,而不是发送多个信令指示终端设备通信时使用的时频资源,进而能够降低系统的信令开销。
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了本发明实施例可应用的无线通信系统。
图2是本发明一个实施例的通信方法的示意性流程图。
图3是本发明实施例的外信息进化情况示意图。
图4是本发明实施例的因子图的示意性结构图。
图5是本发明另一实施例的通信方法的示意性流程图。
图6是本发明另一实施例的通信方法的示意性流程图。
图7是本发明一个实施例的基站的示意性框图。
图8是本发明一个实施例的终端设备的示意性框图。
图9是本发明另一实施例的基站的示意性框图。
图10是本发明另一实施例的终端设备的示意性框图。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
现在参照附图描述多个实施例,其中用相同的附图标记指示本文中的相同元件。在下面的描述中,为便于解释,给出了大量具体细节,以便提供对一个或多个实施例的全面理解。然而,很明显,也可以不用这些具体细节来实现所述实施例。在其它例子中,以方框图形式示出公知结构和设备,以便于描述一个或多个实施例。
在本说明书中使用的术语"部件"、"模块"、"系统"等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
此外,本发明的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语"制品"涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,CD(Compact Disk,压缩盘)、DVD(Digital Versatile Disk,数字通用盘)等),智能卡和闪存器件(例如,EPROM(Erasable Programmable Read-Only Memory,可
擦写可编程只读存储器)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语"机器可读介质"可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
应理解,本发明实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(英文:Global System of Mobile communication,简称:GSM)系统、码分多址(英文:Code Division Multiple Access,简称:CDMA)系统、宽带码分多址(英文:Wideband Code Division Multiple Access,简称:WCDMA)系统、通用分组无线业务(英文:General Packet Radio Service,简称:GPRS)、长期演进(英文:Long Term Evolution,简称:LTE)系统、LTE频分双工(英文:Frequency Division Duplex,简称:FDD)系统、LTE时分双工(英文:Time Division Duplex,简称:TDD)、通用移动通信系统(英文:Universal Mobile Telecommunication System,简称:UMTS)、全球互联微波接入(英文:Worldwide Interoperability for Microwave Access,简称:WiMAX)通信系统等。
还应理解,在本发明实施例中,终端设备可以称为用户设备(英文:User Equipment,简称:UE),也可称之为终端(Terminal)、移动台(英文:Mobile Station,简称:MS)、移动终端(Mobile Terminal)等。或者,终端设备可以为传感器节点、汽车等接入通信网络的设备,或其上可以接入通信网络进行通信的装置。该终端设备可以经无线接入网(英文:Radio Access Network,简称:RAN)与一个或多个核心网进行通信,例如,终端设备可以是移动电话(或称为“蜂窝”电话)、具有移动终端的计算机等。例如,终端设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语音和/或数据。
在本发明实施例中,基站可以是GSM或CDMA中的基站(英文:Base Transceiver Station,简称:BTS),也可以是WCDMA中的基站(英文:NodeB,简称:NB),还可以是LTE中的演进型基站(英文:Evolutional Node B,简称:ENB或e-NodeB),本发明并不限定。
图1示出了本发明实施例可应用的无线通信系统。无线通信系统100包括基站102,基站102可包括多个天线组。每个天线组可以包括一个或多个天线,例如,一个天线组可包括天线104和106,另一个天线组可包括天线
108和110,附加组可包括天线112和114。图1中对于每个天线组示出了2个天线,然而可对于每个组使用更多或更少的天线。基站102可附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。
基站102可以与一个或多个终端设备(例如接入终端116和接入终端122)通信。然而,可以理解,基站102可以与类似于接入终端116或122的任意数目的接入终端通信。接入终端116和122可以是例如蜂窝电话、智能电话、便携式电脑、手持通信设备、手持计算设备、卫星无线电装置、全球定位系统、PDA和/或用于在无线通信系统100上通信的任意其它适合设备。如图所示,接入终端116与天线112和114通信,其中天线112和114通过前向链路118向接入终端116发送信息,并通过反向链路120从接入终端116接收信息。此外,接入终端122与天线104和106通信,其中天线104和106通过前向链路124向接入终端122发送信息,并通过反向链路126从接入终端122接收信息。在FDD(Frequency Division Duplex,频分双工)系统中,例如,前向链路118可利用与反向链路120所使用的不同频带,前向链路124可利用与反向链路126所使用的不同频带。此外,在TDD(Time Division Duplex,时分双工)系统中,前向链路118和反向链路120可使用共同频带,前向链路124和反向链路126可使用共同频带。
