WO2016070321A1 - 传输模式切换方法及基站 - Google Patents

传输模式切换方法及基站 Download PDF

Info

Publication number
WO2016070321A1
WO2016070321A1 PCT/CN2014/090236 CN2014090236W WO2016070321A1 WO 2016070321 A1 WO2016070321 A1 WO 2016070321A1 CN 2014090236 W CN2014090236 W CN 2014090236W WO 2016070321 A1 WO2016070321 A1 WO 2016070321A1
Authority
WO
WIPO (PCT)
Prior art keywords
user equipment
transmission mode
port
mode
transmission
Prior art date
Application number
PCT/CN2014/090236
Other languages
English (en)
French (fr)
Inventor
胡玓秀
徐立
朱孝龙
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201480037475.6A priority Critical patent/CN105766024B/zh
Priority to PCT/CN2014/090236 priority patent/WO2016070321A1/zh
Publication of WO2016070321A1 publication Critical patent/WO2016070321A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off

Definitions

  • the present invention relates to the field of communications, and in particular, to a transmission mode switching method and a base station.
  • the 3rd Generation Partnership Project (English: 3rd Generation Partnership Project, 3GPP) proposes long-term evolution in order to adapt to the needs of real-world technology (English: Long Term Evolution) , referred to as LTE) system, as the standard for future mobile communications.
  • LTE Long Term Evolution
  • various transmission modes (labeled as TM, including TM1 to TM9) that can be adopted by the physical downlink shared channel (English: Physical Downlink Shared Channel, PDSCH) of the LTE system are specified, and each transmission is used.
  • TM Transmission modes
  • PDSCH Physical Downlink Shared Channel
  • the MIMO mode adopted by the mode is also different, and some transmission modes include multiple MIMO modes.
  • TM1 is a single-port MIMO method
  • TM3 can be transmitted using either transmit diversity MIMO or spatial multiplexing MIMO.
  • spatial multiplexing is a technology based on simultaneous transmission of multiple codewords in order to increase the amount of transmitted data, that is, multiple independent data streams are mapped to different layers, and then transmitted by different antennas, space in TM3.
  • the multiplexed MIMO method uses two ports for transmission.
  • the user equipment can work in the single-port and dual-stream mode when transmitting in the 2-port TM3 mode. Specifically, the user equipment first detects a signal to interference plus noise ratio (SINR), and then calculates a spectrum efficiency by using a single stream method and a dual stream method according to the SINR, and selects a spectrum efficiency. For transmission.
  • SINR signal to interference plus noise ratio
  • the SINR value of the central area is relatively high, and the SINR value of the edge area is low. Therefore, when the user equipment is in the central area, the dual-flow mode is usually used, and when the edge area is in the edge area, the single-flow mode is usually used.
  • the user equipment at the center of the cell can obtain the spatial multiplexing gain brought by the 2-port TM3 mode, and the transmission performance is higher than the TM1 mode.
  • the user at the edge of the cell uses 2-port TM3 for transmission performance lower than TM1 mode because the cell edge is at 2 ports.
  • TM3 mode it works in single-stream mode.
  • the transmission efficiency is similar to that of TM1, but it needs to use two cell reference signals (Cell Reference Signal, CRS for short) as the pilot port. Only one CRS port is needed compared to TM1. In other words, it produces pilot interference greater than the TM1 mode.
  • CRS Cell Reference Signal
  • the number of CRS ports of the cell is fixed after the transmission mode of the cell is determined. For example, when one CRS port is configured when the transmission mode of the cell is TM1, or two CRS ports are configured when the transmission mode of the cell is TM3, The 1-port TM1 mode and the 2-port TM3 mode cannot be configured at the same time, and only one of them can be configured, so that the user equipment in the central area and the edge area of the cell cannot achieve the optimal transmission performance at the same time regardless of which mode is used.
  • an embodiment of the present invention provides a transmission mode switching method and a base station.
  • the technical solution is as follows:
  • an embodiment of the present invention provides a transmission mode switching method, where the method includes:
  • the base station acquires a current transmission mode of the user equipment, where the transmission mode includes a 1-port transmission mode and an N-port transmission mode, where, for the N-port transmission mode, the base station configures N signal status information references for the user equipment.
  • a signal CSI-RS port where N is 2, 4, or 8, and the number of N is equal to the number of antennas of the cell in which the user equipment is located;
  • the base station detects a location of the user equipment in the cell, where the location includes a central area and an edge area;
  • the base station When the user equipment is currently working in the 1-port transmission mode, and the user equipment is in the central area, the base station switches the transmission mode of the user equipment to the N-port transmission mode, The user equipment configures N CSI-RS ports, and notifies the N-port transmission mode and the N CSI-RS ports to the user equipment; or
  • the base station When the user equipment is currently working in the N-port transmission mode, and the user equipment is in the edge area, the base station switches the transmission mode of the user equipment to the 1-port transmission mode, and The 1-port transmission mode is notified to the user equipment.
  • the detecting the location of the user equipment in the cell includes:
  • the detecting the spectrum efficiency of the user equipment includes:
  • the detecting the location of the user equipment in the cell includes:
  • the detecting, by the user equipment, the proportion of the total transmission time in the single-stream mode transmission includes:
  • the method further includes:
  • the transmission mode of the user equipment is configured as the 1-port transmission mode.
  • an embodiment of the present invention further provides a base station, where the base station includes:
  • transceiver module for communicating with a user equipment
  • An acquiring module configured to acquire a current transmission mode of the user equipment, where the transmission mode includes a 1-port transmission mode and an N-port transmission mode, where the user equipment is configured with N signal states for the N-port transmission mode Information reference signal CSI-RS port, where N is 2, 4 or 8, and the number of N is equal to the number of antennas of the cell in which the user equipment is located;
  • a detecting module configured to detect a location of the user equipment in the cell, where the location includes Heart area and edge area;
  • a processing module configured to: when the user equipment is currently working in the 1-port transmission mode, and the user equipment is in the central area, switch a transmission mode of the user equipment to the N-port transmission mode, where The user equipment is configured with N CSI-RS ports, and the N-port transmission mode and the N CSI-RS ports are notified to the user equipment by using the transceiver module; or
  • the detecting module includes:
  • a first detecting unit configured to detect a spectrum efficiency of the user equipment
  • a first determining unit configured to determine that the user equipment is in the central area when a spectrum efficiency of the user equipment is greater than a first threshold
  • the first detecting unit includes:
  • Obtaining a subunit configured to acquire, by using the transceiver module, a channel quality sent by the user equipment;
  • a first calculating subunit configured to calculate a spectrum efficiency of the user equipment according to the channel quality.
  • the detecting module includes:
  • a second detecting unit configured to detect, when the user equipment is currently working in the N port transmission mode, a ratio of the user equipment in a single stream mode transmission in a total transmission duration
  • a second determining unit configured to determine that the user equipment is in the edge area when the proportion of the user equipment in the single stream mode transmission is greater than the second threshold
  • the second detecting unit includes:
  • a recording subunit configured to record a transmission duration of the user equipment in a single stream mode during transmission
  • the second calculating sub-unit is configured to calculate a proportion of the transmission duration of the single-stream mode to the total transmission duration, and obtain a proportion of the total transmission duration of the user equipment in a single-stream mode transmission.
  • the processing module is further configured to: when the user equipment accesses a cell, configure a transmission mode of the user equipment as the one-port transmission mode.
  • the location of the user equipment in the cell is a central area or an edge area.
  • the transmission mode of the user equipment is switched to the N-port transmission mode, and the user equipment is configured with N.
  • the CSI-RS port switches the transmission mode of the user equipment to the 1-port transmission mode when the user equipment works in the N-port transmission mode and is in the edge area, so that the user equipment in the central area transmits in the N-port transmission mode.
  • Data obtain spatial multiplexing gain of multiple antennas; user equipment in the edge area uses 1-port transmission mode to transmit data, reducing transmission pilot interference.
  • FIG. 1 is an application scenario diagram provided by an embodiment of the present invention
  • FIG. 2 is a flowchart of a method for switching a transmission mode according to Embodiment 1 of the present invention
  • FIG. 3 is a flowchart of a method for switching a transmission mode according to Embodiment 2 of the present invention.
  • FIG. 4 is a schematic structural diagram of a base station according to Embodiment 3 of the present invention.
  • FIG. 5 is a schematic structural diagram of a base station according to Embodiment 4 of the present invention.
  • FIG. 6 is a schematic structural diagram of a base station according to Embodiment 5 of the present invention.
  • the scenario is a multi-antenna common cell, the number of antennas may be 2, 4, and 8, and the cell 10 includes a central area 20 and an edge area 30.
  • the N-port transmission mode in the central area 20 allows the user equipment to obtain the spatial multiplexing gain of multiple antennas, and the 1-port transmission mode in the edge area 30 can reduce pilot interference. Therefore, in order to maximize the transmission efficiency, it is necessary to design a transmission scheme: the user equipment uses the maximum number of port transmission modes for data transmission in the central area, and the 1-port transmission mode for data transmission in the edge area. Specific plans see below The embodiment is described.
  • the embodiment of the present invention is described by taking an LTE system as an example.
  • the method provided by the embodiment of the present invention can be used in a wireless network of different standards, for example, an LTE system or a subsequent evolution system of LTE.
  • the base station of the LTE system is an evolved NodeB (eNodeB).
  • eNodeB evolved NodeB
  • the embodiment of the invention provides a transmission mode switching method. Referring to FIG. 2, the method includes:
  • Step 101 The base station acquires a current transmission mode of the user equipment, where the transmission mode includes a 1-port transmission mode and an N-port transmission mode, where, for the N-port transmission mode, the base station configures the N-signal state information reference signal CSI-RS port for the user equipment.
  • N is 2, 4 or 8, and the number of N is equal to the number of antennas of the cell in which the user equipment is located.
  • the 1-port transmission mode can adopt the transmission mode 1, and the N-port mode can be implemented in the transmission mode 9.
  • the user equipment uses one CRS port for channel quality detection, and then determines the coding mode and other information according to the channel quality, and then performs data transmission; in the N port transmission mode 9, the user equipment adopts N signal state information references.
  • the channel (English: Channel State Information-Reference Signal, CSI-RS) port performs channel quality detection, and then determines the coding mode and other information according to the channel quality, and configures one CRS port.
  • the role of the CRS port is to send a cell broadcast.
  • the user equipment can perform downlink signal strength measurement according to the cell broadcast.
  • the CRS port is a cell-level port, and all the user equipments in the cell are configured with the same CRS port.
  • the CSI-RS port is a user-level port, and the base station can configure different CSI-RS ports for each user equipment in the cell.
  • the user equipment in the edge area transmits in the 1-port transmission mode, and the base station configures the user equipment of the newly accessed cell.
  • transmission mode 1 one cell level port is configured in transmission mode 1: CRS port; then the location of the user equipment is detected; if the user equipment is in the central area, the user equipment transmission mode is switched to transmission mode 9, and in the CRS
  • N user-level ports CSI-RS port.
  • Step 102 The base station detects a location of the user equipment in the cell, where the location includes a central area and an edge area.
  • Step 103 When the user equipment is currently working in the 1-port transmission mode, and the user equipment is in the central area, the base station switches the transmission mode of the user equipment to the N-port transmission mode, configures N CSI-RS ports for the user equipment, and sets N The port transmission mode and the N CSI-RS ports are notified to the user equipment; Alternatively, when the user equipment is currently working in the N port transmission mode, and the user equipment is in the edge area, the base station switches the transmission mode of the user equipment to the 1-port transmission mode, and notifies the user equipment of the 1-port transmission mode.
