WO2016068363A1 - 초전도 코일을 사용한 고속 물체 부상 장치 및 그 방법 - Google Patents

초전도 코일을 사용한 고속 물체 부상 장치 및 그 방법 Download PDF

Info

Publication number
WO2016068363A1
WO2016068363A1 PCT/KR2014/010391 KR2014010391W WO2016068363A1 WO 2016068363 A1 WO2016068363 A1 WO 2016068363A1 KR 2014010391 W KR2014010391 W KR 2014010391W WO 2016068363 A1 WO2016068363 A1 WO 2016068363A1
Authority
WO
WIPO (PCT)
Prior art keywords
superconducting coil
unit
coil unit
superconductor
magnetic field
Prior art date
Application number
PCT/KR2014/010391
Other languages
English (en)
French (fr)
Inventor
고태국
이지호
이우승
김형준
남석호
박영건
김진섭
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Publication of WO2016068363A1 publication Critical patent/WO2016068363A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L13/00Electric propulsion for monorail vehicles, suspension vehicles or rack railways; Magnetic suspension or levitation for vehicles
    • B60L13/04Magnetic suspension or levitation for vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L13/00Electric propulsion for monorail vehicles, suspension vehicles or rack railways; Magnetic suspension or levitation for vehicles
    • B60L13/04Magnetic suspension or levitation for vehicles
    • B60L13/06Means to sense or control vehicle position or attitude with respect to railway
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/006Supplying energising or de-energising current; Flux pumps
    • H01F6/008Electric circuit arrangements for energising superconductive electromagnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/20Electromagnets; Actuators including electromagnets without armatures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H73/00Protective overload circuit-breaking switches in which excess current opens the contacts by automatic release of mechanical energy stored by previous operation of a hand reset mechanism
    • H01H73/02Details
    • H01H73/18Means for extinguishing or suppressing arc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H77/00Protective overload circuit-breaking switches operated by excess current and requiring separate action for resetting
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/30Devices switchable between superconducting and normal states
    • H10N60/35Cryotrons
    • H10N60/355Power cryotrons

