WO2016068463A2 - 전지 급속 충전 방법 및 장치 - Google Patents

전지 급속 충전 방법 및 장치 Download PDF

Info

Publication number
WO2016068463A2
WO2016068463A2 PCT/KR2015/008496 KR2015008496W WO2016068463A2 WO 2016068463 A2 WO2016068463 A2 WO 2016068463A2 KR 2015008496 W KR2015008496 W KR 2015008496W WO 2016068463 A2 WO2016068463 A2 WO 2016068463A2
Authority
WO
WIPO (PCT)
Prior art keywords
charging
battery
rate
protocol
negative electrode
Prior art date
Application number
PCT/KR2015/008496
Other languages
English (en)
French (fr)
Other versions
WO2016068463A3 (ko
Inventor
하정호
김효미
이혁무
오송택
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150109510A external-priority patent/KR101651991B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201580058647.2A priority Critical patent/CN107148699B/zh
Priority to JP2017523388A priority patent/JP6523450B2/ja
Priority to US15/517,039 priority patent/US10236702B2/en
Publication of WO2016068463A2 publication Critical patent/WO2016068463A2/ko
Publication of WO2016068463A3 publication Critical patent/WO2016068463A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present invention relates to a method and apparatus for charging a battery, and more particularly, to a method and apparatus for rapid charging a battery, which uses a stepwise reduction of current to rapidly charge a battery while increasing the life of the battery.
  • the process of charging a cell involves introducing current into the cell and accumulating charge and energy, which process must be carefully controlled.
  • excessive C-rate or charging voltage can permanently degrade the performance of a battery and ultimately cause complete failure or unexpected failures such as leakage or explosion of highly corrosive chemicals.
  • the conventional battery charging method is a constant current (CC) method for charging with a constant current from the beginning of the charge to completion, a constant voltage (CV) method for charging at a constant voltage from the beginning to the completion of charging, and charging with a constant current at the beginning of charging,
  • CC-CV constant current-constant voltage
  • the CC charging method is a safety problem that loses the overcharge control function due to the Li-plating (Li-plating) problem that forms a metal plating film due to the characteristics of lithium ions because the current continues to flow to the battery even after charging is completed There is. Because of this There is an inconvenience in that the charger and battery must be quickly disconnected when the charging is completed.
  • Li-plating Li-plating
  • the CV method has a disadvantage in that the terminal voltage is greatly changed by the temperature change and the heat generation of the battery itself when the battery is fully charged, and thus it is difficult to set the constant voltage value in advance. There is an inconvenience that the charging time is long.
  • the most common method is the CC-CV method.
  • the CC When the battery is discharged a lot, the CC is charged, and when the charge is almost completed, the CV becomes the method of preventing overcharging.
  • C is the battery capacity of the charging unit (often indicated by Q) A ⁇ h, the current in amperes is selected as the fraction (or multiplier) of C.
  • this charging method should be charged in a condition suitable for the charging capacity of the charger, it should be charged in a well ventilated room temperature of about 25 °C.
  • the conventional battery charging protocol has a disadvantage in that the battery life is reduced by damaging the electrode plate when the battery is slow or overcharges.
  • many studies have been conducted to achieve rapid charging by improving performance such as battery output.
  • An object of the present invention is to provide a battery charging method and apparatus for allowing a battery to be charged quickly as the battery life becomes longer.
  • the battery charging method according to the present invention is to charge the battery while the charge rate is gradually reduced so that the negative electrode potential of the battery does not fall below 0V starting from the initial charge rate (C-rate) higher than 1C .
  • the initial charge rate may be 1.5C to 5C. It may be 1.5C to 3C.
  • Another battery charging method includes a data acquisition step of measuring the negative electrode potential of the battery according to the state of charge (SOC) for each different charging rate; Obtaining a protocol for changing a charge rate stepwise from the acquired data so that the negative electrode potential of the battery does not fall below 0V; And charging the battery with the protocol.
  • SOC state of charge
  • the filling rate of the data acquisition step may range from 0.25C to 5C. It may range from 0.25C to 3C. It may also range from 0.25C to 1.5C.
  • the protocol may include a rate of charge (the corresponding charge current) that decreases in stages and charge voltage information after the end of charge at each charge rate.
  • Battery charging apparatus includes a power supply for outputting a charging voltage input from a commercial power source; And outputs a charging voltage input from the power supply unit as a charging current to a battery so that the battery is charged.
  • the charging current is changed by changing the charging current.
  • a battery charger for controlling the battery to be changed wherein the battery charger is configured to charge the battery while the charging current is gradually adjusted according to a protocol for gradually changing the charging rate so that the negative electrode potential of the battery does not fall below 0V.
  • the charging of the battery is performed while the charging current is gradually adjusted according to a protocol for changing the charging rate stepwise so that the cathode potential does not fall below 0V.
  • Li-plating of the battery negative electrode can be prevented by a reference such that the negative electrode potential does not fall below 0 V, thereby increasing the battery life and thus allowing the battery to be charged quickly.
  • FIG. 1 is a flowchart of a battery charging method according to the present invention.
  • FIG. 2 shows a negative electrode potential according to a charging rate and a negative electrode potential upon protocol charging based thereon.
  • FIG. 3 is a graph showing the charging rate (charge current) with time when the battery is charged by the method of the present invention.
  • FIG. 4 is a graph illustrating a battery life comparison according to a charging method using a stepwise charging current reduction according to the present invention and a conventional CC-CV charging method.
  • Li-plating is more likely to occur at higher charge current densities (charge rates or charge currents) and at lower temperatures. To avoid this, lowering the charge current density does not achieve the desired charge rate.
  • the present invention measures the negative electrode potential according to the charging current through a three-electrode cell experiment and quantifies the charging limit in which Li-plating does not occur when charging with each current through this. This also provides a multi-step charging technology that shortens the charging time without generating Li-plating by charging the battery while gradually reducing the charging current while controlling the charging rate so that the cathode potential is not 0V or less.
  • FIG. 1 is a flowchart of a battery charging method according to the present invention.
  • a data acquisition step of measuring a negative electrode potential of a battery according to SOC for each different charging rate is performed (step s1).
  • the cathode potential according to the charging current is measured through a three-electrode cell experiment.
  • C is the battery capacity of the charging unit (often indicated by Q) A ⁇ h
  • the current in amperes is selected as the fraction (or multiplier) of C.
  • 1C charge rate refers to the charge / discharge rate at which the capacity of a fully charged battery is drawn out or filled within an hour, and also the current density at that time.
  • the filling rate is higher than 1C.
  • continuous charging with a high current may cause high heat generation inside the battery, and each electrode may form an overvoltage state due to the resistance of the battery. Therefore, the charging rate should be determined in consideration of the type and characteristics of the battery.