  • the base station switches the transmission mode of the user equipment to the N-port transmission mode, first allocate N CSI-RS ports for the user equipment, and then send the location of the CSI-RS port together with the transmission mode to the user equipment.
  • the user equipment transmits according to the transmission mode and the location of the CSI-RS port, where the location of the CSI-RS port is the location of the time-frequency resource occupied by the CSI-RS port.
  • the base station When the base station switches the transmission mode of the user equipment to the 1-port transmission mode, it only needs to send the transmission mode to the user equipment.
  • the embodiment of the present invention detects that the location of the user equipment in the cell is the central area or the edge area.
  • the transmission mode of the user equipment is switched to the N-port transmission mode.
  • the device configures N CSI-RS ports.
  • the user equipment's transmission mode is switched to the 1-port transmission mode, so that the user equipment in the central area adopts the N-port.
  • the transmission mode transmits data to obtain spatial multiplexing gain of multiple antennas; the user equipment in the edge area uses 1-port transmission mode to transmit data, reducing transmission pilot interference.
  • the embodiment of the invention provides a transmission mode switching method. Referring to FIG. 3, the method includes:
  • Step 201 The base station acquires a current transmission mode of the user equipment, where the transmission mode includes a 1-port transmission mode and an N-port transmission mode, where, for the N-port transmission mode, the base station configures the N-signal state information reference signal CSI-RS port for the user equipment.
  • N is 2, 4 or 8, and the number of N is equal to the number of antennas of the cell in which the user equipment is located.
  • the 1-port transmission mode can adopt the transmission mode 1, and the N-port mode can be implemented in the transmission mode 9.
  • the user equipment uses one CRS port for channel quality detection, and then determines the coding mode and other information according to the channel quality, and then performs data transmission; in N-port transmission mode 9, N CSI-RS ports are used for channel quality detection. Then, the information such as the coding mode is determined according to the channel quality, and one CRS port is configured at the same time.
  • the function of the CRS port is to send a cell broadcast, and the user equipment can perform downlink signal strength measurement according to the cell broadcast.
  • the user equipment in the edge area transmits in the 1-port transmission mode, and the base station configures the user equipment of the newly accessed cell.
  • the cell-level port and the user-level port are configured by the base station according to the transmission mode for the user equipment.
  • the cell-level port means that the user equipment in the cell needs to be configured the same, and the user-level port means that the base station can perform different configurations for each user. Port.
  • the transmission mode of the user equipment is configured as a 1-port transmission mode.
  • Step 202 The base station detects the spectrum efficiency of the user equipment.
  • step 202 can be performed in the following manner:
  • the base station calculates the spectrum efficiency of the user equipment according to the channel quality.
  • Step 203 When the spectrum efficiency of the user equipment is greater than the first threshold, the base station determines that the user equipment is in the central area; or, when the spectrum efficiency of the user equipment is less than or equal to the first threshold, the base station determines that the user equipment is in the edge area. .
  • step 202 and step 203 may also be performed by the following methods:
  • the base station detects the proportion of the total transmission duration of the user equipment in single stream mode transmission
  • the base station determines that the user equipment is in the edge region; or, when the proportion of the user equipment in the single-stream mode transmission is less than or equal to the second threshold, The base station determines that the user equipment is in the central area.
  • the user equipment when the user equipment works in the N-port transmission mode, the user equipment can work in a single-flow mode and a multi-stream mode, and the user equipment selects the single-flow mode or the multi-flow mode according to the following: the single-flow mode is calculated according to the SINR value.
  • the single-flow mode is calculated according to the SINR value.
  • the spectrum efficiency of the single-stream mode select the mode with higher spectral efficiency as the current working mode.
  • the SINR value of the edge region is low.
  • the spectrum efficiency of the single-stream mode is higher than that of the multi-stream mode.
  • the proportion of the user equipment in the single-stream mode is higher than the second threshold, it indicates that it is in the cell edge region, otherwise it is at the center. region.
  • the ratio of the total transmission duration of the user equipment in the single-stream mode is detected, including:
  • the base station records the transmission duration of the user equipment in the single stream mode during transmission
  • the base station calculates the proportion of the transmission duration of the single-stream mode to the total transmission duration, and obtains the proportion of the total transmission duration of the user equipment in single-stream mode transmission.
  • the total transmission duration may be a set value. For example, when detecting the transmission duration using the single stream mode, a detection period may be determined, and the transmission duration using the single stream mode is detected during the period, and the period is the total transmission. duration.
  • Step 204 When the user equipment is currently working in the 1-port transmission mode, and the user equipment is in the central area, the base station switches the transmission mode of the user equipment to the N-port transmission mode, configures N CSI-RS ports for the user equipment, and sets N The port transmission mode and the N CSI-RS ports are notified to the user equipment; or, when the user equipment is currently operating in the N-port transmission mode, and the user equipment is in the edge area, the base station switches the transmission mode of the user equipment to the 1-port transmission mode. The 1-port transmission mode is notified to the user equipment.
  • the base station switches the transmission mode of the user equipment to the N-port transmission mode, first allocate N CSI-RS ports for the user equipment, and then send the location of the CSI-RS port together with the transmission mode to the user equipment.
  • the user equipment transmits according to the transmission mode and the location of the CSI-RS port, where the location of the CSI-RS port is the location of the time-frequency resource occupied by the CSI-RS port.
  • the base station When the base station switches the transmission mode of the user equipment to the 1-port transmission mode, it only needs to send the transmission mode to the user equipment.
  • the embodiment of the present invention detects that the location of the user equipment in the cell is the central area or the edge area.
  • the transmission mode of the user equipment is switched to the N-port transmission mode.
  • the device configures N CSI-RS ports.
  • the user equipment's transmission mode is switched to the 1-port transmission mode, so that the user equipment in the central area adopts the N-port.
  • the transmission mode transmits data to obtain spatial multiplexing gain of multiple antennas; the user equipment in the edge area uses 1-port transmission mode to transmit data, reducing transmission pilot interference.
  • the base station includes:
  • the transceiver module 300 is configured to communicate with the user equipment
  • the acquiring module 301 is configured to acquire a current transmission mode of the user equipment, where the transmission mode includes a 1-port transmission mode and an N-port transmission mode, where, for the N-port transmission mode, the user equipment is configured with N signal state information reference signals CSI-RS ports. , N is 2, 4 or 8, and the number of N is equal to the number of antennas of the cell in which the user equipment is located.
  • the 1-port transmission mode can adopt the transmission mode 1, and the N-port mode can be implemented in the transmission mode 9.
  • transmission mode 1 the user equipment uses one CRS port for channel quality detection. Then, according to the channel quality, the information such as the coding mode is determined, and then the data is transmitted.
  • the N-port transmission mode 9 the user equipment uses the N CSI-RS ports to perform channel quality detection, and then determines the coding mode and other information according to the channel quality, and configures 1 at the same time.
  • a CRS port, the role of the CRS port is to send a cell broadcast, and the user equipment can perform downlink signal strength measurement according to the cell broadcast.
  • the CRS port is a cell-level port, and all the user equipments in the cell are configured with the same CRS port.
  • the CSI-RS port is a user-level port, and the base station can configure different CSI-RS ports for each user equipment in the cell.
  • the user equipment in the edge area transmits in the 1-port transmission mode, and the base station configures the user equipment of the newly accessed cell.
  • transmission mode 1 one cell level port is configured in transmission mode 1: CRS port; then the location of the user equipment is detected; if the user equipment is in the central area, the user equipment transmission mode is switched to transmission mode 9, and in the CRS
  • N user-level ports CSI-RS port.
  • the detecting module 302 is configured to detect a location of the user equipment in the cell, where the location includes a central area and an edge area.
  • the processing module 303 is configured to: when the user equipment is currently working in the 1-port transmission mode, and the user equipment is in the central area, switch the transmission mode of the user equipment to the N-port transmission mode, and configure N CSI-RS ports for the user equipment, and Notifying the N-port transmission mode and the N CSI-RS ports to the user equipment by the transceiver module 300; or, when the user equipment is currently working in the N-port transmission mode, and the user equipment is in the edge area, switching the transmission mode of the user equipment to The 1-port transmission mode is notified to the user equipment by the transceiver module 300.
  • the base station switches the transmission mode of the user equipment to the N-port transmission mode, first allocate N CSI-RS ports for the user equipment, and then send the location of the CSI-RS port together with the transmission mode to the user equipment.
  • the user equipment transmits according to the transmission mode and the location of the CSI-RS port, where the location of the CSI-RS port is the location of the time-frequency resource occupied by the CSI-RS port.
  • the base station When the base station switches the transmission mode of the user equipment to the 1-port transmission mode, it only needs to send the transmission mode to the user equipment.
  • the embodiment of the present invention detects that the location of the user equipment in the cell is the central area or the edge area.
  • the transmission mode of the user equipment is switched to the N-port transmission mode.
  • the device is configured with N CSI-RS ports.
  • the transmission mode of the user equipment is switched to 1.
  • the port transmission mode so that the user equipment in the central area transmits data by using the N-port transmission mode to obtain spatial multiplexing gain of multiple antennas; the user equipment in the edge area transmits data by using the 1-port transmission mode to reduce transmission pilot interference. .
  • the base station includes:
  • a transceiver module 400 configured to communicate with a user equipment
  • the obtaining module 401 is configured to obtain a current transmission mode of the user equipment, where the transmission mode includes a 1-port transmission mode and an N-port transmission mode, where, for the N-port transmission mode, the user equipment is configured with N signal state information reference signals CSI-RS ports. , N is 2, 4 or 8, and the number of N is equal to the number of antennas of the cell in which the user equipment is located.
  • the 1-port transmission mode can adopt the transmission mode 1, and the N-port mode can be implemented in the transmission mode 9.
  • the user equipment uses one CRS port for channel quality detection, and then determines the coding mode and other information according to the channel quality, and then performs data transmission; in the N port transmission mode 9, the user equipment adopts N CSI-RS ports. Perform channel quality detection, and then determine the coding mode and other information according to the channel quality, and configure one CRS port.
  • the function of the CRS port is to send a cell broadcast, and the user equipment can perform downlink signal strength measurement according to the cell broadcast.
  • the CRS port is a cell-level port, and all the user equipments in the cell are configured with the same CRS port.
  • the CSI-RS port is a user-level port, and the base station can configure different CSI-RS ports for each user equipment in the cell.
  • the user equipment in the edge area transmits in the 1-port transmission mode, and the base station configures the user equipment of the newly accessed cell.
