WO2016067908A1 - Wireless communication module - Google Patents

Wireless communication module Download PDF

Info

Publication number
WO2016067908A1
WO2016067908A1 PCT/JP2015/078917 JP2015078917W WO2016067908A1 WO 2016067908 A1 WO2016067908 A1 WO 2016067908A1 JP 2015078917 W JP2015078917 W JP 2015078917W WO 2016067908 A1 WO2016067908 A1 WO 2016067908A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
signal
layer
pillar
ground
Prior art date
Application number
PCT/JP2015/078917
Other languages
French (fr)
Japanese (ja)
Inventor
薫 須藤
通春 横山
宏毅 加藤
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2016067908A1 publication Critical patent/WO2016067908A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a wireless communication module in which a semiconductor element for wireless communication is mounted.
  • Patent Document 1 discloses a wireless device that inputs and outputs a signal in a radio frequency band.
  • This radio apparatus is composed of a radio frequency module (RF module) and an intermediate frequency module (IF module). Between them, an intermediate frequency signal (IF signal), a local oscillation signal (LO signal), and a control signal are transmitted and received.
  • RF module radio frequency module
  • IF module intermediate frequency module
  • LO signal local oscillation signal
  • control signal a control signal
  • the RF module and the IF module include a dielectric substrate and a semiconductor element for wireless communication mounted on the dielectric substrate.
  • the input / output terminals of the RF module and IF module and the semiconductor element are connected by a transmission line arranged in the dielectric substrate.
  • This transmission line is composed of a strip line, a micro strip line, a coplanar line, etc. extending in the in-plane direction of the dielectric substrate.
  • the transmission line is connected to the input / output terminal by an interlayer connection conductor extending in the thickness direction of the dielectric substrate.
  • the characteristic impedance of the transmission line in the dielectric substrate can be stably managed to a target value.
  • the characteristic impedance is likely to be disturbed at the connection point between the transmission line and the input / output terminal.
  • the voltage standing wave ratio (VSWR) becomes large, and it is difficult to efficiently transmit and receive the IF signal and the LO signal.
  • An object of the present invention is to provide a wireless communication module capable of reducing disturbance of characteristic impedance in the vicinity of an input / output terminal.
  • a wireless communication module provides: A dielectric substrate; A semiconductor element for wireless communication mounted on the dielectric substrate; A plurality of signal conductor pillars and a plurality of ground conductor pillars protruding from the bottom surface of the dielectric substrate and connected to the mounting substrate at the tip; A transmission line disposed on the dielectric substrate and connecting the signal conductor column and the semiconductor element, and is paired with a linear conductor extending in an in-plane direction of the dielectric substrate, and the linear conductor
  • the transmission line including a ground conductor layer; Including a first interlayer connection conductor for connecting the linear conductor and the signal conductor pillar in the thickness direction;
  • the signal conductor pillar is thicker than the first interlayer connection conductor, A clearance hole is provided in the ground conductor layer at a position corresponding to the first interlayer connection conductor, and the clearance hole includes the signal conductor pillar in a plan view.
  • the clearance hole that encloses the signal conductor pillar is provided in the ground conductor layer, the parasitic capacitance between the signal conductor pillar and the ground conductor layer is small. Thereby, disturbance of the characteristic impedance in the coupling
  • the ground conductor layer in which the clearance hole is provided has a thickness direction of the dielectric substrate. Is arranged between the linear conductor and the signal conductor column.
  • ground conductor layer is arranged in a layer close to the signal conductor pillar, a great effect of providing a clearance hole can be obtained.
  • the ground conductor layer in which the clearance hole is provided is the same layer as the linear conductor. Is arranged.
  • the clearance hole is connected to the outer periphery of the ground conductor layer.
  • the clearance hole is not necessarily arranged in the inner part of the ground conductor layer.
  • the clearance hole is connected to the outer periphery of the ground conductor layer.
  • a wireless communication module includes, in addition to the configurations of the wireless communication modules according to the first to fourth aspects, a second interlayer connection conductor that connects the grounding conductor column and the grounding conductor layer.
  • the ground conductor layer of the wireless communication module is connected to the ground conductor layer of the mounting board via the ground conductor pillar.
  • the signal conductor pillar and the ground conductor pillar are provided on an edge of the dielectric substrate. Are arranged along the edge, and the grounding conductor pillars are arranged on both sides of the signal conductor pillars.
  • the grounding conductor pillar is also placed adjacent to the signal conductor pillar. Is arranged.
  • the effect of suppressing electrostatic breakdown of the semiconductor element can be enhanced.
  • the shortest distance in the in-plane direction from the signal conductor pillar to the ground conductor layer is The distance from the signal conductor post to the adjacent ground conductor post is 1 ⁇ 4 or more.
  • Alignment margin is secured in consideration of manufacturing variations.
  • the clearance hole that encloses the signal conductor pillar is provided in the ground conductor layer, the parasitic capacitance between the signal conductor pillar and the ground conductor layer is small. Thereby, disturbance of the characteristic impedance in the coupling
  • FIG. 1 is a block diagram of a wireless device equipped with a wireless communication module according to an embodiment.
  • FIG. 2A is a plan sectional view of the uppermost conductor layer in the dielectric substrate used in the RF module
  • FIG. 2B is a bottom view of the RF module.
  • 3A is a cross-sectional view taken along one-dot chain line 3A-3A in FIG. 2A
  • FIG. 3B is a cross-sectional view taken along one-dot chain line 3B-3B in FIG. 2A
  • 4 is a cross-sectional view taken along one-dot chain line 4-4 of FIGS. 2A and 2B.
  • 5A is a plan sectional view of the second lowermost conductor layer shown in FIG. 4, and FIG.
  • FIG. 5B is a plan sectional view of the third lowermost conductor layer shown in FIG. 4.
  • FIG. 6 is a cross-sectional view of an RF module according to a comparative example.
  • FIG. 7A is a cross-sectional view of an RF module according to a comparative example, and FIG. 7B is a cross-sectional view of the RF module according to the embodiment.
  • 8A and 8B are cross-sectional views of the IF module according to the embodiment.
  • 9A to 9C are plan sectional views of the first to third conductor layers shown in FIGS. 8A and 8B, respectively.
  • FIG. 1 shows a block diagram of a wireless device equipped with a wireless communication module according to the embodiment.
  • a radio frequency module (RF module) 20 and an intermediate frequency module (IF module) 70 are mounted on the mounting substrate 10.
  • RF module 20 and the IF module 70 are each referred to as a wireless communication module.
  • a semiconductor element 80 for wireless communication and a local oscillator 81 are mounted on the IF module 70.
  • a semiconductor element 30 for wireless communication is mounted on the RF module 20.
  • An intermediate frequency signal (IF signal), a local oscillation signal (LO signal), a control signal, and the like are transmitted and received between the RF module 20 and the IF module 70.
  • the IF signal and the LO signal are transmitted through a transmission line arranged on the mounting substrate 10.
  • FIG. 2A shows a plan sectional view of a conductor layer on which an antenna in a dielectric substrate 22 used in the RF module 20 is arranged.
  • the dielectric substrate 22 has a rectangular or square planar shape.
  • the conductor layer includes a plurality of printed dipole antennas 23, a feeder line 24, a balun (balance-unbalance converter) 25, and a plurality of patch antennas 27.
  • ceramic, epoxy resin or the like is used for the dielectric substrate 22 .
  • the feeder 24, the balun 25, and the patch antenna 27 for example, a conductive material such as copper is used.
  • conductive materials such as copper are used for the other conductor layers.
  • the plurality of dipole antennas 23 are arranged slightly inside the outer peripheral line along the outer peripheral line of the dielectric substrate 22. Each of the dipole antennas 23 is disposed in parallel to the outer peripheral line of the dielectric substrate 22. As an example, three dipole antennas 23 are arranged on one side of the dielectric substrate 22.
  • a balanced feed line 24 extends from each of the dipole antennas 23 toward the inside of the dielectric substrate 22.
  • a balun (balance-unbalance converter) 25 is provided at the inner end of the feeder line 24.
  • the balun 25 shifts one phase of the balanced power supply line 24 by 180 degrees with respect to the other phase.
  • the balun 25 is connected to the transmission line below the dielectric substrate 22 at the connection point 26.
  • a reflector pattern 28 is disposed slightly inside the dipole antenna 23 and outside the balun 25.
  • the reflector pattern 28 is composed of a linear conductor pattern disposed along a rectangular outer peripheral line that is slightly smaller than the dielectric substrate 22.
  • the reflector pattern 28 is cut at a location where it intersects the power supply line 24 and is insulated from the power supply line 24.
  • the distance between the dipole antenna 23 and the reflector pattern 28 is equal to 1 ⁇ 4 of the effective wavelength of the radio wave at the operating frequency of the dipole antenna 23.
  • connection points 29 arranged along the reflector pattern 28, the reflector pattern 28 is connected to the inner ground conductor layer.
  • the plurality of patch antennas 27 are arranged in a matrix inside the dipole antenna 23.