被设计用于通信的每组天线和/或区域称为基站102的扇区。例如,可将天线组设计为与基站102覆盖区域的扇区中的接入终端通信。在基站102通过前向链路118和124分别与接入终端116和122进行通信的过程中,基站102的发射天线可利用波束成形来改善前向链路118和124的信噪比。此外,与基站通过单个天线向它所有的接入终端发送信号的方式相比,在基站102利用波束成形向相关覆盖区域中随机分散的接入终端116和122发送信号时,相邻小区中的移动设备会受到较少的干扰。
在给定时间,基站102、接入终端116或接入终端122可以是无线通信发送装置和/或无线通信接收装置。当发送数据时,无线通信发送装置可对数据进行编码以用于传输。具体地,无线通信发送装置可获取(例如生成、从其它通信装置接收、或在存储器中保存等)要通过信道发送至无线通信接收装置的一定数目的数据比特。这种数据比特可包含在数据的传输块(或多个
传输块)中,传输块可被分段以产生多个码块。此外,无线通信发送装置可使用编码器(未示出)来对每个码块编码。
应理解,图1中的无线通信系统100仅是一个示例,本发明实施例可应用的通信系统并不限于此。
在大规模接入场景下,接入基站102进行通信的终端设备(如,接入终端116或接入终端122)数量较大且动态变化。若由基站预先确定并分配每个终端设备通信使用的通信资源(如,时间、频率、码等资源),需要大量的信令开销。
本发明实施例提供了一种通信方法,可以降低系统的信令开销。下面对本发明实施例的通信方法进行详细的描述。应注意,这些例子只是为了帮助本领域技术人员更好地理解本发明实施例,而非限制本发明实施例的范围。
图2是本发明一个实施例的通信方法的示意性流程图。图2的方法可以由基站执行,如图1中示出的基站102。
201,根据系统状态信息,确定终端设备通信时使用的接入度数概率分布信息,系统状态信息包括用户总数,或待传输的数据量、信噪比(英文:Signal to Noise Ratio,简称:SNR)和服务质量(英文:Quality of Service,简称:QoS)中的至少一种以及用户总数。
202,向终端设备发送接入度数概率分布信息,接入度数概率分布信息用于指示终端设备以特定的一个或多个接入度数分别发送数据时对应的概率。
例如,接入度数概率分布信息中包括一个或多个特定的接入度数以及对应的概率。终端设备按照指示的特定的接入度数以及对应的概率向基站发送数据。具体地,接入度数概率分布信息可以以表格的形式表示,也可以以一个函数表达式来表示,本发明实施例对此不作限定。如,接入度数分布函数其中,d为接入度数,pd为对应的概率,N为编码比特的长度。
203,接收终端设备根据接入度数概率分布信息发送的数据。
基于上述技术方案,在本发明实施例中,终端设备从基站接收接入度数概率分布信息。然后,根据该接入度数概率分布信息,占用相应的时频资源发送数据,而不是由基站为终端设备分配固定的时频资源。也就是说,基站只需要向终端设备发送接入度数概率分布信息,而不是发送多个信令指示终
端设备通信时使用的时频资源,进而能够降低系统的信令开销。
进一步地,根据本发明实施例的方法,由于不需要基站预先为各个终端设备分配通信资源。当用户总数发生变化时,只需要调整接入度数概率分布信息中特定的一个或多个接入度数对应的概率即可,系统设计简单,系统效率较高。
可选地,作为一个实施例,根据系统状态信息,确定终端设备通信时使用的接入度数概率分布信息时,可以先根据系统状态信息,确定终端设备的目标平均接入度数。然后,根据目标平均接入度数,确定终端设备通信时使用的接入度数概率分布信息。
例如,基站可以根据系统状态信息中的用户总数确定终端设备的平均接入度数。假设各个终端设备发送的数据量相同,这时可以用系统负荷阈值除以用户总数,将商值作为目标平均接入度数。或者,基站可以将前述商值作为基准,结合待传输的数据量、信噪比SNR和服务质量中的至少一种,调整前述商值作为最终的目标平均接入度数。这样,基站可以根据前述多种信息,确定终端设备通信时使用的接入度数概率分布信息,进而能够进一步提升系统性能。如,在待传输的数据量较大时,增加前述商值作为目标平均接入度数;或者在服务质量要求较高时,减小前述商值作为目标平均接入度数。本领域的普通技术人员能够预知的前述实施方式的变化例也应落在本发明实施例的保护范围内。
然后,基站可以根据目标平均接入度数,确定终端设备的接入度数概率分布信息。其中,接入度数概率分布信息包括的M个接入度数与其对应的概率满足如下两个条件:
条件一,求该M个接入度数中每一个接入度数与其对应的概率的乘积,得到M个乘积,该M个乘积的和等于前述目标平均接入度数。
条件二,前述各个概率之和等于1。
为了更清楚地描述本发明实施例,下面举例说明前述确定接入度数概率分布信息的方法,应理解本发明实施例的保护范围并不限于此。假设目标平均接入度数为3,如下两种信息可以作为本发明实施例的接入度数概率分布信息:
第一种信息包括四个接入度数0,2,4,6,对应的概率分别为0.3,0.2,0.2,0.3;
第二种信息包括一个接入度数3,对应的概率为1。
具体地,在系统中接入的用户数量较少时,可以选用第二种信息作为前述接入度数概率分布信息。在系统中接入的用户数量较多时,可以选用第一种信息作为前述接入度数概率分布信息。
又如,可以结合外信息的传播情况,确定前述接入度数概率分布信息。这样,能够在保证系统容量的前提下,进一步提升系统性能。一方面,随着时频资源块的接入度数的增加,外信息的收敛点先增加,然后基本保持不变。也就是说,在保证了因子图的稀疏性的前提下,提高接入度数,系统的性能上升或者保持不变。另一方面,在接入概率大于一定的阈值时,因子图的稀疏性会随之下降,同时基站的译码复杂度会增加。
具体地,假设各个用户信道增益相同,得到外信息的迭代性能。图3是本发明实施例的外信息进化情况示意图。如图3所示,横坐标表示时频资源块的总的接入度数,纵坐标表示外信息收敛点。随着时频资源块总的接入度数的增加,外信息的收敛点快速趋于饱和。时频资源块总的接入度数为无穷大的时候,外信息的收敛点为渐进性能,外信息收敛点达到渐进性能的99%所对应的接入概率称为饱和点。当接入度数小于饱和点的时候,增加接入度数,外信息收敛点上升,系统性能增加。当接入概率大于饱和点之后,增加接入概率,外信息收敛点基本不变,但系统的复杂度会继续增加。这样,可以根据饱和点,确定目标平均接入度数,继而根据目标平均接入度数确定接入度数概率分布信息,进而能够保证系统容量和较低的译码复杂度。