  • transmission mode 1 one cell level port is configured in transmission mode 1: CRS port; then the location of the user equipment is detected; if the user equipment is in the central area, the user equipment transmission mode is switched to transmission mode 9, and in the CRS
  • N user-level ports CSI-RS port.
  • the detecting module 402 is configured to detect a location of the user equipment in the cell, where the location includes a central area and an edge area.
  • the processing module 403 is configured to: when the user equipment is currently working in the 1-port transmission mode, and the user equipment is in the central area, switch the transmission mode of the user equipment to the N-port transmission mode, and configure N CSI-RS ports for the user equipment, and Notifying the N-port transmission mode and the N CSI-RS ports to the user equipment through the transceiver module 400; or, when the user equipment is currently working in the N-port transmission mode, and the user When the device is in the edge area, the transmission mode of the user equipment is switched to the 1-port transmission mode, and the 1-port transmission mode is notified to the user equipment by the transceiver module 400.
  • the base station switches the transmission mode of the user equipment to the N-port transmission mode, first allocate N CSI-RS ports for the user equipment, and then send the location of the CSI-RS port to the transmission mode through the transceiver module 400.
  • the user equipment the user equipment transmits according to the transmission mode and the location of the CSI-RS port, where the location of the CSI-RS port is the location of the time-frequency resource occupied by the CSI-RS port.
  • the base station When the base station switches the transmission mode of the user equipment to the 1-port transmission mode, it only needs to send the transmission mode to the user equipment.
  • the detecting module 402 may include:
  • the first detecting unit 4021 is configured to detect a spectrum efficiency of the user equipment.
  • the first determining unit 4022 is configured to determine that the user equipment is in the central area when the spectrum efficiency of the user equipment is greater than the first threshold, or determine the user equipment when the spectrum efficiency of the user equipment is less than or equal to the first threshold. In the edge area.
  • the first detecting unit 4021 may include:
  • Obtaining a subunit configured to acquire, by using the transceiver module 400, a channel quality sent by the user equipment;
  • the first calculating subunit is configured to calculate a spectrum efficiency of the user equipment by using channel quality.
  • the detecting module 402 may include:
  • a second detecting unit configured to detect, when the user equipment is currently working in the N-port transmission mode, detecting a proportion of the total transmission duration of the user equipment in the single-stream mode transmission;
  • a second determining unit configured to determine that the user equipment is in an edge region when the proportion of the user equipment in the single-stream mode transmission is greater than the second threshold; or, when the user equipment uses the single-stream mode, the proportion is less than or equal to the first At the second threshold, it is determined that the user equipment is in the central area.
  • the user equipment when the user equipment works in the N-port transmission mode, the user equipment can work in a single-flow mode and a multi-stream mode, and the user equipment selects the single-flow mode or the multi-flow mode according to the following: the single-flow mode is calculated according to the SINR value.
  • the single-flow mode is calculated according to the SINR value.
  • the spectrum efficiency of the single-stream mode select the mode with higher spectral efficiency as the current working mode.
  • the SINR value of the edge region is low.
  • the spectrum efficiency of the single-stream mode is higher than that of the multi-stream mode.
  • the proportion of the user equipment in the single-stream mode is higher than the second threshold, it indicates that it is in the cell edge region, otherwise it is at the center. region.
  • the second detecting unit may include:
  • a recording subunit configured to record a transmission duration of the user equipment in a single stream mode during transmission
  • the second calculating sub-unit is configured to calculate a ratio of the transmission duration of the single-stream mode to the total transmission duration, and obtain a proportion of the total transmission duration of the user equipment in the single-stream mode transmission.
  • the total transmission duration may be a set value. For example, when detecting the transmission duration using the single stream mode, a detection period may be determined, and the transmission duration using the single stream mode is detected during the period, and the period is the total transmission. duration.
  • processing module 403 is further configured to configure, when the user equipment accesses the cell, the transmission mode of the user equipment to the 1-port transmission mode.
  • the embodiment of the present invention detects that the location of the user equipment in the cell is the central area or the edge area.
  • the transmission mode of the user equipment is switched to the N-port transmission mode.
  • the device configures N CSI-RS ports.
  • the user equipment's transmission mode is switched to the 1-port transmission mode, so that the user equipment in the central area adopts the N-port.
  • the transmission mode transmits data to obtain spatial multiplexing gain of multiple antennas; the user equipment in the edge area uses 1-port transmission mode to transmit data, reducing transmission pilot interference.
  • the embodiment of the present invention provides a base station.
  • the base station includes: a processor 501, a memory 502, a transceiver 503, and a bus.
  • the memory 502 is configured to store a computer to execute instructions
  • the processor 501 is connected to the memory 502 through a bus.
  • the processor 501 executes a computer-executed instruction stored in the memory 502 to cause the base station to perform the transmission mode switching method as described in FIG. 1 or 2.
  • the processor 501 is configured to acquire a current transmission mode of the user equipment, where the transmission mode includes a 1-port transmission mode and an N-port transmission mode, where, for the N-port transmission mode, the user equipment is configured with N signal state information reference signals CSI-
  • the RS port, N is 2, 4, or 8, and the number of N is equal to the number of antennas of the cell where the user equipment is located.
  • the 1-port transmission mode can adopt the transmission mode 1, and the N-port mode can be implemented in the transmission mode 9.
  • the user equipment uses one CRS port for channel quality detection, and then determines the coding mode and other information according to the channel quality, and then performs data transmission; in the N port transmission mode 9, the user equipment adopts N CSI-RS ports. Perform channel quality detection, and then determine the coding mode and other information according to the channel quality, and configure one CRS port.
  • the function of the CRS port is to send a cell broadcast, and the user equipment can perform downlink signal strength measurement according to the cell broadcast.
  • the CRS port is a cell-level port, and all the user equipments in the cell are configured with the same CRS port.
  • the CSI-RS port is a user-level port, and the base station can configure different CSI-RS ports for each user equipment in the cell.
  • the user equipment in the edge area transmits in the 1-port transmission mode, and the base station configures the user equipment of the newly accessed cell.
  • transmission mode 1 one cell level port is configured in transmission mode 1: CRS port; then the location of the user equipment is detected; if the user equipment is in the central area, the user equipment transmission mode is switched to transmission mode 9, and in the CRS
  • N user-level ports CSI-RS port.
  • the processor 501 is further configured to detect a location of the user equipment in the cell, where the location includes a central area and an edge area.
  • the processor 501 is further configured to: when the user equipment is currently working in the 1-port transmission mode, and the user equipment is in the central area, switch the transmission mode of the user equipment to the N-port transmission mode, and configure the N CSI-RS ports for the user equipment, And notifying the N-port transmission mode and the N CSI-RS ports to the user equipment through the transceiver 503; or, when the user equipment is currently working in the N-port transmission mode, and the user equipment is in the edge area, switching the transmission mode of the user equipment The 1-port transmission mode is transmitted, and the 1-port transmission mode is notified to the user equipment through the transceiver 503.
  • the processor 501 switches the transmission mode of the user equipment to the N port transmission mode, the user equipment is first allocated N CSI-RS ports, and then the location of the CSI-RS port is transmitted through the transceiver 503 together with the transmission mode.
  • the user equipment transmits to the user equipment according to the transmission mode and the location of the CSI-RS port, where the location of the CSI-RS port is the location of the time-frequency resource occupied by the CSI-RS port.
  • the processor 501 may detect the location of the user equipment in the cell by:
  • the processor 501 detects a spectrum efficiency of the user equipment
  • the spectrum efficiency of the user equipment is greater than the first threshold, determining that the user equipment is in the central area; or determining that the user equipment is in the edge area when the spectrum efficiency of the user equipment is less than or equal to the first threshold.
  • the processor 501 can detect the spectrum efficiency of the user equipment by:
  • the processor 501 acquires the channel quality sent by the user equipment by using the transceiver 503.
  • the channel efficiency is used to calculate the spectral efficiency of the user equipment.
  • the processor 501 can detect the location of the user equipment in the cell by:
  • the processor 501 detects a proportion of the total transmission duration of the user equipment in the single-stream mode transmission;
  • the user device is in the central area.
  • the user equipment when the user equipment works in the N-port transmission mode, the user equipment can work in a single-flow mode and a multi-stream mode, and the user equipment selects the single-flow mode or the multi-flow mode according to the following: the single-flow mode is calculated according to the SINR value.
  • the single-flow mode is calculated according to the SINR value.
  • the spectrum efficiency of the single-stream mode select the mode with higher spectral efficiency as the current working mode.
  • the SINR value of the edge region is low.
  • the spectrum efficiency of the single-stream mode is higher than that of the multi-stream mode.
  • the proportion of the user equipment in the single-stream mode is higher than the second threshold, it indicates that it is in the cell edge region, otherwise it is at the center. region.
  • the processor 501 can detect the proportion of the total transmission duration of the user equipment in single stream mode transmission by:
  • the processor 501 records the transmission duration of the user equipment using the single stream mode during transmission;
  • the total transmission duration may be a set value. For example, when detecting the transmission duration using the single stream mode, a detection period may be determined, and the transmission duration using the single stream mode is detected during the period, and the period is the total transmission. duration.
  • the processor 501 is further configured to configure, when the user equipment accesses the cell, the transmission mode of the user equipment to a 1-port transmission mode.
  • the embodiment of the present invention detects that the location of the user equipment in the cell is the central area or the edge area.
  • the transmission mode of the user equipment is switched to the N-port transmission mode.
  • the device is configured with N CSI-RS ports.
  • the transmission mode of the user equipment is switched to 1.
  • the port transmission mode so that the user equipment in the central area transmits data by using the N-port transmission mode to obtain spatial multiplexing gain of multiple antennas; the user equipment in the edge area transmits data by using the 1-port transmission mode to reduce transmission pilot interference. .
  • the base station provided by the foregoing embodiment switches the transmission mode
  • only the division of each functional module is used as an example.
  • the foregoing function allocation may be completed by different functional modules, that is, the device.
  • the internal structure is divided into different functional modules to perform all or part of the functions described above.
  • the base station and the transmission mode switching method embodiment provided by the foregoing embodiments are in the same concept, and the specific implementation process is described in detail in the method embodiment, and details are not described herein again.
  • a person skilled in the art may understand that all or part of the steps of implementing the above embodiments may be completed by hardware, or may be instructed by a program to execute related hardware, and the program may be stored in a computer readable storage medium.
  • the storage medium mentioned may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种传输模式切换方法及基站,属于通信领域。所述方法包括:基站获取用户设备当前的传输模式,传输模式包括1端口传输模式与N端口传输模式,N的数量与用户设备所在小区的天线数量相等;基站检测用户设备在小区中的位置,位置包括中心区域和边缘区域;当用户设备当前工作在1端口传输模式,且用户设备处于中心区域时,基站将用户设备的传输模式切换至N端口传输模式,为用户设备配置N个CSI-RS端口,并将N端口传输模式和N个CSI-RS端口通知给用户设备;或者,当用户设备当前工作在N端口传输模式,且用户设备处于边缘区域时,基站将用户设备的传输模式切换至1端口传输模式,并将1端口传输模式通知给用户设备。