  • the patch antennas 27 are arranged in a matrix of 2 rows and 3 columns.
  • the row direction and the column direction are parallel to the outer peripheral line of the dielectric substrate 22.
  • the dipole antenna 23 operates as an endfire antenna having directivity in a direction parallel to the surface of the dielectric substrate 22.
  • the patch antenna 27 has directivity in the normal direction (bore sight direction) of the surface of the dielectric substrate 22.
  • FIG. 2B shows a bottom view of the RF module 20.
  • the sealing resin layer 35 is in close contact with the bottom surface of the dielectric substrate 22 (FIG. 2A).
  • the semiconductor element 30, the high-frequency circuit component 31, and the conductive pillar 40 are embedded.
  • the semiconductor element 30 supplies a high frequency signal to the dipole antenna 23 and the patch antenna 27 (FIG. 2A).
  • the high frequency circuit component 31 includes an inductor, a capacitor, and the like.
  • the semiconductor element 30 and the high-frequency circuit component 31 are mounted on the bottom surface of the dielectric substrate 22 (FIG. 2A).
  • the conductor column 40 protrudes from the bottom surface of the dielectric substrate 22, and its tip is exposed on the surface of the sealing resin layer 35.
  • a conductive material such as copper is used.
  • a thermosetting resin such as an epoxy resin or a cyanate resin is used.
  • the sealing resin layer 35 defines a mounting surface that faces the mounting substrate 10 when the RF module 20 is mounted on the mounting substrate 10 (FIG. 1).
  • the plurality of conductive pillars 40 are arranged at equal intervals along the reflector pattern 28 (FIG. 2A) in plan view. That is, the conductor pillar 40 is disposed on the inner side than the dipole antenna 23.
  • the conductor pillar 40 includes a plurality of signal conductor pillars 400 and a plurality of ground conductor pillars 401.
  • the signal conductor pillar 400 is connected to the semiconductor element 30 by a conductor pattern formed on the dielectric substrate 22 (FIG. 2A).
  • the grounding conductor column 401 is connected to the grounding conductor layer and the reflector pattern 28 in the dielectric substrate 22 (FIG. 2A).
  • the grounding conductor pillar 401 operates as a reflector of the dipole antenna 23 together with the reflector pattern 28.
  • FIG. 3A is a cross-sectional view taken along one-dot chain line 3A-3A in FIG. 2A.
  • a plurality of conductive pillars 40 protrude from the bottom surface of the dielectric substrate 22.
  • the conductive pillar 40 is embedded in a sealing resin layer 35 that covers the bottom surface of the dielectric substrate 22, and the tip thereof is exposed on the surface (mounting surface) of the sealing resin layer 35.
  • a plurality of conductor layers are arranged in the dielectric substrate 22. In the example shown in FIG. 3A, six conductor layers including the conductor layers arranged on the bottom surface are arranged.
  • the first conductor layer disposed on the bottom surface of the dielectric substrate 22 includes a plurality of lands 41.
  • the land 41 is arranged corresponding to the conductor pillar 40 and is connected to the conductor pillar 40.
  • the ground conductor layer 44 is included in the second to fifth conductor layers.
  • the ground conductor layer 44 is connected to the ground conductor column 401 via a via conductor 420 connecting the layers.
  • the first conductor layer includes a linear conductor 43 in addition to the ground conductor layer 44.
  • the linear conductor 43 is connected to the signal conductor pillar 400 via the via conductor 420 and the inner layer land 421.
  • the inner land 421 is not necessarily provided. Different conductor layers may be connected by only via conductors 420 filled in through holes extending over a plurality of layers. In this specification, the via conductor 420 and the inner layer land 421 connected in the thickness direction are referred to as an interlayer connection conductor 42.
  • the linear conductor 43 forms a transmission line together with the upper and lower sides and the ground conductor layer 44 in the same conductor layer.
  • the fifth conductor layer includes the feeder line 24 in addition to the ground conductor layer 44.
  • the sixth conductor layer includes the parasitic element 270 of the patch antenna 27 (FIG. 1A).
  • FIG. 3B shows a cross-sectional view taken along one-dot chain line 3B-3B in FIG. 2A.
  • a semiconductor element 30 and a high-frequency circuit component 31 are mounted on the bottom surface of the dielectric substrate 22.
  • the semiconductor element 30 is surface-mounted using solder, for example, on a land 46 disposed on the bottom surface of the dielectric substrate 22.
  • a part of the land 46 is connected to the ground conductor layer 44, and another part of the land 46 is connected to the linear conductor 43.
  • the semiconductor element 30 and the high-frequency circuit component 31 are embedded in the sealing resin layer 35.
  • the fifth conductor layer includes the feed element 271 of the patch antenna 27 (FIG. 1A), the dipole antenna 23, and the reflector pattern 28.
  • the feed element 271 is electromagnetically coupled to the parasitic element 270 disposed thereon.
  • the power feeding element 271 is connected to the linear conductor 47 in the fourth layer.
  • the linear conductor 47 and the surrounding ground conductor layer 44 constitute a transmission line.
  • FIG. 4 shows a cross-sectional view taken along one-dot chain line 4-4 of FIGS. 2A and 2B and a cross-sectional view of the mounting substrate 60 on which the RF module 20 is mounted.
  • the signal conductor column 400 is connected to the land 62 of the mounting substrate 60 via the solder 61.
  • the land 62 is connected to a transmission line 63 disposed on the mounting substrate 60.
  • the signal conductor column 400 is connected to the third-layer linear conductor 43 via the first-layer land 41 and the interlayer connection conductor 42 disposed between the first and third layers. .
  • the linear conductor 43 is connected to the signal terminal 300 of the semiconductor element 30.
  • a ground conductor layer 44 is disposed below and above the linear conductor 43.
  • the linear conductor 43 and the upper and lower ground conductor layers 44 constitute a transmission line.
  • the ground terminal 301 of the semiconductor element 30 is connected to the ground conductor layer 44.
  • the fifth conductor layer includes the feeding element 271 of the patch antenna 27 (FIG. 2A), the reflector pattern 28, and the dipole antenna 23.
  • a parasitic element 270 of the patch antenna 27 (FIG. 2A) is included in the sixth conductor layer.
  • FIG. 5A shows a plan sectional view of the second conductor layer from the bottom shown in FIG.
  • the ground conductor layer 44 and the inner land 421 are included in the second conductor layer from the bottom.
  • An interlayer connection conductor 42 including a via conductor 420 and an inner layer land 421 is connected to the signal conductor pillar 400.
  • Clearance holes 48 and 49 are provided in the ground conductor layer 44.
  • the clearance hole 48 is disposed at a position where the signal conductor column 400 is disposed.
  • the interlayer connection conductor 42 is insulated from the ground conductor layer 44 by the clearance hole 48.
  • the signal conductor pillar 400 is thicker than the interlayer connection conductor 42 and includes the interlayer connection conductor 42 in a plan view.
  • the diameter of the signal conductor post 400 is in the range of 2 to 4 times the maximum diameter of the interlayer connection conductor 42.
  • the clearance hole 48 includes not only the interlayer connection conductor 42 but also a signal conductor column 400 larger than the interlayer connection conductor 42.
  • the shortest distance between the outer periphery of the clearance hole 48 and the outer periphery of the signal conductor column 400 is represented by W. In the cross-sectional view shown in FIG. 4, the distance between the left end of the second ground conductor layer 44 from the bottom and the right side surface of the signal conductor post 400 corresponds to the shortest distance W.
  • the clearance hole 48 may be connected to the outer periphery of the ground conductor layer 44 depending on the relationship between the distance from the signal conductor pillar 400 to the outer periphery of the ground conductor layer 44 and the size of the clearance hole 48.
  • FIG. 5A shows an example in which the clearance hole 48 is connected to the outer periphery of the ground conductor layer 44.
  • the planar shape of the clearance hole 48 is not necessarily circular.
  • a U-shaped notch entering from the outer periphery of the ground conductor layer 44 toward the inside may be used as the clearance hole 48.
  • the grounding conductor column 401 is arranged on both sides of the signal conductor column 400. Further, one grounding conductor pillar 401 is arranged adjacent to the signal conductor pillar 400. The grounding conductor column 401 is connected to the grounding conductor layer 44 via the via conductor 420. The thickness of the grounding conductor column 401 is the same as that of the signal conductor column 400.
  • a plurality of conductor pillars 40 (FIG. 2B) including the signal conductor pillars 400 and the ground conductor pillars 401 are arranged at equal intervals. Via conductors 420 connected to the respective conductor pillars 40 are also arranged at equal intervals.
  • the distance from the signal conductor column 400 to the via conductor 420 connected to the adjacent ground conductor column 401 is represented by WB.
  • WB The distance from the signal conductor column 400 to the via conductor 420 connected to the adjacent ground conductor column 401.
  • the shortest distance W is preferably set to be equal to or less than the interval WB.
  • the clearance hole 49 is disposed at a position corresponding to the signal terminal 300 of the semiconductor element 30 (FIG. 4).
  • the clearance hole 49 is smaller than the clearance hole 48 provided at the position of the signal conductor post 400.