  • the range of the charging rate in the data acquisition step may vary depending on the type and characteristics of such a battery.
  • an EV battery can acquire data in the range of 0.25C-1.5C of charging rates by setting the initial charging rate to 1.5C.
  • a battery for a plug-in hybrid electric vehicle (PHEV) may acquire data in a range of 0.25C to 3C by setting an initial charge rate of 3C. This initial charge rate and the charge rate range may be limited not only by the type of battery, but also by the maximum current of the motor used in the actual vehicle.
  • the EV battery may be set to an initial charge rate of 1.5C, and the PHEV battery may be set to an initial charge rate of 3C.
  • the initial charge rate can be further increased, for example, up to 5C. Therefore, the initial filling rate may be 1.5C to 5C, and the filling rate of the data acquisition step in the present invention may range from 0.25C to 5C.
  • FIG. 2 shows the negative electrode potential according to the filling rate. As shown in FIG. 2, a graph can be obtained by measuring a negative electrode potential according to SOC state while varying the charging rate from 1.5C to 0.25C.
  • step s2 a protocol is obtained in which the charge rate is changed step by step so that the negative electrode potential of the battery does not fall below 0 V (step s2). If the negative electrode potential does not fall below 0 V, the ion layer formed during battery charging is diffused and decomposed into the electrolyte so that Li-plating is not induced on the negative electrode.
  • a protocol such as the dotted line can be obtained so that the cathode potential does not fall below 0V.
  • the cathode potential becomes 0V at the point of 35% SOC.
  • the charge rate is then changed to the next charge rate, 1.25C. Accordingly, when charging, the cathode potential becomes 0V at the point of 47% SOC.
  • the filling rate is then changed to the next filling rate, 1C. Accordingly, when charging, the cathode potential becomes 0V at the point of 56% SOC.
  • the filling rate is then changed to the next filling rate, 0.75C. Accordingly, when charging, the cathode potential becomes 0V at the point of 65% SOC.
  • the filling rate is then changed to the next filling rate of 0.5C. Accordingly, when charging, the cathode potential becomes 0V at the point of 76% SOC.
  • the filling rate is then changed to the next filling rate.
  • the protocol can be obtained, and the negative electrode potential graph according to the SOC varies depending on the type of battery, but this method of obtaining the protocol can be similarly applied.
  • the range of the initial charging rate and the range of the filling rate in the data acquisition step may vary.
  • the amount by which the filling rate is reduced can also be any value other than 0.25C.
  • FIG. 3 is a graph showing the charging rate (charge current) with time when the battery is charged by the method of the present invention, and a protocol similar to the protocol shown in FIG. 2 (when the final charging rate is 0.4C instead of 0.25C). It is represented by the filling rate over time.
  • the charging current of the charger for charging the battery decreases gradually over time from the initial charging rate corresponding to 1.5C to the final charging rate.
  • the holding times t1 to t6 of the respective charging rates are different so that the cathode potential does not fall below 0V.
  • the present invention measures the negative electrode potential according to the charging rate, and quantifies the charging limit in which Li-plating does not occur when charging with each current.
  • the protocol may include a charging rate that gradually decreases and charging voltage information after termination of charging at each charging rate.
  • charging may be performed by applying an optimized charging current according to a protocol.
  • the charging protocol can be realized using the battery charging device according to the present invention.
  • the battery charging device includes a power supply unit for outputting a charging voltage input from a commercial power source;
  • the charging voltage input from the power supply unit is output to the battery as a charging current so that the battery is charged.
  • the charging current is changed by changing the charging current.
  • It includes a battery charging unit to control to.
  • the battery charging unit allows the battery to be charged while the charging current is gradually adjusted according to a protocol for changing the charging rate stepwise so that the negative electrode potential of the battery does not fall below 0V.
  • the logic of the protocol of the charging method according to the invention can be integrated into the battery charging device and used to charge the battery.
  • the battery charging unit employs a processor for implementing rapid charging.
  • the processor stores the logic of the charging protocol in a memory, and voltage, current, etc. can each be measured with high accuracy to achieve accurate control and preserve device performance.
  • Table 1 sets the charging protocol based on the cathode potential according to the current density, and summarizes the charging voltage and the charging time without the cathode potential falling below 0V during actual charging.
  • the battery charge voltage is 3.857V, and the holding time of this step is 7.2 minutes (t4).
  • the protocol after charging for 13.2 minutes (t5) by changing the charging rate to 0.5C, the point of 76% SOC is reached and the battery charge voltage is 3.95V.
  • the next charge rate of 0.4C is reached, reaching a point of 80% SOC, and the battery's charging voltage is 4.0V, which takes 6 minutes (t6).
  • implementation according to the teachings of the present invention results in a charge profile where 80% (80% SOC) of full charge results in a filling profile obtained at 51.56 minutes (t1 + t2 + t3 + t4 + t5 + t6). Even the charging time can be reduced rather than about 1 hour 30 minutes to fully charge at the conventional 1C charge rate.
  • the charging process is controlled so that the cathode potential does not fall below 0V, there is no fear of causing Li-plating on the cathode as compared with the general CC-CV charging method, and thus the life is long.
  • the life of a battery is a measure of how long the battery can be used, and the unit is expressed as the number of cycles (cycles). In other words, it indicates how many times the battery can be charged and used. In terms of electrical energy, the battery is charged once and used until the battery is fully discharged.
  • Figure 4 is a graph comparing the battery life according to the charging method and the conventional CC-CV charging method using a step-down charging current according to the present invention, it shows a change in capacity according to the number of cycles. Even after a long charge / discharge cycle, it is necessary for the capacity of the battery to remain unchanged.
  • the life time in each case was compared with the same charging time and discharge under the same conditions (1C CC). As shown in FIG. 4, in the conventional case, the capacity retention rate is reduced to about 96% after 250 cycles, but in the present invention, the capacity retention rate is 98% or more even after 250 cycles.
  • the life of such a battery is determined by various factors, and the structural stability of the electrode, particularly the stability of the negative electrode, is important.
  • the ideal negative electrode should have high reaction reversibility with lithium ions. When the ideal reversible reaction is achieved, there is no change in capacity retention with the cycle. It can be seen that the charging method using the stepwise charging current reduction according to the present invention has a higher reaction reversibility than the conventional method, which is a result of preventing Li-plating at the cathode. As such, according to the charging method using the stepwise charging current reduction of the present invention, it can be seen that the battery life is longer than the conventional life by preventing the degradation.
  • the battery is charged without generating Li-plating because the charging rate is gradually reduced so that the cathode potential does not fall below 0V while the battery is rapidly charged using an initial charging rate of greater than 1C. Can be charged quickly. Damage to the internal structure of the battery can be prevented and the life of the battery can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

