WO2016068618A1 - 수동형 블레이드 피치 제어 모듈 - Google Patents

수동형 블레이드 피치 제어 모듈 Download PDF

Info

Publication number
WO2016068618A1
WO2016068618A1 PCT/KR2015/011496 KR2015011496W WO2016068618A1 WO 2016068618 A1 WO2016068618 A1 WO 2016068618A1 KR 2015011496 W KR2015011496 W KR 2015011496W WO 2016068618 A1 WO2016068618 A1 WO 2016068618A1
Authority
WO
WIPO (PCT)
Prior art keywords
control module
link plate
blade
pitch control
link
Prior art date
Application number
PCT/KR2015/011496
Other languages
English (en)
French (fr)
Inventor
이지현
Original Assignee
이지현
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140148926A external-priority patent/KR101478575B1/ko
Priority claimed from KR1020150140674A external-priority patent/KR101618103B1/ko
Priority claimed from KR1020150140676A external-priority patent/KR101579418B1/ko
Application filed by 이지현 filed Critical 이지현
Priority to CN201580059366.9A priority Critical patent/CN107208605A/zh
Priority to US15/522,574 priority patent/US20180017040A1/en
Priority to JP2017543686A priority patent/JP2017534025A/ja
Priority to EP15855534.2A priority patent/EP3214304A4/en
Publication of WO2016068618A1 publication Critical patent/WO2016068618A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • F03D1/0658Arrangements for fixing wind-engaging parts to a hub
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0224Adjusting blade pitch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • F03D1/0691Rotors characterised by their construction elements of the hub
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • F05B2260/77Adjusting of angle of incidence or attack of rotating blades the adjusting mechanism driven or triggered by centrifugal forces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • F05B2260/79Bearing, support or actuation arrangements therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/328Blade pitch angle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/40Type of control system
    • F05B2270/402Type of control system passive or reactive, e.g. using large wind vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/50Control logic embodiment by
    • F05B2270/508Control logic embodiment by mechanical means, e.g. levers, gears or cams
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a blade pitch control module that can adjust the blade pitch angle of the wind generator.
  • the wind power generator converts the rotational force of the blades by the wind into electrical energy. Since it does not emit carbon dioxide and causes no pollution, it uses little wind and generates little generation cost. There is an advantage of low equipment cost.
  • wind with moderate wind speed is beneficial for wind turbine power generation, but usually wind does not always maintain the proper speed, and turns into strong wind or instantaneous wind gusts that can threaten wind turbine blades, or generate electricity. It can be changed to a low speed wind that can cause a setback.
  • the wind turbine blade may be damaged due to excessive load on the wind turbine blade above the rated wind speed such as strong wind or instantaneous wind gust, or the connection between the blade and the hub may be broken, or the pitch angle of the blade may be permanently changed. It acts to drop.
  • the wind power generator is provided with a pitch control device for controlling the pitch angle of the blade according to the wind speed.
  • the pitch control device of such a wind generator is tilting the blade through a driving force such as hydraulic pressure or an electric motor to adjust the pitch angle according to the wind speed.
  • a conventional pitch control device is mostly expensive and is limitedly applied to some large wind generators, and there is a problem in that it is difficult to use or maintain due to a complicated internal structure.
  • Embodiments of the present invention are to provide a passive blade pitch control module that can effectively prevent the breakage of the blade above the limit wind speed.
  • embodiments of the present invention to provide a passive blade pitch control module that can adjust the pitch angle of the blade to the optimum pitch according to the wind speed or wind pressure change.
  • embodiments of the present invention to provide a passive blade pitch control module that is easy to manufacture and install, and can be implemented at a low cost.
  • embodiments of the present invention to provide a passive blade pitch control module that is easy to use and maintain.
  • embodiments of the present invention to provide a passive blade pitch control module that can improve the power generation efficiency and quality by stabilizing the rotational speed of the blade.
  • embodiments of the present invention to provide a passive blade pitch control module having a pitch angle adjustment function according to the blade rotation speed.
  • embodiments of the present invention to provide a passive blade pitch control module that can easily adjust the initial pitch angle (the pitch angle of the wind load is not applied) of the blade.
  • the body portion having a center column and connected to the rotary shaft of the wind generator; At least one rotary block fastened to the body part to be rotatable about a pitch axis, the blade being mounted and supported; A link plate fastened to the center column to be movable along the center column and eccentrically coupled to the rotary block and the pitch axis; And a spring for elastically supporting the link plate.
  • a passive blade pitch control module may be provided.
  • Passive blade pitch control module is formed so that the wind load acting on the blade is transmitted to the compression spring via the rotating block and the link plate, the blade is appropriate pitch by the balance between the elastic force of the compression spring and the wind load of the blade The angle can be adjusted. Therefore, the passive blade pitch control module according to the embodiments of the present invention can effectively prevent the damage of the blade by appropriately adjusting the pitch angle of the blade when the wind load more than the set value such as gusts, typhoons.
  • the passive blade pitch control module according to the embodiments of the present invention is very easy to use or maintain the pitch angle is naturally adjustable by the elastic force of the compression spring without an external forced drive source.
  • the passive blade pitch control module is easy to design because the pitch angle of the blade can be adjusted by appropriately setting only the compression degree or elastic modulus of the compression spring, and if necessary, it is continuous in response to the wind load. Since the pitch angle can be easily designed as a type, it is advantageous in stabilizing the rotational speed of the wind generator or improving the power generation quality.
  • the passive blade pitch control module according to the embodiments of the present invention can be manufactured at a relatively low cost because no additional hydraulic means or actuator is required for pitch angle adjustment, and in particular, an expensive pitch control means is practically possible. It is possible to implement pitch control at low cost even for small wind turbines that are difficult to apply.
  • the passive blade pitch control module according to the embodiments of the present invention, as well as the wind load applied to the blade (that is, the force that the blade is to be rotated about the pitch axis), as well as the appropriate pitch angle can be adjusted according to the rotational speed of the blade Done. This enables more precise and effective blade pitch angle control.
  • the passive blade pitch control module according to the embodiments of the present invention does not require an external forced driving source while adding a pitch angle adjustment function corresponding to the rotational speed. That is, in the passive blade pitch control module according to the embodiments of the present invention, the pitch angle is naturally adjusted so that the centrifugal force according to the wind load or rotational speed applied to the blade is balanced with the elastic force of the compression spring, so that the pitch angle is separately adjusted. Forced drive source is not required. Therefore, the passive blade pitch control module according to the embodiments of the present invention can be implemented at low cost and can be easily applied to small and medium wind turbines.
  • the passive blade pitch control module according to the embodiments of the present invention is easy to set the design value for deriving the required performance because the pitch angle control is implemented only by relatively limited elements such as the elastic modulus of the compression spring, the weight of the weight.
  • manufacturing and maintenance also have easy advantages.
  • the passive blade pitch control module can set the appropriate initial pitch angle even in an initial state in which the wind load is not applied through the initial pitch angle setting unit.
  • FIG. 1 is a perspective view showing a passive blade pitch control module according to a first embodiment of the present invention.
  • FIG. 2 is a perspective view illustrating a state in which one surface of the body part is omitted in the passive blade pitch control module illustrated in FIG. 1.
  • FIG. 3 is a perspective view illustrating a body part illustrated in FIG. 2.
  • FIG. 4 is a perspective view showing the rotating block shown in FIG.
  • FIG. 5 is a perspective view illustrating the link plate shown in FIG. 2.
  • FIG. 6 is an operation diagram of the passive blade pitch control module shown in FIG. 1.
  • FIG. 7 is a perspective view showing a passive blade pitch control module according to a second embodiment of the present invention.
  • FIG. 8 is a side schematic view of the passive blade pitch control module shown in FIG. 7.
  • FIG. 8 is a side schematic view of the passive blade pitch control module shown in FIG. 7.
  • FIG. 9 is a rear schematic view showing a passive blade pitch control module according to a third embodiment of the present invention.
  • FIG. 10 is a schematic cross-sectional view taken along the line A-A shown in FIG. 9.
  • FIG. 1 is a perspective view showing a passive blade pitch control module according to a first embodiment of the present invention.
  • FIG. 2 is a perspective view illustrating a state in which one surface of the body part is omitted in the passive blade pitch control module illustrated in FIG. 1.
  • the passive blade pitch control module (hereinafter, abbreviated as 'pitch control module 100') according to the present embodiment is rotatable to the body portion 110 and the body portion 110, respectively.
  • each of the rotary blocks 120 may be mounted with a blade (B).
  • each rotation block 120 is rotated with respect to the body portion 110 to adjust the pitch angle of the blade (B).
  • the rotation of the rotary block 120 or the pitch angle adjustment of the blade (B) naturally according to the balance between the elastic force of the compression spring 140 for supporting the link plate 130 and the force of the wind load acting on the blade (B). Can be adjusted.
  • FIG. 3 is a perspective view illustrating a body part illustrated in FIG. 2.
  • the pitch control module 100 may include a body part 110.
  • the body unit 110 may form an overall appearance of the pitch control module 100, and may provide a basic skeleton on which the rotary block 120 and the like may be mounted and supported.
  • the body portion 110 may include a pair of plates 111a and 111b disposed to face each other.
  • the pair of plates 111a and 111b may be formed in a shape corresponding to each other and may be disposed to be spaced apart from each other by a predetermined interval.
  • Each plate 111a and 111b may be formed in various forms, but may be formed in a form corresponding to the number or arrangement of the rotating blocks 120 as necessary.
  • each plate 111a, 111b is formed in a substantially 'Y' shape on the plane to correspond to the three rotating blocks 120 disposed in a radial direction.
  • the shape of the plate (111a, 111b) can be variously changed as necessary.
  • each of the plates 111a and 111b may be formed in a “t” shape or the like.
  • the body part 110 may include a center column 112 disposed at the center of the pair of plates 111a and 111b.
  • the center column 112 may extend to a predetermined degree between the plates 111a and 111b facing each other, and may be disposed to be substantially orthogonal to the plane of the plates 111a and 111b.
  • the center column 112 may include a rotation shaft fastening hole 112a to be connected to the rotation shaft S of the wind generator.
  • the rotation shaft fastening hole 112a is formed to extend to a predetermined extent along the longitudinal direction of the center column 112 so that the rotation shaft S may be inserted and fastened, and a key groove 112b may be provided at one side thereof.
  • Body 110 is connected to the rotary shaft (S) of the wind generator through the rotation shaft fastening hole 112a as described above can be rotated with the rotary shaft (S), and transmits the rotational driving force to the rotary shaft (S).
  • a stopper 112c may be provided at one end of the center column 112. The stopper 112c prevents the link plate 130, which will be described later, from being separated by the compression spring 140.
  • the body portion 110 may be provided with a support block 113 for mounting and supporting the rotating block 120.
  • the support block 113 is disposed between the pair of plates 111a and 111b to support the rotating block 120 on which the blade B is mounted, while centering the pitch axis P of each rotating block 120. The rotational movement is assisted.
  • the support block 113 may be provided in a plural number to correspond to the number of the rotating blocks 120 mounted on the body part 110, and a plurality of support blocks 113 may be provided for each rotating block 120.
  • two support blocks 113 are provided for each rotary block 120 to illustrate a case in which six support blocks 113 are provided in total.
  • the number of the support blocks 113 may be increased or decreased as needed.
  • Each support block 113 may be formed in a substantially rectangular parallelepiped shape, and a rotation block fastening hole 113a may be provided so that the rotation block 120 may be inserted and fastened to the center.
  • the rotating block 120 to be described later may slide in contact with the inner peripheral surface of the rotary block fastening hole 113a by a predetermined degree about the pitch axis P.
  • FIG. 4 is a perspective view showing the rotating block shown in FIG.
  • the pitch control module 100 may include a plurality of rotary blocks 120.
  • the rotary block 120 may be provided in plural numbers according to the number of blades B. In this embodiment, three rotary blocks 120 are provided to correspond to the three blades B. . However, the number of the rotating blocks 120 may vary depending on the number of blades B (eg, two, four, etc.), of course.
  • Each rotating block 120 may be coupled to the blade (B), as the rotating block 120 is rotated about the pitch axis (P) with the blade (B) mounted in this way, the blade (B) ) Pitch angle is adjusted.
  • each rotating block 120 is formed in a substantially cylindrical shape so that one end is disposed toward the center column 112 and the other end is mounted with the blade (B). That is, the plurality of rotating blocks 120 may be disposed radially about the center column 112 in the center of the body portion 110. In other words, each rotating block 120 may be disposed along a radial direction about the center column 112.
  • each rotary block 120 may be provided with a link plate fastening portion 122 for fastening with the link plate 130 to be described later.
  • the link plate fastening part 122 may be fastened with the rotary block fastening part 132 of the link plate 130 through pins, and through this, forward and backward movement of the link plate 130 may be transmitted to each rotary block 120.
  • the other end of each rotation block 120 may be provided with a blade fastening portion 121 for fastening the blade (B).
  • Blade fastening portion 121 is formed in the form of a flange on the other end of each rotation block 120 may be formed so that the blade (B) is bolted coupled, each blade (B) is such a blade fastening portion 121 It is fixedly coupled to each rotary block through the 120 is rotatable about the pitch axis (P) together with each rotary block 120.
  • each rotary block 120 may be mounted and supported by the support block 113.
  • each rotation block 120 is the outer circumferential surface is sliding in contact with the support block 113 to be able to rotate around the pitch axis (P).
  • a sliding pad 123 may be provided on an outer circumferential surface of the rotating block 120 so that the rotation of the rotating block 120 can be more smoothly performed.
  • the sliding pad 123 is formed to surround the outer circumferential surface of the rotary block 120 in a ring shape and may slide in contact with the support block 113.
  • the sliding pad 123 may be formed of various materials. More preferably, some or all of the contact surfaces may be made of Teflon.
  • Teflon material is to reduce the contact friction of the sliding pad 123 so that the rotation around the pitch axis (P) of the rotary block 120 can be made smoothly, there is also excellent durability.
  • the structure of the apparatus is simplified by using the support block 113 or the sliding pad 123 of the surface contact method instead of the ball bearing of the point contact method that is generally used. In addition, it is possible to minimize damage or malfunction of the device due to local load.
  • FIG. 5 is a perspective view illustrating the link plate shown in FIG. 2.
  • the pitch control module 100 may include a link plate 130.
  • the link plate 130 transmits the elastic force of the compression spring 140 to each rotary block 120, and balances the elastic force of the compression spring 140 with the wind load of the blade B mounted on each rotary block 120.
  • the pitch angle of the blade B can be adjusted.
  • the link plate 130 may be provided with a column fastening hole 131 in the center and inserted into the center column 112.
  • the link plate 130 may be moved back and forth along the center column 112.
  • the stopper 112c at one end of the center column 112 restricts the movement of the link plate 130 so that the link plate 130 is not completely separated from the center column 112, and thus the link plate 130 is the stopper 112c.
  • the elastic spring is elastically supported by the compression spring 140 and the compression spring 140 to be described later.
  • the link plate 130 may be provided with a plurality of rotary block fastening portion 132 disposed spaced apart a predetermined interval along the outer circumference.
  • the number of the rotation block fastening portion 132 corresponds to the number of the rotation blocks 120 radially disposed on the body portion 110, in the present embodiment, a total of three rotation block fastening portions 132 on the link plate 130 Illustrates the case where is provided.
  • the number of the rotation block fastening portion 132 may vary depending on the number of the rotation block 120 or the blade (B), of course.
  • Each of the rotary block coupling parts 132 may be coupled to the link plate coupling part 122 of the corresponding rotary block 120 by a pin or the like.
  • the rotation block fastening portion 132 and the link plate fastening portion 122 may be fastened in a structure that can be rotated to a predetermined degree (for example, through a pin).
  • a predetermined degree for example, through a pin.
  • the pitch control module 100 may include a compression spring 140.
  • the compression spring 140 may be fastened to the center column 112 to be interposed between the plates 111a and 111b and the link plate 130 at one side of the body 110.
  • the compression spring 140 may elastically support the link plate 130 toward the stopper 112c at one end of the center column 112, and may be mounted in a compressed state to an extent in an initial state.
  • the compression spring 140 pushes the link plate 130 through an elastic force to maintain each rotating block 120 and the blades B mounted thereon at a predetermined pitch angle, and according to the wind load acting on the blades B. Compression or tensile deformation is to adjust the pitch angle of the blade (B). This will be described with reference to FIG. 6 below.
  • FIG. 6 is an operation diagram of the passive blade pitch control module shown in FIG. 1.
  • the link plate 130 is end-centered by the compression spring 140 and the stopper 112c. It is located at.
