WO2016067923A1 - Aqueous dispersion for chemical mechanical polishing and chemical mechanical polishing method - Google Patents

Aqueous dispersion for chemical mechanical polishing and chemical mechanical polishing method Download PDF

Info

Publication number
WO2016067923A1
WO2016067923A1 PCT/JP2015/079111 JP2015079111W WO2016067923A1 WO 2016067923 A1 WO2016067923 A1 WO 2016067923A1 JP 2015079111 W JP2015079111 W JP 2015079111W WO 2016067923 A1 WO2016067923 A1 WO 2016067923A1
Authority
WO
WIPO (PCT)
Prior art keywords
chemical mechanical
mechanical polishing
silica particles
aqueous dispersion
polishing
Prior art date
Application number
PCT/JP2015/079111
Other languages
French (fr)
Japanese (ja)
Inventor
尚志 篠村
浩平 吉尾
達也 山中
和男 西元
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Publication of WO2016067923A1 publication Critical patent/WO2016067923A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a chemical mechanical polishing aqueous dispersion and a chemical mechanical polishing method.
  • CMP chemical mechanical polishing
  • the silicon oxide film is generally used as an interlayer insulating film.
  • the CMP process of the silicon oxide film not only the planarization characteristic of the interlayer insulating film but also the characteristic that there are few polishing scratches such as scratches and a high polishing rate can be obtained.
  • silica particles have been used as abrasive grains in chemical mechanical polishing aqueous dispersions used for CMP of silicon oxide films.
  • a particle growth method is known in which an alkyl silicate hydrolyzate is continuously added to alkaline hot water.
  • Patent Document 1 discloses silica particles formed and grown by removing sodium from an aqueous sodium silicate solution (water glass) with an ion exchange resin or the like. In this particle growth method, since the active silicic acid aqueous solution is added under alkaline conditions, spherical, monodispersed and dense silica particles tend to be generated.
  • the spherical monodispersed silica shape has been modified (that is, secondary particles having a complicated shape) to adjust the contact resistance of the surface to be polished when used as an abrasive, thereby further improving the polishing rate.
  • modified that is, secondary particles having a complicated shape
  • JP 2003-197573 A Japanese Patent No. 5127452
  • the silica particles as described above have a negative ⁇ potential in the alkaline region, but have a negative value in the acidic region because the isoelectric point is about pH 2.
  • the surface of the silicon oxide film is considered to have the same ⁇ potential value as that of the silica particles in the same pH region.
  • the chemical mechanical polishing aqueous dispersion containing silica particles as described above has a problem that the silicon oxide film cannot be polished at high speed due to electrostatic repulsion (repulsive force) between the surface of the silicon oxide film and the silica particles. It was.
  • some aspects of the present invention provide a silica that can polish the silicon oxide film at a higher speed than in the past in the step of polishing the surface to be polished having the silicon oxide film by solving the above-described problems.
  • An aqueous dispersion for chemical mechanical polishing containing particles and a chemical mechanical polishing method using the same are provided.
  • the present invention has been made to solve at least a part of the above-described problems, and can be realized as the following aspects or application examples.
  • One aspect of the chemical mechanical polishing aqueous dispersion according to the present invention is: Silica particles satisfying the following conditions (1) to (3) are contained, and the pH is 2 or more and 5 or less. (1) The average particle diameter measured from the transmission electron microscope image is 30 nm or more. (2) The zeta potential in the entire pH range of 2 to 5 is +5 mV or more. (3) It has a chain sphere formed by connecting a plurality of silica particles as primary particles, or has an uneven shape.
  • the silica particles may be silica particles produced by a sol-gel method.
  • the chemical mechanical polishing aqueous dispersion of any one of Application Examples 1 to 3 is: It can be used for polishing a surface to be polished having a silicon oxide film.
  • One aspect of the chemical mechanical polishing method according to the present invention is: The polished surface having a silicon oxide film is polished using the chemical mechanical polishing aqueous dispersion according to any one of Application Examples 1 to 4.
  • the silicon oxide film in the step of polishing the surface to be polished having the silicon oxide film, can be polished at a higher speed than the conventional chemical mechanical polishing aqueous dispersion. it can.
  • FIG. 1 is a cross-sectional view schematically showing an object to be processed that can be used in the chemical mechanical polishing method according to the present embodiment.
  • FIG. 2 is a cross-sectional view for explaining a polishing step of the chemical mechanical polishing method according to the present embodiment.
  • FIG. 3 is a perspective view schematically showing a chemical mechanical polishing apparatus.
  • Chemical mechanical polishing aqueous dispersion is a chemical mechanical polishing aqueous dispersion for polishing a surface to be polished having a silicon oxide film. It contains silica particles that satisfy the conditions (hereinafter also referred to as “specific silica particles”), and has a pH of 2 to 5.
  • specific silica particles silica particles that satisfy the conditions
  • each component contained in the chemical mechanical polishing aqueous dispersion according to the present embodiment will be described.
  • the chemical mechanical polishing aqueous dispersion according to the present embodiment contains specific silica particles that satisfy the following conditions (1) to (3).
  • the average particle diameter measured by a transmission electron microscope is 30 nm or more.
  • the ⁇ potential at pH 2 or more and 5 or less is +5 mV or more.
  • It has a chain sphere formed by connecting a plurality of silica particles as primary particles, or has an uneven shape.
  • the specific silica particles are required to have an average particle size of 30 nm or more measured from a transmission electron microscope image, preferably 30 nm to 500 nm, more preferably 30 nm to 200 nm.
  • the average particle diameter of the specific silica particles is 30 nm or more, it becomes possible to realize high-speed polishing of the silicon oxide film.
  • the polishing rate for the silicon oxide film may be insufficient, and it tends to be unstable and easily gelled during production.
  • the average particle diameter measured from a transmission electron microscope image is an average particle diameter calculated by image analysis of an image taken with a transmission electron microscope. In the present invention, the Heywood diameter of 50 particles was measured and the average value was calculated.
  • transmission electron microscope apparatuses examples include an equivalent electron microscope “H-7650” manufactured by Hitachi High-Tech, “JEM-2100” manufactured by JEOL Ltd., and the like.
  • software used for image analysis examples include image analysis type particle size distribution measurement software “Mac-View ver. 4” manufactured by Mountec.
  • the specific silica particles must have a ⁇ potential of +5 mV or more, preferably +5 mV or more and +50 mV or less, at any pH of 2 or more and 5 or less. If the ⁇ potential of the specific silica particles at pH 2 or more and 5 or less is +5 mV or more, the specific silica particles are localized on the surface of the silicon oxide film due to the attractive force based on electrostatic interaction between the specific silica particles and the silicon oxide film. Therefore, high-speed polishing of the silicon oxide film can be realized.
  • Silica particles having a ⁇ potential of +5 mV or more can be obtained, for example, by modifying silica particles with a silane coupling agent having an amino group.
  • the zeta potential of the specific silica particles can be measured by a conventional method using a zeta potential measuring device based on the laser Doppler method.
  • a zeta potential measuring device examples include “Zeta Potential Analyzer” manufactured by Brookhaven Instruments, “ELSZ-1000ZS” manufactured by Otsuka Electronics Co., Ltd., and the like.
  • Shape> The shape of the specific silica particles needs to have a chain sphere formed by connecting a plurality of silica particles, which are primary particles, or have an uneven shape.
  • the shape of the specific silica particles is a chain sphere or an uneven shape, the contact resistance with the surface to be polished (that is, the silicon oxide film) increases, and high-speed polishing of the silicon oxide film can be realized.
  • chained sphere means a particle formed by combining three or more particles in one or a plurality of rows, and includes not only a linear structure but also a branched structure.
  • concave / convex shape means a secondary particle in which a deformed shape, that is, a complex shape is formed by a plurality of particles, and monodispersed spherical primary particles or secondary particles form a sphere. It does not include.
  • the content of the specific silica particles is preferably 1% by mass or more and 20% by mass or less, more preferably 1% by mass or more and 15% by mass or less, particularly with respect to the total mass of the chemical mechanical polishing aqueous dispersion. Preferably they are 1 mass% or more and 10 mass% or less.
  • the content of the specific silica particles is in the above range, high-speed polishing of the silicon oxide film can be realized, and the storage stability of the chemical mechanical polishing aqueous dispersion is improved.
  • the chemical mechanical polishing aqueous dispersion according to the present embodiment is used for polishing a silicon oxide film in manufacturing a semiconductor device, it is necessary to avoid metal contamination of the surface to be polished by polishing. Therefore, the specific silica particles are 1) sodium, 2) an alkaline earth metal selected from the group consisting of calcium and magnesium, and 3) iron, titanium, nickel, chromium, copper, zinc, lead, silver, manganese and cobalt.
  • the content of heavy metals selected from the group is preferably 1 ppm or less.
  • Such specific silica particles can be produced not by the water glass method or the Stover method but by the sol-gel method. For example, it can be produced according to the production method described in International Publication No. 2010/035613.
  • it is necessary to set the ⁇ potential to +5 mV or more. Therefore, it is preferable to perform surface treatment by adsorbing amine on the surface of the silica particles.
  • a known method for making the zeta potential positive is an aluminum treatment method, but the above-mentioned problem of metal contamination occurs, which is not preferable because the use in electric materials is limited.
  • the chemical mechanical polishing aqueous dispersion according to the present embodiment can be adjusted to a pH of 2 or more and 5 or less by adding an organic acid or phosphoric acid described later as necessary. Even if an inorganic acid other than phosphoric acid is added, the pH can be brought to the acidic side, but the above-mentioned problem of metal contamination occurs, which is not preferable because the use in electric materials is limited. With an organic acid and phosphoric acid, the pH can be adjusted without metal contamination of the surface to be polished.
  • organic acids examples include p-toluenesulfonic acid, dodecylbenzenesulfonic acid, isoprenesulfonic acid, gluconic acid, lactic acid, glycolic acid, malonic acid, formic acid, oxalic acid, succinic acid, fumaric acid, maleic acid, phthalic acid. An acid etc. are mentioned. These organic acids can be used singly or in combination of two or more.
  • the chemical mechanical polishing aqueous dispersion according to the present embodiment contains a dispersion medium.
  • the dispersion medium include water, a mixed medium of water and alcohol, a mixed medium containing water and an organic solvent having compatibility with water, and the like. Among these, water, a mixed medium of water and alcohol are preferably used, and water is more preferably used.
  • the pH of the chemical mechanical polishing aqueous dispersion according to the present embodiment is 2 or more and 5 or less, preferably 2 or more and 4 or less.
  • the ⁇ potential of the specific silica particles can be set to a positive charge. This makes it easy to localize the specific silica particles on the surface of the silicon oxide film due to the attractive force based on the electrostatic interaction between the negatively charged silicon oxide film and the specific silica particles. Can be realized. If the pH is greater than 5, the ⁇ potential of the specific silica particles tends to be negative, and it is difficult to realize high-speed polishing due to the electrostatic repulsion between the silicon oxide film and the specific silica particles.
  • the chemical mechanical polishing aqueous dispersion according to the present embodiment can be added with a surfactant, a water-soluble polymer, phosphoric acid, or a derivative thereof, if necessary.
  • surfactant examples include a cationic surfactant, an anionic surfactant, a nonionic surfactant, and an amphoteric surfactant.
  • Examples of the cationic surfactant include aliphatic amine salts and aliphatic ammonium salts.
  • anionic surfactant examples include carboxylate, sulfonate, sulfate ester salt, phosphate ester salt and the like.
  • carboxylates include fatty acid soaps and alkyl ether carboxylates.
  • sulfonate examples include alkyl benzene sulfonate, alkyl naphthalene sulfonate, ⁇ -olefin sulfonate, and the like.
  • examples of the sulfate ester salt include higher alcohol sulfate ester salts and alkyl sulfate ester salts.
  • phosphate esters examples include alkyl phosphate esters.
  • nonionic surfactants include ether type surfactants, ether ester type surfactants, ester type surfactants, and acetylene type surfactants.
  • ether ester type surfactant include polyoxyethylene ether of glycerin ester.
  • ester type surfactant include polyethylene glycol fatty acid ester, glycerin ester, sorbitan ester and the like.
  • acetylene-based surfactant include acetylene alcohol, acetylene glycol, ethylene oxide adduct of acetylene diol, and the like.
  • amphoteric surfactants examples include betaine surfactants.
  • surfactants can be used singly or in combination of two or more.
  • anionic surfactants are preferable, and sulfonates are particularly preferable.
  • sulfonates alkylbenzene sulfonates are preferred, and dodecylbenzene sulfonate is particularly preferred.
  • the content of the surfactant is preferably 1% by mass or less, more preferably 0.001 to 0.1% by mass with respect to the total mass of the chemical mechanical polishing aqueous dispersion.
  • the addition amount of the surfactant is within the above range, a smooth polished surface can be obtained after polishing and removing the silicon oxide film.
  • the water-soluble polymer has a function of adsorbing to the surface of the surface to be polished and reducing polishing friction. Thereby, the occurrence of dishing or corrosion may be suppressed by adding a water-soluble polymer.
  • water-soluble polymer examples include polyacrylamide, polyacrylic acid, polyvinyl alcohol, polyvinyl pyrrolidone, and hydroxyethyl cellulose.
  • the amount of the water-soluble polymer added can be adjusted so that the viscosity of the chemical mechanical polishing aqueous dispersion is less than 2 mPa ⁇ s.
  • the viscosity of the chemical mechanical polishing aqueous dispersion exceeds 2 mPa ⁇ s, the polishing rate may decrease, and the viscosity becomes too high to stably supply the chemical mechanical polishing aqueous dispersion on the polishing cloth. There is. As a result, an increase in the temperature of the polishing cloth, uneven polishing (deterioration of in-plane uniformity), and the like may occur, resulting in variations in polishing rate and dishing.
  • phosphoric acid or a derivative thereof can be added as necessary.
  • the pH be adjusted to 2 or more and 5 or less, but also the polishing rate for the silicon oxide film can be increased. This is presumed to be achieved by the synergistic effect of the chemical polishing action of phosphoric acid on the silicon oxide film and the mechanical polishing action of specific silica particles.
  • the content of phosphoric acid or a derivative thereof is preferably 0.1% by mass or more and 3% by mass or less, more preferably 0.2% by mass or more and 2% by mass with respect to the total mass of the chemical mechanical polishing aqueous dispersion. %, Particularly preferably 0.3% by mass or more and 1% by mass or less.
  • the chemical mechanical polishing aqueous dispersion according to the present embodiment can be prepared by dissolving or dispersing each component in a solvent such as water.
  • the dissolution or dispersion method is not particularly limited, and any method may be applied as long as it can be uniformly dissolved and dispersed. Also, the mixing order and mixing method of each component are not particularly limited.
  • the chemical mechanical polishing aqueous dispersion according to this embodiment can be prepared as a concentrated stock solution and diluted with a solvent such as water when used.
  • a chemical mechanical polishing method according to an embodiment of the present invention is characterized by polishing a surface to be polished having a silicon oxide film using the chemical mechanical polishing aqueous dispersion.
  • an example of the chemical mechanical polishing method according to the present embodiment planearization of element isolation trench filling
  • FIG. 1 shows a workpiece 100 that can be used in the chemical mechanical polishing method according to the present embodiment.
  • a silicon nitride film 12 as a stopper film is formed on the silicon substrate 10 by CVD.
  • a silicon oxide film 16 is deposited thereon by CVD. In this way, the workpiece 100 is obtained.
  • the silicon oxide film 14 other than SiO 2 embedded in the trench groove 14 is removed by CMP using the above-described chemical mechanical polishing aqueous dispersion. Then, the silicon nitride film 12 serves as a stopper, and polishing can be stopped on the surface of the silicon nitride film 14. In this way, as shown in FIG. 2, as a result, the elements of the device can be separated by SiO 2 .
  • FIG. 3 is a perspective view schematically showing the chemical mechanical polishing apparatus 200.
  • the slurry 44 is supplied from the slurry supply nozzle 42 and the carrier head 52 holding the semiconductor substrate 50 is brought into contact with the turntable 48 to which the polishing cloth 46 is attached while rotating.
  • the water supply nozzle 54 and the dresser 56 are also shown.
  • the polishing load of the carrier head 52 can be selected within the range of 10 to 1000 hPa, and preferably 30 to 500 hPa. Further, the rotational speeds of the turntable 48 and the carrier head 52 can be appropriately selected within the range of 10 to 400 rpm, and preferably 30 to 150 rpm. Flow rate of the slurry 44 supplied from the slurry supply nozzle 42 may be selected within the range of 10 ⁇ 1,000 cm 3 / min, preferably 50 ⁇ 400 cm 3 / min.
  • a commercially available chemical mechanical polishing apparatus can be used.
  • Examples of commercially available chemical mechanical polishing apparatuses include: “EPO-112”, “EPO-222” manufactured by Ebara Manufacturing Co., Ltd .; “LGP-510”, “LGP-552” manufactured by LAPMASTER SFT, Inc .; For example, model “Mirra”; G & P TECHNOLOGY, model “POLI-400L”, etc.
  • the chemical mechanical polishing method according to the present embodiment uses an aqueous dispersion for chemical mechanical polishing that can polish a silicon oxide film at high speed, planarization of the element isolation trenches exemplified above, and as an interlayer insulating film This is particularly useful for planarizing a silicon oxide film.
  • a 4-column flask (5 liters) equipped with a packed column (5 mm glass Raschig ring packing, packed height 30 cm) equipped with a thermometer and a reflux head, a feed tube and a stirrer was added with 2000 g of pure water, 1N-TMAH (tetramethylammonium hydroxy) D) 2 g was added to obtain a mother liquor.
  • the pH of the mother liquor was 10.70.
  • feeding of the TMOS hydrolyzate was started.
  • the addition rate was 16 mL / min (14.2 g silica / hour / kg mother liquor).
  • ⁇ potential / particle size measurement system model “ELSZ-1000ZS”, manufactured by Otsuka Electronics Co., Ltd.
  • ⁇ potential and an average particle size were measured for a sample obtained by removing a part of this aqueous dispersion and diluting with ion-exchanged water.
  • the ⁇ potential at pH 3.0 was +11.7 mV
  • the average particle size was 31.5 nm.
  • Synthesis Example 2 (Preparation of aqueous dispersion containing chain spherical silica particles) A chain spherical silica particle was synthesized in the same manner as in Synthesis Example 1 except that the amount of 3-aminopropyltrimethoxysilane was changed to 0.049 g.
  • the ⁇ potential at pH 4.8 was +5.0 mV
  • the average particle size was 31.5 nm. there were.
  • Synthesis Example 3 (Preparation of aqueous dispersion containing chain spherical silica particles) Except having changed the preparation frequency of a hydrolyzed liquid into 50 times in total, the same operation as the synthesis example 1 was performed, and the chain spherical silica particle was synthesize
  • a ⁇ potential and an average particle diameter were measured for a sample in which a part of this aqueous dispersion was taken out and diluted with ion-exchanged water, the ⁇ potential at pH 3.0 was +11.3 mV, and the average particle diameter was 90.5 nm. there were.
  • Synthesis Example 4 (Preparation of aqueous dispersion containing irregular silica particles) To an Erlenmeyer flask (capacity: 3 L), 8.0 g of tetramethylorthosilicate (TMOS) was weighed, and 2535 g of pure water was added with stirring at room temperature. The reaction solution, which was initially opaque, became a transparent homogeneous solution after 5 minutes due to the progress of hydrolysis. The reaction was continued as it was for 1 hour to prepare a TMOS hydrolyzate having a silica content of 0.3% by weight.
  • TMOS tetramethylorthosilicate
  • TMOS hydrolyzate was added dropwise for 3 hours, and the temperature was maintained at 70 ° C. and heated for 3 hours. Thereafter, the temperature was raised to 90 ° C., the addition rate was raised, and the whole amount of the TMOS hydrolyzed solution was dropped over 4 hours, and then the temperature was kept at 90 ° C. and heated for 3 hours.
  • Synthesis Example 5 (Preparation of water dispersion containing uneven silica particles) Excessive silica particles were synthesized in the same manner as in Synthesis Example 4 except that the amount of 3-aminopropyltrimethoxysilane used was 0.049 g. When a ⁇ potential and an average particle diameter were measured for a sample in which a part of this aqueous dispersion was taken out and diluted with ion-exchanged water, the ⁇ potential at pH 3.8 was +5.1 mV, and the average particle diameter was 46.4 nm. there were.
  • Synthesis Example 6 (Preparation of water dispersion containing irregular silica particles) Except for changing the amount of TMOS to 3.0 g, the same operations as in Synthesis Example 4 were performed to synthesize uneven silica particles. A sample obtained by removing a part of this aqueous dispersion and diluting with ion-exchanged water was measured for ⁇ potential and average particle size. As a result, the ⁇ potential at pH 2.4 was +5.0 mV, and the average particle size was 30.0 nm. there were.
  • Synthesis Example 7 (Preparation of water dispersion containing uneven silica particles) Except for changing the amount of TMOS to 20.0 g, the same operation as in Synthesis Example 4 was performed to synthesize uneven silica particles.
  • the ⁇ potential at pH 2.4 was +7.0 mV
  • the average particle diameter was 112.0 nm. there were.
  • Synthesis Example 8 (Preparation of water dispersion containing uneven silica particles) Except for omitting the heating and concentration step, the same operations as in Synthesis Example 4 were performed to synthesize concavo-convex silica particles. A sample obtained by removing a part of this aqueous dispersion and diluting with ion-exchanged water was measured for ⁇ potential and average particle size. As a result, the ⁇ potential at pH 2.4 was ⁇ 0.3 mV, and the average particle size was 51.0 nm. Met.
  • aqueous dispersion A for chemical mechanical polishing was obtained by adding phosphoric acid and ion-exchanged water so that the amount was 100 parts by mass and the predetermined pH described in Table 1, and then filtering with a filter having a pore size of 1 ⁇ m. .
  • Polishing device G & P TECHNOLOGY, model “POLI-400L” ⁇ Polishing pad: “IC1000XYP” manufactured by Nitta Haas ⁇ Chemical mechanical polishing aqueous dispersion supply speed: 100 mL / min ⁇ Surface plate rotation speed: 90 rpm ⁇ Rotation speed of polishing head: 90 rpm Polishing head pressing pressure: 2 psi
  • polishing rate of the PTEOS substrate is 800 ⁇ / min or more, “ ⁇ ” indicates that it is a high-speed polishing. ⁇ If the polishing rate of the PTEOS substrate is less than 800 ⁇ / min, it is determined that the high-speed polishing is not performed.
  • ST-PS-M Trade name, Nissan Chemical Industries Ltd. Company-made, chain sphere / PL-3-cation: trade name, manufactured by Fuso Chemical Industries, Ltd., association sphere, surface amino group modification / ST-AK-L: trade name, manufactured by Nissan Chemical Industries, Ltd., spherical, surface aluminum Osamu
  • the present invention is not limited to the above embodiment, and various modifications can be made.
  • the present invention includes configurations that are substantially the same as the configurations described in the embodiments (for example, configurations that have the same functions, methods, and results, or configurations that have the same objects and effects).
  • the present invention also includes a configuration in which a non-essential part of the configuration described in the above embodiment is replaced with another configuration.
  • the present invention includes a configuration that achieves the same effects as the configuration described in the above embodiment or a configuration that can achieve the same object.
  • the present invention includes a configuration obtained by adding a known technique to the configuration described in the above embodiment.
  • SYMBOLS 10 Silicon substrate, 12 ... Silicon nitride film, 14 ... Trench groove, 16 ... Silicon oxide film, 42 ... Slurry supply nozzle, 44 ... Slurry, 46 ... Polishing cloth, 48 ... Turntable, 50 ... Semiconductor substrate, 52 ... Carrier Head 54, water supply nozzle, 56 ... dresser, 100 ... workpiece, 200 ... chemical mechanical polishing apparatus