  • the ground terminal 301 of the semiconductor element 30 is connected to the ground conductor layer 44.
  • FIG. 5B shows a plan sectional view of the third conductor layer from the bottom shown in FIG.
  • the ground conductor layer 44 and the linear conductor 43 are included in the third conductor layer from the bottom.
  • One end of the linear conductor 43 is connected to the signal conductor pillar 400 via the interlayer connection conductor 42, and the other end is connected to the signal terminal 300 of the semiconductor element 30 (FIG. 4).
  • a ground conductor layer 44 is disposed via a slit.
  • the linear conductor 43 and the ground conductor layer 44 constitute a coplanar line.
  • a grounded coplanar line is configured including the upper and lower ground conductor layers 44 (FIG. 4) of the linear conductor 43.
  • the transmission line including the linear conductor 43 and the ground conductor layer 44 connects the signal conductor column 400 and the semiconductor element 30.
  • the transmission line 63 (FIG. 4) of the mounting substrate 60 is electromagnetically coupled to the grand coplanar line including the linear conductor 43 via the signal conductor post 400.
  • FIG. 6 shows a cross-sectional view of the RF module 20 according to the comparative example.
  • the cross-sectional view shown in FIG. 6 corresponds to the cross-sectional view shown in FIG. 4 of the RF module 20 according to the embodiment.
  • the clearance hole 48 provided at the position of the signal conductor column 400 and the clearance hole 49 provided at the position of the signal terminal 300 of the semiconductor element 30 have substantially the same size. is there.
  • the clearance holes 48 and 49 in the same conductor layer have substantially the same size as in this comparative example.
  • the plane dimension of the signal conductor post 400 is larger than the plane dimension of the interlayer connection conductor 42. Therefore, the second ground conductor layer 44 from the bottom overlaps the signal conductor pillar 400 in plan view. When they overlap, the parasitic capacitance C between them increases. When the parasitic capacitance C between the signal conductor column 400 and the ground conductor layer 44 is increased, at the coupling point between the transmission line 63 of the mounting substrate 60 and the grounded coplanar line including the linear conductor 43 of the RF module 20, The characteristic impedance of the transmission line is disturbed.
  • the clearance hole 48 (FIG. 5A) encloses the signal conductor post 400 in plan view. Therefore, the second ground conductor layer 44 from the bottom does not overlap the signal conductor pillar 400.
  • the parasitic capacitance C between the two is smaller than that in the comparative example shown in FIG. In the embodiment, since the parasitic capacitance C can be reduced, the disturbance of the characteristic impedance of the transmission line can be suppressed.
  • the shortest distance W (FIGS. 4 and 5A) in the in-plane direction from the signal conductor column 400 to the ground conductor layer 44 is determined from the signal conductor column 400 and the adjacent ground conductor. It is preferable to set it to 1/4 or more of the distance to the column 401.
  • FIG. 7A shows a cross-sectional view of the RF module 20 according to the comparative example.
  • the signal conductor columns 400 are continuously arranged.
  • the grounding conductor column 401 is not disposed between the signal conductor columns 400.
  • FIG. 7B shows a cross-sectional view of the RF module 20 according to the embodiment.
  • grounding conductor columns 401 are arranged on both sides of the signal conductor column 400. Further, one grounding conductor pillar 401 is disposed from one of the signal conductor pillars 400. That is, at least two grounding conductor columns 401 are arranged on both sides of the signal conductor column 400, respectively.
  • the grounding conductor column 401 is connected to a larger grounding conductor layer 44 than the linear conductor 43 to which the signal conductor column 400 is connected. For this reason, when the charged object 50 approaches the signal conductor pillar 400 and the ground conductor pillar 401, a discharge is likely to occur between the charged object 50 and the ground conductor pillar 401. As a result, discharge to the signal conductor column 400 is avoided.
  • FIG. 8A and 8B are cross-sectional views of the IF module 70 (FIG. 1). Similarly to the RF module 20, the IF module 70 also includes a dielectric substrate 82, a conductor post 90 protruding from the bottom surface of the dielectric substrate 82, and a semiconductor element 80 mounted on the bottom surface. 8A shows a cross-sectional view of a portion where the conductor pillars 90 are arranged in a straight line, and FIG. 8B shows a cross-sectional view of a portion where the semiconductor element 80 is disposed.
  • the conductor pillar 90 includes a plurality of signal conductor pillars 900 and a plurality of ground conductor pillars 901.
  • the order of arrangement of the plurality of signal conductor columns 900 and the plurality of ground conductor columns 901 is the same as the order of arrangement of the signal conductor columns 400 and the ground conductor columns 401 of the RF module 20.
  • a power supply system component 83 is mainly mounted on the upper surface of the dielectric substrate 82.
  • the bottom surface of the dielectric substrate 82 is covered with the sealing resin layer 85, and the top surface is covered with the sealing resin layer 86.
  • the semiconductor element 80 and the conductor pillar 90 are embedded in the sealing resin layer 85.
  • the tips of the conductor columns 90 are exposed on the surface of the sealing resin layer 85.
  • the power supply system component 83 is embedded in the sealing resin layer 86.
  • the ground conductor layer 92 is included in the bottom conductor layer (first conductor layer) and the second to fourth conductor layers.
  • the first conductor layer further includes a plurality of lands 91 and 95.
  • the plurality of lands 91 are each connected to the conductor pillar 90.
  • the plurality of lands 95 are each connected to the semiconductor element 80.
  • the second conductor layer includes a linear conductor 93 in addition to the ground conductor layer 92.
  • the fourth conductor layer includes a wiring 94 in addition to the ground conductor layer 92.
  • the wiring 94 is connected to the power supply system component 83.
  • One end of the linear conductor 93 is connected to the signal conductor post 900 via the interlayer connection conductor 99.
  • the linear conductor 93 constitutes a transmission line together with the upper and lower ground conductor layers 92. This transmission line connects the signal conductor pillar 900 and the semiconductor element 80.
  • FIG. 9A is a plan sectional view of the first conductor layer shown in FIGS. 8A and 8B.
  • Lands 91 and 95 and a ground conductor layer 92 are included in the first conductor layer.
  • the land 91 for the conductor pillar 90 (FIGS. 8A and 8B) is disposed outside the ground conductor layer 92.
  • the land 95 for the semiconductor element 80 is disposed inside the ground conductor layer 92.
  • a clearance hole 96 for insulating the land 95 is provided in the ground conductor layer 92.
  • FIG. 9B is a plan sectional view of the second conductor layer shown in FIGS. 8A and 8B.
  • a ground conductor layer 92 and a linear conductor 93 are included in the second conductor layer.
  • a clearance hole 98 is provided at the position of the land 95 (FIG. 9A) for the semiconductor element 80.
  • a clearance hole 97 is provided at the position of the signal conductor post 900.
  • the clearance hole 97 includes the signal conductor column 900.
  • the positional relationship between the clearance hole 97 and the signal conductor column 900 is the same as the positional relationship between the clearance hole 48 of the RF module 20 and the signal conductor column 400. That is, the second ground conductor layer 92 does not overlap the signal conductor pillar 900. For this reason, the parasitic capacitance between the signal conductor pillar 900 and the ground conductor layer 92 can be reduced.
  • FIG. 9C shows a plan sectional view of the third conductor layer shown in FIGS. 8A and 8B.
  • the ground conductor layer 92 is included in the third conductor layer.
  • the linear conductor 93 constitutes a grounded coplanar line together with the ground conductor layer 92 (FIG. 9B) and the upper and lower ground conductor layers 92 (FIGS. 9A and 9C) included in the same conductor layer. Since the parasitic capacitance between the signal conductor pillar 900 and the ground conductor layer 92 is small, the coupling point between the transmission line of the mounting substrate 60 (FIG. 4) and the grounded coplanar line having the linear conductor 93 as the central conductor. Disturbances in characteristic impedance can be suppressed.
  • the disturbance of the characteristic impedance of the transmission line connecting the IF module 70 and the RF module 20 shown in FIG. 1 can be suppressed. For this reason, the IF signal and the LO signal can be efficiently transmitted between the IF module 70 and the RF module 20.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Transceivers (AREA)

Abstract

A semiconductor device for wireless communications is mounted on a dielectric board. A signal conductor pole and a ground conductor pole protrude from the bottom surface of the dielectric board. The front ends of these conductor poles are to be connected to a mounting board. A transfer line arranged on the dielectric board connects the signal conductor pole to the semiconductor device. The transfer line includes a linear conductor extending in an intra-plane direction of the dielectric board and also includes a ground conductor layer forming a pair together with the linear conductor. A first inter-layer connection conductor connects the linear conductor to the signal conductor pole in the thickness direction. The signal conductor pole is thicker than the first inter-layer connection conductor. A clearance hole is formed, in the ground conductor layer, at the position corresponding to the first inter-layer connection conductor. The clearance hole, when seen in a plan view, contains the signal conductor pole. Provided is a wireless communication module wherein the disturbance of the characteristic impedance in the vicinity of the input/output terminals can be reduced.