  • the blade B is disposed at a predetermined pitch angle according to the position of the link plate 130. That is, in the initial state, the compression spring 140 may be fastened to the center column 112 in a compressed state to a predetermined degree and may be formed to apply an elastic force to the link plate 130, and thus, the rotating block 120 and the blade ( B) is maintained at a predetermined pitch angle.
  • the degree of compression or elastic modulus of the compression spring 140 may be appropriately set according to the design value required by the wind turbine.
  • the rotational force of the rotary block 120 is greater than the elastic force of the compression spring 140, so that the link plate 130 may be advanced to the left in the drawing.
  • the rotation block 120 and the blade B are rotated by a predetermined degree about the pitch axis P to change the pitch angle.
  • such a pitch angle adjustment may be continuously performed to achieve an equilibrium between the rotational force of the rotary block 120 and the elastic force of the compression spring 140 due to the wind load acting on the blade (B).
  • the pitch angle may be adjusted only when the compression spring 140 or the predetermined elasticity coefficient is set to be equal to or larger than a predetermined design value (for example, to prevent breakage of the blade B due to a gust or the like).
  • the pitch control module 100 is formed so that the wind load acting on the blade (B) is transmitted to the compression spring 140 via the rotary block 120 and the link plate 130 to the compression spring.
  • the blade B may be formed to be adjusted to an appropriate pitch angle by the balance between the elastic force of the 140 and the wind load of the blade B. Therefore, when wind loads exceeding a predetermined value such as a gust or typhoon are applied, the pitch angle of the blade B may be properly adjusted to effectively prevent breakage of the blade B.
  • the pitch control module 100 according to the present embodiment has an advantage that the pitch angle is naturally adjustable by the elastic force of the compression spring 140 without a special control mechanism or manipulation, so that the use or maintenance is very easy.
  • the pitch control module 100 is easy to design because the pitch angle of the blade B can be adjusted by appropriately setting only the degree of compression or elastic modulus of the compression spring 140, and the wind load as necessary.
  • the pitch angle can be easily adjusted in response to the type, the wind speed can be stabilized or the power generation quality can be improved.
  • a separate hydraulic means or actuator is not required to adjust the pitch angle, it can be manufactured at a relatively low cost.
  • a pitch control function can be implemented at a low cost even for a small wind generator, in which an expensive pitch control means cannot be practically applied.
  • FIG. 7 is a perspective view showing a passive blade pitch control module according to a second embodiment of the present invention.
  • FIG. 8 is a side schematic view of the passive blade pitch control module shown in FIG. 7.
  • FIG. 8 is a side schematic view of the passive blade pitch control module shown in FIG. 7.
  • the passive blade pitch control module (hereinafter, abbreviated as 'pitch control module 200') according to the present embodiment is rotatable to the body portion 210 and the body portion 210, respectively. It may be provided with a plurality of rotary blocks 220 to be mounted.
  • the body portion 210 corresponds to the body portion 110 of the pitch control module 100 described above.
  • Body portion 210 is a center column 212 formed between a pair of plates 211a, 211b, a pair of plates 211a, 211b similar to the body portion 110 described above, and each rotating block 220 It may be configured to include a plurality of support blocks 213 for supporting.
  • the rotary block 220 corresponds to the rotary block 120 of the pitch control module 100 described above.
  • the rotating block 220 may be mounted and supported by a blade similar to the rotating block 120 described above, and may be fastened to the support block 213 provided on the body portion 210 so as to be rotatable about a pitch axis P. Can be.
  • the inner side of the rotary block 220 toward the center column 212 may be coupled to the link plates (230a, 230b).
  • the rotary block 220 since the first and second link plates 230a and 230b are provided as described below, the rotary block 220 may be fastened to the respective first and second link plates 230a and 230b.
  • the rotary block 220 may be provided with first and second link plate coupling parts 222a and 222b spaced apart from each other, and the first and second link plate coupling parts 222a and 222b may be the first and second link plates, respectively. It may be fastened with the 230a, 230b.
  • the rotary block 220 may be provided with a sliding chamber 224 for mounting the weight 250 to be described later.
  • the sliding chamber 224 may be formed to extend to a predetermined extent in the pitch axis P direction at the center of the rotating block 220.
  • the sliding chamber 224 provides a path through which the weight 250 moves to a predetermined degree along the pitch axis P.
  • the inner end of the sliding chamber 224 toward the center column 212 may be formed in an open form for the entry of the weight 250, the outer end of the opposite side may be open or closed.
  • the inner and outer ends of the sliding chamber 224 are all open to form a hollow hole extending along the pitch axis (P).
  • the pitch control module 200 may include link plates 230a and 230b fastened to the center column 212 and a compression spring 240 elastically supporting the link plates 230a and 230b.
  • the link plates 230a and 230b correspond to the link plate 130 of the pitch control module 100 described above
  • the compression spring 240 corresponds to the compression spring 140 of the pitch control module 100 described above.
  • two link plates 230a and 230b may be provided, and the compression spring 240 is installed between the link plates 230a and 230b to provide the link plates 230a and 230b.
  • 230b) can be elastically supported.
  • the link plates 230a and 230b of the present embodiment may include first and second link plates 230a and 230b.
  • Each of the first and second link plates 230a and 230b corresponds to the link plate 130 described above, and may be similarly formed.
  • the first and second link plates 230a and 230b may be inserted into and fastened to the center column 212, and may be spaced apart from each other along the center column 212. Between the first and second link plates 230a and 230b may be elastically supported by the compression spring 240 to be described later.
  • each of the first and second link plates 230a and 230b may be provided with a plurality of rotation block fastening portions 232.
  • Each of the rotating block fastening parts 232 may be fastened in the form of a hinge coupling to the first link plate fastening part 222a or the second link plate fastening part 222b of the rotary block 220.
  • each of the first and second link plates 230a and 230b and the respective rotation blocks 220 may be eccentrically coupled to the pitch axis P.
  • the compression spring 240 may be fastened to the center column 212, and may be disposed between the first and second link plates 230a and 230b to elastically support the first and second link plates 230a and 230b. In other words, the forward and backward movement along the center column 212 of the first and second link plates 230a and 230b may be elastically supported by the compression spring 240.
  • the pitch control module 200 as described above may be properly adjusted the pitch angle of the blade (B) through the balance between the wind load acting on the blade (B) and the elastic force of the compression spring 240.
  • this rotational force is the center column of the first and second link plates (230a, 230b) Act as a force to move along 212. That is, due to the rotational force of the rotary block 220, the first and second link plates 230a and 230b are forced toward each other.
  • the pitch control module 200 may further include a weight 250 and a link arm 251.
  • the weight 250 and the link arm 251 may apply additional external force to the first and second link plates 230a and 230b according to the rotational speed of the blade B about the rotation axis S.
  • the weight weight 250 and the link arm 251 allow the pitch angle of the blade B to be adjusted according to the rotational speed of the blade B about the rotation axis S (wherein, the above-described rotation
  • the block 220, the link plates 230a and 230b, the compression spring 240, and the like may adjust the pitch angle of the blade B in response to a force for rotating the blade B about the pitch axis P. FIG. box).
  • the weight 250 may be formed of a heavy material, it may be disposed in the sliding chamber 224 provided in the rotary block 220. In addition, the weight 250 may be formed to move to a predetermined extent in the pitch axis P direction in the sliding chamber 224. The weight 250 may receive a centrifugal force according to the rotation of the blade (B) around the rotation axis (S). For example, as the rotational speed of the blade B increases, the weight 250 may receive a large centrifugal force. As a result, the weight 250 may be moved to a predetermined extent outward in the radial direction of the rotation shaft S. FIG.
  • the link arm 251 may link the weight between the weight 250 and the first and second link plates 230a and 230b.
  • the link arm 251 is linked to the movement of the weight axis 250 in the pitch axis P direction so that the first and second link plates 230a and 230b move along the center column 212.
  • the two link plates 230a and 230b may be link-coupled.
  • the link arms 251 may be coupled to each other so that the first and second link plates 230a and 230b are close to each other along the center column 212.
  • the weight weight 250 and the first and second link plates 230a and 230b may be linked to be moved in the direction.
  • the link arm 251 is hinged to one end of the weight (250) and the other end is hinged to the first link plate (230a) and one end is hinged to the weight (250)
  • the other end may be configured to include a second arm 251b hinged to the second link plate 230b.
  • the weight weight 250 and the link arm 251 may be provided in plurality, respectively, if necessary, the plurality of weight weight 250 and the link arm 251 is a plurality of rotary blocks 220, all or part It may be arranged to correspond.
  • the plurality of weight weight 250 and the link arm 251 is a plurality of rotary blocks 220, all or part It may be arranged to correspond.
  • three rotary blocks 220 are provided as shown in FIG. 4
  • three sets of weights 250 and link arms 251 may be provided to correspond to the rotary blocks 220.
  • only some of the rotary blocks 220 of the three rotating blocks 220 may be provided with such a weight 250 and the link arm 251.
  • the operation of the pitch control module 200 according to the present embodiment will be described with reference to FIGS. 7 and 8.
  • the first and second link plates 230a and 230b are elastically supported in a spaced apart state by the compression spring 240.
  • the blades B may be disposed at initial pitch angles.
  • the rotary block 220 When the wind load is applied to the blade (B), the rotary block 220 is subjected to a force to rotate around the pitch axis (P), the rotational force of the rotary block 220 is the first, second link plate (230a, 230b) It is elastically supported by the compression spring 240 through. Therefore, the pitch angle of the blade (B) is appropriately adjusted in a state where the wind load and the elastic force of the compression spring 240 is balanced.
  • the blade B rotates about the rotation axis S, and the rotation of the blade B generates centrifugal force on the weight 250.
  • the centrifugal force acting on the weight 250 may be transmitted to the first and second link plates 230a and 230b via the link arm 251, and the compression spring 240 between the first and second link plates 230a and 230b. It is elastically supported by. Therefore, the centrifugal force acting on the weight 250 and the elastic force of the compression spring 240 are balanced, and the interval between the first and second link plates 230a and 230b can be adjusted, and eventually, the rotational speed of the blade B According to the pitch angle adjustment is made.
  • the centrifugal force applied to the weight 250 is increased so that the weight 250 is moved to a predetermined extent outward in the radial direction, so that the centrifugal force and the compression spring 240 Elastic force is balanced.
  • the interval between the first and second link plates 230a and 230b is narrowed due to the movement of the weight 250, and correspondingly, the respective rotation blocks 220 rotate about a predetermined pitch about the pitch axis P.
  • the pitch angle of the blade B is adjusted.
  • the pitch angle adjustment according to the rotational speed as described above may be performed in combination with the pitch angle adjustment according to the aforementioned wind load. That is, the compression spring 240 may elastically support the centrifugal force of the weight weight 250 according to the rotation speed and the rotational force of the rotation block 220 according to the wind load, the elastic force of the compression spring 240 is weight 250 The pitch angle of the blade (B) in a state that is balanced with the centrifugal force and the rotational force of the rotary block 220 can be appropriately adjusted.
  • the pitch control module 200 has not only a wind load applied to the blade B (that is, a force to rotate the blade B about the pitch axis P), but also a blade ( Appropriate pitch angle adjustment is also possible according to the rotation speed of B). Therefore, the pitch control module 200 according to the present embodiment can control the pitch angle of the blade B more precisely and effectively.
  • the pitch control module 200 according to the present embodiment does not require an external forced driving source while adding a pitch angle adjustment function corresponding to the rotational speed. That is, the pitch control module 200 according to the present embodiment naturally adjusts the pitch angle in a state in which the centrifugal force according to the wind load or the rotational speed acting on the blade B is balanced with the elastic force of the compression spring 240. No forced driving source is required for the adjustment. Therefore, the pitch control module 200 according to the present embodiment can be implemented at low cost, and can be easily applied to small and medium-sized wind generators.
  • the pitch control module 200 sets the design value for deriving necessary performance because the pitch angle control is implemented only with relatively limited elements such as the elastic modulus of the compression spring 240 and the weight of the weight 250. It is easy to manufacture, and also easy to manufacture and maintain.
  • FIG. 9 is a rear schematic view showing a passive blade pitch control module according to a third embodiment of the present invention.
  • FIG. 10 is a schematic cross-sectional view taken along the line A-A shown in FIG. 9.
  • the passive blade pitch control module 300' includes a plurality of body parts 310 and body parts 310.
  • Rotating block (not shown), the link plate 330 is coupled to each of the rotating blocks, and may comprise a compression spring (not shown) for elastically supporting the link plate 330.
  • the body 310, the rotation block, the link plate 330, and the compression spring are the body part 110, the rotation block 120, the link plate 130, and the compression spring 140 of the aforementioned pitch control module 100. It may be formed the same or similar to.
  • FIG. 9 only the plate 311a disposed on one side of the body part 310 (corresponding to the plate 111a of the pitch control module 100 described above) is illustrated, and the plate 311b disposed to face the same. 10, corresponding to the plate 111b of the pitch control module 100 described above is omitted.
  • the pitch control module 300 may further include an initial pitch angle setting unit 360.
  • the initial pitch angle setting unit 360 may set the initial pitch angle of the blade by adjusting the position of the link plate 330 in an initial state (a state in which no wind load is applied to the blade).
  • the initial pitch angle setting unit 360 may include a nut member 362 provided on one side of the link plate 330 and a bolt member 361 screwed to the nut member 362.
  • the nut member 362 may protrude or extend to a predetermined degree in the direction of the rotation axis S of the blade from one surface of the link plate 330.
  • the nut member 362 may be disposed on the opposite surface on which the compression spring is disposed. That is, the link plate 330 may be elastically supported by one surface thereof in contact with the compression spring, and the nut member 362 may be disposed on an opposite surface of the elastic support surface (see FIGS. 2 and 6). Meanwhile, the nut member 362 may be integrally formed on the link plate 330 or fixedly coupled to the link plate 330 through welding.
  • the bolt member 361 may be inserted into the nut member 362 in the direction of the rotation shaft S to be screwed with the nut member 362.
  • the bolt member 361 may be disposed in the direction of the rotation axis S between the opposite surface of the elastic support surface of the link plate 330 and the plate 311b.
  • one side 361a of the bolt member 361 may be supported on one surface of the plate 311b, and the other side 361b may be supported by screwing with the nut member 362.
  • the bolt member 361 may support the link plate 330 and the plate 311b to face the elastic force of the compression spring. That is, the link plate 330 is elastically supported on the elastic support surface by the compression spring, while the opposite surface of the elastic support surface is supported by the bolt member 361 to maintain the position.
  • the user can adjust the position of the link plate 330 by moving the bolt member 361 in the initial state in which the wind load is not applied. That is, when the user rotates the bolt member 361 to one side through a tool or the like, the bolt member 361 is moved to a predetermined degree in the direction of the rotation axis S with respect to the nut member 362. In this case, the bolt member 361 pushes the link plate 330 against the elastic force of the compression spring, and thus the link plate 330 may be moved in the direction of the rotation axis S along the center column (not shown). .
  • the rotation block coupled to the link plate 330 is rotated about a pitch axis P by a predetermined degree so that the initial pitch angle of the blade can be adjusted (see FIG. 6). .
  • the plate 311b constituting the body 310 may be provided with an access hole 363 for the operation of the bolt member 361 as described above.
  • the access hole 363 is formed through the plate 311b so as to correspond to the position where the bolt member 361 is disposed, so that the user can operate the bolt member 361 through a tool or the like.
  • the initial pitch angle setting unit 360 as described above may be provided in plurality, if necessary, the plurality of initial pitch angle setting unit 360 may be disposed circumferentially spaced around the rotation axis (S). More preferably, a plurality of initial pitch angle setting units 360 may be provided according to the number of the rotating blocks or the blades, and may be disposed to correspond to the respective rotating blocks or the blades. For example, in the present exemplary embodiment, a total of three initial pitch angle setting units 360 are spaced about the rotation axis S so as to correspond to three rotary blocks or blades.
  • the passive blade pitch control module 300 balances the elastic force of the compression spring and the wind load acting on the blade and can appropriately adjust the pitch angle of the blade without a separate driving source.
  • the initial pitch angle setting unit 360 enables proper initial pitch angle setting even in an initial state in which wind load is not applied. Therefore, the passive blade pitch control module 300 according to the present embodiment may contribute to improving the power generation efficiency by easily adjusting the initial pitch angle of the blade according to the installation location or design requirements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Wind Motors (AREA)