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

Provided are: an aqueous dispersion for chemical mechanical polishing, which contains silica particles and is capable of polishing a silicon oxide film at a higher rate than conventional aqueous dispersions for chemical mechanical polishing in a process wherein a surface to be polished having the silicon oxide film is polished; and a chemical mechanical polishing method which uses this aqueous dispersion for chemical mechanical polishing. An aqueous dispersion for chemical mechanical polishing according to the present invention is characterized by containing silica particles that satisfy the conditions (1)-(3) described below and by having a pH of from 2 to 5 (inclusive). (1) The silica particles have an average particle diameter of 30 nm or more as determined by means of a transmission electron microscope. (2) The silica particles have a ξ potential of +5 mV or more at a pH of from 2 to 5 (inclusive). (3) The silica particles have chained spherical shapes obtained by connecting a plurality of silica particles that are primary particles, or alternatively have recessed and projected shapes.

Description

化学機械研磨用水系分散体および化学機械研磨方法Chemical mechanical polishing aqueous dispersion and chemical mechanical polishing method
 本発明は、化学機械研磨用水系分散体および化学機械研磨方法に関する。 The present invention relates to a chemical mechanical polishing aqueous dispersion and a chemical mechanical polishing method.
 半導体装置の集積度の向上、多層配線化などに伴い、被加工膜の研磨に化学機械研磨(以下、「CMP」ともいう。)の技術が採用されている。これは、プロセスウェーハ上の絶縁膜に形成された所望のパターンの溝、孔などに、適当な配線材料を埋め込んだ後に化学機械的に研磨することにより、余剰の配線材料を除去し、配線を形成するものである。また、このようなCMPは配線形成の他、キャパシタ、ゲート電極などの形成にも応用されており、また、SOI(Silicon on Insulator)基板等のシリコンウェーハを鏡面研磨する際にも利用されている。CMPの研磨対象物としては、ポリシリコン膜(多結晶シリコン膜)、単結晶シリコン膜、シリコン酸化膜、アルミニウム、タングステン、銅など多岐にわたる。 With the improvement of the degree of integration of semiconductor devices and multilayer wiring, a chemical mechanical polishing (hereinafter also referred to as “CMP”) technique is employed for polishing a film to be processed. This is achieved by embedding an appropriate wiring material in a groove or hole of a desired pattern formed in the insulating film on the process wafer and then polishing it mechanically to remove excess wiring material and wiring. To form. In addition to wiring formation, such CMP is applied to formation of capacitors, gate electrodes, and the like, and is also used for mirror polishing of silicon wafers such as SOI (Silicon on Insulator) substrates. . There are a wide variety of polishing targets for CMP, such as polysilicon films (polycrystalline silicon films), single crystal silicon films, silicon oxide films, aluminum, tungsten, and copper.
 これらの中でもシリコン酸化膜は、一般に層間絶縁膜として利用されている。このシリコン酸化膜のCMPプロセスでは、層間絶縁膜の平坦化特性だけでなく、スクラッチ等の研磨傷が少なく、高研磨速度が得られるといった特性も要求される。 Among these, the silicon oxide film is generally used as an interlayer insulating film. In the CMP process of the silicon oxide film, not only the planarization characteristic of the interlayer insulating film but also the characteristic that there are few polishing scratches such as scratches and a high polishing rate can be obtained.
 シリコン酸化膜のCMPに用いられる化学機械研磨用水系分散体には、従来砥粒としてシリカ粒子が使用されてきた。このようなシリカ粒子の製造方法としては、例えばケイ酸アルキル加水分解液をアルカリ熱水中に連続添加する粒子成長法が知られている。例えば特許文献1には、ケイ酸ナトリウム水溶液(水ガラス)からナトリウムをイオン交換樹脂などで除去して生成成長させたシリカ粒子が開示されている。この粒子成長法では、アルカリ性条件で活性ケイ酸水溶液を添加するため、球状で単分散であり、かつ緻密なシリカ粒子が生成する傾向がある。 Conventionally, silica particles have been used as abrasive grains in chemical mechanical polishing aqueous dispersions used for CMP of silicon oxide films. As a method for producing such silica particles, for example, a particle growth method is known in which an alkyl silicate hydrolyzate is continuously added to alkaline hot water. For example, Patent Document 1 discloses silica particles formed and grown by removing sodium from an aqueous sodium silicate solution (water glass) with an ion exchange resin or the like. In this particle growth method, since the active silicic acid aqueous solution is added under alkaline conditions, spherical, monodispersed and dense silica particles tend to be generated.
 近年、球状単分散のシリカ形状を異形化(すなわち、複雑な形状の二次粒子とする)して、研磨剤として使用する際の被研磨面の接触抵抗を調整し、研磨速度を更に改善することが検討されている(例えば、特許文献2参照)。 In recent years, the spherical monodispersed silica shape has been modified (that is, secondary particles having a complicated shape) to adjust the contact resistance of the surface to be polished when used as an abrasive, thereby further improving the polishing rate. (For example, refer to Patent Document 2).
特開2003-197573号公報JP 2003-197573 A 特許第5127452号公報Japanese Patent No. 5127452
 しかしながら、上述したようなシリカ粒子は、アルカリ性領域でのζ電位が負の値となるが、等電点が約pH2付近であることから、酸性領域においても負の値となる。一方、シリコン酸化膜の表面についても同様のpH領域において前記シリカ粒子と同様のζ電位の値となると考えられる。そうすると、上述したようなシリカ粒子を含有する化学機械研磨用水系分散体では、シリコン酸化膜の表面とシリカ粒子との静電反発力(斥力)によって、シリコン酸化膜を高速研磨できないという課題があった。 However, the silica particles as described above have a negative ζ potential in the alkaline region, but have a negative value in the acidic region because the isoelectric point is about pH 2. On the other hand, the surface of the silicon oxide film is considered to have the same ζ potential value as that of the silica particles in the same pH region. Then, the chemical mechanical polishing aqueous dispersion containing silica particles as described above has a problem that the silicon oxide film cannot be polished at high speed due to electrostatic repulsion (repulsive force) between the surface of the silicon oxide film and the silica particles. It was.
 そこで、本発明に係る幾つかの態様は、上記課題を解決することで、シリコン酸化膜を有する被研磨面を研磨する工程において、従来よりもシリコン酸化膜を高速に研磨することができる、シリカ粒子を含有する化学機械研磨用水系分散体、およびそれを用いた化学機械研磨方法を提供する。 Accordingly, some aspects of the present invention provide a silica that can polish the silicon oxide film at a higher speed than in the past in the step of polishing the surface to be polished having the silicon oxide film by solving the above-described problems. An aqueous dispersion for chemical mechanical polishing containing particles and a chemical mechanical polishing method using the same are provided.
 本発明は上述の課題の少なくとも一部を解決するためになされたものであり、以下の態様または適用例として実現することができる。 The present invention has been made to solve at least a part of the above-described problems, and can be realized as the following aspects or application examples.
 [適用例1]
 本発明に係る化学機械研磨用水系分散体の一態様は、
 下記(1)~(3)の条件を満たすシリカ粒子を含有し、pHが2以上5以下であることを特徴とする。
(1)透過型電子顕微鏡像から測定された平均粒子径が30nm以上であること。
(2)pH2~5の全範囲におけるゼータ電位が+5mV以上であること。
(3)一次粒子であるシリカ粒子が複数繋がって形成された連鎖球状を有していること、または凹凸形状を有していること。
[Application Example 1]
One aspect of the chemical mechanical polishing aqueous dispersion according to the present invention is:
Silica particles satisfying the following conditions (1) to (3) are contained, and the pH is 2 or more and 5 or less.
(1) The average particle diameter measured from the transmission electron microscope image is 30 nm or more.
(2) The zeta potential in the entire pH range of 2 to 5 is +5 mV or more.
(3) It has a chain sphere formed by connecting a plurality of silica particles as primary particles, or has an uneven shape.
 [適用例2]
 適用例1の化学機械研磨用水系分散体において、
 前記シリカ粒子が、ゾルゲル法により製造されたシリカ粒子であることができる。
[Application Example 2]
In the chemical mechanical polishing aqueous dispersion of Application Example 1,
The silica particles may be silica particles produced by a sol-gel method.
 [適用例3]
 適用例1または適用例2の化学機械研磨用水系分散体において、
 さらに、有機酸を含有することができる。
[Application Example 3]
In the chemical mechanical polishing aqueous dispersion of Application Example 1 or Application Example 2,
Furthermore, an organic acid can be contained.
 [適用例4]
 適用例1ないし適用例3のいずれか一例の化学機械研磨用水系分散体は、
 シリコン酸化膜を有する被研磨面の研磨用であることができる。
[Application Example 4]
The chemical mechanical polishing aqueous dispersion of any one of Application Examples 1 to 3 is:
It can be used for polishing a surface to be polished having a silicon oxide film.
 [適用例5]
 本発明に係る化学機械研磨方法の一態様は、
 適用例1ないし適用例4のいずれか一例の化学機械研磨用水系分散体を用いて、シリコン酸化膜を有する被研磨面を研磨することを特徴とする。
[Application Example 5]
One aspect of the chemical mechanical polishing method according to the present invention is:
The polished surface having a silicon oxide film is polished using the chemical mechanical polishing aqueous dispersion according to any one of Application Examples 1 to 4.
 本発明に係る化学機械研磨用水系分散体によれば、シリコン酸化膜を有する被研磨面を研磨する工程において、従来の化学機械研磨用水系分散体よりもシリコン酸化膜を高速に研磨することができる。 According to the chemical mechanical polishing aqueous dispersion according to the present invention, in the step of polishing the surface to be polished having the silicon oxide film, the silicon oxide film can be polished at a higher speed than the conventional chemical mechanical polishing aqueous dispersion. it can.
図1は、本実施の形態に係る化学機械研磨方法に用い得る被処理体を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing an object to be processed that can be used in the chemical mechanical polishing method according to the present embodiment. 図2は、本実施の形態に係る化学機械研磨方法の研磨工程を説明するための断面図である。FIG. 2 is a cross-sectional view for explaining a polishing step of the chemical mechanical polishing method according to the present embodiment. 図3は、化学機械研磨装置を模式的に示す斜視図である。FIG. 3 is a perspective view schematically showing a chemical mechanical polishing apparatus.
 以下、本発明の好適な実施形態について詳細に説明する。なお、本発明は、下記の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲において実施される各種の変形例も含む。 Hereinafter, preferred embodiments of the present invention will be described in detail. In addition, this invention is not limited to the following embodiment, Various modifications implemented in the range which does not change the summary of this invention are also included.
 1.化学機械研磨用水系分散体
 本発明の一実施形態に係る化学機械研磨用水系分散体は、シリコン酸化膜を有する被研磨面を研磨するための化学機械研磨用水系分散体であって、特定の条件を満たすシリカ粒子(以下、「特定シリカ粒子」ともいう。)を含有し、pHが2~5であることを特徴とする。以下、本実施の形態に係る化学機械研磨用水系分散体に含まれる各成分について説明する。
1. Chemical mechanical polishing aqueous dispersion A chemical mechanical polishing aqueous dispersion according to an embodiment of the present invention is a chemical mechanical polishing aqueous dispersion for polishing a surface to be polished having a silicon oxide film. It contains silica particles that satisfy the conditions (hereinafter also referred to as “specific silica particles”), and has a pH of 2 to 5. Hereinafter, each component contained in the chemical mechanical polishing aqueous dispersion according to the present embodiment will be described.
 1.1.特定シリカ粒子
 本実施の形態に係る化学機械研磨用水系分散体は、下記(1)~(3)の条件を満たす特定シリカ粒子を含有する。
(1)透過型電子顕微鏡によって測定された平均粒子径が30nm以上であること。
(2)pH2以上5以下のいずれかにおけるζ電位が+5mV以上であること。
(3)一次粒子であるシリカ粒子が複数繋がって形成された連鎖球状を有していること、または凹凸形状を有していること。
 これらの3つの条件を満たしている特定シリカ粒子を含有することで、シリコン酸化膜に対する高速研磨を実現することが可能となる。
1.1. Specific Silica Particles The chemical mechanical polishing aqueous dispersion according to the present embodiment contains specific silica particles that satisfy the following conditions (1) to (3).