전지 수명이 길어지면서 빠르게 전지가 충전되도록 하는 전지 급속 충전 방법 및 장치를 제공한다. 본 발명에 따른 전지 충전 방법은 1C보다 높은 초기 충전율부터 시작해서 전지의 음극 전위가 0V 이하로 떨어지지 않도록 상기 충전율이 단계적으로 감소되면서 전지를 충전하는 것이다. 음극 전위가 0V 이하로 떨어지지 않도록 하는 기준에 의해 전지 음극의 Li-플레이팅 발생을 방지할 수 있고 이에 따라 전지 수명이 길어지면서 빠르게 전지가 충전되도록 하는 효과가 있다.

Description

전지 급속 충전 방법 및 장치
본 발명은 전지 충전 방법 및 장치에 관한 것으로, 특히 전지의 수명을 늘리면서 전지를 빠르게 충전하기 위하여 단계적 충전전류 감소를 이용하는 전지 급속 충전 방법 및 장치에 관한 것이다.
본 출원은 2014년 10월 30일자 출원된 한국 특허출원 번호 제10-2014-0149420호 및 2015년 8월 3일자 출원된 한국 특허출원 번호 제10-2015-0109510호에 대한 우선권주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
근래에는, 노트북, 휴대용 전화기 등과 같은 휴대용 전자 제품의 수요가 급격하게 증대되고, 전동카트, 전동 휠체어, 전동 자전거 등의 수요도 늘어남에 따라 반복적인 충방전이 가능한 고성능 전지에 대한 연구가 활발히 진행되고 있다. 또한 최근에는 탄소 에너지가 점차 고갈되고 환경에 대한 관심이 높아지면서, 전 세계적으로 하이브리드 자동차(HEV)와 전기 자동차(EV)에 대한 수요가 점차 증가하고 있다.
따라서 HEV나 EV의 핵심적 부품인 차량용 전지에 보다 많은 관심과 연구가 집중되고 있으며, 더불어 전지를 빠르게 충전할 수 있는 급속 충전 기술 개발이 시급하다. 특히 추가적인 에너지원이 없는 EV에 있어 급속 충전은 매우 중요한 성능이다.
전지를 충전하는 프로세스는 전지에 전류를 넣어 전하 및 에너지를 축적하는 것을 포함하며, 이러한 프로세스는 주의깊게 제어되어야 한다. 일반적으로 과도한 충전율(C-rate) 또는 충전전압은 전지의 성능을 영구적으로 저하시키고 궁극적으로 완전한 실패를 유발하거나 부식성이 강한 화학 물질의 누설 또는 폭발 등의 돌발 장애를 유발할 수 있다.
종래의 전지 충전방식은 충전 초기부터 완료까지 일정한 전류로 충전을 행하는 정전류(CC) 방식, 충전 초기부터 완료까지 일정한 전압으로 충전을 행하는 정전압(CV) 방식 및 충전 초기에는 일정한 전류로 충전하고, 충전 말기에는 일정한 전압으로 충전하는 정전류-정전압(CC-CV) 방식이 사용된다.
CC 방식은 충전 초기에는 전압차가 커서 대전류가 흐른다. 충전이 빨리 완료된다는 점에서만 보면 충전전류가 클수록 좋지만 연속적으로 큰 전류로 충전하면 충전효율이 저하되고 전지의 수명에도 영향을 끼친다. 또한 CC 충전방식은 충전이 완료되더라도 충전 초기와 같은 전류가 전지로 계속 흐르므로 리튬이온의 특성상 금속 도금막을 형성하는 Li-플레이팅(Li-plating) 문제가 발생해 과충전 조정기능을 상실하는 안전상 문제가 있다. 이 때문에 충전 완료시 신속하게 충전기와 전지를 분리시켜야 하는 불편함이 있다.
또한 CV 방식은 전지의 충전이 완료되면 단자 전압이 온도변화와 전지 자체의 발열에 의해 크게 변화되어 정전압 값을 미리 설정하기 곤란한 단점이 있으며, 일반적으로 15.5 ~ 16V 정도로 20 ~ 24시간 전지를 충전하므로, 충전시간이 길다는 불편함이 있다.
가장 많이 사용하는 방법은 CC-CV 방식이다. 전지가 많이 방전되어 있을 때는 CC로 충전을 하다가 충전이 거의 완료되는 시점에서는 CV로 되면서 과충전을 방지하는 방식이다. "C"가 충전 단위(종종 Q로 표시) A·h의 전지 용량이면, 암페어 단위의 전류가 C의 분수(또는 승수)로서 선택된다. 일반적으로 최대 1C로 충전을 한다. 가령 700mAh짜리 용량의 리튬 전지라면 대략 1시간 30분정도면 충전이 완료된다. 그런데 이 충전방식은 충전기의 충전 능력에 적합한 조건으로 충전해야 하며, 환기가 잘되고 상온이 약 25℃인 곳에서 충전해야 한다.
이와 같이 기존의 전지 충전 프로토콜은 느리거나 전지에 과충전이 일어날 경우 전지의 극판을 손상시켜 전지 수명을 감소시킨다는 단점이 있다. 기존에는 전지의 출력 등 성능을 개선시킴으로써 급속 충전을 달성하는 연구가 많이 진행되었다.
본 발명이 해결하고자 하는 과제는, 전지 수명이 길어지면서 빠르게 전지가 충전되도록 하는 전지 충전 방법 및 장치를 제공하는 것이다.
상기 과제를 해결하기 위하여, 본 발명에 따른 전지 충전 방법은 1C보다 높은 초기 충전율(C-rate)부터 시작해서 전지의 음극 전위가 0V 이하로 떨어지지 않도록 상기 충전율이 단계적으로 감소되면서 전지를 충전하는 것이다.
상기 초기 충전율은 1.5C 내지 5C일 수 있다. 1.5C 내지 3C일 수도 있다.
본 발명에 따른 다른 전지 충전 방법은 SOC(State Of Charge)에 따른 전지의 음극 전위를 서로 다른 충전율별로 측정하는 데이터 취득 단계; 상기 취득된 데이터로부터 상기 전지의 음극 전위가 0V 이하로 떨어지지 않도록 충전율을 단계적으로 변경하는 프로토콜을 얻는 단계; 및 상기 프로토콜로 전지를 충전하는 단계를 포함한다.
