WO2016068042A1 - Film for forming protective coat and composite sheet for forming protective coat - Google Patents

Film for forming protective coat and composite sheet for forming protective coat Download PDF

Info

Publication number
WO2016068042A1
WO2016068042A1 PCT/JP2015/079973 JP2015079973W WO2016068042A1 WO 2016068042 A1 WO2016068042 A1 WO 2016068042A1 JP 2015079973 W JP2015079973 W JP 2015079973W WO 2016068042 A1 WO2016068042 A1 WO 2016068042A1
Authority
WO
WIPO (PCT)
Prior art keywords
protective film
film
forming
sheet
forming film
Prior art date
Application number
PCT/JP2015/079973
Other languages
French (fr)
Japanese (ja)
Inventor
力也 小橋
山本 大輔
章生 加太
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to CN201580058160.4A priority Critical patent/CN107112219A/en
Priority to KR1020177011036A priority patent/KR102467143B1/en
Priority to SG11201703250YA priority patent/SG11201703250YA/en
Priority to JP2016556539A priority patent/JP6585068B2/en
Publication of WO2016068042A1 publication Critical patent/WO2016068042A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/402Coloured
    • B32B2307/4026Coloured within the layer by addition of a colorant, e.g. pigments, dyes

Definitions

  • the present invention relates to a protective film-forming film, a protective film-forming sheet, and a protective film-forming film capable of forming a protective film on a workpiece such as a semiconductor wafer or a workpiece (for example, a semiconductor chip) obtained by processing the workpiece. It relates to a composite sheet.
  • semiconductor devices have been manufactured by a mounting method called a face-down method.
  • a mounting method called a face-down method.
  • the circuit surface side of the semiconductor chip is bonded to a chip mounting portion such as a lead frame. Therefore, the back surface side of the semiconductor chip on which no circuit is formed is exposed.
  • a protective film made of a hard organic material is often formed on the back side of the semiconductor chip in order to protect the semiconductor chip.
  • This protective film is formed using, for example, a film for semiconductor back surface or a dicing tape integrated wafer back surface protective film as disclosed in Patent Document 1 or 2.
  • the protective film is generally formed of a thermosetting resin such as an epoxy resin.
  • a thermosetting resin such as an epoxy resin.
  • the curing temperature of the thermosetting resin exceeds 130 ° C. and the curing time requires about 2 hours, it has been an obstacle to improving the production efficiency. Therefore, a protective film having a curing mechanism that can shorten the processing time has been desired.
  • Patent Document 3 discloses (A) a polymer component made of an acrylic copolymer having no double bond, (B) an energy ray-curable component, (C) a dye and / or a pigment, (D An energy ray curable chip protecting film having an energy ray curable protective film forming layer comprising an inorganic filler and (E) a photopolymerization initiator that absorbs light in a long wavelength region of 350 nm or longer is disclosed. Yes. Since such an energy ray-curable film for chip protection is cured mainly by ultraviolet irradiation in a short time, a protective film can be easily formed, which can contribute to an improvement in production efficiency.
  • the component (C) used in the examples of Patent Document 3 is a black pigment, and a film for protecting a chip containing such a black pigment has a low ultraviolet transmittance. Therefore, when ultraviolet rays are irradiated to cure the chip protection film, the ultraviolet rays cannot sufficiently reach the inside of the film or the surface opposite to the ultraviolet irradiation surface, and the chip protection film is not cured. May be enough. Thus, when the film for chip protection is insufficiently cured, a problem occurs in the function as the protective film, such as the protective film obtained being easily peeled off by heat or the like.
  • grinding marks are usually left by back grinding processing applied to the semiconductor wafer. From the viewpoint of the appearance of the semiconductor chip, it is desirable that such grinding marks are not visible with the naked eye, and are preferably hidden by the protective film.
  • the present invention has been made in view of the actual situation as described above, and is capable of forming a protective film that is excellent in ultraviolet curability and that can form a protective film in which grinding marks present on a workpiece or a workpiece are not visible by visual inspection.
  • An object is to provide a film, a protective film-forming sheet, and a protective film-forming composite sheet.
  • the present invention comprises a protective film containing an ultraviolet curable component, having a light transmittance of 8% or more at a wavelength of 375 nm and a light transmittance of 12% or less at a wavelength of 550 nm.
  • a formed film is provided (Invention 1).
  • the protective film-forming film according to the above invention (Invention 1) is sufficiently cured by ultraviolet rays, and after ultraviolet curing, can form a protective film in which grinding marks present on the workpiece or workpiece are not visible.
  • a colorant may be further contained (Invention 2).
  • the colorant may be a red colorant (Invention 3).
  • the colorant may be an organic colorant (Invention 4).
  • the value W / T obtained by dividing the content W (% by mass) of the colorant in the protective film-forming film by the thickness T ( ⁇ m) of the protective film-forming film is 0.01 to 0.5 (Invention 5).
  • the probe on the ultraviolet irradiation surface The ratio P2 / P1 of the probe tack peak value P2 on the surface opposite to the ultraviolet irradiation surface with respect to the tack peak value P1 may be 0.1 to 7 (Invention 6).
  • the light transmittance at a wavelength of 1600 nm may be 25% or more (Invention 7).
  • the present invention provides a protective film-forming sheet comprising the protective film-forming film (Inventions 1 to 7) and a release sheet laminated on one or both surfaces of the protective film-forming film (Invention). 8).
  • sheet includes the concept of a tape.
  • the present invention provides a composite sheet for forming a protective film comprising a support sheet and the protective film-forming film (Inventions 1 to 7) laminated on one surface side of the support sheet (Invention 9). .
  • the said support sheet may consist of a base material and the adhesive layer laminated
  • the protective film is sufficiently cured by ultraviolet rays, and the grinding traces present on the workpiece or workpiece are not visually observed. Can be formed.
  • the protective film-forming film according to this embodiment is for forming a protective film on a workpiece or a workpiece obtained by processing the workpiece.
  • the workpiece include a semiconductor wafer, and examples of a workpiece obtained by processing the workpiece include a semiconductor chip.
  • the present invention is not limited to these.
  • the protective film is formed on the back side of the semiconductor wafer (the side on which no electrodes such as bumps are formed).
  • the protective film-forming film according to the present embodiment has a light transmittance of 8% or more at a wavelength of 375 nm and a light transmittance of 12% or less at a wavelength of 550 nm.
  • the light transmittance in this specification is a value measured using an integrating sphere, and a spectrophotometer is used as a measuring instrument.
  • the protective film-forming film according to the present embodiment contains an ultraviolet curable component.
  • an ultraviolet curable component As described above, when the light transmittance at a wavelength of 375 nm is 8% or more, ultraviolet rays are easily transmitted through the protective film-forming film, and accordingly, the ultraviolet curable components in the protective film-forming film are easily cured. Therefore, even when the protective film forming film is irradiated with ultraviolet rays from one side, the entire protective film forming film is sufficiently cured, and there is insufficient curing on the inside of the protective film forming film or on the surface opposite to the ultraviolet irradiation surface. It can prevent effectively.
  • the light transmittance at a wavelength of 375 nm of the protective film-forming film is preferably 10% or more, more preferably 13% or more, and 15% or more. Is more preferable, particularly 17% or more, and further preferably 20% or more.
  • the upper limit of the light transmittance at a wavelength of 375 nm is not particularly limited, but is naturally determined by setting the light transmittance at a wavelength of 550 nm to 12% or less.
  • the light transmittance at a wavelength of 375 nm of the protective film-forming film is preferably 35% or less.
  • grinding marks are usually left by back grinding applied to the semiconductor wafer.
  • the protective film-forming film is difficult to transmit visible light. Therefore, the above-mentioned grinding mark is concealed by the protective film forming film (protective film) and hardly visible by visual inspection. Thereby, the external appearance of workpieces, such as a semiconductor chip, will be excellent.
  • the light transmittance at a wavelength of 550 nm of the protective film-forming film is preferably 11% or less, particularly preferably 8% or less, and further preferably 5% or less. preferable.
  • the lower limit of the light transmittance at a wavelength of 550 nm is not particularly limited, but is naturally determined by setting the light transmittance at a wavelength of 375 nm to 8% or more.
  • the light transmittance at a wavelength of 375 nm of the protective film forming film is preferably 0% or more.
  • the protective film-forming film according to this embodiment preferably has a light transmittance at a wavelength of 1600 nm of 25% or more, more preferably 40% or more, and particularly preferably 45% or more. Is preferably 50% or more.
  • a crack or the like may occur due to stress generated during processing.
  • infrared transmittance is improved, and infrared rays are obtained from the protective film forming film (or the protective film formed by the protective film forming film) side. Infrared inspection can be performed. Thereby, the crack etc. in workpieces, such as a semiconductor chip, can be discovered through a protective film formation film (protective film), and a product yield can be improved.
  • the upper limit of the light transmittance of wavelength 1600nm is not specifically limited, By setting the light transmittance of wavelength 550nm to 12% or less, it will be decided naturally. Further, when using a workpiece (semiconductor chip or the like) on which a protective film is formed, the protective film-forming film has a light transmittance at a wavelength of 1600 nm of 90% or less, so that the workpiece easily affected by infrared rays from the outside can be obtained. Malfunction can be prevented.
  • the protective film-forming film according to the present embodiment may be composed of a single layer or a plurality of layers.
  • the protective film-forming film may be composed of a plurality of layers. It preferably consists of layers.
  • the protective film-forming film is composed of a plurality of layers, it is preferable that the light transmittance is satisfied as a whole of the plurality of layers from the viewpoint of easy control of the light transmittance.
  • the protective film forming film when the protective film forming film is irradiated with ultraviolet rays from one surface side, the side opposite to the ultraviolet irradiation surface with respect to the probe tack peak value P1 of the ultraviolet irradiation surface.
  • the ratio P2 / P1 of the peak value P2 of the probe tack of the surface (hereinafter sometimes referred to as “ultraviolet irradiation opposite surface”) is preferably 0.1 to 7, and particularly preferably 0.5 to 4. Preferably, it is preferably 1 to 2.
  • setting P2 / P1 to a value lower than 1 means, for example, that the protective film forming film is composed of a plurality of layers, and there are more layers than the layer forming the ultraviolet irradiation surface in the layer forming the ultraviolet irradiation opposite surface. It is possible by blending the ultraviolet curable component (A) described later.
  • the probe tack measurement method is based on JIS Z1023 1999, and is specifically as shown in the test examples described later.
  • the protective film forming film (protective film) is cured not only on the ultraviolet irradiation surface side but also on the ultraviolet irradiation opposite surface side, that is, the protective film forming film is in the thickness direction. It can be said that it is fully cured as a whole.
  • the ratio E2 / E1 of the probe tack energy value E2 on the ultraviolet irradiation opposite surface to the probe tack energy value E1 on the ultraviolet irradiation surface is 0.1 to 10. In particular, it is preferably 0.5 to 5, and more preferably 1 to 2.5.
  • setting E2 / E1 to a value lower than 1 means, for example, that the protective film-forming film is composed of a plurality of layers, and the number of layers forming the ultraviolet irradiation opposite surface is larger than the layer forming the ultraviolet irradiation surface. It is possible by blending the ultraviolet curable component (A) described later.
  • the peak value P1 of the probe tack on the ultraviolet irradiation surface is preferably 0.05 to 1.5, particularly preferably 0.1 to 1, and more preferably 0.15 to 0.75. It is preferable that The energy value E1 of the probe tack on the ultraviolet irradiation surface is preferably 0.005 to 0.3, particularly preferably 0.008 to 0.15, and more preferably 0.01 to 0.00. 1 is preferable. That the peak value P1 and / or energy value E1 of the probe tack on the ultraviolet irradiation surface is in the above range, at least the ultraviolet irradiation surface side of the protective film forming film (protective film) is cured to a high degree. Can do.
  • the protective film formation film which concerns on this embodiment contains an ultraviolet curable component (A).
  • the ultraviolet curable component (A) is preferably an uncured ultraviolet curable component, and particularly preferably an uncured ultraviolet curable component having adhesiveness.
  • Such a protective film-forming film is formed by stacking a protective film-forming film and a workpiece such as a semiconductor wafer and then curing the protective film-forming film by ultraviolet irradiation to form a durable protective film on a chip or the like. Can do. Since the said protective film formation film hardens
  • the light transmittance of the protective film-forming film hardly changes even before or after curing. Therefore, if the light transmittance at a wavelength of 375 nm of the protective film forming film before curing is 8% or more and the light transmittance at a wavelength of 550 nm is 12% or less, the wavelength of the protective film forming film (protective film) after curing is 375 nm. The light transmittance is 13% or more, and the light transmittance at a wavelength of 550 nm is 12% or less.
  • the protective film-forming film according to this embodiment preferably contains a colorant (B) in addition to the ultraviolet curable component (A).
  • a colorant (B) in addition to the ultraviolet curable component (A).
  • the protective film formation film which concerns on this embodiment contains a filler (C) together with a coloring agent (B).
  • a coloring agent B
  • the protective film formation film contains a filler, while being able to maintain the hardness of the protective film after hardening high, moisture resistance can be improved.
  • the thermal expansion coefficient of the protective film after curing can be brought close to the thermal expansion coefficient of the semiconductor wafer, thereby reducing the warpage of the semiconductor wafer during processing.
  • the protective film-forming film according to this embodiment preferably further contains a thermosetting component (D).
  • a thermosetting component (D) By heating the protective film-forming film further containing the thermosetting component (D), the adhesive strength of the protective film-forming film to the work and the strength of the cured protective film can be improved.
  • a protective film formation film contains an ultraviolet curable component (A) and a coloring agent (B)
  • the sum total of the ratio of an ultraviolet curable component (A) and the ratio of a coloring agent (B) will be 100 mass%.
  • the ratio of the ultraviolet curable component (A) and the ratio of the colorant (B) are set.
  • the protective film-forming film contains an ultraviolet curable component (A), a colorant (B) and a filler (C)
  • the proportion of the ultraviolet curable component (A), the proportion of the colorant (B) and the filler is set so that the total ratio of C) is 100% by mass.
  • the protective film-forming film contains an ultraviolet curable component (A), a colorant (B), a filler (C), and a thermosetting component (D), the ratio of the ultraviolet curable component (A) and the colorant (B) UV curable component (A), colorant (B), filler (C), and thermosetting so that the total of the proportion of the filler, the proportion of filler (C) and the thermosetting component (D) is 100% by mass.
  • the proportion of component (D) is set.
  • the ultraviolet curable component (A) may be a polymer (A1) having an ultraviolet curable group introduced, or an ultraviolet curable compound (A3) excluding the polymer (A1) having an ultraviolet curable group introduced. ) May be contained.
  • the ultraviolet curable component (A) in this embodiment contains an ultraviolet curable compound (A3), it is preferable to also contain a polymer such as a polymer (A2) that does not have ultraviolet curable properties.
  • the term “polymer” includes the concept of “copolymer”.
  • the polymer (A1) may be contained as it is in the protective film-forming film.
  • at least a part thereof may be contained as a crosslinked product by performing a crosslinking reaction with a crosslinking agent.
  • Examples of the polymer (A1) introduced with an ultraviolet curable group include a functional group-containing acrylic polymer (A1-1) containing a functional group-containing monomer containing a functional group as a constituent, and the functional group Examples thereof include an acrylic polymer which is a reaction product of a reactive group and a curable group-containing compound (A1-2) having an ultraviolet curable carbon-carbon double bond.
  • the functional group-containing acrylic polymer (A1-1) is a copolymerization reaction product of an acrylic monomer containing a functional group, an acrylic monomer not containing a functional group, and, if desired, a monomer other than the acrylic monomer. It is preferable. That is, the functional group-containing monomer is preferably an acrylic monomer containing a functional group.
  • the term “polymer” or “resin” or the like used for a substance in which a monomer is polymerized is a “polymer” composed of structural units derived from the monomer (also referred to as repeating units) or It means “resin” or the like.
  • the functional group of the acrylic monomer containing a functional group (functional group of the functional group-containing monomer), one that can react with the substituent of the curable group-containing compound (A1-2) is selected.
  • a functional group include a hydroxy group, a carboxy group, an amino group, a substituted amino group, and an epoxy group, and among them, a hydroxy group is preferable.
  • the ultraviolet curable component (A) in the present embodiment contains a crosslinking agent
  • the functional group-containing acrylic polymer (A1-1) contains a functional group having a functional group that reacts with the crosslinking agent. It is preferable to contain a monomer as a constituent component, and the functional group-containing monomer may also serve as a functional group-containing monomer having a functional group capable of reacting with the substituent of the curable group-containing compound.
  • acrylic monomer containing a hydroxy group examples include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, ( And (meth) acrylic acid hydroxyalkyl esters such as 2-hydroxybutyl (meth) acrylate, 3-hydroxybutyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate.
  • 2-hydroxyethyl (meth) acrylate is preferable from the viewpoint of reactivity with the curable group-containing compound (A1-2). These may be used alone or in combination of two or more.
  • the acrylic monomer that does not contain a functional group preferably contains a (meth) acrylic acid alkyl ester monomer.
  • (meth) acrylic acid alkyl ester monomers include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, and (meth) acrylic acid n- Pentyl, n-hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isooctyl (meth) acrylate, n-decyl (meth) acrylate, lauryl (meth) acrylate, myristyl (meth) acrylate, Examples include palmityl (meth) acrylate and stearyl (meth) acrylate.
  • (meth) acrylic acid alkyl ester monomers those having 1 to 18 carbon atoms in the alkyl group are preferable, and those having 1 to 4 carbon atoms are particularly preferable. These may be used alone or in combination of two or more.
  • acrylic monomers not containing functional groups include, for example, methoxymethyl (meth) acrylate, methoxyethyl (meth) acrylate, ethoxymethyl (meth) acrylate, ( Non-crosslinkable acrylamides such as (meth) acrylic acid esters containing alkenyl groups such as ethoxyethyl (meth) acrylate and aromatic rings such as phenyl (meth) acrylate, acrylamide and methacrylamide (Meth) acrylic acid ester having a non-crosslinking tertiary amino group such as N, N-dimethylaminoethyl (meth) acrylate and N, N-dimethylaminopropyl (meth) acrylate may also be included.
  • Non-crosslinkable acrylamides such as (meth) acrylic acid esters containing alkenyl groups such as ethoxyethyl (meth) acrylate and aromatic rings such as phenyl (meth) acryl
  • monomers other than acrylic monomers include olefins such as ethylene and norbornene, vinyl acetate, and styrene.
  • the proportion of the mass of the structural portion derived from the functional group-containing monomer in the total mass of the functional group-containing acrylic polymer (A1-1) is 0.1-50.
  • the content is preferably 1% by mass, particularly preferably 1 to 40% by mass, and further preferably 3 to 30% by mass.
  • the functional group-containing acrylic polymer (A1-1) can be obtained by copolymerizing the above monomers by a conventional method.
  • the polymerization mode of the functional group-containing acrylic polymer (A1-1) may be a random copolymer or a block copolymer.
  • the curable group-containing compound (A1-2) has a substituent that reacts with the functional group of the functional group-containing acrylic polymer (A1-1) and an ultraviolet curable carbon-carbon double bond.
  • substituent that reacts with the functional group of the functional group-containing acrylic polymer (A1-1) include an isocyanate group, an epoxy group, and a carboxy group. Among them, an isocyanate group that is highly reactive with a hydroxy group. Is preferred.
  • the curable group-containing compound (A1-2) preferably contains 1 to 5 ultraviolet curable carbon-carbon double bonds per molecule of the curable group-containing compound (A1-2), particularly 1 to It is preferable to include two.
  • curable group-containing compound (A1-2) examples include 2-methacryloyloxyethyl isocyanate, meta-isopropenyl- ⁇ , ⁇ -dimethylbenzyl isocyanate, methacryloyl isocyanate, allyl isocyanate, 1,1-bis ( Acryloyloxymethyl) ethyl isocyanate; acryloyl monoisocyanate compound obtained by reaction of diisocyanate compound or polyisocyanate compound with hydroxyethyl (meth) acrylate; diisocyanate compound or polyisocyanate compound, polyol compound, and hydroxyethyl (meth) acrylate And an acryloyl monoisocyanate compound obtained by the reaction.
  • 2-methacryloyloxyethyl isocyanate is particularly preferable.
  • the curable group-containing compound (A1-2) one kind can be used alone, or two or more kinds can be used in combination.
  • the polymer (A1) into which the ultraviolet curable group has been introduced has a curable group derived from the curable group-containing compound (A1-2) as a functional group (curable group-containing compound (A1)). It is preferably contained in an amount of 20 to 120 mol%, particularly preferably 35 to 100 mol%, more preferably 50 to 100 mol%, based on the functional group reacting with the substituent of A1-2). Is preferred.
  • the curable group-containing compound (A1-2) is monofunctional, the upper limit is 100 mol%, but when the curable group-containing compound (A1-2) is polyfunctional, it exceeds 100 mol%.
  • the ratio of the curable group to the functional group is within the above range, the adhesive strength of the protective film after UV curing can be made extremely excellent.
  • the weight average molecular weight (Mw) of the polymer (A1) having an ultraviolet curable group introduced is preferably 100,000 to 2,000,000, and more preferably 300,000 to 1,500,000.
  • the weight average molecular weight in this specification is the value of standard polystyrene conversion measured by the gel permeation chromatography (GPC) method.
  • the ultraviolet curable component (A) in this embodiment contains a polymer (A2) that does not have ultraviolet curable properties
  • the polymer (A2) may be contained as it is in the protective film-forming film, At least a part thereof may be contained as a crosslinked product by performing a crosslinking reaction with a crosslinking agent.
  • the polymer (A2) include phenoxy resin, acrylic polymer (A2-1), urethane resin, polyester resin, rubber resin, acrylic urethane resin, and the like. Of these, the case of using the acrylic polymer (A2-1) will be described in detail.
  • a conventionally known acrylic polymer can be used as the acrylic polymer (A2-1).
  • the acrylic polymer (A2-1) may be a homopolymer formed from one type of acrylic monomer, or may be a copolymer formed from a plurality of types of acrylic monomers. It may be a copolymer formed from one or more types of acrylic monomers and monomers other than acrylic monomers.
  • Specific types of the compound that becomes the acrylic monomer are not particularly limited, and specific examples include (meth) acrylic acid, (meth) acrylic acid ester, and derivatives thereof (acrylonitrile, itaconic acid, and the like).
  • (meth) acrylic acid esters include chain skeletons such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate.
  • Cyclic skeletons such as cyclohexyl (meth) acrylate, benzyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, and imide acrylate (Meth) acrylate having a hydroxy group such as 2-hydroxyethyl (meth) acrylate and 2-hydroxypropyl (meth) acrylate; glycidyl (meth) acrylate, N-methyl Having a reactive functional group other than hydroxy group, such as Minoechiru (meth) acrylate (meth) acrylate.
  • monomers other than acrylic monomers include olefins such as ethylene and norbornene, vinyl acetate, and styrene.
  • the acrylic monomer is an alkyl (meth) acrylate, the alkyl group preferably has 1 to 18 carbon atoms.
  • the acrylic polymer (A2-1) preferably has a reactive functional group that reacts with the crosslinking agent.
  • the type of the reactive functional group is not particularly limited, and may be appropriately determined based on the type of the crosslinking agent.
  • examples of the reactive functional group possessed by the acrylic polymer (A2-1) include a hydroxy group, a carboxy group, and an amino group. A highly functional hydroxy group is preferred.
  • examples of the reactive functional group possessed by the acrylic polymer (A2-1) include a carboxy group, an amino group, an amide group, and the like. A highly functional carboxy group is preferred.
  • the carboxy group is preferably 12 wt% or less based on the entire reactive functional group of the acrylic polymer (A2-1).
  • the method for introducing the reactive functional group into the acrylic polymer (A2-1) is not particularly limited.
  • the acrylic polymer (A2-1) is formed using a monomer having a reactive functional group, Examples thereof include a method in which a structural unit based on a monomer having a reactive functional group is contained in the polymer skeleton.
  • the acrylic polymer (A2-1) may be formed using a monomer having a hydroxy group such as 2-hydroxyethyl acrylate.
  • the reactive functional group occupies the total mass of the acrylic polymer (A2-1) from the viewpoint of making the degree of crosslinking in a favorable range.
  • the proportion of the mass of the structural portion derived from the monomer having the above is preferably about 1 to 20% by mass, and more preferably 2 to 10% by mass.
  • the weight average molecular weight (Mw) of the acrylic polymer (A2-1) is preferably 10,000 to 2,000,000, more preferably 100,000 to 1,500,000 from the viewpoint of film forming properties at the time of coating. .
  • the ultraviolet curable component (A) may contain an ultraviolet curable compound (A3) excluding the polymer (A1) into which an ultraviolet curable group is introduced. It is preferable to contain the polymer (A2) that is not included. Moreover, it may replace with the polymer (A2) which does not have ultraviolet curing property, or may contain the polymer (A1) by which the ultraviolet curing group was introduce
  • the ultraviolet curable compound (A3) is a compound having an ultraviolet curable group and polymerized when irradiated with ultraviolet rays.
  • the ultraviolet curable group possessed by the ultraviolet curable compound (A3) is, for example, a group containing an ultraviolet curable carbon-carbon double bond, and examples thereof include a (meth) acryloyl group and a vinyl group. Can do.
  • an ultraviolet curable compound (A3) if it has said ultraviolet curable group, From a versatility viewpoint, it is a low molecular weight compound (monofunctional and polyfunctional monomer and oligomer). It is preferable.
  • the low molecular weight ultraviolet curable compound (A3) include trimethylolpropane triacrylate, tetramethylolmethane tetraacrylate, pentaerythritol triacrylate, dipentaerythritol monohydroxypentaacrylate, dipentaerythritol hexaacrylate, and 1,4 -Cyclic aliphatic skeleton-containing acrylates such as butylene glycol diacrylate, 1,6-hexanediol diacrylate, dicyclopentadiene dimethoxydiacrylate, isobornyl acrylate, polyethylene glycol diacrylate, oligoester acrylate, urethane acrylate oligomer, epoxy-modified Acrylate compounds such as acrylate, polyether acrylate, itaconic acid oligomers It is below.
  • examples of the ultraviolet curable compound (A3) include an epoxy resin having an ultraviolet curable group and a phenol resin having an ultraviolet curable group.
  • a resin for example, those described in JP 2013-194102 A can be used.
  • Such a resin corresponds to a resin constituting the thermosetting component (C) described later, but also contributes to ultraviolet curing, and is therefore treated as an ultraviolet curable compound (A) in the present invention.
  • the UV curable compound (A3) usually has a molecular weight of about 100 to 30,000, preferably about 300 to 10,000.
  • the ultraviolet curable compound (A3) is used in a proportion of about 10 to 400 parts by weight, preferably about 30 to 350 parts by weight with respect to 100 parts by weight of the total amount of the polymer (A1) and the polymer (A2). It is done.
  • the protective film-forming film according to this embodiment preferably contains 5 to 89% by mass of the ultraviolet curable component (A), particularly preferably 10 to 80% by mass, based on the mass of the protective film-forming film. Further, it is preferable to contain 20 to 70% by mass. When the content of the ultraviolet curable component (A) is within the above range, it can be sufficiently cured by ultraviolet irradiation.
  • the colorant (B) for example, known pigments such as inorganic pigments, organic pigments, and organic dyes can be used. From the viewpoint of improving the light transmittance, the colorant (B) is An organic colorant is preferred.
  • the characteristics of the protective film-forming film according to this embodiment or the preferable characteristics of the protective film-forming film according to this embodiment are that the light transmittance at a wavelength of 375 nm is 8% or more and the light transmittance at a wavelength of 550 nm. The characteristic is that the light transmittance is lower in a certain wavelength region than in a lower wavelength region, such as a rate of 12% or less.
  • the protective film-forming film according to this embodiment contains only an inorganic colorant, it is not always easy to impart the above properties to the protective film-forming film according to this embodiment.
  • the protective film-forming film according to this embodiment contains an organic colorant, the protective film-forming film according to this embodiment can easily satisfy the above-described characteristics. .
  • the colorant (B) is a pigment.
  • the colorant (B) contained in the protective film-forming film according to the present embodiment is preferably composed of an organic pigment.
  • the coloring agent (B) which the protective film formation film which concerns on this embodiment contains may be comprised from multiple types of material.
  • organic pigments and organic dyes that are organic colorants include aminium dyes, cyanine dyes, merocyanine dyes, croconium dyes, squalium dyes, azurenium dyes, polymethine dyes, and naphthoquinone dyes.
  • inorganic pigments include carbon black, cobalt dyes, iron dyes, chromium dyes, titanium dyes, vanadium dyes, zirconium dyes, molybdenum dyes, ruthenium dyes, platinum dyes, ITO (indium) Tin oxide) dyes, ATO (antimony tin oxide) dyes, and the like.
  • the colorant (B) in the protective film-forming film according to the present embodiment may be composed of an organic colorant and an inorganic colorant.
  • the protective film-forming film according to this embodiment contains a red colorant.
  • the light transmittance at a wavelength of 375 nm and a wavelength of 550 nm (more preferably, a wavelength of 1600 nm) can be more easily controlled within the above-described range.
  • the red colorant may be a pigment or a dye. Examples of the red colorant include monoazo, diazo, azo lake, benzimidazolone, perylene, diketopyrrolopyrrole, condensed azo, anthraquinone, quinacridone, and the like. These can be used individually by 1 type or in mixture of 2 or more types.
  • diketopyrrolopyrrole red colorants are preferred. According to such a red colorant, the light transmittance at a wavelength of 375 nm and a wavelength of 550 nm can be easily controlled within the above-described range.
  • the content of the colorant (B) in the protective film-forming film is preferably determined according to the thickness of the protective film-forming film so that the light transmittance is in the range described above. Specifically, a value W / T obtained by dividing the content W (% by mass with respect to the total mass of the protective film forming film) of the colorant (B) in the protective film forming film by the thickness T ( ⁇ m) of the protective film forming film. However, it is preferably 0.01 to 0.5, particularly preferably 0.03 to 0.3, and more preferably 0.05 to 0.25.
  • W / T When W / T is 0.5 or more, it is easy to control the light transmittance at a wavelength of 550 nm to 12% or less, and when W / T is 0.01 or less, the light transmittance at a wavelength of 375 nm is set to 13% or more. Easy to control.
  • filler (C) examples include silica such as crystalline silica, fused silica and synthetic silica, and inorganic filler such as alumina and glass balloon. Among these, silica is preferable, synthetic silica is more preferable, and synthetic silica of the type in which ⁇ -ray sources that cause malfunction of the semiconductor device are removed as much as possible is optimal.
  • shape of the filler (C) examples include a spherical shape, a needle shape, and an indefinite shape, but a spherical shape is preferable, and a true spherical shape is particularly preferable.
  • the irregular shape means a shape having an irregular surface shape.
  • the irregular surface may be multifaceted or a single curved surface.
  • each surface may be a flat surface or a curved surface, or these may be mixed.
  • the surface is multifaceted, the area of each face may be different.
  • the surface shape may have a protruding shape or may have a concave shape.
  • a functional filler may be blended in the protective film-forming film.
  • a conductive filler in which gold, silver, copper, nickel, aluminum, stainless steel, carbon, ceramic, nickel, aluminum, or the like is coated with silver for the purpose of imparting conductivity after die bonding.
  • metal materials such as gold, silver, copper, nickel, aluminum, magnesium, stainless steel, silicon, germanium and their alloys, oxides, nitrides, hydroxides, etc. Examples include thermally conductive fillers such as boron nitride.
  • the average particle size of the filler (C) is preferably 0.01 to 10 ⁇ m, more preferably 0.01 to 3 ⁇ m, and particularly preferably 0.03 to 2 ⁇ m. Furthermore, it is preferably 0.05 to 1 ⁇ m.
  • the average particle size of the filler (C) is 0.01 ⁇ m or more, it is easy to control the light transmittance at a wavelength of 550 nm to 13% or less so that grinding marks on a semiconductor chip or the like cannot be visually observed.
  • the surface state of a protective film formation film can be favorably maintained as the average particle diameter of a filler (C) is 10 micrometers or less. Further, when the average particle diameter of the filler (C) is 3 ⁇ m or less, infrared reflection can be suppressed and infrared inspection can be performed satisfactorily.
  • the average particle size of the filler (C) of less than 1 ⁇ m in the present specification is a value measured by a dynamic light scattering method using a particle size distribution measuring device (Nikkiso Co., Ltd., Nanotrack Wave-UT151). .
  • the average particle size of 1 ⁇ m or more of the filler (C) is a value measured by a laser diffraction / scattering method using a particle size distribution measuring device (manufactured by Nikkiso Co., Ltd., Microtrac MT3000II).
  • the content of the filler (C) (particularly silica filler) in the protective film-forming film is preferably 10 to 80% by mass, particularly 20 to 70% by mass, based on the mass of the protective film-forming film. More preferably, the content is 30 to 65% by mass.
  • the blending amount of the filler is 10% by mass or more, it is easy to control the light transmittance at a wavelength of 550 nm to 13% or less so that grinding marks on a semiconductor chip or the like cannot be visually observed.
  • the blending amount of the filler (C) is 80% by mass or less, the protective film-forming film can be sufficiently cured by ultraviolet irradiation.
  • thermosetting component (D) examples include epoxy resins, phenol resins, melamine resins, urea resins, polyester resins, urethane resins, acrylic resins, polyimide resins, benzoxazine resins, and mixtures thereof.
  • an epoxy resin, a phenol resin, and a mixture thereof are preferably used.
  • Epoxy resin has the property of forming a three-dimensional network and forming a strong film when heated.
  • an epoxy resin conventionally known various epoxy resins are used, and those having a molecular weight of about 300 to 2000 are usually preferred, and those having a molecular weight of 300 to 500 are particularly preferred. Further, it is preferably used in a form in which a normal and liquid epoxy resin having a molecular weight of 330 to 400 is blended with a solid epoxy resin having a molecular weight of 400 to 2500, particularly 500 to 2000 at room temperature.
  • the epoxy equivalent of the epoxy resin is preferably 50 to 5000 g / eq.
  • epoxy resins include glycidyl ethers of phenols such as bisphenol A, bisphenol F, resorcinol, phenyl novolac, and cresol novolac; glycidyl ethers of alcohols such as butanediol, polyethylene glycol, and polypropylene glycol; Glycidyl ethers of carboxylic acids such as phthalic acid, isophthalic acid, tetrahydrophthalic acid; glycidyl type or alkyl glycidyl type epoxy resins in which active hydrogen bonded to nitrogen atom such as aniline isocyanurate is substituted with glycidyl group; vinylcyclohexane diepoxide; 3,4-epoxycyclohexylmethyl-3,4-dicyclohexanecarboxylate, 2- (3,4-epoxy) cyclohexyl-5,5-spiro (3,4 As such epoxy) cyclohexane
  • bisphenol-based glycidyl type epoxy resins o-cresol novolac type epoxy resins and phenol novolac type epoxy resins are preferably used.
  • These epoxy resins can be used alone or in combination of two or more.
  • thermally activated latent epoxy resin curing agent is a type of curing agent that does not react with the epoxy resin at room temperature but is activated by heating at a certain temperature or more and reacts with the epoxy resin.
  • the heat activated latent epoxy resin curing agent is activated by a method in which active species (anions and cations) are generated by a chemical reaction by heating; the epoxy resin is stably dispersed in the epoxy resin at around room temperature and is heated at a high temperature.
  • thermally active latent epoxy resin curing agent examples include various onium salts, dibasic acid dihydrazide compounds, dicyandiamide, amine adduct curing agents, high melting point active hydrogen compounds such as imidazole compounds, and the like. These thermally activated latent epoxy resin curing agents can be used singly or in combination of two or more.
  • the heat-activatable latent epoxy resin curing agent as described above is preferably 0.1 to 20 parts by weight, particularly preferably 0.2 to 10 parts by weight, and still more preferably 0.8 to 100 parts by weight of the epoxy resin. It is used at a ratio of 3 to 5 parts by weight.
  • phenolic resin a condensate of phenols such as alkylphenol, polyhydric phenol, naphthol and aldehydes is used without any particular limitation.
  • phenol novolak resin, o-cresol novolak resin, p-cresol novolak resin, t-butylphenol novolak resin, dicyclopentadiene cresol resin, polyparavinylphenol resin, bisphenol A type novolak resin, or modified products thereof Etc. are used.
  • the phenolic hydroxyl group contained in these phenolic resins can easily undergo an addition reaction with the epoxy group of the above epoxy resin by heating to form a cured product having high impact resistance. For this reason, you may use together an epoxy resin and a phenol-type resin.
  • the content of the thermosetting component (D) in the protective film-forming film is preferably 1 to 85% by weight, particularly preferably 2 to 75% by weight, based on the weight of the protective film-forming film. Further, it is preferably 5 to 70% by mass.
  • the content of the thermosetting component (D) is within the above-mentioned range, so that the effect of adhering the protective film-forming film to the work by thermosetting and the strength of the cured protective film can be obtained without interfering with the ultraviolet curing property. Can be improved.
  • the protective film formation film which concerns on this embodiment may contain a photoinitiator.
  • a photopolymerization initiator By containing a photopolymerization initiator, the curing time and the amount of light irradiation of the ultraviolet curable component (A) can be reduced.
  • the photopolymerization initiator is preferably 0.1 to 15% by mass with respect to the mass of the ultraviolet curable component (A).
  • the photopolymerization initiator include benzophenone, acetophenone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, methyl benzoin benzoate, benzoin dimethyl ketal, 2,4 -Diethylthioxanthone, 1-hydroxycyclohexyl phenyl ketone, benzyldiphenyl sulfide, tetramethylthiuram monosulfide, azobisisobutyronitrile, benzyl, dibenzyl, diacetyl, ⁇ -chloranthraquinone, (2,4,6-trimethyl Benzyldiphenyl) phosphine oxide, 2-benzothiazole-N, N-diethyldithiocarbamate, oligo ⁇ 2-hydroxy-2-methyl- - [4-trimethyl
  • the protective film-forming film according to this embodiment may contain a chain transfer agent.
  • a chain transfer agent By containing the chain transfer agent, an effect that ultraviolet curing easily proceeds inside the protective film-forming film in the thickness direction is expected.
  • the chain transfer agent for example, those described in JP2012-207179A can be used.
  • the protective film-forming film according to this embodiment may contain a coupling agent.
  • a coupling agent By containing the coupling agent, after curing of the protective film-forming film, the adhesiveness and adhesion between the protective film and the workpiece can be improved without impairing the heat resistance of the protective film, and water resistance ( (Moisture and heat resistance) can be improved.
  • the coupling agent a silane coupling agent is preferable because of its versatility and cost merit.
  • silane coupling agent examples include ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ - (methacryloxy).
  • the protective film-forming film according to this embodiment may contain a crosslinking agent such as an organic polyvalent isocyanate compound, an organic polyvalent imine compound, and an organometallic chelate compound in order to adjust the cohesive force before curing. Further, the protective film-forming film may contain an antistatic agent in order to suppress static electricity and improve the reliability of the chip. Furthermore, the protective film-forming film may contain a flame retardant such as a phosphoric acid compound, a bromine compound, or a phosphorus compound in order to enhance the flame retardance performance of the protective film and improve the reliability as a package.
  • a crosslinking agent such as an organic polyvalent isocyanate compound, an organic polyvalent imine compound, and an organometallic chelate compound in order to adjust the cohesive force before curing.
  • the protective film-forming film may contain an antistatic agent in order to suppress static electricity and improve the reliability of the chip.
  • the protective film-forming film may contain a flame retardant such as a phosphoric acid compound, a bromine compound
  • the thickness of the protective film-forming film is preferably 3 to 300 ⁇ m, particularly preferably 5 to 200 ⁇ m, more preferably 7 to 100 ⁇ m, in order to effectively exert the function as a protective film.
  • the thickness of a protective film formation film is the value represented by the average which measured thickness with the contact-type thickness meter in arbitrary five places of a protective film formation film.
  • FIG. 1 is a cross-sectional view of a protective film forming sheet according to an embodiment of the present invention.
  • the protective film-forming sheet 2 according to this embodiment includes a protective film-forming film 1 and a release layer laminated on one surface (the lower surface in FIG. 1) of the protective film-forming film 1. And a sheet 21.
  • the release sheet 21 is peeled off when the protective film forming sheet 2 is used.
  • the release sheet 21 protects the protective film-forming film 1 until the protective film-forming sheet 2 is used, and is not necessarily required.
  • the configuration of the release sheet 21 is arbitrary, and examples thereof include a plastic film in which the film itself is peelable from the protective film-forming film 1 and a film obtained by peeling the plastic film with a release agent or the like.
  • Specific examples of the plastic film include polyester films such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate, and polyolefin films such as polypropylene and polyethylene.
  • the release agent silicone-based, fluorine-based, long-chain alkyl-based, and the like can be used, and among these, a silicone-based material that is inexpensive and provides stable performance is preferable.
  • the thickness of the release sheet 21 is not particularly limited, but is usually about 20 to 250 ⁇ m.
  • the release sheet 21 as described above may also be laminated on the other surface (the upper surface in FIG. 1) of the protective film forming film 1. That is, the protective film forming film 1 may be sandwiched between the first release sheet 21 and the second release sheet 21. In this case, it is preferable that the release force of one release sheet 21 is increased to obtain a heavy release release sheet, and the release force of the other release sheet 21 is reduced to provide a light release release sheet.
  • the release surface of the release sheet 21 (a surface having peelability; usually a surface subjected to a release treatment, but is not limited thereto).
  • a protective film forming film 1 is formed. Specifically, a coating agent for a protective film-forming film containing a curable adhesive constituting the protective film-forming film 1 and, if desired, further a solvent is prepared, and a roll coater, a knife coater, a roll knife coater, an air knife
  • the protective film-forming film 1 is formed by applying to the release surface of the release sheet 21 with a coating machine such as a coater, die coater, bar coater, gravure coater, curtain coater, and drying.
  • the protective film forming film 1 of the protective film forming sheet 2 is attached to the back surface of the semiconductor wafer having a circuit formed on the front surface and subjected to back grinding. At this time, if desired, the protective film-forming film 1 may be heated to exhibit adhesiveness.
  • the release sheet 21 is peeled from the protective film forming film 1.
  • the protective film forming film 1 is irradiated with ultraviolet rays, the protective film forming film 1 is cured to form a protective film, and a semiconductor wafer with a protective film is obtained.
  • the protective film-forming film 1 may be heated before or after the ultraviolet irradiation.
  • the protective film-forming film 1 is excellent in ultraviolet curability when the light transmittance at a wavelength of 375 nm is 8% or more, the film is sufficiently cured as a whole by the above-described ultraviolet irradiation. Irradiation of the ultraviolet to the protection film forming film 1 is preferably 50 ⁇ 1000mJ / cm 2 in quantity, especially 100 ⁇ 500mJ / cm 2 preferably.
  • the protective film is irradiated with laser light as desired to perform laser printing. In addition, you may perform this laser printing before hardening of the protective film formation film 1.
  • the semiconductor wafer with a protective film is diced according to a conventional method to obtain a chip having a protective film (chip with a protective film). Thereafter, if necessary, the dicing sheet is expanded in the plane direction, and a chip with a protective film is picked up from the dicing sheet.
  • the protective film forming film 1 (protective film) has a light transmittance of 12% or less at a wavelength of 550 nm, so that grinding marks due to back grinding are concealed by the protective film. Since it cannot be seen visually, it has an excellent appearance.
  • the infrared light transmittance in the protective film forming film 1 is improved, and the chip with the protective film and the protective film are protected.
  • the semiconductor wafer with a film can be subjected to infrared inspection through a protective film. Therefore, cracks and the like can be found by infrared inspection, and the product yield can be improved.
  • the infrared inspection is an inspection performed using infrared rays, and by acquiring infrared rays from a workpiece such as a semiconductor wafer with a protective film or a workpiece such as a chip with a protective film through the protective film. It can be carried out.
  • the wavelength of the infrared rays to be obtained is usually 800 to 2800 nm, preferably 1100 to 2100 nm.
  • an infrared inspection apparatus a known apparatus such as an infrared camera or an infrared microscope can be used.
  • FIG. 2 is a cross-sectional view of a protective film-forming composite sheet according to an embodiment of the present invention.
  • the protective film-forming composite sheet 3 includes a support sheet 4 in which an adhesive layer 42 is laminated on one surface of a substrate 41, and an adhesive layer of the support sheet 4.
  • the protective film forming film 1 laminated on the 42 side and the jig adhesive layer 5 laminated on the peripheral edge of the protective film forming film 1 opposite to the support sheet 4 are configured.
  • the composite sheet 3 for forming the protective film includes the base material 41, the adhesive layer 42 on the base material 41, the protective film forming film 1 on the adhesive layer 42, and the jig on the protective film forming film 1.
  • the jig pressure-sensitive adhesive layer 5 is located at the peripheral edge of the protective film-forming film 1 when viewed from the normal direction of the surface of the protective film-forming film 1.
  • the jig pressure-sensitive adhesive layer 5 is a layer for bonding the protective film-forming composite sheet 3 to a jig such as a ring frame.
  • the composite sheet 3 for forming a protective film according to the present embodiment is attached to the workpiece and holds the workpiece, and the protective film is formed on the workpiece or a workpiece obtained by processing the workpiece.
  • This protective film is composed of a protective film-forming film 1, preferably a cured protective film-forming film 1.
  • the composite sheet 3 for forming a protective film according to the present embodiment is used to hold a semiconductor wafer during dicing processing of a semiconductor wafer as a workpiece and to form a protective film on a semiconductor chip obtained by dicing.
  • the present invention is not limited to this.
  • the support sheet 4 of the protective film-forming composite sheet 3 is usually referred to as a dicing sheet.
  • the support sheet 4 of the protective film-forming composite sheet 3 according to the present embodiment may include a base material 41 and an adhesive layer 42 laminated on one surface of the base material 41.
  • the support sheet 4 is preferably composed only of the base material 41.
  • the protective film-forming film 1 of the present embodiment is cured by ultraviolet irradiation, it becomes easy to pick up the chip with the protective film from the support sheet 4 in an example of a method for using the protective film-forming composite sheet described below.
  • the support sheet 4 consists only of the base material 41, the primer layer, the antistatic layer, the heat-resistant layer, the stress relaxation layer, etc. may be provided in the base material 41.
  • the base material 41 of the support sheet 4 is not particularly limited as long as the base material 41 is suitable for workpiece processing, for example, dicing and expanding of a semiconductor wafer.
  • a resin-based material is the main material. It is comprised from a film (henceforth "resin film").
  • resin films include polyethylene films such as low density polyethylene (LDPE) films, linear low density polyethylene (LLDPE) films, and high density polyethylene (HDPE) films, polypropylene films, polybutene films, polybutadiene films, and polymethylpentene films.
  • LDPE low density polyethylene
  • LLDPE linear low density polyethylene
  • HDPE high density polyethylene
  • Polyolefin films such as ethylene-norbornene copolymer film and norbornene resin film; ethylene-vinyl acetate copolymer film, ethylene- (meth) acrylic acid copolymer film, ethylene- (meth) acrylic acid ester copolymer
  • Ethylene copolymer films such as films; Polyvinyl chloride films such as polyvinyl chloride films and vinyl chloride copolymer films; Polyethylene terephthalate films, Polybutylene films Polyester film such as terephthalate film; polyurethane film; polyimide film; polystyrene films; polycarbonate films; and fluorine resin film. Further, modified films such as these crosslinked films and ionomer films are also used.
  • the substrate 41 may be a film made of one of these, or may be a laminated film in which two or more of these are combined.
  • (meth) acrylic acid in the present specification means both acrylic acid and methacrylic acid. The same applies to other similar terms.
  • polyolefin films are preferable from the viewpoints of environmental safety, cost, and the like.
  • the resin film may be subjected to a surface treatment such as an oxidation method or a concavo-convex method or a primer treatment on one or both sides as desired for the purpose of improving the adhesion with the pressure-sensitive adhesive layer 42 laminated on the surface.
  • a surface treatment such as an oxidation method or a concavo-convex method or a primer treatment on one or both sides as desired for the purpose of improving the adhesion with the pressure-sensitive adhesive layer 42 laminated on the surface.
  • a surface treatment such as an oxidation method or a concavo-convex method or a primer treatment on one or both sides as desired for the purpose of improving the adhesion with the pressure-sensitive adhesive layer 42 laminated on the surface.
  • the oxidation method include corona discharge treatment, plasma discharge treatment, chromium oxidation treatment (wet), flame treatment, hot air treatment, ozone, ultraviolet irradiation treatment, and the like.
  • a thermal spraying method include a thermal spraying method.
  • the base material 41 may contain various additives such as a colorant, a flame retardant, a plasticizer, an antistatic agent, a lubricant, and a filler in the resin film.
  • the thickness of the base material 41 is not particularly limited as long as it can function properly in each process in which the protective film-forming composite sheet 3 is used.
  • the range is preferably 20 to 450 ⁇ m, more preferably 25 to 400 ⁇ m, and particularly preferably 50 to 350 ⁇ m.
  • the thickness of the base material 41 is a value represented by an average obtained by measuring the thickness of the base material 41 with a contact-type thickness meter at any five locations. *
  • the elongation at break of the base material 41 of the support sheet 4 in this embodiment is preferably 100% or more as a value measured at 23 ° C. and a relative humidity of 50%, particularly preferably 200 to 1000%.
  • the elongation at break is the elongation relative to the original length of the test piece at the time of breaking the test piece in a tensile test according to JIS K7161: 1994 (ISO 527-1 1993).
  • the base material 41 having a breaking elongation of 100% or more is not easily broken during the expanding process, and the chips formed by cutting the workpiece can be easily separated.
  • the tensile stress at 25% strain of the base material 41 of the support sheet 4 in this embodiment is preferably 5 to 15 N / 10 mm, and the maximum tensile stress is preferably 15 to 50 MPa.
  • the tensile stress at 25% strain and the maximum tensile stress are measured by a test based on JIS K7161: 1994.
  • the base material 2 is loosened when the workpiece is bonded to the dicing sheet 1 and then fixed to a frame such as a ring frame. Generation
  • production is suppressed and it can prevent that a conveyance error arises.
  • the dicing sheet 1 itself is prevented from peeling off from the ring frame during the expanding process.
  • the elongation at break, the tensile stress at 25% strain, and the maximum tensile stress are values measured in the longitudinal direction of the original fabric in the base material 41.
  • the pressure-sensitive adhesive layer 42 provided in the support sheet 4 of the protective film-forming composite sheet 3 according to the present embodiment is a type of pressure-sensitive adhesive that is not cured by ultraviolet rays (ultraviolet non-curable adhesive) or a type that is cured by ultraviolet rays. It is preferable to be comprised from the adhesive which hardened the adhesive previously.
  • the adhesive In the case of a pressure-sensitive adhesive that is cured in advance with ultraviolet rays (ultraviolet-curable adhesive), when the protective film-forming film 1 is cured, when the protective film-forming composite sheet 3 is irradiated with ultraviolet rays, the adhesive
  • the UV curable group that one or more of the components contained in the layer 42 usually has reacts with the UV curable group that the UV curable component (A) of the protective film forming film 1 reacts to form the pressure-sensitive adhesive layer 42 and the protective film. There is a concern that it may be difficult to peel both of them from the formed film 1.
  • the ultraviolet non-curable pressure-sensitive adhesive those having desired adhesive strength and removability are preferable, for example, acrylic pressure-sensitive adhesive, rubber-based pressure-sensitive adhesive, silicone-based pressure-sensitive adhesive, urethane-based pressure-sensitive adhesive, polyester-based pressure-sensitive adhesive, A polyvinyl ether-based pressure-sensitive adhesive or the like can be used.
  • acrylic pressure-sensitive adhesive that has high adhesiveness with the protective film-forming film 1 and can effectively prevent the workpiece or workpiece from falling off in a dicing process or the like is preferable.
  • an uncured adhesive layer 42 is formed with a known UV-curable adhesive, and UV is applied at the time of manufacture. It is only necessary to cure the adhesive by irradiation.
  • the thickness of the pressure-sensitive adhesive layer 42 is not particularly limited as long as it can function properly in each step in which the protective film-forming composite sheet 3 is used. Specifically, the thickness is preferably 1 to 50 ⁇ m, particularly preferably 2 to 30 ⁇ m, and further preferably 3 to 20 ⁇ m.
  • the thickness of the pressure-sensitive adhesive layer 42 is a value represented by an average obtained by measuring the thickness with a contact-type thickness meter at any five locations of the pressure-sensitive adhesive layer 42.
  • the total thickness may be measured in the same manner as described above, and may be calculated by taking the difference from the thickness of another film that has been overlaid (measured by the same method as described above).
  • tool what has desired adhesive force and removability is preferable, for example, an acrylic adhesive, a rubber adhesive, a silicone adhesive, a urethane adhesive Polyester-based pressure-sensitive adhesives, polyvinyl ether-based pressure-sensitive adhesives, and the like can be used.
  • an acrylic pressure-sensitive adhesive that has high adhesion to a jig such as a ring frame and can effectively prevent the protective film-forming composite sheet 3 from being peeled off from the ring frame or the like in a dicing process or the like.
  • the base material as a core material may intervene in the middle of the thickness direction of the adhesive layer 5 for jigs.
  • the thickness of the pressure-sensitive adhesive layer 5 for jigs is preferably 5 to 200 ⁇ m, and particularly preferably 10 to 100 ⁇ m, from the viewpoint of adhesion to a jig such as a ring frame.
  • the protective film-forming film is interposed via the support sheet 4. 1 may be irradiated with ultraviolet rays. Therefore, in such a case, it is preferable that the ultraviolet ray permeability of the support sheet 4 is high so that the curing of the protective film-forming film 1 can easily proceed.
  • the protective film-forming composite sheet 3 is prepared separately from a first laminate including the protective film-forming film 1 and a second laminate including the support sheet 4. Then, it can be produced by laminating the protective film-forming film 1 and the support sheet 4 using the first laminated body and the second laminated body, but is not limited thereto.
  • the protective film forming film 1 is formed on the release surface of the first release sheet.
  • a coating agent for a protective film-forming film containing a curable adhesive constituting the protective film-forming film 1 and, if desired, further a solvent is prepared, and a roll coater, a knife coater, a roll knife coater, an air knife
  • the protective film-forming film 1 is formed by applying to the release surface of the first release sheet with a coating machine such as a coater, die coater, bar coater, gravure coater, curtain coater, and drying.
  • the protective film forming film 1 (and the second release sheet) may be formed in a desired shape, for example, a circle. In this case, what is necessary is just to remove suitably the protective film formation film 1 and the excess part of the 2nd peeling sheet which arose by the half cut.
  • a coating agent for the pressure-sensitive adhesive layer further containing a pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer 42 and, if desired, a solvent, on the release surface of the third release sheet.
  • the pressure-sensitive adhesive layer 42 is formed by applying and drying. Then, the base material 41 is crimped
  • the pressure-sensitive adhesive is cured by irradiating with ultraviolet rays, preferably after obtaining the second laminate.
  • the second release sheet in the first laminate is released and the third release sheet in the second laminate is released.
  • the protective film forming film 1 exposed in the first laminate and the pressure-sensitive adhesive layer 42 of the support sheet 4 exposed in the second laminate are overlapped and pressure-bonded.
  • the support sheet 4 may be half-cut if desired, and may have a desired shape, for example, a circle having a larger diameter than the protective film-forming film 1. At this time, an excess portion of the support sheet 4 generated by the half cut may be removed as appropriate. In this case, the protective film forming sheet 3 having the form shown in FIG. 3 is obtained.
  • the support sheet 4 in which the pressure-sensitive adhesive layer 42 is laminated on the base material 41, the protective film-forming film 1 laminated on the pressure-sensitive adhesive layer 42 side of the support sheet 4, and the protective film-forming film 1 A protective sheet-forming composite sheet 3 comprising a first release sheet laminated on the side opposite to the support sheet 4 is obtained.
  • a jig pressure-sensitive adhesive layer 5 is formed on the peripheral edge of the protective film forming film 1 opposite to the support sheet 4.
  • the jig pressure-sensitive adhesive layer 5 can also be applied and formed in the same manner as the pressure-sensitive adhesive layer 42.
  • the protective film forming film 1 is stuck to the semiconductor wafer 6 and the jig adhesive layer 5 is stuck to the ring frame 7.
  • the protective film forming film 1 may be heated to exhibit adhesiveness if desired.
  • the protective film forming film 1 is irradiated with ultraviolet rays via the support sheet 4 to cure the protective film forming film 1 to form a protective film, thereby obtaining a semiconductor wafer 6 with a protective film.
  • the protective film-forming film 1 may be heated before or after the ultraviolet irradiation.
  • hardening of the protective film formation film 1 may be performed after a dicing process, and may be performed after picking up the chip
  • the protective film-forming film 1 is excellent in ultraviolet curability when the light transmittance at a wavelength of 375 nm is 8% or more, the film is sufficiently cured as a whole by the above-described ultraviolet irradiation. Irradiation of the ultraviolet to the protection film forming film 1 is preferably 50 ⁇ 1000mJ / cm 2 in quantity, especially 100 ⁇ 500mJ / cm 2 preferably.
  • the semiconductor wafer 6 with a protective film is diced according to a conventional method to obtain a chip having a protective film (chip with a protective film). Thereafter, the support sheet 4 is expanded in a plane direction as desired, and a chip with a protective film is picked up from the support sheet 4.
  • the protective film forming film 1 (protective film) has a light transmittance of 12% or less at a wavelength of 550 nm, so that grinding marks due to back grinding are concealed by the protective film. Since it cannot be seen visually, it has an excellent appearance.
  • the infrared light transmittance in the protective film forming film 1 is improved, and the chip with the protective film and the protective film are protected.
  • the semiconductor wafer with a film can be subjected to infrared inspection through a protective film. Therefore, cracks and the like can be found by infrared inspection, and the product yield can be improved.
  • FIG. 3 is a cross-sectional view of a composite sheet for protective film formation according to another embodiment of the present invention.
  • the protective sheet-forming composite sheet 3 ⁇ / b> A includes a support sheet 4 in which an adhesive layer 42 is laminated on one surface of a base material 41, and an adhesive layer of the support sheet 4. And a protective film forming film 1 laminated on the 42 side.
  • the protective film forming film 1 in the embodiment is formed to be substantially the same as or slightly larger than the workpiece in the surface direction, and smaller than the support sheet 4 in the surface direction.
  • the part of the pressure-sensitive adhesive layer 42 where the protective film forming film 1 is not laminated can be attached to a jig such as a ring frame.
  • each member of the protective film-forming composite sheet 3A according to this embodiment are the same as the material and thickness of each member of the protective film-forming composite sheet 3 described above.
  • the jig adhesive layer 5 of the protective film-forming composite sheet 3 described above and the peripheral portion of the pressure-sensitive adhesive layer 42 of the support sheet 4 of the protective film-forming composite sheet 3A on the side opposite to the base 41 are provided.
  • a similar adhesive layer for jigs may be provided separately.
  • the protective sheet-forming composite sheet 3A includes the base material 41, the pressure-sensitive adhesive layer 42 on the base material 41, the protective film-forming film 1 on the pressure-sensitive adhesive layer 42, and the pressure-sensitive adhesive layer 42. You may have the adhesive layer 5 for jig
  • FIG. In this case, the support sheet 4 may consist only of the base material 41.
  • the protective film-forming composite sheet 3 ⁇ / b> A is on the base material 41, the protective film-forming film 1 on the base material 41, and the base material 41, and the adhesive for jigs located at the peripheral edge of the protective film-forming film 1. You may have the agent layer 5.
  • a peeling force adjusting layer may be provided between the pressure-sensitive adhesive layer 42 and the protective film forming film 1.
  • the protective sheet-forming composite sheet 3A includes the base material 41, the adhesive layer 42 on the base material 41, the peeling force adjustment layer on the adhesive layer 42, and the protective film forming film on the peeling force adjustment layer. 1 may be included.
  • peeling between a peeling force adjustment layer and the protective film formation film 1 can be performed easily.
  • the adhesive layer 42 that does not need to consider the influence on the process of picking up the chip with the protective film (protective film forming film) is given strong adhesiveness, and the support sheet 4 is fixed to the jig. Can be made easy.
  • the peeling force adjusting layer can be formed from, for example, an adhesive having a lower adhesive strength than the adhesive used for the adhesive layer 42, and can also be formed from a resin film (including a peel-treated one).
  • a release sheet may be laminated on the opposite side of the protective film-forming film 1 of the protective film-forming composite sheets 3 and 3A from the support sheet 4.
  • Example 1 The following components were mixed at a blending ratio (mass ratio; solid content conversion) shown in Table 1, and diluted with methyl ethyl ketone so that the solid content concentration became 54% by mass to prepare a coating agent for a protective film forming film. .
  • UV curable component 80 parts by mass of 2-hydroxyethyl acrylate-derived hydroxyl group of acrylic polymer obtained by copolymerizing 80 parts by mass of 2-ethylhexyl acrylate and 20 parts by mass of 2-hydroxyethyl acrylate
  • Acrylic polymer obtained by reacting an amount of methacryloyloxyethyl isocyanate corresponding to a mole and having an ultraviolet curable group introduced in the side chain (weight average molecular weight: 400,000, glass transition temperature: ⁇ 10 ° C.)
  • Red colorant diketopyrrolopyrrole red pigment (manufactured by Sanyo Pigment, Pigment Red 264)
  • Black colorant Carbon black (Mitsubishi Chemical Corporation, # MA600B, average particle size 28 nm)
  • Filler Silica filler (manufactured by Admatechs, SC2050MA, average particle size 0.5 ⁇ m)
  • Thermosetting component bisphenol A type
  • a first release sheet (manufactured by Lintec: SP-PET3811, thickness 38 ⁇ m) having a silicone release agent layer formed on one side of a polyethylene terephthalate (PET) film, and a silicone release agent on one side of the PET film
  • a second release sheet (made by Lintec: SP-PET 381031, thickness 38 ⁇ m) formed with a layer was prepared.
  • the above-mentioned coating agent for protective film-forming film was applied with a knife coater and then dried in an oven at 120 ° C. for 2 minutes to form a protective film-forming film.
  • the thickness of the obtained protective film-forming film was 25 ⁇ m.
  • the release surface of the second release sheet is laminated on the protective film-forming film and bonded together, and the first release sheet (release sheet 21 in FIG. 1) and the protective film-forming film (protective film-forming film in FIG. 1). 1) A protective film-forming sheet composed of (thickness: 25 ⁇ m) and a second release sheet was obtained.
  • Examples 2 and 3 Comparative Examples 1 and 2
  • a protective film-forming sheet was produced in the same manner as in Example 1 except that the types and blending amounts of the components constituting the protective film-forming film were changed as shown in Table 1.
  • a value W / T obtained by dividing the content W (% by mass) of the colorant in each example by the thickness T ( ⁇ m) of the protective film-forming film was calculated and is shown in Table 1.
  • the light transmittance at any wavelength is almost 0%.
  • the light transmittance at a wavelength of 375 nm is 8% or more
  • the light transmittance at a wavelength of 550 nm is 12% or less
  • the light transmittance at a wavelength of 1600 nm is 25% or more.
  • the protective film-forming film was irradiated with ultraviolet light (irradiation conditions: illuminance 215 mW / cm 2 , light amount 187 mJ / cm 2 three times). Irradiation, no nitrogen purge), the protective film-forming film was cured to form a protective film. Then, the 1st peeling sheet was peeled and the silicon wafer with a protective film was obtained.
  • the laminate including the protective film was cut into a 1 cm square, and the second release sheet was peeled off.
  • a polyethylene terephthalate film (thickness: 25 ⁇ m) as a base material was bonded to the exposed protective film at room temperature using a roller laminator under conditions of 70 ° C. and 1.2 m / min.
  • the 1st peeling sheet by the side of an ultraviolet irradiation side was peeled, and this was made into the 1st sample (for ultraviolet irradiation surface measurement).
  • the laminate including the protective film was cut into a 1 cm square, and the first release sheet was peeled off.
  • a polyethylene terephthalate film (thickness: 25 ⁇ m) as a base material was bonded to the exposed protective film at room temperature using a roller laminator under conditions of 70 ° C. and 1.2 m / min.
  • the second release sheet on the side opposite to the ultraviolet irradiation was peeled off, and this was used as a second sample (for measuring the surface opposite to the ultraviolet irradiation).
  • Probe tack value (peak value P1, energy value E1) of the exposed surface (ultraviolet irradiation surface) of the protective film in the first sample using a tacking tester (manufactured by Reska, RHESCA PROBE TACK TESTER model RPT100), and The probe tack value (peak value P2, energy value E2) of the exposed surface (surface opposite to the ultraviolet irradiation) of the protective film in the second sample was measured.
  • the measurement conditions are as follows. Further, from the measurement results, a ratio P2 / P1 of the peak value P2 to the peak value P1 and a ratio E2 / E1 of the energy value E2 to the energy value E1 were calculated. The results are shown in Table 1. ⁇ Measurement conditions of probe tack value> ⁇ Speed: 600mm / sec ⁇ Pressing load: 0.98N ⁇ Pressing time: 1 second
  • the probe tack value of the ultraviolet irradiation surface and the probe tack value of the surface opposite to the ultraviolet irradiation surface in the protective film forming film (protective film) obtained in the examples are approximate. From this, it can be seen that the protective film of the example is cured in the whole thickness direction from the ultraviolet irradiation surface to the ultraviolet irradiation opposite surface. Moreover, the protective film of an Example is excellent also in grinding trace concealment property.
  • the protective film-forming film, the protective film-forming sheet and the protective film-forming composite sheet according to the present invention are suitably used for manufacturing a chip having a protective film from a semiconductor wafer.