(1) The average particle diameter measured by a transmission electron microscope is 30 nm or more.
(2) The ζ potential at pH 2 or more and 5 or less is +5 mV or more.
(3) It has a chain sphere formed by connecting a plurality of silica particles as primary particles, or has an uneven shape.
By containing the specific silica particles satisfying these three conditions, it becomes possible to realize high-speed polishing of the silicon oxide film.
 <条件(1):平均粒子径>
 特定シリカ粒子は、透過型電子顕微鏡像から測定された平均粒子径が30nm以上であることが必要であり、好ましくは30nm以上500nm以下、より好ましくは30nm以上200nm以下である。特定シリカ粒子の平均粒子径が30nm以上であることにより、シリコン酸化膜に対する高速研磨を実現することが可能となる。一方、平均粒子径が30nm未満では、シリコン酸化膜に対する研磨速度が不十分となる場合があり、また製造時に不安定でゲル化しやすい傾向がある。
<Condition (1): Average particle diameter>
The specific silica particles are required to have an average particle size of 30 nm or more measured from a transmission electron microscope image, preferably 30 nm to 500 nm, more preferably 30 nm to 200 nm. When the average particle diameter of the specific silica particles is 30 nm or more, it becomes possible to realize high-speed polishing of the silicon oxide film. On the other hand, if the average particle size is less than 30 nm, the polishing rate for the silicon oxide film may be insufficient, and it tends to be unstable and easily gelled during production.
 「透過型電子顕微鏡像から測定された平均粒子径」とは、透過型電子顕微鏡によって撮影した像を画像解析することによって算出された平均粒子径のことである。本発明においては、粒子50個のHeywood径を計測して平均値を算出した。 “The average particle diameter measured from a transmission electron microscope image” is an average particle diameter calculated by image analysis of an image taken with a transmission electron microscope. In the present invention, the Heywood diameter of 50 particles was measured and the average value was calculated.
 透過型電子顕微鏡の装置としては、日立ハイテク社製の等価電子顕微鏡「H-7650」、日本電子株式会社製「JEM-2100」等が挙げられる。画像解析に用いるソフトウェアとしては、マウンテック社製画像解析式粒度分布測定ソフトウェア「Mac-View ver.4」等が挙げられる。 Examples of transmission electron microscope apparatuses include an equivalent electron microscope “H-7650” manufactured by Hitachi High-Tech, “JEM-2100” manufactured by JEOL Ltd., and the like. Examples of software used for image analysis include image analysis type particle size distribution measurement software “Mac-View ver. 4” manufactured by Mountec.
 <条件(2):ζ電位>
 特定シリカ粒子は、pH2以上5以下のいずれかにおけるζ電位が+5mV以上であることが必要であり、好ましくは+5mV以上+50mV以下である。特定シリカ粒子のpH2以上5以下のいずれかにおけるζ電位が+5mV以上であると、特定シリカ粒子とシリコン酸化膜との静電相互作用に基づく引力によって特定シリカ粒子がシリコン酸化膜の表面に局在化しやすくなるので、シリコン酸化膜に対する高速研磨を実現することが可能となる。ζ電位が+5mV未満では、特定シリカ粒子とシリコン酸化膜との静電相互作用が小さくなるかもしくは斥力が働くので、シリコン酸化膜に対する研磨速度が不十分となる場合がある。ζ電位が+5mV以上のシリカ粒子は、例えば、シリカ粒子を、アミノ基を有するシランカップリング剤で変性することで得ることができる。
<Condition (2): ζ potential>
The specific silica particles must have a ζ potential of +5 mV or more, preferably +5 mV or more and +50 mV or less, at any pH of 2 or more and 5 or less. If the ζ potential of the specific silica particles at pH 2 or more and 5 or less is +5 mV or more, the specific silica particles are localized on the surface of the silicon oxide film due to the attractive force based on electrostatic interaction between the specific silica particles and the silicon oxide film. Therefore, high-speed polishing of the silicon oxide film can be realized. When the ζ potential is less than +5 mV, the electrostatic interaction between the specific silica particles and the silicon oxide film is reduced or repulsive, and the polishing rate for the silicon oxide film may be insufficient. Silica particles having a ζ potential of +5 mV or more can be obtained, for example, by modifying silica particles with a silane coupling agent having an amino group.
 特定シリカ粒子のゼータ電位は、レーザードップラー法を測定原理とするゼータ電位測定装置を用いて常法により測定することできる。このようなゼータ電位測定装置としては、例えばブルックヘブンインスツルメント社製の「ゼータポテンシャルアナライザー」、大塚電子株式会社製の「ELSZ-1000ZS」などが挙げられる。 The zeta potential of the specific silica particles can be measured by a conventional method using a zeta potential measuring device based on the laser Doppler method. Examples of such a zeta potential measuring device include “Zeta Potential Analyzer” manufactured by Brookhaven Instruments, “ELSZ-1000ZS” manufactured by Otsuka Electronics Co., Ltd., and the like.
 <条件(3):形状>
 特定シリカ粒子の形状は、一次粒子であるシリカ粒子が複数繋がって形成された連鎖球状を有していること、または凹凸形状を有していることが必要である。特定シリカ粒子の形状が連鎖球状や凹凸形状であると、被研磨面(すなわち、シリコン酸化膜)との接触抵抗が大きくなり、シリコン酸化膜に対する高速研磨を実現することが可能となる。
<Condition (3): Shape>
The shape of the specific silica particles needs to have a chain sphere formed by connecting a plurality of silica particles, which are primary particles, or have an uneven shape. When the shape of the specific silica particles is a chain sphere or an uneven shape, the contact resistance with the surface to be polished (that is, the silicon oxide film) increases, and high-speed polishing of the silicon oxide film can be realized.
 なお、本明細書において、「連鎖球状」とは、3つ以上の粒子が一列もしくは複数列に結合してできた粒子のことをいい、直線構造だけでなく分岐構造も含まれる。また、「凹凸形状」とは、異形化された形状、すなわち複数の粒子によって複雑な形状が形成された二次粒子のことをいい、単分散の球状一次粒子や二次粒子が球状を形成しているものは含まれない。 In the present specification, “chained sphere” means a particle formed by combining three or more particles in one or a plurality of rows, and includes not only a linear structure but also a branched structure. The “concave / convex shape” means a secondary particle in which a deformed shape, that is, a complex shape is formed by a plurality of particles, and monodispersed spherical primary particles or secondary particles form a sphere. It does not include.
 特定シリカ粒子の含有量は、化学機械研磨用水系分散体の全質量に対して、好ましくは1質量%以上20質量%以下であり、より好ましくは1質量%以上15質量%以下であり、特に好ましくは1質量%以上10質量%以下である。特定シリカ粒子の含有量が前記範囲にあると、シリコン酸化膜に対する高速研磨を実現できると共に、化学機械研磨用水系分散体の保存安定性が良好となる。 The content of the specific silica particles is preferably 1% by mass or more and 20% by mass or less, more preferably 1% by mass or more and 15% by mass or less, particularly with respect to the total mass of the chemical mechanical polishing aqueous dispersion. Preferably they are 1 mass% or more and 10 mass% or less. When the content of the specific silica particles is in the above range, high-speed polishing of the silicon oxide film can be realized, and the storage stability of the chemical mechanical polishing aqueous dispersion is improved.
 また、本実施の形態に係る化学機械研磨用水系分散体は、半導体装置製造におけるシリコン酸化膜の研磨に使用されるので、研磨による被研磨面の金属汚染を避ける必要がある。したがって、特定シリカ粒子は、1)ナトリウム、2)カルシウムおよびマグネシウムよりなる群から選ばれるアルカリ土類金属、ならびに3)鉄、チタン、ニッケル、クロム、銅、亜鉛、鉛、銀、マンガンおよびコバルトよりなる群から選ばれる重金属類の含有量が、それぞれ1ppm以下であることが好ましい。 Further, since the chemical mechanical polishing aqueous dispersion according to the present embodiment is used for polishing a silicon oxide film in manufacturing a semiconductor device, it is necessary to avoid metal contamination of the surface to be polished by polishing. Therefore, the specific silica particles are 1) sodium, 2) an alkaline earth metal selected from the group consisting of calcium and magnesium, and 3) iron, titanium, nickel, chromium, copper, zinc, lead, silver, manganese and cobalt. The content of heavy metals selected from the group is preferably 1 ppm or less.
 このような特定シリカ粒子は、水ガラス法やStober法ではなく、ゾルゲル法によって製造することができる。例えば、国際公開第2010/035613号に記載の製造方法に準じて作製することができる。特定シリカ粒子を製造する際には、ζ電位を+5mV以上とする必要があることから、シリカ粒子の表面にアミンを吸着させて表面処理することが好ましい。ζ電位を正にする公知な方法として、アルミ処理する方法も挙げられるが、上述の金属汚染の問題が生じるため、電材用途での使用が限られてしまうことになり好ましくない。 Such specific silica particles can be produced not by the water glass method or the Stover method but by the sol-gel method. For example, it can be produced according to the production method described in International Publication No. 2010/035613. When producing specific silica particles, it is necessary to set the ζ potential to +5 mV or more. Therefore, it is preferable to perform surface treatment by adsorbing amine on the surface of the silica particles. A known method for making the zeta potential positive is an aluminum treatment method, but the above-mentioned problem of metal contamination occurs, which is not preferable because the use in electric materials is limited.
 1.2.有機酸
 本実施の形態に係る化学機械研磨用水系分散体は、必要に応じて有機酸もしくは後述するリン酸を添加することにより、pHを2以上5以下に調整することができる。リン酸以外の無機酸を添加してもpHを酸性側にすることはできるが、上記の金属汚染の問題が生じるため、電材用途での使用が限られてしまうことになり好ましくない。有機酸およびリン酸であれば、被研磨面を金属汚染することなく、pHを調整することができる。
1.2. Organic Acid The chemical mechanical polishing aqueous dispersion according to the present embodiment can be adjusted to a pH of 2 or more and 5 or less by adding an organic acid or phosphoric acid described later as necessary. Even if an inorganic acid other than phosphoric acid is added, the pH can be brought to the acidic side, but the above-mentioned problem of metal contamination occurs, which is not preferable because the use in electric materials is limited. With an organic acid and phosphoric acid, the pH can be adjusted without metal contamination of the surface to be polished.
 このような有機酸としては、例えば、パラトルエンスルホン酸、ドデシルベンゼンスルホン酸、イソプレンスルホン酸、グルコン酸、乳酸、グリコール酸、マロン酸、ギ酸、シユウ酸、コハク酸、フマル酸、マレイン酸、フタル酸等が挙げられる。これらの有機酸は、1種単独でまたは2種以上を組み合わせて使用することができる。 Examples of such organic acids include p-toluenesulfonic acid, dodecylbenzenesulfonic acid, isoprenesulfonic acid, gluconic acid, lactic acid, glycolic acid, malonic acid, formic acid, oxalic acid, succinic acid, fumaric acid, maleic acid, phthalic acid. An acid etc. are mentioned. These organic acids can be used singly or in combination of two or more.
 1.3.分散媒
 本実施の形態に係る化学機械研磨用水系分散体は、分散媒を含有する。分散媒としては、水、水およびアルコールの混合媒体、水および水との相溶性を有する有機溶媒を含む混合媒体等が挙げられる。これらの中でも、水、水およびアルコールの混合媒体を用いることが好ましく、水を用いることがより好ましい。
1.3. Dispersion medium The chemical mechanical polishing aqueous dispersion according to the present embodiment contains a dispersion medium. Examples of the dispersion medium include water, a mixed medium of water and alcohol, a mixed medium containing water and an organic solvent having compatibility with water, and the like. Among these, water, a mixed medium of water and alcohol are preferably used, and water is more preferably used.
 1.4.pH
 本実施の形態に係る化学機械研磨用水系分散体のpHは2以上5以下であり、好ましくは2以上4以下である。pHを2以上5以下の範囲とすることで、特定シリカ粒子のζ電位を正電荷とすることができる。これにより、負に帯電しているシリコン酸化膜と特定シリカ粒子との静電相互作用に基づく引力によって、特定シリカ粒子がシリコン酸化膜の表面に局在化しやすくなるので、シリコン酸化膜に対する高速研磨を実現することが可能となる。pHを5よりも大きくすると、特定シリカ粒子のζ電位が負となりやすく、シリコン酸化膜と特定シリカ粒子との静電反発力によって高速研磨の実現が困難となる。
1.4. pH
The pH of the chemical mechanical polishing aqueous dispersion according to the present embodiment is 2 or more and 5 or less, preferably 2 or more and 4 or less. By setting the pH in the range of 2 or more and 5 or less, the ζ potential of the specific silica particles can be set to a positive charge. This makes it easy to localize the specific silica particles on the surface of the silicon oxide film due to the attractive force based on the electrostatic interaction between the negatively charged silicon oxide film and the specific silica particles. Can be realized. If the pH is greater than 5, the ζ potential of the specific silica particles tends to be negative, and it is difficult to realize high-speed polishing due to the electrostatic repulsion between the silicon oxide film and the specific silica particles.