Description

传输模式切换方法及基站 技术领域
本发明涉及通信领域,特别涉及一种传输模式切换方法及基站。
背景技术
随着移动用户数量的逐渐增长,移动通信业务量日益升级,第三代合作伙伴计划(英文:3rd Generation Partnership Project,简称:3GPP)为了适应现实技术需要,提出了长期演进(英文:Long Term Evolution,简称:LTE)系统,将其作为未来移动通信的标准。在LTE系统的标准协议中规定了LTE系统的物理下行共享信道(英文:Physical Downlink Shared Channel,简称:PDSCH)可采用的多种传输模式(标记为TM,包含TM1~TM9),而每种传输模式所采用的MIMO方式也不相同,并且有的传输模式还包括多种MIMO方式。例如,TM1为单端口MIMO方式;TM3既可以采用传输分集MIMO方式,也可以采用空间复用MIMO方式进行传输。其中,空间复用是一种为了提高传输数据数量,基于多码字同时传输的技术,即多个相互独立的数据流通过映射到不同的层,再由不同的天线发送出去,TM3中的空间复用MIMO方式采用2端口进行传输。
对于普通小区双天线组网场景而言,用户设备在采用2端口TM3模式进行传输时,可以采用单流和双流两种方式工作。具体地,用户设备首先检测信号与干扰加噪声比(英文:Signal to Interference plus Noise Ratio,简称:SINR),然后根据SINR分别计算采用单流方式和双流方式进行传输的频谱效率,选择频谱效率高的进行传输。而通常中心区域的SINR值较高,边缘区域SINR值较低,因此,当用户设备处于中心区域时,通常会采用双流方式工作,而处于边缘区域时通常会采用单流方式工作。
与采用TM1模式进行传输相比,处于小区中心的用户设备能获得2端口TM3模式带来的空间复用增益,传输性能高于TM1模式。而处于小区边缘的用户采用2端口TM3进行传输性能要低于TM1模式,因为小区边缘在2端口 TM3模式下采用单流模式工作,传输效率与TM1相近,但却需要使用两个小区参考信号(英文:Cell Reference Signal,简称:CRS)端口作为导频端口,相比于TM1只需要一个CRS端口而言,其产生的导频干扰大于TM1模式。
在实现本发明的过程中,发明人发现现有技术至少存在以下问题:
由于在确定了小区的传输模式后,小区的CRS端口数是固定的,比如当小区的传输模式为TM1时配置1个CRS端口,或者小区的传输模式为TM3时配置2个CRS端口,所以在小区内不能同时配置1端口TM1模式和2端口TM3模式,而只能配置其中一种,使得无论使用哪种模式都无法使小区中心区域和边缘区域的用户设备同时达到最佳传输性能。
发明内容
为了解决现有技术的问题,本发明实施例提供了一种传输模式切换方法及基站。所述技术方案如下:
一方面,本发明实施例提供了一种传输模式切换方法,所述方法包括:
基站获取用户设备当前的传输模式,所述传输模式包括1端口传输模式与N端口传输模式,其中,对于所述N端口传输模式,所述基站为所述用户设备配置有N个信号状态信息参考信号CSI-RS端口,其中,N为2、4或8,且N的数量与所述用户设备所在小区的天线数量相等;
所述基站检测所述用户设备在所述小区中的位置,所述位置包括中心区域和边缘区域;
当所述用户设备当前工作在所述1端口传输模式,且所述用户设备处于所述中心区域时,所述基站将所述用户设备的传输模式切换至所述N端口传输模式,为所述用户设备配置N个CSI-RS端口,并将所述N端口传输模式和所述N个CSI-RS端口通知给所述用户设备;或者,
当所述用户设备当前工作在所述N端口传输模式,且所述用户设备处于所述边缘区域时,所述基站将所述用户设备的传输模式切换至所述1端口传输模式,并将所述1端口传输模式通知给所述用户设备。
在本发明实施例的一种实现方式中,所述检测所述用户设备在所述小区中的位置,包括:
检测所述用户设备的频谱效率;
当所述用户设备的频谱效率大于第一门限值时,确定所述用户设备处于所 述中心区域;或者,
当所述用户设备的频谱效率小于或等于所述第一门限值时,确定所述用户设备处于所述边缘区域。
在本发明实施例的另一种实现方式中,所述检测所述用户设备的频谱效率,包括:
获取所述用户设备发送的信道质量;
根据所述信道质量计算所述用户设备的频谱效率。
在本发明实施例的另一种实现方式中,所述检测所述用户设备在所述小区中的位置,包括:
当所述用户设备当前工作在所述N端口传输模式时,检测所述用户设备采用单流模式传输在总传输时长中所占比例;
当所述用户设备采用单流模式传输所占比例大于第二门限值时,确定所述用户设备处于所述边缘区域;或者,
当所述用户设备采用单流模式传输所占比例小于或等于所述第二门限值时,确定所述用户设备处于所述中心区域。
在本发明实施例的另一种实现方式中,所述检测所述用户设备采用单流模式传输在总传输时长中所占比例,包括:
记录所述用户设备在传输过程中使用单流模式的传输时长;
计算所述单流模式的传输时长占所述总传输时长的比例,得到所述用户设备采用单流模式传输在总传输时长中所占比例。
在本发明实施例的另一种实现方式中,所述方法还包括:
当所述用户设备接入小区时,将所述用户设备的传输模式配置为所述1端口传输模式。
另一方面,本发明实施例还提供了一种基站,所述基站包括:
收发模块,用于与用户设备进行通信;
获取模块,用于获取所述用户设备当前的传输模式,所述传输模式包括1端口传输模式与N端口传输模式,其中,对于所述N端口传输模式,所述用户设备配置有N个信号状态信息参考信号CSI-RS端口,其中,N为2、4或8,且N的数量与所述用户设备所在小区的天线数量相等;
检测模块,用于检测所述用户设备在所述小区中的位置,所述位置包括中 心区域和边缘区域;
处理模块,用于当所述用户设备当前工作在所述1端口传输模式,且所述用户设备处于所述中心区域时,将所述用户设备的传输模式切换至所述N端口传输模式,为所述用户设备配置N个CSI-RS端口,并通过所述收发模块将所述N端口传输模式和所述N个CSI-RS端口通知给所述用户设备;或者,
当所述用户设备当前工作在所述N端口传输模式,且所述用户设备处于所述边缘区域时,将所述用户设备的传输模式切换至所述1端口传输模式,并通过所述收发模块将所述1端口传输模式通知给所述用户设备。
在本发明实施例的一种实现方式中,所述检测模块包括:
第一检测单元,用于检测所述用户设备的频谱效率;
第一确定单元,用于当所述用户设备的频谱效率大于第一门限值时,确定所述用户设备处于所述中心区域;或者,
当所述用户设备的频谱效率小于或等于所述第一门限值时,确定所述用户设备处于所述边缘区域。
在本发明实施例的另一种实现方式中,所述第一检测单元包括:
获取子单元,用于通过所述收发模块获取所述用户设备发送的信道质量;
第一计算子单元,用于根据所述信道质量计算所述用户设备的频谱效率。
在本发明实施例的另一种实现方式中,所述检测模块包括:
第二检测单元,用于当所述用户设备当前工作在所述N端口传输模式时,检测所述用户设备采用单流模式传输在总传输时长中所占比例;
第二确定单元,用于当所述用户设备采用单流模式传输所占比例大于第二门限值时,确定所述用户设备处于所述边缘区域;或者,
当所述用户设备采用单流模式传输所占比例小于或等于所述第二门限值时,确定所述用户设备处于所述中心区域。
在本发明实施例的另一种实现方式中,所述第二检测单元包括:
记录子单元,用于记录所述用户设备在传输过程中使用单流模式的传输时长;
第二计算子单元,用于计算所述单流模式的传输时长占所述总传输时长的比例,得到所述用户设备采用单流模式传输在总传输时长中所占比例。
在本发明实施例的另一种实现方式中,所述处理模块,还用于当所述用户设备接入小区时,将所述用户设备的传输模式配置为所述1端口传输模式。
本发明实施例提供的技术方案带来的有益效果是:
通过用户设备在所述小区中的位置为中心区域或者边缘区域,当用户设备工作在1端口传输模式且处于中心区域时,将用户设备的传输模式切换至N端口传输模式,为用户设备配置N个CSI-RS端口,当用户设备工作在N端口传输模式且处在边缘区域时,将用户设备的传输模式切换至1端口传输模式,从而使得处在中心区域的用户设备采用N端口传输模式传输数据,获得多天线的空间复用增益;处在边缘区域的用户设备采用1端口传输模式传输数据,减少传输导频干扰。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的应用场景图;
图2是本发明实施例一提供的传输模式切换方法流程图;
图3是本发明实施例二提供的传输模式切换方法流程图;
图4是本发明实施例三提供的基站的结构示意图;
图5是本发明实施例四提供的基站的结构示意图;
图6是本发明实施例五提供的基站的结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
为了便于实施例的描述,下面先简单介绍一下本发明实施例的应用场景。参见图1,该场景为多天线普通小区,天线数量可以是2、4和8,小区10包括中心区域20和边缘区域30。在背景技术中已经指出:在中心区域20采用N端口传输模式可以使用户设备获得多天线的空间复用增益,在边缘区域30采用1端口传输模式可以减少导频干扰。所以为了能够使传输效率最大化,需要设计一种传输方案:使用户设备在中心区域时采用最大数量端口传输模式进行数据传输,而在边缘区域时采用1端口传输模式进行数据传输。具体方案见下 述实施例。
为方便描述,本发明实施例以LTE系统为例进行描述。本发明实施例提供的方法可以用于不同的制式的无线网络中,例如:LTE系统或LTE的后续演进系统等。LTE系统的基站为演进基站(evolved NodeB,eNodeB)。
本发明实施例提供了一种传输模式切换方法,参见图2,该方法包括:
步骤101:基站获取用户设备当前的传输模式,传输模式包括1端口传输模式与N端口传输模式,其中,对于N端口传输模式,基站为用户设备配置有N个信号状态信息参考信号CSI-RS端口,N为2、4或8,且N的数量与用户设备所在小区的天线数量相等。
其中,1端口传输模式可以采用传输模式1,N端口模式可以采用传输模式9实现。在传输模式1时,用户设备采用1个CRS端口进行信道质量检测,然后根据信道质量确定编码方式等信息,进而进行数据传输;在N端口传输模式9时,用户设备采用N个信号状态信息参考信号(英文:Channel State Information-Reference Signal,简称:CSI-RS)端口进行信道质量检测,然后根据信道质量确定编码方式等信息,同时配置1个CRS端口,该CRS端口的作用是发送小区广播,用户设备可以根据该小区广播进行下行信号强度测量。