Abstract

This film for forming a protective coat contains an ultraviolet-curable component, the light transmittance at a wavelength of 375 nm being 8% or more, and the light transmittance at a wavelength of 550 nm being 12% or less. This film for forming a protective coat may further contain a coloring agent, and the coloring agent may be a red coloring agent.

Description

保護膜形成フィルムおよび保護膜形成用複合シートProtective film forming film and composite sheet for forming protective film
 本発明は、半導体ウエハ等のワークまたは当該ワークを加工して得られる加工物(例えば半導体チップ)に保護膜を形成することのできる保護膜形成フィルム、保護膜形成用シート、および保護膜形成用複合シートに関するものである。
 本願は、2014年10月29日に、日本に出願された特願2014-220295号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a protective film-forming film, a protective film-forming sheet, and a protective film-forming film capable of forming a protective film on a workpiece such as a semiconductor wafer or a workpiece (for example, a semiconductor chip) obtained by processing the workpiece. It relates to a composite sheet.
This application claims priority based on Japanese Patent Application No. 2014-220295 filed in Japan on October 29, 2014, the contents of which are incorporated herein by reference.
 近年、フェイスダウン方式と呼ばれる実装法により半導体装置を製造することが行われている。この方法では、バンプ等の電極が形成された回路面を有する半導体チップを実装する際に、半導体チップの回路面側をリードフレーム等のチップ搭載部に接合している。したがって、回路が形成されていない半導体チップの裏面側が露出する構造となる。 In recent years, semiconductor devices have been manufactured by a mounting method called a face-down method. In this method, when a semiconductor chip having a circuit surface on which electrodes such as bumps are formed is mounted, the circuit surface side of the semiconductor chip is bonded to a chip mounting portion such as a lead frame. Therefore, the back surface side of the semiconductor chip on which no circuit is formed is exposed.
 このため、半導体チップの裏面側には、半導体チップを保護するために、硬質の有機材料からなる保護膜が形成されることが多い。この保護膜は、例えば、特許文献1または2に示されるような半導体裏面用フィルムまたはダイシングテープ一体型ウエハ裏面保護フィルムを使用して形成される。 For this reason, a protective film made of a hard organic material is often formed on the back side of the semiconductor chip in order to protect the semiconductor chip. This protective film is formed using, for example, a film for semiconductor back surface or a dicing tape integrated wafer back surface protective film as disclosed in Patent Document 1 or 2.
 ここで、上記保護膜は、一般的にはエポキシ樹脂などの熱硬化性樹脂により形成される。しかし、熱硬化性樹脂の硬化温度は130℃を超え、また硬化時間は2時間程度を要するため、生産効率向上の障害となっていた。そのため、加工時間を短縮できる硬化メカニズムを備えた保護膜が望まれていた。 Here, the protective film is generally formed of a thermosetting resin such as an epoxy resin. However, since the curing temperature of the thermosetting resin exceeds 130 ° C. and the curing time requires about 2 hours, it has been an obstacle to improving the production efficiency. Therefore, a protective film having a curing mechanism that can shorten the processing time has been desired.
 これに対し、特許文献3には、(A)二重結合を有さないアクリル系共重合体からなるポリマー成分、(B)エネルギー線硬化性成分、(C)染料および/または顔料、(D)無機フィラー、及び(E)350nm以上の長波長域の光を吸収する光重合開始剤を含有してなるエネルギー線硬化型保護膜形成層を有するエネルギー線硬化型チップ保護用フィルムが開示されている。このようなエネルギー線硬化性のチップ保護用フィルムは、主として紫外線照射により短時間で硬化するため、簡便に保護膜を形成することができ、生産効率の向上に寄与し得る。 In contrast, Patent Document 3 discloses (A) a polymer component made of an acrylic copolymer having no double bond, (B) an energy ray-curable component, (C) a dye and / or a pigment, (D An energy ray curable chip protecting film having an energy ray curable protective film forming layer comprising an inorganic filler and (E) a photopolymerization initiator that absorbs light in a long wavelength region of 350 nm or longer is disclosed. Yes. Since such an energy ray-curable film for chip protection is cured mainly by ultraviolet irradiation in a short time, a protective film can be easily formed, which can contribute to an improvement in production efficiency.
特開2012-28396号公報JP 2012-28396 A 特開2012-235168号公報JP 2012-235168 A 特開2009-138026号公報JP 2009-138026 A
 しかしながら、特許文献3の実施例で使用している(C)成分は黒色顔料であり、かかる黒色顔料を含有するチップ保護用フィルムでは、紫外線の透過性が低い。したがって、チップ保護用フィルムを硬化させるために紫外線を照射したときに、紫外線をフィルム内部や紫外線照射面とは反対側の面まで十分到達させることができずに、チップ保護用フィルムの硬化が不十分になることがある。このようにチップ保護用フィルムの硬化が不十分であると、得られる保護膜が熱等によって剥がれ易くなる等、保護膜としての機能に問題が生じる。 However, the component (C) used in the examples of Patent Document 3 is a black pigment, and a film for protecting a chip containing such a black pigment has a low ultraviolet transmittance. Therefore, when ultraviolet rays are irradiated to cure the chip protection film, the ultraviolet rays cannot sufficiently reach the inside of the film or the surface opposite to the ultraviolet irradiation surface, and the chip protection film is not cured. May be enough. Thus, when the film for chip protection is insufficiently cured, a problem occurs in the function as the protective film, such as the protective film obtained being easily peeled off by heat or the like.
 一方、半導体チップの裏面には、通常、半導体ウエハに対して施されたバックグラインド加工による研削痕が残っている。半導体チップの外観の観点から、かかる研削痕は目視によって見えないことが望ましく、上記の保護膜によって隠蔽されることが望ましい。 On the other hand, on the back surface of the semiconductor chip, grinding marks are usually left by back grinding processing applied to the semiconductor wafer. From the viewpoint of the appearance of the semiconductor chip, it is desirable that such grinding marks are not visible with the naked eye, and are preferably hidden by the protective film.
 本発明は、上記のような実状に鑑みてなされたものであり、紫外線硬化性に優れ、かつワークまたは加工物に存在する研削痕が目視によって見えない保護膜を形成することのできる保護膜形成フィルム、保護膜形成用シート、および保護膜形成用複合シートを提供することを目的とする。 The present invention has been made in view of the actual situation as described above, and is capable of forming a protective film that is excellent in ultraviolet curability and that can form a protective film in which grinding marks present on a workpiece or a workpiece are not visible by visual inspection. An object is to provide a film, a protective film-forming sheet, and a protective film-forming composite sheet.
 上記目的を達成するために、第1に本発明は、紫外線硬化性成分を含有し、波長375nmの光線透過率が8%以上であり、波長550nmの光線透過率が12%以下である保護膜形成フィルムを提供する(発明1)。 In order to achieve the above object, first, the present invention comprises a protective film containing an ultraviolet curable component, having a light transmittance of 8% or more at a wavelength of 375 nm and a light transmittance of 12% or less at a wavelength of 550 nm. A formed film is provided (Invention 1).
 上記発明(発明1)に係る保護膜形成フィルムは、紫外線によって十分に硬化し、かつ紫外線硬化後は、ワークまたは加工物に存在する研削痕が目視によって見えない保護膜を形成することができる。 The protective film-forming film according to the above invention (Invention 1) is sufficiently cured by ultraviolet rays, and after ultraviolet curing, can form a protective film in which grinding marks present on the workpiece or workpiece are not visible.
 上記発明(発明1)においては、着色剤をさらに含有してもよい(発明2)。 In the above invention (Invention 1), a colorant may be further contained (Invention 2).
 上記発明(発明2)においては、前記着色剤が、赤色着色剤であってもよい(発明3)。 In the above invention (Invention 2), the colorant may be a red colorant (Invention 3).
 上記発明(発明2,3)においては、前記着色剤が、有機系の着色剤でってもよい(発明4)。 In the above inventions (Inventions 2 and 3), the colorant may be an organic colorant (Invention 4).
 上記発明(発明2~4)においては、前記保護膜形成フィルムにおける前記着色剤の含有量W(質量%)を、前記保護膜形成フィルムの厚さT(μm)で除した値W/Tが、0.01~0.5であってもよい(発明5)。 In the above inventions (Inventions 2 to 4), the value W / T obtained by dividing the content W (% by mass) of the colorant in the protective film-forming film by the thickness T (μm) of the protective film-forming film is 0.01 to 0.5 (Invention 5).
 上記発明(発明1~5)においては、前記保護膜形成フィルムに対し一方の面側から、照度215mW/cm、光量187mJ/cmの紫外線を3回照射した場合に、紫外線照射面のプローブタックのピーク値P1に対する前記紫外線照射面とは反対側の面のプローブタックのピーク値P2の比P2/P1が、0.1~7となってもよい(発明6)。 In the above inventions (Inventions 1 to 5), when the protective film forming film is irradiated with ultraviolet rays having an illuminance of 215 mW / cm 2 and a light amount of 187 mJ / cm 2 from one side, the probe on the ultraviolet irradiation surface The ratio P2 / P1 of the probe tack peak value P2 on the surface opposite to the ultraviolet irradiation surface with respect to the tack peak value P1 may be 0.1 to 7 (Invention 6).
 上記発明(発明1~6)においては、波長1600nmの光線透過率が25%以上であってもよい(発明7)。 In the above inventions (Inventions 1 to 6), the light transmittance at a wavelength of 1600 nm may be 25% or more (Invention 7).
 第2に本発明は、前記保護膜形成フィルム(発明1~7)と、前記保護膜形成フィルムの一方の面または両面に積層された剥離シートとを備える保護膜形成用シートを提供する(発明8)。なお、本明細書において、「シート」はテープの概念を含むものとする。 Second, the present invention provides a protective film-forming sheet comprising the protective film-forming film (Inventions 1 to 7) and a release sheet laminated on one or both surfaces of the protective film-forming film (Invention). 8). In this specification, “sheet” includes the concept of a tape.
 第3に本発明は、支持シートと、前記支持シートの一方の面側に積層された前記保護膜形成フィルム(発明1~7)とを備える保護膜形成用複合シートを提供する(発明9)。 Thirdly, the present invention provides a composite sheet for forming a protective film comprising a support sheet and the protective film-forming film (Inventions 1 to 7) laminated on one surface side of the support sheet (Invention 9). .
 上記発明(発明9)において、前記支持シートは、基材と前記基材の前記保護膜形成フィルム側に積層された粘着剤層とからなるか、基材からなっていてもよい(発明10)。 In the said invention (invention 9), the said support sheet may consist of a base material and the adhesive layer laminated | stacked on the said protective film formation film side of the said base material, or may consist of a base material (invention 10). .
 本発明に係る保護膜形成フィルム、保護膜形成用シート、および保護膜形成用複合シートによれば、紫外線によって十分に硬化し、かつワークまたは加工物に存在する研削痕が目視によって見えない保護膜を形成することができる。 According to the protective film-forming film, the protective film-forming sheet, and the protective film-forming composite sheet according to the present invention, the protective film is sufficiently cured by ultraviolet rays, and the grinding traces present on the workpiece or workpiece are not visually observed. Can be formed.
本発明の一実施形態に係る保護膜形成用シートの断面図である。It is sectional drawing of the sheet | seat for protective film formation which concerns on one Embodiment of this invention. 本発明の一実施形態に係る保護膜形成用複合シートの断面図である。It is sectional drawing of the composite sheet for protective film formation which concerns on one Embodiment of this invention. 本発明の他の実施形態に係る保護膜形成用複合シートの断面図である。It is sectional drawing of the composite sheet for protective film formation which concerns on other embodiment of this invention. 本発明の一実施形態に係る保護膜形成用複合シートの使用例を示す断面図である。It is sectional drawing which shows the usage example of the composite sheet for protective film formation which concerns on one Embodiment of this invention. 試験例1における光線透過率の測定結果を示すグラフである。6 is a graph showing the measurement results of light transmittance in Test Example 1.
 以下、本発明の実施形態について説明する。
〔保護膜形成フィルム〕
 本実施形態に係る保護膜形成フィルムは、ワークまたは当該ワークを加工して得られる加工物に保護膜を形成するためのものである。ワークとしては、例えば半導体ウエハ等が挙げられ、当該ワークを加工して得られる加工物としては、例えば半導体チップが挙げられるが、本発明はこれらに限定されるものではない。なお、ワークが半導体ウエハの場合、保護膜は、半導体ウエハの裏面側(バンプ等の電極が形成されていない側)に形成される。
Hereinafter, embodiments of the present invention will be described.
[Protective film forming film]
The protective film-forming film according to this embodiment is for forming a protective film on a workpiece or a workpiece obtained by processing the workpiece. Examples of the workpiece include a semiconductor wafer, and examples of a workpiece obtained by processing the workpiece include a semiconductor chip. However, the present invention is not limited to these. When the work is a semiconductor wafer, the protective film is formed on the back side of the semiconductor wafer (the side on which no electrodes such as bumps are formed).
1.物性
 本実施形態に係る保護膜形成フィルムは、波長375nmの光線透過率が8%以上であり、波長550nmの光線透過率が12%以下であるものである。なお、本明細書における光線透過率は、積分球を使用して測定した値とし、測定器具としては分光光度計を使用する。
1. Physical Properties The protective film-forming film according to the present embodiment has a light transmittance of 8% or more at a wavelength of 375 nm and a light transmittance of 12% or less at a wavelength of 550 nm. The light transmittance in this specification is a value measured using an integrating sphere, and a spectrophotometer is used as a measuring instrument.
 後述するように、本実施形態に係る保護膜形成フィルムは、紫外線硬化性成分を含有する。上記のように、波長375nmの光線透過率が8%以上であると、紫外線が保護膜形成フィルムを透過し易く、したがって、保護膜形成フィルム中の紫外線硬化性成分が硬化し易くなる。そのため、保護膜形成フィルムに対し一方の面側から紫外線照射した場合でも、保護膜形成フィルム全体が十分に硬化し、保護膜形成フィルムの内部や紫外線照射面とは反対側の面において硬化不足が生じることを効果的に防止することができる。 As will be described later, the protective film-forming film according to the present embodiment contains an ultraviolet curable component. As described above, when the light transmittance at a wavelength of 375 nm is 8% or more, ultraviolet rays are easily transmitted through the protective film-forming film, and accordingly, the ultraviolet curable components in the protective film-forming film are easily cured. Therefore, even when the protective film forming film is irradiated with ultraviolet rays from one side, the entire protective film forming film is sufficiently cured, and there is insufficient curing on the inside of the protective film forming film or on the surface opposite to the ultraviolet irradiation surface. It can prevent effectively.
 上記保護膜形成フィルムの硬化性の観点から、保護膜形成フィルムの波長375nmの光線透過率は、10%以上であることが好ましく、13%以上であることがより好ましく、15%以上であることがさらに好ましく、特に17%以上であることが好ましく、さらには20%以上であることが好ましい。なお、波長375nmの光線透過率の上限は特に限定されないが、波長550nmの光線透過率を12%以下とすることにより、自ずと定まることとなる。具体的には、保護膜形成フィルムの波長375nmの光線透過率は、35%以下であることが好ましい。 From the viewpoint of curability of the protective film-forming film, the light transmittance at a wavelength of 375 nm of the protective film-forming film is preferably 10% or more, more preferably 13% or more, and 15% or more. Is more preferable, particularly 17% or more, and further preferably 20% or more. The upper limit of the light transmittance at a wavelength of 375 nm is not particularly limited, but is naturally determined by setting the light transmittance at a wavelength of 550 nm to 12% or less. Specifically, the light transmittance at a wavelength of 375 nm of the protective film-forming film is preferably 35% or less.
 一方、例えば半導体チップの裏面には、通常、半導体ウエハに対して施されたバックグラインド加工による研削痕が残っている。波長550nmの光線透過率が上記のように12%以下であると、保護膜形成フィルムは、可視光線を透過し難いものとなる。したがって、上記の研削痕は、保護膜形成フィルム(保護膜)によって隠蔽され、目視によって殆ど見えなくなる。これにより、半導体チップ等の加工物の外観が優れたものとなる。 On the other hand, for example, on the back surface of the semiconductor chip, grinding marks are usually left by back grinding applied to the semiconductor wafer. When the light transmittance at a wavelength of 550 nm is 12% or less as described above, the protective film-forming film is difficult to transmit visible light. Therefore, the above-mentioned grinding mark is concealed by the protective film forming film (protective film) and hardly visible by visual inspection. Thereby, the external appearance of workpieces, such as a semiconductor chip, will be excellent.
 上記研削痕隠蔽性の観点から、保護膜形成フィルムの波長550nmの光線透過率は、11%以下であることが好ましく、特に8%以下であることが好ましく、さらには5%以下であることが好ましい。なお、波長550nmの光線透過率の下限は特に限定されないが、波長375nmの光線透過率を8%以上とすることにより、自ずと定まることとなる。具体的には、保護膜形成フィルムの波長375nmの光線透過率は、0%以上であることが好ましい。 From the viewpoint of the grinding mark concealing property, the light transmittance at a wavelength of 550 nm of the protective film-forming film is preferably 11% or less, particularly preferably 8% or less, and further preferably 5% or less. preferable. The lower limit of the light transmittance at a wavelength of 550 nm is not particularly limited, but is naturally determined by setting the light transmittance at a wavelength of 375 nm to 8% or more. Specifically, the light transmittance at a wavelength of 375 nm of the protective film forming film is preferably 0% or more.
 また、本実施形態に係る保護膜形成フィルムは、波長1600nmの光線透過率が25%以上であることが好ましく、40%以上であることがより好ましく、特に45%以上であることが好ましく、さらには50%以上であることが好ましい。半導体ウエハをダイシングして得られる半導体チップ等においては、加工時に生じた応力によってクラック等が発生していることがある。上記のように波長1600nmの光線透過率が25%以上であると、赤外線の透過性が良好になり、保護膜形成フィルム(または当該保護膜形成フィルムによって形成された保護膜)側から赤外線を取得する赤外線検査を行うことができる。これにより、保護膜形成フィルム(保護膜)を介して半導体チップ等の加工物におけるクラック等を発見することができ、製品歩留まりを向上させることができる。 In addition, the protective film-forming film according to this embodiment preferably has a light transmittance at a wavelength of 1600 nm of 25% or more, more preferably 40% or more, and particularly preferably 45% or more. Is preferably 50% or more. In a semiconductor chip or the like obtained by dicing a semiconductor wafer, a crack or the like may occur due to stress generated during processing. As described above, when the light transmittance at a wavelength of 1600 nm is 25% or more, infrared transmittance is improved, and infrared rays are obtained from the protective film forming film (or the protective film formed by the protective film forming film) side. Infrared inspection can be performed. Thereby, the crack etc. in workpieces, such as a semiconductor chip, can be discovered through a protective film formation film (protective film), and a product yield can be improved.
 なお、波長1600nmの光線透過率の上限は特に限定されないが、波長550nmの光線透過率を12%以下とすることにより、自ずと定まることとなる。また、保護膜を形成した加工物(半導体チップ等)の使用時には、保護膜形成フィルムの波長1600nmの光線透過率を90%以下とすることにより、外部からの赤外線の影響を受けやすい加工物の誤作動を防ぐことができる。 In addition, although the upper limit of the light transmittance of wavelength 1600nm is not specifically limited, By setting the light transmittance of wavelength 550nm to 12% or less, it will be decided naturally. Further, when using a workpiece (semiconductor chip or the like) on which a protective film is formed, the protective film-forming film has a light transmittance at a wavelength of 1600 nm of 90% or less, so that the workpiece easily affected by infrared rays from the outside can be obtained. Malfunction can be prevented.
 本実施形態に係る保護膜形成フィルムは、単層からなるものであってもよいし、複数層からなるものであってもよいが、光線透過率の制御の容易性および製造コストの面から単層からなることが好ましい。保護膜形成フィルムが複数層からなる場合には、光線透過率の制御の容易性の面から、当該複数層全体として上記の光線透過率を満たすことが好ましい。 The protective film-forming film according to the present embodiment may be composed of a single layer or a plurality of layers. However, the protective film-forming film may be composed of a plurality of layers. It preferably consists of layers. When the protective film-forming film is composed of a plurality of layers, it is preferable that the light transmittance is satisfied as a whole of the plurality of layers from the viewpoint of easy control of the light transmittance.
 また、本実施形態に係る保護膜形成フィルムにおいては、当該保護膜形成フィルムに対し一方の面側から紫外線照射した場合に、紫外線照射面のプローブタックのピーク値P1に対する紫外線照射面とは反対側の面(以下「紫外線照射反対面」という場合がある)のプローブタックのピーク値P2の比P2/P1が、0.1~7となることが好ましく、特に0.5~4となることが好ましく、さらには1~2となることが好ましい。なお、P2/P1を1よりも低い値とすることは、例えば、保護膜形成フィルムを複数層からなるものとし、紫外線照射反対面を形成する層に、紫外線照射面を形成する層よりも多くの後述する紫外線硬化性成分(A)を配合することにより可能である。プローブタックの測定方法は、JIS Z1023 1999に準拠したものとし、具体的には後述する試験例に示す通りである。 Further, in the protective film forming film according to the present embodiment, when the protective film forming film is irradiated with ultraviolet rays from one surface side, the side opposite to the ultraviolet irradiation surface with respect to the probe tack peak value P1 of the ultraviolet irradiation surface. The ratio P2 / P1 of the peak value P2 of the probe tack of the surface (hereinafter sometimes referred to as “ultraviolet irradiation opposite surface”) is preferably 0.1 to 7, and particularly preferably 0.5 to 4. Preferably, it is preferably 1 to 2. Note that setting P2 / P1 to a value lower than 1 means, for example, that the protective film forming film is composed of a plurality of layers, and there are more layers than the layer forming the ultraviolet irradiation surface in the layer forming the ultraviolet irradiation opposite surface. It is possible by blending the ultraviolet curable component (A) described later. The probe tack measurement method is based on JIS Z1023 1999, and is specifically as shown in the test examples described later.
 P2/P1が上記範囲内にあることで、保護膜形成フィルム(保護膜)が、紫外線照射面側だけでなく、紫外線照射反対面側でも硬化しており、すなわち、保護膜形成フィルムが厚み方向全体的に十分硬化しているということができる。 When P2 / P1 is within the above range, the protective film forming film (protective film) is cured not only on the ultraviolet irradiation surface side but also on the ultraviolet irradiation opposite surface side, that is, the protective film forming film is in the thickness direction. It can be said that it is fully cured as a whole.
 なお、上記プローブタックをエネルギー値で示した場合、紫外線照射面のプローブタックのエネルギー値E1に対する紫外線照射反対面のプローブタックのエネルギー値E2の比E2/E1は、0.1~10となることが好ましく、特に0.5~5となることが好ましく、さらには1~2.5となることが好ましい。なお、E2/E1を1よりも低い値とすることは、例えば、保護膜形成フィルムを複数層からなるものとし、紫外線照射反対面を形成する層に、紫外線照射面を形成する層よりも多くの後述する紫外線硬化性成分(A)を配合することにより可能である。 When the probe tack is expressed in terms of energy value, the ratio E2 / E1 of the probe tack energy value E2 on the ultraviolet irradiation opposite surface to the probe tack energy value E1 on the ultraviolet irradiation surface is 0.1 to 10. In particular, it is preferably 0.5 to 5, and more preferably 1 to 2.5. Note that setting E2 / E1 to a value lower than 1 means, for example, that the protective film-forming film is composed of a plurality of layers, and the number of layers forming the ultraviolet irradiation opposite surface is larger than the layer forming the ultraviolet irradiation surface. It is possible by blending the ultraviolet curable component (A) described later.
 ここで、紫外線照射面のプローブタックのピーク値P1自体は、0.05~1.5であることが好ましく、特に0.1~1であることが好ましく、さらには0.15~0.75であることが好ましい。また、紫外線照射面のプローブタックのエネルギー値E1自体は、0.005~0.3であることが好ましく、特に0.008~0.15であることが好ましく、さらには0.01~0.1であることが好ましい。紫外線照射面のプローブタックのピーク値P1及び/又はエネルギー値E1が上記の範囲にあることで、少なくとも保護膜形成フィルム(保護膜)の紫外線照射面側は、高い程度で硬化しているということができる。 Here, the peak value P1 of the probe tack on the ultraviolet irradiation surface is preferably 0.05 to 1.5, particularly preferably 0.1 to 1, and more preferably 0.15 to 0.75. It is preferable that The energy value E1 of the probe tack on the ultraviolet irradiation surface is preferably 0.005 to 0.3, particularly preferably 0.008 to 0.15, and more preferably 0.01 to 0.00. 1 is preferable. That the peak value P1 and / or energy value E1 of the probe tack on the ultraviolet irradiation surface is in the above range, at least the ultraviolet irradiation surface side of the protective film forming film (protective film) is cured to a high degree. Can do.
2.材料
 本実施形態に係る保護膜形成フィルムは、紫外線硬化性成分(A)を含有する。紫外線硬化性成分(A)は、好ましくは未硬化の紫外線硬化性成分であり、特に好ましくは粘着性を有する未硬化の紫外線硬化性成分である。
2. Material The protective film formation film which concerns on this embodiment contains an ultraviolet curable component (A). The ultraviolet curable component (A) is preferably an uncured ultraviolet curable component, and particularly preferably an uncured ultraviolet curable component having adhesiveness.
 かかる保護膜形成フィルムは、保護膜形成フィルムと半導体ウエハ等のワークとを重ね合わせた後、保護膜形成フィルムを紫外線照射によって硬化させることにより、耐久性を有する保護膜をチップ等に形成することができる。当該保護膜形成フィルムは短時間で硬化するため、生産効率に優れる。また、保護膜形成フィルムが粘着性を有すると、上記のように保護膜形成フィルムに半導体ウエハ等のワークを重ね合わせるときに両者を貼合させることができる。したがって、保護膜形成フィルムを硬化させる前に位置決めを確実に行うことができる。なお、保護膜形成フィルムは、常温で粘着性を有していてもよいし、加熱により粘着性を発揮してもよい。 Such a protective film-forming film is formed by stacking a protective film-forming film and a workpiece such as a semiconductor wafer and then curing the protective film-forming film by ultraviolet irradiation to form a durable protective film on a chip or the like. Can do. Since the said protective film formation film hardens | cures in a short time, it is excellent in production efficiency. Moreover, when a protective film formation film has adhesiveness, both can be bonded together when a workpiece | work, such as a semiconductor wafer, is piled up on a protective film formation film as mentioned above. Therefore, positioning can be reliably performed before the protective film forming film is cured. In addition, the protective film formation film may have adhesiveness at normal temperature, and may exhibit adhesiveness by heating.
 ここで、保護膜形成フィルムの光線透過率は、硬化前であっても硬化後であっても殆ど変化しない。したがって、硬化前の保護膜形成フィルムの波長375nmの光線透過率が8%以上、波長550nmの光線透過率が12%以下であれば、硬化後の保護膜形成フィルム(保護膜)の波長375nmの光線透過率も13%以上、波長550nmの光線透過率も12%以下となる。 Here, the light transmittance of the protective film-forming film hardly changes even before or after curing. Therefore, if the light transmittance at a wavelength of 375 nm of the protective film forming film before curing is 8% or more and the light transmittance at a wavelength of 550 nm is 12% or less, the wavelength of the protective film forming film (protective film) after curing is 375 nm. The light transmittance is 13% or more, and the light transmittance at a wavelength of 550 nm is 12% or less.
 本実施形態に係る保護膜形成フィルムは、紫外線硬化性成分(A)の他、着色剤(B)を含有することが好ましい。保護膜形成フィルムが着色剤(B)を含有することにより、波長375nmおよび波長550nm(さらには波長1600nm)の光線透過率を前述した範囲に制御することが容易となる。 The protective film-forming film according to this embodiment preferably contains a colorant (B) in addition to the ultraviolet curable component (A). When the protective film-forming film contains the colorant (B), it becomes easy to control the light transmittance at a wavelength of 375 nm and a wavelength of 550 nm (further, a wavelength of 1600 nm) within the above-described range.
 また、本実施形態に係る保護膜形成フィルムは、着色剤(B)と併せてフィラー(C)を含有することが好ましい。これにより、波長375nmおよび波長550nm(さらには波長1600nm)の光線透過率を前述した範囲に制御することがより容易になる。また、保護膜形成フィルムがフィラーを含有すると、硬化後の保護膜の硬度を高く維持することができるとともに、耐湿性を向上させることができる。さらには、硬化後の保護膜の熱膨張係数を半導体ウエハの熱膨張係数に近づけることができ、これによって加工途中の半導体ウエハの反りを低減することができる。 Moreover, it is preferable that the protective film formation film which concerns on this embodiment contains a filler (C) together with a coloring agent (B). Thereby, it becomes easier to control the light transmittance of the wavelength of 375 nm and the wavelength of 550 nm (and also the wavelength of 1600 nm) to the above-described ranges. Moreover, when a protective film formation film contains a filler, while being able to maintain the hardness of the protective film after hardening high, moisture resistance can be improved. Furthermore, the thermal expansion coefficient of the protective film after curing can be brought close to the thermal expansion coefficient of the semiconductor wafer, thereby reducing the warpage of the semiconductor wafer during processing.
 本実施形態に係る保護膜形成フィルムは、熱硬化性成分(D)をさらに含有することが好ましい。熱硬化性成分(D)をさらに含有する保護膜形成フィルムを加熱することで、保護膜形成フィルムのワークに対する接着力や硬化した保護膜の強度を向上させることができる。