 1.5.その他の添加剤
 本実施の形態に係る化学機械研磨用水系分散体は、必要に応じて、界面活性剤、水溶性高分子、リン酸またはその誘導体等を添加することができる。
1.5. Other Additives The chemical mechanical polishing aqueous dispersion according to the present embodiment can be added with a surfactant, a water-soluble polymer, phosphoric acid, or a derivative thereof, if necessary.
 <界面活性剤>
 界面活性剤としては、例えば、カチオン性界面活性剤、アニオン性界面活性剤、非イオン性界面活性剤、両性界面活性剤等が挙げられる。
<Surfactant>
Examples of the surfactant include a cationic surfactant, an anionic surfactant, a nonionic surfactant, and an amphoteric surfactant.
 カチオン性界面活性剤としては、例えば、脂肪族アミン塩、脂肪族アンモニウム塩等が挙げられる。 Examples of the cationic surfactant include aliphatic amine salts and aliphatic ammonium salts.
 アニオン性界面活性剤としては、例えば、カルボン酸塩、スルホン酸塩、硫酸エステル塩、リン酸エステル塩等が挙げられる。カルボン酸塩としては、脂肪酸石鹸、アルキルエーテルカルボン酸塩等が挙げられる。スルホン酸塩としては、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、α-オレフィンスルホン酸塩等が挙げられる。硫酸エステル塩としては、例えば、高級アルコール硫酸エステル塩、アルキル硫酸エステル塩等が挙げられる。リン酸エステルとしては、例えば、アルキルリン酸エステル等が挙げられる。 Examples of the anionic surfactant include carboxylate, sulfonate, sulfate ester salt, phosphate ester salt and the like. Examples of carboxylates include fatty acid soaps and alkyl ether carboxylates. Examples of the sulfonate include alkyl benzene sulfonate, alkyl naphthalene sulfonate, α-olefin sulfonate, and the like. Examples of the sulfate ester salt include higher alcohol sulfate ester salts and alkyl sulfate ester salts. Examples of phosphate esters include alkyl phosphate esters.
 非イオン性界面活性剤としては、例えば、エーテル型界面活性剤、エーテルエステル型界面活性剤、エステル型界面活性剤、アセチレン系界面活性剤等が挙げられる。エーテルエステル型界面活性剤としては、例えば、グリセリンエステルのポリオキシエチレンエーテル等が挙げられる。エステル型界面活性剤としては、例えば、ポリエチレングリコール脂肪酸エステル、グリセリンエステル、ソルビタンエステル等が挙げられる。アセチレン系界面活性剤としては、例えば、アセチレンアルコール、アセチレングリコール、アセチレンジオールのエチレンオキサイド付加物等が挙げられる。 Examples of nonionic surfactants include ether type surfactants, ether ester type surfactants, ester type surfactants, and acetylene type surfactants. Examples of the ether ester type surfactant include polyoxyethylene ether of glycerin ester. Examples of the ester type surfactant include polyethylene glycol fatty acid ester, glycerin ester, sorbitan ester and the like. Examples of the acetylene-based surfactant include acetylene alcohol, acetylene glycol, ethylene oxide adduct of acetylene diol, and the like.
 両性界面活性剤としては、例えば、ベタイン系界面活性剤等が挙げられる。 Examples of amphoteric surfactants include betaine surfactants.
 これらの界面活性剤は、1種単独でまたは2種以上を組み合わせて使用することができる。 These surfactants can be used singly or in combination of two or more.
 これらの界面活性剤の中では、アニオン性界面活性剤が好ましく、特にスルホン酸塩が好ましい。また、スルホン酸塩の中ではアルキルベンゼンスルホン酸塩が好ましく、特にドデシルベンゼンスルホン酸塩が好ましい。 Among these surfactants, anionic surfactants are preferable, and sulfonates are particularly preferable. Of the sulfonates, alkylbenzene sulfonates are preferred, and dodecylbenzene sulfonate is particularly preferred.
 界面活性剤の含有量は、化学機械研磨用水系分散体の全質量に対して、好ましくは1質量%以下であり、より好ましくは0.001~0.1質量%である。界面活性剤の添加量が上記の範囲内にあると、シリコン酸化膜を研磨除去した後に、平滑な被研磨面を得ることができる。 The content of the surfactant is preferably 1% by mass or less, more preferably 0.001 to 0.1% by mass with respect to the total mass of the chemical mechanical polishing aqueous dispersion. When the addition amount of the surfactant is within the above range, a smooth polished surface can be obtained after polishing and removing the silicon oxide film.
 <水溶性高分子>
 水溶性高分子は、被研磨面の表面に吸着し研磨摩擦を低減させる機能を有する。これにより、水溶性高分子を添加することにより、ディッシングやコロージョンの発生を抑制できる場合がある。
<Water-soluble polymer>
The water-soluble polymer has a function of adsorbing to the surface of the surface to be polished and reducing polishing friction. Thereby, the occurrence of dishing or corrosion may be suppressed by adding a water-soluble polymer.
 水溶性高分子としては、ポリアクリルアミド、ポリアクリル酸、ポリビニルアルコール、ポリビニルピロリドン、ヒドロキシエチルセルロース等を挙げることができる。 Examples of the water-soluble polymer include polyacrylamide, polyacrylic acid, polyvinyl alcohol, polyvinyl pyrrolidone, and hydroxyethyl cellulose.
 水溶性高分子の添加量は、化学機械研磨用水系分散体の粘度が2mPa・s未満となるように調整することができる。化学機械研磨用水系分散体の粘度が2mPa・sを超えると研磨速度が低下することがあり、また粘度が高くなりすぎて研磨布上に安定して化学機械研磨用水系分散体を供給できないことがある。その結果、研磨布の温度上昇や研磨むら(面内均一性の劣化)等が生じて、研磨速度やディッシングのばらつきが発生することがある。 The amount of the water-soluble polymer added can be adjusted so that the viscosity of the chemical mechanical polishing aqueous dispersion is less than 2 mPa · s. When the viscosity of the chemical mechanical polishing aqueous dispersion exceeds 2 mPa · s, the polishing rate may decrease, and the viscosity becomes too high to stably supply the chemical mechanical polishing aqueous dispersion on the polishing cloth. There is. As a result, an increase in the temperature of the polishing cloth, uneven polishing (deterioration of in-plane uniformity), and the like may occur, resulting in variations in polishing rate and dishing.
 <リン酸またはその誘導体>
 本実施形態に係る化学機械研磨用水系分散体は、必要に応じて、リン酸またはその誘導体を添加することができる。リン酸またはその誘導体を添加することにより、pHを2以上5以下に調整できるだけでなく、シリコン酸化膜に対する研磨速度を大きくすることができる場合がある。これは、リン酸のシリコン酸化膜に対する化学的研磨作用と特定シリカ粒子の機械的研磨作用の相乗効果により達成されるものと推測される。
<Phosphoric acid or its derivative>
To the chemical mechanical polishing aqueous dispersion according to the present embodiment, phosphoric acid or a derivative thereof can be added as necessary. By adding phosphoric acid or a derivative thereof, not only can the pH be adjusted to 2 or more and 5 or less, but also the polishing rate for the silicon oxide film can be increased. This is presumed to be achieved by the synergistic effect of the chemical polishing action of phosphoric acid on the silicon oxide film and the mechanical polishing action of specific silica particles.
 リン酸またはその誘導体の含有量は、化学機械研磨用水系分散体の全質量に対して、好ましくは0.1質量%以上3質量%以下であり、より好ましくは0.2質量%以上2質量%以下であり、特に好ましくは0.3質量%以上1質量%以下である。 The content of phosphoric acid or a derivative thereof is preferably 0.1% by mass or more and 3% by mass or less, more preferably 0.2% by mass or more and 2% by mass with respect to the total mass of the chemical mechanical polishing aqueous dispersion. %, Particularly preferably 0.3% by mass or more and 1% by mass or less.
 1.6.化学機械研磨用水系分散体の調製
 本実施形態に係る化学機械研磨用水系分散体は、水等の溶媒に前記各成分を溶解または分散させることにより調製することができる。溶解または分散方法は特に限定されるものではなく、均一に溶解、分散できればいかなる方法を適用してもよい。また、各成分の混合順序や混合方法についても特に限定されない。
1.6. Preparation of Chemical Mechanical Polishing Aqueous Dispersion The chemical mechanical polishing aqueous dispersion according to the present embodiment can be prepared by dissolving or dispersing each component in a solvent such as water. The dissolution or dispersion method is not particularly limited, and any method may be applied as long as it can be uniformly dissolved and dispersed. Also, the mixing order and mixing method of each component are not particularly limited.
 本実施形態に係る化学機械研磨用水系分散体は、濃縮タイプの原液として調製し、使用時に水等の溶媒で希釈して使用することもできる。 The chemical mechanical polishing aqueous dispersion according to this embodiment can be prepared as a concentrated stock solution and diluted with a solvent such as water when used.
 2.化学機械研磨方法
 本発明の一実施形態に係る化学機械研磨方法は、上記の化学機械研磨用水系分散体を用いて、シリコン酸化膜を有する被研磨面を研磨することを特徴とする。以下、本実施の形態に係る化学機械研磨方法の一例(素子分離用溝埋込みの平坦化)について、図面を参照しながら説明する。
2. Chemical Mechanical Polishing Method A chemical mechanical polishing method according to an embodiment of the present invention is characterized by polishing a surface to be polished having a silicon oxide film using the chemical mechanical polishing aqueous dispersion. Hereinafter, an example of the chemical mechanical polishing method according to the present embodiment (planarization of element isolation trench filling) will be described with reference to the drawings.
 図1に、本実施の形態に係る化学機械研磨方法に用い得る被処理体100を示す。まず、シリコン基板10の上にCVDによってストッパ膜としてのシリコン窒化膜12を形成する。次いで、RIEなどでトレンチ溝14を形成した後、その上にシリコン酸化膜16をCVDによって堆積する。このようにして、被処理体100が得られる。 FIG. 1 shows a workpiece 100 that can be used in the chemical mechanical polishing method according to the present embodiment. First, a silicon nitride film 12 as a stopper film is formed on the silicon substrate 10 by CVD. Next, after forming the trench groove 14 by RIE or the like, a silicon oxide film 16 is deposited thereon by CVD. In this way, the workpiece 100 is obtained.
 図1におけるシリコン酸化膜16のうち、トレンチ溝14に埋め込まれたSiO以外のシリコン酸化膜14を上述の化学機械研磨用水系分散体を用いてCMPにより除去する。そうすると、シリコン窒化膜12がストッパとなり、シリコン窒化膜14の表面で研磨を停止することができる。このようにして、図2に示すように、結果的にデバイスの素子間をSiOで分離することができる。 In the silicon oxide film 16 in FIG. 1, the silicon oxide film 14 other than SiO 2 embedded in the trench groove 14 is removed by CMP using the above-described chemical mechanical polishing aqueous dispersion. Then, the silicon nitride film 12 serves as a stopper, and polishing can be stopped on the surface of the silicon nitride film 14. In this way, as shown in FIG. 2, as a result, the elements of the device can be separated by SiO 2 .
 上述の化学機械研磨では、例えば、図3に示すような化学機械研磨装置200を用いることができる。図3は、化学機械研磨装置200を模式的に示す斜視図である。スラリー供給ノズル42からスラリー44を供給し、かつ研磨布46が貼付されたターンテーブル48を回転させながら、半導体基板50を保持したキャリアーヘッド52を当接させることにより行う。なお、図3には、水供給ノズル54およびドレッサー56も併せて示してある。 In the chemical mechanical polishing described above, for example, a chemical mechanical polishing apparatus 200 as shown in FIG. 3 can be used. FIG. 3 is a perspective view schematically showing the chemical mechanical polishing apparatus 200. The slurry 44 is supplied from the slurry supply nozzle 42 and the carrier head 52 holding the semiconductor substrate 50 is brought into contact with the turntable 48 to which the polishing cloth 46 is attached while rotating. In FIG. 3, the water supply nozzle 54 and the dresser 56 are also shown.
 キャリアーヘッド52の研磨荷重は、10~1000hPaの範囲内で選択することができ、好ましくは30~500hPaである。また、ターンテーブル48およびキャリアーヘッド52の回転数は10~400rpmの範囲内で適宜選択することができ、好ましくは30~150rpmである。スラリー供給ノズル42から供給されるスラリー44の流量は、10~1,000cm/分の範囲内で選択することができ、好ましくは50~400cm/分である。 The polishing load of the carrier head 52 can be selected within the range of 10 to 1000 hPa, and preferably 30 to 500 hPa. Further, the rotational speeds of the turntable 48 and the carrier head 52 can be appropriately selected within the range of 10 to 400 rpm, and preferably 30 to 150 rpm. Flow rate of the slurry 44 supplied from the slurry supply nozzle 42 may be selected within the range of 10 ~ 1,000 cm 3 / min, preferably 50 ~ 400 cm 3 / min.
 この研磨工程では、市販の化学機械研磨装置を用いることができる。市販の化学機械研磨装置として、例えば、株式会社荏原製作所製、型式「EPO-112」、「EPO-222」;ラップマスターSFT社製、型式「LGP-510」、「LGP-552」;アプライドマテリアル社製、型式「Mirra」;G&P TECHNOLOGY社製、型式「POLI-400L」等が挙げられる。 In this polishing step, a commercially available chemical mechanical polishing apparatus can be used. Examples of commercially available chemical mechanical polishing apparatuses include: “EPO-112”, “EPO-222” manufactured by Ebara Manufacturing Co., Ltd .; “LGP-510”, “LGP-552” manufactured by LAPMASTER SFT, Inc .; For example, model “Mirra”; G & P TECHNOLOGY, model “POLI-400L”, etc.