상기 데이터 취득 단계의 충전율은 0.25C ~ 5C 범위일 수 있다. 0.25C ~ 3C 범위일 수 있다. 0.25C ~ 1.5C 범위일 수도 있다. 상기 프로토콜은 단계적으로 감소하는 충전율(그에 따른 충전전류)과 각 충전율에서의 충전 종료 후의 충전전압 정보를 포함할 수 있다.
본 발명에 따른 전지 충전 장치는 상용전원으로부터 입력되는 충전 전압을 출력하는 전원부; 및 상기 전원부로부터 입력되는 충전전압을 전지에 충전전류로 출력하여 상기 전지가 충전되도록 하고, 상기 전지의 충전전압이 미리 설정된 단계에 도달하면 충전전류를 변경하여 상기 전지로 출력되는 충전전류가 단계적으로 변화되도록 제어하는 전지 충전부를 포함하고, 상기 전지 충전부는 상기 전지의 음극 전위가 0V 이하로 떨어지지 않도록 충전율을 단계적으로 변경하는 프로토콜에 따라 충전전류가 단계적으로 조절되면서 전지 충전이 이루어지도록 한다.
본 발명에 따르면, 음극 전위가 0V 이하로 떨어지지 않도록 충전율을 단계적으로 변경하는 프로토콜에 따라 충전전류가 단계적으로 조절되면서 전지 충전이 이루어진다. 음극 전위가 0V 이하로 떨어지지 않도록 하는 기준에 의해 전지 음극의 Li-플레이팅 발생을 방지할 수 있고 이에 따라 전지 수명이 길어지면서 빠르게 전지가 충전되도록 하는 효과가 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니된다.
도 1은 본 발명에 따른 전지 충전 방법의 순서도이다.
도 2는 충전율에 따른 음극 전위 및 이에 근거한 프로토콜 충전시 음극 전위이다.
도 3은 본 발명에 방법으로 전지를 충전할 경우의 시간에 따른 충전율(충전전류)를 도시한 그래프이다.
도 4는 본 발명에 따른 단계적 충전전류 감소를 이용한 충전 방법과 종래 CC-CV 충전방식에 따른 전지 수명 비교 그래프이다.
이하에서 첨부된 도면들을 참조하여 본 발명의 바람직한 실시예에 대해 상세하게 설명한다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예는 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다.
정전류 방식의 급속 충전시 음극 표면의 Li-플레이팅으로 인한 셀의 퇴화가 가장 문제가 된다. Li-플레이팅은 충전전류밀도(충전율 또는 충전전류)가 높을수록, 온도가 낮을수록 더 잘 발생하는데 이를 방지하기 위해 충전전류밀도를 낮추면 목표하는 충전 속도를 달성하지 못한다. 본 발명에서는 전지의 Li-플레이팅을 발생시키지 않으면서 충전시간을 단축시키는 기술을 제공할 수 있다.
음극 전위가 0V 이하인 경우, Li-플레이팅이 발생한다. 이에 본 발명에서는 3 전극셀 실험을 통해 충전전류에 따른 음극 전위를 측정하고 이를 통해 각 전류로 충전할 경우 Li-플레이팅이 발생하지 않는 충전 한계를 수치화한다. 또한 이를 통해 음극 전위가 0V 이하가 되지 않도록 충전율을 조절하면서 충전전류를 점점 줄여가며 충전함으로써, Li-플레이팅이 발생하지 않으면서 충전시간을 단축시킨 멀티 스텝 충전 기술을 제공할 수 있다.
도 1은 본 발명에 따른 전지 충전 방법의 순서도이다.
도 1을 참조하면, SOC에 따른 전지의 음극 전위를 서로 다른 충전율별로 측정하는 데이터 취득 단계를 수행한다(단계 s1).
예를 들어, 3 전극셀 실험을 통해 충전전류에 따른 음극 전위를 측정한다. "C"가 충전 단위(종종 Q로 표시) A·h의 전지 용량이면, 암페어 단위의 전류가 C의 분수(또는 승수)로서 선택된다. 예를 들어 1C 충전율이란 만충전한 전지의 용량을 1시간 안에 뽑아 쓰거나 채우는 충방전 속도를 의미하며 그 때의 전류 밀도를 의미하기도 한다. 최근 전자기기의 기능이 다양화됨에 따라 일정한 시간 내에 기기에 의해 사용되는 전류의 요구양도 큰 폭으로 증가하고 있다. 이에 따라, 그 에너지원으로 사용되는 전지에 있어서도 그 성능이 한층 더 높게 요구되고 있다. 휴대용 전화기의 경우 기존에는 대부분 C/2의 충전율 및 방전율을 필요로 하였으나, 향후에는 이러한 기능들이 더 강화되어 1C의 충전율 및 방전율에 상응하는 성능을 요구할 수 있다. 현재 노트북, EV, PHEV용 전지 등은 이와 유사한 충전율 및 이보다 훨씬 높은 방전율을 요구한다.
충전율은 1C보다 높은 것이 급속충전의 관점에서 바람직하다. 그러나, 높은 전류로 지속적으로 충전하게 되면 전지 내부에 높은 열 발생이 동반될 수 있고, 전지의 저항 때문에 각 전극이 과전압 상태를 형성할 수 있다. 따라서, 전지의 종류 및 특성을 고려하여 충전율을 정하여야 한다.
데이터 취득 단계의 충전율의 범위는 이러한 전지의 종류 및 특성에 따라 달라질 수 있다. 예를 들어 EV용 전지는 초기 충전율을 1.5C로 정하여 충전율 0.25C ~ 1.5C 범위에서 데이터를 취득할 수 있다. 다른 예로 PHEV(plug-in hybrid electric vehicle)용 전지는 초기 충전율을 3C로 정하여 충전율 0.25C ~ 3C 범위에서 데이터를 취득할 수 있다. 이와 같은 초기 충전율 및 충전율 범위는 전지의 종류뿐 만 아니라, 실제 자동차에서 사용되는 모터의 최대 전류에 의해 제한될 수도 있다.