 なお、保護膜形成フィルムが紫外線硬化性成分(A)および着色剤(B)を含む場合、紫外線硬化性成分(A)の割合と着色剤(B)の割合の合計が、100質量%となるよう紫外線硬化性成分(A)の割合と着色剤(B)の割合を設定する。同様に、保護膜形成フィルムが紫外線硬化性成分(A)、着色剤(B)およびフィラー(C)を含む場合、紫外線硬化性成分(A)の割合と着色剤(B)の割合とフィラー(C)の割合の合計が、100質量%となるよう紫外線硬化性成分(A)、着色剤(B)およびフィラー(C)の割合を設定する。保護膜形成フィルムが紫外線硬化性成分(A)、着色剤(B)、フィラー(C)および熱硬化性成分(D)を含む場合、紫外線硬化性成分(A)の割合と着色剤(B)の割合とフィラー(C)の割合と熱硬化性成分(D)との合計が、100質量%となるよう紫外線硬化性成分(A)、着色剤(B)、フィラー(C)および熱硬化性成分(D)の割合を設定する。
The protective film-forming film according to this embodiment preferably further contains a thermosetting component (D). By heating the protective film-forming film further containing the thermosetting component (D), the adhesive strength of the protective film-forming film to the work and the strength of the cured protective film can be improved.
In addition, when a protective film formation film contains an ultraviolet curable component (A) and a coloring agent (B), the sum total of the ratio of an ultraviolet curable component (A) and the ratio of a coloring agent (B) will be 100 mass%. The ratio of the ultraviolet curable component (A) and the ratio of the colorant (B) are set. Similarly, when the protective film-forming film contains an ultraviolet curable component (A), a colorant (B) and a filler (C), the proportion of the ultraviolet curable component (A), the proportion of the colorant (B) and the filler ( The ratio of the ultraviolet curable component (A), the colorant (B) and the filler (C) is set so that the total ratio of C) is 100% by mass. When the protective film-forming film contains an ultraviolet curable component (A), a colorant (B), a filler (C), and a thermosetting component (D), the ratio of the ultraviolet curable component (A) and the colorant (B) UV curable component (A), colorant (B), filler (C), and thermosetting so that the total of the proportion of the filler, the proportion of filler (C) and the thermosetting component (D) is 100% by mass. The proportion of component (D) is set.
(1)紫外線硬化性成分(A)
 紫外線硬化性成分(A)は、紫外線硬化性基が導入された重合体(A1)であってもよいし、紫外線硬化性基が導入された重合体(A1)を除く紫外線硬化性化合物(A3)を含有するものであってもよい。本実施形態における紫外線硬化性成分(A)が紫外線硬化性化合物(A3)を含有する場合には、紫外線硬化性を有しない重合体(A2)等の重合体をも含有することが好ましい。なお、本明細書における「重合体」には「共重合体」の概念も含まれるものとする。
(1) UV curable component (A)
The ultraviolet curable component (A) may be a polymer (A1) having an ultraviolet curable group introduced, or an ultraviolet curable compound (A3) excluding the polymer (A1) having an ultraviolet curable group introduced. ) May be contained. When the ultraviolet curable component (A) in this embodiment contains an ultraviolet curable compound (A3), it is preferable to also contain a polymer such as a polymer (A2) that does not have ultraviolet curable properties. In the present specification, the term “polymer” includes the concept of “copolymer”.
(1-1)紫外線硬化性基が導入された重合体(A1)
 本実施形態における紫外線硬化性成分(A)が紫外線硬化性基が導入された重合体(A1)を含有する場合、かかる重合体(A1)は、保護膜形成フィルムにそのまま含有されていてもよく、また少なくともその一部が架橋剤と架橋反応を行って架橋物として含有されていてもよい。
(1-1) Polymer having ultraviolet curable group introduced (A1)
When the ultraviolet curable component (A) in this embodiment contains the polymer (A1) having an ultraviolet curable group introduced, the polymer (A1) may be contained as it is in the protective film-forming film. In addition, at least a part thereof may be contained as a crosslinked product by performing a crosslinking reaction with a crosslinking agent.
 紫外線硬化性基が導入された重合体(A1)としては、たとえば、官能基を含有する官能基含有モノマーを構成成分とする官能基含有アクリル系重合体(A1-1)と、当該官能基と反応する置換基および紫外線硬化性炭素-炭素二重結合を有する硬化性基含有化合物(A1-2)との反応物であるアクリル系重合体が挙げられる。 Examples of the polymer (A1) introduced with an ultraviolet curable group include a functional group-containing acrylic polymer (A1-1) containing a functional group-containing monomer containing a functional group as a constituent, and the functional group Examples thereof include an acrylic polymer which is a reaction product of a reactive group and a curable group-containing compound (A1-2) having an ultraviolet curable carbon-carbon double bond.
 官能基含有アクリル系重合体(A1-1)は、官能基を含有するアクリル系モノマーと、官能基を含有しないアクリル系モノマーと、所望によりアクリル系モノマー以外のモノマーとの共重合反応物であることが好ましい。すなわち、上記官能基含有モノマーは、官能基を含有するアクリル系モノマーであることが好ましい。
 本明細書において、モノマーが重合された物質に対して使用される、用語「重合体」又は「樹脂」等は、前記モノマーから導かれる構成単位(繰り返し単位ともいう)からなる「重合体」又は「樹脂」等を意味する。
The functional group-containing acrylic polymer (A1-1) is a copolymerization reaction product of an acrylic monomer containing a functional group, an acrylic monomer not containing a functional group, and, if desired, a monomer other than the acrylic monomer. It is preferable. That is, the functional group-containing monomer is preferably an acrylic monomer containing a functional group.
In the present specification, the term “polymer” or “resin” or the like used for a substance in which a monomer is polymerized is a “polymer” composed of structural units derived from the monomer (also referred to as repeating units) or It means “resin” or the like.
 官能基を含有するアクリル系モノマーの官能基(官能基含有モノマーの官能基)としては、上記硬化性基含有化合物(A1-2)が有する置換基と反応可能なものが選択される。かかる官能基としては、例えば、ヒドロキシ基、カルボキシ基、アミノ基、置換アミノ基、エポキシ基等が挙げられ、中でもヒドロキシ基が好ましい。なお、本実施形態における紫外線硬化性成分(A)が、架橋剤を含有する場合には、官能基含有アクリル系重合体(A1-1)は、架橋剤と反応する官能基を有する官能基含有モノマーを構成成分として含有することが好ましく、当該官能基含有モノマーは、上記硬化性基含有化合物が有する置換基と反応可能な官能基を有する官能基含有モノマーが兼ねてもよい。 As the functional group of the acrylic monomer containing a functional group (functional group of the functional group-containing monomer), one that can react with the substituent of the curable group-containing compound (A1-2) is selected. Examples of such a functional group include a hydroxy group, a carboxy group, an amino group, a substituted amino group, and an epoxy group, and among them, a hydroxy group is preferable. When the ultraviolet curable component (A) in the present embodiment contains a crosslinking agent, the functional group-containing acrylic polymer (A1-1) contains a functional group having a functional group that reacts with the crosslinking agent. It is preferable to contain a monomer as a constituent component, and the functional group-containing monomer may also serve as a functional group-containing monomer having a functional group capable of reacting with the substituent of the curable group-containing compound.
 ヒドロキシ基を含有するアクリル系モノマー(ヒドロキシ基含有モノマー)としては、例えば、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸3-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシブチル等の(メタ)アクリル酸ヒドロキシアルキルエステルなどが挙げられる。これらの中でも、硬化性基含有化合物(A1-2)との反応性の点から(メタ)アクリル酸2-ヒドロキシエチルが好ましい。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Examples of the acrylic monomer containing a hydroxy group (hydroxy group-containing monomer) include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, ( And (meth) acrylic acid hydroxyalkyl esters such as 2-hydroxybutyl (meth) acrylate, 3-hydroxybutyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate. Among these, 2-hydroxyethyl (meth) acrylate is preferable from the viewpoint of reactivity with the curable group-containing compound (A1-2). These may be used alone or in combination of two or more.
 官能基を含有しないアクリル系モノマーは、(メタ)アクリル酸アルキルエステルモノマーを含むことが好ましい。(メタ)アクリル酸アルキルエステルモノマーとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸n-ペンチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸n-デシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ミリスチル、(メタ)アクリル酸パルミチル、(メタ)アクリル酸ステアリル等が挙げられる。(メタ)アクリル酸アルキルエステルモノマーの中でも、アルキル基の炭素数が1~18であるものが好ましく、特に炭素数が1~4であるものが好ましい。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 The acrylic monomer that does not contain a functional group preferably contains a (meth) acrylic acid alkyl ester monomer. Examples of (meth) acrylic acid alkyl ester monomers include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, and (meth) acrylic acid n- Pentyl, n-hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isooctyl (meth) acrylate, n-decyl (meth) acrylate, lauryl (meth) acrylate, myristyl (meth) acrylate, Examples include palmityl (meth) acrylate and stearyl (meth) acrylate. Among the (meth) acrylic acid alkyl ester monomers, those having 1 to 18 carbon atoms in the alkyl group are preferable, and those having 1 to 4 carbon atoms are particularly preferable. These may be used alone or in combination of two or more.
 官能基を含有しないアクリル系モノマーは、上記(メタ)アクリル酸アルキルエステルモノマー以外にも、例えば、(メタ)アクリル酸メトキシメチル、(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸エトキシメチル、(メタ)アクリル酸エトキシエチル等のアルコキシアルキル基含有(メタ)アクリル酸エステル、(メタ)アクリル酸フェニル等の芳香族環を有する(メタ)アクリル酸エステル、アクリルアミド、メタクリルアミド等の非架橋性のアクリルアミド、(メタ)アクリル酸N,N-ジメチルアミノエチル、(メタ)アクリル酸N,N-ジメチルアミノプロピル等の非架橋性の3級アミノ基を有する(メタ)アクリル酸エステルなどを含んでもよい。 In addition to the above (meth) acrylic acid alkyl ester monomer, acrylic monomers not containing functional groups include, for example, methoxymethyl (meth) acrylate, methoxyethyl (meth) acrylate, ethoxymethyl (meth) acrylate, ( Non-crosslinkable acrylamides such as (meth) acrylic acid esters containing alkenyl groups such as ethoxyethyl (meth) acrylate and aromatic rings such as phenyl (meth) acrylate, acrylamide and methacrylamide (Meth) acrylic acid ester having a non-crosslinking tertiary amino group such as N, N-dimethylaminoethyl (meth) acrylate and N, N-dimethylaminopropyl (meth) acrylate may also be included.
 アクリル系モノマー以外のモノマーとしては、例えば、エチレン、ノルボルネン等のオレフィン、酢酸ビニル、スチレン等が挙げられる。 Examples of monomers other than acrylic monomers include olefins such as ethylene and norbornene, vinyl acetate, and styrene.
 官能基含有アクリル系重合体(A1-1)における、官能基含有アクリル系重合体(A1-1)全体の質量に占める官能基含有モノマー由来の構造部分の質量の割合は、0.1~50質量%であることが好ましく、特に1~40質量%であることが好ましく、さらには3~30質量%であることが好ましい。これにより、硬化性基含有化合物(A1-2)による硬化性基の導入量(および架橋剤との反応量)を所望の量に調整して、得られる保護膜の硬化の程度(架橋の程度)を好ましい範囲に制御することができる。 In the functional group-containing acrylic polymer (A1-1), the proportion of the mass of the structural portion derived from the functional group-containing monomer in the total mass of the functional group-containing acrylic polymer (A1-1) is 0.1-50. The content is preferably 1% by mass, particularly preferably 1 to 40% by mass, and further preferably 3 to 30% by mass. As a result, the amount of the curable group introduced by the curable group-containing compound (A1-2) (and the amount of reaction with the crosslinking agent) is adjusted to a desired amount, and the degree of curing of the resulting protective film (degree of crosslinking) ) Can be controlled within a preferable range.
 官能基含有アクリル系重合体(A1-1)は、上記各モノマーを常法によって共重合することにより得られる。官能基含有アクリル系重合体(A1-1)の重合態様は、ランダム共重合体であってもよいし、ブロック共重合体であってもよい。 The functional group-containing acrylic polymer (A1-1) can be obtained by copolymerizing the above monomers by a conventional method. The polymerization mode of the functional group-containing acrylic polymer (A1-1) may be a random copolymer or a block copolymer.
 硬化性基含有化合物(A1-2)は、官能基含有アクリル系重合体(A1-1)が有する官能基と反応する置換基および紫外線硬化性炭素-炭素二重結合を有するものである。官能基含有アクリル系重合体(A1-1)が有する官能基と反応する置換基としては、例えば、イソシアネート基、エポキシ基、カルボキシ基等が挙げられ、中でもヒドロキシ基との反応性の高いイソシアネート基が好ましい。 The curable group-containing compound (A1-2) has a substituent that reacts with the functional group of the functional group-containing acrylic polymer (A1-1) and an ultraviolet curable carbon-carbon double bond. Examples of the substituent that reacts with the functional group of the functional group-containing acrylic polymer (A1-1) include an isocyanate group, an epoxy group, and a carboxy group. Among them, an isocyanate group that is highly reactive with a hydroxy group. Is preferred.
 硬化性基含有化合物(A1-2)は、紫外線硬化性炭素-炭素二重結合を、硬化性基含有化合物(A1-2)の1分子毎に1~5個含むことが好ましく、特に1~2個含むことが好ましい。 The curable group-containing compound (A1-2) preferably contains 1 to 5 ultraviolet curable carbon-carbon double bonds per molecule of the curable group-containing compound (A1-2), particularly 1 to It is preferable to include two.
 このような硬化性基含有化合物(A1-2)としては、例えば、2-メタクリロイルオキシエチルイソシアネート、メタ-イソプロペニル-α,α-ジメチルベンジルイソシアネート、メタクリロイルイソシアネート、アリルイソシアネート、1,1-ビス(アクリロイルオキシメチル)エチルイソシアネート;ジイソシアネート化合物またはポリイソシアネート化合物と、ヒドロキシエチル(メタ)アクリレートとの反応により得られるアクリロイルモノイソシアネート化合物;ジイソシアネート化合物またはポリイソシアネート化合物と、ポリオール化合物と、ヒドロキシエチル(メタ)アクリレートとの反応により得られるアクリロイルモノイソシアネート化合物などが挙げられる。これらの中でも、特に2-メタクリロイルオキシエチルイソシアネートが好ましい。硬化性基含有化合物(A1-2)は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。 Examples of such a curable group-containing compound (A1-2) include 2-methacryloyloxyethyl isocyanate, meta-isopropenyl-α, α-dimethylbenzyl isocyanate, methacryloyl isocyanate, allyl isocyanate, 1,1-bis ( Acryloyloxymethyl) ethyl isocyanate; acryloyl monoisocyanate compound obtained by reaction of diisocyanate compound or polyisocyanate compound with hydroxyethyl (meth) acrylate; diisocyanate compound or polyisocyanate compound, polyol compound, and hydroxyethyl (meth) acrylate And an acryloyl monoisocyanate compound obtained by the reaction. Among these, 2-methacryloyloxyethyl isocyanate is particularly preferable. As the curable group-containing compound (A1-2), one kind can be used alone, or two or more kinds can be used in combination.
 紫外線硬化性基が導入された重合体(A1)は、硬化性基含有化合物(A1-2)に由来する硬化性基を、当該重合体(A1)が有する官能基(硬化性基含有化合物(A1-2)の置換基と反応する官能基)に対して、20~120モル%含有することが好ましく、特に35~100モル%含有することが好ましく、さらには50~100モル%含有することが好ましい。なお、硬化性基含有化合物(A1-2)が一官能の場合は、上限は100モル%となるが、硬化性基含有化合物(A1-2)が多官能の場合は、100モル%を超えることがある。上記官能基に対する硬化性基の比率が上記範囲内にあることにより、紫外線硬化後の保護膜の接着力を非常に優れたものにすることができる。 The polymer (A1) into which the ultraviolet curable group has been introduced has a curable group derived from the curable group-containing compound (A1-2) as a functional group (curable group-containing compound (A1)). It is preferably contained in an amount of 20 to 120 mol%, particularly preferably 35 to 100 mol%, more preferably 50 to 100 mol%, based on the functional group reacting with the substituent of A1-2). Is preferred. When the curable group-containing compound (A1-2) is monofunctional, the upper limit is 100 mol%, but when the curable group-containing compound (A1-2) is polyfunctional, it exceeds 100 mol%. Sometimes. When the ratio of the curable group to the functional group is within the above range, the adhesive strength of the protective film after UV curing can be made extremely excellent.
 紫外線硬化性基が導入された重合体(A1)の重量平均分子量(Mw)は、10万~200万であることが好ましく、30万~150万であることがより好ましい。なお、本明細書における重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法により測定した標準ポリスチレン換算の値である。 The weight average molecular weight (Mw) of the polymer (A1) having an ultraviolet curable group introduced is preferably 100,000 to 2,000,000, and more preferably 300,000 to 1,500,000. In addition, the weight average molecular weight in this specification is the value of standard polystyrene conversion measured by the gel permeation chromatography (GPC) method.
(1-2)紫外線硬化性を有しない重合体(A2)
 本実施形態における紫外線硬化性成分(A)が紫外線硬化性を有しない重合体(A2)を含有する場合、当該重合体(A2)は、保護膜形成フィルムにそのまま含有されていてもよく、また少なくともその一部が架橋剤と架橋反応を行って架橋物として含有されていてもよい。重合体(A2)としては、フェノキシ樹脂、アクリル系重合体(A2-1)、ウレタン樹脂、ポリエステル樹脂、ゴム系樹脂、アクリルウレタン樹脂等が挙げられる。これらのうち、アクリル系重合体(A2-1)を用いる場合について詳しく説明する。
(1-2) Polymer having no ultraviolet curing property (A2)
When the ultraviolet curable component (A) in this embodiment contains a polymer (A2) that does not have ultraviolet curable properties, the polymer (A2) may be contained as it is in the protective film-forming film, At least a part thereof may be contained as a crosslinked product by performing a crosslinking reaction with a crosslinking agent. Examples of the polymer (A2) include phenoxy resin, acrylic polymer (A2-1), urethane resin, polyester resin, rubber resin, acrylic urethane resin, and the like. Of these, the case of using the acrylic polymer (A2-1) will be described in detail.
 アクリル系重合体(A2-1)としては、従来公知のアクリル系の重合体を用いることができる。アクリル系重合体(A2-1)は、1種類のアクリル系モノマーから形成された単独重合体であってもよいし、複数種類のアクリル系モノマーから形成された共重合体であってもよいし、1種類または複数種類のアクリル系モノマーとアクリル系モノマー以外のモノマーとから形成された共重合体であってもよい。アクリル系モノマーとなる化合物の具体的な種類は特に限定されず、(メタ)アクリル酸、(メタ)アクリル酸エステル、その誘導体(アクリロニトリル、イタコン酸など)が具体例として挙げられる。(メタ)アクリル酸エステルについてさらに具体例を示せば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート等の鎖状骨格を有する(メタ)アクリレート;シクロへキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、イミドアクリレート等の環状骨格を有する(メタ)アクリレート;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート等のヒドロキシ基を有する(メタ)アクリレート;グリシジル(メタ)アクリレート、N-メチルアミノエチル(メタ)アクリレート等のヒドロキシ基以外の反応性官能基を有する(メタ)アクリレートが挙げられる。また、アクリル系モノマー以外のモノマーとして、エチレン、ノルボルネン等のオレフィン、酢酸ビニル、スチレンなどが例示される。なお、アクリル系モノマーがアルキル(メタ)アクリレートである場合には、そのアルキル基の炭素数は1~18の範囲であることが好ましい。 A conventionally known acrylic polymer can be used as the acrylic polymer (A2-1). The acrylic polymer (A2-1) may be a homopolymer formed from one type of acrylic monomer, or may be a copolymer formed from a plurality of types of acrylic monomers. It may be a copolymer formed from one or more types of acrylic monomers and monomers other than acrylic monomers. Specific types of the compound that becomes the acrylic monomer are not particularly limited, and specific examples include (meth) acrylic acid, (meth) acrylic acid ester, and derivatives thereof (acrylonitrile, itaconic acid, and the like). Specific examples of (meth) acrylic acid esters include chain skeletons such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate. Cyclic skeletons such as cyclohexyl (meth) acrylate, benzyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, and imide acrylate (Meth) acrylate having a hydroxy group such as 2-hydroxyethyl (meth) acrylate and 2-hydroxypropyl (meth) acrylate; glycidyl (meth) acrylate, N-methyl Having a reactive functional group other than hydroxy group, such as Minoechiru (meth) acrylate (meth) acrylate. Examples of monomers other than acrylic monomers include olefins such as ethylene and norbornene, vinyl acetate, and styrene. When the acrylic monomer is an alkyl (meth) acrylate, the alkyl group preferably has 1 to 18 carbon atoms.
 本実施形態における紫外線硬化性成分(A)が架橋剤を含有する場合には、アクリル系重合体(A2-1)は、架橋剤と反応する反応性官能基を有することが好ましい。反応性官能基の種類は特に限定されず、架橋剤の種類などに基づいて適宜決定すればよい。 When the ultraviolet curable component (A) in the present embodiment contains a crosslinking agent, the acrylic polymer (A2-1) preferably has a reactive functional group that reacts with the crosslinking agent. The type of the reactive functional group is not particularly limited, and may be appropriately determined based on the type of the crosslinking agent.
 例えば、架橋剤がポリイソシアネート化合物である場合には、アクリル系重合体(A2-1)が有する反応性官能基として、ヒドロキシ基、カルボキシ基、アミノ基などが例示され、中でもイソシアネート基との反応性の高いヒドロキシ基が好ましい。また、架橋剤がエポキシ系化合物である場合には、アクリル系重合体(A2-1)が有する反応性官能基として、カルボキシ基、アミノ基、アミド基などが例示され、中でもエポキシ基との反応性の高いカルボキシ基が好ましい。カルボキシ基は、アクリル系重合体(A2-1)が有する反応性官能基全体に対し、12wt%以下であることが好ましい。 For example, when the crosslinking agent is a polyisocyanate compound, examples of the reactive functional group possessed by the acrylic polymer (A2-1) include a hydroxy group, a carboxy group, and an amino group. A highly functional hydroxy group is preferred. Further, when the crosslinking agent is an epoxy compound, examples of the reactive functional group possessed by the acrylic polymer (A2-1) include a carboxy group, an amino group, an amide group, and the like. A highly functional carboxy group is preferred. The carboxy group is preferably 12 wt% or less based on the entire reactive functional group of the acrylic polymer (A2-1).
 アクリル系重合体(A2-1)に反応性官能基を導入する方法は特に限定されず、一例として、反応性官能基を有するモノマーを用いてアクリル系重合体(A2-1)を形成し、反応性官能基を有するモノマーに基づく構成単位を重合体の骨格に含有させる方法が挙げられる。例えば、アクリル系重合体(A2-1)にヒドロキシ基を導入する場合は、2-ヒドロキシエチルアクリレートなどのヒドロキシ基を有するモノマーを用いてアクリル系重合体(A2-1)を形成すればよい。 The method for introducing the reactive functional group into the acrylic polymer (A2-1) is not particularly limited. As an example, the acrylic polymer (A2-1) is formed using a monomer having a reactive functional group, Examples thereof include a method in which a structural unit based on a monomer having a reactive functional group is contained in the polymer skeleton. For example, when a hydroxy group is introduced into the acrylic polymer (A2-1), the acrylic polymer (A2-1) may be formed using a monomer having a hydroxy group such as 2-hydroxyethyl acrylate.
 アクリル系重合体(A2-1)が反応性官能基を有する場合には、架橋の程度を良好な範囲にする観点から、アクリル系重合体(A2-1)全体の質量に占める反応性官能基を有するモノマー由来の構造部分の質量の割合が、1~20質量%程度であることが好ましく、2~10質量%であることがより好ましい。 When the acrylic polymer (A2-1) has a reactive functional group, the reactive functional group occupies the total mass of the acrylic polymer (A2-1) from the viewpoint of making the degree of crosslinking in a favorable range. The proportion of the mass of the structural portion derived from the monomer having the above is preferably about 1 to 20% by mass, and more preferably 2 to 10% by mass.
 アクリル系重合体(A2-1)の重量平均分子量(Mw)は、塗工時の造膜性の観点から1万~200万であることが好ましく、10万~150万であることがより好ましい。 The weight average molecular weight (Mw) of the acrylic polymer (A2-1) is preferably 10,000 to 2,000,000, more preferably 100,000 to 1,500,000 from the viewpoint of film forming properties at the time of coating. .
(1-3)紫外線硬化性化合物(A3)
 紫外線硬化性成分(A)は、紫外線硬化性基が導入された重合体(A1)を除く紫外線硬化性化合物(A3)を含有するものであってもよく、この場合、上述した紫外線硬化性を有しない重合体(A2)を合わせて含有することが好ましい。また、紫外線硬化性を有しない重合体(A2)に代えて、またはこれと共に紫外線硬化性基が導入された重合体(A1)を含有していてもよい。紫外線硬化性化合物(A3)は、紫外線硬化性基を有し、紫外線の照射を受けると重合する化合物である。
(1-3) UV curable compound (A3)
The ultraviolet curable component (A) may contain an ultraviolet curable compound (A3) excluding the polymer (A1) into which an ultraviolet curable group is introduced. It is preferable to contain the polymer (A2) that is not included. Moreover, it may replace with the polymer (A2) which does not have ultraviolet curing property, or may contain the polymer (A1) by which the ultraviolet curing group was introduce | transduced with this. The ultraviolet curable compound (A3) is a compound having an ultraviolet curable group and polymerized when irradiated with ultraviolet rays.
 紫外線硬化性化合物(A3)が有する紫外線硬化性基は、例えば紫外線硬化性の炭素-炭素二重結合を含む基であり、具体的には、(メタ)アクリロイル基、ビニル基などを例示することができる。 The ultraviolet curable group possessed by the ultraviolet curable compound (A3) is, for example, a group containing an ultraviolet curable carbon-carbon double bond, and examples thereof include a (meth) acryloyl group and a vinyl group. Can do.
 紫外線硬化性化合物(A3)の例としては、上記の紫外線硬化性基を有していれば特に限定されないが、汎用性の観点から低分子量化合物(単官能、多官能のモノマーおよびオリゴマー)であることが好ましい。低分子量の紫外線硬化性化合物(A3)の具体例としては、トリメチロールプロパントリアクリレート、テトラメチロールメタンテトラアクリレート、ペンタエリスリトールトリアクリレート、ジペンタエリスリトールモノヒドロキシペンタアクリレート、ジペンタエリスリトールヘキサアクリレートあるいは1,4-ブチレングリコールジアクリレート、1,6-ヘキサンジオールジアクリレート、ジシクロペンタジエンジメトキシジアクリレート、イソボルニルアクリレートなどの環状脂肪族骨格含有アクリレート、ポリエチレングリコールジアクリレート、オリゴエステルアクリレート、ウレタンアクリレートオリゴマー、エポキシ変性アクリレート、ポリエーテルアクリレート、イタコン酸オリゴマーなどのアクリレート系化合物が挙げられる。 Although it will not specifically limit as an example of an ultraviolet curable compound (A3) if it has said ultraviolet curable group, From a versatility viewpoint, it is a low molecular weight compound (monofunctional and polyfunctional monomer and oligomer). It is preferable. Specific examples of the low molecular weight ultraviolet curable compound (A3) include trimethylolpropane triacrylate, tetramethylolmethane tetraacrylate, pentaerythritol triacrylate, dipentaerythritol monohydroxypentaacrylate, dipentaerythritol hexaacrylate, and 1,4 -Cyclic aliphatic skeleton-containing acrylates such as butylene glycol diacrylate, 1,6-hexanediol diacrylate, dicyclopentadiene dimethoxydiacrylate, isobornyl acrylate, polyethylene glycol diacrylate, oligoester acrylate, urethane acrylate oligomer, epoxy-modified Acrylate compounds such as acrylate, polyether acrylate, itaconic acid oligomers It is below.
 また、紫外線硬化性化合物(A3)の例として、紫外線硬化性基を有するエポキシ樹脂、紫外線硬化性基を有するフェノール樹脂等も挙げられる。このような樹脂は、たとえば、特開2013-194102号公報に記載されているものを用いることができる。このような樹脂は、後述する熱硬化性成分(C)を構成する樹脂にも該当するが、紫外線硬化にも寄与するため、本発明においては紫外線硬化性化合物(A)として扱う。 Also, examples of the ultraviolet curable compound (A3) include an epoxy resin having an ultraviolet curable group and a phenol resin having an ultraviolet curable group. As such a resin, for example, those described in JP 2013-194102 A can be used. Such a resin corresponds to a resin constituting the thermosetting component (C) described later, but also contributes to ultraviolet curing, and is therefore treated as an ultraviolet curable compound (A) in the present invention.
 紫外線硬化性化合物(A3)は、通常は分子量が100~30000、好ましくは300~10000程度である。一般的に、重合体(A1)及び重合体(A2)の合計量100質量部に対し、紫外線硬化性化合物(A3)は10~400質量部、好ましくは30~350質量部程度の割合で用いられる。 The UV curable compound (A3) usually has a molecular weight of about 100 to 30,000, preferably about 300 to 10,000. In general, the ultraviolet curable compound (A3) is used in a proportion of about 10 to 400 parts by weight, preferably about 30 to 350 parts by weight with respect to 100 parts by weight of the total amount of the polymer (A1) and the polymer (A2). It is done.
 本実施形態に係る保護膜形成フィルムは、保護膜形成フィルムの質量に対し、紫外線硬化性成分(A)を5~89質量%含有することが好ましく、特に10~80質量%含有することが好ましく、さらには20~70質量%含有することが好ましい。紫外線硬化性成分(A)の含有量が上記の範囲内であることで、紫外線照射によって十分に硬化可能なものとなる。 The protective film-forming film according to this embodiment preferably contains 5 to 89% by mass of the ultraviolet curable component (A), particularly preferably 10 to 80% by mass, based on the mass of the protective film-forming film. Further, it is preferable to contain 20 to 70% by mass. When the content of the ultraviolet curable component (A) is within the above range, it can be sufficiently cured by ultraviolet irradiation.
(2)着色剤(B)
 着色剤(B)としては、例えば、無機系顔料、有機系顔料、有機系染料など公知のものを使用することができるが、光線透過率の制御性を高める観点から、着色剤(B)は有機系の着色剤であることが好ましい。上述したように、本実施形態に係る保護膜形成フィルムが備える特性または本実施形態に係る保護膜形成フィルムについて好ましい特性は、波長375nmの光線透過率が8%以上であり、波長550nmの光線透過率が12%以下である等、ある波長領域において、それよりも低い波長領域におけるよりも、低い光線透過率を示すという特性である。ここで、無機系の着色剤のみを用いた場合には、光線の波長が増加するにつれて、光線透過率が一次関数的に上昇していく傾向がある(後述する試験例1の結果・図5参照)。したがって、本実施形態に係る保護膜形成フィルムが無機系の着色剤のみを含有する場合には、本実施形態に係る保護膜形成フィルムに上記のような特性を付与することは必ずしも容易でない。一方、本実施形態に係る保護膜形成フィルムが有機系の着色剤を含有する場合には、本実施形態に係る保護膜形成フィルムを、上記のような特性を満たすものとすることが容易となる。また、着色剤の化学的安定性(具体的には、溶出しにくさ、色移りの生じにくさ、経時変化の少なさが例示される。)を高める観点から、着色剤(B)は顔料からなることが好ましい。したがって、本実施形態に係る保護膜形成フィルムが含有する着色剤(B)は、有機系顔料からなることが好ましい。なお、本実施形態に係る保護膜形成フィルムが含有する着色剤(B)は、複数種類の材料から構成されていてもよい。
(2) Colorant (B)