 本実施の形態に係る化学機械研磨方法は、シリコン酸化膜を高速に研磨できる化学機械研磨用水系分散体を使用するため、上記例示した素子分離用溝埋込みの平坦化や、層間絶縁膜としてのシリコン酸化膜の平坦化に特に有用である。 Since the chemical mechanical polishing method according to the present embodiment uses an aqueous dispersion for chemical mechanical polishing that can polish a silicon oxide film at high speed, planarization of the element isolation trenches exemplified above, and as an interlayer insulating film This is particularly useful for planarizing a silicon oxide film.
 3.実施例
 以下、本発明を実施例により説明するが、本発明はこれらの実施例により何ら限定されるものではない。実施例、比較例中の「部」および「%」は、特に断らない限り質量基準である。
3. Examples Hereinafter, the present invention will be described by way of examples. However, the present invention is not limited to these examples. “Part” and “%” in Examples and Comparative Examples are based on mass unless otherwise specified.
 3.1.シリカ粒子を含む水分散体の調製
 3.1.1.合成例1(連鎖球状シリカ粒子を含む水分散体の調製)
 三角フラスコ(容量3L)にテトラメチルオルトシリケート(TMOS)228gを計り取り、純水2772gを常温で攪拌しながら加えた。当初は不透明であった反応液が5分後には加水分解の進行により透明な均一溶液となった。そのまま反応を1時間継続し、シリカ分3重量%のTMOS加水分解液を調製した。加水分解液は、加水分解によって生成したシラノール基の示す酸性のため、そのpHは約4.4であった。
3.1. Preparation of aqueous dispersion containing silica particles 3.1.1. Synthesis Example 1 (Preparation of aqueous dispersion containing chain spherical silica particles)
To an Erlenmeyer flask (capacity: 3 L), 228 g of tetramethylorthosilicate (TMOS) was weighed, and 2772 g of pure water was added at room temperature with stirring. The reaction solution, which was initially opaque, became a transparent homogeneous solution after 5 minutes due to the progress of hydrolysis. The reaction was continued as it was for 1 hour to prepare a TMOS hydrolysis solution having a silica content of 3% by weight. The pH of the hydrolyzed solution was about 4.4 because of the acidity of the silanol groups produced by the hydrolysis.
 温度計及び還流ヘッドを備えた充填カラム(5mmガラスラシヒリング充填、充填高さ30cm)、フィード管、攪拌機を取り付けた4つ口フラスコ(5リットル)に純水2000g、1N-TMAH(テトラメチルアンモニウムヒドロキシド)2gを加え、母液とした。母液のpHは、10.70であった。これを加熱し、リフラックス状態となったところでTMOS加水分解液のフィードを開始した。添加速度は16mL/分(14.2gシリカ/時/kg母液)とした。 A 4-column flask (5 liters) equipped with a packed column (5 mm glass Raschig ring packing, packed height 30 cm) equipped with a thermometer and a reflux head, a feed tube and a stirrer was added with 2000 g of pure water, 1N-TMAH (tetramethylammonium hydroxy) D) 2 g was added to obtain a mother liquor. The pH of the mother liquor was 10.70. When this was heated and became refluxed, feeding of the TMOS hydrolyzate was started. The addition rate was 16 mL / min (14.2 g silica / hour / kg mother liquor).
 pHが6.35まで低下したら、1N-TMAHを徐々に加え、pH8程度に調整し、以後これを保持するよう1N-TMAH水溶液を適宜添加しながら、加水分解液の添加を継続した。加水分解液は、3時間毎に合計20回調製した。 When the pH dropped to 6.35, 1N-TMAH was gradually added to adjust the pH to about 8. Thereafter, the hydrolysis solution was continuously added while appropriately adding a 1N-TMAH aqueous solution so as to maintain this. The hydrolyzate was prepared 20 times in total every 3 hours.
 粒子成長終了後、90μmのメッシュフィルターで粗ろ過し、水置換後、加熱濃縮を行い、固形分20%まで濃縮した。このようにして、連鎖球状シリカ粒子を含む水分散体を調製した。得られたシリカ粒子をSEMで観察したところ、3つ以上の粒子が一列もしくは複数列に結合してできた粒子群が認められ、連鎖球状シリカ粒子であることが確認できた。 After completion of particle growth, it was roughly filtered with a 90 μm mesh filter, replaced with water, concentrated by heating, and concentrated to a solid content of 20%. In this way, an aqueous dispersion containing chain spherical silica particles was prepared. When the obtained silica particles were observed with an SEM, a particle group formed by combining three or more particles in a single row or a plurality of rows was recognized, and it was confirmed that they were chain spherical silica particles.
 500mLの三角フラスコに純水324gを入れ、スターラーで攪拌しながら、3-アミノプロピルトリメトキシシラン0.067gをゆっくりと滴下し、滴下完了からさらに1時間攪拌を継続した。この液中に上記連鎖球状シリカ粒子を20%含む水分散体を50g投入し24時間放置して、シリカ粒子の水分散体を得た。 324 g of pure water was placed in a 500 mL Erlenmeyer flask, 0.067 g of 3-aminopropyltrimethoxysilane was slowly added dropwise while stirring with a stirrer, and stirring was continued for another hour after completion of the addition. 50 g of an aqueous dispersion containing 20% of the chain spherical silica particles was put into this liquid and allowed to stand for 24 hours to obtain an aqueous dispersion of silica particles.
 この水分散体の一部を取り出しイオン交換水で希釈したサンプルについて、ζ電位・粒径測定システム(大塚電子株式会社製、型式「ELSZ-1000ZS」)を用い、ζ電位および平均粒子径を測定したところ、pH3.0におけるζ電位が+11.7mVであり、平均粒子径が31.5nmであった。 Using a ζ potential / particle size measurement system (model “ELSZ-1000ZS”, manufactured by Otsuka Electronics Co., Ltd.), a ζ potential and an average particle size were measured for a sample obtained by removing a part of this aqueous dispersion and diluting with ion-exchanged water. As a result, the ζ potential at pH 3.0 was +11.7 mV, and the average particle size was 31.5 nm.
 3.1.2.合成例2(連鎖球状シリカ粒子を含む水分散体の調製)
 3-アミノプロピルトリメトキシシランの使用量を0.049gにした以外は合成例1と同様の操作を行い、連鎖球状シリカ粒子を合成した。この水分散体の一部を取り出しイオン交換水で希釈したサンプルについて、ζ電位および平均粒子径を測定したところ、pH4.8におけるζ電位は+5.0mVであり、平均粒子径が31.5nmであった。
3.1.2. Synthesis Example 2 (Preparation of aqueous dispersion containing chain spherical silica particles)
A chain spherical silica particle was synthesized in the same manner as in Synthesis Example 1 except that the amount of 3-aminopropyltrimethoxysilane was changed to 0.049 g. When a ζ potential and an average particle size were measured for a sample in which a part of this aqueous dispersion was taken out and diluted with ion-exchanged water, the ζ potential at pH 4.8 was +5.0 mV, and the average particle size was 31.5 nm. there were.
 3.1.3.合成例3(連鎖球状シリカ粒子を含む水分散体の調製)
 加水分解液の調製回数を合計50回に変更した以外は、合成例1と同様の操作を行い、連鎖球状シリカ粒子を合成した。この水分散体の一部を取り出しイオン交換水で希釈したサンプルについて、ζ電位および平均粒子径を測定したところ、pH3.0におけるζ電位は+11.3mVであり、平均粒子径は90.5nmであった。
3.1.3. Synthesis Example 3 (Preparation of aqueous dispersion containing chain spherical silica particles)
Except having changed the preparation frequency of a hydrolyzed liquid into 50 times in total, the same operation as the synthesis example 1 was performed, and the chain spherical silica particle was synthesize | combined. When a ζ potential and an average particle diameter were measured for a sample in which a part of this aqueous dispersion was taken out and diluted with ion-exchanged water, the ζ potential at pH 3.0 was +11.3 mV, and the average particle diameter was 90.5 nm. there were.
 3.1.4.合成例4(凹凸状シリカ粒子を含む水分散体の調製)
 三角フラスコ(容量3L)にテトラメチルオルトシリケート(TMOS)8.0gを計り取り、純水2535gを常温で攪拌しながら加えた。当初は不透明であった反応液が5分後には加水分解の進行により透明な均一溶液となった。そのまま反応を1時間継続し、シリカ分0.3重量%のTMOS加水分解液を調製した。
3.1.4. Synthesis Example 4 (Preparation of aqueous dispersion containing irregular silica particles)
To an Erlenmeyer flask (capacity: 3 L), 8.0 g of tetramethylorthosilicate (TMOS) was weighed, and 2535 g of pure water was added with stirring at room temperature. The reaction solution, which was initially opaque, became a transparent homogeneous solution after 5 minutes due to the progress of hydrolysis. The reaction was continued as it was for 1 hour to prepare a TMOS hydrolyzate having a silica content of 0.3% by weight.
 温度計及び還流管、フィード管、攪拌機を取り付けた3つ口フラスコ(5リットル)に純水2000g、トリエタノールアミン87.7gを加え、母液とした。これを加熱し、70℃となったところでTMOS加水分解液のフィードを開始した。添加速度は19mL/分(17gシリカ/時/kg母液)とした。 2,000 g pure water and 87.7 g triethanolamine were added to a three-necked flask (5 liters) equipped with a thermometer, a reflux tube, a feed tube, and a stirrer to obtain a mother liquor. This was heated, and when the temperature reached 70 ° C., feeding of the TMOS hydrolyzate was started. The addition rate was 19 mL / min (17 g silica / hour / kg mother liquor).
 TMOS加水分解液を3時間滴下し、温度を70℃に保持し3時間加熱した。その後温度を90℃に上げ、添加速度を上げてTMOS加水分解液を4時間かけて全量滴下した後、温度を90℃に保持して3時間加熱した。 TMOS hydrolyzate was added dropwise for 3 hours, and the temperature was maintained at 70 ° C. and heated for 3 hours. Thereafter, the temperature was raised to 90 ° C., the addition rate was raised, and the whole amount of the TMOS hydrolyzed solution was dropped over 4 hours, and then the temperature was kept at 90 ° C. and heated for 3 hours.
 粒子成長終了後、90μmのメッシュフィルターで粗ろ過、水置換し、加熱濃縮を行い固形分20%まで濃縮することにより、凹凸状シリカ粒子を含む水分散体を調製した。得られたシリカ粒子をSEMで観察したところ、表面に凹凸を有する粒子群が認められ、凹凸状シリカ粒子であることが確認できた。 After completion of the particle growth, coarse filtration and water substitution were performed with a 90 μm mesh filter, and the mixture was heated and concentrated to concentrate to a solid content of 20% to prepare an aqueous dispersion containing uneven silica particles. When the obtained silica particles were observed with an SEM, a particle group having irregularities on the surface was recognized, and it was confirmed that they were irregular silica particles.
 500mLの三角フラスコに純水324gを入れ、スターラーで攪拌しながら、3-アミノプロピルトリメトキシシラン0.060gをゆっくりと滴下し、滴下完了からさらに1時間攪拌を継続した。この液中に上記凹凸状シリカ粒子を20%含む水分散体を50g投入し、24時間放置して、シリカ粒子の水分散体を得た。この水分散体の一部を取り出しイオン交換水で希釈したサンプルについて、ζ電位および平均粒子径を測定したところ、pH2.4におけるζ電位は+7.2mVであり、平均粒子径は46.4nmであった。 324 g of pure water was placed in a 500 mL Erlenmeyer flask, 0.060 g of 3-aminopropyltrimethoxysilane was slowly added dropwise with stirring with a stirrer, and stirring was continued for another hour after completion of the addition. 50 g of an aqueous dispersion containing 20% of the irregular silica particles was put into this liquid and allowed to stand for 24 hours to obtain an aqueous dispersion of silica particles. When a ζ potential and an average particle size were measured for a sample in which a part of this aqueous dispersion was taken out and diluted with ion-exchanged water, the ζ potential at pH 2.4 was +7.2 mV, and the average particle size was 46.4 nm. there were.
 3.1.5.合成例5(凹凸状シリカ粒子を含む水分散体の調製)
 3-アミノプロピルトリメトキシシランの使用量を0.049gにした以外は、合成例4と同様の操作を行い、凹凸状シリカ粒子を合成した。この水分散体の一部を取り出しイオン交換水で希釈したサンプルについて、ζ電位および平均粒子径を測定したところ、pH3.8におけるζ電位は+5.1mVであり、平均粒子径は46.4nmであった。
3.1.5. Synthesis Example 5 (Preparation of water dispersion containing uneven silica particles)
Excessive silica particles were synthesized in the same manner as in Synthesis Example 4 except that the amount of 3-aminopropyltrimethoxysilane used was 0.049 g. When a ζ potential and an average particle diameter were measured for a sample in which a part of this aqueous dispersion was taken out and diluted with ion-exchanged water, the ζ potential at pH 3.8 was +5.1 mV, and the average particle diameter was 46.4 nm. there were.
 3.1.6.合成例6(凹凸状シリカ粒子を含む水分散体の調製)
 TMOS量を3.0gに変更した以外は、合成例4と同様の操作を行い、凹凸状シリカ粒子を合成した。この水分散体の一部を取り出しイオン交換水で希釈したサンプルについて、ζ電位および平均粒子径を測定したところ、pH2.4におけるζ電位は+5.0mVであり、平均粒子径は30.0nmであった。
3.1.6. Synthesis Example 6 (Preparation of water dispersion containing irregular silica particles)