Description

無線通信モジュールWireless communication module
 本発明は、無線通信用の半導体素子を実装した無線通信モジュールに関する。 The present invention relates to a wireless communication module in which a semiconductor element for wireless communication is mounted.
 下記の特許文献1に、無線周波数帯の信号の入出力を行う無線装置が開示されている。この無線装置は、無線周波数モジュール(RFモジュール)と中間周波数モジュール(IFモジュール)とで構成される。両者の間で、中間周波数信号(IF信号)、局部発振信号(LO信号)、及び制御信号の送受が行われる。 The following Patent Document 1 discloses a wireless device that inputs and outputs a signal in a radio frequency band. This radio apparatus is composed of a radio frequency module (RF module) and an intermediate frequency module (IF module). Between them, an intermediate frequency signal (IF signal), a local oscillation signal (LO signal), and a control signal are transmitted and received.
米国特許出願公開第2012/0307695号明細書US Patent Application Publication No. 2012/0307695
 一般的に、RFモジュール及びIFモジュールは、誘電体基板、及び誘電体基板に実装された無線通信用の半導体素子を含む。RFモジュール及びIFモジュールの入出力端子と半導体素子とは、誘電体基板内に配置された伝送線路で接続される。この伝送線路は、誘電体基板の面内方向に延びるストリップライン、マイクロストリップライン、コプレーナライン等で構成される。伝送線路を入出力端子とは、誘電体基板の厚さ方向に延びる層間接続導体で接続される。 Generally, the RF module and the IF module include a dielectric substrate and a semiconductor element for wireless communication mounted on the dielectric substrate. The input / output terminals of the RF module and IF module and the semiconductor element are connected by a transmission line arranged in the dielectric substrate. This transmission line is composed of a strip line, a micro strip line, a coplanar line, etc. extending in the in-plane direction of the dielectric substrate. The transmission line is connected to the input / output terminal by an interlayer connection conductor extending in the thickness direction of the dielectric substrate.
 誘電体基板内の伝送線路の特性インピーダンスは、目標とする値に安定して管理することが可能である。ところが、伝送線路と入出力端子との接続箇所において、特性インピーダンスの乱れが生じやすい。特性インピーダンスが乱れると、電圧定在波比(VSWR)が大きくなってしまうため、IF信号及びLO信号を効率的に送受することが困難である。 The characteristic impedance of the transmission line in the dielectric substrate can be stably managed to a target value. However, the characteristic impedance is likely to be disturbed at the connection point between the transmission line and the input / output terminal. When the characteristic impedance is disturbed, the voltage standing wave ratio (VSWR) becomes large, and it is difficult to efficiently transmit and receive the IF signal and the LO signal.
 本発明の目的は、入出力端子近傍における特性インピーダンスの乱れを低減することが可能な無線通信モジュールを提供することである。 An object of the present invention is to provide a wireless communication module capable of reducing disturbance of characteristic impedance in the vicinity of an input / output terminal.
 本発明の第1の観点による無線通信モジュールは、
 誘電体基板と、
 前記誘電体基板に実装された無線通信用の半導体素子と、
 前記誘電体基板の底面から突出し、先端において実装基板に接続される複数の信号用導体柱及び複数の接地用導体柱と、
 前記誘電体基板に配置され、前記信号用導体柱と前記半導体素子とを接続する伝送線路であって、前記誘電体基板の面内方向に延びる線状導体、及び前記線状導体と対を成す接地導体層を含む前記伝送線路と、
 前記線状導体と前記信号用導体柱とを厚さ方向に接続する第1の層間接続導体と
を含み、
 前記信号用導体柱は、前記第1の層間接続導体より太く、
 前記接地導体層の、前記第1の層間接続導体に対応する位置にクリアランスホールが設けられており、前記クリアランスホールは、平面視において前記信号用導体柱を内包する。
A wireless communication module according to a first aspect of the present invention provides:
A dielectric substrate;
A semiconductor element for wireless communication mounted on the dielectric substrate;
A plurality of signal conductor pillars and a plurality of ground conductor pillars protruding from the bottom surface of the dielectric substrate and connected to the mounting substrate at the tip;
A transmission line disposed on the dielectric substrate and connecting the signal conductor column and the semiconductor element, and is paired with a linear conductor extending in an in-plane direction of the dielectric substrate, and the linear conductor The transmission line including a ground conductor layer;
Including a first interlayer connection conductor for connecting the linear conductor and the signal conductor pillar in the thickness direction;
The signal conductor pillar is thicker than the first interlayer connection conductor,
A clearance hole is provided in the ground conductor layer at a position corresponding to the first interlayer connection conductor, and the clearance hole includes the signal conductor pillar in a plan view.
 接地導体層に信号用導体柱を内包するクリアランスホールが設けられているため、信号用導体柱と接地導体層との間の寄生容量が小さい。これにより、実装基板の伝送線路と、無線通信モジュールの伝送線路との結合箇所における特性インピーダンスの乱れが抑制される。 Since the clearance hole that encloses the signal conductor pillar is provided in the ground conductor layer, the parasitic capacitance between the signal conductor pillar and the ground conductor layer is small. Thereby, disturbance of the characteristic impedance in the coupling | bond location of the transmission line of a mounting board | substrate and the transmission line of a radio | wireless communication module is suppressed.
 本発明の第2の観点による無線通信モジュールにおいては、第1の観点による無線通信モジュールの構成に加えて、前記クリアランスホールが設けられている前記接地導体層が、前記誘電体基板の厚さ方向に関して、前記線状導体と前記信号用導体柱との間に配置されている。 In the wireless communication module according to the second aspect of the present invention, in addition to the configuration of the wireless communication module according to the first aspect, the ground conductor layer in which the clearance hole is provided has a thickness direction of the dielectric substrate. Is arranged between the linear conductor and the signal conductor column.
 接地導体層が信号用導体柱に近い層に配置されているため、クリアランスホールを設ける大きな効果が得られる。 Since the ground conductor layer is arranged in a layer close to the signal conductor pillar, a great effect of providing a clearance hole can be obtained.
 本発明の第3の観点による無線通信モジュールにおいては、第1の観点による無線通信モジュールの構成に加えて、前記クリアランスホールが設けられている前記接地導体層が、前記線状導体と同一の層に配置されている。 In the wireless communication module according to the third aspect of the present invention, in addition to the configuration of the wireless communication module according to the first aspect, the ground conductor layer in which the clearance hole is provided is the same layer as the linear conductor. Is arranged.
 接地導体層が線状導体と同一の層に配置されている場合にも、クリアランスホールを設けることにより、特性インピーダンスの乱れが軽減される。 Even when the ground conductor layer is disposed on the same layer as the linear conductor, the disturbance of the characteristic impedance is reduced by providing the clearance hole.
 本発明の第4の観点による無線通信モジュールにおいては、第1乃至第3の観点による無線通信モジュールの構成に加えて、前記クリアランスホールが、前記接地導体層の外周に繋がっている。 In the wireless communication module according to the fourth aspect of the present invention, in addition to the configuration of the wireless communication module according to the first to third aspects, the clearance hole is connected to the outer periphery of the ground conductor layer.
 クリアランスホールは、必ずしも接地導体層の内奥部に配置されている必要はない。信号用導体柱が接地導体層の外周の近傍に配置されている場合には、クリアランスホールが接地導体層の外周に繋がる。 The clearance hole is not necessarily arranged in the inner part of the ground conductor layer. When the signal conductor pillar is disposed in the vicinity of the outer periphery of the ground conductor layer, the clearance hole is connected to the outer periphery of the ground conductor layer.
 本発明の第5の観点による無線通信モジュールは、第1乃至第4の観点による無線通信モジュールの構成に加えて、前記接地用導体柱と前記接地導体層とを接続する第2の層間接続導体を有する。 A wireless communication module according to a fifth aspect of the present invention includes, in addition to the configurations of the wireless communication modules according to the first to fourth aspects, a second interlayer connection conductor that connects the grounding conductor column and the grounding conductor layer. Have
 接地用導体柱を介して、無線通信モジュールの接地導体層が、実装基板の接地導体層に接続される。 The ground conductor layer of the wireless communication module is connected to the ground conductor layer of the mounting board via the ground conductor pillar.
 本発明の第6の観点による無線通信モジュールにおいては、第1乃至第5の観点による無線通信モジュールの構成に加えて、前記信号用導体柱及び前記接地用導体柱が、前記誘電体基板の縁の内側に、前記縁に沿って並んでおり、前記信号用導体柱の両隣に、前記接地用導体柱が配置されている。 In the radio communication module according to the sixth aspect of the present invention, in addition to the configurations of the radio communication modules according to the first to fifth aspects, the signal conductor pillar and the ground conductor pillar are provided on an edge of the dielectric substrate. Are arranged along the edge, and the grounding conductor pillars are arranged on both sides of the signal conductor pillars.