Definitions

  • the present invention relates to a device for floating or firing an object at high speed.
  • a device that generates a force to propel an object in a specific direction to float the object at high speed can be utilized in various fields.
  • a very large driving force is required at an early stage, and in order to generate such a driving force, a very large cost may be consumed.
  • Existing apparatus for generating such a driving force is a device for obtaining the driving force through the combustion of the chemical fuel.
  • a device for obtaining the driving force through the combustion of the chemical fuel has a limitation in that a large amount of chemical fuel is consumed and a specific environment for combustion must be created.
  • a general method of generating propulsion force using an elastic body may be considered, but such a method has a disadvantage in that the life of the elastic body is determined and the elastic body must be reset every time.
  • the problem to be solved by the present invention is a magnetic field generated in each coil by arranging a pair of high temperature superconducting coils wound in different directions and having different superconducting properties in parallel with each other, and allowing the same current to flow through the pair of coils.
  • the high-speed object flotation device using a superconducting coil according to one type of the present invention, the first superconducting coil portion and the first coil, which are wound in different directions, have different superconducting characteristics and are arranged in parallel with each other A superconductor portion having a pair of two superconducting coil portions; A power supply unit supplying AC power to the superconductor unit; And a switch unit connected to the superconductor unit and configured to open and close a circuit according to an operation.
  • the superconductor unit may generate a magnetic field of a predetermined amount or more within a predetermined time.
  • the first superconducting coil unit and the second superconducting coil unit may be a high temperature superconductor which is an object whose critical temperature for having superconductivity is set above a certain temperature.
  • first superconducting coil unit and the second superconducting coil unit may be wound in opposite directions to each other, and the superconductor unit may be non-inductive.
  • first superconducting coil unit and the second superconducting coil unit may be superconductors having different critical currents and N coefficients, and may be connected in parallel.
  • the high-speed object floating apparatus using the superconducting coil according to the present invention may further include a first resistor connected in series with the superconductor unit, wherein the switch unit is connected in parallel with the first resistor, When the switch unit is turned on, both circuits of the switch unit may be connected to allow the current flowing in the first resistor to flow to the circuit connected through the switch unit when the switch unit is turned off.
  • the superconductor unit is serially connected to the first superconducting coil unit and the second superconducting coil unit in order to adjust the amount of current flowing through the first superconducting coil unit and the second superconducting coil unit. It may include a second control resistor connected to.
  • the first adjustment resistance and the second adjustment clause may be characterized in that the resistance value is smaller than a certain ratio when compared with the first resistance.
  • the switch unit when the switch unit is turned off, the circuits on both sides of the switch unit are disconnected, and a current flows in the first resistor according to a voltage applied by the power supply unit, and the first superconducting coil unit and the second superconducting coil unit A current below a predetermined reference flows in the first superconducting coil unit and the second superconducting coil unit to maintain a superconducting state.
  • the magnetic field generated by the first superconducting coil unit and the difference between the amount of current flowing through the first superconducting coil unit and the amount of current flowing through the second superconducting coil unit is equal to or less than a predetermined reference.
  • the magnetic field generated by the second superconducting coil unit may be mutually cancelled.
  • the switch unit when the switch unit is turned on, circuits on both sides of the switch unit are connected, and current flows in a circuit connected through the switch unit instead of the first resistor according to a voltage applied by the power supply unit, and the first superconducting coil unit A current equal to or greater than a predetermined reference flows in the second superconducting coil part, and a superconducting state of the first superconducting coil part and the second superconducting coil part is broken, and the resistance of the first superconducting coil part and the second superconducting coil part are broken.
  • the self-resistance may be characterized in that the magnitude of each resistance value increases at different speeds for a predetermined time after the switch unit is turned on.
  • a difference between the amount of current flowing through the first superconducting coil unit and the amount of current flowing through the second superconducting coil unit is equal to or greater than a predetermined reference for a predetermined time after the switch unit is turned on.
  • Asymmetrical current flows in the first superconducting coil unit and the second superconducting coil unit, and the magnetic field generated by the first superconducting coil unit and the magnetic field generated by the second superconducting coil unit do not cancel each other. It may be characterized by generating a magnetic field of a certain amount or more instantaneously.
  • the plate portion further comprises a conductor, wherein the plate portion may be positioned in parallel with the first superconducting coil portion and the second superconducting coil portion of the superconductor portion.
  • an eddy current is generated in the plate part due to a magnetic field generated instantaneously within a predetermined time in the superconductor part, and a magnetic field of a certain amount or more is instantaneously generated in a predetermined time in the plate part due to the generated eddy current.
  • the magnetic field generated by the eddy current in the plate portion and the magnetic field generated in the superconductor portion may have opposite directions and generate a repulsive force between the plate portion and the superconductor portion.
  • the guide may further include a support.
  • a high-speed object floating method using a superconducting coil is the first superconducting wound in different directions, having different superconducting characteristics, arranged in parallel with each other, connected in parallel
  • the first resistor and the AC power supply are connected in series to the superconductor part consisting of a pair of the coil part and the second superconducting coil part to flow a current so that the pair of superconducting coils maintain the superconducting state, and the plate part is parallel to the superconductor part.
  • the first superconducting coil unit and the second superconducting coil unit are high temperature superconductors, which are objects whose threshold temperature for superconductivity is set above a certain temperature, are wound in opposite directions, so that the superconductor portions are non-inductive. It has a (non-inductive), it may be characterized in that it is a superconductor having different critical current (critical current) and N coefficient (n value).
  • the amount of current flowing in the first superconducting coil unit and the amount of current flowing in the second superconducting coil unit are equal to each other, or the difference between the amounts is equal to or less than a predetermined standard, and the first superconducting coil unit is generated.
  • the magnetic field and the magnetic field generated by the second superconducting coil unit may be mutually canceled.
  • the instant magnetic field generating step may short-circuit both sides of the first resistor by using a switch or a circuit connected in parallel to the first resistor, so that the first superconducting coil unit and the second superconductor are instantaneously within a predetermined time.
  • the superconductor unit may be characterized by generating a magnetic field of a certain amount or more within a predetermined time.
  • an eddy current is generated in the plate part due to the magnetic field generated in the instantaneous magnetic field generating step, and due to the generated eddy current, a magnetic field of a certain amount or more is instantaneously within a predetermined time in the plate part.
  • the magnetic field generated by the eddy current in the plate portion and the magnetic field generated in the superconductor portion have opposite directions to generate a repulsive force between the plate portion and the superconductor portion, and move the plate portion according to the repulsive force. It can be characterized in that.
  • the device may also be utilized as a device for providing propulsion in a device for launching an object in any direction.
  • FIG. 1 is a block diagram of a high-speed object floating apparatus using a superconducting coil according to an embodiment of the present invention.
  • FIG. 2 is a circuit diagram of a high-speed object floating apparatus using a superconducting coil according to an embodiment of the present invention.
  • FIG. 3 is a reference diagram showing an embodiment of a high-speed object floating apparatus using a superconducting coil according to the present invention.
  • FIG. 4 is a reference diagram for describing a characteristic in which the magnitudes of respective resistances of the first superconducting coil unit and the second superconducting coil unit vary with time when the switch unit of the present invention is turned on.
  • FIG. 5 is a reference diagram for explaining a characteristic in which the amount of current flowing through the first superconducting coil unit and the second superconducting coil unit changes with time when the switch unit of the present invention is turned on.
  • FIG. 6 is a reference diagram for explaining a change over time of a magnetic field generated in a superconductor unit and a magnetic field generated in a plate unit when the switch unit of the present invention is turned on.
  • Figure 7 is a reference diagram for explaining the change over time of the repulsive force generated between the superconductor portion and the plate portion due to the interaction between the magnetic field generated in the superconductor portion and the plate portion when the switch portion of the present invention is turned on to be.
  • FIG. 8 is a flowchart of a high-speed object floating method using a superconducting coil according to another embodiment of the present invention.
  • Figure 1 is a circuit diagram of a high-speed object floating apparatus using a superconducting coil according to an embodiment of the present invention
  • Figure 2 is a circuit diagram of a high-speed object floating apparatus using a superconducting coil according to an embodiment of the present invention.
  • the high-speed object floating apparatus using the superconducting coil according to the present invention includes a superconductor unit 100, a power supply unit 200, a switch unit 300, a first resistor 400, a plate unit 500, and a support unit 600. can do.
  • the first resistor 400, the plate 500, and the support 600 may be selectively added or omitted as necessary.
  • the high-speed object floating apparatus using the superconducting coil according to the present invention includes the superconductor unit 100, the power supply unit 200, the switch unit 300, the first resistor 400, the plate unit 500, and the support unit 600.
  • It may include, or may include the superconductor unit 100, the power supply unit 200, the switch unit 300, the first resistor 400, the plate unit 500, or the superconductor unit 100, the power supply unit And a switch 200 and a first resistor 400.
  • the superconductor unit 100, the power supply unit 200, the switch unit 300, the first resistor 400, the plate unit 500, and the support unit 600 will be described in detail.
  • the superconductor unit 100 has a pair of first superconducting coil unit 110 and second superconducting coil unit 120 that are wound in different directions, have different superconducting characteristics, and are disposed in parallel to each other.
  • first superconducting coil unit 110 and the second superconducting coil unit 120 are wound by windings having different superconducting characteristics, and are wound in different directions.
  • first superconducting coil unit 110 and the second superconducting coil unit 120 are arranged in parallel to each other means that the direction of the axis of the coil winding is parallel to each other.
  • first superconducting coil unit 110 and the second superconducting coil unit 120 may be arranged in parallel with each other as shown in FIG. 3.
  • the first superconducting coil unit 110 and the second superconducting coil unit 120 may be wound in opposite directions to each other so that the superconductor unit 100 may be non-inductive.
  • the induction is a phenomenon that occurs because the magnetic fields generated in the opposite directions in the first superconducting coil unit 110 and the second superconducting coil unit 120 cancel each other.
  • the first superconducting coil unit 110 and the second superconducting coil unit 120 may be a high temperature superconductor, which is an object whose threshold temperature for having superconductivity is set above a predetermined temperature.
  • the high temperature supertemperature body may have superconductivity at a temperature below the critical temperature set at 30 K or more.
  • YBCO, GdBCO, BSCCO and other objects have superconductivity below the critical temperature of 90-110 K.
  • the first superconducting coil unit 110 and the second superconducting coil unit 120 are preferably superconductors having different critical currents and N values. That is, the superconductivity may be a critical current and an N coefficient.
  • the critical current means the amount of current that can flow in a state in which the superconductor has superconductivity.
  • N coefficient is a coefficient which defines the electrical property of a superconductor with a critical current, and means the coefficient in E-J Power Law like the following formula (1) which is a law which shows the relationship between the voltage applied to a superconductor, and a flowing current.
  • Vc the voltage across the superconductor when the critical current flows in the superconductor
  • V the voltage across the superconductor
  • I the current flowing through the superconductor
  • n the N coefficient
  • the voltage according to the current flowing in the superconductor has an exponential function.
  • the voltage applied to the superconductor increases rapidly when the N coefficient is large.
  • the voltage rises more slowly.
  • the high-speed object floating apparatus using the superconducting coil according to the present invention maintains the superconducting state by flowing a small current of a predetermined size or less to a pair of superconducting coil parts, and also flows currents of the same size or a predetermined size or less to each other.
  • the magnetic fields generated in the pair of superconducting state superconducting coil units cancel each other out.
  • the reference of a constant amount of current flowing in the superconducting coil part to maintain the superconducting state may be determined according to the superconducting characteristics of each superconducting coil part.
  • the high-speed object floating apparatus using the superconducting coil according to the present invention breaks the superconducting state of the superconducting coil part by flowing a large current of a predetermined size or more of the superconducting coil to the pair of superconducting coil parts.
  • the criterion of the amount of current flowing in a pair of superconducting coil parts to break the superconducting state may be determined according to the characteristics of the critical current among the superconducting properties of each superconducting coil part. That is, the superconducting state of the superconducting coil unit can be broken by sending a large current equal to or greater than the threshold current of the superconducting coil to the pair of superconducting coil units.
  • the resistance values of the first superconducting coil unit 110 and the second superconducting coil unit 120 are different.
  • the amount of current flowing in each superconducting coil part is changed.
  • the size of the magnetic field generated by each superconducting coil unit is also changed. Accordingly, the magnetic fields generated in the first superconducting coil unit 110 and the second superconducting coil unit 120 do not cancel each other, and the superconductor unit 100 instantly generates a magnetic field of a predetermined magnitude or more in one direction.