可选地,作为另一实施例,基站还可以根据系统吞吐率要求,确定终端设备的编码码率。然后,向终端设备发送编码码率,编码码率用于指示终端设备进行编码时使用的编码码率。
例如,针对不同的SNR,基站通过优化出最优的LDPC编码码率来最大化吞吐率,然后向终端设备发送LDPC编码码率。这样,终端设备基于该码率进行LDPC编码,与SCMA相比,该机制不需要专门设计签名矩阵,就可以达到与SCMA类似的性能。
可选地,作为另一实施例,在接收终端设备根据接入度数概率分布信息发送的数据之后,且成功译码终端设备发送的数据时,向终端设备发送反馈信息。
例如,在基站能够正确译码终端设备发送的数据后,也即基站成功译码了终端设备发送的数据后,基站向终端设备发送反馈信息。其中,该反馈信
息可以为确认信息。这样,终端设备在接收到反馈信息后,可以停止数据的发送。
下面结合具体例子对基站的译码过程进行详细的描述。应注意,这些例子只是为了帮助本领域技术人员更好地理解本发明实施例,而非限制本发明实施例的范围。
图4是本发明实施例的因子图的示意性结构图。基站采用迭代算法进行译码。具体地,基站可以基于图4所示的因子图(Factor Graph)进行迭代译码,从而恢复出各个用户的数据。
基站经过接收解调,获得各时频资源块对应的解调信息。假设时频资源块上有m个UE发送的数据,基站可以根据该m个用户接入过程的线性相加关系、信道的线性叠加关系及编码器的校验关系,构成一张统一的Tanner图(因子图的一种)。
如图4所示,Tanner图包括三种节点,低密度奇偶校验码(英文:Low Density Parity Check Code,简称:LDPC)校验节点(C_node),LDPC变量节点(V_node)以及资源块节点(RB_node)。这样,基站可以根据Tanner图中UE 1至UE m对应的节点信息,完成UE 1至UE m的迭代译码,最终恢复各个用户的数据。
下面给出在迭代过程中,三种节点的对数似然比(英文:Logarithm Likelihood Rate,简称:LLR)更新关系。
1)C_node:
设L(cji)表示由C_node的节点j输出给变量节点i的软信息,L(qij)为变量节点i输出给其他节点j的软信息。
L(qij)=αij·βij (1)
αij=sign[L(qij)] (2)
βij=|L(qij)| (3)
那么,更新C_node LLR的关系式如公式(4)所示:
2)V_node:
更新V_node LLR的关系式如公式(5)所示:
3)RB_node:
对于每一个资源块节点t,我们定义一个V_node的集合M(t),用它表示与资源块节点t存在连接关系的变量节点的集合,即M(t)={i|Ci,t=1}。于是,接收端(即,基站)在资源块节点t所接收到的符号可以表示为:
其中,hi,t为信道增益,gi,t是用户所选择的权重,nt~N(0,σ2)。
设L(rti)是RB_node的节点t输出V_node的节点i的LLR值。其更新关系如下式所示:
其中,
根据所述的更新计算规则,可以构建出用户信号迭代译码恢复算法。基站源源不断地接收多个终端设备发送的混叠数据包,同时运行迭代译码算法进行多用户检测和数据恢复。在译码成功一个终端设备发送的数据之后,在Tanner图中消除该终端设备对应的序列,并向该终端设备发送确认ACK信号使该终端设备停止发送。
根据本发明实施例的方法,终端设备的随机接入天然地形成一个分布式的无速率码,基站只需要基于一张Tanner图进行迭代译码即可,迭代次数减少,进而降低了系统的译码复杂度。
可选地,作为另一实施例,向终端设备发送接入度数概率分布信息时,通过广播的方式向终端设备发送接入度数概率分布信息。
例如,在初始化阶段,基站假设各个用户使用的相同的接入度数概率分布信息,通过广播的方式向各个终端设备发送接入度数概率分布信息。
图5是本发明另一实施例的通信方法的示意性流程图。图5的方法可以由终端设备执行,如图1中示出的接入终端116或接入终端122。
501,从基站接收终端设备通信时使用的接入度数概率分布信息,接入
度数概率分布信息用于指示终端设备以特定的一个或多个接入度数分别发送数据时对应的概率。
例如,接入度数概率分布信息中包括一个或多个特定的接入度数以及对应的概率。终端设备按照指示的特定的接入度数以及对应的概率向基站发送数据。具体地,接入度数概率分布信息可以以表格的形式表示,也可以以一个函数表达式来表示,本发明实施例对此不作限定。如,接入度数分布函数其中,d为接入度数,pd为对应的概率,N为编码比特的长度。
502,根据接入度数概率分布信息,以特定的一个或多个接入度数以及对应的概率分别向基站发送待发送的数据。
例如,接入度数概率分布信息中包括三个接入度数d1,d2,d3,对应的概率分别为p1,p2,p3。其中,p1+p2+p3=1。这样,终端设备分别以前述三个接入度数d1,d2,d3向基站发送数据,而以每一个接入度数发送数据的次数根据对应的概率确定。
假设终端设备向基站发送10次数据,p1=0.3,那么在10次当中终端设备以接入度数d1发送数据的次数为3次,而该3次在10次发送中的位置并不作限定。另外,如果前述三个接入度数中一个接入度数为零,表示终端设备不发送数据。
基于上述技术方案,在本发明实施例中,终端设备从基站接收接入度数概率分布信息。然后,根据该接入度数概率分布信息,占用相应的时频资源发送数据,而不是由基站为终端设备分配固定的时频资源。也就是说,基站只需要向终端设备发送接入度数概率分布信息,而不是发送多个信令指示终端设备通信时使用的时频资源,进而能够降低系统的信令开销。
进一步地,根据本发明实施例的方法,由于不需要基站预先为各个终端设备分配通信资源。当用户总数发生变化时,只需要调整接入度数概率分布信息中特定的一个或多个接入度数对应的概率即可,系统设计简单,系统效率较高。
可选地,作为一个实施例,在根据接入度数概率分布信息,以特定的一个或多个接入度数以及对应的概率分别向基站发送待发送的数据之前,从基站接收编码码率,编码码率为基站根据系统吞吐率要求确定的。然后,将编码码率作为固定码率,对待发送的数据进行编码,得到编码比特。最后,对
编码比特进行调制,得到调制符号序列。
例如,针对不同的SNR,基站通过优化出最优的LDPC编码码率来最大化吞吐率,然后向终端设备发送LDPC编码码率。这样,终端设备基于该码率进行LDPC编码,与SCMA相比,该机制不需要专门设计签名矩阵,就可以达到与SCMA类似的性能。