 無線通信モジュールに帯電物が近接した場合、帯電物と接地用導体柱との間で放電が生じる。このため、帯電物と信号用導体柱との間で放電が生じにくい。その結果、半導体素子の静電破壊を抑制することができる。 When a charged object comes close to the wireless communication module, discharge occurs between the charged object and the grounding conductor pillar. For this reason, it is difficult for discharge to occur between the charged object and the signal conductor pillar. As a result, electrostatic breakdown of the semiconductor element can be suppressed.
 本発明の第7の観点による無線通信モジュールにおいては、第1乃至第5の観点による無線通信モジュールの構成に加えて、前記信号用導体柱から1つ置いて隣にも、前記接地用導体柱が配置されている。 In the wireless communication module according to the seventh aspect of the present invention, in addition to the configurations of the wireless communication modules according to the first to fifth aspects, the grounding conductor pillar is also placed adjacent to the signal conductor pillar. Is arranged.
 半導体素子の静電破壊を抑制する効果を高めることができる。 The effect of suppressing electrostatic breakdown of the semiconductor element can be enhanced.
 本発明の第8の観点による無線通信モジュールにおいては、第1乃至第5の観点による無線通信モジュールの構成に加えて、前記信号用導体柱から前記接地導体層までの面内方向の最短距離が、前記信号用導体柱から隣の前記接地用導体柱までの間隔の1/4以上である。 In the radio communication module according to the eighth aspect of the present invention, in addition to the configurations of the radio communication modules according to the first to fifth aspects, the shortest distance in the in-plane direction from the signal conductor pillar to the ground conductor layer is The distance from the signal conductor post to the adjacent ground conductor post is ¼ or more.
 製造時のばらつきを考慮して、位置合わせマージンが確保されている。 Alignment margin is secured in consideration of manufacturing variations.
 接地導体層に信号用導体柱を内包するクリアランスホールが設けられているため、信号用導体柱と接地導体層との間の寄生容量が小さい。これにより、実装基板の伝送線路と、無線通信モジュールの伝送線路との結合箇所における特性インピーダンスの乱れが抑制される。 Since the clearance hole that encloses the signal conductor pillar is provided in the ground conductor layer, the parasitic capacitance between the signal conductor pillar and the ground conductor layer is small. Thereby, disturbance of the characteristic impedance in the coupling | bond location of the transmission line of a mounting board | substrate and the transmission line of a radio | wireless communication module is suppressed.
図1は、実施例による無線通信モジュールを搭載した無線装置のブロック図である。FIG. 1 is a block diagram of a wireless device equipped with a wireless communication module according to an embodiment. 図2Aは、RFモジュールに用いられている誘電体基板内の最も上の導体層の平断面図であり、図2Bは、RFモジュールの底面図である。FIG. 2A is a plan sectional view of the uppermost conductor layer in the dielectric substrate used in the RF module, and FIG. 2B is a bottom view of the RF module. 図3Aは、図2Aの一点鎖線3A-3Aにおける断面図であり、図3Bは、図2Aの一点鎖線3B-3Bにおける断面図である。3A is a cross-sectional view taken along one-dot chain line 3A-3A in FIG. 2A, and FIG. 3B is a cross-sectional view taken along one-dot chain line 3B-3B in FIG. 2A. 図4は、図2A及び図2Bの一点鎖線4-4における断面図である。4 is a cross-sectional view taken along one-dot chain line 4-4 of FIGS. 2A and 2B. 図5Aは、図4に示された下から2層目の導体層の平断面図であり、図5Bは、図4に示された下から3層目の導体層の平断面図である。5A is a plan sectional view of the second lowermost conductor layer shown in FIG. 4, and FIG. 5B is a plan sectional view of the third lowermost conductor layer shown in FIG. 4. 図6は、比較例によるRFモジュールの断面図である。FIG. 6 is a cross-sectional view of an RF module according to a comparative example. 図7Aは、比較例によるRFモジュールの断面図であり、図7Bは、実施例によるRFモジュールの断面図である。FIG. 7A is a cross-sectional view of an RF module according to a comparative example, and FIG. 7B is a cross-sectional view of the RF module according to the embodiment. 図8A及び図8Bは、実施例によるIFモジュールの断面図である。8A and 8B are cross-sectional views of the IF module according to the embodiment. 図9A乃至図9Cは、それぞれ図8A及び図8Bに示した1層目乃至3層目の導体層の平断面図である。9A to 9C are plan sectional views of the first to third conductor layers shown in FIGS. 8A and 8B, respectively.
 図1に、実施例による無線通信モジュールを搭載した無線装置のブロック図を示す。実装基板10に、無線周波数モジュール(RFモジュール)20及び中間周波数モジュール(IFモジュール)70が実装されている。本明細書において、RFモジュール20及びIFモジュール70を、それぞれ無線通信モジュールという。 FIG. 1 shows a block diagram of a wireless device equipped with a wireless communication module according to the embodiment. A radio frequency module (RF module) 20 and an intermediate frequency module (IF module) 70 are mounted on the mounting substrate 10. In this specification, the RF module 20 and the IF module 70 are each referred to as a wireless communication module.
 IFモジュール70に、無線通信用の半導体素子80、及び局部発振器81が実装されている。RFモジュール20に、無線通信用の半導体素子30が実装されている。RFモジュール20とIFモジュール70との間で、中間周波数信号(IF信号)、局部発振信号(LO信号)、制御信号等の送受が行われる。IF信号及びLO信号は、実装基板10に配置された伝送線路を通して伝送される。 A semiconductor element 80 for wireless communication and a local oscillator 81 are mounted on the IF module 70. A semiconductor element 30 for wireless communication is mounted on the RF module 20. An intermediate frequency signal (IF signal), a local oscillation signal (LO signal), a control signal, and the like are transmitted and received between the RF module 20 and the IF module 70. The IF signal and the LO signal are transmitted through a transmission line arranged on the mounting substrate 10.
 図2Aに、RFモジュール20に用いられている誘電体基板22内のアンテナが配置された導体層の平断面図を示す。誘電体基板22は、長方形または正方形の平面形状を有する。導体層は、複数のプリンテッドダイポールアンテナ23、給電線24、バラン(平衡不平衡変換器)25、及び複数のパッチアンテナ27を含む。誘電体基板22には、例えばセラミック、エポキシ樹脂等が用いられる。ダイポールアンテナ23、給電線24、バラン25、及びパッチアンテナ27には、例えば銅等の導電材料が用いられる。同様に、他の導体層にも、銅等の導電材料が用いられる。 FIG. 2A shows a plan sectional view of a conductor layer on which an antenna in a dielectric substrate 22 used in the RF module 20 is arranged. The dielectric substrate 22 has a rectangular or square planar shape. The conductor layer includes a plurality of printed dipole antennas 23, a feeder line 24, a balun (balance-unbalance converter) 25, and a plurality of patch antennas 27. For the dielectric substrate 22, for example, ceramic, epoxy resin or the like is used. For the dipole antenna 23, the feeder 24, the balun 25, and the patch antenna 27, for example, a conductive material such as copper is used. Similarly, conductive materials such as copper are used for the other conductor layers.
 複数のダイポールアンテナ23は、誘電体基板22の外周線に沿って、外周線よりもやや内側に配置されている。ダイポールアンテナ23の各々は、誘電体基板22の外周線に対して平行に配置されている。一例として、誘電体基板22の1つの辺に3個のダイポールアンテナ23が配置される。 The plurality of dipole antennas 23 are arranged slightly inside the outer peripheral line along the outer peripheral line of the dielectric substrate 22. Each of the dipole antennas 23 is disposed in parallel to the outer peripheral line of the dielectric substrate 22. As an example, three dipole antennas 23 are arranged on one side of the dielectric substrate 22.
 ダイポールアンテナ23の各々から、誘電体基板22の内側に向かって平衡型の給電線24が延びる。給電線24の内側の端部にバラン(平衡不平衡変換器)25が設けられている。バラン25は、平衡型の給電線24の一方の位相を他方の位相に対して180度ずらす。バラン25は、接続点26において、誘電体基板22の下層の伝送線路に接続されている。 A balanced feed line 24 extends from each of the dipole antennas 23 toward the inside of the dielectric substrate 22. A balun (balance-unbalance converter) 25 is provided at the inner end of the feeder line 24. The balun 25 shifts one phase of the balanced power supply line 24 by 180 degrees with respect to the other phase. The balun 25 is connected to the transmission line below the dielectric substrate 22 at the connection point 26.
 ダイポールアンテナ23よりもやや内側に、かつバラン25より外側に、反射器パターン28が配置されている。反射器パターン28は、誘電体基板22よりもやや小さい長方形の外周線に沿って配置された線状の導体パターンで構成される。反射器パターン28は、給電線24と交差する箇所において切断されており、給電線24から絶縁されている。ダイポールアンテナ23と反射器パターン28との間隔は、ダイポールアンテナ23の動作周波数の電波の実効波長の1/4に等しい。反射器パターン28に沿って並ぶ複数の接続点29において、反射器パターン28が内層の接地導体層に接続されている。 A reflector pattern 28 is disposed slightly inside the dipole antenna 23 and outside the balun 25. The reflector pattern 28 is composed of a linear conductor pattern disposed along a rectangular outer peripheral line that is slightly smaller than the dielectric substrate 22. The reflector pattern 28 is cut at a location where it intersects the power supply line 24 and is insulated from the power supply line 24. The distance between the dipole antenna 23 and the reflector pattern 28 is equal to ¼ of the effective wavelength of the radio wave at the operating frequency of the dipole antenna 23. At a plurality of connection points 29 arranged along the reflector pattern 28, the reflector pattern 28 is connected to the inner ground conductor layer.