  • the present invention locates the plate portion 500 in parallel with the pair of superconducting coils, in which case the eddy current is induced in the plate portion 500 due to the instantaneous magnetic field generated in the superconductor portion 100. As a result, the magnetic field generated by the eddy current is also generated in the plate 500. At this time, the magnetic field generated in the superconductor unit 100 and the magnetic field generated in the plate unit 500 are formed in different directions, and thus repel each other.
  • first superconducting coil unit 110 and the second superconducting coil unit 120 of the superconductor unit 100 are connected in parallel in a circuit.
  • the first superconducting coil unit 110 and the second superconducting coil unit 120 are connected in parallel, thereby receiving a voltage having the same magnitude.
  • the superconductor unit 100 may include a first control resistor connected in series to the first superconducting coil unit 110 to adjust the amount of current flowing through the first superconducting coil unit 110 and the second superconducting coil unit 120. 130 and the second control resistor 140 connected in series to the second superconducting coil unit 120.
  • the resistance value is smaller than a predetermined ratio.
  • the constant ratio is preferably a small ratio value such as 1: 1000 to 1: 10000 to allow a sufficiently large current to flow through the superconductor unit 100 to break the induction.
  • the power supply unit 200 supplies AC power to the superconductor unit 100.
  • the switch unit 300 is connected to the superconductor unit 100 and opens and closes the circuit according to the manipulation.
  • the switch unit 300 is used to short-circuit a circuit according to an operation to instantly increase the amount of current flowing in the superconductor unit 100.
  • the superconductor unit 100 when the switch unit 300 is turned on and both circuits of the switch unit 300 are connected, the superconductor unit 100 generates a magnetic field of a predetermined amount or more within a predetermined time.
  • the superconductor unit 100 may have a magnetic field greater than or equal to a certain amount that is determined according to the voltage applied amount of the power supply unit 200 and the superconducting characteristics of the first superconducting coil 110 and the second superconducting coil 120 within a few or tens of milliseconds. Can be generated.
  • the first resistor 400 may be connected in series to the superconductor unit 100.
  • the switch unit 300 is preferably connected in parallel with the first resistor 400.
  • the configuration of the switch unit 300 and the first resistor 400 as described above allows a large amount of current to flow in the superconductor unit 100 instantaneously. That is, when the size of the first control resistor 130 and the second control resistor 140 is smaller than a certain ratio or less than the size of the first resistor 400, the power supply unit 200 in the state in which the switch unit 300 is turned off Most of the voltage applied by is applied to the first resistor 400 instead of the superconductor unit 100.
  • the first resistor 400 is equal to or greater than a predetermined size.
  • the plate part 500 may be positioned in parallel with the first superconducting coil part 110 and the second superconducting coil part 120 of the superconductor part 100.
  • the plate 500 may be located in parallel with the first superconducting coil unit 110 and the second superconducting coil unit 120 as shown in FIG. 3. That is, the direction in which the coil is wound in the first superconducting coil unit 110 and the second superconducting coil unit 120 and the direction of the central axis perpendicular to the plate at the center of the plate of the plate unit 500 are located parallel to each other. desirable.
  • the high-speed object floating apparatus using the superconducting coil according to the present invention may further include a support 600.
  • the support 600 is fixed to each position so that the first superconducting coil unit 110, the second superconducting coil unit 120 and the plate 500 is parallel to each other, as will be described below, the plate portion When the 500 moves in one direction due to the repulsive force between the superconductor portions 100, it is preferable to guide the movement of the plate portion 500.
  • FIG. 3 is a reference diagram showing an embodiment of a high-speed object floating apparatus using a superconducting coil according to the present invention.
  • the high-speed object floating apparatus using the superconducting coil according to the present invention may include a first superconducting coil 110 and a second superconducting coil 120 positioned in parallel with each other at a lower end thereof.
  • the first superconducting coil 110 and the second superconducting coil 120 are wound in different directions as shown in FIG. 2.
  • the plate 500 may be positioned in parallel with the upper portion of the first superconducting coil 110, and may instantly float into the air due to the repulsive force generated between the plate 500 and the superconductor 100 described above. have.
  • the support part 600 may support each part so that the parallelism between the first superconducting coil 110, the second superconducting coil 120, and the plate part 500 is maintained.
  • a short circuit is selectively formed using the switch unit 300 and the first resistor 400 to supply voltage and current to the superconductor unit 100 as described above.
  • the superconductor unit 100 By adjusting the, the superconductor unit 100 to generate a magnetic field of a predetermined amount or more within a certain time.
  • a current of a predetermined level or less flows in the first superconducting coil unit 110 and the second superconducting coil unit 120 so that the first superconducting coil unit 110 and the second superconducting coil unit 120 may maintain a superconducting state.
  • the current below the predetermined reference is preferably a small current below the threshold current of the first superconducting coil unit 110 and the second superconducting coil unit 120.
  • the amount of current flowing through the first superconducting coil unit 110 and the amount of current flowing through the second superconducting coil unit 120 are equal to or less than a predetermined standard.
  • the resistance is very small, close to 0, and as a result, the first superconducting coil unit 110 and the second superconducting coil unit 110 are as a result.
  • the amount of current having the same magnitude flows in the 120 according to the characteristics of a circuit connected in parallel. At this time, the amount of current flowing through each coil part may vary due to the minute characteristic difference of the circuit. Such a phenomenon may be controlled by connecting a control resistor in series to each superconducting coil part.
  • the first control resistor 130 is connected in series to the first superconducting coil unit 110
  • the second control resistor 140 is connected to the second superconducting coil unit 120 in series
  • the first superconducting coil unit 110 is connected in series.
  • the size of the first control resistor 130 and the second control resistor 130 may be adjusted to allow the same size of current to flow in the superconducting coil unit 110 and the second superconducting coil unit 120.
  • each of the magnetic fields generated in the first superconducting coil unit 110 and the second superconducting coil unit 120 may have the same size or the difference may be substantially the same size below a certain size, and the opposite directions may be different from each other.
  • the branches have the characteristics and cancel each other as described above.
  • both circuits of the switch unit 300 are connected to the circuit connected through the switch unit 300 instead of the first resistor 400 according to the voltage applied by the power supply unit 200. Current flows
  • the first superconducting coil unit 110 and the second superconducting coil unit 120 may flow through a current equal to or greater than a threshold current of each coil unit, thereby breaking the superconducting state of each coil. That is, the reference for the amount of current of a certain magnitude that is switched to turn on to break the superconducting state to the pair of superconducting coil unit may be determined according to the critical current of the superconducting characteristics of each superconducting coil unit.
  • the self resistance of the first superconducting coil unit 110 and the self resistance of the second superconducting coil unit 120 are respectively resistance values at different speeds for a predetermined time after the point of time that the switch unit 300 is turned on. Will increase in size.
  • FIG. 4 illustrates a characteristic in which the magnitudes of the respective resistances of the first superconducting coil unit 110 and the second superconducting coil unit 120 change with time when the switch unit 300 of the present invention is turned on. See also.
  • the difference between the amount of current flowing through the first superconducting coil unit 110 and the amount of current flowing through the second superconducting coil unit 120 is greater than or equal to a predetermined reference value, so that the first superconducting coil unit 110 and the second superconducting coil unit 120 ) Flows asymmetrically.
  • FIG. 5 is a reference diagram for explaining a characteristic in which the amount of current flowing through the first superconducting coil unit 110 and the second superconducting coil unit 120 changes with time when the switch unit 300 of the present invention is turned on. to be.
  • first superconducting coil unit 110 and the second superconducting coil unit 120 connected in parallel have different resistance values as shown in FIG. 4, different currents as shown in FIG. Shed.
  • the magnetic field generated by the first superconducting coil unit 110 and the magnetic field generated by the second superconducting coil unit 120 do not cancel each other.
  • the superconductor unit 100 instantaneously generates a certain amount or more of a magnetic field within a predetermined time. Will be generated.
  • the plate part 500 is comprised from a conductor.
  • the plate portion 500 may be made of aluminum.
  • the plate 500 is preferably located in parallel with the first superconducting coil unit 110 and the second superconducting coil unit 120 of the superconductor unit 100.
  • a magnetic field of a predetermined amount or more may be instantaneously generated within a predetermined time in the plate part 500.
  • FIG. 6 is a reference diagram for describing a change according to time of the magnetic field generated in the superconductor unit 100 and the magnetic field generated in the plate unit 500 when the switch unit 300 of the present invention is turned on.
  • the magnetic field generated in the superconductor unit 100 may mean a magnetic field in the center of the superconductor unit 100
  • the magnetic field generated in the plate unit 500 may mean a magnetic field in the center of the plate unit 500. have.
  • the magnetic field generated by the eddy current in the plate part 500 and the magnetic field generated in the superconductor part 100 have opposite directions.
  • the magnetic field generated by the eddy current in the plate portion 500 and the magnetic field generated in the superconductor portion 100 generate a repulsive force between the plate portion 500 and the superconductor portion 100.
  • the repulsive force may be calculated as in Equation 2 below.
  • (je ⁇ B) denotes the Lorentz force generated in each microvolume unit, and integrates it with respect to the entire plate portion 500 as shown in Equation 2 to calculate the Lorentz force generated in the plate portion 500. can do.
  • the Lorentz force calculated here is the repulsive force.
  • FIG. 7 shows the superconductor unit 100 and the plate unit 500 due to the interaction between the magnetic field generated in the superconductor unit 100 and the magnetic field generated in the plate unit 500 when the switch unit 300 of the present invention is turned on. It is a reference diagram to explain the change over time of repulsive force occurring between
  • the plate 500 is pushed in one direction and moved by the repulsive force generated with respect to the plate 500.
  • the superconductor unit 100 and the plate unit (by placing the object on the plate portion 500 or including the plate portion 500 to the object to apply a force, The repulsive force generated between 500) can be applied to the object to be moved.
  • FIG. 8 is a flowchart of a high-speed object floating method using a superconducting coil according to another embodiment of the present invention.
  • the high-speed object floating method using the superconducting coil according to the present invention may include a superconducting state maintaining step (S100), an instantaneous magnetic field generating step (S200), and an object floating step (S300).
  • the high speed object floating method using the superconducting coil according to the present invention may operate in the same manner as the high speed object floating device using the superconducting coil according to the present invention described above in detail with reference to FIG. 1. The overlapping part is omitted and briefly described.
  • the superconducting state maintaining step (S100) is a pair of the first superconducting coil unit 110 and the second superconducting coil unit 120 wound in different directions, having different superconducting characteristics, disposed in parallel to each other, and connected in parallel.
  • the first resistor 400 and the AC power supply unit 200 are connected in series to the superconductor unit 100, and the current flows to maintain the superconducting state of the pair of superconducting coil units, and parallel to the superconductor unit 100. Place the plate 500.
  • the instantaneous magnetic field generating step (S200) shorts both sides of the first resistor 400, so that more current than the current flowing in the pair of the first superconducting coil unit 110 and the second superconducting coil unit 120 is asymmetric. It is allowed to flow, and the superconductor unit 100 to generate a magnetic field of a certain amount or more instantaneously within a certain time.
  • Object floating step (S300) generates a repulsive force to the plate portion 500 in accordance with the magnetic field generated in the superconductor portion 100, so that the plate portion 500 is injured.
  • the first superconducting coil unit 110 and the second superconducting coil unit 120 are high temperature superconductors, which are objects whose threshold temperature for superconductivity is set above a predetermined temperature, are wound in opposite directions to each other. It is preferred that the superconductor portion is non-inductive.
  • first superconducting coil unit 110 and the second superconducting coil unit 120 are preferably superconductors having different critical currents and N values.
  • the amount of current flowing through the first superconducting coil unit 110 and the amount of current flowing through the second superconducting coil unit 120 are equal to each other, or the difference between the quantities is equal to or less than a predetermined standard, and the first superconducting nose The magnetic field generated by the portion 110 and the magnetic field generated by the second superconducting coil unit 120 are mutually canceled.
  • both sides of the first resistor 400 are shorted by using a switch or a circuit connected in parallel to the first resistor 400, and the first superconducting coil unit 110 is instantaneously within a predetermined time.
  • the second superconducting coil unit 120 to flow a current of a predetermined reference or more.
  • the superconductor unit 100 uses a first superconducting coil unit 110 and a second superconducting coil unit 120 to generate a magnetic field having a different magnitude and asymmetrical current due to different superconducting characteristics. To generate a certain amount of magnetic field instantaneously within.
  • an eddy current occurs in the plate part 500 due to the magnetic field generated in the instantaneous magnetic field generating step (S200), and instantaneously within a predetermined time in the plate part 500 due to the generated eddy current.
  • This allows for a certain amount of magnetic field to be generated.
  • the magnetic field generated by the eddy current in the plate portion 500 and the magnetic field generated in the superconductor portion 100 have opposite directions to each other to generate a repulsive force between the plate portion 500 and the superconductor portion 100, thereby forming a plate portion ( 500) to move according to the repulsive force.
  • each or some of the components of the components are selectively combined to perform some or all of the functions combined in one or a plurality of hardware It may be implemented as a computer program having a.
  • a computer program is stored in a computer readable medium such as a USB memory, a CD disk, a flash memory, and the like, and is read and executed by a computer, thereby implementing embodiments of the present invention.
  • the recording medium of the computer program may include a magnetic recording medium, an optical recording medium, a carrier wave medium, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