Abstract

수동형 블레이드 피치 제어 모듈이 개시된다. 본 발명의 일 측면에 따르면, 센터 컬럼을 구비하고 풍력 발전기의 회전축과 연결되는 바디부; 피치축을 중심으로 회전 가능하도록 상기 바디부에 체결되며, 블레이드가 장착 지지되는 하나 이상의 회전블록; 상기 센터 컬럼을 따라 이동 가능하도록 상기 센터 컬럼에 체결되며, 상기 회전블록과 상기 피치축에 대해 편심 결합되는 링크판; 및 상기 링크판을 탄성 지지하는 스프링;을 포함하는 수동형 블레이드 피치 제어 모듈이 제공될 수 있다.

Description

수동형 블레이드 피치 제어 모듈
본 발명은 풍력 발전기의 블레이드 피치각을 조절할 수 있는 블레이드 피치 제어 모듈에 관한 것이다.
일반적으로, 풍력 발전기는 바람에 의한 블레이드의 회전력을 전기적 에너지로 변환하는 것으로, 이산화탄소를 배출하지 않아 공해를 유발하지 않고 자연적인 바람을 이용하기 때문에 발전비용이 거의 발생하지 않으며, 타 에너지에 비하여 초기 설비 비용이 적은 장점이 있다. 풍력 발전기에 있어 적정한 풍속의 바람은 풍력발전기의 전력생산에 이롭지만, 통상 바람은 항상 적정한 속도를 유지하지 않고, 풍력발전기의 블레이드에 위협이 될 수 있는 강풍, 또는 순간 돌풍으로 돌변하거나, 전력생산에 차질을 빚을 수 있는 저속의 바람으로 변화될 수 있다. 특히, 강풍이나, 순간 돌풍 등의 정격 풍속 이상에서 풍력발전기의 블레이드에 무리한 하중을 주어 블레이드를 파손시키거나, 블레이드와 허브 간의 연결부위를 파손하거나, 블레이드의 피치각을 영구 변화시켜 풍력발전기의 효율을 떨어뜨리는 작용을 한다.
상기와 같은 이유로 풍력 발전기에는 풍속 등에 따라 블레이드의 피치각을 조절 가능하도록 하는 피치 제어 장치가 설치되고 있다. 통상 이러한 풍력 발전기의 피치 제어 장치는 유압이나 전기모터 등의 구동력을 통해 블레이드를 틸팅시켜 풍속에 따라 피치각을 조절하고 있다. 그러나 이와 같은 종래의 피치 제어 장치는 대부분 고가의 장비로서 일부 대형 풍력 발전기에 한정적으로 적용되고 있으며, 복잡한 내부 구조로 인해 사용이나 유지 관리에 어려움이 있는 문제점이 있다.
본 발명의 실시예들은 한계 풍속 이상에서 블레이드의 파손을 효과적으로 방지 가능한 수동형 블레이드 피치 제어 모듈을 제공하고자 한다.
또한, 본 발명의 실시예들은 풍속 또는 풍압 변화에 따라 최적 피치로 블레이드의 피치각을 조절 가능한 수동형 블레이드 피치 제어 모듈을 제공하고자 한다.
또한, 본 발명의 실시예들은 제작 및 설치가 용이하고, 저비용으로도 구현 가능한 수동형 블레이드 피치 제어 모듈을 제공하고자 한다.
또한, 본 발명의 실시예들은 사용 및 유지 보수가 간편한 수동형 블레이드 피치 제어 모듈을 제공하고자 한다.
또한, 본 발명의 실시예들은 블레이드의 회전속도를 안정화하여 발전 효율 및 품질을 개선시킬 수 있는 수동형 블레이드 피치 제어 모듈을 제공하고자 한다.
또한, 본 발명의 실시예들은 블레이드 회전 속도에 따른 피치각 조절 기능을 갖춘 수동형 블레이드 피치 제어 모듈을 제공하고자 한다.
또한, 본 발명의 실시예들은 블레이드의 초기 피치각(풍하중이 작용되지 않는 상태의 피치각) 설정을 용이하게 조정 가능한 수동형 블레이드 피치 제어 모듈을 제공하고자 한다.
본 발명의 일 측면에 따르면, 센터 컬럼을 구비하고 풍력 발전기의 회전축과 연결되는 바디부; 피치축을 중심으로 회전 가능하도록 상기 바디부에 체결되며, 블레이드가 장착 지지되는 하나 이상의 회전블록; 상기 센터 컬럼을 따라 이동 가능하도록 상기 센터 컬럼에 체결되며, 상기 회전블록과 상기 피치축에 대해 편심 결합되는 링크판; 및 상기 링크판을 탄성 지지하는 스프링;을 포함하는 수동형 블레이드 피치 제어 모듈이 제공될 수 있다.
본 발명의 실시예들에 따른 수동형 블레이드 피치 제어 모듈은 블레이드에 작용되는 풍하중이 회전블록 및 링크판을 거쳐 압축스프링으로 전달되도록 형성되어, 압축스프링의 탄성력과 블레이드의 풍하중 간 균형에 의해 블레이드가 적절한 피치각으로 조절될 수 있다. 따라서 본 발명의 실시예들에 따른 수동형 블레이드 피치 제어 모듈은 돌풍, 태풍 등 설정치 이상의 풍하중이 작용되는 경우, 블레이드의 피치각을 적절히 조절하여 블레이드의 파손을 효과적으로 방지할 수 있다.
또한, 본 발명의 실시예들에 따른 수동형 블레이드 피치 제어 모듈은 외부적인 강제 구동원이 없이도 압축스프링의 탄성력에 의해 자연스럽게 피치각이 조절 가능하여 사용이나 유지 보수가 매우 간편하다.
또한, 본 발명의 실시예들에 따른 수동형 블레이드 피치 제어 모듈은 압축스프링의 압축 정도나 탄성 계수만을 적절히 설정하여 블레이드의 피치각 조절이 가능하기 때문에 설계가 용이하며, 필요에 따라 풍하중에 대응하여 지속적으로 피치각이 조절되는 타입으로도 쉽게 설계될 수 있기 때문에, 풍력 발전기의 회전속도 안정화나 발전 품질 개선에도 유리한 이점이 있게 된다.
또한, 본 발명의 실시예들에 따른 수동형 블레이드 피치 제어 모듈은 피치각 조절을 위해 별도의 유압수단이나 액츄에이터 등이 요구되지 않기 때문에 비교적 저비용으로 제작이 가능하며, 특히, 현실적으로 고가의 피치 제어 수단이 적용되기 어려운 소형 풍력 발전기에도 값싼 비용으로 피치 제어 기능을 구현할 수 있게 한다.
또한, 본 발명의 실시예들에 따른 수동형 블레이드 피치 제어 모듈은 블레이드에 작용되는 풍하중(즉, 블레이드가 피치축을 중심으로 회전되려는 힘)뿐만 아니라, 블레이드의 회전 속도에 따라서도 적절한 피치각 조절이 가능하게 된다. 따라서 보다 정밀하고 효과적인 블레이드 피치각 제어가 가능해진다.
또한, 본 발명의 실시예들에 따른 수동형 블레이드 피치 제어 모듈은 회전 속도에 대응한 피치각 조절 기능이 추가되면서도 외부적인 강제 구동원이 요구되지 않는다. 즉, 본 발명의 실시예들에 따른 수동형 블레이드 피치 제어 모듈은 블레이드에 작용되는 풍하중이나 회전 속도에 따른 원심력이 압축스프링의 탄성력과 균형을 이루는 상태로 자연스럽게 피치각 조절이 이뤄져 피치각 조절을 위해 별도의 강제 구동원이 요구되지 않는다. 따라서 본 발명의 실시예들에 따른 수동형 블레이드 피치 제어 모듈은 저가로 구현이 가능하며 중소형의 풍력 발전기에도 쉽게 적용될 수 있다.
또한, 본 발명의 실시예들에 따른 수동형 블레이드 피치 제어 모듈은 압축스프링의 탄성 계수, 무게추의 중량 등 비교적 제한된 요소만으로 피치각 제어가 구현되기 때문에 필요한 성능 도출을 위한 설계 값 설정 등이 용이하며, 제작 및 유지 관리 또한 용이한 이점이 있다.
또한, 본 발명의 실시예들에 따른 수동형 블레이드 피치 제어 모듈은 초기 피치각 설정부를 통해 풍하중이 작용되지 않는 초기 상태에서도 적절한 초기 피치각 설정이 가능하다.
도 1은 본 발명의 제 1 실시예에 따른 수동형 블레이드 피치 제어 모듈을 보여주는 사시도이다.
도 2는 도 1에 도시된 수동형 블레이드 피치 제어 모듈에서 바디부의 일면을 생략한 모습을 보여주는 사시도이다.
도 3은 도 2에 도시된 바디부를 보여주는 사시도이다.
도 4는 도 2에 도시된 회전블록을 보여주는 사시도이다.
도 5는 도 2에 도시된 링크판을 보여주는 사시도이다.
도 6은 도 1에 도시된 수동형 블레이트 피치 제어 모듈의 작동도이다.
도 7은 본 발명의 제 2 실시예에 따른 수동형 블레이드 피치 제어 모듈을 보여주는 사시도이다.
도 8은 도 7에 도시된 수동형 블레이드 피치 제어 모듈의 측면 개략도이다.
도 9는 본 발명의 제 3 실시예에 따른 수동형 블레이드 피치 제어 모듈을 보여주는 후면 개략도이다.
도 10은 도 9에 표시된 A-A선을 따라 취한 개략적인 단면도이다.
이하, 본 발명의 실시예들을 첨부된 도면을 참조하여 설명하도록 한다. 다만, 이하의 실시예들은 본 발명의 이해를 돕기 위해 제공되는 것이며, 본 발명의 범위가 이하의 실시예들에 한정되는 것은 아님을 알려둔다. 또한, 이하의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것으로, 불필요하게 본 발명의 기술적 요지를 흐릴 수 있다고 판단되는 공지의 구성에 대해서는 상세한 기술을 생략하기로 한다.
도 1은 본 발명의 제 1 실시예에 따른 수동형 블레이드 피치 제어 모듈을 보여주는 사시도이다. 도 2는 도 1에 도시된 수동형 블레이드 피치 제어 모듈에서 바디부의 일면을 생략한 모습을 보여주는 사시도이다.
도 1 및 2를 참고하면, 본 실시예에 따른 수동형 블레이드 피치 제어 모듈(이하, '피치 제어 모듈(100)'로 약칭함)은 바디부(110), 각각 바디부(110)에 회전 가능하게 장착되는 복수개의 회전블록(120), 복수개의 회전블록(120) 중심에 배치되어 각 회전블록(120)의 단부와 링크 결합되는 링크판(130) 및, 링크판(130)을 탄성 지지하는 압축스프링(140)을 포함하여 구성될 수 있다.
전체적으로, 바디부(110)는 풍력 발전기의 회전축(S)와 연결되어 회전축(S)으로 회전 구동력을 전달하게 되며, 각 회전블록(120)에는 블레이드(B)가 장착될 수 있다. 또한, 각 회전블록(120)은 바디부(110)에 대해 회전되어 블레이드(B)의 피치각을 조절하게 된다. 이때, 회전블록(120)의 회전 또는 블레이드(B)의 피치각 조절은, 링크판(130)을 지지하는 압축스프링(140)의 탄성력과 블레이드(B)에 작용되는 풍하중 간 힘의 균형에 따라 자연스럽게 조절될 수 있다.
이하, 상기의 각 구성에 대해 보다 상세히 설명하도록 한다.
도 3은 도 2에 도시된 바디부를 보여주는 사시도이다.
도 3 및 전술한 도 1 내지 2를 참고하면, 본 실시예에 따른 피치 제어 모듈(100)은 바디부(110)를 포함할 수 있다. 바디부(110)는 피치 제어 모듈(100)의 전체적인 외관을 형성하며, 후술할 회전블록(120) 등이 장착 지지될 수 있는 기본 골격을 제공할 수 있다.
보다 구체적으로, 바디부(110)는 서로 마주보도록 배치된 한 쌍의 플레이트(111a, 111b)를 구비할 수 있다. 한 쌍의 플레이트(111a, 111b)는 상호 대응되는 형상으로 형성될 수 있으며, 상호 소정간격 이격 배치될 수 있다. 각 플레이트(111a, 111b)는 다양한 형태로 형성될 수 있으나, 필요에 따라, 회전블록(120)의 개수나 배치에 대응되는 형태로 형성될 수 있다. 예컨대, 본 실시예의 경우, 방사상으로 배치된 3개의 회전블록(120)에 대응되도록 각 플레이트(111a, 111b)가 평면상 대략 'Y'자 형태를 이루고 있는 경우를 예시하고 있다. 다만, 플레이트(111a, 111b)의 형태를 필요에 따라 다양하게 변경될 수 있음을 물론이다. 예컨대, 4개의 회전블록(120)이 방사상 배치되는 경우, 각 플레이트(111a, 111b)는 '十'자 형태 등으로 형성될 수 있다.