可选地,作为另一实施例,根据接入度数概率分布信息,以特定的一个或多个接入度数以及对应的概率分别向基站发送待发送的数据时,终端设备可以根据接入度数概率分布信息,确定本次发送数据时的接入度数d,d为非负整数。然后,从调制符号序列中选择d个符号进行线性相加,并向基站发送线性相加后的结果。
这样,终端设备的随机接入天然地形成一个分布式的无速率码,系统能够自适应地趋近信道容量。
应理解,线性相加包括直接相加和加权相加两种。如果终端设备使用加权相加的方法,可以利用权重影响前文所述的Tanner图,使Tanner图更加稀疏,进而加快迭代译码的收敛。
例如,终端设备采用LDPC对数据进行编码,得到编码比特。然后,对编码比特进行符号映射,得到一系列调制符号。终端设备根据接入度数概率分布信息,确定本次发送数据时的接入度数d。然后,从前述调制符号中选择d个符号进行线性相加。最后,将线性相加后的符号通过系统占用的时频资源发送给基站。终端设备重复前述确定接入度数并发送相应长度的调制符号的过程,直至完成数据发送。
可选地,作为另一实施例,在根据接入度数概率分布信息,以特定的一个或多个接入度数以及对应的概率分别向基站发送待发送的数据之后,从基站接收到反馈信息时,停止向基站发送待发送的数据。
例如,在基站能够正确译码终端设备发送的数据后,也即基站成功译码了终端设备发送的数据后,基站向终端设备发送反馈信息。其中,该反馈信息可以为确认信息。这样,终端设备在接收到反馈信息后,可以停止数据的发送。
图6是本发明另一实施例的通信方法的示意性流程图。下面结合图6进一步描述本发明实施例的通信方法。应注意,这些例子只是为了帮助本领域技术人员更好地理解本发明实施例,而非限制本发明实施例的范围。
如图6所示,UE 1,UE 2,…,UE M接入基站进行通信。UE 1的待发送数据为长度为K1比特,输入至编码器进行编码,得到编码比特。将编码比特进行符号映射后得到一系列的调制符号度数发生器根据从基站侧的接入度数概率分布控制器接收到的接入度数概率分布信息,确定本次发送的度数d1。数据选择器MUX从调制符号中选择d1个符号输入至相加器Σ进行线性相加,最终发射至信道时频资源块。UE 1重复前述过程,直至成功发送了前述待发送的数据
相似地,UE M的待发送数据为长度为KM比特,输入至编码进行编码,得到编码比特。编码比特进行符号映射后得到一系列的调制符号长度为NM比特。度数发生器根据从基站侧的接入度数概率分布控制器接收到的接入度数概率分布信息,确定本次发送的度数dM,数据选择器MUX从调制符号中选择dM个符号输入至相加器Σ进行线性相加,最终发射至信道时频资源块。UE M重复前述过程,直至成功发送了前述调制符号
基站的接入度数概率分布控制器确定接入度数概率分布信息,并向各个UE的度数发生器发送相应的接入度数概率分布信息。基站将从UE接收到的数据进行解调,获得各个时频资源块对应的解调信息。然后,根据编码器的校验关系、各个UE接入过程的线性相加关系及信道的线性叠加关系构成一张统一的因子图(如,Tanner图),并在该因子图上进行迭代多用户检测译码。当基站成功译码一个UE的消息时,向该UE发送确认消息。同时,将该用户的当前接收序列从因子图中消除。这样基站基于一张因子图进行迭代译码,不需要复杂的多用户检测与SISO译码器迭代过程,因而降低了译码复杂度。
图7是本发明一个实施例的基站的示意性框图。图7中的基站包括确定单元701、发送单元702和接收单元703。
确定单元701,用于根据系统状态信息,确定终端设备通信时使用的接入度数概率分布信息,系统状态信息包括用户总数,或待传输的数据量、信噪比SNR和服务质量QoS中的至少一种以及用户总数。
发送单元702,用于向终端设备发送接入度数概率分布信息,接入度数概率分布信息用于指示终端设备以特定的一个或多个接入度数分别发送数据时对应的概率。
例如,接入度数概率分布信息中包括一个或多个特定的接入度数以及对应的概率。终端设备按照指示的特定的接入度数以及对应的概率向基站发送数据。具体地,接入度数概率分布信息可以以表格的形式表示,也可以以一个函数表达式来表示,本发明实施例对此不作限定。如,接入度数分布函数其中,d为接入度数,pd为对应的概率,N为编码比特的长度。
接收单元703,用于接收终端设备根据接入度数概率分布信息发送的数据。
基于上述技术方案,在本发明实施例中,终端设备从基站接收接入度数概率分布信息。然后,根据该接入度数概率分布信息,占用相应的时频资源发送数据,而不是由基站为终端设备分配固定的时频资源。也就是说,基站只需要向终端设备发送接入度数概率分布信息,而不是发送多个信令指示终端设备通信时使用的时频资源,进而能够降低系统的信令开销。
进一步地,根据本发明实施例的方法,由于不需要基站预先为各个终端设备分配通信资源。当用户总数发生变化时,只需要调整接入度数概率分布信息中特定的一个或多个接入度数对应的概率即可,系统设计简单,系统效率较高。
可选地,作为一个实施例,确定单元701具体用于,根据系统状态信息,确定终端设备的目标平均接入度数。然后,根据目标平均接入度数,确定终端设备通信时使用的接入度数概率分布信息。
例如,基站可以根据系统状态信息中的用户总数确定终端设备的平均接入度数。假设各个终端设备发送的数据量相同,这时可以用系统负荷阈值除以用户总数,将商值作为目标平均接入度数。或者,基站可以将前述商值作为基准,结合待传输的数据量、信噪比SNR和服务质量中的至少一种,调整前述商值作为最终的目标平均接入度数。这样,基站可以根据前述多种信息,确定终端设备通信时使用的接入度数概率分布信息,进而能够进一步提升系统性能。如,在待传输的数据量较大时,增加前述商值作为目标平均接入度数;或者在服务质量要求较高时,减小前述商值作为目标平均接入度数。本领域的普通技术人员能够预知的前述实施方式的变化例也应落在本发明实施例的保护范围内。
然后,基站可以根据目标平均接入度数,确定终端设备的接入度数概率
分布信息。其中,接入度数概率分布信息包括的M个接入度数与其对应的概率满足如下两个条件:
条件一,求该M个接入度数中每一个接入度数与其对应的概率的乘积,得到M个乘积,该M个乘积的和等于前述目标平均接入度数。
条件二,前述各个概率之和等于1。
为了更清楚地描述本发明实施例,下面举例说明前述确定接入度数概率分布信息的方法,应理解本发明实施例的保护范围并不限于此。假设目标平均接入度数为3,如下两种信息可以作为本发明实施例的接入度数概率分布信息:
第一种信息包括四个接入度数0,2,4,6,对应的概率分别为0.3,0.2,0.2,0.3;