앞서 언급한 바와 같이 전지의 특성을 고려하여, EV용 전지는 초기 충전율을 1.5C로 정할 수 있고, PHEV용 전지는 초기 충전율을 3C로 정할 수 있다. 더욱 고속의 충전율 및 방전율이 필요한 전지 사양에 따라서는 초기 충전율을 더 높일 수 있어, 예컨대 5C로까지 높일 수도 있다. 따라서, 초기 충전율은 1.5C 내지 5C일 수 있고, 본 발명에서 데이터 취득 단계의 충전율의 범위는 0.25C ~ 5C 범위일 수 있다.
앞서 언급한 바와 같이, HEV나 EV의 핵심적 부품인 차량용 전지에 보다 많은 관심과 연구가 집중되고 있으며, 더불어 전지를 빠르게 충전할 수 있는 급속 충전 기술 개발이 시급하다. 자동차 시장에서는 충전 시간에 대한 요구가 점점 높아져 이에 맞추기 위해서는 보다 높은 초기 충전율이 필요하다. 급속충전의 관점에서는 초기 충전율을 높이는 것이 유리하지만 앞에서 지적한 바와 같은 문제로 너무 높은 충전율에서는 전지의 저항 때문에 각 전극이 과전압 상태를 형성할 우려가 있다. 그리고, 너무 높은 충전율에서는 충전 시작과 동시에 한계(본 발명의 경우에는 음극 전위 0V 이하)에 도달하여 전체 충전 시간을 크게 단축하지 못할 수도 있다. 따라서, 초기 충전율을 높이는 데에는 전지의 저항 특성 개선이 함께 수반되어야 한다. 본 발명에서는 종래 보급되어 있는 전지들에 비하여 저항 특성이 개선된 전지를 대상으로 하여, 초기 충전율을 5C로까지 높일 수 있다.
도 2는 충전율에 따른 음극 전위가 도시되어 있다. 도 2에 도시한 바와 같이, 1.5C 부터 0.25C까지 충전율을 달리 하며 SOC 상태에 따른 음극 전위를 측정하여 그래프를 얻을 수 있다.
그런 다음, 상기 취득된 데이터로부터 상기 전지의 음극 전위가 0V 이하로 떨어지지 않도록 충전율을 단계적으로 변경하는 프로토콜을 얻는다(단계 s2). 음극 전위가 0V 이하로 떨어지지 않도록 하면 전지 충전 때 형성된 이온층이 전해질로 확산 분해되므로 음극에 Li-플레이팅을 유발하지 않는다.
예를 들어 도 2에서는 음극 전위가 0V 이하로 떨어지지 않도록 점선으로 표시된 것과 같은 프로토콜을 얻을 수 있다. 초기 충전율 1.5C로 충전을 하다보면 SOC 35%인 지점에서 음극 전위가 0V가 된다. 이에 충전율을 그 다음 충전율인 1.25C로 변경한다. 이에 따라 충전을 하다보면 SOC 47%인 지점에서 음극 전위가 0V가 된다. 이에 충전율을 그 다음 충전율인 1C로 변경한다. 이에 따라 충전을 하다보면 SOC 56%인 지점에서 음극 전위가 0V가 된다. 이에 충전율을 그 다음 충전율인 0.75C로 변경한다. 이에 따라 충전을 하다보면 SOC 65%인 지점에서 음극 전위가 0V가 된다. 이에 충전율을 그 다음 충전율인 0.5C로 변경한다. 이에 따라 충전을 하다보면 SOC 76%인 지점에서 음극 전위가 0V가 된다. 이에 충전율을 그 다음 충전율로 변경한다.
이와 같은 방법으로 프로토콜을 얻을 수 있으며, 전지의 종류에 따라 SOC에 따른 음극 전위 그래프는 달라지지만 프로토콜을 얻는 이러한 방법은 유사하게 적용될 수 있다.
또한, 본 실시예에서는 1.5C부터 0.25C까지 0.25C씩 충전율을 감소시키는 경우를 예로 들어 설명하였으나, 앞서 언급한 바와 같이 초기 충전율의 범위 및 데이터 취득 단계의 충전율의 범위는 얼마든지 달라질 수 있으며, 충전율이 감소되는 양도 0.25C가 아닌 임의의 값이 될 수 있다. 감소되는 양을 적게함으로써 단계를 세분화할수록 전체 충전 시간은 길어지지만 Li-플레이팅 방지 효과는 탁월해진다.
도 3은 본 발명의 방법으로 전지를 충전할 경우의 시간에 따른 충전율(충전전류)를 도시한 그래프로서, 도 2에 나타낸 프로토콜과 유사한 프로토콜(최종 충전율이 0.25C가 아닌 0.4C인 경우)을 시간에 따른 충전율로 나타낸 것이다.
전지를 충전하기 위한 충전기의 충전전류는 시간에 따라 1.5C에 해당하는 초기 충전율로부터 최종 충전율까지 단계적으로 감소한다. 각 충전율의 유지 시간(t1 내지 t6)은 앞서 설명한 바와 같이 음극 전위가 0V 이하로 떨어지지 않도록 하는 것이므로 달라질 수 있다. 이와 같이 본 발명에서는 충전율에 따른 음극 전위를 측정하고 이를 통해 각 전류로 충전할 경우 Li-플레이팅이 발생하지 않는 충전 한계를 수치화한다.
다음, 이러한 프로토콜로 전지를 충전한다(단계 s3). 상기 프로토콜은 단계적으로 감소하는 충전율과 각 충전율에서의 충전 종료 후의 충전전압 정보를 포함할 수 있다. 본 발명에 따르면, 프로토콜에 따라 최적화된 충전전류를 인가하여 충전을 수행할 수 있다.
충전 프로토콜은 본 발명에 따른 전지 충전 장치를 이용해 실현될 수 있다. 이 전지 충전 장치는 상용전원으로부터 입력되는 충전 전압을 출력하는 전원부; 상기 전원부로부터 입력되는 충전전압을 전지에 충전전류로 출력하여 상기 전지가 충전되도록 하고, 상기 전지의 충전전압이 미리 설정된 단계에 도달하면 충전전류를 변경하여 상기 전지로 출력되는 충전전류가 단계적으로 변화되도록 제어하는 전지 충전부를 포함한다. 상기 전지 충전부는 상기 전지의 음극 전위가 0V 이하로 떨어지지 않도록 충전율을 단계적으로 변경하는 프로토콜에 따라 충전전류가 단계적으로 조절되면서 전지 충전이 이루어지도록 한다.