본 발명은 물체를 고속으로 부상시키거나 발사하는 장치에 관한 것이다. 본 발명은, 서로 다른 방향으로 감겨지고 서로 다른 초전도 특성을 가진 고온 초전도 코일의 쌍을 서로 평행하게 배치하고, 상기 코일의 쌍에 동일한 전류가 흐르도록 하여 각 코일에서 발생하는 자기장이 서로 상쇄되도록 하는 안정 상태에 있다가, 스위칭을 통하여 상기 코일의 쌍에 갑자기 비대칭적인 전류를 가함으로써 자기장을 발생시키고, 상기 발생된 자기장으로 인하여 플레이트에서 와전류가 유도되도록 하고, 상기 와전류로 인하여 플레이트에서 생성된 자기장이 상기 코일의 쌍에서 발생된 자기장과 상호 반발하는 힘을 이용하여 플레이트가 부상하도록 함으로써, 소량의 고온 초전도체의 코일을 이용하여 순간적으로 큰 힘을 발생시키는 고속 물체 부상 장치를 제공한다.

Description

초전도 코일을 사용한 고속 물체 부상 장치 및 그 방법
본 발명은 물체를 고속으로 부상시키거나 발사하는 장치에 관한 것이다.
물체를 특정 방향으로 추진시키기 위한 힘을 발생시켜 물체를 고속으로 부상시키는 장치는 다양한 분야에서 활용될 수 있다. 특히 로켓과 같은 물체를 공중으로 부양시키기 위해서는 초기에 매우 큰 추진력이 필요하며, 그와 같은 추진력을 발생시키기 위하여 매우 큰 비용이 소모되기도 한다.
이와 같은 추진력을 발생시키는 기존의 장치로는 화학 연료의 연소를 통하여 추진력을 획득하는 장치가 있다. 그러나 이와 같은 장치는 다량의 화학 연료가 소모되고 또한 연소를 위한 특정 환경이 조성되어야 한다는 한계점이 있다. 또한 탄성체를 이용하여 추진력을 발생시키는 일반적인 방식도 고려할 수 있으나, 이와 같은 방법은 탄성체의 수명이 정해져 있고 매번 탄성체를 재설정하여야 한다는 단점이 있다.
또한 기존에 하기 선행기술문헌들과 같이 영구 자석 또는 초전도체를 이용하여 물체를 공중에 부양하는 장치들이 존재하고 있으나, 이는 고속으로 물체를 띄우기 위한 용도가 아닌 물체를 지속적으로 공중에 부양시켜 놓기 위한 목적으로 개발되어 사용되고 있는 장치들이므로, 고속 물체 부상 및 발사용으로 사용될 수는 없다는 한계점이 있다.(선행기술문헌 : 대한민국 공개특허공보 제10-2007-0086009호, 일본 특허 공개번호 제22252413호)
본 발명이 해결하고자 하는 과제는, 서로 다른 방향으로 감겨지고 서로 다른 초전도 특성을 가진 고온 초전도 코일의 쌍을 서로 평행하게 배치하고, 상기 코일의 쌍에 동일한 전류가 흐르도록 하여 각 코일에서 발생하는 자기장이 서로 상쇄되도록 하는 안정 상태에 있다가, 스위칭을 통하여 상기 코일의 쌍에 갑자기 비대칭적인 전류를 가함으로써 자기장을 발생시키고, 상기 발생된 자기장으로 인하여 플레이트에서 와전류가 유도되도록 하고, 상기 와전류로 인하여 플레이트에서 생성된 자기장이 상기 코일의 쌍에서 발생된 자기장과 상호 반발하는 힘을 이용하여 플레이트가 부상하도록 함으로써, 소량의 고온 초전도체의 코일을 이용하여 순간적으로 큰 힘을 발생시키는 고속 물체 부상 장치를 제공하는 것이다.
상기 과제를 해결하기 위해, 본 발명의 일 유형에 따른 초전도 코일을 사용한 고속 물체 부상 장치는, 서로 다른 방향으로 감겨지고, 서로 다른 초전도 특성을 가지고, 서로 평행하게 배치된 제1 초전도 코일부와 제2 초전도 코일부의 쌍을 구비하는 초전도체부; 상기 초전도체부에 교류의 전원을 공급하는 전원부; 및 상기 초전도체부에 연결되고, 조작에 따라 회로를 개폐시키는 스위치부를 포함할 수 있다.
여기서 상기 스위치부가 켜져 상기 스위치부의 양측 회로가 연결된 경우, 상기 초전도체부는 일정한 시간 내에 순간적으로 일정한 양 이상의 자기장을 발생시키는 것을 특징으로 할 수 있다.
여기서, 상기 제1 초전도 코일부와 상기 제2 초전도 코일부는 초전도성을 가지기 위한 임계온도가 일정한 온도 이상에서 설정되는 물체인 고온 초전도체(High Temperature Superconductor)인 것을 특징으로 할 수 있다.
여기서, 상기 제1 초전도 코일부와 상기 제2 초전도 코일부는 서로 반대 방향으로 권선되어 상기 초전도체부가 무유도성(non-inductive)을 가지는 것을 특징으로 할 수 있다.
여기서, 상기 제1 초전도 코일부와 상기 제2 초전도 코일부는 서로 다른 임계전류(critical current)와 N 계수(n value)를 가지는 초전도체이고, 병렬로 연결된 것을 특징으로 할 수 있다.
여기서, 상기 본 발명에 따른 초전도 코일을 사용한 고속 물체 부상 장치는, 상기 초전도체부에 직렬로 연결되는 제1저항을 더 포함할 수 있고, 여기서, 상기 스위치부는 상기 제1저항과 병렬로 연결되고, 상기 스위치부가 켜지는 경우, 상기 스위치부의 양측 회로가 연결되어, 상기 스위치부가 껴져있을 때 상기 제1저항에 흐르던 전류가 상기 스위치부를 통해 연결된 회로로 흐르도록 하는 것을 특징으로 할 수 있다.
여기서, 상기 초전도체부는 상기 제1 초전도 코일부와 상기 제2 초전도 코일부에 각 흐르는 전류량을 조절하기 위하여, 상기 제1 초전도 코일부에 직렬로 연결된 제1 조절저항과 상기 제2 초전도 코일부에 직렬로 연결된 제2 조절저항을 포함할 수 있다.
여기서, 상기 제1 조절저항과 상기 제2 조절조항은 상기 제1저항과 비교하였을 때, 저항 값이 일정한 비율 이하로 작은 것을 특징으로 할 수 있다.
여기서, 상기 스위치부가 꺼진 경우, 상기 스위치부의 양측 회로의 연결이 끊어지고, 상기 전원부에 의하여 인가되는 전압에 따라 상기 제1저항에 전류가 흐르고, 상기 제1 초전도 코일부와 상기 제2 초전도 코일부에 일정한 기준 이하의 전류가 흘러, 상기 제1 초전도 코일부와 상기 제2 초전도 코일부가 초전도 상태를 유지하는 것을 특징으로 할 수 있다.
여기서, 상기 스위치부가 꺼진 경우, 상기 제1 초전도 코일부에 흐르는 전류량과 상기 제2 초전도 코일부에 흐르는 전류량이 동일하거나 양의 차이가 일정 기준 이하이고, 상기 제1 초전도 코일부가 생성하는 자기장과 상기 제2 초전도 코일부가 생성하는 자기장이 상호 상쇄되는 것을 특징으로 할 수 있다.
여기서, 상기 스위치부가 켜지는 경우, 상기 스위치부의 양측 회로가 연결되어, 상기 전원부에 의하여 인가되는 전압에 따라 상기 제1저항 대신 상기 스위치부를 통하여 연결된 회로에 전류가 흐르고, 상기 제1 초전도 코일부와 상기 제2 초전도 코일부에 일정한 기준 이상의 전류가 흘러, 상기 제1 초전도 코일부와 상기 제2 초전도 코일부의 초전도 상태가 깨지고, 상기 제1 초전도 코일부의 자체 저항과 상기 제2 초전도 코일부의 자체 저항은 상기 스위치부가 켜진 시점 이후로 일정 시간 동안, 서로 다른 속도로 각각의 저항값의 크기가 증가하는 것을 특징으로 할 수 있다.
여기서, 상기 스위치부가 켜지는 경우, 상기 스위치부가 켜진 시점 이후로 일정 시간 동안, 상기 제1 초전도 코일부에 흐르는 전류량과 상기 제2 초전도 코일부에 흐르는 전류량의 차이가 일정 기준 이상이 되어, 상기 제1 초전도 코일부와 상기 제2 초전도 코일부에 비대칭적으로 전류가 흐르고, 상기 제1 초전도 코일부가 생성하는 자기장과 상기 제2 초전도 코일부가 생성하는 자기장은 상호 상쇄되지 않아, 상기 초전도체부가 일정한 시간 이내에 순간적으로 일정한 양 이상의 자기장을 발생시키는 것을 특징으로 할 수 있다.
여기서, 도체로 구성되는 플레이트부를 더 포함하고, 상기 플레이트부는 상기 초전도체부의 상기 제1 초전도 코일부 및 제2 초전도 코일부와 평행하게 위치하는 것을 특징으로 할 수 있다.
여기서, 상기 초전도체부에서 일정한 시간 이내에 순간적으로 발생시킨 자기장으로 인하여 상기 플레이트부에 와전류(eddy current)가 발생하고, 상기 발생한 와전류로 인하여 상기 플레이트부에서 일정한 시간 이내에 순간적으로 일정한 양 이상의 자기장이 생성되고, 상기 플레이트부에서 상기 와전류로 인하여 생성된 자기장과 상기 초전도체부에서 발생한 자기장은, 서로 반대의 방향을 가지고, 상기 플레이트부와 상기 초전도체부 간에 반발력을 생성하는 것을 특징으로 할 수 있다.
여기서, 상기 제1 초전도 코일부와 상기 제2 초전도 코일부와 상기 플레이트부가 서로 평행하게 위치하도록 각 위치를 고정하고, 상기 플레이트부가 상기 초전도체부 간의 반발력으로 인하여 일 방향으로 이동시, 상기 플레이트부의 움직임을 가이드하는 지지부를 더 포함할 수 있다.
상기 과제를 해결하기 위해, 본 발명의 또 다른 유형에 따른 초전도 코일을 사용한 고속 물체 부상 방법은 서로 다른 방향으로 감겨지고, 서로 다른 초전도 특성을 가지고, 서로 평행하게 배치되고, 병렬로 연결된 제1 초전도 코일부와 제2 초전도 코일부의 쌍으로 이루어진 초전도체부에 직렬로 제1저항과 교류 전원부를 연결하여, 상기 초전도 코일의 쌍이 초전도 상태를 유지하도록 전류를 흐르게 하고, 상기 초전도체부에 평행하도록 플레이트부를 위치시키는, 초전도 상태 유지 단계; 상기 제1저항의 양 측을 단락시켜, 상기 제1 초전도 코일부와 상기 제2 초전도 코일부의 쌍에 기존에 흐르던 전류보다 많은 전류가 비대칭적으로 흐르도록 하고, 상기 초전도체부에서 일정한 시간 내에 순간적으로 일정한 양 이상의 자기장이 발생하도록 하는 순간 자기장 발생 단계; 및 상기 초전도체부에서 발생한 자기장에 따라 상기 플레이트부에 반발력을 발생시켜 상기 플레이트부가 부상하도록 하는 물체 부상 단계를 포함할 수 있다.
여기서, 상기 제1 초전도 코일부와 상기 제2 초전도 코일부는 초전도성을 가지기 위한 임계온도가 일정한 온도 이상에서 설정되는 물체인 고온 초전도체(High Temperature Superconductor)이고, 서로 반대 방향으로 권선되어 상기 초전도체부가 무유도성(non-inductive)을 가지고, 서로 다른 임계전류(critical current)와 N 계수(n value)를 가지는 초전도체인 것을 특징으로 할 수 있다.
여기서, 상기 초전도 상태 유지 단계는, 상기 제1 초전도 코일부에 흐르는 전류량과 상기 제2 초전도 코일부에 흐르는 전류량은 동일하거나 양의 차이가 일정 기준 이하가 되도록 하고, 상기 제1 초전도 코일부가 생성하는 자기장과 상기 제2 초전도 코일부가 생성하는 자기장은 상호 상쇄되도록 하는 것을 특징으로 할 수 있다.
여기서, 상기 순간 자기장 발생 단계는, 상기 제1저항의 양 측을 상기 제1저항에 병렬로 연결된 스위치 또는 회로를 이용하여 단락시켜, 일정한 시간 내에 순간적으로 상기 제1 초전도 코일부와 상기 제2 초전도 코일부에 일정한 기준 이상의 전류가 흐르도록 하고, 서로 다른 초전도 특성으로 인하여 비대칭적으로 전류가 흐르고 서로 다른 크기의 자기장을 발생시키는 상기 제1 초전도 코일부와 상기 제2 초전도 코일부를 이용하여, 상기 초전도체부가 일정한 시간 이내에 순간적으로 일정한 양 이상의 자기장을 발생시키도록 하는 것을 특징으로 할 수 있다.
여기서, 상기 고속 물체 부상 단계는, 상기 순간 자기장 발생 단계에서 발생한 자기장으로 인하여 상기 플레이트부에 와전류(eddy current)가 발생하고, 상기 발생한 와전류로 인하여 상기 플레이트부에서 일정한 시간 이내에 순간적으로 일정한 양 이상의 자기장이 생성되고, 상기 플레이트부에서 상기 와전류로 인하여 생성된 자기장과 상기 초전도체부에서 발생한 자기장이 서로 반대의 방향을 가지고 상기 플레이트부와 상기 초전도체부 간에 반발력을 생성하여, 상기 플레이트부를 상기 반발력에 따라 이동시키는 것을 특징으로 할 수 있다.
본 발명에 따른 초전도 코일을 사용한 고속 물체 부상 장치에 의하면, 소량의 고온 초전도체의 코일을 이용하여 순간적으로 큰 힘을 발생시켜 물체를 공중으로 부상시키는 효과가 있다.
또한 상기 장치는 물체를 임의의 방향으로 발사시키는 장치에 있어서 추진력을 제공하는 장치로 활용될 수 있다.
도 1은 본 발명의 일 실시예에 따른 초전도 코일을 사용한 고속 물체 부상 장치의 블록도이다.
도 2는 본 발명의 일 실시예에 따른 초전도 코일을 사용한 고속 물체 부상 장치의 회로도이다.
도 3은 본 발명에 따른 초전도 코일을 사용한 고속 물체 부상 장치의 일 실시예를 나타내는 참고도이다.
도 4는 본 발명의 스위치부가 켜지는 경우, 제1 초전도 코일부와 제2 초전도 코일부의 각 자체 저항의 크기가 시간에 따라 변화하는 특성을 설명하기 위한 참고도이다.
도 5는 본 발명의 스위치부가 켜지는 경우, 제1 초전도 코일부와 제2 초전도 코일부에 각 흐르는 전류양이 시간에 따라 변화하는 특성을 설명하기 위한 참고도이다.
도 6은 본 발명의 스위치부가 켜지는 경우, 초전도체부에서 발생하는 자기장과 플레이트부에서 발생하는 자기장의 시간에 따른 변화를 설명하기 위한 참고도이다.
도 7은 본 발명의 스위치부가 켜지는 경우 초전도체부에서 발생하는 자기장과 플레이트부에서 발생하는 자기장 간의 상호 작용으로 인하여, 초전도체부와 플레이트부 간에 발생하는 반발력의 시간에 따른 변화를 설명하기 위한 참고도이다.
도 8은 본 발명의 또 다른 실시예에 따른 초전도 코일을 사용한 고속 물체 부상 방법의 흐름도이다.
이하, 본 발명의 바람직한 실시예를 첨부된 도면들을 참조하여 상세히 설명한다. 우선 각 도면의 구성요소들에 참조 부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다. 또한, 이하에서 본 발명의 바람직한 실시예를 설명할 것이나, 본 발명의 기술적 사상은 이에 한정하거나 제한되지 않고 당업자에 의해 변형되어 다양하게 실시될 수 있음은 물론이다.
도 1은 본 발명의 일 실시예에 따른 초전도 코일을 사용한 고속 물체 부상 장치의 회로도이고, 도 2는 본 발명의 일 실시예에 따른 초전도 코일을 사용한 고속 물체 부상 장치의 회로도이다.