第二种信息包括一个接入度数3,对应的概率为1。
具体地,在系统中接入的用户数量较少时,可以选用第二种信息作为前述接入度数概率分布信息。在系统中接入的用户数量较多时,可以选用第一种信息作为前述接入度数概率分布信息。
又如,可以结合外信息的传播情况,确定前述接入度数概率分布信息。这样,能够在保证系统容量的前提下,进一步提升系统性能。一方面,随着时频资源块的接入度数的增加,外信息的收敛点先增加,然后基本保持不变。也就是说,在保证了因子图的稀疏性的前提下,提高接入度数,系统的性能上升或者保持不变。另一方面,在接入概率大于一定的阈值时,因子图的稀疏性会随之下降,同时基站的译码复杂度会增加。
具体地,假设各个用户信道增益相同,得到外信息的迭代性能。图3是本发明实施例的外信息进化情况示意图。如图3所示,横坐标表示时频资源块的总的接入度数,纵坐标表示外信息收敛点。随着时频资源块总的接入度数的增加,外信息的收敛点快速趋于饱和。时频资源块总的接入度数为无穷大的时候,外信息的收敛点为渐进性能,外信息收敛点达到渐进性能的99%所对应的接入概率称为饱和点。当接入度数小于饱和点的时候,增加接入度数,外信息收敛点上升,系统性能增加。当接入概率大于饱和点之后,增加接入概率,外信息收敛点基本不变,但系统的复杂度会继续增加。这样,可以根据饱和点,确定目标平均接入度数,继而根据目标平均接入度数确定接入度数概率分布信息,进而能够保证系统容量和较低的译码复杂度。
可选地,作为另一实施例,确定单元701还用于根据系统吞吐率要求,
确定终端设备的编码码率。发送单元702,还用于向终端设备发送编码码率,编码码率用于指示终端设备进行编码时使用的编码码率。
例如,针对不同的SNR,基站通过优化出最优的LDPC编码码率来最大化吞吐率,然后向终端设备发送LDPC编码码率。这样,终端设备基于该码率进行LDPC编码,与SCMA相比,该机制不需要专门设计签名矩阵,就可以达到与SCMA类似的性能。
可选地,作为另一实施例,发送单元702还用于,当成功译码终端设备发送的数据时,向终端设备发送反馈信息。
例如,在基站能够正确译码终端设备发送的数据后,也即基站成功译码了终端设备发送的数据后,基站向终端设备发送反馈信息。其中,该反馈信息可以为确认信息。这样,终端设备在接收到反馈信息后,可以停止数据的发送。基站的译码过程可以参照前文图3的描述,为避免重复,在此不再赘述。
可选地,作为另一实施例,发送单元702具体用于,通过广播的方式向终端设备发送接入度数概率分布信息。
例如,在初始化阶段,基站假设各个用户使用的相同的接入度数概率分布信息,通过广播的方式向各个终端设备发送接入度数概率分布信息。
图8是本发明一个实施例的终端设备的示意性框图。图8中的终端设备包括接收单元801和发送单元802。
接收单元801,用于从基站接收终端设备通信时使用的接入度数概率分布信息,接入度数概率分布信息用于指示终端设备以特定的一个或多个接入度数分别发送数据时对应的概率。
例如,接入度数概率分布信息中包括一个或多个特定的接入度数以及对应的概率。终端设备按照指示的特定的接入度数以及对应的概率向基站发送数据。具体地,接入度数概率分布信息可以以表格的形式表示,也可以以一个函数表达式来表示,本发明实施例对此不作限定。如,接入度数分布函数其中,d为接入度数,pd为对应的概率,N为编码比特的长度。
发送单元802,用于根据接入度数概率分布信息,以特定的一个或多个接入度数以及对应的概率分别向基站发送待发送的数据。
例如,接入度数概率分布信息中包括三个接入度数d1,d2,d3,对应的概率
分别为p1,p2,p3。其中,p1+p2+p3=1。这样,终端设备分别以前述三个接入度数d1,d2,d3向基站发送数据,而以每一个接入度数发送数据的次数根据对应的概率确定。
假设终端设备向基站发送10次数据,p1=0.3,那么在10次当中终端设备以接入度数d1发送数据的次数为3次,而该3次在10次发送中的位置并不作限定。另外,如果前述三个接入度数中一个接入度数为零,表示终端设备不发送数据。
基于上述技术方案,在本发明实施例中,终端设备从基站接收接入度数概率分布信息。然后,根据该接入度数概率分布信息,占用相应的时频资源发送数据,而不是由基站为终端设备分配固定的时频资源。也就是说,基站只需要向终端设备发送接入度数概率分布信息,而不是发送多个信令指示终端设备通信时使用的时频资源,进而能够降低系统的信令开销。
进一步地,根据本发明实施例的方法,由于不需要基站预先为各个终端设备分配通信资源。当用户总数发生变化时,只需要调整接入度数概率分布信息中特定的一个或多个接入度数对应的概率即可,系统设计简单,系统效率较高。
可选地,作为一个实施例,终端设备还包括编码单元803和调制单元804。接收单元801,还用于从基站接收编码码率,编码码率为基站根据系统吞吐率要求确定的。这种情况下,编码单元803,用于将编码码率作为固定码率,对待发送的数据进行编码,得到编码比特。调制单元,用于对编码比特进行调制,得到调制符号序列。
例如,针对不同的SNR,基站通过优化出最优的LDPC编码码率来最大化吞吐率,然后向终端设备发送LDPC编码码率。这样,终端设备基于该码率进行LDPC编码,与SCMA相比,该机制不需要专门设计签名矩阵,就可以达到与SCMA类似的性能。
可选地,作为一个实施例,发送单元802具体用于,根据接入度数概率分布信息,确定本次发送数据时的接入度数d,d为非负整数。然后,从调制符号序列中选择d个符号进行线性相加,并向基站发送线性相加后的结果。这样,终端设备的随机接入天然地形成一个分布式的无速率码,系统能够自适应地趋近信道容量。应理解,线性相加包括直接相加和加权相加两种。如果终端设备使用加权相加的方法,可以利用权重影响前文所述的Tanner图,
使Tanner图更加稀疏,进而加快迭代译码的收敛。
例如,终端设备采用LDPC对数据进行编码,得到编码比特。然后,对编码比特进行符号映射,得到一系列调制符号。终端设备根据接入度数概率分布信息,确定本次发送数据时的接入度数d。然后,从前述调制符号中选择d个符号进行线性相加。最后,将线性相加后的符号通过系统占用的时频资源发送给基站。终端设备重复前述确定接入度数并发送相应长度的调制符号的过程,直至完成数据发送。
可选地,作为另一实施例,发送单元802还用于,当终端设备从基站接收到反馈信息时,停止向基站发送待发送的数据。