 複数のパッチアンテナ27は、ダイポールアンテナ23よりも内側に、行列状に配置されている。図2Aに示した例では、パッチアンテナ27が2行3列の行列状に配置されている。行方向及び列方向は、誘電体基板22の外周線に対して平行である。 The plurality of patch antennas 27 are arranged in a matrix inside the dipole antenna 23. In the example shown in FIG. 2A, the patch antennas 27 are arranged in a matrix of 2 rows and 3 columns. The row direction and the column direction are parallel to the outer peripheral line of the dielectric substrate 22.
 ダイポールアンテナ23は、誘電体基板22の表面に対して平行な方向に指向性を持つエンドファイアアンテナとして動作する。パッチアンテナ27は、誘電体基板22の表面の法線方向(ボアサイト方向)に指向性を持つ。複数のダイポールアンテナ23及び複数のパッチアンテナ27が、二次元フェーズドアレイアンテナとして動作することにより、放射パターンのメインローブの方向を、方位角方向及び仰角方向に変化させることができる。 The dipole antenna 23 operates as an endfire antenna having directivity in a direction parallel to the surface of the dielectric substrate 22. The patch antenna 27 has directivity in the normal direction (bore sight direction) of the surface of the dielectric substrate 22. By operating the plurality of dipole antennas 23 and the plurality of patch antennas 27 as a two-dimensional phased array antenna, the direction of the main lobe of the radiation pattern can be changed to the azimuth and elevation directions.
 図2Bに、RFモジュール20の底面図を示す。誘電体基板22(図2A)の底面に封止樹脂層35が密着している。封止樹脂層35内に、半導体素子30、高周波回路部品31、及び導体柱40が埋め込まれている。半導体素子30は、ダイポールアンテナ23及びパッチアンテナ27(図2A)に高周波信号を供給する。高周波回路部品31には、インダクタ、キャパシタ等が含まれる。半導体素子30及び高周波回路部品31は、誘電体基板22(図2A)の底面に実装されている。 FIG. 2B shows a bottom view of the RF module 20. The sealing resin layer 35 is in close contact with the bottom surface of the dielectric substrate 22 (FIG. 2A). In the sealing resin layer 35, the semiconductor element 30, the high-frequency circuit component 31, and the conductive pillar 40 are embedded. The semiconductor element 30 supplies a high frequency signal to the dipole antenna 23 and the patch antenna 27 (FIG. 2A). The high frequency circuit component 31 includes an inductor, a capacitor, and the like. The semiconductor element 30 and the high-frequency circuit component 31 are mounted on the bottom surface of the dielectric substrate 22 (FIG. 2A).
 導体柱40は、誘電体基板22の底面から突出しており、その先端は、封止樹脂層35の表面に露出している。導体柱40には、例えば銅等の導電材料が用いられる。封止樹脂層35には、例えばエポキシ樹脂、シアネート樹脂等の熱硬化性樹脂が用いられる。封止樹脂層35は、RFモジュール20を実装基板10(図1)に実装するときに、実装基板10に対向する実装面を画定する。 The conductor column 40 protrudes from the bottom surface of the dielectric substrate 22, and its tip is exposed on the surface of the sealing resin layer 35. For the conductive pillar 40, for example, a conductive material such as copper is used. For the sealing resin layer 35, for example, a thermosetting resin such as an epoxy resin or a cyanate resin is used. The sealing resin layer 35 defines a mounting surface that faces the mounting substrate 10 when the RF module 20 is mounted on the mounting substrate 10 (FIG. 1).
 複数の導体柱40は、平面視において反射器パターン28(図2A)に沿って、等間隔に配列している。すなわち、導体柱40は、ダイポールアンテナ23よりも内側に配置されている。導体柱40には、複数の信号用導体柱400と複数の接地用導体柱401とが含まれる。信号用導体柱400は、誘電体基板22(図2A)に形成された導体パターンにより半導体素子30に接続されている。接地用導体柱401は、誘電体基板22(図2A)内の接地導体層及び反射器パターン28に接続されている。接地用導体柱401は、反射器パターン28とともに、ダイポールアンテナ23の反射器として動作する。 The plurality of conductive pillars 40 are arranged at equal intervals along the reflector pattern 28 (FIG. 2A) in plan view. That is, the conductor pillar 40 is disposed on the inner side than the dipole antenna 23. The conductor pillar 40 includes a plurality of signal conductor pillars 400 and a plurality of ground conductor pillars 401. The signal conductor pillar 400 is connected to the semiconductor element 30 by a conductor pattern formed on the dielectric substrate 22 (FIG. 2A). The grounding conductor column 401 is connected to the grounding conductor layer and the reflector pattern 28 in the dielectric substrate 22 (FIG. 2A). The grounding conductor pillar 401 operates as a reflector of the dipole antenna 23 together with the reflector pattern 28.
 図3Aに、図2Aの一点鎖線3A-3Aにおける断面図を示す。誘電体基板22の底面から複数の導体柱40が突出している。導体柱40は、誘電体基板22の底面を覆う封止樹脂層35に埋め込まれており、その先端は、封止樹脂層35の表面(実装面)に露出している。誘電体基板22内に、複数の導体層が配置されている。図3Aに示した例では、底面に配置された導体層を含めて6層の導体層が配置されている。 FIG. 3A is a cross-sectional view taken along one-dot chain line 3A-3A in FIG. 2A. A plurality of conductive pillars 40 protrude from the bottom surface of the dielectric substrate 22. The conductive pillar 40 is embedded in a sealing resin layer 35 that covers the bottom surface of the dielectric substrate 22, and the tip thereof is exposed on the surface (mounting surface) of the sealing resin layer 35. A plurality of conductor layers are arranged in the dielectric substrate 22. In the example shown in FIG. 3A, six conductor layers including the conductor layers arranged on the bottom surface are arranged.
 誘電体基板22の底面に配置された1層目の導体層は、複数のランド41を含む。ランド41は、導体柱40に対応して配置されており、導体柱40に接続されている。2層目から5層目までの導体層に、接地導体層44が含まれる。接地導体層44は、層間を接続するビア導体420を介して接地用導体柱401に接続されている。 The first conductor layer disposed on the bottom surface of the dielectric substrate 22 includes a plurality of lands 41. The land 41 is arranged corresponding to the conductor pillar 40 and is connected to the conductor pillar 40. The ground conductor layer 44 is included in the second to fifth conductor layers. The ground conductor layer 44 is connected to the ground conductor column 401 via a via conductor 420 connecting the layers.
 層目の導体層が、接地導体層44の他に、線状導体43を含む。線状導体43は、ビア導体420及び内層ランド421を介して信号用導体柱400に接続されている。異なる層の導体層を相互に接続する場合、必ずしも内層ランド421を設ける必要はない。複数層にまたがるスルーホール内に充填されたビア導体420のみで、異なる層の導体層を接続してもよい。本明細書において、厚さ方向に繋がるビア導体420及び内層ランド421を、層間接続導体42ということとする。線状導体43は、上下、及び同一導体層内の接地導体層44とともに伝送線路を構成する。5層目の導体層が、接地導体層44の他に、給電線24を含む。6層目の導体層が、パッチアンテナ27(図1A)の無給電素子270を含む。 The first conductor layer includes a linear conductor 43 in addition to the ground conductor layer 44. The linear conductor 43 is connected to the signal conductor pillar 400 via the via conductor 420 and the inner layer land 421. When different conductor layers are connected to each other, the inner land 421 is not necessarily provided. Different conductor layers may be connected by only via conductors 420 filled in through holes extending over a plurality of layers. In this specification, the via conductor 420 and the inner layer land 421 connected in the thickness direction are referred to as an interlayer connection conductor 42. The linear conductor 43 forms a transmission line together with the upper and lower sides and the ground conductor layer 44 in the same conductor layer. The fifth conductor layer includes the feeder line 24 in addition to the ground conductor layer 44. The sixth conductor layer includes the parasitic element 270 of the patch antenna 27 (FIG. 1A).
 図3Bに、図2Aの一点鎖線3B-3Bにおける断面図を示す。誘電体基板22の底面に半導体素子30及び高周波回路部品31が実装されている。半導体素子30は、例えば誘電体基板22の底面に配置されたランド46に、はんだを用いて表面実装される。ランド46の一部は接地導体層44に接続され、他の一部のランド46は、線状導体43に接続される。半導体素子30及び高周波回路部品31は、封止樹脂層35に埋め込まれている。 FIG. 3B shows a cross-sectional view taken along one-dot chain line 3B-3B in FIG. 2A. A semiconductor element 30 and a high-frequency circuit component 31 are mounted on the bottom surface of the dielectric substrate 22. The semiconductor element 30 is surface-mounted using solder, for example, on a land 46 disposed on the bottom surface of the dielectric substrate 22. A part of the land 46 is connected to the ground conductor layer 44, and another part of the land 46 is connected to the linear conductor 43. The semiconductor element 30 and the high-frequency circuit component 31 are embedded in the sealing resin layer 35.