또한, 바디부(110)는 한 쌍의 플레이트(111a, 111b) 중앙부에 배치되는 센터 컬럼(112)을 구비할 수 있다. 센터 컬럼(112)은 서로 대향하는 각 플레이트(111a, 111b) 사이에서 소정정도 연장 형성될 수 있으며, 각 플레이트(111a, 111b)의 평면과 대략 직교하도록 배치될 수 있다. 센터 컬럼(112)은 풍력 발전기의 회전축(S)과 연결될 수 있도록 회전축 체결홀(112a)을 구비할 수 있다. 회전축 체결홀(112a)은 센터 컬럼(112)의 길이방향을 따라 소정정도 연장 형성되어 회전축(S)이 삽입 체결될 수 있으며, 일측에는 키홈(112b)이 마련될 수 있다. 바디부(110)는 이와 같은 회전축 체결홀(112a)을 통해 풍력 발전기의 회전축(S)과 연결되어 회전축(S)과 함께 회전될 수 있으며, 회전축(S)으로 회전 구동력을 전달하게 된다. 또한, 센터 컬럼(112)의 일단에는 스토퍼(112c)가 마련될 수 있는데, 이와 같은 스토퍼(112c)는 후술할 링크판(130)이 압축스프링(140)에 의해 이탈되는 것을 방지하게 된다.
한편, 바디부(110)에는 회전블록(120)을 장착 지지하기 위한 지지블록(113)이 마련될 수 있다. 지지블록(113)은 한 쌍의 플레이트(111a, 111b) 사이에 배치되어 블레이드(B)가 장착된 회전블록(120)을 지지하는 한편, 각 회전블록(120)의 피치축(P)을 중심으로 한 회전 운동을 보조하게 된다. 지지블록(113)은 바디부(110)에 장착되는 회전블록(120)의 개수에 대응되도록 복수개가 구비될 수 있으며, 각 회전블록(120)마다 복수개가 구비될 수 있다. 예컨대, 본 실시예의 경우, 각 회전블록(120)마다 2개씩 지지블록(113)이 마련되어 총 6개의 지지블록(113)이 구비된 경우를 예시하고 있다. 다만, 지지블록(113)의 개수는 필요에 따라 증감 변동될 수 있음은 물론이다. 각 지지블록(113)은 대략 직육면체 형상으로 형성될 수 있으며, 중앙으로 회전블록(120)이 삽입 체결될 수 있도록 회전블록 체결홀(113a)이 마련될 수 있다. 후술할 회전블록(120)은 이와 같은 회전블록 체결홀(113a)의 내주면에 접촉 슬라이딩되어 피치축(P)을 중심으로 소정정도 회전될 수 있다.
도 4는 도 2에 도시된 회전블록을 보여주는 사시도이다.
도 4 및 전술한 도 1 내지 2를 참고하면, 본 실시예에 따른 피치 제어 모듈(100)은 복수개의 회전블록(120)을 구비할 수 있다. 회전블록(120)은 블레이드(B)의 개수에 따라 복수개가 마련될 수 있는데, 본 실시예의 경우, 3개의 블레이드(B)에 대응되도록 3개의 회전블록(120)이 마련될 경우를 예시하고 있다. 다만, 회전블록(120)의 개수는 블레이드(B)의 개수에 따라 증감 변동(예컨대, 2개, 4개 등)될 수 있음은 물론이다. 각 회전블록(120)은 블레이드(B)와 체결될 수 있으며, 이와 같이 블레이드(B)가 장착된 상태로 각 회전블록(120)이 피치축(P)을 중심으로 회전됨에 따라, 블레이드(B)의 피치각이 조절되게 된다.
보다 구체적으로, 각 회전블록(120)은 대략 원통형으로 형성되어 일단이 센터 컬럼(112)을 향해 배치되고 타단에는 블레이드(B)가 장착 설치되게 된다. 즉, 복수개의 회전블록(120)은 바디부(110) 중앙의 센터 컬럼(112)을 중심으로 방사상 배치될 수 있다. 다시 말하면, 각 회전블록(120)은 센터 컬럼(112)을 중심으로 한 반경 방향을 따라 배치될 수 있다.
각 회전블록(120)의 일단(즉, 센터 컬럼(112)을 향한 반경 방향 내측단)에는 후술할 링크판(130)과의 체결을 위한 링크판 체결부(122)가 마련될 수 있다. 링크판 체결부(122)는 핀 등을 통해 링크판(130)의 회전블록 체결부(132)와 체결될 수 있으며, 이를 통해, 링크판(130)의 전후진 이동이 각 회전블록(120)으로 전달될 수 있도록 한다. 이에 대하여는 링크판(130)과 관련하여 부연하기로 한다. 한편, 각 회전블록(120)의 타단에는 블레이드(B)의 체결을 위한 블레이드 체결부(121)가 마련될 수 있다. 블레이드 체결부(121)는 각 회전블록(120)의 타단에 플랜지 형태로 형성되어 블레이드(B)가 볼팅 결합될 수 있도록 형성될 수 있으며, 각 블레이드(B)는 이와 같은 블레이드 체결부(121)를 통해 각 회전블록(120)에 고정 결합되어 각 회전블록(120)과 함께 피치축(P)을 중심으로 회전 가능하게 된다.
한편, 각 회전블록(120)은 지지블록(113)에 의해 장착 지지될 수 있다. 이때, 각 회전블록(120)은 외주면이 지지블록(113)에 접촉 슬라이딩되어 피치축(P)을 중심으로 회전 가능하게 된다. 회전블록(120)의 회전이 보다 원활하게 이뤄질 수 있도록 회전블록(120)의 외주면에는 슬라이딩 패드(123)가 마련될 수 있다. 슬라이딩 패드(123)는 링 형태로 회전블록(120)의 외주면을 감싸도록 형성되어 지지블록(113)에 접촉 슬라이딩될 수 있다. 슬라이딩 패드(123)는 다양한 재질로 형성될 수 있으나, 보다 바람직하게는, 접촉면 일부 또는 전부가 테프론(Teflon) 재질로 이뤄질 수 있다. 테프론 재질의 사용은 슬라이딩 패드(123)의 접촉 마찰력을 줄여 회전블록(120)의 피치축(P)을 중심으로 한 회전이 원활하게 이뤄질 수 있도록 하며, 내구성 또한 우수한 이점이 있다. 나아가, 본 실시예에 따른 피치 제어 모듈(100)의 경우, 일반적으로 사용되는 점 접촉 방식의 볼베어링이 아닌 면 접촉 방식의 지지블록(113)이나 슬라이딩 패드(123)를 사용함으로써, 장치 구조를 간소화하고, 국부 하중 등에 의한 장치의 파손이나 오작동을 최소화하게 된다.
도 5는 도 2에 도시된 링크판을 보여주는 사시도이다.
도 5 및 전술한 도 1 내지 2를 참고하면, 본 실시예에 따른 피치 제어 모듈(100)은 링크판(130)을 구비할 수 있다. 링크판(130)은 압축스프링(140)의 탄성력을 각 회전블록(120)으로 전달하고, 압축스프링(140)의 탄성력과 각 회전블록(120)에 장착된 블레이드(B)의 풍하중 간 균형을 통해 블레이드(B)의 피치각이 조절될 수 있도록 한다.
보다 구체적으로, 링크판(130)은 중앙에 컬럼 체결홀(131)을 구비하고 센터 컬럼(112)에 삽입 체결될 수 있다. 또한, 링크판(130)은 센터 컬럼(112)을 따라 전후진 이동될 수 있다. 이때, 센터 컬럼(112) 일단의 스토퍼(112c)는 링크판(130)이 센터 컬럼(112)에서 완전히 이탈되지 않도록 링크판(130)의 이동을 제한하게 되며, 따라서 링크판(130)은 스토퍼(112c)와 후술할 압축스프링(140) 사이에서 압축스프링(140)에 의해 탄성 지지되게 된다.
한편, 링크판(130)은 외측 둘레를 따라 소정간격 이격 배치된 복수개의 회전블록 체결부(132)를 구비할 수 있다. 회전블록 체결부(132)의 개수는 바디부(110)에 방사상 배치되는 회전블록(120)의 개수에 대응되며, 본 실시예의 경우, 링크판(130)에 총 3개의 회전블록 체결부(132)가 마련될 경우를 예시하고 있다. 다만, 회전블록 체결부(132)의 개수는 회전블록(120) 또는 블레이드(B)의 개수에 따라 증감 변동될 수 있음은 물론이다. 각 회전블록 체결부(132)는 대응되는 회전블록(120)의 링크판 체결부(122)와 핀 등으로 결합될 수 있다. 이때, 회전블록 체결부(132)와 링크판 체결부(122)는 소정정도 회동 가능한 구조(예컨대, 핀을 통한 결함)로 체결될 수 있다. 이로 인해, 링크판(130)이 센터 컬럼(112)을 따라 전후진 이동되면, 각 회전블록(120)은 링크판(130)의 이동에 연동하여 피치축(P)을 중심으로 소정정도 회전하게 된다. 이에 대하여는 후술할 본 실시예의 작동과 관련하여 부연하기로 한다.
한편, 전술한 도 1 내지 2를 참고하면, 본 실시예에 따른 피치 제어 모듈(100)은 압축스프링(140)을 구비할 수 있다. 압축스프링(140)은 센터 컬럼(112)에 체결되어 바디부(110) 일측의 플레이트(111a, 111b)와 링크판(130) 사이에 개재될 수 있다. 이와 같은 압축스프링(140)은 센터 컬럼(112) 일단의 스토퍼(112c)를 향해 링크판(130)을 탄성 지지할 수 있으며, 초기 상태에서 소정정도 압축된 상태로 장착될 수 있다. 이와 같은 압축스프링(140)은 탄성력을 통해 링크판(130)을 밀어 각 회전블록(120) 및 이에 장착된 블레이드(B)를 소정 피치각으로 유지시키는 한편, 블레이드(B)에 작용되는 풍하중에 따라 압축 또는 인장 변형되어 블레이드(B)의 피치각을 조절하게 된다. 이에 대하여는 하기 도 6을 참조하여 부연키로 한다.
도 6은 도 1에 도시된 수동형 블레이트 피치 제어 모듈의 작동도이다.
도 6을 참조하여 본 실시예의 작동에 대해 설명하면, 블레이드(B)에 외력이 작용되지 않는 초기 상태에서 링크판(130)은 압축스프링(140) 및 스토퍼(112c)에 의해 센터 컬럼(112) 단부에 위치하게 된다. 또한, 블레이드(B)는 링크판(130)의 위치에 따라 소정 피치각으로 배치되게 된다. 즉, 초기 상태에서 압축스프링(140)은 소정정도 압축된 상태로 센터 컬럼(112)에 체결되어 링크판(130)에 탄성력을 가하도록 형성될 수 있으며, 이로 인해, 회전블록(120) 및 블레이드(B)는 소정 피치각으로 유지되게 된다. 이때, 압축스프링(140)의 압축 정도나 탄성 계수 등은 해당 풍력 발전기에서 요구되는 설계값 등에 따라 적절히 설정될 수 있음은 물론이다.
상기와 같은 초기 상태에서 블레이드(B)에 풍하중이 작용되게 되면, 회전블록(120)에 피치축(P)을 중심으로 한 회전 토크가 발생하게 되며, 이는 링크판(130)을 통해 압축스프링(140)으로 전달되게 된다. 즉, 블레이드(B)에 작용되는 풍하중은 회전블록(120) 단부의 링크판 체결부(122)를 통해 링크판(130)으로 전달될 수 있으며, 이는 링크판(130)을 센터 컬럼(112)을 따라 이동시키려는 힘으로 작용되게 된다. 이때, 링크판(130)은 압축스프링(140)에 의해 탄성 지지된 상태이므로, 결국, 압축스프링(140)의 탄성력과 풍하중에 의한 회전블록(120)의 회전력이 균형을 이루는 상태로 회전블록(120) 또는 블레이드(B)의 피치각이 조절되게 된다.