CRS端口为小区级端口,小区内的所有用户设备均配置相同CRS端口;CSI-RS端口为用户级端口,基站可以分别为小区内每个用户设备可以配置不同的CSI-RS端口。
因此,在本实施例中,为了实现处在中心区域的用户设备采用N端口传输模式进行传输,处在边缘区域的用户设备采用1端口传输模式进行传输,基站将新接入小区的用户设备配置为传输模式1,在传输模式1下配置1个小区级端口:CRS端口;然后检测用户设备的位置,如果用户设备处在中心区域,则将用户设备传输模式切换至传输模式9,且在CRS端口不变的情况下,配置N个用户级端口:CSI-RS端口。
步骤102:基站检测用户设备在小区中的位置,位置包括中心区域和边缘区域。
步骤103:当用户设备当前工作在1端口传输模式,且用户设备处于中心区域时,基站将用户设备的传输模式切换至N端口传输模式,为用户设备配置N个CSI-RS端口,并将N端口传输模式和N个CSI-RS端口通知给用户设备; 或者,当用户设备当前工作在N端口传输模式,且用户设备处于边缘区域时,基站将用户设备的传输模式切换至1端口传输模式,并将1端口传输模式通知给用户设备。
具体地,当基站将用户设备的传输模式切换至N端口传输模式时,首先为用户设备分配N个CSI-RS端口,然后将该CSI-RS端口的位置与传输模式一起通过信息发送给用户设备,用户设备根据传输模式和CSI-RS端口的位置进行传输,其中CSI-RS端口的位置即该CSI-RS端口所占用的时频资源的位置。
而当基站将用户设备的传输模式切换至1端口传输模式时,则只需将传输模式发送给用户设备即可。
本发明实施例通过检测用户设备在小区中的位置为中心区域或者边缘区域,当用户设备工作在1端口传输模式且处于中心区域时,将用户设备的传输模式切换至N端口传输模式,为用户设备配置N个CSI-RS端口,当用户设备工作在N端口传输模式且处在边缘区域时,将用户设备的传输模式切换至1端口传输模式,从而使得处在中心区域的用户设备采用N端口传输模式传输数据,获得多天线的空间复用增益;处在边缘区域的用户设备采用1端口传输模式传输数据,减少传输导频干扰。
本发明实施例提供了一种传输模式切换方法,参见图3,该方法包括:
步骤201:基站获取用户设备当前的传输模式,传输模式包括1端口传输模式与N端口传输模式,其中,对于N端口传输模式,基站为用户设备配置有N个信号状态信息参考信号CSI-RS端口,N为2、4或8,且N的数量与用户设备所在小区的天线数量相等。
其中,1端口传输模式可以采用传输模式1,N端口模式可以采用传输模式9实现。在传输模式1下,用户设备采用1个CRS端口进行信道质量检测,然后根据信道质量确定编码方式等信息,进而进行数据传输;在N端口传输模式9采用N个CSI-RS端口进行信道质量检测,然后根据信道质量确定编码方式等信息,同时配置1个CRS端口,该CRS端口的作用是发送小区广播,用户设备可以根据该小区广播进行下行信号强度测量。
因此,在本实施例中,为了实现处在中心区域的用户设备采用N端口传输模式进行传输,处在边缘区域的用户设备采用1端口传输模式进行传输,基站将新接入小区的用户设备配置为传输模式1,在传输模式1下配置1个小区级 端口:CRS端口;然后检测用户设备的位置,如果用户设备处在中心区域,则将用户设备传输模式切换至传输模式9,且在CRS端口不变的情况下,配置N个用户级端口:CSI-RS端口。其中,小区级端口和用户级端口由基站根据传输模式为用户设备配置,小区级端口是指小区内的用户设备需要进行相同配置,而用户级端口是指基站可以为每个用户分别进行不同配置的端口。
即当用户设备接入小区时,将用户设备的传输模式配置为1端口传输模式。
步骤202:基站检测用户设备的频谱效率。
具体地,步骤202可以采用下述方式进行:
基站获取用户设备发送的信道质量;
基站根据信道质量计算用户设备的频谱效率。
步骤203:当用户设备的频谱效率大于第一门限值时,基站确定用户设备处于中心区域;或者,当用户设备的频谱效率小于或等于第一门限值时,基站确定用户设备处于边缘区域。
进一步地,当用户设备当前工作在N端口传输模式时,步骤202和步骤203还可以采用下述方法进行:
基站检测用户设备采用单流模式传输在总传输时长中所占比例;
当用户设备采用单流模式传输所占比例大于第二门限值时,基站确定用户设备处于边缘区域;或者,当用户设备采用单流模式传输所占比例小于或等于第二门限值时,基站确定用户设备处于中心区域。
但当用户工作在1端口传输模式时,由于只会工作在单流,因此无法采用此方式确定用户设备当前所处位置。
具体地,当用户设备工作在N端口传输模式下时,用户设备可以采用单流和多流模式工作,用户设备选择单流模式或多流模式的依据是:根据SINR值分别计算采用单流模式和多流模式工作时的频谱效率,选择频谱效率较高的模式作为当前的工作模式。边缘区域SINR值低,采用单流模式频谱效率高于多流模式,当用户设备采用单流模式传输所占比例高于第二门限值时,说明其处在小区边缘区域,反之则处于中心区域。
其中,检测用户设备采用单流模式传输在总传输时长中所占比例,包括:
基站记录用户设备在传输过程中使用单流模式的传输时长;
基站计算单流模式的传输时长占总传输时长的比例,得到用户设备采用单流模式传输在总传输时长中所占比例。
其中,总传输时长可以是一个设定值,比如在检测使用单流模式的传输时长时,可以确定一个检测的周期,在该周期内检测使用单流模式的传输时长,该周期即为总传输时长。
步骤204:当用户设备当前工作在1端口传输模式,且用户设备处于中心区域时,基站将用户设备的传输模式切换至N端口传输模式,为用户设备配置N个CSI-RS端口,并将N端口传输模式和N个CSI-RS端口通知给用户设备;或者,当用户设备当前工作在N端口传输模式,且用户设备处于边缘区域时,基站将用户设备的传输模式切换至1端口传输模式,并将1端口传输模式通知给用户设备。
具体地,当基站将用户设备的传输模式切换至N端口传输模式时,首先为用户设备分配N个CSI-RS端口,然后将该CSI-RS端口的位置与传输模式一起通过信息发送给用户设备,用户设备根据传输模式和CSI-RS端口的位置进行传输,其中CSI-RS端口的位置即该CSI-RS端口所占用的时频资源的位置。
而当基站将用户设备的传输模式切换至1端口传输模式时,则只需将传输模式发送给用户设备即可。
本发明实施例通过检测用户设备在小区中的位置为中心区域或者边缘区域,当用户设备工作在1端口传输模式且处于中心区域时,将用户设备的传输模式切换至N端口传输模式,为用户设备配置N个CSI-RS端口,当用户设备工作在N端口传输模式且处在边缘区域时,将用户设备的传输模式切换至1端口传输模式,从而使得处在中心区域的用户设备采用N端口传输模式传输数据,获得多天线的空间复用增益;处在边缘区域的用户设备采用1端口传输模式传输数据,减少传输导频干扰。
本发明实施例提供了一种基站,参见图4,该基站包括:
收发模块300,用于与用户设备进行通信;
获取模块301,用于获取用户设备当前的传输模式,传输模式包括1端口传输模式与N端口传输模式,其中,对于N端口传输模式,用户设备配置有N个信号状态信息参考信号CSI-RS端口,N为2、4或8,且N的数量与用户设备所在小区的天线数量相等。
其中,1端口传输模式可以采用传输模式1,N端口模式可以采用传输模式9实现。在传输模式1时,用户设备采用1个CRS端口进行信道质量检测, 然后根据信道质量确定编码方式等信息,进而进行数据传输;在N端口传输模式9时,用户设备采用N个CSI-RS端口进行信道质量检测,然后根据信道质量确定编码方式等信息,同时配置1个CRS端口,该CRS端口的作用是发送小区广播,用户设备可以根据该小区广播进行下行信号强度测量。
CRS端口为小区级端口,小区内的所有用户设备均配置相同CRS端口;CSI-RS端口为用户级端口,基站可以分别为小区内每个用户设备可以配置不同的CSI-RS端口。
因此,在本实施例中,为了实现处在中心区域的用户设备采用N端口传输模式进行传输,处在边缘区域的用户设备采用1端口传输模式进行传输,基站将新接入小区的用户设备配置为传输模式1,在传输模式1下配置1个小区级端口:CRS端口;然后检测用户设备的位置,如果用户设备处在中心区域,则将用户设备传输模式切换至传输模式9,且在CRS端口不变的情况下,配置N个用户级端口:CSI-RS端口。
检测模块302,用于检测用户设备在小区中的位置,位置包括中心区域和边缘区域。
处理模块303,用于当用户设备当前工作在1端口传输模式,且用户设备处于中心区域时,将用户设备的传输模式切换至N端口传输模式,为用户设备配置N个CSI-RS端口,并通过收发模块300将N端口传输模式和N个CSI-RS端口通知给用户设备;或者,当用户设备当前工作在N端口传输模式,且用户设备处于边缘区域时,将用户设备的传输模式切换至1端口传输模式,并通过收发模块300将1端口传输模式通知给用户设备。
具体地,当基站将用户设备的传输模式切换至N端口传输模式时,首先为用户设备分配N个CSI-RS端口,然后将该CSI-RS端口的位置与传输模式一起通过信息发送给用户设备,用户设备根据传输模式和CSI-RS端口的位置进行传输,其中CSI-RS端口的位置即该CSI-RS端口所占用的时频资源的位置。
而当基站将用户设备的传输模式切换至1端口传输模式时,则只需将传输模式发送给用户设备即可。
本发明实施例通过检测用户设备在小区中的位置为中心区域或者边缘区域,当用户设备工作在1端口传输模式且处于中心区域时,将用户设备的传输模式切换至N端口传输模式,为用户设备配置N个CSI-RS端口,当用户设备工作在N端口传输模式且处在边缘区域时,将用户设备的传输模式切换至1 端口传输模式,从而使得处在中心区域的用户设备采用N端口传输模式传输数据,获得多天线的空间复用增益;处在边缘区域的用户设备采用1端口传输模式传输数据,减少传输导频干扰。
本发明实施例提供了一种基站,参见图5,该基站包括:
收发模块400,用于与用户设备进行通信;
获取模块401,用于获取用户设备当前的传输模式,传输模式包括1端口传输模式与N端口传输模式,其中,对于N端口传输模式,用户设备配置有N个信号状态信息参考信号CSI-RS端口,N为2、4或8,且N的数量与用户设备所在小区的天线数量相等。