As the colorant (B), for example, known pigments such as inorganic pigments, organic pigments, and organic dyes can be used. From the viewpoint of improving the light transmittance, the colorant (B) is An organic colorant is preferred. As described above, the characteristics of the protective film-forming film according to this embodiment or the preferable characteristics of the protective film-forming film according to this embodiment are that the light transmittance at a wavelength of 375 nm is 8% or more and the light transmittance at a wavelength of 550 nm. The characteristic is that the light transmittance is lower in a certain wavelength region than in a lower wavelength region, such as a rate of 12% or less. Here, when only the inorganic colorant is used, the light transmittance tends to increase linearly as the wavelength of the light increases (results of Test Example 1 described later, FIG. 5). reference). Therefore, when the protective film-forming film according to this embodiment contains only an inorganic colorant, it is not always easy to impart the above properties to the protective film-forming film according to this embodiment. On the other hand, when the protective film-forming film according to this embodiment contains an organic colorant, the protective film-forming film according to this embodiment can easily satisfy the above-described characteristics. . Further, from the viewpoint of enhancing the chemical stability of the colorant (specifically, the elution is difficult, the color transfer is difficult to occur, and the change over time is exemplified), the colorant (B) is a pigment. Preferably it consists of. Therefore, the colorant (B) contained in the protective film-forming film according to the present embodiment is preferably composed of an organic pigment. In addition, the coloring agent (B) which the protective film formation film which concerns on this embodiment contains may be comprised from multiple types of material.
 有機系の着色剤である有機系顔料および有機系染料としては、例えば、アミニウム系色素、シアニン系色素、メロシアニン系色素、クロコニウム系色素、スクアリウム系色素、アズレニウム系色素、ポリメチン系色素、ナフトキノン系色素、ピリリウム系色素、フタロシアニン系色素、ナフタロシアニン系色素、ナフトラクタム系色素、アゾ系色素、アゾレーキ系色素、縮合アゾ系色素、インジゴ系色素、ペリノン系色素、ペリレン系色素、ジオキサジン系色素、キナクリドン系色素、イソインドリノン系色素、キノフタロン系色素、ピロール系色素、チオインジゴ系色素、金属錯体系色素(金属錯塩染料)、ジチオール金属錯体系色素、インドールフェノール系色素、トリアリルメタン系色素、アントラキノン系色素、ジオキサジン系色素、ナフトール系色素、アゾメチン系色素、ベンズイミダゾロン系色素、ピランスロン系色素およびスレン系色素等が挙げられる。 Examples of organic pigments and organic dyes that are organic colorants include aminium dyes, cyanine dyes, merocyanine dyes, croconium dyes, squalium dyes, azurenium dyes, polymethine dyes, and naphthoquinone dyes. , Pyrylium dyes, phthalocyanine dyes, naphthalocyanine dyes, naphtholactam dyes, azo dyes, azo lake dyes, condensed azo dyes, indigo dyes, perinone dyes, perylene dyes, dioxazine dyes, quinacridone dyes , Isoindolinone dyes, quinophthalone dyes, pyrrole dyes, thioindigo dyes, metal complex dyes (metal complex dyes), dithiol metal complex dyes, indolephenol dyes, triallylmethane dyes, anthraquinone dyes, Dioxazine color , Naphthol dyes, azomethine dyes, benzimidazolone pigments, pyranthrone pigments and threne pigments, and the like.
 無機系顔料としては、例えば、カーボンブラック、コバルト系色素、鉄系色素、クロム系色素、チタン系色素、バナジウム系色素、ジルコニウム系色素、モリブデン系色素、ルテニウム系色素、白金系色素、ITO(インジウムスズオキサイド)系色素、ATO(アンチモンスズオキサイド)系色素等が挙げられる。 Examples of inorganic pigments include carbon black, cobalt dyes, iron dyes, chromium dyes, titanium dyes, vanadium dyes, zirconium dyes, molybdenum dyes, ruthenium dyes, platinum dyes, ITO (indium) Tin oxide) dyes, ATO (antimony tin oxide) dyes, and the like.
 本実施形態に係る保護膜形成フィルム中における着色剤(B)は、有機系の着色剤および無機系の着色剤から構成されていてもよい。 The colorant (B) in the protective film-forming film according to the present embodiment may be composed of an organic colorant and an inorganic colorant.
 また、本実施形態に係る保護膜形成フィルムは、赤色着色剤を含有することが好ましい。保護膜形成フィルムが赤色着色剤を含有することにより、波長375nmおよび波長550nm(さらには波長1600nm)の光線透過率を前述した範囲に制御することがさらに容易となる。赤色着色剤は、顔料であってもよいし、染料であってもよい。赤色着色剤としては、例えば、モノアゾ系、ジズアゾ系、アゾレーキ系、ベンズイミダゾロン系、ペリレン系、ジケトピロロピロール系、縮合アゾ系、アントラキノン系、キナクリドン系等の着色剤が挙げられる。これらは、1種を単独でまたは2種以上を混合して用いることができる。 Moreover, it is preferable that the protective film-forming film according to this embodiment contains a red colorant. When the protective film-forming film contains a red colorant, the light transmittance at a wavelength of 375 nm and a wavelength of 550 nm (more preferably, a wavelength of 1600 nm) can be more easily controlled within the above-described range. The red colorant may be a pigment or a dye. Examples of the red colorant include monoazo, diazo, azo lake, benzimidazolone, perylene, diketopyrrolopyrrole, condensed azo, anthraquinone, quinacridone, and the like. These can be used individually by 1 type or in mixture of 2 or more types.
 上記の中でも、ジケトピロロピロール系の赤色着色剤が好ましい。かかる赤色着色剤によれば、波長375nmおよび波長550nmの光線透過率を前述した範囲に制御し易い。 Of these, diketopyrrolopyrrole red colorants are preferred. According to such a red colorant, the light transmittance at a wavelength of 375 nm and a wavelength of 550 nm can be easily controlled within the above-described range.
 保護膜形成フィルム中における着色剤(B)の含有量は、光線透過率が前述した範囲となるよう、保護膜形成フィルムの厚さに応じて決定することが好ましい。具体的には、保護膜形成フィルムにおける着色剤(B)の含有量W(保護膜形成フィルム全質量に対する質量%)を、保護膜形成フィルムの厚さT(μm)で除した値W/Tが、0.01~0.5となることが好ましく、特に0.03~0.3となることが好ましく、さらには0.05~0.25となることが好ましい。W/Tが0.5以上であると、波長550nmの光線透過率を12%以下に制御し易く、W/Tが0.01以下であると、波長375nmの光線透過率を13%以上に制御し易い。 The content of the colorant (B) in the protective film-forming film is preferably determined according to the thickness of the protective film-forming film so that the light transmittance is in the range described above. Specifically, a value W / T obtained by dividing the content W (% by mass with respect to the total mass of the protective film forming film) of the colorant (B) in the protective film forming film by the thickness T (μm) of the protective film forming film. However, it is preferably 0.01 to 0.5, particularly preferably 0.03 to 0.3, and more preferably 0.05 to 0.25. When W / T is 0.5 or more, it is easy to control the light transmittance at a wavelength of 550 nm to 12% or less, and when W / T is 0.01 or less, the light transmittance at a wavelength of 375 nm is set to 13% or more. Easy to control.
(3)フィラー(C)
 フィラー(C)としては、結晶シリカ、溶融シリカ、合成シリカ等のシリカや、アルミナ、ガラスバルーン等の無機フィラーが挙げられる。中でもシリカが好ましく、合成シリカがより好ましく、特に半導体装置の誤作動の要因となるα線の線源を極力除去したタイプの合成シリカが最適である。フィラー(C)の形状としては、球形、針状、不定形等が挙げられるが、球形であることが好ましく、特に真球形であることが好ましい。フィラーが球形または真球形であると、光線の乱反射が生じ難く、前述した赤外線検査を良好に行うことができる。ここで不定形とは、表面形状が不規則な形状を意味する。不定形の表面は、多面であってもよいし、一つの曲面であってもよい。表面が多面である場合、それぞれの面は、平面でも曲面でもよく、これらが混在していてもよい。また表面が多面である場合、それぞれの面の面積は、異なっていてよい。表面形状は突形状を有していてもよいし、凹形状を有していてもよい。
(3) Filler (C)
Examples of the filler (C) include silica such as crystalline silica, fused silica and synthetic silica, and inorganic filler such as alumina and glass balloon. Among these, silica is preferable, synthetic silica is more preferable, and synthetic silica of the type in which α-ray sources that cause malfunction of the semiconductor device are removed as much as possible is optimal. Examples of the shape of the filler (C) include a spherical shape, a needle shape, and an indefinite shape, but a spherical shape is preferable, and a true spherical shape is particularly preferable. When the filler is spherical or true spherical, irregular reflection of light hardly occurs, and the above-described infrared inspection can be performed satisfactorily. Here, the irregular shape means a shape having an irregular surface shape. The irregular surface may be multifaceted or a single curved surface. When the surface is polyhedral, each surface may be a flat surface or a curved surface, or these may be mixed. When the surface is multifaceted, the area of each face may be different. The surface shape may have a protruding shape or may have a concave shape.
 また、保護膜形成フィルムには、上記無機フィラーの他にも、機能性のフィラーが配合されてもよい。機能性のフィラーとしては、例えば、ダイボンド後の導電性の付与を目的とした、金、銀、銅、ニッケル、アルミニウム、ステンレス、カーボン、セラミック、またはニッケル、アルミニウム等を銀で被覆した導電性フィラーや、熱伝導性の付与を目的とした、金、銀、銅、ニッケル、アルミニウム、マグネシウム、ステンレス、シリコン、ゲルマニウム等の金属材料やそれらの合金、酸化物、窒化物、水酸化物等や、窒化ホウ素等の熱伝導性フィラーなどが挙げられる。 In addition to the inorganic filler, a functional filler may be blended in the protective film-forming film. As the functional filler, for example, a conductive filler in which gold, silver, copper, nickel, aluminum, stainless steel, carbon, ceramic, nickel, aluminum, or the like is coated with silver for the purpose of imparting conductivity after die bonding. And for the purpose of imparting thermal conductivity, metal materials such as gold, silver, copper, nickel, aluminum, magnesium, stainless steel, silicon, germanium and their alloys, oxides, nitrides, hydroxides, etc. Examples include thermally conductive fillers such as boron nitride.
 フィラー(C)(特にシリカフィラー)の平均粒径は、0.01~10μmであることが好ましく、0.01~3μmであることがより好ましく、特に0.03~2μmであることが好ましく、さらには0.05~1μmであることが好ましい。フィラー(C)の平均粒径が0.01μm以上であると、半導体チップ等における研削痕が目視で見えないように、波長550nmの光線透過率を13%以下に制御し易い。一方、フィラー(C)の平均粒径が10μm以下であると、保護膜形成フィルムの表面状態を良好に維持することができる。また、フィラー(C)の平均粒径が3μm以下であると、赤外線の乱反射を抑制し、赤外線検査を良好に行うことができる。 The average particle size of the filler (C) (particularly silica filler) is preferably 0.01 to 10 μm, more preferably 0.01 to 3 μm, and particularly preferably 0.03 to 2 μm. Furthermore, it is preferably 0.05 to 1 μm. When the average particle size of the filler (C) is 0.01 μm or more, it is easy to control the light transmittance at a wavelength of 550 nm to 13% or less so that grinding marks on a semiconductor chip or the like cannot be visually observed. On the other hand, the surface state of a protective film formation film can be favorably maintained as the average particle diameter of a filler (C) is 10 micrometers or less. Further, when the average particle diameter of the filler (C) is 3 μm or less, infrared reflection can be suppressed and infrared inspection can be performed satisfactorily.
 なお、本明細書におけるフィラー(C)の1μm未満の平均粒径は、粒度分布測定装置(日機装社製,ナノトラックWave-UT151)を使用して、動的光散乱法により測定した値とする。また、フィラー(C)の1μm以上の平均粒径は、粒度分布測定装置(日機装社製,マイクロトラックMT3000II)を使用して、レーザー回折・散乱法により測定した値とする。 The average particle size of the filler (C) of less than 1 μm in the present specification is a value measured by a dynamic light scattering method using a particle size distribution measuring device (Nikkiso Co., Ltd., Nanotrack Wave-UT151). . The average particle size of 1 μm or more of the filler (C) is a value measured by a laser diffraction / scattering method using a particle size distribution measuring device (manufactured by Nikkiso Co., Ltd., Microtrac MT3000II).
 保護膜形成フィルム中におけるフィラー(C)(特にシリカフィラー)の含有量は、保護膜形成フィルムの質量に対し、10~80質量%であることが好ましく、特に20~70質量%であることが好ましく、さらには30~65質量%であることが好ましい。フィラーの配合量が10質量%以上であると、半導体チップ等における研削痕が目視で見えないように、波長550nmの光線透過率を13%以下に制御し易い。一方、フィラー(C)の配合量が80質量%以下であると、保護膜形成フィルムが紫外線照射によって十分に硬化可能なものとなる。 The content of the filler (C) (particularly silica filler) in the protective film-forming film is preferably 10 to 80% by mass, particularly 20 to 70% by mass, based on the mass of the protective film-forming film. More preferably, the content is 30 to 65% by mass. When the blending amount of the filler is 10% by mass or more, it is easy to control the light transmittance at a wavelength of 550 nm to 13% or less so that grinding marks on a semiconductor chip or the like cannot be visually observed. On the other hand, when the blending amount of the filler (C) is 80% by mass or less, the protective film-forming film can be sufficiently cured by ultraviolet irradiation.
(4)熱硬化性成分(D)
 熱硬化性成分(D)としては、例えば、エポキシ樹脂、フェノール樹脂、メラミン樹脂、尿素樹脂、ポリエステル樹脂、ウレタン樹脂、アクリル樹脂、ポリイミド樹脂、ベンゾオキサジン樹脂等およびこれらの混合物が挙げられる。これらの中でも、エポキシ樹脂、フェノール樹脂およびこれらの混合物が好ましく用いられる。
(4) Thermosetting component (D)
Examples of the thermosetting component (D) include epoxy resins, phenol resins, melamine resins, urea resins, polyester resins, urethane resins, acrylic resins, polyimide resins, benzoxazine resins, and mixtures thereof. Among these, an epoxy resin, a phenol resin, and a mixture thereof are preferably used.
 エポキシ樹脂は、加熱を受けると三次元網状化し、強固な被膜を形成する性質を有する。このようなエポキシ樹脂としては、従来より公知の種々のエポキシ樹脂が用いられるが、通常は、分子量300~2000程度のものが好ましく、特に分子量300~500のものが好ましい。さらには、分子量330~400の常態で液状のエポキシ樹脂と、分子量400~2500、特に500~2000の常温で固体のエポキシ樹脂とをブレンドした形で用いることが好ましい。また、エポキシ樹脂のエポキシ当量は、50~5000g/eqであることが好ましい。 Epoxy resin has the property of forming a three-dimensional network and forming a strong film when heated. As such an epoxy resin, conventionally known various epoxy resins are used, and those having a molecular weight of about 300 to 2000 are usually preferred, and those having a molecular weight of 300 to 500 are particularly preferred. Further, it is preferably used in a form in which a normal and liquid epoxy resin having a molecular weight of 330 to 400 is blended with a solid epoxy resin having a molecular weight of 400 to 2500, particularly 500 to 2000 at room temperature. The epoxy equivalent of the epoxy resin is preferably 50 to 5000 g / eq.
 このようなエポキシ樹脂としては、具体的には、ビスフェノールA、ビスフェノールF、レゾルシノール、フェニルノボラック、クレゾールノボラック等のフェノール類のグリシジルエーテル;ブタンジオール、ポリエチレングリコール、ポリプロピレングリコール等のアルコール類のグリシジルエーテル;フタル酸、イソフタル酸、テトラヒドロフタル酸等のカルボン酸のグリシジルエーテル;アニリンイソシアヌレート等の窒素原子に結合した活性水素をグリシジル基で置換したグリシジル型もしくはアルキルグリシジル型のエポキシ樹脂;ビニルシクロヘキサンジエポキシド、3,4-エポキシシクロヘキシルメチル-3,4-ジシクロヘキサンカルボキシレート、2-(3,4-エポキシ)シクロヘキシル-5,5-スピロ(3,4-エポキシ)シクロヘキサン-m-ジオキサン等のように、分子内の炭素-炭素二重結合を例えば酸化することによりエポキシが導入された、いわゆる脂環型エポキシドを挙げることができる。その他、ビフェニル骨格、ジシクロヘキサジエン骨格、ナフタレン骨格等を有するエポキシ樹脂を用いることもできる。 Specific examples of such epoxy resins include glycidyl ethers of phenols such as bisphenol A, bisphenol F, resorcinol, phenyl novolac, and cresol novolac; glycidyl ethers of alcohols such as butanediol, polyethylene glycol, and polypropylene glycol; Glycidyl ethers of carboxylic acids such as phthalic acid, isophthalic acid, tetrahydrophthalic acid; glycidyl type or alkyl glycidyl type epoxy resins in which active hydrogen bonded to nitrogen atom such as aniline isocyanurate is substituted with glycidyl group; vinylcyclohexane diepoxide; 3,4-epoxycyclohexylmethyl-3,4-dicyclohexanecarboxylate, 2- (3,4-epoxy) cyclohexyl-5,5-spiro (3,4 As such epoxy) cyclohexane -m- dioxane, carbon in the molecule - epoxy is introduced by for example oxidation to carbon double bond include a so-called alicyclic epoxides. In addition, an epoxy resin having a biphenyl skeleton, a dicyclohexadiene skeleton, a naphthalene skeleton, or the like can also be used.
 これらの中でも、ビスフェノール系グリシジル型エポキシ樹脂、o-クレゾールノボラック型エポキシ樹脂およびフェノールノボラック型エポキシ樹脂が好ましく用いられる。これらエポキシ樹脂は、1種を単独で、または2種以上を組み合わせて用いることができる。 Among these, bisphenol-based glycidyl type epoxy resins, o-cresol novolac type epoxy resins and phenol novolac type epoxy resins are preferably used. These epoxy resins can be used alone or in combination of two or more.
 エポキシ樹脂を用いる場合には、助剤として、熱活性型潜在性エポキシ樹脂硬化剤を併用することが好ましい。熱活性型潜在性エポキシ樹脂硬化剤とは、室温ではエポキシ樹脂と反応せず、ある温度以上の加熱により活性化し、エポキシ樹脂と反応するタイプの硬化剤である。熱活性型潜在性エポキシ樹脂硬化剤の活性化方法には、加熱による化学反応で活性種(アニオン、カチオン)を生成する方法;室温付近ではエポキシ樹脂中に安定に分散しており高温でエポキシ樹脂と相溶または溶解し、硬化反応を開始する方法;モレキュラーシーブ封入タイプの硬化剤で高温で溶出して硬化反応を開始する方法;マイクロカプセルによる方法等が存在する。 In the case of using an epoxy resin, it is preferable to use a thermally activated latent epoxy resin curing agent in combination as an auxiliary agent. The thermally activated latent epoxy resin curing agent is a type of curing agent that does not react with the epoxy resin at room temperature but is activated by heating at a certain temperature or more and reacts with the epoxy resin. The heat activated latent epoxy resin curing agent is activated by a method in which active species (anions and cations) are generated by a chemical reaction by heating; the epoxy resin is stably dispersed in the epoxy resin at around room temperature and is heated at a high temperature. And a method of initiating a curing reaction by dissolving or dissolving with a molecular sieve; a method of initiating a curing reaction by elution with a molecular sieve encapsulated type curing agent at a high temperature;
 熱活性型潜在性エポキシ樹脂硬化剤の具体例としては、各種オニウム塩や、二塩基酸ジヒドラジド化合物、ジシアンジアミド、アミンアダクト硬化剤、イミダゾール化合物等の高融点活性水素化合物等を挙げることができる。これら熱活性型潜在性エポキシ樹脂硬化剤は、1種を単独で、または2種以上を組み合わせて用いることができる。上記のような熱活性型潜在性エポキシ樹脂硬化剤は、エポキシ樹脂100重量部に対して、好ましくは0.1~20重量部、特に好ましくは0.2~10重量部、さらに好ましくは0.3~5重量部の割合で用いられる。 Specific examples of the thermally active latent epoxy resin curing agent include various onium salts, dibasic acid dihydrazide compounds, dicyandiamide, amine adduct curing agents, high melting point active hydrogen compounds such as imidazole compounds, and the like. These thermally activated latent epoxy resin curing agents can be used singly or in combination of two or more. The heat-activatable latent epoxy resin curing agent as described above is preferably 0.1 to 20 parts by weight, particularly preferably 0.2 to 10 parts by weight, and still more preferably 0.8 to 100 parts by weight of the epoxy resin. It is used at a ratio of 3 to 5 parts by weight.
 フェノール系樹脂としては、アルキルフェノール、多価フェノール、ナフトール等のフェノール類とアルデヒド類との縮合物などが特に制限されることなく用いられる。具体的には、フェノールノボラック樹脂、o-クレゾールノボラック樹脂、p-クレゾールノボラック樹脂、t-ブチルフェノールノボラック樹脂、ジシクロペンタジエンクレゾール樹脂、ポリパラビニルフェノール樹脂、ビスフェノールA型ノボラック樹脂、あるいはこれらの変性物等が用いられる。 As the phenolic resin, a condensate of phenols such as alkylphenol, polyhydric phenol, naphthol and aldehydes is used without any particular limitation. Specifically, phenol novolak resin, o-cresol novolak resin, p-cresol novolak resin, t-butylphenol novolak resin, dicyclopentadiene cresol resin, polyparavinylphenol resin, bisphenol A type novolak resin, or modified products thereof Etc. are used.
 これらのフェノール系樹脂に含まれるフェノール性水酸基は、上記エポキシ樹脂のエポキシ基と加熱により容易に付加反応して、耐衝撃性の高い硬化物を形成することができる。このため、エポキシ樹脂とフェノール系樹脂とを併用してもよい。 The phenolic hydroxyl group contained in these phenolic resins can easily undergo an addition reaction with the epoxy group of the above epoxy resin by heating to form a cured product having high impact resistance. For this reason, you may use together an epoxy resin and a phenol-type resin.
 保護膜形成フィルム中における熱硬化性成分(D)の含有量は、保護膜形成フィルムの質量に対し、1~85質量%であることが好ましく、特に2~75質量%であることが好ましく、さらには5~70質量%であることが好ましい。熱硬化性成分(D)の含有量が上記の範囲内であることで、紫外線硬化性を妨げることなく、熱硬化による保護膜形成フィルムのワークに対する接着力や硬化した保護膜の強度を、効果的に向上させることができる。 The content of the thermosetting component (D) in the protective film-forming film is preferably 1 to 85% by weight, particularly preferably 2 to 75% by weight, based on the weight of the protective film-forming film. Further, it is preferably 5 to 70% by mass. The content of the thermosetting component (D) is within the above-mentioned range, so that the effect of adhering the protective film-forming film to the work by thermosetting and the strength of the cured protective film can be obtained without interfering with the ultraviolet curing property. Can be improved.
(5)その他の成分
 本実施形態に係る保護膜形成フィルムは、光重合開始剤を含有してもよい。光重合開始剤を含有することにより、紫外線硬化性成分(A)の硬化時間および光線照射量を少なくすることができる。光重合開始剤は、紫外線硬化性成分(A)の質量に対し、0.1~15質量%であることが好ましい。
(5) Other components The protective film formation film which concerns on this embodiment may contain a photoinitiator. By containing a photopolymerization initiator, the curing time and the amount of light irradiation of the ultraviolet curable component (A) can be reduced. The photopolymerization initiator is preferably 0.1 to 15% by mass with respect to the mass of the ultraviolet curable component (A).
 光重合開始剤としては、具体的には、ベンゾフェノン、アセトフェノン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンゾイン安息香酸、ベンゾイン安息香酸メチル、ベンゾインジメチルケタール、2,4-ジエチルチオキサンソン、1-ヒドロキシシクロヘキシルフェニルケトン、ベンジルジフェニルサルファイド、テトラメチルチウラムモノサルファイド、アゾビスイソブチロニトリル、ベンジル、ジベンジル、ジアセチル、β-クロールアンスラキノン、(2,4,6-トリメチルベンジルジフェニル)フォスフィンオキサイド、2-ベンゾチアゾール-N,N-ジエチルジチオカルバメート、オリゴ{2-ヒドロキシ-2-メチル-1-[4-(1-プロペニル)フェニル]プロパノン}、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オンなどが挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。 Specific examples of the photopolymerization initiator include benzophenone, acetophenone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, methyl benzoin benzoate, benzoin dimethyl ketal, 2,4 -Diethylthioxanthone, 1-hydroxycyclohexyl phenyl ketone, benzyldiphenyl sulfide, tetramethylthiuram monosulfide, azobisisobutyronitrile, benzyl, dibenzyl, diacetyl, β-chloranthraquinone, (2,4,6-trimethyl Benzyldiphenyl) phosphine oxide, 2-benzothiazole-N, N-diethyldithiocarbamate, oligo {2-hydroxy-2-methyl- - [4- (1-propenyl) phenyl] propanone}, and 2,2-dimethoxy-1,2-and the like. These may be used alone or in combination of two or more.
 また、本実施形態に係る保護膜形成フィルムは、連鎖移動剤を含有してもよい。連鎖移動剤を含有することにより、保護膜形成フィルムの厚さ方向における内部において、紫外線硬化が進行しやすくなるという効果が期待される。連鎖移動剤としては、たとえば、特開2012-207179号に記載されているものを使用することができる。 Moreover, the protective film-forming film according to this embodiment may contain a chain transfer agent. By containing the chain transfer agent, an effect that ultraviolet curing easily proceeds inside the protective film-forming film in the thickness direction is expected. As the chain transfer agent, for example, those described in JP2012-207179A can be used.
 また、本実施形態に係る保護膜形成フィルムは、カップリング剤を含有してもよい。カップリング剤を含有することにより、保護膜形成フィルムの硬化後において、保護膜の耐熱性を損なわずに、保護膜とワークとの接着性や密着性を向上させることができるとともに、耐水性(耐湿熱性)を向上させることができる。カップリング剤としては、その汎用性とコストメリットなどからシランカップリング剤が好ましい。 Further, the protective film-forming film according to this embodiment may contain a coupling agent. By containing the coupling agent, after curing of the protective film-forming film, the adhesiveness and adhesion between the protective film and the workpiece can be improved without impairing the heat resistance of the protective film, and water resistance ( (Moisture and heat resistance) can be improved. As the coupling agent, a silane coupling agent is preferable because of its versatility and cost merit.
 シランカップリング剤としては、例えば、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-(メタクリロキシプロピル)トリメトキシシラン、γ-アミノプロピルトリメトキシシラン、N-6-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-6-(アミノエチル)-γ-アミノプロピルメチルジエトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-ウレイドプロピルトリエトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、ビス(3-トリエトキシシリルプロピル)テトラスルファン、メチルトリメトキシシラン、メチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリアセトキシシラン、イミダゾールシランなどが挙げられる。これらは1種を単独で、または2種以上混合して使用することができる。 Examples of the silane coupling agent include γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ- (methacryloxy). Propyl) trimethoxysilane, γ-aminopropyltrimethoxysilane, N-6- (aminoethyl) -γ-aminopropyltrimethoxysilane, N-6- (aminoethyl) -γ-aminopropylmethyldiethoxysilane, N -Phenyl-γ-aminopropyltrimethoxysilane, γ-ureidopropyltriethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-mercaptopropylmethyldimethoxysilane, bis (3-triethoxysilylpropyl) tetrasulfane, methyltri Methoxysila And methyltriethoxysilane, vinyltrimethoxysilane, vinyltriacetoxysilane, and imidazolesilane. These can be used individually by 1 type or in mixture of 2 or more types.
 本実施形態に係る保護膜形成フィルムは、硬化前の凝集力を調節するために、有機多価イソシアナート化合物、有機多価イミン化合物、有機金属キレート化合物等の架橋剤を含有してもよい。また、保護膜形成フィルムは、静電気を抑制し、チップの信頼性を向上させるために、帯電防止剤を含有してもよい。さらに、保護膜形成フィルムは、保護膜の難燃性能を高め、パッケージとしての信頼性を向上させるために、リン酸化合物、ブロム化合物、リン系化合物等の難燃剤を含有してもよい。 The protective film-forming film according to this embodiment may contain a crosslinking agent such as an organic polyvalent isocyanate compound, an organic polyvalent imine compound, and an organometallic chelate compound in order to adjust the cohesive force before curing. Further, the protective film-forming film may contain an antistatic agent in order to suppress static electricity and improve the reliability of the chip. Furthermore, the protective film-forming film may contain a flame retardant such as a phosphoric acid compound, a bromine compound, or a phosphorus compound in order to enhance the flame retardance performance of the protective film and improve the reliability as a package.
3.厚さ
 保護膜形成フィルムの厚さは、保護膜としての機能を効果的に発揮させるために、3~300μmであることが好ましく、特に5~200μmであることが好ましく、さらには7~100μmであることが好ましい。ここで、保護膜形成フィルムの厚さは、保護膜形成フィルムの任意の5箇所で、接触式厚み計で厚さを測定した平均で表される値である。なお保護膜形成フィルムの厚さを測定する際、直接に接触式厚み計を適用することが困難であるときは、基材フィルムや、後述する剥離材など、他のフィルムが重ね合わされた状態で、上記と同様に全体の厚さを測定し、重ね合わせられていた他のフィルムの厚さ(上記と同様の方法で測定したもの)との差分を取ることで算出してもよい。
3. Thickness The thickness of the protective film-forming film is preferably 3 to 300 μm, particularly preferably 5 to 200 μm, more preferably 7 to 100 μm, in order to effectively exert the function as a protective film. Preferably there is. Here, the thickness of a protective film formation film is the value represented by the average which measured thickness with the contact-type thickness meter in arbitrary five places of a protective film formation film. When measuring the thickness of the protective film-forming film, it is difficult to directly apply a contact-type thickness meter. In the state where other films such as a base film and a release material to be described later are overlaid. The total thickness may be measured in the same manner as described above, and may be calculated by taking the difference from the thickness of another film that has been overlaid (measured by the same method as described above).
〔保護膜形成用シート〕
 図1は、本発明の一実施形態に係る保護膜形成用シートの断面図である。図1に示すように、本実施形態に係る保護膜形成用シート2は、保護膜形成フィルム1と、保護膜形成フィルム1の一方の面(図1では下側の面)に積層された剥離シート21とを備えて構成される。ただし、剥離シート21は、保護膜形成用シート2の使用時に剥離されるものである。
[Protective film forming sheet]
FIG. 1 is a cross-sectional view of a protective film forming sheet according to an embodiment of the present invention. As shown in FIG. 1, the protective film-forming sheet 2 according to this embodiment includes a protective film-forming film 1 and a release layer laminated on one surface (the lower surface in FIG. 1) of the protective film-forming film 1. And a sheet 21. However, the release sheet 21 is peeled off when the protective film forming sheet 2 is used.