예컨대, 블레이드(B)에 작용되는 풍하중이 소정의 설계값 이상인 경우, 회전블록(120)의 회전력이 압축스프링(140)의 탄성력보다 커져 링크판(130)이 도면상 좌측으로 소정정도 전진될 수 있으며, 이로 인해, 회전블록(120) 및 블레이드(B)는 피치축(P)을 중심으로 소정정도 회전되어 피치각이 변화하게 된다. 또한, 필요에 따라 이와 같은 피치각 조절은 블레이드(B)에 작용되는 풍하중으로 인한 회전블록(120)의 회전력과 압축스프링(140)의 탄성력 간 평형을 이루도록 지속적으로 이뤄질 수 있다. 또는, 압축스프링(140)의 압축 정도나 탄성계수 설정을 통해 소정의 설계값 이상인 경우에만 피치각이 조절되도록(예컨대, 돌풍 등에 의한 블레이드(B)의 파손 방지) 형성될 수도 있다.
이상에서 설명한 바, 본 실시예에 따른 피치 제어 모듈(100)은 블레이드(B)에 작용되는 풍하중이 회전블록(120) 및 링크판(130)을 거쳐 압축스프링(140)으로 전달되도록 형성되어 압축스프링(140)의 탄성력과 블레이드(B)의 풍하중 간 균형에 의해 블레이드(B)가 적절한 피치각으로 조절되도록 형성될 수 있다. 따라서 돌풍, 태풍 등 설정치 이상의 풍하중이 작용되는 경우, 블레이드(B)의 피치각을 적절히 조절하여 블레이드(B)의 파손을 효과적으로 방지할 수 있다. 또한, 본 실시예에 따른 피치 제어 모듈(100)은 특별한 제어 기작이나 조작 없이 압축스프링(140)의 탄성력에 의해 자연스럽게 피치각이 조절 가능하여 사용이나 유지 보수가 매우 간편한 이점이 있게 된다.
나아가, 본 실시예에 따른 피치 제어 모듈(100)은 압축스프링(140)의 압축 정도나 탄성 계수만을 적절히 설정하여 블레이드(B)의 피치각 조절이 가능하기 때문에 설계가 용이하며, 필요에 따라 풍하중에 대응하여 지속적으로 피치각이 조절되는 타입으로도 쉽게 설계될 수 있기 때문에, 풍력 발전기의 회전속도 안정화나 발전 품질 개선에도 유리한 이점이 있게 된다. 또한, 피치각 조절을 위해 별도의 유압수단이나 액츄에이터 등이 요구되지 않기 때문에 비교적 저비용으로 제작이 가능하며, 특히, 현실적으로 고가의 피치 제어 수단이 적용되기 어려운 소형 풍력 발전기에도 값싼 비용으로 피치 제어 기능을 구현할 수 있게 한다.
도 7은 본 발명의 제 2 실시예에 따른 수동형 블레이드 피치 제어 모듈을 보여주는 사시도이다. 도 8은 도 7에 도시된 수동형 블레이드 피치 제어 모듈의 측면 개략도이다.
이하에서는 설명의 편의를 위해, 전술한 제 1 실시예의 피치 제어 모듈(100)과 유사한 구성에 대하여는 대응되는 도면 부호를 부여하고, 이에 대한 상세한 설명은 간략히 요약 또는 생략하기로 한다.
도 7 및 8을 참고하면, 본 실시예에 따른 수동형 블레이드 피치 제어 모듈(이하, '피치 제어 모듈(200)'로 약칭함)은 바디부(210) 및, 각각 바디부(210)에 회전 가능하게 장착되는 복수개의 회전블록(220)을 구비할 수 있다.
바디부(210)는 전술한 피치 제어 모듈(100)의 바디부(110)와 대응된다. 바디부(210)는 전술한 바디부(110)와 유사하게 한 쌍의 플레이트(211a, 211b), 한 쌍의 플레이트(211a, 211b) 사이에 형성된 센터 컬럼(212) 및, 각 회전블록(220)을 지지하기 위한 복수개의 지지블록(213)을 포함하여 구성될 수 있다.
회전블록(220)은 전술한 피치 제어 모듈(100)의 회전블록(120)에 대응된다. 회전블록(220)은 전술한 회전블록(120)과 유사하게 블레이드가 장착 지지될 수 있으며, 바디부(210)에 마련된 지지블록(213)에 피치축(P)을 중심으로 회전 가능하도록 체결될 수 있다.
또한, 회전블록(220)은 센터 컬럼(212)을 향한 내측단이 링크판(230a, 230b)과 체결될 수 있다. 다만, 본 실시예의 경우, 후술할 바와 같이 제 1, 2 링크판(230a, 230b)이 구비되므로, 회전블록(220)은 각각의 제 1, 2 링크판(230a, 230b)과 체결될 수 있다. 구체적으로, 회전블록(220)은 상호 이격된 제 1, 2 링크판 체결부(222a, 222b)가 구비될 수 있으며, 이러한 제 1, 2 링크판 체결부(222a, 222b)가 각각 제 1, 2 링크판(230a, 230b)과 체결될 수 있다.
또한, 회전블록(220)은 후술할 무게추(250)의 장착을 위한 슬라이딩 챔버(224)을 구비할 수 있다. 슬라이딩 챔버(224)는 회전블록(220)의 중앙에 피치축(P) 방향으로 소정정도 연장 형성될 수 있다. 이러한 슬라이딩 챔버(224)는 무게추(250)가 피치축(P)을 따라 소정정도 이동 가능한 경로를 제공하게 된다. 한편, 센터 컬럼(212)을 향한 슬라이딩 챔버(224)의 내측단은 무게추(250)의 진입을 위해 개방된 형태로 형성될 수 있으며, 반대편인 외측단은 개방 또는 폐쇄되어 있을 수 있다. 다만, 본 실시예의 경우, 슬라이딩 챔버(224)의 내외측단이 모두 개방되어 피치축(P)을 따라 연장된 중공홀의 형태로 형성된 경우를 예시하고 있다.
한편, 본 실시예에 따른 피치 제어 모듈(200)은 센터 컬럼(212)에 체결되는 링크판(230a, 230b) 및, 링크판(230a, 230b)을 탄성 지지하는 압축스프링(240)을 구비할 수 있다. 링크판(230a, 230b)은 전술한 피치 제어 모듈(100)의 링크판(130)에 대응되며, 압축스프링(240)은 전술한 피치 제어 모듈(100)의 압축스프링(140)에 대응된다.
다만, 본 실시예에 따른 피치 제어 모듈(200)에 있어 링크판(230a, 230b)은 2개가 구비될 수 있으며, 압축스프링(240)은 이러한 링크판(230a, 230b) 사이에 설치되어 링크판(230a, 230b)을 탄성 지지할 수 있다.
보다 구체적으로, 본 실시예의 링크판(230a, 230b)은 제 1, 2 링크판(230a, 230b)을 포함할 수 있다. 각각의 제 1, 2 링크판(230a, 230b)은 전술한 링크판(130)과 대응되는 것으로, 상호 동일 유사하게 형성될 수 있다. 제 1, 2 링크판(230a, 230b)은 각각 센터 컬럼(212)으로 삽입 체결되어 센터 컬럼(212)을 따라 소정간격 이격 배치될 수 있다. 제 1, 2 링크판(230a, 230b) 간은 후술할 압축스프링(240)에 의해 탄성 지지될 수 있다.
또한, 각각의 제 1, 2 링크판(230a, 230b)에는 복수개의 회전블록 체결부(232)가 마련될 수 있다. 각 회전블록 체결부(232)는 회전블록(220)의 제 1 링크판 체결부(222a) 또는 제 2 링크판 체결부(222b)에 힌지 결합의 형태로 체결될 수 있다. 이때, 전술한 피치 제어 모듈(100)과 유사하게 각각의 제 1, 2 링크판(230a, 230b)과 각 회전블록(220)은 피치축(P)에 대해 편심 결합될 수 있다.
압축스프링(240)은 센터 컬럼(212)에 체결될 수 있으며, 제 1, 2 링크판(230a, 230b) 사이에 배치되어 제 1, 2 링크판(230a, 230b) 간을 탄성 지지할 수 있다. 다시 말하면, 제 1, 2 링크판(230a, 230b)의 센터 컬럼(212)을 따른 전후 방향 이동은 압축스프링(240)에 의해 탄성 지지될 수 있다.
상기와 같은 피치 제어 모듈(200)은 블레이드(B)에 작용되는 풍하중과 압축스프링(240)의 탄성력 간 균형을 통해 블레이드(B)의 피치각이 적절히 조절될 수 있다. 구체적으로, 블레이드(B)에 풍하중이 작용되면, 회전블록(220)에 피치축(P)을 중심으로 한 회전력이 발생하게 되며, 이러한 회전력은 제 1, 2 링크판(230a, 230b)을 센터 컬럼(212)을 따라 이동시키는 힘으로 작용하게 된다. 즉, 회전블록(220)의 회전력으로 인해, 제 1, 2 링크판(230a, 230b)은 서로 가까워지는 쪽으로 힘을 받게 된다. 이때, 제 1, 2 링크판(230a, 230b) 간은 압축스프링(240)에 의해 탄성 지지되므로, 회전블록(220)의 회전력은 압축스프링(240)의 탄성력에 의해 지지되게 되며, 결국 상기의 회전력과 탄성력이 균형을 이루는 상태로 블레이드(B)의 피치각이 조절되게 된다. 이와 같은 작동 원리는 전술한 피치 제어 모듈(100)과 유사하다.
이때, 본 실시예에 따른 피치 제어 모듈(200)은 무게추(250) 및 링크아암(251)을 더 포함할 수 있다. 무게추(250) 및 링크아암(251)은 회전축(S)을 중심으로 한 블레이드(B)의 회전 속도에 따라 제 1, 2 링크판(230a, 230b)에 추가적인 외력을 부여할 수 있다. 즉, 무게추(250) 및 링크아암(251)은 회전축(S)을 중심으로 한 블레이드(B)의 회전 속도에 따라 블레이드(B)의 피치각이 조절될 수 있도록 한다 (반면, 전술한 회전블록(220), 링크판(230a, 230b), 압축스프링(240) 등은 피치축(P)을 중심으로 블레이드(B)를 회전시키려는 힘에 대응하여 블레이드(B)의 피치각이 조절될 수 있도록 함).
구체적으로, 무게추(250)는 중량물로 형성될 수 있으며, 회전블록(220)에 마련된 슬라이딩 챔버(224)에 배치될 수 있다. 또한, 무게추(250)는 슬라이딩 챔버(224) 내에서 피치축(P) 방향으로 소정정도 이동 가능하도록 형성될 수 있다. 이러한 무게추(250)는 회전축(S)을 중심으로 한 블레이드(B) 회전에 따라 원심력을 받을 수 있다. 예컨대, 블레이드(B)의 회전 속도가 커질수록 무게추(250)는 큰 원심력을 받을 수 있으며, 이로 인해, 무게추(250)는 회전축(S)의 반경 방향 외측으로 소정정도 이동될 수 있다.
링크아암(251)은 무게추(250)와 제 1, 2 링크판(230a, 230b) 간을 링크 결합시킬 수 있다. 링크아암(251)은 무게추(250)의 피치축(P) 방향 이동에 연동하여 제 1, 2 링크판(230a, 230b)이 센터 컬럼(212)을 따라 이동되도록 무게추(250)와 제 1, 2 링크판(230a, 230b)을 링크 결합시킬 수 있다. 또는, 링크아암(251)은 무게추(250)가 회전축(S)의 반경 방향 외측으로 이동되면, 이에 연동하여 제 1, 2 링크판(230a, 230b)이 센터 컬럼(212)을 따라 서로 가까워지는 방향으로 이동되도록 무게추(250)와 제 1, 2 링크판(230a, 230b)을 링크 결합시킬 수 있다.
예컨대, 링크아암(251)은 일단이 무게추(250)에 힌지 결합되고 타단이 제 1 링크판(230a)에 힌지 결합된 제 1 아암(251a)과, 일단이 무게추(250)에 힌지 결합되고 타단이 제 2 링크판(230b)에 힌지 결합된 제 2 아암(251b)을 포함하여 구성될 수 있다.
상기와 같은 경우, 무게추(250)가 슬라이딩 챔버(224)를 따라 외측 방향으로 이동되면, 제 1, 2 아암(251a, 251b)이 각각 제 1, 2 링크판(230a, 230b)을 당겨 제 1, 2 링크판(230a, 230b)은 센터 컬럼(212)을 따라 서로 가까워지는 방향으로 이동될 수 있다. 또한, 반대로 무게추(250)가 슬라이딩 챔버(224)를 따라 내측 방향으로 이동되면, 제 1, 2 링크판(230a, 230b)은 서로 멀어지는 방향으로 이동될 수 있다.