 5層目の導体層に、パッチアンテナ27(図1A)の給電素子271、ダイポールアンテナ23、及び反射器パターン28が含まれる。給電素子271は、その上に配置された無給電素子270と電磁結合する。給電素子271は、4層目の線状導体47に接続される。線状導体47は、周囲の接地導体層44とともに伝送線路を構成する。 The fifth conductor layer includes the feed element 271 of the patch antenna 27 (FIG. 1A), the dipole antenna 23, and the reflector pattern 28. The feed element 271 is electromagnetically coupled to the parasitic element 270 disposed thereon. The power feeding element 271 is connected to the linear conductor 47 in the fourth layer. The linear conductor 47 and the surrounding ground conductor layer 44 constitute a transmission line.
 図4に、図2A及び図2Bの一点鎖線4-4における断面図、及びRFモジュール20が実装された実装基板60の断面図を示す。信号用導体柱400が、はんだ61を介して実装基板60のランド62に接続されている。ランド62は、実装基板60に配置された伝送線路63に接続されている。信号用導体柱400は、1層目のランド41、及び1層目と3層目との間に配置された層間接続導体42を介して、3層目の線状導体43に接続されている。この線状導体43は、半導体素子30の信号用端子300に接続されている。 4 shows a cross-sectional view taken along one-dot chain line 4-4 of FIGS. 2A and 2B and a cross-sectional view of the mounting substrate 60 on which the RF module 20 is mounted. The signal conductor column 400 is connected to the land 62 of the mounting substrate 60 via the solder 61. The land 62 is connected to a transmission line 63 disposed on the mounting substrate 60. The signal conductor column 400 is connected to the third-layer linear conductor 43 via the first-layer land 41 and the interlayer connection conductor 42 disposed between the first and third layers. . The linear conductor 43 is connected to the signal terminal 300 of the semiconductor element 30.
 線状導体43の下層及び上層には、接地導体層44が配置されている。線状導体43、及び上下の接地導体層44により、伝送線路が構成される。半導体素子30の接地用端子301は接地導体層44に接続されている。 A ground conductor layer 44 is disposed below and above the linear conductor 43. The linear conductor 43 and the upper and lower ground conductor layers 44 constitute a transmission line. The ground terminal 301 of the semiconductor element 30 is connected to the ground conductor layer 44.
 5層目の導体層に、パッチアンテナ27(図2A)の給電素子271、反射器パターン28、及びダイポールアンテナ23が含まれる。6層目の導体層に、パッチアンテナ27(図2A)の無給電素子270が含まれる。 The fifth conductor layer includes the feeding element 271 of the patch antenna 27 (FIG. 2A), the reflector pattern 28, and the dipole antenna 23. A parasitic element 270 of the patch antenna 27 (FIG. 2A) is included in the sixth conductor layer.
 図5Aに、図4に示された下から2層目の導体層の平断面図を示す。下から2層目の導体層に、接地導体層44及び内層ランド421が含まれる。ビア導体420及び内層ランド421からなる層間接続導体42が、信号用導体柱400に接続されている。接地導体層44に、クリアランスホール48、49が設けられている。クリアランスホール48は、信号用導体柱400が配置された位置に配置されている。クリアランスホール48により、層間接続導体42が接地導体層44から絶縁される。 FIG. 5A shows a plan sectional view of the second conductor layer from the bottom shown in FIG. The ground conductor layer 44 and the inner land 421 are included in the second conductor layer from the bottom. An interlayer connection conductor 42 including a via conductor 420 and an inner layer land 421 is connected to the signal conductor pillar 400. Clearance holes 48 and 49 are provided in the ground conductor layer 44. The clearance hole 48 is disposed at a position where the signal conductor column 400 is disposed. The interlayer connection conductor 42 is insulated from the ground conductor layer 44 by the clearance hole 48.
 信号用導体柱400は、層間接続導体42より太く、平面視において層間接続導体42を内包する。一例として、信号用導体柱400の直径は、層間接続導体42の最大直径の2倍から4倍の範囲である。クリアランスホール48は、層間接続導体42のみならず、層間接続導体42より大きな信号用導体柱400をも内包する。クリアランスホール48の外周と、信号用導体柱400の外周との最短距離をWで表す。図4に示した断面図においては、下から2層目の接地導体層44の左端と、信号用導体柱400の右側の側面との間隔が最短距離Wに相当する。 The signal conductor pillar 400 is thicker than the interlayer connection conductor 42 and includes the interlayer connection conductor 42 in a plan view. As an example, the diameter of the signal conductor post 400 is in the range of 2 to 4 times the maximum diameter of the interlayer connection conductor 42. The clearance hole 48 includes not only the interlayer connection conductor 42 but also a signal conductor column 400 larger than the interlayer connection conductor 42. The shortest distance between the outer periphery of the clearance hole 48 and the outer periphery of the signal conductor column 400 is represented by W. In the cross-sectional view shown in FIG. 4, the distance between the left end of the second ground conductor layer 44 from the bottom and the right side surface of the signal conductor post 400 corresponds to the shortest distance W.
 信号用導体柱400から接地導体層44の外周までの距離と、クリアランスホール48の大きさとの関係で、クリアランスホール48が接地導体層44の外周に繋がる場合がある。図5Aでは、クリアランスホール48が接地導体層44の外周に繋がっている例が示されている。クリアランスホール48の平面形状は、必ずしも円形である必要はない。接地導体層44の外周から内部に向って侵入するU字状の切り込みを、クリアランスホール48としてもよい。信号用導体柱400が、接地導体層44の外周から離れて配置される場合には、クリアランスホール48は接地導体層44の外周から離れ、接地導体層44の内部に配置される。 The clearance hole 48 may be connected to the outer periphery of the ground conductor layer 44 depending on the relationship between the distance from the signal conductor pillar 400 to the outer periphery of the ground conductor layer 44 and the size of the clearance hole 48. FIG. 5A shows an example in which the clearance hole 48 is connected to the outer periphery of the ground conductor layer 44. The planar shape of the clearance hole 48 is not necessarily circular. A U-shaped notch entering from the outer periphery of the ground conductor layer 44 toward the inside may be used as the clearance hole 48. When the signal conductor column 400 is disposed away from the outer periphery of the ground conductor layer 44, the clearance hole 48 is disposed away from the outer periphery of the ground conductor layer 44 and disposed inside the ground conductor layer 44.
 信号用導体柱400の両隣に、接地用導体柱401が配置されている。さらに、信号用導体柱400から1つ置いて隣にも接地用導体柱401が配置されている。接地用導体柱401は、ビア導体420を介して接地導体層44に接続されている。接地用導体柱401の太さは、信号用導体柱400の太さを同一である。信号用導体柱400及び接地用導体柱401を含む複数の導体柱40(図2B)は、等間隔で配列されている。各導体柱40に接続されるビア導体420も、等間隔に配列されている。信号用導体柱400から、隣の接地用導体柱401に接続されているビア導体420までの距離をWBで表す。最短距離Wを間隔WBより大きくすると、接地用導体柱401に接続されたビア導体420を、接地導体層44に接続することが困難になる。接地用導体柱401を接地導体層44に接続するために、最短距離Wは間隔WB以下にすることが好ましい。 The grounding conductor column 401 is arranged on both sides of the signal conductor column 400. Further, one grounding conductor pillar 401 is arranged adjacent to the signal conductor pillar 400. The grounding conductor column 401 is connected to the grounding conductor layer 44 via the via conductor 420. The thickness of the grounding conductor column 401 is the same as that of the signal conductor column 400. A plurality of conductor pillars 40 (FIG. 2B) including the signal conductor pillars 400 and the ground conductor pillars 401 are arranged at equal intervals. Via conductors 420 connected to the respective conductor pillars 40 are also arranged at equal intervals. The distance from the signal conductor column 400 to the via conductor 420 connected to the adjacent ground conductor column 401 is represented by WB. When the shortest distance W is larger than the interval WB, it becomes difficult to connect the via conductor 420 connected to the grounding conductor column 401 to the grounding conductor layer 44. In order to connect the grounding conductor column 401 to the grounding conductor layer 44, the shortest distance W is preferably set to be equal to or less than the interval WB.
 クリアランスホール49は、半導体素子30(図4)の信号用端子300に対応する位置に配置されている。クリアランスホール49は、信号用導体柱400の位置に設けられたクリアランスホール48よりも小さい。半導体素子30の接地用端子301は接地導体層44に接続される。 The clearance hole 49 is disposed at a position corresponding to the signal terminal 300 of the semiconductor element 30 (FIG. 4). The clearance hole 49 is smaller than the clearance hole 48 provided at the position of the signal conductor post 400. The ground terminal 301 of the semiconductor element 30 is connected to the ground conductor layer 44.