이와 같이 본 발명에 따른 충전 방법의 프로토콜의 로직은 전지 충전 장치에 통합되어 전지를 충전하는 데 이용될 수 있다. 상기 전지 충전부는 급속 충전을 구현하기 위한 프로세서를 채용한다. 본 발명의 실시예에 따르면, 프로세서는 메모리에 충전 프로토콜의 로직을 저장하고, 전압, 전류 등이 각각 정확한 제어를 달성하고 장치 성능을 보존하기 위하여 높은 정확도로 측정될 수 있다.
표 1은 이와 같이 전류 밀도별 음극 전위에 근거한 충전 프로토콜을 정해 이것으로 실제 충전시 음극 전위가 0V 이하로 내려가지 않으면서 충전전압 및 충전시간을 정리한 것이다.
Figure PCTKR2015008496-appb-T000001
초기 충전율 1.5C로 충전을 하면 SOC 35%인 지점, 즉 전지의 충전전압이 3.823V에 도달하는 데에 14분(t1)이 걸린다. 프로토콜에 따라 그 다음 충전율인 1.25C로 변경해 충전을 하면 SOC 47%인 지점에 도달하고 그 때 전지의 충전전압은 3.832V이며, 시간은 5.76분(t2)이 걸린다. 프로토콜에 따라 그 다음 충전율인 1C로 변경해 5.4분(t3) 동안 충전을 하면 SOC 56%인 지점에 도달하고 그 때 전지의 충전전압은 3.84V이다. 프로토콜에 따라 그 다음 충전율인 0.75C로 변경해 충전을 하면 SOC 65%인 지점에 도달하고 그 때 전지의 충전전압은 3.857V이며, 이 단계의 유지 시간은 7.2분(t4)이다. 프로토콜에 따라 그 다음 충전율인 0.5C로 변경해 13.2분(t5) 동안 충전을 하면 SOC 76%인 지점에 도달하고 그 때 전지의 충전전압은 3.95V이다. 프로토콜에 따라 그 다음 충전율인 0.4C로 변경하면 SOC 80%인 지점에 도달하고 그 때 전지의 충전전압은 4.0V이 되며, 이 단계에서 6분(t6)이 소요된다.
표 1에서 보는 바와 같이 본 발명의 교시에 따른 실행은 만충전의 80%(80% SOC)가 51.56분(t1 + t2 + t3 + t4 + t5 + t6)에서 얻어지는 충전 프로파일을 유발하여, 만충전하는 경우라도 종래 1C 충전율로 만충전하는 데 걸리는 1시간 30분 정도보다는 그 충전시간을 감소시킬 수 있다.
또한 본 발명에 따르면 음극 전위가 0V 이하로 내려가지 않도록 충전 과정을 제어하기 때문에 일반적인 CC-CV 충전 방식과 비교시 음극에 Li-플레이팅이 발생할 염려가 없으며 이에 따라 수명이 길어지는 효과가 있다.
전지의 수명이란 전지를 얼마나 오랫동안 사용할 수 있는가를 나타내는 척도이고 단위는 횟수(사이클)로 나타내며, 이를 사이클 특성이라고도 한다. 즉, 전지를 몇 번이나 충전하여 사용할 수 있는가를 나타내며, 전기적인 에너지의 의미로는 전지를 1회 충전하여 완전히 방전이 일어날 정도까지 사용하였을 때를 1 사이클이라 하고 이 사이클의 횟수를 수명이라고 한다.
도 4는 본 발명에 따른 단계적 충전전류 감소를 이용한 충전 방법과 종래 CC-CV 충전방식에 따른 전지 수명 비교 그래프로서, 사이클 횟수에 따른 용량의 변화를 나타낸 것이다. 오랜 충방전 사이클 후에도 전지의 용량이 크게 감소하지 않고 그대로 유지되는 것이 필요하다.
본 발명과 종래에 있어서, 충전 시간은 동일하게 하고 방전은 동일 조건(1C CC)으로 하여 각 경우의 수명을 비교하였다. 도 4에서와 같이 종래의 경우에는 250 사이클 후 용량 보유율이 96% 정도까지 감소하지만, 본 발명의 경우에는 250 사이클 후에도 용량 보유율이 98% 이상이다.
이러한 전지의 수명은 여러 가지 요인에 의해 결정이 되고, 전극의 구조 안정성, 특히 음극의 안정성이 중요하다. 이상적인 음극은 리튬 이온과의 반응 가역성이 높아야 한다. 이상적인 가역반응이 이루어지면 사이클에 따른 용량 보유율 변화가 없다. 본 발명에 따른 단계적 충전전류 감소를 이용한 충전 방법은 종래에 비하여 반응 가역성이 더 높다는 것을 알 수 있는데, 이것은 음극에서의 Li- 플레이팅을 방지함에 따른 결과이다. 이와 같이, 본 발명의 단계적 충전전류 감소를 이용한 충전 방법에 따르면, 전지 열화를 방지하여 종래보다 수명이 길어지는 것을 확인할 수 있다.
이러한 본 발명에 따른 단계적 충전전류 감소를 이용한 충전 방법은 1C보다 큰 초기 충전율을 이용해 전지를 급속 충전하면서 음극 전위가 0V 이하로 떨어지지 않도록 단계적으로 충전율을 감소시켜 충전하게 되므로 Li-플레이팅 발생없이 전지를 급속 충전할 수 있다. 전지 내부구조에 손상을 주는 것을 방지할 수 있으며, 전지의 수명을 향상시킬 수 있다.
이상, 본 발명의 바람직한 실시예에 대해 도시하고 설명하였으나, 본 발명은 상술한 특정의 바람직한 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형 실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위 내에 있게 된다.