한편, 무게추(250) 및 링크아암(251)은 필요에 따라 각각 복수개가 구비될 수 있으며, 복수개의 무게추(250) 및 링크아암(251)은 복수개의 회전블록(220) 전부 또는 일부에 대응되도록 배치될 수 있다. 예컨대, 도 4와 같이 3개의 회전블록(220)이 구비된 경우, 이에 각각 대응되도록 3세트의 무게추(250) 및 링크아암(251)이 마련될 수 있다. 또는, 필요에 따라 3개의 회전블록(220) 중 일부 회전블록(220)에만 이와 같은 무게추(250) 및 링크아암(251)이 구비될 수도 있다고 할 것이다.
이하 도 7 및 8을 참고하여 본 실시예에 따른 피치 제어 모듈(200)의 작동에 대해 설명하도록 한다. 먼저, 블레이드(B)에 풍하중이 작용되지 않아 블레이드(B)가 멈춰 있는 초기 상태의 경우, 제 1, 2 링크판(230a, 230b)은 압축스프링(240)에 의해 이격된 상태로 탄성 지지되며, 제 1, 2 링크판(230a, 230b)의 위치에 따라 블레이드(B)는 초기 피치각으로 배치되게 된다.
블레이드(B)에 풍하중이 작용되면, 회전블록(220)은 피치축(P)을 중심으로 회전되려는 힘을 받게 되며, 이러한 회전블록(220)의 회전력은 제 1, 2 링크판(230a, 230b)을 거쳐 압축스프링(240)에 의해 탄성 지지되게 된다. 따라서 블레이드(B)의 피치각은 풍하중과 압축스프링(240)의 탄성력이 균형을 이루는 상태로 적절히 조절되게 된다.
한편, 블레이드(B)에 풍하중이 작용됨에 따라 블레이드(B)는 회전축(S)을 중심으로 회전하게 되며, 이러한 블레이드(B)의 회전은 무게추(250)에 원심력을 발생시키게 된다. 무게추(250)에 작용되는 원심력은 링크아암(251)을 거쳐 제 1, 2 링크판(230a, 230b)으로 전달될 수 있으며, 제 1, 2 링크판(230a, 230b) 사이의 압축스프링(240)에 의해 탄성 지지되게 된다. 따라서 무게추(250)에 작용되는 원심력과 압축스프링(240)의 탄성력이 균형을 이루며 제 1, 2 링크판(230a, 230b)의 간격이 조절될 수 있으며, 결국, 블레이드(B)의 회전 속도에 따른 피치각 조절이 이뤄지게 된다.
예컨대, 블레이드(B)의 회전 속도가 빨라지는 경우, 무게추(250)에 작용되는 원심력이 커져 무게추(250)가 반경 방향 외측으로 소정정도 이동된 상태로, 원심력과 압축스프링(240)의 탄성력이 균형을 이루게 된다. 이와 같은 경우, 무게추(250)의 이동으로 인해 제 1, 2 링크판(230a, 230b)의 간격은 좁아지고, 이에 대응하여 각 회전블록(220)이 피치축(P)을 중심으로 소정정도 회전됨으로써, 블레이드(B)의 피치각이 조절되게 된다.
한편, 상기와 같은 회전 속도에 따른 피치각 조절은 전술한 풍하중에 따른 피치각 조절과 복합적으로 수행될 수 있다. 즉, 압축스프링(240)은 회전 속도에 따른 무게추(250)의 원심력 및 풍하중에 따른 회전블록(220)의 회전력을 탄성 지지할 수 있으며, 압축스프링(240)의 탄성력이 무게추(250)의 원심력 및 회전블록(220)의 회전력과 균형을 이루는 상태로 블레이드(B)의 피치각이 적절히 조절될 수 있다.
이상에서 설명한 바, 본 실시예에 따른 피치 제어 모듈(200)은 블레이드(B)에 작용되는 풍하중(즉, 블레이드(B)가 피치축(P)을 중심으로 회전되려는 힘)뿐만 아니라, 블레이드(B)의 회전 속도에 따라서도 적절한 피치각 조절이 가능하게 된다. 따라서 본 실시예에 따른 피치 제어 모듈(200)은 보다 정밀하고 효과적인 블레이드(B) 피치각 제어가 가능해진다.
또한, 본 실시예에 따른 피치 제어 모듈(200)은 회전 속도에 대응한 피치각 조절 기능이 추가되면서도 외부적인 강제 구동원이 여전히 요구되지 않는다. 즉, 본 실시예에 따른 피치 제어 모듈(200)은 블레이드(B)에 작용되는 풍하중이나 회전 속도에 따른 원심력이 압축스프링(240)의 탄성력과 균형을 이루는 상태로 자연스럽게 피치각 조절이 이뤄져 피치각 조절을 위해 별도의 강제 구동원이 요구되지 않는다. 따라서 본 실시예에 따른 피치 제어 모듈(200)은 저가로 구현이 가능하며, 중소형의 풍력 발전기에도 쉽게 적용될 수 있다.
나아가, 본 실시예에 따른 피치 제어 모듈(200)은 압축스프링(240)의 탄성 계수, 무게추(250)의 중량 등 비교적 제한된 요소만으로 피치각 제어가 구현되기 때문에 필요한 성능 도출을 위한 설계 값 설정 등이 용이하며, 제작 및 유지 관리 또한 용이한 이점이 있다.
도 9는 본 발명의 제 3 실시예에 따른 수동형 블레이드 피치 제어 모듈을 보여주는 후면 개략도이다. 도 10은 도 9에 표시된 A-A선을 따라 취한 개략적인 단면도이다.
이하에서는 설명의 편의를 위해, 전술한 피치 제어 모듈(100)과 유사한 구성에 대하여는 대응되는 도면 부호를 부여하고, 이에 대한 상세한 설명은 간략히 요약 또는 생략하기로 한다.
도 9 및 10을 참고하면, 본 실시예에 따른 수동형 블레이드 피치 제어 모듈(이하, '피치 제어 모듈(300)'로 약칭함)은 바디부(310), 바디부(310)에 장착되는 복수개의 회전블록(미도시), 상기 각 회전블록과 링크 결합되는 링크판(330) 및, 링크판(330)을 탄성 지지하는 압축스프링(미도시)을 포함하여 구성될 수 있다. 상기의 바디부(310), 회전블록, 링크판(330) 및 압축스프링은 전술한 피치 제어 모듈(100)의 바디부(110), 회전블록(120), 링크판(130) 및 압축스프링(140)과 동일 또는 유사하게 형성될 수 있다.
다만, 도 9 및 10의 경우, 설명의 편의를 위해 상기의 구성요소들을 일부 생략하고 도시하고 있음을 알려둔다. 도 9의 경우, 바디부(310)의 일측에 배치된 플레이트(311a, 전술한 피치 제어 모듈(100)의 플레이트(111a)에 대응됨)만을 도시하고 있으며, 이에 마주보도록 배치된 플레이트(311b, 도 10 참조, 전술한 피치 제어 모듈(100)의 플레이트(111b)에 대응됨)는 생략하여 도시하고 있다.
한편, 본 실시예에 따른 피치 제어 모듈(300)은 초기 피치각 설정부(360)를 더 포함할 수 있다. 초기 피치각 설정부(360)는 초기 상태(블레이드에 풍하중이 작용되지 않는 상태)에서 링크판(330)의 위치를 조정함으로써 블레이드의 초기 피치각을 설정할 수 있게 한다.
구체적으로, 초기 피치각 설정부(360)는 링크판(330) 일측에 구비되는 너트부재(362)와, 너트부재(362)에 나합되는 볼트부재(361)를 포함할 수 있다.
너트부재(362)는 링크판(330)의 일면에서 블레이드의 회전축(S) 방향으로 소정정도 돌출 또는 연장 형성될 수 있다. 또한, 너트부재(362)는 상기 압축스프링이 배치된 반대면에 배치될 수 있다. 즉, 링크판(330)은 일면이 상기 압축스프링에 접촉되어 탄성 지지될 수 있는데, 너트부재(362)는 이러한 탄성 지지면의 반대면에 배치될 수 있다 (도 2 및 6 참조). 한편, 너트부재(362)는 링크판(330)에 일체로 형성되거나 용접 등을 통해 링크판(330)에 고정 결합될 수 있다.
볼트부재(361)는 회전축(S) 방향으로 너트부재(362)에 삽입되어 너트부재(362)와 나합될 수 있다. 볼트부재(361)는 링크판(330)의 상기 탄성 지지면의 반대면과 플레이트(311b) 사이에 회전축(S) 방향으로 배치될 수 있다. 또한, 볼트부재(361)의 일측(361a)은 플레이트(311b)의 일면에 접촉 지지될 수 있으며, 타측(361b)은 너트부재(362)와의 나합에 의해 지지될 수 있다. 이와 같은 볼트부재(361)는 상기 압축스프링의 탄성력에 대향하여 링크판(330)과 플레이트(311b) 사이를 지지할 수 있다. 즉, 링크판(330)은 상기 탄성 지지면이 상기 압축스프링에 의해 탄성 지지되는 한편, 상기 탄성 지지면의 반대면이 볼트부재(361)에 의해 지지되어 위치를 유지하게 된다.
상기와 같은 경우, 사용자는 풍하중이 작용되지 않는 초기 상태에서 볼트부재(361)를 이동시켜 링크판(330)의 위치를 조절할 수 있다. 즉, 사용자가 공구 등을 통해 볼트부재(361)를 일측으로 회전시키게 되면, 볼트부재(361)는 너트부재(362)에 대해 회전축(S) 방향으로 소정정도 이동되게 된다. 이때, 볼트부재(361)는 상기 압축스프링의 탄성력에 대향하여 링크판(330)을 밀게 되며, 이로 인해 링크판(330)은 센터 컬럼(미도시)을 따라 회전축(S) 방향으로 위치 이동될 수 있다. 이와 같이 링크판(330)이 위치 이동되면, 링크판(330)과 링크 결합된 상기 회전블록이 피치축(P)을 중심으로 소정정도 회동되어 블레이드의 초기 피치각이 조절될 수 있다 (도 6 참조).
한편, 바디부(310)를 구성하는 플레이트(311b)에는 상기와 같은 볼트부재(361)의 조작을 위해 액세스홀(363)이 구비될 수 있다. 액세스홀(363)은 볼트부재(361)가 배치된 위치에 대응되도록 플레이트(311b)에 관통 형성되어, 사용자가 공구 등을 통해 볼트부재(361)를 조작할 수 있게 한다.
또한, 상기와 같은 초기 피치각 설정부(360)는 필요에 따라 복수개가 구비될 수 있으며, 복수개의 초기 피치각 설정부(360)는 회전축(S)을 중심으로 원주 방향 이격 배치될 수 있다. 보다 바람직하게, 초기 피치각 설정부(360)는 상기 회전블록이나 블레이드의 개수에 따라 복수개가 구비되어, 상기 각 회전블록 또는 각 블레이드에 대응되도록 배치될 수 있다. 예컨대, 본 실시예의 경우, 3개의 회전블록 또는 블레이드에 대응되도록 총 3개의 초기 피치각 설정부(360)가 회전축(S)을 중심으로 이격 배치된 경우를 예시하고 있다.
이상에서 설명한 바, 본 실시예에 따른 수동형 블레이드 피치 제어 모듈(300)은 압축스프링의 탄성력과 블레이드에 작용되는 풍하중이 균형을 이루며 별도의 강제 구동원이 없이도 블레이드의 피치각을 적절히 조절할 수 있는 한편, 초기 피치각 설정부(360)를 통해 풍하중이 작용되지 않는 초기 상태에서도 적절한 초기 피치각 설정이 가능해진다. 따라서 본 실시예에 따른 수동형 블레이드 피치 제어 모듈(300)은 설치 장소나 설계 요건 등에 따라 블레이드의 초기 피치각을 쉽게 조절하여 발전 효율 등을 향상시키는데 기여할 수 있다.
이상, 본 발명의 실시예들에 대하여 설명하였으나, 해당 기술 분야에서 통상의 지식을 가진 자라면 특허청구범위에 기재된 본 발명의 사상으로부터 벗어나지 않는 범위 내에서, 구성 요소의 부가, 변경, 삭제 또는 추가 등에 의해 본 발명을 다양하게 수정 및 변경시킬 수 있을 것이며, 이 또한 본 발명의 권리범위 내에 포함된다고 할 것이다.