例如,在基站能够正确译码终端设备发送的数据后,也即基站成功译码了终端设备发送的数据后,基站向终端设备发送反馈信息。其中,该反馈信息可以为确认信息。这样,终端设备在接收到反馈信息后,可以停止数据的发送。
图9是本发明另一实施例的基站的示意性框图。
图9的基站90可用于实现上述方法实施例中各步骤及方法。图9的实施例中,基站90包括天线901、发射机902、接收机903、处理器904和存储器905。处理器904控制基站90的操作,并可用于处理信号。存储器905可以包括只读存储器和随机存取存储器,并向处理器904提供指令和数据。发射机902和接收机903可以耦合到天线901。基站90的各个组件通过总线系统909耦合在一起,其中总线系统909除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图中将各种总线都标为总线系统909。例如,基站90可以为图1中示出的基站102。
具体地,存储器905可存储执行以下过程的指令:
根据系统状态信息,确定终端设备通信时使用的接入度数概率分布信息,系统状态信息包括用户总数,或待传输的数据量、信噪比SNR和服务质量QoS中的至少一种以及用户总数;
向终端设备发送接入度数概率分布信息,接入度数概率分布信息用于指示终端设备以特定的一个或多个接入度数分别发送数据时对应的概率;
接收终端设备根据接入度数概率分布信息发送的数据。
基于上述技术方案,在本发明实施例中,终端设备从基站接收接入度数概率分布信息。然后,根据该接入度数概率分布信息,占用相应的时频资源
发送数据,而不是由基站为终端设备分配固定的时频资源。也就是说,基站只需要向终端设备发送接入度数概率分布信息,而不是发送多个信令指示终端设备通信时使用的时频资源,进而能够降低系统的信令开销。
进一步地,根据本发明实施例的方法,由于不需要基站预先为各个终端设备分配通信资源。当用户总数发生变化时,只需要调整接入度数概率分布信息中特定的一个或多个接入度数对应的概率即可,系统设计简单,系统效率较高。
可选地,作为一个实施例,存储器905还可存储执行以下过程的指令:
根据系统状态信息,确定终端设备通信时使用的接入度数概率分布信息时,根据系统状态信息,确定终端设备的目标平均接入度数;根据目标平均接入度数,确定终端设备通信时使用的接入度数概率分布信息。
可选地,作为一个实施例,存储器905还可存储执行以下过程的指令:
根据系统吞吐率要求,确定终端设备的编码码率;向终端设备发送编码码率,编码码率用于指示终端设备进行编码时使用的编码码率。
可选地,作为一个实施例,存储器905还可存储执行以下过程的指令:
在接收终端设备根据接入度数概率分布信息发送的数据之后,当成功译码终端设备发送的数据时,向终端设备发送反馈信息。
可选地,作为一个实施例,存储器905还可存储执行以下过程的指令:
向终端设备发送接入度数概率分布信息时,通过广播的方式向终端设备发送接入度数概率分布信息。
图10是本发明另一实施例的终端设备的示意性框图。
图10的终端设备100可用于实现上述方法实施例中各步骤及方法。图10的实施例中,终端设备100包括天线1001、发射机1002、接收机1003、处理器1004和存储器1005。处理器1004控制终端设备100的操作,并可用于处理信号。存储器1005可以包括只读存储器和随机存取存储器,并向处理器1004提供指令和数据。发射机1002和接收机1003可以耦合到天线1001。终端设备100的各个组件通过总线系统1009耦合在一起,其中总线系统1009除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图中将各种总线都标为总线系统1009。例如,终端设备100可以为图1中示出的接入终端116或接入终端122。
具体地,存储器1005可存储执行以下过程的指令:
从基站接收终端设备通信时使用的接入度数概率分布信息,接入度数概率分布信息用于指示终端设备以特定的一个或多个接入度数分别发送数据时对应的概率;
根据接入度数概率分布信息,以特定的一个或多个接入度数以及对应的概率分别向基站发送待发送的数据。
基于上述技术方案,在本发明实施例中,终端设备从基站接收接入度数概率分布信息。然后,根据该接入度数概率分布信息,占用相应的时频资源发送数据,而不是由基站为终端设备分配固定的时频资源。也就是说,基站只需要向终端设备发送接入度数概率分布信息,而不是发送多个信令指示终端设备通信时使用的时频资源,进而能够降低系统的信令开销。
进一步地,根据本发明实施例的方法,由于不需要基站预先为各个终端设备分配通信资源。当用户总数发生变化时,只需要调整接入度数概率分布信息中特定的一个或多个接入度数对应的概率即可,系统设计简单,系统效率较高。
可选地,作为一个实施例,存储器1005还可存储执行以下过程的指令:
从基站接收编码码率,编码码率为基站根据系统吞吐率要求确定的;
将编码码率作为固定码率,对待发送的数据进行编码,得到编码比特;
对编码比特进行调制,得到调制符号序列。
可选地,作为一个实施例,存储器1005还可存储执行以下过程的指令:
根据接入度数概率分布信息,以特定的一个或多个接入度数以及对应的概率分别向基站发送待发送的数据时,根据接入度数概率分布信息,确定本次发送数据时的接入度数d,d为非负整数;从调制符号序列中选择d个符号进行线性相加,并向基站发送线性相加后的结果。
可选地,作为一个实施例,存储器1005还可存储执行以下过程的指令:
在根据接入度数概率分布信息,以特定的一个或多个接入度数以及对应的概率分别向基站发送待发送的数据之后,当从基站接收到反馈信息时,停止向基站发送待发送的数据。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各
示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(英文:
Read-Only Memory,简称:ROM)、随机存取存储器(英文:Random Access Memory,简称:RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。
Claims (18)
- 一种通信方法,其特征在于,所述方法包括:根据系统状态信息,确定终端设备通信时使用的接入度数概率分布信息,所述系统状态信息包括用户总数,或待传输的数据量、信噪比SNR和服务质量QoS中的至少一种以及用户总数;向所述终端设备发送所述接入度数概率分布信息,所述接入度数概率分布信息用于指示所述终端设备以特定的一个或多个接入度数分别发送数据时对应的概率;接收所述终端设备根据所述接入度数概率分布信息发送的数据。