 剥離シート21は、保護膜形成用シート2が使用されるまでの間、保護膜形成フィルム1を保護するものであり、必ずしもなくてもよい。剥離シート21の構成は任意であり、フィルム自体が保護膜形成フィルム1に対し剥離性を有するプラスチックフィルム、およびプラスチックフィルムを剥離剤等により剥離処理したものが例示される。プラスチックフィルムの具体例としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステルフィルム、およびポリプロピレンやポリエチレン等のポリオレフィンフィルムが挙げられる。剥離剤としては、シリコーン系、フッ素系、長鎖アルキル系等を用いることができるが、これらの中で、安価で安定した性能が得られるシリコーン系が好ましい。剥離シート21の厚さについては特に制限はないが、通常20~250μm程度である。 The release sheet 21 protects the protective film-forming film 1 until the protective film-forming sheet 2 is used, and is not necessarily required. The configuration of the release sheet 21 is arbitrary, and examples thereof include a plastic film in which the film itself is peelable from the protective film-forming film 1 and a film obtained by peeling the plastic film with a release agent or the like. Specific examples of the plastic film include polyester films such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate, and polyolefin films such as polypropylene and polyethylene. As the release agent, silicone-based, fluorine-based, long-chain alkyl-based, and the like can be used, and among these, a silicone-based material that is inexpensive and provides stable performance is preferable. The thickness of the release sheet 21 is not particularly limited, but is usually about 20 to 250 μm.
 上記のような剥離シート21は、保護膜形成フィルム1の他方の面(図1では上側の面)にも積層されてもよい。すなわち、保護膜形成フィルム1は第1の剥離シート21と第2の剥離シート21の間に挟まれていてもよい。この場合は、一方の剥離シート21の剥離力を大きくして重剥離型剥離シートとし、他方の剥離シート21の剥離力を小さくして軽剥離型剥離シートとすることが好ましい。 The release sheet 21 as described above may also be laminated on the other surface (the upper surface in FIG. 1) of the protective film forming film 1. That is, the protective film forming film 1 may be sandwiched between the first release sheet 21 and the second release sheet 21. In this case, it is preferable that the release force of one release sheet 21 is increased to obtain a heavy release release sheet, and the release force of the other release sheet 21 is reduced to provide a light release release sheet.
 本実施形態に係る保護膜形成用シート2を製造するには、剥離シート21の剥離面(剥離性を有する面;通常は剥離処理が施された面であるが、これに限定されない)に、保護膜形成フィルム1を形成する。具体的には、保護膜形成フィルム1を構成する硬化性接着剤と、所望によりさらに溶媒とを含有する保護膜形成フィルム用の塗布剤を調製し、ロールコーター、ナイフコーター、ロールナイフコーター、エアナイフコーター、ダイコーター、バーコーター、グラビアコーター、カーテンコーター等の塗工機によって剥離シート21の剥離面に塗布して乾燥させて、保護膜形成フィルム1を形成する。 In order to manufacture the protective film-forming sheet 2 according to the present embodiment, the release surface of the release sheet 21 (a surface having peelability; usually a surface subjected to a release treatment, but is not limited thereto). A protective film forming film 1 is formed. Specifically, a coating agent for a protective film-forming film containing a curable adhesive constituting the protective film-forming film 1 and, if desired, further a solvent is prepared, and a roll coater, a knife coater, a roll knife coater, an air knife The protective film-forming film 1 is formed by applying to the release surface of the release sheet 21 with a coating machine such as a coater, die coater, bar coater, gravure coater, curtain coater, and drying.
 本実施形態に係る保護膜形成用シート2を用いて、一例としてワークとしての半導体ウエハから保護膜付きチップを製造する方法を以下に説明する。最初に、表面に回路が形成され、バックグラインド加工された半導体ウエハの裏面に、保護膜形成用シート2の保護膜形成フィルム1を貼付する。このとき、所望により保護膜形成フィルム1を加熱して、粘着性を発揮させてもよい。 A method of manufacturing a chip with a protective film from a semiconductor wafer as a workpiece by using the protective film forming sheet 2 according to the present embodiment will be described below. First, the protective film forming film 1 of the protective film forming sheet 2 is attached to the back surface of the semiconductor wafer having a circuit formed on the front surface and subjected to back grinding. At this time, if desired, the protective film-forming film 1 may be heated to exhibit adhesiveness.
 次いで、保護膜形成フィルム1から剥離シート21を剥離する。その後、保護膜形成フィルム1に対して紫外線を照射し、保護膜形成フィルム1を硬化させて保護膜を形成し、保護膜付き半導体ウエハを得る。紫外線照射の前または後に、所望により保護膜形成フィルム1を加熱してもよい。なお、保護膜形成フィルム1の硬化は、ダイシング工程後に行ってもよい。 Next, the release sheet 21 is peeled from the protective film forming film 1. Thereafter, the protective film forming film 1 is irradiated with ultraviolet rays, the protective film forming film 1 is cured to form a protective film, and a semiconductor wafer with a protective film is obtained. If desired, the protective film-forming film 1 may be heated before or after the ultraviolet irradiation. In addition, you may perform hardening of the protective film formation film 1 after a dicing process.
 本実施形態に係る保護膜形成フィルム1は、波長375nmの光線透過率が8%以上であることにより紫外線硬化性に優れるため、上記の紫外線照射により全体的に十分に硬化する。保護膜形成フィルム1に対する紫外線の照射量は、光量で50~1000mJ/cmが好ましく、特に100~500mJ/cmが好ましい。 Since the protective film-forming film 1 according to this embodiment is excellent in ultraviolet curability when the light transmittance at a wavelength of 375 nm is 8% or more, the film is sufficiently cured as a whole by the above-described ultraviolet irradiation. Irradiation of the ultraviolet to the protection film forming film 1 is preferably 50 ~ 1000mJ / cm 2 in quantity, especially 100 ~ 500mJ / cm 2 preferably.
 上記のようにして保護膜付き半導体ウエハが得られたら、所望により、その保護膜に対してレーザー光を照射し、レーザー印字を行う。なお、このレーザー印字は、保護膜形成フィルム1の硬化前に行ってもよい。 When a semiconductor wafer with a protective film is obtained as described above, the protective film is irradiated with laser light as desired to perform laser printing. In addition, you may perform this laser printing before hardening of the protective film formation film 1. FIG.
 次いで、所望のダイシングシートを使用し、常法に従って保護膜付き半導体ウエハをダイシングし、保護膜を有するチップ(保護膜付きチップ)を得る。その後は、所望によりダイシングシートを平面方向にエキスパンドし、ダイシングシートから保護膜付きチップをピックアップする。 Then, using a desired dicing sheet, the semiconductor wafer with a protective film is diced according to a conventional method to obtain a chip having a protective film (chip with a protective film). Thereafter, if necessary, the dicing sheet is expanded in the plane direction, and a chip with a protective film is picked up from the dicing sheet.
 上記のようにして得られた保護膜付きチップは、保護膜形成フィルム1(保護膜)の波長550nmの光線透過率が12%以下であることにより、バックグラインド加工による研削痕が保護膜によって隠蔽されて目視で見えないため、外観に優れる。 In the chip with protective film obtained as described above, the protective film forming film 1 (protective film) has a light transmittance of 12% or less at a wavelength of 550 nm, so that grinding marks due to back grinding are concealed by the protective film. Since it cannot be seen visually, it has an excellent appearance.
 また、保護膜形成フィルム1の波長1600nmの光線透過率が25%以上である場合には、保護膜形成フィルム1(保護膜)における赤外線の透過性が良好になり、上記保護膜付きチップおよび保護膜付き半導体ウエハは、保護膜を介して赤外線検査を行うことができる。そのため、赤外線検査によりクラック等を発見することができ、製品歩留まりを向上させることができる。 Further, when the light transmittance at a wavelength of 1600 nm of the protective film forming film 1 is 25% or more, the infrared light transmittance in the protective film forming film 1 (protective film) is improved, and the chip with the protective film and the protective film are protected. The semiconductor wafer with a film can be subjected to infrared inspection through a protective film. Therefore, cracks and the like can be found by infrared inspection, and the product yield can be improved.
 なお、赤外線検査は、赤外線を利用して行う検査であり、保護膜付き半導体ウエハ等の保護膜付きワークまたは保護膜付きチップ等の加工物からの赤外線を、保護膜を介して取得することにより行うことができる。取得する赤外線の波長は、通常800~2800nmであり、好ましくは1100~2100nmである。赤外線検査の装置としては、公知の装置、例えば赤外線カメラや赤外線顕微鏡等を有するものを使用することができる。 The infrared inspection is an inspection performed using infrared rays, and by acquiring infrared rays from a workpiece such as a semiconductor wafer with a protective film or a workpiece such as a chip with a protective film through the protective film. It can be carried out. The wavelength of the infrared rays to be obtained is usually 800 to 2800 nm, preferably 1100 to 2100 nm. As an infrared inspection apparatus, a known apparatus such as an infrared camera or an infrared microscope can be used.
〔保護膜形成用複合シート〕
 図2は、本発明の一実施形態に係る保護膜形成用複合シートの断面図である。図2に示すように、本実施形態に係る保護膜形成用複合シート3は、基材41の一方の面に粘着剤層42が積層されてなる支持シート4と、支持シート4の粘着剤層42側に積層された保護膜形成フィルム1と、保護膜形成フィルム1における支持シート4とは反対側の周縁部に積層された治具用粘着剤層5とを備えて構成される。言い換えれば、保護膜形成用複合シート3は、基材41と、基材41上の粘着剤層42と、粘着剤層42上の保護膜形成フィルム1と、保護膜形成フィルム1上の治具用粘着剤層5とを有する。治具用粘着剤層5は、保護膜形成フィルム1の表面の法線方向から見た場合における保護膜形成フィルム1の周縁部に位置する。治具用粘着剤層5は、保護膜形成用複合シート3をリングフレーム等の治具に接着するための層である。
[Composite sheet for protective film formation]
FIG. 2 is a cross-sectional view of a protective film-forming composite sheet according to an embodiment of the present invention. As shown in FIG. 2, the protective film-forming composite sheet 3 according to this embodiment includes a support sheet 4 in which an adhesive layer 42 is laminated on one surface of a substrate 41, and an adhesive layer of the support sheet 4. The protective film forming film 1 laminated on the 42 side and the jig adhesive layer 5 laminated on the peripheral edge of the protective film forming film 1 opposite to the support sheet 4 are configured. In other words, the composite sheet 3 for forming the protective film includes the base material 41, the adhesive layer 42 on the base material 41, the protective film forming film 1 on the adhesive layer 42, and the jig on the protective film forming film 1. Pressure-sensitive adhesive layer 5. The jig pressure-sensitive adhesive layer 5 is located at the peripheral edge of the protective film-forming film 1 when viewed from the normal direction of the surface of the protective film-forming film 1. The jig pressure-sensitive adhesive layer 5 is a layer for bonding the protective film-forming composite sheet 3 to a jig such as a ring frame.
 本実施形態に係る保護膜形成用複合シート3は、ワークを加工するときに、当該ワークに貼付されて当該ワークを保持するとともに、当該ワークまたは当該ワークを加工して得られる加工物に保護膜を形成するために用いられる。この保護膜は、保護膜形成フィルム1、好ましくは硬化した保護膜形成フィルム1から構成される。 When processing a workpiece, the composite sheet 3 for forming a protective film according to the present embodiment is attached to the workpiece and holds the workpiece, and the protective film is formed on the workpiece or a workpiece obtained by processing the workpiece. Is used to form This protective film is composed of a protective film-forming film 1, preferably a cured protective film-forming film 1.
 本実施形態に係る保護膜形成用複合シート3は、一例として、ワークとしての半導体ウエハのダイシング加工時に半導体ウエハを保持するとともに、ダイシングによって得られる半導体チップに保護膜を形成するために用いられるが、これに限定されるものではない。この場合における保護膜形成用複合シート3の支持シート4は、通常、ダイシングシートと称される。 As an example, the composite sheet 3 for forming a protective film according to the present embodiment is used to hold a semiconductor wafer during dicing processing of a semiconductor wafer as a workpiece and to form a protective film on a semiconductor chip obtained by dicing. However, the present invention is not limited to this. In this case, the support sheet 4 of the protective film-forming composite sheet 3 is usually referred to as a dicing sheet.
1.支持シート
 本実施形態に係る保護膜形成用複合シート3の支持シート4は、基材41と、基材41の一方の面に積層された粘着剤層42とを備えて構成されてもよいが、支持シート4は、基材41のみからなるものであることが好ましい。この場合、本実施形態の保護膜形成フィルム1が紫外線照射により硬化すると、後述する保護膜形成用複合シートの使用方法の一例において、保護膜付きチップを支持シート4からピックアップすることが容易となるという利点がある。なお、支持シート4が基材41のみからなるものである場合、基材41にはプライマー層や帯電防止層、耐熱層、応力緩和層等が設けられていてもよい。
1. Support Sheet The support sheet 4 of the protective film-forming composite sheet 3 according to the present embodiment may include a base material 41 and an adhesive layer 42 laminated on one surface of the base material 41. The support sheet 4 is preferably composed only of the base material 41. In this case, when the protective film-forming film 1 of the present embodiment is cured by ultraviolet irradiation, it becomes easy to pick up the chip with the protective film from the support sheet 4 in an example of a method for using the protective film-forming composite sheet described below. There is an advantage. In addition, when the support sheet 4 consists only of the base material 41, the primer layer, the antistatic layer, the heat-resistant layer, the stress relaxation layer, etc. may be provided in the base material 41.
1-1.基材
 支持シート4の基材41は、ワークの加工、例えば半導体ウエハのダイシングおよびエキスパンディングに適するものであれば、その構成材料は特に限定されず、通常は樹脂系の材料を主材とするフィルム(以下「樹脂フィルム」という。)から構成される。
1-1. The base material 41 of the support sheet 4 is not particularly limited as long as the base material 41 is suitable for workpiece processing, for example, dicing and expanding of a semiconductor wafer. Usually, a resin-based material is the main material. It is comprised from a film (henceforth "resin film").
 樹脂フィルムの具体例として、低密度ポリエチレン(LDPE)フィルム、直鎖低密度ポリエチレン(LLDPE)フィルム、高密度ポリエチレン(HDPE)フィルム等のポリエチレンフィルム、ポリプロピレンフィルム、ポリブテンフィルム、ポリブタジエンフィルム、ポリメチルペンテンフィルム、エチレン-ノルボルネン共重合体フィルム、ノルボルネン樹脂フィルム等のポリオレフィン系フィルム;エチレン-酢酸ビニル共重合体フィルム、エチレン-(メタ)アクリル酸共重合体フィルム、エチレン-(メタ)アクリル酸エステル共重合体フィルム等のエチレン系共重合フィルム;ポリ塩化ビニルフィルム、塩化ビニル共重合体フィルム等のポリ塩化ビニル系フィルム;ポリエチレンテレフタレートフィルム、ポリブチレンテレフタレートフィルム等のポリエステル系フィルム;ポリウレタンフィルム;ポリイミドフィルム;ポリスチレンフィルム;ポリカーボネートフィルム;フッ素樹脂フィルムなどが挙げられる。またこれらの架橋フィルム、アイオノマーフィルムのような変性フィルムも用いられる。上記の基材41はこれらの1種からなるフィルムでもよいし、さらにこれらを2種類以上組み合わせた積層フィルムであってもよい。なお、本明細書における「(メタ)アクリル酸」は、アクリル酸およびメタクリル酸の両方を意味する。他の類似用語についても同様である。上記の中でも、環境安全性、コスト等の観点から、ポリオレフィン系フィルムが好ましい。 Specific examples of resin films include polyethylene films such as low density polyethylene (LDPE) films, linear low density polyethylene (LLDPE) films, and high density polyethylene (HDPE) films, polypropylene films, polybutene films, polybutadiene films, and polymethylpentene films. Polyolefin films such as ethylene-norbornene copolymer film and norbornene resin film; ethylene-vinyl acetate copolymer film, ethylene- (meth) acrylic acid copolymer film, ethylene- (meth) acrylic acid ester copolymer Ethylene copolymer films such as films; Polyvinyl chloride films such as polyvinyl chloride films and vinyl chloride copolymer films; Polyethylene terephthalate films, Polybutylene films Polyester film such as terephthalate film; polyurethane film; polyimide film; polystyrene films; polycarbonate films; and fluorine resin film. Further, modified films such as these crosslinked films and ionomer films are also used. The substrate 41 may be a film made of one of these, or may be a laminated film in which two or more of these are combined. In addition, “(meth) acrylic acid” in the present specification means both acrylic acid and methacrylic acid. The same applies to other similar terms. Among these, polyolefin films are preferable from the viewpoints of environmental safety, cost, and the like.
 上記樹脂フィルムは、その表面に積層される粘着剤層42との密着性を向上させる目的で、所望により片面または両面に、酸化法や凹凸化法などによる表面処理、あるいはプライマー処理を施すことができる。上記酸化法としては、例えばコロナ放電処理、プラズマ放電処理、クロム酸化処理(湿式)、火炎処理、熱風処理、オゾン、紫外線照射処理などが挙げられ、また、凹凸化法としては、例えばサンドブラスト法、溶射処理法などが挙げられる。 The resin film may be subjected to a surface treatment such as an oxidation method or a concavo-convex method or a primer treatment on one or both sides as desired for the purpose of improving the adhesion with the pressure-sensitive adhesive layer 42 laminated on the surface. it can. Examples of the oxidation method include corona discharge treatment, plasma discharge treatment, chromium oxidation treatment (wet), flame treatment, hot air treatment, ozone, ultraviolet irradiation treatment, and the like. Examples include a thermal spraying method.
 基材41は、上記樹脂フィルム中に、着色剤、難燃剤、可塑剤、帯電防止剤、滑剤、フィラー等の各種添加剤を含有してもよい。 The base material 41 may contain various additives such as a colorant, a flame retardant, a plasticizer, an antistatic agent, a lubricant, and a filler in the resin film.
 基材41の厚さは、保護膜形成用複合シート3が使用される各工程において適切に機能できる限り、特に限定されない。好ましくは20~450μm、より好ましくは25~400μm、特に好ましくは50~350μmの範囲である。ここで、基材41の厚さは、基材41の任意の5箇所で、接触式厚み計で厚さを測定した平均で表される値である。  The thickness of the base material 41 is not particularly limited as long as it can function properly in each process in which the protective film-forming composite sheet 3 is used. The range is preferably 20 to 450 μm, more preferably 25 to 400 μm, and particularly preferably 50 to 350 μm. Here, the thickness of the base material 41 is a value represented by an average obtained by measuring the thickness of the base material 41 with a contact-type thickness meter at any five locations. *
 本実施形態における支持シート4の基材41の破断伸度は、23℃、相対湿度50%のときに測定した値として100%以上であることが好ましく、特に200~1000%であることが好ましい。ここで、破断伸度はJIS K7161:1994(ISO 527-1 1993)に準拠した引張り試験における、試験片破壊時の試験片の長さの元の長さに対する伸び率である。上記の破断伸度が100%以上である基材41は、エキスパンド工程の際に破断し難く、ワークを切断して形成したチップを離間し易いものとなる。 The elongation at break of the base material 41 of the support sheet 4 in this embodiment is preferably 100% or more as a value measured at 23 ° C. and a relative humidity of 50%, particularly preferably 200 to 1000%. . Here, the elongation at break is the elongation relative to the original length of the test piece at the time of breaking the test piece in a tensile test according to JIS K7161: 1994 (ISO 527-1 1993). The base material 41 having a breaking elongation of 100% or more is not easily broken during the expanding process, and the chips formed by cutting the workpiece can be easily separated.
 また、本実施形態における支持シート4の基材41の25%ひずみ時引張応力は5~15N/10mmであることが好ましく、最大引張応力は15~50MPaであることが好ましい。ここで25%ひずみ時引張応力および最大引張応力はJIS K7161:1994に準拠した試験により測定される。25%ひずみ時引張応力が5N/10mm以上、最大引張応力が15MPa以上であると、ダイシングシート1にワークを貼着した後、リングフレームなどの枠体に固定した際、基材2に弛みが発生することが抑制され、搬送エラーが生じることを防止することができる。一方、25%ひずみ時引張応力が15N/10mm以下、最大引張応力が50MPa以下であると、エキスパンド工程時にリングフレームからダイシングシート1自体が剥がれたりすることが抑制される。なお、上記の破断伸度、25%ひずみ時引張応力、最大引張応力は基材41における原反の長尺方向について測定した値を指す。 Further, the tensile stress at 25% strain of the base material 41 of the support sheet 4 in this embodiment is preferably 5 to 15 N / 10 mm, and the maximum tensile stress is preferably 15 to 50 MPa. Here, the tensile stress at 25% strain and the maximum tensile stress are measured by a test based on JIS K7161: 1994. When the tensile stress at 25% strain is 5 N / 10 mm or more and the maximum tensile stress is 15 MPa or more, the base material 2 is loosened when the workpiece is bonded to the dicing sheet 1 and then fixed to a frame such as a ring frame. Generation | occurrence | production is suppressed and it can prevent that a conveyance error arises. On the other hand, when the tensile stress at 25% strain is 15 N / 10 mm or less and the maximum tensile stress is 50 MPa or less, the dicing sheet 1 itself is prevented from peeling off from the ring frame during the expanding process. The elongation at break, the tensile stress at 25% strain, and the maximum tensile stress are values measured in the longitudinal direction of the original fabric in the base material 41.
1-2.粘着剤層
 本実施形態に係る保護膜形成用複合シート3の支持シート4が備える粘着剤層42は、紫外線で硬化しないタイプの粘着剤(紫外線非硬化性粘着剤)または紫外線で硬化するタイプの粘着剤を予め硬化させた粘着剤から構成されることが好ましい。予め硬化されていない紫外線で硬化するタイプの粘着剤(紫外線硬化性粘着剤)の場合、保護膜形成フィルム1を硬化させる際に、保護膜形成用複合シート3に紫外線を照射すると、当該粘着剤層42が含有する成分の一つ以上が通常有する紫外線硬化性基と、保護膜形成フィルム1の紫外線硬化性成分(A)が有する紫外線硬化性基とが反応し、粘着剤層42と保護膜形成フィルム1との間で両者を剥離することが困難となる懸念がある。
1-2. The pressure-sensitive adhesive layer The pressure-sensitive adhesive layer 42 provided in the support sheet 4 of the protective film-forming composite sheet 3 according to the present embodiment is a type of pressure-sensitive adhesive that is not cured by ultraviolet rays (ultraviolet non-curable adhesive) or a type that is cured by ultraviolet rays. It is preferable to be comprised from the adhesive which hardened the adhesive previously. In the case of a pressure-sensitive adhesive that is cured in advance with ultraviolet rays (ultraviolet-curable adhesive), when the protective film-forming film 1 is cured, when the protective film-forming composite sheet 3 is irradiated with ultraviolet rays, the adhesive The UV curable group that one or more of the components contained in the layer 42 usually has reacts with the UV curable group that the UV curable component (A) of the protective film forming film 1 reacts to form the pressure-sensitive adhesive layer 42 and the protective film. There is a concern that it may be difficult to peel both of them from the formed film 1.
 紫外線非硬化性粘着剤としては、所望の粘着力および再剥離性を有するものが好ましく、例えば、アクリル系粘着剤、ゴム系粘着剤、シリコーン系粘着剤、ウレタン系粘着剤、ポリエステル系粘着剤、ポリビニルエーテル系粘着剤等を使用することができる。これらの中でも、保護膜形成フィルム1との密着性が高く、ダイシング工程等にてワークまたは加工物の脱落を効果的に抑制することのできるアクリル系粘着剤が好ましい。また、紫外線で硬化するタイプの粘着剤を予め硬化させた粘着剤を使用する場合、公知の紫外線で硬化するタイプの粘着剤によって未硬化の粘着剤層42を形成し、その製造時点で紫外線を照射して粘着剤を硬化させておけばよい。 As the ultraviolet non-curable pressure-sensitive adhesive, those having desired adhesive strength and removability are preferable, for example, acrylic pressure-sensitive adhesive, rubber-based pressure-sensitive adhesive, silicone-based pressure-sensitive adhesive, urethane-based pressure-sensitive adhesive, polyester-based pressure-sensitive adhesive, A polyvinyl ether-based pressure-sensitive adhesive or the like can be used. Among these, an acrylic pressure-sensitive adhesive that has high adhesiveness with the protective film-forming film 1 and can effectively prevent the workpiece or workpiece from falling off in a dicing process or the like is preferable. In addition, when using an adhesive that has been pre-cured with a UV-curable adhesive, an uncured adhesive layer 42 is formed with a known UV-curable adhesive, and UV is applied at the time of manufacture. It is only necessary to cure the adhesive by irradiation.
 粘着剤層42の厚さは、保護膜形成用複合シート3が使用される各工程において適切に機能できる限り、特に限定されない。具体的には、1~50μmであることが好ましく、特に2~30μmであることが好ましく、さらには3~20μmであることが好ましい。ここで、粘着剤層42の厚さは、粘着剤層42の任意の5箇所で、接触式厚み計で厚さを測定した平均で表される値である。なお粘着剤層42の厚さを測定する際、直接に接触式厚み計を適用することが困難であるときは、基材フィルムや、後述する剥離材など、他のフィルムが重ね合わされた状態で、上記と同様に全体の厚さを測定し、重ね合わせられていた他のフィルムの厚さ(上記と同様の方法で測定したもの)との差分を取ることで算出してもよい。 The thickness of the pressure-sensitive adhesive layer 42 is not particularly limited as long as it can function properly in each step in which the protective film-forming composite sheet 3 is used. Specifically, the thickness is preferably 1 to 50 μm, particularly preferably 2 to 30 μm, and further preferably 3 to 20 μm. Here, the thickness of the pressure-sensitive adhesive layer 42 is a value represented by an average obtained by measuring the thickness with a contact-type thickness meter at any five locations of the pressure-sensitive adhesive layer 42. When measuring the thickness of the pressure-sensitive adhesive layer 42, when it is difficult to directly apply a contact-type thickness meter, in a state where other films such as a base film and a release material to be described later are superimposed. The total thickness may be measured in the same manner as described above, and may be calculated by taking the difference from the thickness of another film that has been overlaid (measured by the same method as described above).
 治具用粘着剤層5を構成する粘着剤としては、所望の粘着力および再剥離性を有するものが好ましく、例えば、アクリル系粘着剤、ゴム系粘着剤、シリコーン系粘着剤、ウレタン系粘着剤、ポリエステル系粘着剤、ポリビニルエーテル系粘着剤等を使用することができる。これらの中でも、リングフレーム等の治具との密着性が高く、ダイシング工程等にてリングフレーム等から保護膜形成用複合シート3が剥がれることを効果的に抑制することのできるアクリル系粘着剤が好ましい。なお、治具用粘着剤層5の厚さ方向の途中には、芯材としての基材が介在していてもよい。 As an adhesive which comprises the adhesive layer 5 for jig | tool, what has desired adhesive force and removability is preferable, for example, an acrylic adhesive, a rubber adhesive, a silicone adhesive, a urethane adhesive Polyester-based pressure-sensitive adhesives, polyvinyl ether-based pressure-sensitive adhesives, and the like can be used. Among these, an acrylic pressure-sensitive adhesive that has high adhesion to a jig such as a ring frame and can effectively prevent the protective film-forming composite sheet 3 from being peeled off from the ring frame or the like in a dicing process or the like. preferable. In addition, the base material as a core material may intervene in the middle of the thickness direction of the adhesive layer 5 for jigs.
 一方、治具用粘着剤層5の厚さは、リングフレーム等の治具に対する接着性の観点から、5~200μmであることが好ましく、特に10~100μmであることが好ましい。 On the other hand, the thickness of the pressure-sensitive adhesive layer 5 for jigs is preferably 5 to 200 μm, and particularly preferably 10 to 100 μm, from the viewpoint of adhesion to a jig such as a ring frame.
 後述の保護膜形成用複合シート3を用いた保護膜付チップの製造方法において説明するように、保護膜形成用複合シート3を半導体ウエハに貼付した後に、支持シート4を介して保護膜形成フィルム1に紫外線を照射することがある。したがって、このような場合に保護膜形成フィルム1の硬化が進行しやすくなるように、支持シート4の紫外線の透過性は、高いことが好ましい。 As will be described in a manufacturing method of a chip with a protective film using the protective film-forming composite sheet 3 to be described later, after the protective film-forming composite sheet 3 is attached to the semiconductor wafer, the protective film-forming film is interposed via the support sheet 4. 1 may be irradiated with ultraviolet rays. Therefore, in such a case, it is preferable that the ultraviolet ray permeability of the support sheet 4 is high so that the curing of the protective film-forming film 1 can easily proceed.
2.保護膜形成用複合シートの製造方法
 保護膜形成用複合シート3は、好ましくは、保護膜形成フィルム1を含む第1の積層体と、支持シート4を含む第2の積層体とを別々に作製した後、第1の積層体および第2の積層体を使用して、保護膜形成フィルム1と支持シート4とを積層することにより製造することができるが、これに限定されるものではない。
2. Method for Producing Protective Film-Forming Composite Sheet Preferably, the protective film-forming composite sheet 3 is prepared separately from a first laminate including the protective film-forming film 1 and a second laminate including the support sheet 4. Then, it can be produced by laminating the protective film-forming film 1 and the support sheet 4 using the first laminated body and the second laminated body, but is not limited thereto.
 第1の積層体を製造するには、第1の剥離シートの剥離面に、保護膜形成フィルム1を形成する。具体的には、保護膜形成フィルム1を構成する硬化性接着剤と、所望によりさらに溶媒とを含有する保護膜形成フィルム用の塗布剤を調製し、ロールコーター、ナイフコーター、ロールナイフコーター、エアナイフコーター、ダイコーター、バーコーター、グラビアコーター、カーテンコーター等の塗工機によって第1の剥離シートの剥離面に塗布して乾燥させて、保護膜形成フィルム1を形成する。次に、保護膜形成フィルム1の露出面に第2の剥離シートの剥離面を重ねて圧着し、2枚の剥離シートに保護膜形成フィルム1が挟持されてなる積層体(第1の積層体)を得る。 To manufacture the first laminate, the protective film forming film 1 is formed on the release surface of the first release sheet. Specifically, a coating agent for a protective film-forming film containing a curable adhesive constituting the protective film-forming film 1 and, if desired, further a solvent is prepared, and a roll coater, a knife coater, a roll knife coater, an air knife The protective film-forming film 1 is formed by applying to the release surface of the first release sheet with a coating machine such as a coater, die coater, bar coater, gravure coater, curtain coater, and drying. Next, a laminate (first laminate) in which the release surface of the second release sheet is superimposed on the exposed surface of the protective film-forming film 1 and pressure-bonded, and the protective film-forming film 1 is sandwiched between the two release sheets. )
 この第1の積層体においては、所望によりハーフカットを施し、保護膜形成フィルム1(および第2の剥離シート)を所望の形状、例えば円形等にしてもよい。この場合、ハーフカットにより生じた保護膜形成フィルム1および第2の剥離シートの余分な部分は、適宜除去すればよい。 In the first laminated body, half-cutting may be performed if desired, and the protective film forming film 1 (and the second release sheet) may be formed in a desired shape, for example, a circle. In this case, what is necessary is just to remove suitably the protective film formation film 1 and the excess part of the 2nd peeling sheet which arose by the half cut.