상기 본 발명에 따른 초전도 코일을 사용한 고속 물체 부상 장치는 초전도체부(100), 전원부(200), 스위치부(300), 제1저항(400), 플레이트부(500), 지지부(600)를 포함할 수 있다. 여기서 제1저항(400), 플레이트부(500), 지지부(600)는 필요에 따라 선택적으로 추가하거나 생략할 수 있다. 예를 들면 본 발명에 따른 초전도 코일을 사용한 고속 물체 부상 장치는 초전도체부(100), 전원부(200), 스위치부(300), 제1저항(400), 플레이트부(500), 지지부(600)를 포함할 수 있고, 또는 초전도체부(100), 전원부(200), 스위치부(300), 제1저항(400), 플레이트부(500)를 포함할 수 있고, 또는 초전도체부(100), 전원부(200), 스위치부(300), 제1저항(400)을 포함할 수 있다. 이하에서는 초전도체부(100), 전원부(200), 스위치부(300), 제1저항(400), 플레이트부(500), 지지부(600)를 모두 포함한 최적의 실시예에 대하여 상세히 설명한다.
초전도체부(100)는 서로 다른 방향으로 감겨지고, 서로 다른 초전도 특성을 가지고, 서로 평행하게 배치된 제1 초전도 코일부(110)와 제2 초전도 코일부(120)의 쌍을 구비한다.
여기서 제1 초전도 코일부(110)와 제2 초전도 코일부(120)는 서로 다른 초전도 특성을 가지는 권선으로 감겨져있고, 서로 다른 방향으로 감겨져 있다.
여기서 제1 초전도 코일부(110)와 제2 초전도 코일부(120)가 서로 평행하게 배치되었다는 것은 코일이 감기는 축의 방향이 서로 평행하다는 것을 의미한다. 예를 들면 제1 초전도 코일부(110)와 제2 초전도 코일부(120)는 도 3과 같이 서로 평행하게 배치될 수 있다.
이와 같이 제1 초전도 코일부(110)와 제2 초전도 코일부(120)는 서로 반대 방향으로 권선되어 초전도체부(100)가 무유도성(non-inductive)을 가지는 것을 특징으로 할 수 있다. 여기서 무유도성은 제1 초전도 코일부(110)와 제2 초전도 코일부(120)에서 각 반대 방향으로 발생하는 자기장이 상호 상쇄되기 때문에 발생하는 현상이다.
또한 제1 초전도 코일부(110)와 제2 초전도 코일부(120)는 초전도성을 가지기 위한 임계온도가 일정한 온도 이상에서 설정되는 물체인 고온 초전도체(High Temperature Superconductor)인 것을 특징으로 할 수 있다. 예를 들면 고온 초온도체는 30 K 이상에서 설정되는 임계온도 이하의 온도에서 초전도성을 가질 수 있다. 예를 들어 YBCO, GdBCO, BSCCO 등의 물체는 90-110 K의 임계온도 이하에서 초전도 성을 가진다.
또한 제1 초전도 코일부(110)와 제2 초전도 코일부(120)는, 서로 다른 임계전류(critical current)와 N 계수(n value)를 가지는 초전도체인 것이 바람직하다. 즉 상기 초전도 특성은 임계전류 및 N 계수 등이 될 수 있다. 여기서 임계전류란 초전도체가 초전도성을 가지고 있는 상태에서 흘릴 수 있는 전류의 크기를 의미한다. 또한 N 계수란 임계전류와 함께 초전도체의 전기적 성질을 규정하는 계수로서, 초전도체에 걸리는 전압과 흐르는 전류 간의 관계를 나타내는 법칙인 하기 수학식 1과 같은 E-J Power Law에 있어서의 계수를 의미한다.
수학식 1
Figure PCTKR2014010391-appb-M000001
(여기서 Ic 는 임계전류이고, Vc 는 임계전류가 초전도체에 흐를 경우 초전도체에 걸리는 전압이고, V 는 초전도체에 걸리는 전압, I 는 초전도체에 흐르는 전류이고, n 은 상기 N 계수이다.)
상기 수학식 1에서 확인할 수 있는 바와 같이, 초전도체에서 흐르는 전류에 따른 전압은 지수함수 관계에 있는 바, 초전도체에 임계전류 이상의 전류가 흐르게 될 경우, N 계수가 크면 초전도체에 걸리는 전압이 급격하게 상승하게 되고, N 계수가 작으면 전압이 보다 서서히 상승하게 되는 특성을 보인다.
여기서 서로 다른 방향으로 감겨져 있고 서로 다른 초전도 특성을 가지는 초전도 코일 쌍을 이용하여 순간적인 자기장을 발생시키는 본 발명의 기본 원리에 대하여 먼저 간략히 설명한다.
서로 다른 방향으로 감겨진 초전도 코일부들 간에는 전류 인가 시 서로 다른 방향으로 자기장이 발생하게 되고, 그 결과 발생한 자기장들이 서로 크기의 차이만큼 상쇄되게 된다. 먼저 본 발명에 따른 초전도 코일을 사용한 고속 물체 부상 장치는, 초전도 코일부의 쌍에 일정한 크기 이하의 작은 전류를 흘려보냄으로써 초전도 상태를 유지하고 또한, 서로 동일한 크기 또는 일정한 크기 이하의 전류를 흘려보냄으로써 초전도 상태 초전도 코일부의 쌍에서 발생하는 자기장을 상호 상쇄시킨다. 여기서 초전도 코일부의 쌍에 초전도 상태를 유지시키기 위하여 흘려보내는 일정한 크기의 전류량의 기준은 각 초전도 코일부의 초전도 특성에 따라 결정될 수 있다.
다음으로 본 발명에 따른 초전도 코일을 사용한 고속 물체 부상 장치는, 초전도 코일부의 쌍에 초전도 코일의 일정한 크기 이상의 큰 전류를 흘려보냄으로써 초전도 코일부의 초전도 상태를 깨뜨린다. 여기서 초전도 코일부의 쌍에 초전도 상태를 깨뜨리기 위하여 흘려보내는 일정한 크기의 전류량의 기준은 각 초전도 코일부의 초전도 특성 중 임계전류의 특성에 따라 결정될 수 있다. 즉 여기서 초전도 코일부의 쌍에 초전도 코일의 임계전류 이상의 큰 전류를 흘려보냄으로써 초전도 코일부의 초전도 상태를 깨뜨릴 수 있다. 이때 제1 초전도 코일부(110)와 제2 초전도 코일부(120)의 초전도 특성이 서로 다름으로 인하여, 제1 초전도 코일부(110)와 제2 초전도 코일부(120)의 각 저항값이 달라지고, 그 결과 각 초전도 코일부에서 흐르는 전류량이 달라지게 된다. 그리고 이로 인하여 각 초전도 코일부가 발생시키는 자기장의 크기도 달라진다. 이에 제1 초전도 코일부(110)와 제2 초전도 코일부(120)에서 각 발생한 자기장이 상호 모두 상쇄되지 아니하여, 초전도체부(100)에서는 순간적으로 일 방향으로 일정한 크기 이상의 자기장이 발생하게 된다.
본 발명은 초전도 코일의 쌍에 평행하게 플레이트부(500)를 위치시키는데, 이 경우 플레이트부(500)에서는 상기 초전도체부(100)에서 발생한 순간적인 자기장으로 인하여 와전류(eddy current)가 유도되고, 그 결과 플레이트부(500)에서도 상기 와전류에 따른 자기장이 발생하게 된다. 이때 초전도체부(100)에서 발생한 자기장과 플레이트부(500)에서 상기 발생한 자기장은 서로 다른 방향으로 형성되는 관계로, 상호 간에 반발하게 된다.
따라서 위와 같이 상호 반발하는 초전도체부(100)에서 발생한 자기장과 플레이트부(500)에서 상기 발생한 자기장으로 인하여, 초전도체부(100)와 플레이트부(500) 간에 반발력이 생성되고, 이로 인하여 플레이트부(500)가 일 방향으로 밀리게 되는 것이다.
이상과 같은 본 발명의 기본 원리에 따른 본 발명의 각 구성의 동작에 관하여는 아래에서 보다 상세히 설명한다.
다음으로 초전도체부(100)의 구성 및 동작에 대하여 다시 설명하다.
초전도체부(100)의 제1 초전도 코일부(110)와 제2 초전도 코일부(120)는 회로적으로 병렬로 연결되는 것이 바람직하다. 제1 초전도 코일부(110)와 제2 초전도 코일부(120)는 병렬로 연결됨으로써, 동일한 크기의 전압을 인가받게 된다. 그리고 그 결과 각 초전도 코일부의 초전도 상태가 깨졌을 경우, 양 코일 간의 초전도 특성의 차이와 그에 따른 초전도 코일의 자체 저항의 차이에 따라, 서로 다른 크기의 자기장이 각 코일에서 발생하게 된다.
또한 초전도체부(100)는 제1 초전도 코일부(110)와 제2 초전도 코일부(120)에 각 흐르는 전류량을 조절하기 위하여, 제1 초전도 코일부(110)에 직렬로 연결된 제1 조절저항(130)과 제2 초전도 코일부(120)에 직렬로 연결된 제2 조절저항(140)을 포함할 수 있다.
여기서, 제1 조절저항(130)과 제2 조절조항(140)은 아래에서 설명할 제1저항(400)과 비교하였을 때, 저항 값이 일정한 비율 이하로 작은 것이 바람직하다. 여기서 상기 일정한 비율은 초전도체부(100)에 충분히 큰 전류가 흘러 무유도성이 깨질 수 있게 하는 1:1000 내지 1:10000 등의 작은 비율 값이 되는 것이 바람직하다.
전원부(200)는 초전도체부(100)에 교류의 전원을 공급한다.
이때 전원부의 양측 또는 제1저항(400)의 양측 중 어느 하나의 일측이 접지된 것이 바람직하다.
스위치부(300)는 초전도체부(100)에 연결되고, 조작에 따라 회로를 개폐시킨다.
여기서 스위치부(300)는 조작에 따라 회로를 단락시켜 초전도체부(100)에 흐르는 전류의 양을 순간적으로 증가시키기 위하여 사용된다.
여기서 스위치부(300)가 켜져 스위치부(300)의 양측 회로가 연결된 경우, 초전도체부(100)는 일정한 시간 내에 순간적으로 일정한 양 이상의 자기장을 발생시킨다.
예를 들면 초전도체부(100)는 수 또는 수십 밀리세컨드 이내에 전원부(200)의 전압 인가량과 제1 초전도 코일(110) 및 제2 초전도 코일(120)의 초전도 특성에 따라 결정되는 일정한 양 이상의 자기장을 발생시킬 수 있다.
제1저항(400)은 초전도체부(100)에 직렬로 연결될 수 있다.
여기서 스위치부(300)는 제1저항(400)과 병렬로 연결되는 것이 바람직하다.
그리고 여기서 스위치부(300)가 켜지는 경우, 스위치부(300)의 양측 회로가 연결되어, 스위치부(300)가 껴져있을 때 제1저항(400)에 흐르던 전류가 스위치부(300)를 통해 연결된 회로로 흐르도록 한다. 즉 스위치부(300)가 켜지는 경우 제1저항(400)의 양 측이 연결됨으로써, 기존에 제1저항(400)을 통과하여 흐르던 전류가, 저항이 없는 스위치부(300)를 통해 연결된 회로로 흐르게 된다.
이상과 같은 스위치부(300)와 제1저항(400)의 구성은 순간적으로 많은 양의 전류가 초전도체부(100)에 흐르도록 한다. 즉 제1 조절저항(130) 및 제2 조절저항(140)의 크기가 제1저항(400)의 크기보다 일정한 비율 이하로 작도록 하는 경우, 스위치부(300)가 꺼진 상태에서 전원부(200)에 의하여 인가되는 전압은 대부분 초전도체부(100)가 아닌 제1저항(400)에 인가된다. 또한 제1 초전도 코일부(110) 및 제2 초전도 코일부(120)의 초전도상태가 유지되도록, 초전도체부(100)에 흐르는 전류의 양을 조절하기 위하여, 제1저항(400)이 일정한 크기 이상의 저항값을 가지도록 설정할 수 있다. 그런데 위와 같이 스위치부(300)가 꺼진 상태에 있다가, 스위치부(300)를 켜게 되면, 제1저항(400)에 인가되었던 전압이 모두 초전도체부(100)에 인가되게 되고, 그 결과 초전도체부(100)에 순간적으로 큰 전류가 흐르게 된다.
플레이트부(500)는 초전도체부(100)의 제1 초전도 코일부(110) 및 제2 초전도 코일부(120)와 평행하게 위치하는 것이 바람직하다.
여기서 플레이트부(500)는 도 3과 같이 제1 초전도 코일부(110) 및 제2 초전도 코일부(120)와 평행하게 위치할 수 있다. 즉 제1 초전도 코일부(110) 및 제2 초전도 코일부(120)에서 코일이 감기는 축의 방향과 플레이트부(500)의 판의 중심에서 판에 수직한 중심축의 방향이 서로 평행하게 위치하는 것이 바람직하다.
본 발명에 따른 초전도 코일을 사용한 고속 물체 부상 장치는 지지부(600)를 더 포함할 수 있다.
여기서 지지부(600)는 제1 초전도 코일부(110)와 제2 초전도 코일부(120)와 플레이트부(500)가 서로 평행하게 위치하도록 각 위치를 고정하고, 아래에서 설명할 바와 같이, 플레이트부(500)가 초전도체부(100) 간의 반발력으로 인하여 일 방향으로 이동시, 플레이트부(500)의 움직임을 가이드하는 것이 바람직하다.
도 3은 본 발명에 따른 초전도 코일을 사용한 고속 물체 부상 장치의 일 실시예를 나타내는 참고도이다.
도 3을 참조하면 본 발명에 따른 초전도 코일을 사용한 고속 물체 부상 장치는, 하단부에 제1 초전도 코일(110)과 제2 초전도 코일(120)을 서로 평행하게 위치하도록 구비할 수 있다. 여기서 제1 초전도 코일(110)과 제2 초전도 코일(120)은 도 2와 같이 서로 다른 방향으로 감겨있다. 그리고 플레이트부(500)는 제1 초전도 코일(110)의 상부에 평행하게 위치할 수 있고, 상술한 플레이트부(500)와 초전도체부(100)간에 발생하는 반발력에 의하여 순간적으로 공중으로 부상할 수 있다. 이때 지지부(600)는 제1 초전도 코일(110)과 제2 초전도 코일(120)과 플레이트부(500) 간에 평행성이 유지되도록 각 부위를 지지할 수 있다.
본 발명에 따른 초전도 코일을 사용한 고속 물체 부상 장치는 스위치부(300)와 제1저항(400)을 이용하여 선택적으로 단락 회로를 구성하여 상술한 바와 같이 초전도체부(100)에 공급되는 전압 및 전류를 조절함으로써, 초전도체부(100)에서 일정한 시간 내에 순간적으로 일정한 양 이상의 자기장이 발생되도록 한다.
다음으로는 스위치부(300)가 켜지고 꺼진 경우, 즉 스위치가 켜져 스위치가 연결하는 양 측 회로가 연결되는 경우와 스위치가 꺼져 스위치가 연결하는 양 측 회로가 끊어지는 경우 각각에 대하여, 도면을 참고하면서 본 발명에 따른 초전도 코일을 사용한 고속 물체 부상 장치의 동작을 자세히 설명한다.
먼저 스위치부(300)가 꺼진 경우를 설명한다.
스위치부(300)가 꺼진 경우, 스위치부(300)의 양측 회로의 연결이 끊어지고, 전원부(200)에 의하여 인가되는 전압에 따라 제1저항(400)에 전류가 흐른다.
이때 제1 초전도 코일부(110)와 제2 초전도 코일부(120)에 일정한 기준 이하의 전류가 흘러, 제1 초전도 코일부(110)와 제2 초전도 코일부(120)가 초전도 상태를 유지할 수 있다. 여기서 상기 일정한 기준 이하의 전류는 제1 초전도 코일부(110)와 제2 초전도 코일부(120)의 임계전류 이하의 작은 전류인 것이 바람직하다.