Except for changing the amount of TMOS to 3.0 g, the same operations as in Synthesis Example 4 were performed to synthesize uneven silica particles. A sample obtained by removing a part of this aqueous dispersion and diluting with ion-exchanged water was measured for ζ potential and average particle size. As a result, the ζ potential at pH 2.4 was +5.0 mV, and the average particle size was 30.0 nm. there were.
 3.1.7.合成例7(凹凸状シリカ粒子を含む水分散体の調製)
 TMOS量を20.0gに変更した以外は、合成例4と同様の操作を行い、凹凸状シリカ粒子を合成した。この水分散体の一部を取り出しイオン交換水で希釈したサンプルについて、ζ電位および平均粒子径を測定したところ、pH2.4におけるζ電位は+7.0mVであり、平均粒子径は112.0nmであった。
3.1.7. Synthesis Example 7 (Preparation of water dispersion containing uneven silica particles)
Except for changing the amount of TMOS to 20.0 g, the same operation as in Synthesis Example 4 was performed to synthesize uneven silica particles. When a ζ potential and an average particle diameter were measured for a sample in which a part of this aqueous dispersion was taken out and diluted with ion-exchanged water, the ζ potential at pH 2.4 was +7.0 mV, and the average particle diameter was 112.0 nm. there were.
 3.1.8.合成例8(凹凸状シリカ粒子を含む水分散体の調製)
 加熱濃縮工程を省略した以外は、合成例4と同様の操作を行い、凹凸状シリカ粒子を合成した。この水分散体の一部を取り出しイオン交換水で希釈したサンプルについて、ζ電位および平均粒子径を測定したところ、pH2.4におけるζ電位は-0.3mVであり、平均粒子径は51.0nmであった。
3.1.8. Synthesis Example 8 (Preparation of water dispersion containing uneven silica particles)
Except for omitting the heating and concentration step, the same operations as in Synthesis Example 4 were performed to synthesize concavo-convex silica particles. A sample obtained by removing a part of this aqueous dispersion and diluting with ion-exchanged water was measured for ζ potential and average particle size. As a result, the ζ potential at pH 2.4 was −0.3 mV, and the average particle size was 51.0 nm. Met.
 3.2.化学機械研磨用水系分散体の調製
 イオン交換水50質量部、上記合成例1で得られた連鎖球状シリカ粒子を含む水分散体をシリカに換算して3質量部、最後に、全成分の合計量が100質量部、表1に記載の所定のpHとなるようにリン酸及びイオン交換水を加えた後、孔径1μmのフィルターで濾過することにより、化学機械研磨用水系分散体Aを得た。
3.2. Preparation of chemical mechanical polishing aqueous dispersion 50 parts by mass of ion-exchanged water, 3 parts by mass of the aqueous dispersion containing the chain spherical silica particles obtained in Synthesis Example 1 above, converted to silica, and finally the total of all components An aqueous dispersion A for chemical mechanical polishing was obtained by adding phosphoric acid and ion-exchanged water so that the amount was 100 parts by mass and the predetermined pH described in Table 1, and then filtering with a filter having a pore size of 1 μm. .
 上記の合成例1で得られた連鎖球状コロイダルシリカに代えて表1に示す砥粒種を添加し、リン酸の添加量を適宜調整して表1に示すpHに調整したこと以外は、上記の化学機械研磨用水系分散体Aの調製方法と同様にして化学機械研磨用水系分散体B~Rを調製した。なお、使用した砥粒種の形状の特定や、ζ電位及び平均粒子径の測定は、上記の「3.1.1.合成例1」のところで記載した方法と同様とした。 Except for adding the abrasive grains shown in Table 1 instead of the chain spherical colloidal silica obtained in Synthesis Example 1 above, adjusting the addition amount of phosphoric acid as appropriate, and adjusting the pH shown in Table 1 above. The chemical mechanical polishing aqueous dispersions B to R were prepared in the same manner as the chemical mechanical polishing aqueous dispersion A. The shape of the abrasive grains used and the measurement of the ζ potential and the average particle diameter were the same as those described in the above “3.1.1. Synthesis Example 1”.
 3.3.評価方法
 3.3.1.ブランケットウエハの評価
 化学機械研磨装置(G&P TECHNOLOGY社製、型式「POLI-400L」)に多孔質ポリウレタン製研磨パッド(ニッタ・ハース社製、品番「IC1000XYP」)を装着し、化学機械研磨用水系分散体A~Rのいずれか1種を供給しながら、4cm×4cmのPTEOS基板を被研磨体として、下記研磨条件にて2分間化学機械研磨処理を行い、下記の手法によって研磨速度を評価した。その結果を表1に示す。
 <研磨条件>
・研磨装置:G&P TECHNOLOGY社製、型式「POLI-400L」
・研磨パッド:ニッタ・ハース社製、「IC1000XYP」
・化学機械研磨用水系分散体供給速度:100mL/分
・定盤回転数:90rpm
・研磨ヘッド回転数:90rpm
・研磨ヘッド押し付け圧:2psi
3.3. Evaluation method 3.3.1. Evaluation of blanket wafers A chemical mechanical polishing device (G & P TECHNOLOGY, model “POLI-400L”) is equipped with a porous polyurethane polishing pad (Nita Haas, product number “IC1000XYP”), and water dispersion for chemical mechanical polishing. While supplying any one of the bodies A to R, a chemical mechanical polishing treatment was performed for 2 minutes under the following polishing conditions using a 4 cm × 4 cm PTEOS substrate as an object to be polished, and the polishing rate was evaluated by the following method. The results are shown in Table 1.
<Polishing conditions>
・ Polishing device: G & P TECHNOLOGY, model “POLI-400L”
・ Polishing pad: “IC1000XYP” manufactured by Nitta Haas
・ Chemical mechanical polishing aqueous dispersion supply speed: 100 mL / min ・ Surface plate rotation speed: 90 rpm
・ Rotation speed of polishing head: 90 rpm
Polishing head pressing pressure: 2 psi
 <研磨速度の評価>
 被研磨体である4cm×4cmのPTEOS基板について、研磨前の膜厚を光干渉式膜厚計「NanoSpec 6100」(ナノメトリクス・ジャパン(株)製)によってあらかじめ測定しておいた。次いで、上記の条件で2分間研磨を行った後の被研磨体の膜厚を、同様に光干渉式膜厚計を用いて測定し、研磨前と研磨後の膜厚の差、すなわち化学機械研磨により減少した膜厚を求めた。そして、化学機械研磨により減少した膜厚および研磨時間から研磨速度を算出した。評価基準は下記の通りであり、研磨速度と評価結果を表1に併せて示す。
・PTEOS基板の研磨速度が800Å/分以上であった場合、高速研磨であるとして「○」
・PTEOS基板の研磨速度が800Å/分未満であった場合、高速研磨でないとして「×」
<Evaluation of polishing rate>
With respect to the 4 cm × 4 cm PTEOS substrate as the object to be polished, the film thickness before polishing was measured in advance with an optical interference film thickness meter “NanoSpec 6100” (manufactured by Nanometrics Japan Co., Ltd.). Next, the film thickness of the object to be polished after polishing for 2 minutes under the above conditions is similarly measured using an optical interference film thickness meter, and the difference in film thickness before and after polishing, that is, chemical mechanical The film thickness decreased by polishing was determined. Then, the polishing rate was calculated from the film thickness decreased by chemical mechanical polishing and the polishing time. The evaluation criteria are as follows, and the polishing rate and evaluation results are also shown in Table 1.
・ If the polishing rate of the PTEOS substrate is 800 Å / min or more, “○” indicates that it is a high-speed polishing.
・ If the polishing rate of the PTEOS substrate is less than 800 Å / min, it is determined that the high-speed polishing is not performed.
 3.4.評価結果
 実施例1~7、比較例1~11で使用した化学機械研磨用水系分散体の組成、および評価結果を下表1及び下表2に示す。
3.4. Evaluation results The compositions and evaluation results of the chemical mechanical polishing aqueous dispersions used in Examples 1 to 7 and Comparative Examples 1 to 11 are shown in Tables 1 and 2 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 なお、表1及び表2中の砥粒種は、それぞれ以下のものを使用した。
・ST-PS-S:商品名、日産化学工業株式会社製、連鎖球状
・NIPSIL E-220A:商品名、東ソー・シリカ株式会社製、連鎖球状
・ST-AK-N:商品名、日産化学工業株式会社製、球状、表面アルミ修飾
・Ludox(R) CL:商品名、GRACE社製、球状、表面アルミ修飾
・PL-3:商品名、扶桑化学工業株式会社製、会合球状
・シーホスター KE-W10:商品名、株式会社日本触媒製、球状
・ST-PS-S-AK:商品名、日産化学工業株式会社製、連鎖球状、表面アルミ修飾
・ST-PS-M:商品名、日産化学工業株式会社製、連鎖球状
・PL-3-カチオン:商品名、扶桑化学工業株式会社製、会合球状、表面アミノ基修飾
・ST-AK-L:商品名、日産化学工業株式会社製、球状、表面アルミ修飾
In addition, the following were used for the abrasive grain type in Table 1 and Table 2, respectively.
-ST-PS-S: Trade name, manufactured by Nissan Chemical Industries, Ltd., chain sphere- NIPSIL E-220A: Trade name, manufactured by Tosoh Silica Corporation, chain sphere- ST-AK-N: Trade name, Nissan Chemical Industries Spherical, surface aluminum modified, Ludox (R) CL: trade name, manufactured by GRACE, spherical, surface aluminum modified, PL-3: trade name, manufactured by Fuso Chemical Industries, Ltd., associating spherical, sea hoster KE-W10 : Trade name, manufactured by Nippon Shokubai Co., Ltd., spherical, ST-PS-S-AK: Trade name, manufactured by Nissan Chemical Industries, Ltd., chained spherical, surface aluminum modified. ST-PS-M: Trade name, Nissan Chemical Industries Ltd. Company-made, chain sphere / PL-3-cation: trade name, manufactured by Fuso Chemical Industries, Ltd., association sphere, surface amino group modification / ST-AK-L: trade name, manufactured by Nissan Chemical Industries, Ltd., spherical, surface aluminum Osamu
 上表1からわかるように、実施例1~7の化学機械研磨用水系分散体を用いた場合には、いずれもPTEOS膜の研磨において高速研磨が達成できることが判明した。一方、上表2からわかるように、比較例1~11のように特定シリカ粒子の条件を満たさないシリカ粒子を含有する化学機械研磨用水系分散体では、いずれもPTEOS膜の研磨において、高速とはいえない研磨速度となることが判明した。以上のように、本発明に係る化学機械研磨用水系分散体を用いると、比較例1~11の化学機械研磨用水系分散体を用いた場合に比べて、シリコン酸化膜の研磨速度が約2倍以上の高研磨速度となることが判明した。 As can be seen from Table 1 above, when the chemical mechanical polishing aqueous dispersions of Examples 1 to 7 were used, it was found that high-speed polishing could be achieved in polishing the PTEOS film. On the other hand, as can be seen from Table 2 above, the chemical mechanical polishing aqueous dispersions containing silica particles that do not satisfy the specific silica particle conditions as in Comparative Examples 1 to 11 are high in polishing the PTEOS film. It was found that the polishing rate was not satisfactory. As described above, when the chemical mechanical polishing aqueous dispersion according to the present invention is used, the polishing rate of the silicon oxide film is about 2 as compared with the chemical mechanical polishing aqueous dispersions of Comparative Examples 1 to 11. It has been found that the polishing rate is twice as high.
 本発明は、上記の実施形態に限定されるものではなく、種々の変形が可能である。本発明は、実施形態で説明した構成と実質的に同一の構成(例えば、機能、方法および結果が同一の構成、あるいは目的および効果が同一の構成)を包含する。また本発明は、上記の実施形態で説明した構成の本質的でない部分を他の構成に置き換えた構成を包含する。さらに本発明は、上記の実施形態で説明した構成と同一の作用効果を奏する構成または同一の目的を達成することができる構成をも包含する。さらに本発明は、上記の実施形態で説明した構成に公知技術を付加した構成をも包含する。 The present invention is not limited to the above embodiment, and various modifications can be made. The present invention includes configurations that are substantially the same as the configurations described in the embodiments (for example, configurations that have the same functions, methods, and results, or configurations that have the same objects and effects). The present invention also includes a configuration in which a non-essential part of the configuration described in the above embodiment is replaced with another configuration. Furthermore, the present invention includes a configuration that achieves the same effects as the configuration described in the above embodiment or a configuration that can achieve the same object. Furthermore, the present invention includes a configuration obtained by adding a known technique to the configuration described in the above embodiment.
10…シリコン基板、12…シリコン窒化膜、14…トレンチ溝、16…シリコン酸化膜、42…スラリー供給ノズル、44…スラリー、46…研磨布、48…ターンテーブル、50…半導体基板、52…キャリアーヘッド、54…水供給ノズル、56…ドレッサー、100…被処理体、200…化学機械研磨装置 DESCRIPTION OF SYMBOLS 10 ... Silicon substrate, 12 ... Silicon nitride film, 14 ... Trench groove, 16 ... Silicon oxide film, 42 ... Slurry supply nozzle, 44 ... Slurry, 46 ... Polishing cloth, 48 ... Turntable, 50 ... Semiconductor substrate, 52 ... Carrier Head 54, water supply nozzle, 56 ... dresser, 100 ... workpiece, 200 ... chemical mechanical polishing apparatus