 一方、第2の積層体を製造するには、第3の剥離シートの剥離面に、粘着剤層42を構成する粘着剤と、所望によりさらに溶媒とを含有する粘着剤層用の塗布剤を塗布し乾燥させて粘着剤層42を形成する。その後、粘着剤層42の露出面に基材41を圧着し、基材41および粘着剤層42からなる支持シート4と、第3の剥離シートとからなる積層体(第2の積層体)を得る。紫外線で硬化するタイプの粘着剤を予め硬化させた粘着剤を用いる場合には、好ましくは第2の積層体を得た後の段階で、紫外線を照射して粘着剤を硬化させる。 On the other hand, in order to produce the second laminate, a coating agent for the pressure-sensitive adhesive layer further containing a pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer 42 and, if desired, a solvent, on the release surface of the third release sheet. The pressure-sensitive adhesive layer 42 is formed by applying and drying. Then, the base material 41 is crimped | bonded to the exposed surface of the adhesive layer 42, and the laminated body (2nd laminated body) which consists of the support sheet 4 which consists of the base material 41 and the adhesive layer 42, and a 3rd peeling sheet. obtain. In the case of using a pressure-sensitive adhesive that has been cured in advance with ultraviolet rays, the pressure-sensitive adhesive is cured by irradiating with ultraviolet rays, preferably after obtaining the second laminate.
 以上のようにして第1の積層体および第2の積層体が得られたら、第1の積層体における第2の剥離シートを剥離するとともに、第2の積層体における第3の剥離シートを剥離し、第1の積層体にて露出した保護膜形成フィルム1と、第2の積層体にて露出した支持シート4の粘着剤層42とを重ね合わせて圧着する。支持シート4は、所望によりハーフカットし、所望の形状、例えば保護膜形成フィルム1よりも大きい径を有する円形等にしてもよい。このとき、ハーフカットにより生じた支持シート4の余分な部分は、適宜除去すればよい。この場合には、図3に示す形態の保護膜形成用シート3が得られることとなる。 When the first laminate and the second laminate are obtained as described above, the second release sheet in the first laminate is released and the third release sheet in the second laminate is released. Then, the protective film forming film 1 exposed in the first laminate and the pressure-sensitive adhesive layer 42 of the support sheet 4 exposed in the second laminate are overlapped and pressure-bonded. The support sheet 4 may be half-cut if desired, and may have a desired shape, for example, a circle having a larger diameter than the protective film-forming film 1. At this time, an excess portion of the support sheet 4 generated by the half cut may be removed as appropriate. In this case, the protective film forming sheet 3 having the form shown in FIG. 3 is obtained.
 このようにして、基材41の上に粘着剤層42が積層されてなる支持シート4と、支持シート4の粘着剤層42側に積層された保護膜形成フィルム1と、保護膜形成フィルム1における支持シート4とは反対側に積層された第1の剥離シートとからなる保護膜形成用複合シート3が得られる。最後に、第1の剥離シートを剥離した後、保護膜形成フィルム1における支持シート4とは反対側の周縁部に、治具用粘着剤層5を形成する。治具用粘着剤層5も、上記粘着剤層42と同様の方法により塗布し形成することができる。 Thus, the support sheet 4 in which the pressure-sensitive adhesive layer 42 is laminated on the base material 41, the protective film-forming film 1 laminated on the pressure-sensitive adhesive layer 42 side of the support sheet 4, and the protective film-forming film 1 A protective sheet-forming composite sheet 3 comprising a first release sheet laminated on the side opposite to the support sheet 4 is obtained. Finally, after peeling the first release sheet, a jig pressure-sensitive adhesive layer 5 is formed on the peripheral edge of the protective film forming film 1 opposite to the support sheet 4. The jig pressure-sensitive adhesive layer 5 can also be applied and formed in the same manner as the pressure-sensitive adhesive layer 42.
3.保護膜形成用複合シートの使用方法
 本実施形態に係る保護膜形成用複合シート3を用いて、一例としてワークとしての半導体ウエハから保護膜付きチップを製造する方法を以下に説明する。
3. Method for Using Protective Film Forming Composite Sheet A method for producing a chip with a protective film from a semiconductor wafer as a workpiece by using the protective film forming composite sheet 3 according to this embodiment will be described below.
 図4に示すように、保護膜形成フィルム1を半導体ウエハ6に貼付するとともに、治具用粘着剤層5をリングフレーム7に貼付する。保護膜形成フィルム1を半導体ウエハ6に貼付するにあたり、所望により保護膜形成フィルム1を加熱して、粘着性を発揮させてもよい。 As shown in FIG. 4, the protective film forming film 1 is stuck to the semiconductor wafer 6 and the jig adhesive layer 5 is stuck to the ring frame 7. When the protective film forming film 1 is stuck to the semiconductor wafer 6, the protective film forming film 1 may be heated to exhibit adhesiveness if desired.
 その後、支持シート4を介して保護膜形成フィルム1に対して紫外線を照射し、保護膜形成フィルム1を硬化させて保護膜を形成し、保護膜付き半導体ウエハ6を得る。紫外線照射の前または後に、所望により保護膜形成フィルム1を加熱してもよい。なお、保護膜形成フィルム1の硬化は、ダイシング工程後に行ってもよいし、支持シート4から保護膜形成フィルム付きチップをピックアップした後に行ってもよい。 Thereafter, the protective film forming film 1 is irradiated with ultraviolet rays via the support sheet 4 to cure the protective film forming film 1 to form a protective film, thereby obtaining a semiconductor wafer 6 with a protective film. If desired, the protective film-forming film 1 may be heated before or after the ultraviolet irradiation. In addition, hardening of the protective film formation film 1 may be performed after a dicing process, and may be performed after picking up the chip | tip with a protective film formation film from the support sheet 4. FIG.
 本実施形態に係る保護膜形成フィルム1は、波長375nmの光線透過率が8%以上であることにより紫外線硬化性に優れるため、上記の紫外線照射により全体的に十分に硬化する。保護膜形成フィルム1に対する紫外線の照射量は、光量で50~1000mJ/cmが好ましく、特に100~500mJ/cmが好ましい。 Since the protective film-forming film 1 according to this embodiment is excellent in ultraviolet curability when the light transmittance at a wavelength of 375 nm is 8% or more, the film is sufficiently cured as a whole by the above-described ultraviolet irradiation. Irradiation of the ultraviolet to the protection film forming film 1 is preferably 50 ~ 1000mJ / cm 2 in quantity, especially 100 ~ 500mJ / cm 2 preferably.
 上記のようにして保護膜付き半導体ウエハ6が得られたら、所望により、その保護膜に対して、支持シート4を介してレーザー光を照射し、レーザー印字を行う。なお、このレーザー印字は、保護膜形成フィルム1の硬化前に行ってもよい。 When the semiconductor wafer 6 with a protective film is obtained as described above, laser printing is performed by irradiating the protective film with laser light through the support sheet 4 as desired. In addition, you may perform this laser printing before hardening of the protective film formation film 1. FIG.
 次いで、常法に従って保護膜付き半導体ウエハ6をダイシングし、保護膜を有するチップ(保護膜付きチップ)を得る。その後は、所望により支持シート4を平面方向にエキスパンドし、支持シート4から保護膜付きチップをピックアップする。 Then, the semiconductor wafer 6 with a protective film is diced according to a conventional method to obtain a chip having a protective film (chip with a protective film). Thereafter, the support sheet 4 is expanded in a plane direction as desired, and a chip with a protective film is picked up from the support sheet 4.
 上記のようにして得られた保護膜付きチップは、保護膜形成フィルム1(保護膜)の波長550nmの光線透過率が12%以下であることにより、バックグラインド加工による研削痕が保護膜によって隠蔽されて目視で見えないため、外観に優れる。 In the chip with protective film obtained as described above, the protective film forming film 1 (protective film) has a light transmittance of 12% or less at a wavelength of 550 nm, so that grinding marks due to back grinding are concealed by the protective film. Since it cannot be seen visually, it has an excellent appearance.
 また、保護膜形成フィルム1の波長1600nmの光線透過率が25%以上である場合には、保護膜形成フィルム1(保護膜)における赤外線の透過性が良好になり、上記保護膜付きチップおよび保護膜付き半導体ウエハは、保護膜を介して赤外線検査を行うことができる。そのため、赤外線検査によりクラック等を発見することができ、製品歩留まりを向上させることができる。 Further, when the light transmittance at a wavelength of 1600 nm of the protective film forming film 1 is 25% or more, the infrared light transmittance in the protective film forming film 1 (protective film) is improved, and the chip with the protective film and the protective film are protected. The semiconductor wafer with a film can be subjected to infrared inspection through a protective film. Therefore, cracks and the like can be found by infrared inspection, and the product yield can be improved.
4.保護膜形成用複合シートの他の実施形態
 図3は、本発明の他の実施形態に係る保護膜形成用複合シートの断面図である。図3に示すように、本実施形態に係る保護膜形成用複合シート3Aは、基材41の一方の面に粘着剤層42が積層されてなる支持シート4と、支持シート4の粘着剤層42側に積層された保護膜形成フィルム1とを備えて構成される。実施形態における保護膜形成フィルム1は、面方向にてワークとほぼ同じか、ワークよりも少し大きく形成されており、かつ支持シート4よりも面方向に小さく形成されている。保護膜形成フィルム1が積層されていない部分の粘着剤層42は、リングフレーム等の治具に貼付することが可能となっている。
4). Other Embodiment of Composite Sheet for Protective Film Formation FIG. 3 is a cross-sectional view of a composite sheet for protective film formation according to another embodiment of the present invention. As shown in FIG. 3, the protective sheet-forming composite sheet 3 </ b> A according to this embodiment includes a support sheet 4 in which an adhesive layer 42 is laminated on one surface of a base material 41, and an adhesive layer of the support sheet 4. And a protective film forming film 1 laminated on the 42 side. The protective film forming film 1 in the embodiment is formed to be substantially the same as or slightly larger than the workpiece in the surface direction, and smaller than the support sheet 4 in the surface direction. The part of the pressure-sensitive adhesive layer 42 where the protective film forming film 1 is not laminated can be attached to a jig such as a ring frame.
 本実施形態に係る保護膜形成用複合シート3Aの各部材の材料および厚さ等は、前述した保護膜形成用複合シート3の各部材の材料および厚さと同様である。 The material and thickness of each member of the protective film-forming composite sheet 3A according to this embodiment are the same as the material and thickness of each member of the protective film-forming composite sheet 3 described above.
 なお、保護膜形成用複合シート3Aの支持シート4の粘着剤層42における基材41とは反対側の周縁部には、前述した保護膜形成用複合シート3の治具用粘着剤層5と同様の治具用粘着剤層が別途設けられていてもよい。言い換えれば、保護膜形成用複合シート3Aは、基材41と、基材41上の粘着剤層42と、粘着剤層42上の保護膜形成フィルム1と、粘着剤層42上であり、保護膜形成フィルム1の周縁部に位置する治具用粘着剤層5を有してもよい。この場合、支持シート4は、基材41のみからなってもよい。つまり、保護膜形成用複合シート3Aは、基材41と、基材41上の保護膜形成フィルム1と、基材41上であり、保護膜形成フィルム1の周縁部に位置する治具用粘着剤層5を有してもよい。 In addition, the jig adhesive layer 5 of the protective film-forming composite sheet 3 described above and the peripheral portion of the pressure-sensitive adhesive layer 42 of the support sheet 4 of the protective film-forming composite sheet 3A on the side opposite to the base 41 are provided. A similar adhesive layer for jigs may be provided separately. In other words, the protective sheet-forming composite sheet 3A includes the base material 41, the pressure-sensitive adhesive layer 42 on the base material 41, the protective film-forming film 1 on the pressure-sensitive adhesive layer 42, and the pressure-sensitive adhesive layer 42. You may have the adhesive layer 5 for jig | tool located in the peripheral part of the film formation film 1. FIG. In this case, the support sheet 4 may consist only of the base material 41. That is, the protective film-forming composite sheet 3 </ b> A is on the base material 41, the protective film-forming film 1 on the base material 41, and the base material 41, and the adhesive for jigs located at the peripheral edge of the protective film-forming film 1. You may have the agent layer 5.
 また、図3の構成において、粘着剤層42に、紫外線で硬化するタイプの粘着剤を予め硬化させた粘着剤を用いる場合には、粘着剤層42の平面視における内周部のみを予め硬化させてもよい。これにより、リングフレーム等の治具に貼付される外周部は高い粘着性が維持されており、支持シート4の治具への固定が容易となる。 Further, in the configuration of FIG. 3, in the case where an adhesive obtained by precuring a pressure-sensitive adhesive that is cured by ultraviolet rays is used for the adhesive layer 42, only the inner peripheral portion in a plan view of the adhesive layer 42 is precured. You may let them. Thereby, high adhesiveness is maintained at the outer peripheral portion attached to a jig such as a ring frame, and the support sheet 4 can be easily fixed to the jig.
 さらに、図3において、粘着剤層42と保護膜形成フィルム1との間に、剥離力調整層を設けてもよい。言い換えれば、保護膜形成用複合シート3Aは、基材41と、基材41上の粘着剤層42と、粘着剤層42上の剥離力調整層と、剥離力調整層上の保護膜形成フィルム1とを有してもよい。これにより、剥離力調整層と保護膜形成フィルム1との間の剥離を容易に行うことができる。加えて、保護膜(保護膜形成フィルム)付きチップをピックアップする工程への影響を考慮する必要のない粘着剤層42には、強い粘着性を付与して、支持シート4の治具への固定を容易とすることができる。剥離力調整層は、たとえば、粘着剤層42に用いる粘着剤よりも粘着力の低い粘着剤から形成することができ、また、樹脂フィルム(剥離処理したものを含む)から形成することもできる。 Further, in FIG. 3, a peeling force adjusting layer may be provided between the pressure-sensitive adhesive layer 42 and the protective film forming film 1. In other words, the protective sheet-forming composite sheet 3A includes the base material 41, the adhesive layer 42 on the base material 41, the peeling force adjustment layer on the adhesive layer 42, and the protective film forming film on the peeling force adjustment layer. 1 may be included. Thereby, peeling between a peeling force adjustment layer and the protective film formation film 1 can be performed easily. In addition, the adhesive layer 42 that does not need to consider the influence on the process of picking up the chip with the protective film (protective film forming film) is given strong adhesiveness, and the support sheet 4 is fixed to the jig. Can be made easy. The peeling force adjusting layer can be formed from, for example, an adhesive having a lower adhesive strength than the adhesive used for the adhesive layer 42, and can also be formed from a resin film (including a peel-treated one).
 以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。 The embodiment described above is described for facilitating understanding of the present invention, and is not described for limiting the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention.
 例えば、保護膜形成用複合シート3,3Aの保護膜形成フィルム1における支持シート4とは反対側には、剥離シートが積層されてもよい。 For example, a release sheet may be laminated on the opposite side of the protective film-forming film 1 of the protective film-forming composite sheets 3 and 3A from the support sheet 4.
 以下、実施例等により本発明のいくつかの態様をさらに具体的に説明するが、本発明の範囲はこれらの実施例等に限定されるものではない。 Hereinafter, some embodiments of the present invention will be described more specifically with reference to examples, but the scope of the present invention is not limited to these examples.
〔実施例1〕
 次の各成分を表1に示す配合比(質量比;固形分換算)で混合し、固形分濃度が54質量%となるようにメチルエチルケトンで希釈して、保護膜形成フィルム用塗布剤を調製した。
(a)紫外線硬化性成分:2-エチルヘキシルアクリレート80質量部および2-ヒドロキシエチルアクリレート20質量部を共重合してなるアクリル系重合体の2-ヒドロキシエチルアクリレート由来の水酸基100モルに対して、80モルに相当する量のメタクリロイルオキシエチルイソシアネートを反応させて得られた、側鎖に紫外線硬化性基が導入されたアクリル系重合体(重量平均分子量:40万,ガラス転移温度:-10℃)
(b1)赤色着色剤:ジケトピロロピロール系赤色色素(山陽色素社製,Pigment Red264)
(b2)黒色着色剤:カーボンブラック(三菱化学社製,#MA600B,平均粒径28nm)
(c)フィラー:シリカフィラー(アドマテックス社製,SC2050MA,平均粒径0.5μm)
(d)熱硬化性成分:ビスフェノールA型エポキシ樹脂(三菱化学社製,JER828,エポキシ当量183~194g/eq)
(e)光重合開始剤:1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(BASF社製, イルガキュア184)
[Example 1]
The following components were mixed at a blending ratio (mass ratio; solid content conversion) shown in Table 1, and diluted with methyl ethyl ketone so that the solid content concentration became 54% by mass to prepare a coating agent for a protective film forming film. .
(A) UV curable component: 80 parts by mass of 2-hydroxyethyl acrylate-derived hydroxyl group of acrylic polymer obtained by copolymerizing 80 parts by mass of 2-ethylhexyl acrylate and 20 parts by mass of 2-hydroxyethyl acrylate Acrylic polymer obtained by reacting an amount of methacryloyloxyethyl isocyanate corresponding to a mole and having an ultraviolet curable group introduced in the side chain (weight average molecular weight: 400,000, glass transition temperature: −10 ° C.)
(B1) Red colorant: diketopyrrolopyrrole red pigment (manufactured by Sanyo Pigment, Pigment Red 264)
(B2) Black colorant: Carbon black (Mitsubishi Chemical Corporation, # MA600B, average particle size 28 nm)
(C) Filler: Silica filler (manufactured by Admatechs, SC2050MA, average particle size 0.5 μm)
(D) Thermosetting component: bisphenol A type epoxy resin (manufactured by Mitsubishi Chemical Corporation, JER828, epoxy equivalent 183 to 194 g / eq)
(E) Photopolymerization initiator: 1-hydroxy-cyclohexyl-phenyl-ketone (manufactured by BASF, Irgacure 184)
 ポリエチレンテレフタレート(PET)フィルムの片面にシリコーン系の剥離剤層が形成されてなる第1の剥離シート(リンテック社製:SP-PET3811,厚さ38μm)と、PETフィルムの片面にシリコーン系の剥離剤層が形成されてなる第2の剥離シート(リンテック社製:SP-PET381031,厚さ38μm)とを用意した。 A first release sheet (manufactured by Lintec: SP-PET3811, thickness 38 μm) having a silicone release agent layer formed on one side of a polyethylene terephthalate (PET) film, and a silicone release agent on one side of the PET film A second release sheet (made by Lintec: SP-PET 381031, thickness 38 μm) formed with a layer was prepared.
 第1の剥離シートの剥離面上に、前述の保護膜形成フィルム用塗布剤を、ナイフコーターにて塗布した後、オーブンにて120℃で2分間乾燥させて、保護膜形成フィルムを形成した。得られた保護膜形成フィルムの厚さは25μmであった。次いで、保護膜形成フィルムに第2の剥離シートの剥離面を重ねて両者を貼り合わせ、第1の剥離シート(図1における剥離シート21)と、保護膜形成フィルム(図1における保護膜形成フィルム1)(厚さ:25μm)と、第2の剥離シートとからなる保護膜形成用シートを得た。 On the release surface of the first release sheet, the above-mentioned coating agent for protective film-forming film was applied with a knife coater and then dried in an oven at 120 ° C. for 2 minutes to form a protective film-forming film. The thickness of the obtained protective film-forming film was 25 μm. Next, the release surface of the second release sheet is laminated on the protective film-forming film and bonded together, and the first release sheet (release sheet 21 in FIG. 1) and the protective film-forming film (protective film-forming film in FIG. 1). 1) A protective film-forming sheet composed of (thickness: 25 μm) and a second release sheet was obtained.
〔実施例2~3,比較例1~2〕
 保護膜形成フィルムを構成する各成分の種類および配合量を表1に示すように変更する以外、実施例1と同様にして保護膜形成用シートを製造した。
 なお、各例における着色剤の含有量W(質量%)を、保護膜形成フィルムの厚さT(μm)で除した値W/Tを算出し、これを表1に示した。
[Examples 2 and 3, Comparative Examples 1 and 2]
A protective film-forming sheet was produced in the same manner as in Example 1 except that the types and blending amounts of the components constituting the protective film-forming film were changed as shown in Table 1.
A value W / T obtained by dividing the content W (% by mass) of the colorant in each example by the thickness T (μm) of the protective film-forming film was calculated and is shown in Table 1.
〔試験例1〕<光線透過率の測定>
 実施例および比較例で得られた保護膜形成用シートから第2の剥離シートを剥離し、70℃、1.2m/minの条件で、ローラー式ラミネーターでガラス板にラミネートした。その後、第1の剥離シートを剥離して、これを測定用サンプルとした。
[Test Example 1] <Measurement of light transmittance>
The second release sheet was peeled from the protective film-forming sheets obtained in Examples and Comparative Examples, and laminated on a glass plate with a roller laminator under the conditions of 70 ° C. and 1.2 m / min. Then, the 1st peeling sheet was peeled and this was made into the sample for a measurement.
 分光光度計(SHIMADZU社製,UV-VIS-NIR SPECTROPHOTOMETER UV-3600)を用いて、上記測定用サンプルの光線透過率を測定し、波長375nm(紫外光)、550nm(可視光)および1600nm(赤外光)の光線透過率(%)を抽出した。測定には、内蔵の積分球を使用した。結果を表1に示す。また、光線透過率の測定結果をグラフとして図5に示す。表1及び図5が示すように、比較例1では、赤外光の透過率は高いが、可視光の透過率が45.8%と高い。比較例2については、いずれの波長の光線透過率もほぼ0%である。一方で実施例1~3では、波長375nmの光線透過率が8%以上であり、波長550nmの光線透過率が12%以下であり、波長1600nmの光線透過率が25%以上である。 Using a spectrophotometer (manufactured by SHIMADZU, UV-VIS-NIR SPECTROTOPOMETER UV-3600), the light transmittance of the measurement sample was measured, and the wavelengths were 375 nm (ultraviolet light), 550 nm (visible light), and 1600 nm (red) The light transmittance (%) of (external light) was extracted. A built-in integrating sphere was used for the measurement. The results are shown in Table 1. Moreover, the measurement result of light transmittance is shown in FIG. 5 as a graph. As shown in Table 1 and FIG. 5, in Comparative Example 1, the transmittance of infrared light is high, but the transmittance of visible light is as high as 45.8%. For Comparative Example 2, the light transmittance at any wavelength is almost 0%. On the other hand, in Examples 1 to 3, the light transmittance at a wavelength of 375 nm is 8% or more, the light transmittance at a wavelength of 550 nm is 12% or less, and the light transmittance at a wavelength of 1600 nm is 25% or more.
〔試験例2〕<研削痕隠蔽性評価>
 実施例および比較例で得られた保護膜形成用シートから第2の剥離シートを剥離し、保護膜形成フィルムを露出させた。#2000研磨したシリコンウエハ(直径200mm,厚さ350μm)の研磨面に、上記保護膜形成フィルムを、テープマウンター(リンテック社製 Adwill RAD-3600 F/12)を用いて70℃に加熱しながら貼付した。
[Test Example 2] <Evaluation of grinding mark concealment>
The second release sheet was peeled from the protective film-forming sheets obtained in the examples and comparative examples to expose the protective film-forming film. The above protective film-forming film is applied to a polished surface of a # 2000 polished silicon wafer (diameter 200 mm, thickness 350 μm) while heating to 70 ° C. using a tape mounter (Adwill RAD-3600 F / 12, manufactured by Lintec). did.
 次いで、紫外光照射機(リンテック社製,ADWILL RAD-2000)を用いて、上記保護膜形成フィルムに対して紫外線を照射し(照射条件:照度215mW/cm、光量187mJ/cmで3回照射,窒素パージなし)、保護膜形成フィルムを硬化させて保護膜とした。その後、第1の剥離シートを剥離して、保護膜付きシリコンウエハを得た。 Next, using an ultraviolet light irradiation machine (manufactured by Lintec, ADWILL RAD-2000), the protective film-forming film was irradiated with ultraviolet light (irradiation conditions: illuminance 215 mW / cm 2 , light amount 187 mJ / cm 2 three times). Irradiation, no nitrogen purge), the protective film-forming film was cured to form a protective film. Then, the 1st peeling sheet was peeled and the silicon wafer with a protective film was obtained.
 得られた保護膜付きシリコンウエハについて、シリコンウエハの研磨面の研削痕が保護膜を通して見えるかどうかを目視で観察した。その結果、研削痕が見えなかったものを良好、研削痕が見えたものを不良と評価した。結果を表1に示す。 For the obtained silicon wafer with a protective film, it was visually observed whether grinding marks on the polished surface of the silicon wafer could be seen through the protective film. As a result, the case where the grinding trace was not visible was evaluated as good, and the case where the grinding trace was visible was evaluated as poor. The results are shown in Table 1.
〔試験例3〕<プローブタックの測定>
 紫外光照射機(リンテック社製,ADWILL RAD-2000)を用いて、実施例および比較例で得られた保護膜形成用シートの第1の剥離シート側から、当該保護膜形成用シートに対して紫外線を照射し(照射条件:照度215mW/cm、光量187mJ/cmで3回照射,窒素パージなし)、保護膜形成フィルムを硬化させて保護膜とした。
[Test Example 3] <Measurement of probe tack>
From the first release sheet side of the protective film forming sheets obtained in Examples and Comparative Examples, using an ultraviolet light irradiation machine (manufactured by Lintec, ADWILL RAD-2000), the protective film forming sheet Ultraviolet rays were irradiated (irradiation conditions: illuminance 215 mW / cm 2 , irradiation with light intensity 187 mJ / cm 2 three times, no nitrogen purge), and the protective film forming film was cured to form a protective film.
 次いで、上記保護膜を含む積層体を1cm四方の正方形に切り出し、第2の剥離シートを剥離した。露出した保護膜に、70℃、1.2m/minの条件で、ローラー式ラミネーターを用いて、基材としてのポリエチレンテレフタレートフィルム(厚さ25μm)を常温で貼り合わせた。その後、紫外線照射面側の第1の剥離シートを剥離し、これを第1のサンプル(紫外線照射面測定用)とした。 Next, the laminate including the protective film was cut into a 1 cm square, and the second release sheet was peeled off. A polyethylene terephthalate film (thickness: 25 μm) as a base material was bonded to the exposed protective film at room temperature using a roller laminator under conditions of 70 ° C. and 1.2 m / min. Then, the 1st peeling sheet by the side of an ultraviolet irradiation side was peeled, and this was made into the 1st sample (for ultraviolet irradiation surface measurement).
 同様に、上記保護膜を含む積層体を1cm四方の正方形に切り出し、第1の剥離シートを剥離した。露出した保護膜に、70℃、1.2m/minの条件で、ローラー式ラミネーターを用いて、基材としてのポリエチレンテレフタレートフィルム(厚さ25μm)を常温で貼り合わせた。その後、紫外線照射反対面側の第2の剥離シートを剥離し、これを第2のサンプル(紫外線照射反対面測定用)とした。 Similarly, the laminate including the protective film was cut into a 1 cm square, and the first release sheet was peeled off. A polyethylene terephthalate film (thickness: 25 μm) as a base material was bonded to the exposed protective film at room temperature using a roller laminator under conditions of 70 ° C. and 1.2 m / min. Thereafter, the second release sheet on the side opposite to the ultraviolet irradiation was peeled off, and this was used as a second sample (for measuring the surface opposite to the ultraviolet irradiation).
 タッキング試験機(レスカ社製,RHESCA PROBE TACK TESTER model RPT100)を用いて、上記第1のサンプルにおける保護膜の露出面(紫外線照射面)のプローブタック値(ピーク値P1,エネルギー値E1)、および上記第2のサンプルにおける保護膜の露出面(紫外線照射反対面)のプローブタック値(ピーク値P2,エネルギー値E2)を測定した。測定条件は以下の通りである。また、測定結果から、ピーク値P1に対するピーク値P2の比P2/P1、およびエネルギー値E1に対するエネルギー値E2の比E2/E1を算出した。結果を表1に示す。
<プローブタック値の測定条件>
・スピード:600mm/sec
・押し付け荷重:0.98N
・押し付け時間:1秒
Probe tack value (peak value P1, energy value E1) of the exposed surface (ultraviolet irradiation surface) of the protective film in the first sample using a tacking tester (manufactured by Reska, RHESCA PROBE TACK TESTER model RPT100), and The probe tack value (peak value P2, energy value E2) of the exposed surface (surface opposite to the ultraviolet irradiation) of the protective film in the second sample was measured. The measurement conditions are as follows. Further, from the measurement results, a ratio P2 / P1 of the peak value P2 to the peak value P1 and a ratio E2 / E1 of the energy value E2 to the energy value E1 were calculated. The results are shown in Table 1.
<Measurement conditions of probe tack value>
・ Speed: 600mm / sec
・ Pressing load: 0.98N
・ Pressing time: 1 second
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 表1から明らかなように、実施例で得られた保護膜形成フィルム(保護膜)における紫外線照射面のプローブタック値と紫外線照射面の反対側の面とのプローブタック値は近似している。このことから、実施例の保護膜は、紫外線照射面から紫外線照射反対面にかけて、厚み方向全体的に硬化していることが分かる。また、実施例の保護膜は、研削痕隠蔽性にも優れている。 As is clear from Table 1, the probe tack value of the ultraviolet irradiation surface and the probe tack value of the surface opposite to the ultraviolet irradiation surface in the protective film forming film (protective film) obtained in the examples are approximate. From this, it can be seen that the protective film of the example is cured in the whole thickness direction from the ultraviolet irradiation surface to the ultraviolet irradiation opposite surface. Moreover, the protective film of an Example is excellent also in grinding trace concealment property.
 本発明に係る保護膜形成フィルム、保護膜形成用シートおよび保護膜形成用複合シートは、半導体ウエハから、保護膜を有するチップを製造するのに好適に用いられる。 The protective film-forming film, the protective film-forming sheet and the protective film-forming composite sheet according to the present invention are suitably used for manufacturing a chip having a protective film from a semiconductor wafer.
1…保護膜形成フィルム
2…保護膜形成用シート
 21…剥離シート
3,3A…保護膜形成用複合シート
4…支持シート
 41…基材
 42…粘着剤層
5…治具用粘着剤層
6…半導体ウエハ
7…リングフレーム
DESCRIPTION OF SYMBOLS 1 ... Protective film formation film 2 ... Protective film formation sheet 21 ... Release sheet 3,3A ... Protective film formation composite sheet 4 ... Support sheet 41 ... Base material 42 ... Adhesive layer 5 ... Jig adhesive layer 6 ... Semiconductor wafer 7 ... Ring frame