其中,1端口传输模式可以采用传输模式1,N端口模式可以采用传输模式9实现。在传输模式1时,用户设备采用1个CRS端口进行信道质量检测,然后根据信道质量确定编码方式等信息,进而进行数据传输;在N端口传输模式9时,用户设备采用N个CSI-RS端口进行信道质量检测,然后根据信道质量确定编码方式等信息,同时配置1个CRS端口,该CRS端口的作用是发送小区广播,用户设备可以根据该小区广播进行下行信号强度测量。
CRS端口为小区级端口,小区内的所有用户设备均配置相同CRS端口;CSI-RS端口为用户级端口,基站可以分别为小区内每个用户设备可以配置不同的CSI-RS端口。
因此,在本实施例中,为了实现处在中心区域的用户设备采用N端口传输模式进行传输,处在边缘区域的用户设备采用1端口传输模式进行传输,基站将新接入小区的用户设备配置为传输模式1,在传输模式1下配置1个小区级端口:CRS端口;然后检测用户设备的位置,如果用户设备处在中心区域,则将用户设备传输模式切换至传输模式9,且在CRS端口不变的情况下,配置N个用户级端口:CSI-RS端口。
检测模块402,用于检测用户设备在小区中的位置,位置包括中心区域和边缘区域。
处理模块403,用于当用户设备当前工作在1端口传输模式,且用户设备处于中心区域时,将用户设备的传输模式切换至N端口传输模式,为用户设备配置N个CSI-RS端口,并通过收发模块400将N端口传输模式和N个CSI-RS端口通知给用户设备;或者,当用户设备当前工作在N端口传输模式,且用户 设备处于边缘区域时,将用户设备的传输模式切换至1端口传输模式,并通过收发模块400将1端口传输模式通知给用户设备。
具体地,当基站将用户设备的传输模式切换至N端口传输模式时,首先为用户设备分配N个CSI-RS端口,然后通过收发模块400将该CSI-RS端口的位置与传输模式一起发送给用户设备,用户设备根据传输模式和CSI-RS端口的位置进行传输,其中CSI-RS端口的位置即该CSI-RS端口所占用的时频资源的位置。
而当基站将用户设备的传输模式切换至1端口传输模式时,则只需将传输模式发送给用户设备即可。
在本发明实施例的一种实现方式中,检测模块402可以包括:
第一检测单元4021,用于检测用户设备的频谱效率;
第一确定单元4022,用于当用户设备的频谱效率大于第一门限值时,确定用户设备处于中心区域;或者,当用户设备的频谱效率小于或等于第一门限值时,确定用户设备处于边缘区域。
具体地,第一检测单元4021可以包括:
获取子单元,用于通过收发模块400获取用户设备发送的信道质量;
第一计算子单元,用于采用信道质量计算用户设备的频谱效率。
在本发明实施例的另一种实现方式中,检测模块402可以包括:
第二检测单元,用于当用户设备当前工作在N端口传输模式时,检测用户设备采用单流模式传输在总传输时长中所占比例;
第二确定单元,用于当用户设备采用单流模式传输所占比例大于第二门限值时,确定用户设备处于边缘区域;或者,当用户设备采用单流模式传输所占比例小于或等于第二门限值时,确定用户设备处于中心区域。
但当用户工作在1端口传输模式时,由于只会工作在单流,因此无法采用此方式确定用户设备当前所处位置。
具体地,当用户设备工作在N端口传输模式下时,用户设备可以采用单流和多流模式工作,用户设备选择单流模式或多流模式的依据是:根据SINR值分别计算采用单流模式和多流模式工作时的频谱效率,选择频谱效率较高的模式作为当前的工作模式。边缘区域SINR值低,采用单流模式频谱效率高于多流模式,当用户设备采用单流模式传输所占比例高于第二门限值时,说明其处在小区边缘区域,反之则处于中心区域。
具体地,第二检测单元可以包括:
记录子单元,用于记录用户设备在传输过程中使用单流模式的传输时长;
第二计算子单元,用于计算单流模式的传输时长占总传输时长的比例,得到用户设备采用单流模式传输在总传输时长中所占比例。
其中,总传输时长可以是一个设定值,比如在检测使用单流模式的传输时长时,可以确定一个检测的周期,在该周期内检测使用单流模式的传输时长,该周期即为总传输时长。
进一步地,处理模块403,还用于当用户设备接入小区时,将用户设备的传输模式配置为1端口传输模式。
本发明实施例通过检测用户设备在小区中的位置为中心区域或者边缘区域,当用户设备工作在1端口传输模式且处于中心区域时,将用户设备的传输模式切换至N端口传输模式,为用户设备配置N个CSI-RS端口,当用户设备工作在N端口传输模式且处在边缘区域时,将用户设备的传输模式切换至1端口传输模式,从而使得处在中心区域的用户设备采用N端口传输模式传输数据,获得多天线的空间复用增益;处在边缘区域的用户设备采用1端口传输模式传输数据,减少传输导频干扰。
本发明实施例提供了一种基站,参见图6,该基站包括:处理器501、存储器502、收发器503和总线;存储器502用于存储计算机执行指令,处理器501与存储器502通过总线连接,当基站运行时,处理器501执行存储器502存储的计算机执行指令,以使基站执行如图1或图2所述的传输模式切换方法。
具体地,处理器501用于获取用户设备当前的传输模式,传输模式包括1端口传输模式与N端口传输模式,其中,对于N端口传输模式,用户设备配置有N个信号状态信息参考信号CSI-RS端口,N为2、4或8,且N的数量与用户设备所在小区的天线数量相等。
其中,1端口传输模式可以采用传输模式1,N端口模式可以采用传输模式9实现。在传输模式1时,用户设备采用1个CRS端口进行信道质量检测,然后根据信道质量确定编码方式等信息,进而进行数据传输;在N端口传输模式9时,用户设备采用N个CSI-RS端口进行信道质量检测,然后根据信道质量确定编码方式等信息,同时配置1个CRS端口,该CRS端口的作用是发送小区广播,用户设备可以根据该小区广播进行下行信号强度测量。
CRS端口为小区级端口,小区内的所有用户设备均配置相同CRS端口;CSI-RS端口为用户级端口,基站可以分别为小区内每个用户设备可以配置不同的CSI-RS端口。
因此,在本实施例中,为了实现处在中心区域的用户设备采用N端口传输模式进行传输,处在边缘区域的用户设备采用1端口传输模式进行传输,基站将新接入小区的用户设备配置为传输模式1,在传输模式1下配置1个小区级端口:CRS端口;然后检测用户设备的位置,如果用户设备处在中心区域,则将用户设备传输模式切换至传输模式9,且在CRS端口不变的情况下,配置N个用户级端口:CSI-RS端口。
处理器501,还用于检测用户设备在小区中的位置,位置包括中心区域和边缘区域。
处理器501,还用于当用户设备当前工作在1端口传输模式,且用户设备处于中心区域时,将用户设备的传输模式切换至N端口传输模式,为用户设备配置N个CSI-RS端口,并通过收发器503将N端口传输模式和N个CSI-RS端口通知给用户设备;或者,当用户设备当前工作在N端口传输模式,且用户设备处于边缘区域时,将用户设备的传输模式切换至1端口传输模式,并通过收发器503将1端口传输模式通知给用户设备。
具体地,当处理器501将用户设备的传输模式切换至N端口传输模式时,首先为用户设备分配N个CSI-RS端口,然后通过收发器503将该CSI-RS端口的位置与传输模式一起发送给用户设备,用户设备根据传输模式和CSI-RS端口的位置进行传输,其中CSI-RS端口的位置即该CSI-RS端口所占用的时频资源的位置。
而当处理器501将用户设备的传输模式切换至1端口传输模式时,则只需将传输模式发送给用户设备即可。
在本发明实施例的一种实现方式中,处理器501可以通过以下方式检测用户设备在小区中的位置:
处理器501检测用户设备的频谱效率;
当用户设备的频谱效率大于第一门限值时,确定用户设备处于中心区域;或者,当用户设备的频谱效率小于或等于第一门限值时,确定用户设备处于边缘区域。
具体地,处理器501可以通过以下方式检测用户设备的频谱效率:
处理器501通过收发器503获取用户设备发送的信道质量;
采用信道质量计算用户设备的频谱效率。
在本发明实施例的另一种实现方式中,处理器501可以通过以下方式检测用户设备在小区中的位置:
当用户设备当前工作在N端口传输模式时,处理器501检测用户设备采用单流模式传输在总传输时长中所占比例;
当用户设备采用单流模式传输所占比例大于第二门限值时,确定用户设备处于边缘区域;或者,当用户设备采用单流模式传输所占比例小于或等于第二门限值时,确定用户设备处于中心区域。
但当用户工作在1端口传输模式时,由于只会工作在单流,因此无法采用此方式确定用户设备当前所处位置。
具体地,当用户设备工作在N端口传输模式下时,用户设备可以采用单流和多流模式工作,用户设备选择单流模式或多流模式的依据是:根据SINR值分别计算采用单流模式和多流模式工作时的频谱效率,选择频谱效率较高的模式作为当前的工作模式。边缘区域SINR值低,采用单流模式频谱效率高于多流模式,当用户设备采用单流模式传输所占比例高于第二门限值时,说明其处在小区边缘区域,反之则处于中心区域。
具体地,处理器501可以通过以下方式检测用户设备采用单流模式传输在总传输时长中所占比例:
处理器501记录用户设备在传输过程中使用单流模式的传输时长;
计算单流模式的传输时长占总传输时长的比例,得到用户设备采用单流模式传输在总传输时长中所占比例。
其中,总传输时长可以是一个设定值,比如在检测使用单流模式的传输时长时,可以确定一个检测的周期,在该周期内检测使用单流模式的传输时长,该周期即为总传输时长。
进一步地,处理器501,还用于当用户设备接入小区时,将用户设备的传输模式配置为1端口传输模式。
本发明实施例通过检测用户设备在小区中的位置为中心区域或者边缘区域,当用户设备工作在1端口传输模式且处于中心区域时,将用户设备的传输模式切换至N端口传输模式,为用户设备配置N个CSI-RS端口,当用户设备工作在N端口传输模式且处在边缘区域时,将用户设备的传输模式切换至1 端口传输模式,从而使得处在中心区域的用户设备采用N端口传输模式传输数据,获得多天线的空间复用增益;处在边缘区域的用户设备采用1端口传输模式传输数据,减少传输导频干扰。
需要说明的是:上述实施例提供的基站在切换传输模式时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将设备的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的基站与传输模式切换方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (12)