이 경우 제1 초전도 코일부(110)에 흐르는 전류량과 제2 초전도 코일부(120)에 흐르는 전류량이 동일하거나 양의 차이가 일정 기준 이하가 된다.
그리고 그에 따라, 제1 초전도 코일부(110)가 생성하는 자기장과 제2 초전도 코일부(120)가 생성하는 자기장이 상호 상쇄되는 것을 특징으로 한다.
즉 제1 초전도 코일부(110)와 제2 초전도 코일부(120)는 모두 초전도 상태에 있으므로 저항이 0에 가까운 매우 작은 상태이고, 그 결과 제1 초전도 코일부(110)와 제2 초전도 코일부(120)에는 병렬로 동일하게 연결된 회로의 특성에 따라 동일한 크기의 전류량이 흐르게 된다. 이때 회로의 미세한 특성 차이로 인하여 각 코일부에 흐르는 전류량이 달라질 수 있는데, 이와 같은 현상은 각 초전도 코일부에 조절저항을 직렬로 연결함으로써 조절할 수 있다. 즉 제1 초전도 코일부(110)에 제1 조절저항(130)을 직렬로 연결하고, 제2 초전도 코일부(120)에 제2 조절저항(140)을 직렬로 연결하고, 초전도 상태에서 제1 초전도 코일부(110)와 제2 초전도 코일부(120)에 동일한 크기의 전류가 흐를 수 있도록 제1 조절저항(130)과 제2 조절저항(130)의 크기를 각 조절할 수 있다. 그 결과 제1 초전도 코일부(110)와 제2 초전도 코일부(120)에서 각 발생하는 자기장은 서로 같은 크기를 가지거나 그 차이가 일정한 크기 이하로 거의 같은 크기를 가지게 되고, 또한 서로 반대방향을 가지는 특성을 가지게 되어, 상술한 바와 같이 상호 상쇄된다.
다음으로는 스위치부(300)가 켜지는 경우를 설명한다.
스위치부(300)가 켜지는 경우, 스위치부(300)의 양측 회로가 연결되어, 전원부(200)에 의하여 인가되는 전압에 따라 제1저항(400) 대신 스위치부(300)를 통하여 연결된 회로에 전류가 흐른다.
이때 제1 초전도 코일부(110)와 제2 초전도 코일부(120)에 일정한 기준 이상의 전류가 흘러, 제1 초전도 코일부(110)와 제2 초전도 코일부(120)의 초전도 상태가 깨지게 된다. 상술한 바와 같이 이 때 제1 초전도 코일부(110)와 제2 초전도 코일부(120)에는 각 코일부의 임계전류 이상의 전류가 흘러 각 코일의 초전도 상태가 깨지게 될 수 있다. 즉 스위치가 켜져 초전도 코일부의 쌍에 초전도 상태를 깨뜨리도록 흘려보내지는 일정한 크기의 전류량의 기준은 각 초전도 코일부의 초전도 특성 중 임계전류의 특성에 따라 결정될 수 있다.
그리고 그에 따라, 제1 초전도 코일부(110)의 자체 저항과 제2 초전도 코일부(120)의 자체 저항은 스위치부(300)가 켜진 시점 이후로 일정 시간 동안, 서로 다른 속도로 각각의 저항값의 크기가 증가하게 된다.
도 4는 본 발명의 스위치부(300)가 켜지는 경우, 제1 초전도 코일부(110)와 제2 초전도 코일부(120)의 각 자체 저항의 크기가 시간에 따라 변화하는 특성을 설명하기 위한 참고도이다.
도 4를 참조하면, 0.1초의 지점에서 스위치부(300)가 켜지는 경우 순간적으로 고전류가 제1 초전도 코일부(110)와 제2 초전도 코일부(120)에 흐르게되어 각 초전도 코일부의 초전도 상태가 깨지게 되는데, 이 경우 각 초전도 코일부는 초전도 특성이 다른 관계로 시간에 따라 저항값이 증가하는 기울기가 도 4와 같이 달라진다.
이 경우 제1 초전도 코일부(110)에 흐르는 전류량과 제2 초전도 코일부(120)에 흐르는 전류량의 차이가 일정 기준 이상이 되어, 제1 초전도 코일부(110)와 제2 초전도 코일부(120)에 비대칭적으로 전류가 흐르게 된다.
도 5는 본 발명의 스위치부(300)가 켜지는 경우, 제1 초전도 코일부(110)와 제2 초전도 코일부(120)에 각 흐르는 전류량이 시간에 따라 변화하는 특성을 설명하기 위한 참고도이다.
병렬로 연결된 제1 초전도 코일부(110)와 제2 초전도 코일부(120)는 도 4와 같이 서로 다른 저항값을 가지는 관계로, 동일한 크기로 인가된 전압에 따라 도 5와 같이 서로 다른 전류를 흘리게 된다.
그리고 이로 인하여 제1 초전도 코일부(110)에서 생성되는 자기장과 제2 초전도 코일부(120)에서 생성되는 자기장의 크기에 차이가 발생하게 된다. 즉 초전도 코일부 간에 흐르는 전류의 양이 상이함으로 인하여 각 초전도 코일부에서 발생하는 자기장의 크기 값이 서로 다르게 되는 것이다.
여기서 제1 초전도 코일부(110)가 생성하는 자기장과 제2 초전도 코일부(120)가 생성하는 자기장은 상호 상쇄되지 않고, 그 결과 초전도체부(100)가 일정한 시간 이내에 순간적으로 일정한 양 이상의 자기장을 발생시키게 된다.
다음으로는 이상과 같이 초전도체부(100)에서 일정한 시간 이내에 순간적으로 일정한 양 이상의 자기장으로 인하여 플레이트부(500)에 반발력이 가해지는 동작에 대하여 설명한다.
플레이트부(500) 도체로 구성되는 것이 바람직하다.
예를 들면 플레이트부(500)는 알루미늄으로 구성될 수 있다.
여기서 플레이트부(500)는 초전도체부(100)의 제1 초전도 코일부(110) 및 제2 초전도 코일부(120)와 평행하게 위치하는 것이 바람직하다.
여기서 초전도체부(100)에서 위와 같이 일정한 시간 이내에 순간적으로 발생시킨 자기장으로 인하여, 플레이트부(500)에 와전류(eddy current)가 발생하게 된다.
그리고 상기 발생한 와전류로 인하여 플레이트부(500)에서 일정한 시간 이내에 순간적으로 일정한 양 이상의 자기장이 생성될 수 있다.
도 6은 본 발명의 스위치부(300)가 켜지는 경우, 초전도체부(100)에서 발생하는 자기장과 플레이트부(500)에서 발생하는 자기장의 시간에 따른 변화를 설명하기 위한 참고도이다.
도 6을 참조하면, 스위치부(300)가 켜진 시점 이후로 초전도체부(100)에서 발생하는 자기장의 크기가 증가하고, 그에 따라 플레이트부(500)에서 발생하는 자기장의 크기도 함께 증가함을 확인할 수 있다. 여기서 보다 정확하게는 초전도체부(100)에서 발생하는 자기장은 초전도체부(100)의 중심부의 자기장을 의미하고, 플레이트부(500)에서 발생하는 자기장은 플레이트부(500)의 중심부의 자기장을 의미할 수 있다.
이때 플레이트부(500)에서 상기 와전류로 인하여 생성된 자기장과 초전도체부(100)에서 발생한 자기장은, 서로 반대의 방향을 가지게 된다. 그 결과 플레이트부(500)에서 상기 와전류로 인하여 생성된 자기장과 초전도체부(100)에서 발생한 자기장은 플레이트부(500)와 초전도체부(100)간에 반발력을 생성한다.
여기서 상기 반발력은 하기 수학식 2와 같이 산출될 수 있다.
수학식 2
Figure PCTKR2014010391-appb-M000002
(여기서 F는 상기 반발력이고, je 는 상기 와전류의 밀도이고, v 는 부피를 나타내는 상수이고, B 는 상기 플레이트부에 가해지는 자기장이다.)
여기서 (je × B) 는 각 미소 부피 단위에서 발생하는 로렌츠힘을 의미하며, 이를 상기 수학식 2와 같이 플레이트부(500) 전체에 대하여 적분하여, 플레이트부(500)에서 발생하는 로렌츠 힘을 산출할 수 있다. 여기서 상기 산출된 로렌츠 힘이 상기 반발력이 된다.
도 7은 본 발명의 스위치부(300)가 켜지는 경우 초전도체부(100)에서 발생하는 자기장과 플레이트부(500)에서 발생하는 자기장 간의 상호 작용으로 인하여, 초전도체부(100)와 플레이트부(500)간에 발생하는 반발력의 시간에 따른 변화를 설명하기 위한 참고도이다.
이와 같이 플레이트부(500)에 대하여 발생한 반발력으로 플레이트부(500)는 일방향으로 밀려나 이동하게 된다. 본 발명에 따른 초전도 코일을 사용한 물체 부상 장치는, 플레이트부(500)에 물체를 위치시키거나, 힘을 가하고자 하는 물체에 플레이트부(500)를 포함시킴으로써, 초전도체부(100)와 플레이트부(500)간에 발생하는 반발력을 이동시키고자 하는 물체에 가할 수 있다.
도 8은 본 발명의 또 다른 실시예에 따른 초전도 코일을 사용한 고속 물체 부상 방법의 흐름도이다.
상기 본 발명에 따른 초전도 코일을 사용한 고속 물체 부상 방법은 초전도 상태 유지 단계(S100), 순간 자기장 발생 단계(S200), 물체 부상 단계(S300)를 포함할 수 있다. 여기서 상기 본 발명에 따른 초전도 코일을 사용한 고속 물체 부상 방법은 도 1을 참조하면서 위에서 상세히 설명한 본 발명에 따른 초전도 코일을 사용한 고속 물체 부상 장치가 동작하는 방식과 동일한 방식으로 동작할 수 있다. 이에 중복되는 부분은 생략하고 간략히 서술한다.
초전도 상태 유지 단계(S100)는 서로 다른 방향으로 감겨지고, 서로 다른 초전도 특성을 가지고, 서로 평행하게 배치되고, 병렬로 연결된 제1 초전도 코일부(110)와 제2 초전도 코일부(120)의 쌍으로 이루어진 초전도체부(100)에 직렬로 제1저항(400)과 교류 전원부(200)를 연결하여, 상기 초전도 코일부의 쌍이 초전도 상태를 유지하도록 전류를 흐르게 하고, 초전도체부(100)에 평행하도록 플레이트부(500)를 위치시킨다.
순간 자기장 발생 단계(S200)는 제1저항(400)의 양 측을 단락시켜, 제1 초전도 코일부(110)와 제2 초전도 코일부(120)의 쌍에 기존에 흐르던 전류보다 많은 전류가 비대칭적으로 흐르도록 하고, 초전도체부(100)에서 일정한 시간 내에 순간적으로 일정한 양 이상의 자기장이 발생하도록 한다.
물체 부상 단계(S300)는 초전도체부(100)에서 발생한 자기장에 따라 플레이트부(500)에 반발력을 발생시켜, 플레이트부(500)가 부상하도록 한다.
여기서 제1 초전도 코일부(110)와 제2 초전도 코일부(120)는 초전도성을 가지기 위한 임계온도가 일정한 온도 이상에서 설정되는 물체인 고온 초전도체(High Temperature Superconductor)이고, 서로 반대 방향으로 권선되어 상기 초전도체부가 무유도성(non-inductive)을 가지는 것이 바람직하다.
또한 제1 초전도 코일부(110)와 제2 초전도 코일부(120)는 서로 다른 임계전류(critical current)와 N 계수(n value)를 가지는 초전도체인 것이 바람직하다.
다음으로는 상기 본 발명에 따른 초전도 코일을 사용한 고속 물체 부상 방법의 각 단계에 대하여 보다 상세히 설명한다.
초전도 상태 유지 단계(S100)는, 제1 초전도 코일부(110)에 흐르는 전류량과 제2 초전도 코일부(120)에 흐르는 전류량은 동일하거나 양의 차이가 일정 기준 이하가 되도록 하고, 제1 초전도 코일부(110)가 생성하는 자기장과 제2 초전도 코일부(120)가 생성하는 자기장은 상호 상쇄되도록 한다.
순간 자기장 발생 단계(S200)는, 제1저항(400)의 양 측을 제1저항(400)에 병렬로 연결된 스위치 또는 회로를 이용하여 단락시켜, 일정한 시간 내에 순간적으로 제1 초전도 코일부(110)와 제2 초전도 코일부(120)에 일정한 기준 이상의 전류가 흐르도록 한다. 그리고 서로 다른 초전도 특성으로 인하여 비대칭적으로 전류가 흐르고 서로 다른 크기의 자기장을 발생시키는 제1 초전도 코일부(110)와 제2 초전도 코일부(120)을 이용하여, 초전도체부(100)가 일정한 시간 이내에 순간적으로 일정한 양 이상의 자기장을 발생시키도록 한다.
물체 부상 단계(S300)는, 순간 자기장 발생 단계(S200)에서 발생한 자기장으로 인하여 플레이트부(500)에 와전류(eddy current)가 발생하고, 상기 발생한 와전류로 인하여 플레이트부(500)에서 일정한 시간 이내에 순간적으로 일정한 양 이상의 자기장이 생성되도록 한다. 그리고 플레이트부(500)에서 상기 와전류로 인하여 생성된 자기장과 초전도체부(100)에서 발생한 자기장이 서로 반대의 방향을 가지고 플레이트부(500)와 초전도체부(100) 간에 반발력을 생성하여, 플레이트부(500)를 상기 반발력에 따라 이동하도록 한다.
이상에서 설명한 본 발명의 실시예를 구성하는 모든 구성요소들이 하나로 결합하거나 결합하여 동작하는 것으로 기재되어 있다고 해서, 본 발명이 반드시 이러한 실시예에 한정되는 것은 아니다. 즉, 본 발명의 목적 범위 안에서라면, 그 모든 구성요소들이 하나 이상으로 선택적으로 결합하여 동작할 수도 있다.
또한, 그 모든 구성요소들이 각각 하나의 독립적인 하드웨어로 구현될 수 있지만, 각 구성요소들의 그 일부 또는 전부가 선택적으로 조합되어 하나 또는 복수개의 하드웨어에서 조합된 일부 또는 전부의 기능을 수행하는 프로그램 모듈을 갖는 컴퓨터 프로그램으로서 구현될 수도 있다. 또한, 이와 같은 컴퓨터 프로그램은 USB 메모리, CD 디스크, 플래쉬 메모리 등과 같은 컴퓨터가 읽을 수 있는 기록매체(Computer Readable Media)에 저장되어 컴퓨터에 의하여 읽혀지고 실행됨으로써, 본 발명의 실시예를 구현할 수 있다. 컴퓨터 프로그램의 기록매체로서는 자기 기록매체, 광 기록매체, 캐리어 웨이브 매체 등이 포함될 수 있다.
또한, 기술적이거나 과학적인 용어를 포함한 모든 용어들은, 상세한 설명에서 다르게 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 갖는다. 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥상의 의미와 일치하는 것으로 해석되어야 하며, 본 발명에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위 내에서 다양한 수정, 변경 및 치환이 가능할 것이다. 따라서, 본 발명에 개시된 실시예 및 첨부된 도면들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예 및 첨부된 도면에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구 범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리 범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (19)