Claims (10)

  1.  紫外線硬化性成分を含有し、
     波長375nmの光線透過率が8%以上であり、
     波長550nmの光線透過率が12%以下である保護膜形成フィルム。
    Contains UV curable ingredients,
    The light transmittance at a wavelength of 375 nm is 8% or more,
    A protective film-forming film having a light transmittance of 12% or less at a wavelength of 550 nm.
  2.  着色剤をさらに含有する請求項1に記載の保護膜形成フィルム。 The protective film-forming film according to claim 1, further comprising a colorant.
  3.  前記着色剤が、赤色着色剤である請求項2に記載の保護膜形成フィルム。 The protective film-forming film according to claim 2, wherein the colorant is a red colorant.
  4.  前記着色剤が、有機系の着色剤である請求項2または3に記載の保護膜形成フィルム。 The protective film-forming film according to claim 2 or 3, wherein the colorant is an organic colorant.
  5.  前記保護膜形成フィルムにおける前記着色剤の含有量W(質量%)を、前記保護膜形成フィルムの厚さT(μm)で除した値W/Tが、0.01~0.5である請求項2~4のいずれか一項に記載の保護膜形成フィルム。 A value W / T obtained by dividing the content W (% by mass) of the colorant in the protective film-forming film by the thickness T (μm) of the protective film-forming film is 0.01 to 0.5. Item 5. The protective film-forming film according to any one of Items 2 to 4.
  6.  前記保護膜形成フィルムに対し一方の面側から、照度215mW/cm、光量187mJ/cmの紫外線を3回照射した場合に、紫外線照射面のプローブタックのピーク値P1に対する前記紫外線照射面とは反対側の面のプローブタックのピーク値P2の比P2/P1が、0.1~7となる請求項1~5のいずれか一項に記載の保護膜形成フィルム。 When the ultraviolet ray having an illuminance of 215 mW / cm 2 and a light amount of 187 mJ / cm 2 is irradiated from the one surface side to the protective film forming film three times, the ultraviolet irradiation surface with respect to the peak value P1 of the probe tack on the ultraviolet irradiation surface; 6. The protective film-forming film according to claim 1, wherein the ratio P2 / P1 of the probe tack peak value P2 on the opposite side surface is 0.1 to 7.
  7.  波長1600nmの光線透過率が25%以上である請求項1~6のいずれか一項に記載の保護膜形成フィルム。 The protective film-forming film according to any one of claims 1 to 6, wherein the light transmittance at a wavelength of 1600 nm is 25% or more.
  8.  請求項1~7のいずれか一項に記載の保護膜形成フィルムと、
     前記保護膜形成フィルムの一方の面または両面に積層された剥離シートとを備える保護膜形成用シート。
    A protective film-forming film according to any one of claims 1 to 7;
    A protective film-forming sheet comprising a release sheet laminated on one or both surfaces of the protective film-forming film.
  9.  支持シートと、
     前記支持シートの一方の面側に積層された請求項1~7のいずれか一項に記載の保護膜形成フィルムと
    を備える保護膜形成用複合シート。
    A support sheet;
    A composite sheet for forming a protective film, comprising the protective film-forming film according to any one of claims 1 to 7 laminated on one surface side of the support sheet.
  10.  前記支持シートは、基材と前記基材の前記保護膜形成フィルム側に積層された粘着剤層とからなるか、基材からなる請求項9に記載の保護膜形成用複合シート。 The composite sheet for forming a protective film according to claim 9, wherein the support sheet includes a base material and an adhesive layer laminated on the protective film forming film side of the base material or a base material.
PCT/JP2015/079973 2014-10-29 2015-10-23 Film for forming protective coat and composite sheet for forming protective coat WO2016068042A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580058160.4A CN107112219A (en) 2014-10-29 2015-10-23 Diaphragm formation film and diaphragm formation composite sheet
KR1020177011036A KR102467143B1 (en) 2014-10-29 2015-10-23 Film for forming protective coat and composite sheet for forming protective coat
SG11201703250YA SG11201703250YA (en) 2014-10-29 2015-10-23 Film for forming protective coating and composite sheet for forming protective coating
JP2016556539A JP6585068B2 (en) 2014-10-29 2015-10-23 Protective film forming film and composite sheet for forming protective film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-220295 2014-10-29
JP2014220295 2014-10-29