Claims (5)

  1.  下記(1)~(3)の条件を満たすシリカ粒子を含有し、pHが2以上5以下であることを特徴とする、化学機械研磨用水系分散体。
    (1)透過型電子顕微鏡によって測定された平均粒子径が30nm以上であること。
    (2)pH2以上5以下のいずれかにおけるζ電位が+5mV以上であること。
    (3)一次粒子であるシリカ粒子が複数繋がって形成された連鎖球状を有していること、または凹凸形状を有していること。
    An aqueous dispersion for chemical mechanical polishing, comprising silica particles satisfying the following conditions (1) to (3) and having a pH of 2 or more and 5 or less.
    (1) The average particle diameter measured by a transmission electron microscope is 30 nm or more.
    (2) The ζ potential at pH 2 or more and 5 or less is +5 mV or more.
    (3) It has a chain sphere formed by connecting a plurality of silica particles as primary particles, or has an uneven shape.
  2.  前記シリカ粒子が、ゾルゲル法により製造されたシリカ粒子である、請求項1に記載の化学機械研磨用水系分散体。 The aqueous dispersion for chemical mechanical polishing according to claim 1, wherein the silica particles are silica particles produced by a sol-gel method.
  3.  さらに、有機酸を含有する、請求項1または請求項2に記載の化学機械研磨用水系分散体。 The chemical mechanical polishing aqueous dispersion according to claim 1, further comprising an organic acid.
  4.  シリコン酸化膜を有する被研磨面の研磨用である、請求項1ないし請求項3のいずれか一項に記載の化学機械研磨用水系分散体。 The chemical mechanical polishing aqueous dispersion according to any one of claims 1 to 3, which is used for polishing a surface to be polished having a silicon oxide film.
  5.  請求項1ないし請求項4のいずれか一項に記載の化学機械研磨用水系分散体を用いて、シリコン酸化膜を有する被研磨面を研磨することを特徴とする、化学機械研磨方法。 A chemical mechanical polishing method comprising polishing a surface to be polished having a silicon oxide film using the chemical mechanical polishing aqueous dispersion according to any one of claims 1 to 4.
PCT/JP2015/079111 2014-10-27 2015-10-15 Aqueous dispersion for chemical mechanical polishing and chemical mechanical polishing method WO2016067923A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-218038 2014-10-27
JP2014218038 2014-10-27