Claims (9)

  1. 센터 컬럼을 구비하고 풍력 발전기의 회전축과 연결되는 바디부;
    피치축을 중심으로 회전 가능하도록 상기 바디부에 체결되며, 블레이드가 장착 지지되는 하나 이상의 회전블록;
    상기 센터 컬럼을 따라 이동 가능하도록 상기 센터 컬럼에 체결되며, 상기 회전블록과 상기 피치축에 대해 편심 결합되는 링크판; 및
    상기 링크판을 탄성 지지하는 스프링;을 포함하는 수동형 블레이드 피치 제어 모듈.
  2. 청구항 1에 있어서,
    상기 회전블록은, 상기 블레이드에 작용되는 풍하중에 의해 상기 피치축을 중심으로 소정정도 회전되도록 형성되고,
    상기 링크판은, 상기 회전블록이 회전됨에 따라 상기 센터 컬럼을 따라 이동되며,
    상기 스프링은, 상기 링크판의 이동에 대향하도록 상기 링크판을 탄성 지지하는 수동형 블레이드 피치 제어 모듈.
  3. 청구항 1에 있어서,
    상기 바디부는, 상기 회전블록을 회전 가능하게 지지하는 지지블록을 구비하며,
    상기 회전블록과 상기 지지블록 간에는, 상기 회전블록 또는 상기 지지블록에 접촉 슬라이딩되는 테프론 재질의 슬라이딩 패드가 구비되는 수동형 블레이드 피치 제어 모듈.
  4. 청구항 1에 있어서,
    상기 스프링은, 압축스프링을 포함하고,
    상기 압축스프링은, 초기 상태에서 소정정도 압축된 상태로 상기 센터 컬럼에 체결되며,
    상기 센터 컬럼의 일단에는, 초기 상태에서 상기 압축스프링으로 인한 상기 링크판의 이탈을 방지하는 스토퍼가 마련된 수동형 블레이드 피치 제어 모듈.
  5. 청구항 1에 있어서,
    상기 회전블록은, 상기 피치축 방향을 따라 연장된 슬라이딩 챔버를 구비하고,
    상기 링크판은, 상기 센터 컬럼을 따라 이격 배치된 제 1, 2 링크판을 포함하며,
    상기 스프링은, 상기 제 1, 2 링크판 사이를 탄성 지지하되,
    상기 슬라이딩 챔버에 배치되는 무게추; 및
    상기 무게추의 상기 피치축 방향 이동에 연동하여 상기 제 1, 2 링크판 중 적어도 하나 이상이 상기 센터 컬럼을 따라 이동되도록 상기 무게추와 상기 제 1, 2 링크판 간을 링크 결합시키는 링크아암;을 더 포함하는 수동형 블레이드 피치 제어 모듈.
  6. 청구항 5에 있어서,
    상기 무게추는, 상기 블레이드의 회전에 따른 원심력에 의해 상기 슬라이딩 챔버 내에서 상기 피치축을 따라 소정정도 이동 가능하도록 형성되며,
    상기 스프링은, 상기 무게추의 이동에 연동한 상기 제 1, 2 링크판 중 적어도 하나의 이동을 탄성 지지하도록 형성된 수동형 블레이드 피치 제어 모듈.
  7. 청구항 5에 있어서,
    상기 링크아암은,
    일측이 상기 제 1 링크판에 힌지 결합되고, 타측이 상기 무게추에 힌지 결합된 제 1 아암; 및
    일측이 상기 제 2 링크판에 힌지 결합되고, 타측이 상기 무게추에 힌지 결합된 제 2 아암;을 포함하는 수동형 블레이드 피치 제어 모듈.
  8. 청구항 1에 있어서,
    상기 링크판의 초기 위치를 조절하는 초기 피치 설정부;를 더 포함하며,
    상기 초기 피치 설정부는,
    상기 스프링에 대향하는 방향으로 상기 링크판을 지지하는 볼트부재; 및
    상기 링크판 일측에 마련되어 상기 회전축 방향으로 소정정도 연장 형성되며, 상기 볼트부재와 나합되는 너트부재;를 포함하는 수동형 블레이드 피치 제어 모듈.
  9. 청구항 8에 있어서,
    상기 바디부는, 상기 회전축 방향을 따라 이격 배치된 한 쌍의 플레이트를 구비하고,
    상기 볼트부재는, 상기 한 쌍의 플레이 중 어느 하나의 플레이트와 상기 링크판 사이에 배치되며,
    상기 어느 하나의 플레이트는, 다른 하나의 플레이트와 마주보는 대향면 반대측에서 상기 볼트부재로 공구의 접근을 가능하게 하는 액세스홀을 구비하는 수동형 블레이드 피치 제어 모듈.
PCT/KR2015/011496 2014-10-30 2015-10-29 수동형 블레이드 피치 제어 모듈 WO2016068618A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580059366.9A CN107208605A (zh) 2014-10-30 2015-10-29 手动型叶片节距控制模块
US15/522,574 US20180017040A1 (en) 2014-10-30 2015-10-29 Passive blade pitch control module
JP2017543686A JP2017534025A (ja) 2014-10-30 2015-10-29 受動型ブレードピッチ制御モジュール
EP15855534.2A EP3214304A4 (en) 2014-10-30 2015-10-29 Passive blade pitch control module