- 根据权利要求1所述的方法,其特征在于,所述根据系统状态信息,确定终端设备通信时使用的接入度数概率分布信息,包括:根据所述系统状态信息,确定所述终端设备的目标平均接入度数;根据所述目标平均接入度数,确定所述终端设备通信时使用的接入度数概率分布信息。
- 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:根据系统吞吐率要求,确定所述终端设备的编码码率;向所述终端设备发送所述编码码率,所述编码码率用于指示所述终端设备进行编码时使用的编码码率。
- 根据权利要求1至3中任一项所述的方法,其特征在于,在所述接收所述终端设备根据所述接入度数概率分布信息发送的数据之后,所述方法还包括:当成功译码所述终端设备发送的数据时,向所述终端设备发送反馈信息。
- 根据权利要求1至4中任一项所述的方法,其特征在于,所述向所述终端设备发送所述接入度数概率分布信息,包括:通过广播的方式向所述终端设备发送所述接入度数概率分布信息。
- 一种通信方法,其特征在于,所述方法包括:从基站接收终端设备通信时使用的接入度数概率分布信息,所述接入度数概率分布信息用于指示所述终端设备以特定的一个或多个接入度数分别发送数据时对应的概率;根据所述接入度数概率分布信息,以所述特定的一个或多个接入度数以 及对应的概率分别向所述基站发送待发送的数据。
- 根据权利要求6所述的方法,其特征在于,在所述根据所述接入度数概率分布信息,以所述特定的一个或多个接入度数以及对应的概率分别向所述基站发送待发送的数据之前,所述方法还包括:从基站接收编码码率,所述编码码率为所述基站根据系统吞吐率要求确定的;将所述编码码率作为固定码率,对所述待发送的数据进行编码,得到编码比特;对所述编码比特进行调制,得到调制符号序列。
- 根据权利要求7所述的方法,其特征在于,所述根据所述接入度数概率分布信息,以所述特定的一个或多个接入度数以及对应的概率分别向所述基站发送待发送的数据,包括:根据所述接入度数概率分布信息,确定本次发送数据时的接入度数d,d为非负整数;从所述调制符号序列中选择d个符号进行线性相加,并向所述基站发送线性相加后的结果。
- 根据权利要求6至8中任一项所述的方法,其特征在于,在根据所述接入度数概率分布信息,以所述特定的一个或多个接入度数以及对应的概率分别向所述基站发送待发送的数据之后,所述方法还包括:当从基站接收到反馈信息时,停止向所述基站发送所述待发送的数据。
- 一种基站,其特征在于,所述基站包括:确定单元,用于根据系统状态信息,确定终端设备通信时使用的接入度数概率分布信息,所述系统状态信息包括用户总数,或待传输的数据量、信噪比SNR和服务质量QoS中的至少一种以及用户总数;发送单元,用于向所述终端设备发送所述接入度数概率分布信息,所述接入度数概率分布信息用于指示所述终端设备以特定的一个或多个接入度数分别发送数据时对应的概率;接收单元,用于接收所述终端设备根据所述接入度数概率分布信息发送的数据。
- 根据权利要求10所述的基站,其特征在于,所述确定单元具体用于,根据所述系统状态信息,确定所述终端设备的目标平均接入度数;根据所述目标平均接入度数,确定所述终端设备通信时使用的接入度数概率分布信息。
- 根据权利要求10或11所述的基站,其特征在于,所述确定单元,还用于根据系统吞吐率要求,确定所述终端设备的编码码率;所述发送单元,还用于向所述终端设备发送所述编码码率,所述编码码率用于指示所述终端设备进行编码时使用的编码码率。
- 根据权利要求10至12中任一项所述的基站,其特征在于,所述发送单元还用于,当成功译码所述终端设备发送的数据时,向所述终端设备发送反馈信息。
- 根据权利要求10至13中任一项所述的基站,其特征在于,所述发送单元具体用于,通过广播的方式向所述终端设备发送所述接入度数概率分布信息。
- 一种终端设备,其特征在于,所述终端设备包括:接收单元,用于从基站接收所述终端设备通信时使用的接入度数概率分布信息,所述接入度数概率分布信息用于指示所述终端设备以特定的一个或多个接入度数分别发送数据时对应的概率;发送单元,用于根据所述接入度数概率分布信息,以所述特定的一个或多个接入度数以及对应的概率分别向所述基站发送待发送的数据。
- 根据权利要去15所述的终端设备,其特征在于,所述终端设备还包括编码单元和调制单元,所述接收单元,还用于从基站接收编码码率,所述编码码率为所述基站根据系统吞吐率要求确定的;所述编码单元,用于将所述编码码率作为固定码率,对所述待发送的数据进行编码,得到编码比特;所述调制单元,用于对所述编码比特进行调制,得到调制符号序列。
- 根据权利要求16所述的终端设备,其特征在于,所述发送单元具体用于,根据所述接入度数概率分布信息,确定本次发送数据时的接入度数d,d为非负整数;从所述调制符号序列中选择d个符号进行线性相加,并向所述基站发送线性相加后的结果。
- 根据权利要求15至17中任一项所述的终端设备,其特征在于,所述发送单元还用于,当所述终端设备从基站接收到反馈信息时,停止向所述基站发送所述待发送的数据。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2014/090245 WO2016070325A1 (zh) | 2014-11-04 | 2014-11-04 | 通信方法、基站和终端设备 |
CN201480079691.7A CN106465422B (zh) | 2014-11-04 | 2014-11-04 | 通信方法、基站和终端设备 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2014/090245 WO2016070325A1 (zh) | 2014-11-04 | 2014-11-04 | 通信方法、基站和终端设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016070325A1 true WO2016070325A1 (zh) | 2016-05-12 |
Family
ID=55908348
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/090245 WO2016070325A1 (zh) | 2014-11-04 | 2014-11-04 | 通信方法、基站和终端设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106465422B (zh) |