  1. 一种传输模式切换方法,其特征在于,所述方法包括:
    基站获取用户设备当前的传输模式,所述传输模式包括1端口传输模式与N端口传输模式,其中,对于所述N端口传输模式,所述基站为所述用户设备配置有N个信号状态信息参考信号CSI-RS端口,其中,N为2、4或8,且N的数量与所述用户设备所在小区的天线数量相等;
    所述基站检测所述用户设备在所述小区中的位置,所述位置包括中心区域和边缘区域;
    当所述用户设备当前工作在所述1端口传输模式,且所述用户设备处于所述中心区域时,所述基站将所述用户设备的传输模式切换至所述N端口传输模式,为所述用户设备配置N个CSI-RS端口,并将所述N端口传输模式和所述N个CSI-RS端口通知给所述用户设备;或者,
    当所述用户设备当前工作在所述N端口传输模式,且所述用户设备处于所述边缘区域时,所述基站将所述用户设备的传输模式切换至所述1端口传输模式,并将所述1端口传输模式通知给所述用户设备。
  2. 根据权利要求1所述的方法,其特征在于,所述检测所述用户设备在所述小区中的位置,包括:
    检测所述用户设备的频谱效率;
    当所述用户设备的频谱效率大于第一门限值时,确定所述用户设备处于所述中心区域;或者,
    当所述用户设备的频谱效率小于或等于所述第一门限值时,确定所述用户设备处于所述边缘区域。
  3. 根据权利要求2所述的方法,其特征在于,所述检测所述用户设备的频谱效率,包括:
    获取所述用户设备发送的信道质量;
    根据所述信道质量计算所述用户设备的频谱效率。
  4. 根据权利要求1所述的方法,其特征在于,所述检测所述用户设备在所述小区中的位置,包括:
    当所述用户设备当前工作在所述N端口传输模式时,检测所述用户设备采用单流模式传输在总传输时长中所占比例;
    当所述用户设备采用单流模式传输所占比例大于第二门限值时,确定所述用户设备处于所述边缘区域;或者,
    当所述用户设备采用单流模式传输所占比例小于或等于所述第二门限值时,确定所述用户设备处于所述中心区域。
  5. 根据权利要求4所述的方法,其特征在于,所述检测所述用户设备采用单流模式传输在总传输时长中所占比例,包括:
    记录所述用户设备在传输过程中使用单流模式的传输时长;
    计算所述单流模式的传输时长占所述总传输时长的比例,得到所述用户设备采用单流模式传输在总传输时长中所占比例。
  6. 根据权利要求1~5任一项所述的方法,其特征在于,所述方法还包括:
    当所述用户设备接入小区时,将所述用户设备的传输模式配置为所述1端口传输模式。
  7. 一种基站,其特征在于,所述基站包括:
    收发模块,用于与用户设备进行通信;
    获取模块,用于获取所述用户设备当前的传输模式,所述传输模式包括1端口传输模式与N端口传输模式,其中,对于所述N端口传输模式,所述用户设备配置有N个信号状态信息参考信号CSI-RS端口,其中,N为2、4或8,且N的数量与所述用户设备所在小区的天线数量相等;
    检测模块,用于检测所述用户设备在所述小区中的位置,所述位置包括中心区域和边缘区域;
    处理模块,用于当所述用户设备当前工作在所述1端口传输模式,且所述用户设备处于所述中心区域时,将所述用户设备的传输模式切换至所述N端口传输模式,为所述用户设备配置N个CSI-RS端口,并通过所述收发模块将所述N端口传输模式和所述N个CSI-RS端口通知给所述用户设备;或者,
    当所述用户设备当前工作在所述N端口传输模式,且所述用户设备处于所述边缘区域时,将所述用户设备的传输模式切换至所述1端口传输模式,并通过所述收发模块将所述1端口传输模式通知给所述用户设备。
  8. 根据权利要求7所述的基站,其特征在于,所述检测模块包括:
    第一检测单元,用于检测所述用户设备的频谱效率;
    第一确定单元,用于当所述用户设备的频谱效率大于第一门限值时,确定 所述用户设备处于所述中心区域;或者,
    当所述用户设备的频谱效率小于或等于所述第一门限值时,确定所述用户设备处于所述边缘区域。
  9. 根据权利要求8所述的基站,其特征在于,所述第一检测单元包括:
    获取子单元,用于通过所述收发模块获取所述用户设备发送的信道质量;
    第一计算子单元,用于根据所述信道质量计算所述用户设备的频谱效率。
  10. 根据权利要求7所述的基站,其特征在于,所述检测模块包括:
    第二检测单元,用于当所述用户设备当前工作在所述N端口传输模式时,检测所述用户设备采用单流模式传输在总传输时长中所占比例;
    第二确定单元,用于当所述用户设备采用单流模式传输所占比例大于第二门限值时,确定所述用户设备处于所述边缘区域;或者,
    当所述用户设备采用单流模式传输所占比例小于或等于所述第二门限值时,确定所述用户设备处于所述中心区域。
  11. 根据权利要求10所述的基站,其特征在于,所述第二检测单元包括:
    记录子单元,用于记录所述用户设备在传输过程中使用单流模式的传输时长;
    第二计算子单元,用于计算所述单流模式的传输时长占所述总传输时长的比例,得到所述用户设备采用单流模式传输在总传输时长中所占比例。
  12. 根据权利要求7~11任一项所述的基站,其特征在于,所述处理模块,还用于当所述用户设备接入小区时,将所述用户设备的传输模式配置为所述1端口传输模式。
PCT/CN2014/090236 2014-11-04 2014-11-04 传输模式切换方法及基站 WO2016070321A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480037475.6A CN105766024B (zh) 2014-11-04 2014-11-04 传输模式切换方法及基站
PCT/CN2014/090236 WO2016070321A1 (zh) 2014-11-04 2014-11-04 传输模式切换方法及基站