Publications (1)

Publication Number Publication Date
WO2016067923A1 true WO2016067923A1 (en) 2016-05-06

Family

ID=55857264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079111 WO2016067923A1 (en) 2014-10-27 2015-10-15 Aqueous dispersion for chemical mechanical polishing and chemical mechanical polishing method

Country Status (2)

Country Link
TW (1) TW201615778A (en)
WO (1) WO2016067923A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019181693A1 (en) * 2018-03-20 2019-09-26 株式会社フジミインコーポレーテッド Polishing composition and polishing method using same
WO2021111863A1 (en) * 2019-12-03 2021-06-10 Jsr株式会社 Composition for chemical mechanical polishing and chemical mechanical polishing method
JP7070803B1 (en) * 2020-06-09 2022-05-18 Jsr株式会社 Composition for chemical mechanical polishing and polishing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019167405A (en) * 2018-03-22 2019-10-03 Jsr株式会社 Composition for chemical mechanical polishing and method for manufacturing circuit board

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103463A (en) * 2005-09-30 2007-04-19 Sumitomo Electric Ind Ltd POLISHING SLURRY, SURFACE TREATMENT METHOD OF GaxIn1-xAsyP1-y CRYSTAL, AND GaxIn1-xAsyP1-y CRYSTAL SUBSTRATE
WO2010035613A1 (en) * 2008-09-26 2010-04-01 扶桑化学工業株式会社 Colloidal silica containing silica secondary particles having bent structure and/or branched structure, and method for producing same
JP2010092968A (en) * 2008-10-06 2010-04-22 Hitachi Chem Co Ltd Polishing solution for metal and polishing method of film using the same
WO2013137220A1 (en) * 2012-03-14 2013-09-19 日立化成株式会社 Grinding method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103463A (en) * 2005-09-30 2007-04-19 Sumitomo Electric Ind Ltd POLISHING SLURRY, SURFACE TREATMENT METHOD OF GaxIn1-xAsyP1-y CRYSTAL, AND GaxIn1-xAsyP1-y CRYSTAL SUBSTRATE
WO2010035613A1 (en) * 2008-09-26 2010-04-01 扶桑化学工業株式会社 Colloidal silica containing silica secondary particles having bent structure and/or branched structure, and method for producing same
JP2010092968A (en) * 2008-10-06 2010-04-22 Hitachi Chem Co Ltd Polishing solution for metal and polishing method of film using the same
WO2013137220A1 (en) * 2012-03-14 2013-09-19 日立化成株式会社 Grinding method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019181693A1 (en) * 2018-03-20 2019-09-26 株式会社フジミインコーポレーテッド Polishing composition and polishing method using same
JP2019163420A (en) * 2018-03-20 2019-09-26 株式会社フジミインコーポレーテッド Polishing composition and polishing method using the same
JP7120780B2 (en) 2018-03-20 2022-08-17 株式会社フジミインコーポレーテッド Polishing composition and polishing method using the same
WO2021111863A1 (en) * 2019-12-03 2021-06-10 Jsr株式会社 Composition for chemical mechanical polishing and chemical mechanical polishing method
JP7070803B1 (en) * 2020-06-09 2022-05-18 Jsr株式会社 Composition for chemical mechanical polishing and polishing method

Also Published As

Publication number Publication date
TW201615778A (en) 2016-05-01

Similar Documents

Publication Publication Date Title
US11674056B2 (en) Polishing compositions containing charged abrasive
TW574334B (en) CMP slurry composition and a method for planarizing semiconductor device using the same
JP4963825B2 (en) Polishing silica sol and polishing composition containing the same
KR20120134105A (en) Aqueous dispersion for chemical mechanical polishing, and chemical mechanical polishing method using same
KR20040038882A (en) Aqueous Dispersion for Chemical Mechanical Polishing, Chemical Mechanical Polishing Process, Production Process of Semiconductor Device and Material for Preparing an Aqueous Dispersion for Chemical Mechanical Polishing
KR20180061400A (en) Tungsten-treated slurry containing cationic surfactant
TW201315849A (en) Single-crystal silicon-carbide substrate and polishing solution
JP2001507739A (en) Composition for oxide CMP
KR20070105301A (en) Aqueous slurry containing metallate-modified silica particles
JPWO2007116770A1 (en) Chemical mechanical polishing aqueous dispersion, chemical mechanical polishing method, and kit for preparing chemical mechanical polishing aqueous dispersion
JP6437762B2 (en) Chemical mechanical polishing composition for polishing sapphire surface and method of use thereof
TWI828668B (en) Polishing composition and polishing method using the same
WO2016067923A1 (en) Aqueous dispersion for chemical mechanical polishing and chemical mechanical polishing method
CN111718657B (en) Chemical mechanical polishing composition and method for inhibiting amorphous silicon removal rate
TW201915132A (en) Chemical mechanical polishing method for cobalt
TW201915133A (en) Chemical mechanical polishing method for cobalt
KR20110057876A (en) Slurry composition for chemical mechanical polishing and preparation method of the same
TWI819019B (en) Neutral to alkaline chemical mechanical polishing compositions and methods for tungsten
WO2011058816A1 (en) Chemical-mechanical polishing liquid, and semiconductor substrate manufacturing method and polishing method using said polishing liquid
CN111471401B (en) Acidic polishing composition with enhanced defect suppression and method of polishing a substrate
JP7236270B2 (en) Polishing liquid composition
JP2005048125A (en) Cmp abrasive, polishing method, and production method for semiconductor device
TW202104524A (en) Chemical mechanical polishing compositions and methods having enhanced defect inhibition and selectively polishing silcon nitiride over silicon dioxide in an acid environment
TW201712083A (en) Method of polishing semiconductor substrate
JPWO2008117593A1 (en) Chemical mechanical polishing aqueous dispersion and semiconductor device chemical mechanical polishing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15854649

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15854649

Country of ref document: EP

Kind code of ref document: A1