WO (1) | WO2016070325A1 (zh) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1316866A (zh) * | 2000-04-04 | 2001-10-10 | 索尼国际(欧洲)股份有限公司 | 用于用户随机接入公共通信信道的优先排序方法 |
CN101860885A (zh) * | 2010-06-11 | 2010-10-13 | 西安电子科技大学 | 基于神经网络和模糊逻辑的接入网络选择方法 |
US20110075636A1 (en) * | 2009-09-25 | 2011-03-31 | Telefonaktiebolaget Lm Ericsson (Publ) | Random access with full coverage on selected resources |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101695016B (zh) * | 2009-10-22 | 2013-07-10 | 浙江大学 | 基于无速率码的多用户随机接入系统及其编译码方法 |
CN101742570B (zh) * | 2009-12-29 | 2012-08-29 | 浙江大学 | 认知无线电中基于无速率码的分布式分组接入方法 |
-
2014
- 2014-11-04 CN CN201480079691.7A patent/CN106465422B/zh active Active
- 2014-11-04 WO PCT/CN2014/090245 patent/WO2016070325A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1316866A (zh) * | 2000-04-04 | 2001-10-10 | 索尼国际(欧洲)股份有限公司 | 用于用户随机接入公共通信信道的优先排序方法 |
US20110075636A1 (en) * | 2009-09-25 | 2011-03-31 | Telefonaktiebolaget Lm Ericsson (Publ) | Random access with full coverage on selected resources |
CN101860885A (zh) * | 2010-06-11 | 2010-10-13 | 西安电子科技大学 | 基于神经网络和模糊逻辑的接入网络选择方法 |
Also Published As
Publication number | Publication date |
---|---|
CN106465422B (zh) | 2020-03-20 |
CN106465422A (zh) | 2017-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105164956B (zh) | Polar码的速率匹配方法和设备、无线通信装置 | |
CN110249558B (zh) | 用于无线网络的下行链路控制信道的极化码 | |
CN109245857B (zh) | 信息传输的方法、发送端设备和接收端设备 | |
CN110800216B (zh) | 用于通信和广播系统的速率匹配的方法和装置 | |
WO2017101631A1 (zh) | 用于处理极化码的方法和通信设备 | |
KR20190116816A (ko) | 무선 통신 시스템에서 극 부호를 이용한 부호화 및 복호화를 위한 장치 및 방법 | |
CN110572245B (zh) | 通信方法和装置 | |
CN106982172B (zh) | 确定极化码传输块大小的方法和通信设备 | |
CN106922213B (zh) | 传输信息的方法、装置和设备 | |
US20220052709A1 (en) | Crc interleaving pattern for polar codes | |
KR20190114263A (ko) | 무선 통신 시스템에서 극 부호를 이용한 부호화 및 복호화를 위한 장치 및 방법 | |
US20220039088A1 (en) | Transmitting method and receiving method for control information, user equipment and base station | |
CN109792298B (zh) | 子信道映射 | |
CN108696333B (zh) | Polar码编解码的方法、装置和设备 | |
CN106922206B (zh) | 确定调制编码阶数的方法、装置和设备 | |
WO2016082123A1 (zh) | 处理数据的方法、网络节点和终端 | |
CN110476357B (zh) | 极化码传输方法和装置 | |
US20170111142A1 (en) | Decoding method and apparatus | |
CN108023669B (zh) | 传输数据的方法和装置 | |
CN109964427A (zh) | 一种被用于信道编码的终端、基站中的方法和设备 | |
WO2017193932A1 (zh) | 通信方法及其网络设备、用户设备 | |
CN106797567B (zh) | 数据传输方法和相关设备 | |
WO2016070325A1 (zh) | 通信方法、基站和终端设备 | |
WO2016070323A1 (zh) | 通信方法、终端设备和基站 | |
WO2022171019A1 (zh) | 一种编码和译码方法及相关装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14905524 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14905524 Country of ref document: EP Kind code of ref document: A1 |