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/090236 WO2016070321A1 (zh) 2014-11-04 2014-11-04 传输模式切换方法及基站

Publications (1)

Publication Number Publication Date
WO2016070321A1 true WO2016070321A1 (zh) 2016-05-12

Family

ID=55908345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/090236 WO2016070321A1 (zh) 2014-11-04 2014-11-04 传输模式切换方法及基站

Country Status (2)

Country Link
CN (1) CN105766024B (zh)
WO (1) WO2016070321A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110661557B (zh) * 2018-06-29 2021-08-24 中兴通讯股份有限公司 基于mumimo进行模式切换的方法、设备和存储介质
CN111787629B (zh) * 2019-04-03 2022-01-28 大唐移动通信设备有限公司 一种模式切换后的多用户配对处理方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101888624A (zh) * 2010-06-11 2010-11-17 中兴通讯股份有限公司 发射天线选择的配置方法及装置
CN102714848A (zh) * 2010-01-16 2012-10-03 夏普株式会社 无线通信设备上针对多个管制频带或分量载波的发送功率控制、计算机可读介质及其方法
CN103179619A (zh) * 2013-04-07 2013-06-26 北京邮电大学 Lte多天线系统的传输模式自适应切换方法及装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014121471A1 (zh) * 2013-02-06 2014-08-14 华为技术有限公司 数据传输、获取方法、基站及用户设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102714848A (zh) * 2010-01-16 2012-10-03 夏普株式会社 无线通信设备上针对多个管制频带或分量载波的发送功率控制、计算机可读介质及其方法
CN101888624A (zh) * 2010-06-11 2010-11-17 中兴通讯股份有限公司 发射天线选择的配置方法及装置
CN103179619A (zh) * 2013-04-07 2013-06-26 北京邮电大学 Lte多天线系统的传输模式自适应切换方法及装置

Also Published As

Publication number Publication date
CN105766024B (zh) 2019-01-15
CN105766024A (zh) 2016-07-13

Similar Documents

Publication Publication Date Title
JP7179156B2 (ja) 信号伝送方法及び通信機器
US20210036755A1 (en) Method for reporting channel state information, user equipment, and base station
JP6979136B2 (ja) セミパーシステントサウンディング基準信号(sp−srs)リソースのためのクロスキャリア空間関係のインジケーション
EP3952131A1 (en) Efficient spatial relation indication for physical uplink control channel (pucch) resources
KR102270879B1 (ko) Fd-mimo 를 위한 csi 피드백 오버헤드 감축
US8873462B2 (en) Reduced complexity receiver for UL CoMP
JP6374510B2 (ja) チャネル状態情報参照信号を構成するための方法、および基地局
JP6487046B2 (ja) 送信アンテナダイバーシティ方式
CN111107630B (zh) 通信方法和通信装置
WO2020157703A1 (en) Medium access control (mac) control element signaling for multi-transmission point/multi panel physical downlink shared channel transmission
US11552693B2 (en) Dynamic inter-beam-interference indication, configuration and communication in wireless networks
ES2955234T3 (es) Informe de coeficientes para información del estado del canal
JP6771582B2 (ja) 低複雑性マルチ設定csiレポート
EP3768019A1 (en) Communication method and communication device
CN111434069A (zh) 用于采用nzp csi-rs的mu干扰测量的信令
EP3874827A1 (en) Antenna selection for user equipment (ue) power saving during pdcch monitoring
WO2018028384A1 (zh) 一种信息处理方法和装置
JP7177141B2 (ja) 無線通信方法、ユーザ装置及び基地局
WO2018082663A1 (zh) 一种参考信号传输的方法及装置
WO2013093171A1 (en) Joint first reference signal and second reference signal based channel state information feedback
KR20150133111A (ko) 전이중 통신 방식 및 반이중 통신방식을 지원하는 시스템에서 통신을 수행하는 방법 및 이를 위한 장치
CN111357210B (zh) 一种处理设备及其方法
WO2016070321A1 (zh) 传输模式切换方法及基站
WO2021013138A1 (zh) 无线网络通信方法和通信装置
WO2019213928A1 (zh) 一种传输方案指示方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14905298

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14905298

Country of ref document: EP

Kind code of ref document: A1