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2014-0148926 2014-10-30
KR1020140148926A KR101478575B1 (ko) 2014-10-30 2014-10-30 수동형 블레이드 피치 제어 모듈
KR1020150140674A KR101618103B1 (ko) 2015-10-07 2015-10-07 수동형 블레이드 피치 제어 모듈
KR10-2015-0140676 2015-10-07
KR10-2015-0140674 2015-10-07
KR1020150140676A KR101579418B1 (ko) 2015-10-07 2015-10-07 수동형 블레이드 피치 제어 모듈

Publications (1)

Publication Number Publication Date
WO2016068618A1 true WO2016068618A1 (ko) 2016-05-06

Family

ID=55857847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/011496 WO2016068618A1 (ko) 2014-10-30 2015-10-29 수동형 블레이드 피치 제어 모듈

Country Status (5)

Country Link
US (1) US20180017040A1 (ko)
EP (1) EP3214304A4 (ko)
JP (1) JP2017534025A (ko)
CN (1) CN107208605A (ko)
WO (1) WO2016068618A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110088149B (zh) 2016-10-19 2023-10-27 埃克森美孚化学专利公司 负载型催化剂体系及其使用方法
US11754040B2 (en) 2021-08-16 2023-09-12 Mansberger Aircraft Inc. Automatic-aerodynamic pitch control for wind turbine blade
US11673660B1 (en) * 2022-05-25 2023-06-13 Beta Air, Llc Systems and devices for parking a propulsor teeter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020016681A (ko) * 2000-08-26 2002-03-06 근 석 장 풍력을 이용한 동력 발생 장치
KR20070051190A (ko) * 2005-11-14 2007-05-17 백 기 김 저수지 수질 개선 장치의 풍력 전달 장치
KR20100035206A (ko) * 2008-09-26 2010-04-05 남태우 풍력발전기용 블레이드 피치 자동 조절장치
KR101004343B1 (ko) * 2010-06-23 2010-12-27 (주) 파루 풍력 발전기용 날개 경사각 조절 장치
KR101379455B1 (ko) * 2013-02-26 2014-03-31 윤양운 풍력발전기의 로터

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2054383A (en) * 1936-03-30 1936-09-15 Ludewig Hercel Joseph Wind power apparatus
IT1091536B (it) * 1977-12-23 1985-07-06 Fiat Spa Dispositivo per la regolazione del passo delle pale di un motore eolico
JPH04194368A (ja) * 1990-11-28 1992-07-14 Tomotoshi Tokuno 可変ピッチ風車
JP2003293929A (ja) * 2002-04-05 2003-10-15 Higashimoto Kikai:Kk 風車式発電装置
ES1068777Y (es) * 2008-09-25 2009-03-01 Sonkyo S L Dispositivo para regular el paso de las palas de un aerogenerador
TWI349744B (en) * 2008-11-25 2011-10-01 Univ Nat Cheng Kung Blade pitch controlling apparatus and application thereof
CN101696675B (zh) * 2009-10-26 2012-05-23 广州红鹰能源科技有限公司 一种无助力变桨距水平轴风力发电机
US20110211957A1 (en) * 2010-02-26 2011-09-01 Mark Folsom Self regulating wind turbine
JP2011239634A (ja) * 2010-05-13 2011-11-24 Kumagai Gumi Co Ltd 発電装置
CN101852184A (zh) * 2010-06-04 2010-10-06 浙江华鹰风电设备有限公司 中小型变桨距风力发电机
US8172531B2 (en) * 2011-01-10 2012-05-08 Vestas Wind Systems A/S Plain bearing for a wind turbine blade and method of operating a wind turbine having such a plain bearing
CN201925094U (zh) * 2011-01-25 2011-08-10 青岛安华新源风电设备有限公司 中小型风力发电机自动安全控制系统
JP5901157B2 (ja) * 2011-06-30 2016-04-06 ソンキョ・エナジー・ソシエダッド・リミターダSonkyo Energy, S.L. 風力発電機のブレードピッチ調整装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020016681A (ko) * 2000-08-26 2002-03-06 근 석 장 풍력을 이용한 동력 발생 장치
KR20070051190A (ko) * 2005-11-14 2007-05-17 백 기 김 저수지 수질 개선 장치의 풍력 전달 장치
KR20100035206A (ko) * 2008-09-26 2010-04-05 남태우 풍력발전기용 블레이드 피치 자동 조절장치
KR101004343B1 (ko) * 2010-06-23 2010-12-27 (주) 파루 풍력 발전기용 날개 경사각 조절 장치
KR101379455B1 (ko) * 2013-02-26 2014-03-31 윤양운 풍력발전기의 로터

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3214304A4 *

Also Published As

Publication number Publication date
EP3214304A4 (en) 2018-07-04
JP2017534025A (ja) 2017-11-16
US20180017040A1 (en) 2018-01-18
CN107208605A (zh) 2017-09-26
EP3214304A1 (en) 2017-09-06

Similar Documents

Publication Publication Date Title
WO2016068618A1 (ko) 수동형 블레이드 피치 제어 모듈
EP0146783B1 (en) Improved lightweight electric robotic actuator
EP2005558B1 (en) Electric generator for wind and water turbines
WO2014073738A1 (ko) 사축형 윈드 터빈
AU2011201828B2 (en) Wind power turbine electric generator, and wind power turbine equipped with such an electric generator
WO2010131891A2 (ko) 수직형 풍력 발전기
WO2011059129A1 (ko) 압전세라믹 및 자석을 이용한 에너지 하비스팅 장치
WO2011065720A2 (ko) 수직형 풍력발전용 틸트식 회전날개장치
WO2012044089A2 (ko) 수직축 터빈 및 이를 구비하는 양방향 적층식 수직축 터빈
WO2019083134A1 (ko) 방향키 풍력을 이용한 환풍기와 무동력 선풍기 발전 시스템
WO2014081219A1 (ko) 수직형 풍력발전용 틸트식 회전날개장치
CY1108365T1 (el) Μια εγκατασταση αιολικης ενεργειας με μια κοιλη ατρακτο για την πλημνη του δρομεα και τη γεννητρια
US11371570B2 (en) Drive train of a wind turbine comprising a torque limiter, wind turbine
WO2014193085A1 (ko) 풍력 발전기의 블레이드 각도 조절장치 및 이를 가지는 풍력발전기
CN112054757A (zh) 一种便于维修的光伏发电设备
US11480159B2 (en) Mainframe for wind turbines
KR101618103B1 (ko) 수동형 블레이드 피치 제어 모듈
KR101552808B1 (ko) 에너지 발생장치의 저항판구조
WO2011139015A1 (ko) 대용량 풍력 발전기
WO2012174864A1 (zh) 偏心环式风力机构
WO2023200053A1 (ko) 풍력 및 수력을 이용한 발전장치
TW326066B (en) Rotary regenerative air preheaters
WO2022149709A1 (ko) 블레이드와 유로를 포함한 수직형 풍력발전장치
WO2015080338A1 (ko) 가이드부를 포함하는 풍력발전기의 블레이드 경사각 조절장치
US20090127985A1 (en) Combination of disk motor and machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15855534

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017543686

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015855534

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15522574

Country of ref document: US