Claims (11)

1C보다 높은 초기 충전율부터 시작해서 전지의 음극 전위가 0V 이하로 떨어지지 않도록 상기 충전율이 단계적으로 감소되면서 전지를 충전하는 전지 충전 방법.
제1항에 있어서, 상기 초기 충전율이 1.5C 내지 5C인 것을 특징으로 하는 전지 충전 방법.
제1항에 있어서, 충전 도중 음극 전위가 0V가 되는 SOC 상태에서 상기 충전율을 감소시켜 다음 단계 충전을 진행하고, 이러한 단계는 SOC가 80%가 될 때까지 수행하는 것을 특징으로 하는 전지 충전 방법.
SOC에 따른 전지의 음극 전위를 서로 다른 충전율별로 측정하는 데이터 취득 단계;
상기 취득된 데이터로부터 상기 전지의 음극 전위가 0V 이하로 떨어지지 않도록 충전율을 단계적으로 변경하는 프로토콜을 얻는 단계; 및
상기 프로토콜로 전지를 충전하는 단계를 포함하는 전지 충전 방법.
제4항에 있어서, 상기 데이터 취득 단계의 충전율은 0.25C ~ 5C 범위인 것을 특징으로 하는 전지 충전 방법.
제5항에 있어서, 상기 프로토콜은 초기 충전율이 1C보다 높은 것을 특징으로 하는 전지 충전 방법.
제6항에 있어서, 상기 프로토콜은 초기 충전율이 1.5C 내지 5C인 것을 특징으로 하는 전지 충전 방법.
제4항에 있어서, 상기 프로토콜은 단계적으로 감소하는 충전율과 각 충전율에서의 충전 종료 후의 충전전압 정보를 포함하는 것을 특징으로 하는 전지 충전 방법.
제4항에 있어서, 상기 데이터 취득 단계는 3 전극셀 실험을 통해 충전전류에 따른 음극 전위를 측정하는 것을 특징으로 하는 전지 충전 방법.
제4항에 있어서, 상기 데이터 취득 단계의 충전율은 0.25C씩 감소시키며 측정하는 것을 특징으로 하는 전지 충전 방법.
상용전원으로부터 입력되는 충전 전압을 출력하는 전원부; 및
상기 전원부로부터 입력되는 충전전압을 전지에 충전전류로 출력하여 상기 전지가 충전되도록 하고, 상기 전지의 충전전압이 미리 설정된 단계에 도달하면 충전전류를 변경하여 상기 전지로 출력되는 충전전류가 단계적으로 변화되도록 제어하는 전지 충전부를 포함하고,
상기 전지 충전부는 상기 전지의 음극 전위가 0V 이하로 떨어지지 않도록 충전율을 단계적으로 변경하는 프로토콜에 따라 충전전류가 단계적으로 조절되면서 전지 충전이 이루어지도록 하는 것을 특징으로 하는 전지 충전 장치.
PCT/KR2015/008496 2014-10-30 2015-08-13 전지 급속 충전 방법 및 장치 WO2016068463A2 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580058647.2A CN107148699B (zh) 2014-10-30 2015-08-13 用于将电池快速充电的方法和设备
JP2017523388A JP6523450B2 (ja) 2014-10-30 2015-08-13 電池急速充電方法及び装置
US15/517,039 US10236702B2 (en) 2014-10-30 2015-08-13 Method and apparatus for rapidly charging battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20140149420 2014-10-30
KR10-2014-0149420 2014-10-30
KR1020150109510A KR101651991B1 (ko) 2014-10-30 2015-08-03 전지 급속 충전 방법 및 장치
KR10-2015-0109510 2015-08-03