  1. 부상 장치에 있어서,
    서로 다른 방향으로 감겨지고, 서로 다른 초전도 특성을 가지고, 서로 평행하게 배치된 제1 초전도 코일부와 제2 초전도 코일부의 쌍을 구비하는 초전도체부;
    상기 초전도체부에 교류의 전원을 공급하는 전원부; 및
    상기 초전도체부에 연결되고, 조작에 따라 회로를 개폐시키는 스위치부를 포함하고,
    상기 스위치부가 켜져 상기 스위치부의 양측 회로가 연결된 경우, 상기 초전도체부는 일정한 시간 내에 순간적으로 일정한 양 이상의 자기장을 발생시키는 것을 특징으로 하는, 초전도 코일을 사용한 고속 물체 부상 장치.
  2. 제1항에 있어서,
    상기 제1 초전도 코일부와 상기 제2 초전도 코일부는 초전도성을 가지기 위한 임계온도가 일정한 온도 이상에서 설정되는 물체인 고온 초전도체(High Temperature Superconductor)인 것을 특징으로 하는, 초전도 코일을 사용한 고속 물체 부상 장치.
  3. 제1항에 있어서,
    상기 제1 초전도 코일부와 상기 제2 초전도 코일부는 서로 반대 방향으로 권선되어 상기 초전도체부가 무유도성(non-inductive)을 가지는 것을 특징으로 하는, 초전도 코일을 사용한 고속 물체 부상 장치.
  4. 제1항에 있어서, 상기 제1 초전도 코일부와 상기 제2 초전도 코일부은,
    서로 다른 임계전류(critical current)와 N 계수(n value)를 가지는 초전도체이고,
    병렬로 연결된 것을 특징으로 하는, 초전도 코일을 사용한 고속 물체 부상 장치.
  5. 제1항 내지 4항 중 어느 하나의 항에 있어서,
    상기 초전도체부에 직렬로 연결되는 제1저항을 더 포함하고,
    상기 스위치부는 상기 제1저항과 병렬로 연결되고,
    상기 스위치부가 켜지는 경우, 상기 스위치부의 양측 회로가 연결되어, 상기 스위치부가 껴져있을 때 상기 제1저항에 흐르던 전류가 상기 스위치부를 통해 연결된 회로로 흐르도록 하는 것을 특징으로 하는, 초전도 코일을 사용한 고속 물체 부상 장치.
  6. 제5항에 있어서,
    상기 초전도체부는 상기 제1 초전도 코일부와 상기 제2 초전도 코일부에 각 흐르는 전류량을 조절하기 위하여, 상기 제1 초전도 코일부에 직렬로 연결된 제1 조절저항과 상기 제2 초전도 코일부에 직렬로 연결된 제2 조절저항을 포함하는, 초전도 코일을 사용한 고속 물체 부상 장치.
  7. 제6항에 있어서,
    상기 제1 조절저항과 상기 제2 조절조항은 상기 제1저항과 비교하였을 때, 저항 값이 일정한 비율 이하로 작은 것을 특징으로 하는, 초전도 코일을 사용한 고속 물체 부상 장치.
  8. 제5항에 있어서, 상기 스위치부가 꺼진 경우,
    상기 스위치부의 양측 회로의 연결이 끊어지고, 상기 전원부에 의하여 인가되는 전압에 따라 상기 제1저항에 전류가 흐르고,
    상기 제1 초전도 코일부와 상기 제2 초전도 코일부에 일정한 기준 이하의 전류가 흘러, 상기 제1 초전도 코일부와 상기 제2 초전도 코일부가 초전도 상태를 유지하는 것을 특징으로 하는, 초전도 코일을 사용한 고속 물체 부상 장치.
  9. 제8항에 있어서, 상기 스위치부가 꺼진 경우,
    상기 제1 초전도 코일부에 흐르는 전류량과 상기 제2 초전도 코일부에 흐르는 전류량이 동일하거나 양의 차이가 일정 기준 이하이고,
    상기 제1 초전도 코일부가 생성하는 자기장과 상기 제2 초전도 코일부가 생성하는 자기장이 상호 상쇄되는 것을 특징으로 하는, 초전도 코일을 사용한 고속 물체 부상 장치.
  10. 제5항에 있어서, 상기 스위치부가 켜지는 경우,
    상기 스위치부의 양측 회로가 연결되어, 상기 전원부에 의하여 인가되는 전압에 따라 상기 제1저항 대신 상기 스위치부를 통하여 연결된 회로에 전류가 흐르고,
    상기 제1 초전도 코일부와 상기 제2 초전도 코일부에 일정한 기준 이상의 전류가 흘러, 상기 제1 초전도 코일부와 상기 제2 초전도 코일부의 초전도 상태가 깨지고,
    상기 제1 초전도 코일부의 자체 저항과 상기 제2 초전도 코일부의 자체 저항은 상기 스위치부가 켜진 시점 이후로 일정 시간 동안, 서로 다른 속도로 각각의 저항값의 크기가 증가하는 것을 특징으로 하는, 초전도 코일을 사용한 고속 물체 부상 장치.
  11. 제10항에 있어서, 상기 스위치부가 켜지는 경우,
    상기 스위치부가 켜진 시점 이후로 일정 시간 동안,
    상기 제1 초전도 코일부에 흐르는 전류량과 상기 제2 초전도 코일부에 흐르는 전류량의 차이가 일정 기준 이상이 되어, 상기 제1 초전도 코일부와 상기 제2 초전도 코일부에 비대칭적으로 전류가 흐르고,
    상기 제1 초전도 코일부가 생성하는 자기장과 상기 제2 초전도 코일부가 생성하는 자기장은 상호 상쇄되지 않아, 상기 초전도체부가 일정한 시간 이내에 순간적으로 일정한 양 이상의 자기장을 발생시키는 것을 특징으로 하는, 초전도 코일을 사용한 고속 물체 부상 장치.
  12. 제5항에 있어서,
    도체로 구성되는 플레이트부를 더 포함하고,
    상기 플레이트부는 상기 초전도체부의 상기 제1 초전도 코일부 및 제2 초전도 코일부와 평행하게 위치하는 것을 특징으로 하는, 초전도 코일을 사용한 고속 물체 부상 장치.
  13. 제12항에 있어서,
    상기 초전도체부에서 일정한 시간 이내에 순간적으로 발생시킨 자기장으로 인하여 상기 플레이트부에 와전류(eddy current)가 발생하고,
    상기 발생한 와전류로 인하여 상기 플레이트부에서 일정한 시간 이내에 순간적으로 일정한 양 이상의 자기장이 생성되고,
    상기 플레이트부에서 상기 와전류로 인하여 생성된 자기장과 상기 초전도체부에서 발생한 자기장은, 서로 반대의 방향을 가지고, 상기 플레이트부와 상기 초전도체부 간에 반발력을 생성하는 것을 특징으로 하는, 초전도 코일을 사용한 고속 물체 부상 장치.
  14. 제5항에 있어서,
    상기 제1 초전도 코일부와 상기 제2 초전도 코일부와 상기 플레이트부가 서로 평행하게 위치하도록 각 위치를 고정하고, 상기 플레이트부가 상기 초전도체부 간의 반발력으로 인하여 일 방향으로 이동시, 상기 플레이트부의 움직임을 가이드하는 지지부를 더 포함하는 것을 특징으로 하는, 초전도 코일을 사용한 고속 물체 부상 장치.
  15. 물체 부상 방법에 있어서,
    서로 다른 방향으로 감겨지고, 서로 다른 초전도 특성을 가지고, 서로 평행하게 배치되고, 병렬로 연결된 제1 초전도 코일부와 제2 초전도 코일부의 쌍으로 이루어진 초전도체부에 직렬로 제1저항과 교류 전원부를 연결하여, 상기 초전도 코일의 쌍이 초전도 상태를 유지하도록 전류를 흐르게 하고, 상기 초전도체부에 평행하도록 플레이트부를 위치시키는, 초전도 상태 유지 단계;
    상기 제1저항의 양 측을 단락시켜, 상기 제1 초전도 코일부와 상기 제2 초전도 코일부의 쌍에 기존에 흐르던 전류보다 많은 전류가 비대칭적으로 흐르도록 하고, 상기 초전도체부에서 일정한 시간 내에 순간적으로 일정한 양 이상의 자기장이 발생하도록 하는 순간 자기장 발생 단계; 및
    상기 초전도체부에서 발생한 자기장에 따라 상기 플레이트부에 반발력을 발생시켜 상기 플레이트부가 부상하도록 하는 물체 부상 단계를 포함하는 것을 특징으로 하는, 초전도 코일을 사용한 고속 물체 부상 방법
  16. 제15항에 있어서, 상기 제1 초전도 코일부와 상기 제2 초전도 코일부는,
    초전도성을 가지기 위한 임계온도가 일정한 온도 이상에서 설정되는 물체인 고온 초전도체(High Temperature Superconductor)이고,
    서로 반대 방향으로 권선되어 상기 초전도체부가 무유도성(non-inductive)을 가지고,
    서로 다른 임계전류(critical current)와 N 계수(n value)를 가지는 초전도체인 것을 특징으로 하는, 초전도 코일을 사용한 고속 물체 부상 방법.
  17. 제15항에 있어서,
    상기 초전도 상태 유지 단계는,
    상기 제1 초전도 코일부에 흐르는 전류량과 상기 제2 초전도 코일부에 흐르는 전류량은 동일하거나 양의 차이가 일정 기준 이하가 되도록 하고, 상기 제1 초전도 코일부가 생성하는 자기장과 상기 제2 초전도 코일부가 생성하는 자기장은 상호 상쇄되도록 하는 것을 특징으로 하는, 초전도 코일을 사용한 고속 물체 부상 방법.
  18. 제15항에 있어서,
    상기 순간 자기장 발생 단계는,
    상기 제1저항의 양 측을 상기 제1저항에 병렬로 연결된 스위치 또는 회로를 이용하여 단락시켜, 일정한 시간 내에 순간적으로 상기 제1 초전도 코일부와 상기 제2 초전도 코일부에 일정한 기준 이상의 전류가 흐르도록 하고,
    서로 다른 초전도 특성으로 인하여 비대칭적으로 전류가 흐르고 서로 다른 크기의 자기장을 발생시키는 상기 제1 초전도 코일부와 상기 제2 초전도 코일부를 이용하여, 상기 초전도체부가 일정한 시간 이내에 순간적으로 일정한 양 이상의 자기장을 발생시키도록 하는 것을 특징으로 하는, 초전도 코일을 사용한 고속 물체 부상 방법.
  19. 제15항에 있어서,
    상기 물체 부상 단계는,
    상기 순간 자기장 발생 단계에서 발생한 자기장으로 인하여 상기 플레이트부에 와전류(eddy current)가 발생하고, 상기 발생한 와전류로 인하여 상기 플레이트부에서 일정한 시간 이내에 순간적으로 일정한 양 이상의 자기장이 생성되고,
    상기 플레이트부에서 상기 와전류로 인하여 생성된 자기장과 상기 초전도체부에서 발생한 자기장이 서로 반대의 방향을 가지고 상기 플레이트부와 상기 초전도체부 간에 반발력을 생성하여, 상기 플레이트부를 상기 반발력에 따라 이동시키는 것을 특징으로 하는, 초전도 코일을 사용한 고속 물체 부상 방법.
PCT/KR2014/010391 2014-10-31 2014-10-31 초전도 코일을 사용한 고속 물체 부상 장치 및 그 방법 WO2016068363A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140149875A KR101687586B1 (ko) 2014-10-31 2014-10-31 초전도 코일을 사용한 고속 물체 부상 장치 및 그 방법
KR10-2014-0149875 2014-10-31