Publications (1)

Publication Number Publication Date
WO2016068042A1 true WO2016068042A1 (en) 2016-05-06

Family

ID=55857381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079973 WO2016068042A1 (en) 2014-10-29 2015-10-23 Film for forming protective coat and composite sheet for forming protective coat

Country Status (6)

Country Link
JP (1) JP6585068B2 (en)
KR (1) KR102467143B1 (en)
CN (2) CN113980535A (en)
SG (1) SG11201703250YA (en)
TW (1) TWI671338B (en)
WO (1) WO2016068042A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017188198A1 (en) * 2016-04-28 2017-11-02 リンテック株式会社 Composite sheet for forming protective coating
WO2017188213A1 (en) * 2016-04-28 2017-11-02 リンテック株式会社 Composite sheet for protective membrane formation
WO2019082974A1 (en) * 2017-10-27 2019-05-02 リンテック株式会社 Film for forming protective coating, composite sheet for forming protective coating, and method for manufacturing semiconductor chip
KR20200070227A (en) 2017-10-27 2020-06-17 린텍 가부시키가이샤 Method for manufacturing a composite sheet for forming a protective film and a semiconductor chip
KR20200074091A (en) 2017-10-27 2020-06-24 린텍 가부시키가이샤 Method for manufacturing a composite sheet for forming a protective film and a semiconductor chip
KR20200074090A (en) 2017-10-27 2020-06-24 린텍 가부시키가이샤 Method for manufacturing a composite sheet for forming a protective film and a semiconductor chip
JP2020522898A (en) * 2017-12-14 2020-07-30 エルジー・ケム・リミテッド Dicing die bonding film
JP2021002599A (en) * 2019-06-21 2021-01-07 リンテック株式会社 Composite sheet for protection film formation and manufacturing method of semiconductor chip with protection film

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI642544B (en) * 2016-10-11 2018-12-01 武漢市三選科技有限公司 Sheet for forming cut-off substrate protective film, preparation method thereof, circuit board therewith and preparation method thereof
CN110249414B (en) * 2017-02-09 2023-04-04 琳得科株式会社 Curable resin film and first protective film-forming sheet
CN111065656B (en) * 2017-09-25 2022-03-29 富士胶片株式会社 Curable composition, film, infrared transmission filter, solid-state imaging element, and optical sensor
TWI791650B (en) * 2017-10-27 2023-02-11 日商琳得科股份有限公司 Film for forming protective coating, composite sheet for forming protective coating, and method of manufacturing semiconductor chip
JP6916836B2 (en) * 2019-05-14 2021-08-11 日東電工株式会社 Method of manufacturing a laminate
JP2021075620A (en) * 2019-11-08 2021-05-20 リンテック株式会社 Adhesive film, and adhesive composite sheet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280329A (en) * 2001-03-21 2002-09-27 Lintec Corp Protective film forming sheet for chip, and method of fabricating semiconductor chip
JP2004051736A (en) * 2002-07-18 2004-02-19 Nitto Denko Corp Ultraviolet curable pressure sensitive adhesive sheet
JP2009138026A (en) * 2007-12-03 2009-06-25 Furukawa Electric Co Ltd:The Energy ray-curable chip protecting film

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3511346B2 (en) * 1996-12-05 2004-03-29 三井化学株式会社 Method for grinding back surface of semiconductor wafer and pressure-sensitive adhesive film used in the method
JP2003305792A (en) * 2002-04-15 2003-10-28 Toray Ind Inc Laminated resin sheet
JP5090695B2 (en) * 2006-09-08 2012-12-05 大倉工業株式会社 Manufacturing method of polarizing plate
JP2009036797A (en) * 2007-07-31 2009-02-19 Nitto Denko Corp Optical film, polarizing plate, and image display device
JP5640051B2 (en) 2009-01-30 2014-12-10 日東電工株式会社 Manufacturing method of semiconductor device
JP5249290B2 (en) 2010-07-20 2013-07-31 日東電工株式会社 Flip chip type semiconductor back film, dicing tape integrated semiconductor back film, semiconductor device manufacturing method, and flip chip type semiconductor device
CN102516889B (en) * 2011-12-07 2013-09-25 深圳市鑫东邦科技有限公司 Ultraviolet curable adhesive with high light transmittance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280329A (en) * 2001-03-21 2002-09-27 Lintec Corp Protective film forming sheet for chip, and method of fabricating semiconductor chip
JP2004051736A (en) * 2002-07-18 2004-02-19 Nitto Denko Corp Ultraviolet curable pressure sensitive adhesive sheet
JP2009138026A (en) * 2007-12-03 2009-06-25 Furukawa Electric Co Ltd:The Energy ray-curable chip protecting film

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017188198A1 (en) * 2016-04-28 2017-11-02 リンテック株式会社 Composite sheet for forming protective coating
WO2017188213A1 (en) * 2016-04-28 2017-11-02 リンテック株式会社 Composite sheet for protective membrane formation
KR20190002423A (en) * 2016-04-28 2019-01-08 린텍 가부시키가이샤 A composite sheet for forming a protective film
JPWO2017188213A1 (en) * 2016-04-28 2019-03-07 リンテック株式会社 Composite sheet for protective film formation
JPWO2017188198A1 (en) * 2016-04-28 2019-03-07 リンテック株式会社 Composite sheet for protective film formation
KR102441649B1 (en) 2016-04-28 2022-09-07 린텍 가부시키가이샤 Composite sheet for forming a protective film
JP7039460B2 (en) 2016-04-28 2022-03-22 リンテック株式会社 Composite sheet for forming a protective film
KR20200074090A (en) 2017-10-27 2020-06-24 린텍 가부시키가이샤 Method for manufacturing a composite sheet for forming a protective film and a semiconductor chip
KR20200074091A (en) 2017-10-27 2020-06-24 린텍 가부시키가이샤 Method for manufacturing a composite sheet for forming a protective film and a semiconductor chip
JPWO2019082974A1 (en) * 2017-10-27 2020-10-01 リンテック株式会社 A method for manufacturing a protective film forming film, a protective film forming composite sheet, and a semiconductor chip.
JPWO2019082969A1 (en) * 2017-10-27 2020-11-19 リンテック株式会社 Manufacturing method of composite sheet for forming protective film and semiconductor chip
KR20200070227A (en) 2017-10-27 2020-06-17 린텍 가부시키가이샤 Method for manufacturing a composite sheet for forming a protective film and a semiconductor chip
WO2019082974A1 (en) * 2017-10-27 2019-05-02 リンテック株式会社 Film for forming protective coating, composite sheet for forming protective coating, and method for manufacturing semiconductor chip
JP7159186B2 (en) 2017-10-27 2022-10-24 リンテック株式会社 COMPOSITE SHEET FOR PROTECTIVE FILM FORMATION AND METHOD FOR MANUFACTURING SEMICONDUCTOR CHIP
JP2020522898A (en) * 2017-12-14 2020-07-30 エルジー・ケム・リミテッド Dicing die bonding film
US11404301B2 (en) 2017-12-14 2022-08-02 Lg Chem, Ltd. Dicing die-bonding film
JP2021002599A (en) * 2019-06-21 2021-01-07 リンテック株式会社 Composite sheet for protection film formation and manufacturing method of semiconductor chip with protection film
JP7333211B2 (en) 2019-06-21 2023-08-24 リンテック株式会社 Composite sheet for forming protective film and method for manufacturing semiconductor chip with protective film

Also Published As

Publication number Publication date
JP6585068B2 (en) 2019-10-02
JPWO2016068042A1 (en) 2017-08-10
KR102467143B1 (en) 2022-11-14
TWI671338B (en) 2019-09-11
TW201620963A (en) 2016-06-16
CN113980535A (en) 2022-01-28
SG11201703250YA (en) 2017-05-30
CN107112219A (en) 2017-08-29
KR20170078630A (en) 2017-07-07

Similar Documents

Publication Publication Date Title
JP6585068B2 (en) Protective film forming film and composite sheet for forming protective film
JP6591652B2 (en) Protective film-forming film, protective film-forming sheet, protective film-forming composite sheet, and method for producing a processed product
JP6604674B2 (en) Protective film forming film, protective film forming sheet, protective film forming composite sheet and inspection method
JP6405556B2 (en) Protective film forming film, protective film forming sheet and inspection method
KR102221484B1 (en) Protective film forming film, protective film forming sheet and work product manufacturing method
KR102356171B1 (en) Protection membrane forming film, protection membrane forming utilization sheet, production method and inspection method for workpiece or processed product, workpiece determined as adequate product, and processed product determined as adequate product
WO2015016063A1 (en) Protective film formation-use composite sheet
JP6506118B2 (en) Protective film-forming film, protective film-forming sheet, method of manufacturing work or workpiece, inspection method, workpiece judged to be non-defective, and workpiece judged to be non-defective
JP6506116B2 (en) PROTECTIVE FILM FORMING FILM, PROTECTIVE FILM FORMING SHEET, AND METHOD OF MANUFACTURING WORK OR WORK
JP6401364B2 (en) Composite sheet for protective film formation and laser printing method
JP6506117B2 (en) Protective film-forming film, protective film-forming sheet, method of manufacturing work or workpiece, inspection method, workpiece judged to be non-defective, and workpiece judged to be non-defective
JP6802312B2 (en) Method for manufacturing protective film forming film, protective film forming sheet, and workpiece or processed product
JP2017216455A (en) Protection coat-forming film, sheet for protection film formation, and method for inspection
CN114599517A (en) Film for forming protective film, composite sheet for forming protective film, and method for producing small piece with protective film
JP2019110343A (en) Film for protection film formation, sheet for protection film formation, methods for manufacturing work or workpieces, inspection method, and work and workpiece judged as acceptable items
JP2019110342A (en) Film for protection film formation, sheet for protection film formation, method for manufacturing work or workpieces, inspection method, and work and workpiece judged as acceptable items

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15856031

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016556539

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177011036

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 11201703250Y

Country of ref document: SG

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15856031

Country of ref document: EP

Kind code of ref document: A1