Publications (2)

Publication Number Publication Date
WO2016068463A2 true WO2016068463A2 (ko) 2016-05-06
WO2016068463A3 WO2016068463A3 (ko) 2016-06-23

Family

ID=55858480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/008496 WO2016068463A2 (ko) 2014-10-30 2015-08-13 전지 급속 충전 방법 및 장치

Country Status (1)

Country Link
WO (1) WO2016068463A2 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180048281A (ko) * 2016-11-01 2018-05-10 삼성전자주식회사 배터리 충전 방법 및 장치
CN108023375A (zh) * 2016-11-01 2018-05-11 三星电子株式会社 充电电池的方法和装置
WO2018190260A1 (ja) * 2017-04-14 2018-10-18 株式会社村田製作所 充電装置、充電方法、2次電池、電池パック、電動車両、蓄電装置、電子機器および蓄電システム
US12126203B2 (en) 2017-04-14 2024-10-22 Murata Manufacturing Co., Ltd. Charging device, charging method, secondary battery, battery pack, electric vehicle, power storage device, electronic device, and power storage system using SOC

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100065557A (ko) * 2008-12-08 2010-06-17 천창열 전지관리장치의 충전기 감지회로
JP5488343B2 (ja) * 2010-08-27 2014-05-14 株式会社Gsユアサ 充電制御装置及び蓄電装置
JP5775725B2 (ja) * 2011-04-11 2015-09-09 日立オートモティブシステムズ株式会社 充電制御システム
JP5673406B2 (ja) * 2011-07-13 2015-02-18 トヨタ自動車株式会社 劣化速度推定装置、劣化速度推定方法
US9236748B2 (en) * 2012-08-30 2016-01-12 Texas Instruments Incorporated Method and apparatus of charging the battery with globally minimized integral degradation possible for predefined charging duration

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180048281A (ko) * 2016-11-01 2018-05-10 삼성전자주식회사 배터리 충전 방법 및 장치
CN108023375A (zh) * 2016-11-01 2018-05-11 三星电子株式会社 充电电池的方法和装置
JP2018082613A (ja) * 2016-11-01 2018-05-24 三星電子株式会社Samsung Electronics Co.,Ltd. バッテリ充電方法及び装置
JP7076191B2 (ja) 2016-11-01 2022-05-27 三星電子株式会社 バッテリ充電方法及び装置
KR102455631B1 (ko) * 2016-11-01 2022-10-18 삼성전자주식회사 배터리 충전 방법 및 장치
CN108023375B (zh) * 2016-11-01 2024-02-02 三星电子株式会社 充电电池的方法和装置
US11929468B2 (en) 2016-11-01 2024-03-12 Samsung Electronics Co., Ltd. Method and apparatus for charging battery
WO2018190260A1 (ja) * 2017-04-14 2018-10-18 株式会社村田製作所 充電装置、充電方法、2次電池、電池パック、電動車両、蓄電装置、電子機器および蓄電システム
US12126203B2 (en) 2017-04-14 2024-10-22 Murata Manufacturing Co., Ltd. Charging device, charging method, secondary battery, battery pack, electric vehicle, power storage device, electronic device, and power storage system using SOC

Also Published As

Publication number Publication date
WO2016068463A3 (ko) 2016-06-23

Similar Documents

Publication Publication Date Title
WO2017030309A1 (ko) 전지 충전 한계 예측 방법과 이를 이용한 전지 급속 충전 방법 및 장치
KR101651991B1 (ko) 전지 급속 충전 방법 및 장치
WO2017034135A1 (ko) 리튬 석출 탐지 방법, 이를 이용한 이차전지 충전 방법과 장치 및 이차전지 시스템
US10886766B2 (en) Method and device for multi-stage battery charging
CN108777339B (zh) 一种锂离子电池脉冲放电自加热方法及装置
WO2013183952A1 (ko) 이차전지의 충전방법
CN1977418B (zh) 对具有负电极的锂离子蓄电池充电的方法
CN101171704A (zh) 二次电池的保护电路以及包含该保护电路的二次电池
WO2013051863A2 (ko) 배터리 충전 장치 및 방법
WO2015002334A1 (ko) 전지 soc 추정 방법 및 시스템
CN108336435B (zh) 一种考虑充电能量效率的锂离子电池充电方法
JP6797438B2 (ja) バッテリーの充電方法およびバッテリーの充電装置
CN112106248A (zh) 改善电池循环性能的方法和电子装置
WO2016068463A2 (ko) 전지 급속 충전 방법 및 장치
CN111987378A (zh) 一种提高锂离子电池ocv一致性的充放电方法
CN104733793A (zh) 一种锂电池的分段充电方法
KR20130126344A (ko) 리튬 이차 전지의 저온 충전 방법
CN113785428A (zh) 改善电池循环性能的方法和电子装置
CN113632290B (zh) 改善电池循环性能的方法和电子装置
CN107516921A (zh) 电池的充电方法及充电设备
Chi et al. An advanced fast charging strategy for lithium polymer batteries
CN204271211U (zh) 一种基于ltc6803的多串锂电池保护板
CN109462267A (zh) 终端设备、充电方法、电量计算方法
CN115483463B (zh) 一种快速充电方法、电池模块、电池包及电源装置
KR20160095752A (ko) 멀티 스텝 충전 장치 및 멀티 스텝 충전 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15855433

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 15517039

Country of ref document: US

ENP Entry into the national phase in:

Ref document number: 2017523388

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15855433

Country of ref document: EP

Kind code of ref document: A2