Publications (1)

Publication Number Publication Date
WO2016068363A1 true WO2016068363A1 (ko) 2016-05-06

Family

ID=55852312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/010391 WO2016068363A1 (ko) 2014-10-31 2014-10-31 초전도 코일을 사용한 고속 물체 부상 장치 및 그 방법

Country Status (3)

Country Link
US (1) US10373750B2 (ko)
KR (1) KR101687586B1 (ko)
WO (1) WO2016068363A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2539527B2 (ja) * 1990-03-02 1996-10-02 株式会社日立製作所 超電導磁気浮上列車、超電導磁気浮上列車システム並びにその制御方法及び磁気浮上列車用超電導コイル
KR100929394B1 (ko) * 2008-01-30 2009-12-02 연세대학교 산학협력단 이종 초전도선재를 이용한 전류 제한 모듈 및 하이브리드전류 제한기
WO2010090368A1 (en) * 2009-02-09 2010-08-12 Industry-Academic Cooperation Foundation, Yonsei University Superconductor switch
KR20110071305A (ko) * 2009-12-21 2011-06-29 한국철도기술연구원 자기부상열차용 영구전류모드 운전형 초전도 하이브리드 전자석에 의한 자기 부상 시스템
JP2014099440A (ja) * 2012-11-13 2014-05-29 Kobe Steel Ltd 永久電流スイッチ、及びこの永久電流スイッチを備えた超電導マグネット装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5182254A (en) 1992-04-20 1993-01-26 The United States Of America As Represented By The Secretary Of The Army Superconducting electromagnetic projectile launchers
US7472786B2 (en) 2004-12-20 2009-01-06 Kyushu Institute Of Technology Non-contact conveying device using superconducting magnetic levitation
JP4635935B2 (ja) 2006-03-29 2011-02-23 Jsr株式会社 着色層形成用感放射線性組成物、カラーフィルタおよびカラー液晶表示素子
JP2010252413A (ja) 2009-04-10 2010-11-04 Central Japan Railway Co 磁気浮上移動システム
JP6262417B2 (ja) * 2012-07-31 2018-01-17 川崎重工業株式会社 磁場発生装置及びこれを備える超電導回転機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2539527B2 (ja) * 1990-03-02 1996-10-02 株式会社日立製作所 超電導磁気浮上列車、超電導磁気浮上列車システム並びにその制御方法及び磁気浮上列車用超電導コイル
KR100929394B1 (ko) * 2008-01-30 2009-12-02 연세대학교 산학협력단 이종 초전도선재를 이용한 전류 제한 모듈 및 하이브리드전류 제한기
WO2010090368A1 (en) * 2009-02-09 2010-08-12 Industry-Academic Cooperation Foundation, Yonsei University Superconductor switch
KR20110071305A (ko) * 2009-12-21 2011-06-29 한국철도기술연구원 자기부상열차용 영구전류모드 운전형 초전도 하이브리드 전자석에 의한 자기 부상 시스템
JP2014099440A (ja) * 2012-11-13 2014-05-29 Kobe Steel Ltd 永久電流スイッチ、及びこの永久電流スイッチを備えた超電導マグネット装置

Also Published As

Publication number Publication date
US20160123703A1 (en) 2016-05-05
KR20160050818A (ko) 2016-05-11
US10373750B2 (en) 2019-08-06
KR101687586B1 (ko) 2016-12-19

Similar Documents

Publication Publication Date Title
WO2018194249A1 (ko) 과충전 방지 장치 및 방법
WO2021040184A1 (ko) 코일 구동 장치
WO2010087608A2 (en) Charge equalization apparatus and method for series-connected battery string
WO2020141772A1 (ko) 배터리 밸런싱 장치 및 그것을 포함하는 배터리 팩
WO2017222147A1 (ko) Dc-dc 전압 컨버터를 위한 진단 시스템
EP2701170A1 (en) Bidirectional direct current electrical switching apparatus
WO2018182105A1 (ko) 고속스위치
WO2018097652A1 (ko) Dc-dc 전압 컨버터의 진단 시스템
WO2018216954A1 (ko) 충방전 수단을 구비한 전류 계측 장치 및 이를 이용하는 전류 계측 방법
WO2018117386A1 (ko) 배터리 팩
WO2021085759A1 (ko) 무순단 전원 공급 제어 장치 및 그 전원 공급 제어 장치가 적용된 ups 모듈
WO2020080802A1 (ko) 배터리 모듈 밸런싱 장치 및 방법
WO2016068363A1 (ko) 초전도 코일을 사용한 고속 물체 부상 장치 및 그 방법
WO2018124374A1 (ko) 전기자동차 충전기의 누전차단장치
EP3858107A1 (en) Induction heating apparatus
JP2007059920A (ja) 接続可能な抵抗要素を備えた超伝導磁石構造
WO2017034144A1 (ko) 제어라인 진단 장치
WO2013100429A1 (ko) 자계소호 원리를 이용한 전력전자형 한류기
WO2010056004A2 (ko) 엘이디 조명 및 램프의 효율적 구동을 위한 전류 발란스 회로
WO2023182750A1 (ko) 유기전류세기 선택기능을 갖는 순차 독립 발전형 발전장치를 이용한 배터리 클러스터링 시스템
WO2015037874A1 (en) Thin film superconducting acceleration measuring apparatus
WO2010090368A1 (en) Superconductor switch
WO2020153609A1 (ko) 인덕턴스 가변 장치 및 이의 제어방법
WO2019132237A1 (ko) 직류 차단기
WO2021187774A1 (ko) 아크 소호 조립체 및 이를 포함하는 차단기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14904647

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14904647

Country of ref document: EP

Kind code of ref document: A1