 図5Bに、図4に示された下から3層目の導体層の平断面図を示す。下から3層目の導体層に接地導体層44及び線状導体43が含まれる。線状導体43の一端は、層間接続導体42を介して信号用導体柱400に接続されており、他端は半導体素子30(図4)の信号用端子300に接続されている。線状導体43の両側には、スリットを介して接地導体層44が配置されている。線状導体43と接地導体層44とにより、コプレーナ線路が構成される。さらに、線状導体43の上層及び下層の接地導体層44(図4)を含めて、グランデッドコプレーナ線路が構成される。 FIG. 5B shows a plan sectional view of the third conductor layer from the bottom shown in FIG. The ground conductor layer 44 and the linear conductor 43 are included in the third conductor layer from the bottom. One end of the linear conductor 43 is connected to the signal conductor pillar 400 via the interlayer connection conductor 42, and the other end is connected to the signal terminal 300 of the semiconductor element 30 (FIG. 4). On both sides of the linear conductor 43, a ground conductor layer 44 is disposed via a slit. The linear conductor 43 and the ground conductor layer 44 constitute a coplanar line. Further, a grounded coplanar line is configured including the upper and lower ground conductor layers 44 (FIG. 4) of the linear conductor 43.
 図4、図5A及び図5Bに示したように、線状導体43及び接地導体層44を含む伝送線路が、信号用導体柱400と半導体素子30とを接続する。実装基板60の伝送線路63(図4)が、信号用導体柱400を介して、線状導体43を含むグランデットコプレーナ線路に電磁結合する。 As shown in FIG. 4, FIG. 5A and FIG. 5B, the transmission line including the linear conductor 43 and the ground conductor layer 44 connects the signal conductor column 400 and the semiconductor element 30. The transmission line 63 (FIG. 4) of the mounting substrate 60 is electromagnetically coupled to the grand coplanar line including the linear conductor 43 via the signal conductor post 400.
 次に、図4及び図6を参照しながら、上記実施例によるRFモジュール20の優れた効果について説明する。 Next, the excellent effects of the RF module 20 according to the above embodiment will be described with reference to FIGS.
 図6に、比較例によるRFモジュール20の断面図を示す。図6に示した断面図は、実施例によるRFモジュール20の図4に示した断面図に対応する。図6に示した比較例では、信号用導体柱400の位置に設けられたクリアランスホール48と、半導体素子30の信号用端子300の位置に設けられたクリアランスホール49とが、ほぼ同じ大きさである。一般的には、同一の導体層内のクリアランスホール48、49は、この比較例のように、ほぼ同一の大きさを有する。 FIG. 6 shows a cross-sectional view of the RF module 20 according to the comparative example. The cross-sectional view shown in FIG. 6 corresponds to the cross-sectional view shown in FIG. 4 of the RF module 20 according to the embodiment. In the comparative example shown in FIG. 6, the clearance hole 48 provided at the position of the signal conductor column 400 and the clearance hole 49 provided at the position of the signal terminal 300 of the semiconductor element 30 have substantially the same size. is there. In general, the clearance holes 48 and 49 in the same conductor layer have substantially the same size as in this comparative example.
 信号用導体柱400の平面寸法が、層間接続導体42の平面寸法よりも大きい。このため、下から2層目の接地導体層44が、平面視において信号用導体柱400と重なる。両者が重なることにより、両者の間の寄生容量Cが大きくなる。信号用導体柱400と接地導体層44との間の寄生容量Cが大きくなると、実装基板60の伝送線路63と、RFモジュール20の線状導体43を含むグランデッドコプレーナ線路との結合箇所において、伝送線路の特性インピーダンスが乱れる。 The plane dimension of the signal conductor post 400 is larger than the plane dimension of the interlayer connection conductor 42. Therefore, the second ground conductor layer 44 from the bottom overlaps the signal conductor pillar 400 in plan view. When they overlap, the parasitic capacitance C between them increases. When the parasitic capacitance C between the signal conductor column 400 and the ground conductor layer 44 is increased, at the coupling point between the transmission line 63 of the mounting substrate 60 and the grounded coplanar line including the linear conductor 43 of the RF module 20, The characteristic impedance of the transmission line is disturbed.
 これに対し、図4に示した実施例においては、平面視においてクリアランスホール48(図5A)が信号用導体柱400を内包する。このため、下から2層目の接地導体層44が、信号用導体柱400と重ならない。両者の間の寄生容量Cは、図6に示した比較例の場合に比べて小さい。実施例においては、寄生容量Cを小さくできるため、伝送線路の特性インピーダンスの乱れを抑制することができる。 On the other hand, in the embodiment shown in FIG. 4, the clearance hole 48 (FIG. 5A) encloses the signal conductor post 400 in plan view. Therefore, the second ground conductor layer 44 from the bottom does not overlap the signal conductor pillar 400. The parasitic capacitance C between the two is smaller than that in the comparative example shown in FIG. In the embodiment, since the parasitic capacitance C can be reduced, the disturbance of the characteristic impedance of the transmission line can be suppressed.
 製造工程における位置合わせマージンを考慮して、信号用導体柱400から接地導体層44までの面内方向の最短距離W(図4、図5A)を、信号用導体柱400から隣の接地用導体柱401までの間隔の1/4以上とすることが好ましい。 In consideration of the alignment margin in the manufacturing process, the shortest distance W (FIGS. 4 and 5A) in the in-plane direction from the signal conductor column 400 to the ground conductor layer 44 is determined from the signal conductor column 400 and the adjacent ground conductor. It is preferable to set it to 1/4 or more of the distance to the column 401.
 次に、図7A及び図7Bを参照しながら、上記実施例によるRFモジュール20の他の優れた効果について説明する。 Next, other excellent effects of the RF module 20 according to the above embodiment will be described with reference to FIGS. 7A and 7B.
 図7Aに、比較例によるRFモジュール20の断面図を示す。比較例においては、信号用導体柱400が連続して配列している。信号用導体柱400の間に、接地用導体柱401が配置されていない。信号用導体柱400に静電気を帯びた帯電物50が近づくと、帯電物50と信号用導体柱400との間で静電気による放電が発生する。信号用導体柱400は、半導体素子30(図3B)に接続されているため、半導体素子30が静電気によって破壊される場合がある。 FIG. 7A shows a cross-sectional view of the RF module 20 according to the comparative example. In the comparative example, the signal conductor columns 400 are continuously arranged. The grounding conductor column 401 is not disposed between the signal conductor columns 400. When the charged object 50 charged with static electricity approaches the signal conductor column 400, a discharge due to static electricity occurs between the charged object 50 and the signal conductor column 400. Since the signal conductor pillar 400 is connected to the semiconductor element 30 (FIG. 3B), the semiconductor element 30 may be destroyed by static electricity.
 図7Bに、実施例によるRFモジュール20の断面図を示す。実施例においては、信号用導体柱400の両隣に接地用導体柱401が配置されている。さらに、信号用導体柱400から1つ置いて、さらに接地用導体柱401が配置されている。すなわち、信号用導体柱400の両側に、それぞれ少なくとも2つの接地用導体柱401が配置されている。 FIG. 7B shows a cross-sectional view of the RF module 20 according to the embodiment. In the embodiment, grounding conductor columns 401 are arranged on both sides of the signal conductor column 400. Further, one grounding conductor pillar 401 is disposed from one of the signal conductor pillars 400. That is, at least two grounding conductor columns 401 are arranged on both sides of the signal conductor column 400, respectively.
 接地用導体柱401は、信号用導体柱400が接続されている線状導体43に比べて大きな接地導体層44に接続されている。このため、帯電物50が信号用導体柱400及び接地用導体柱401に近づくと、帯電物50と、接地用導体柱401との間で放電が生じやすい。その結果、信号用導体柱400への放電が回避される。 The grounding conductor column 401 is connected to a larger grounding conductor layer 44 than the linear conductor 43 to which the signal conductor column 400 is connected. For this reason, when the charged object 50 approaches the signal conductor pillar 400 and the ground conductor pillar 401, a discharge is likely to occur between the charged object 50 and the ground conductor pillar 401. As a result, discharge to the signal conductor column 400 is avoided.
 上述のように、実施例によるRFモジュール20においては、信号用導体柱400への放電が生じにくいため、図7Aに示した比較例によるRFモジュール20に比べて、静電破壊が生じにくい。 As described above, in the RF module 20 according to the embodiment, since the discharge to the signal conductor column 400 is less likely to occur, electrostatic breakdown is less likely to occur compared to the RF module 20 according to the comparative example illustrated in FIG. 7A.
 図8A及び図8Bに、IFモジュール70(図1)の断面図を示す。IFモジュール70も、RFモジュール20と同様に、誘電体基板82、及び誘電体基板82の底面から突出する導体柱90、及び底面に実装された半導体素子80を含む。図8Aは、導体柱90が直線上に並んでいる部分の断面図を示し、図8Bは、半導体素子80が配置された部分の断面図を示す。導体柱90には、複数の信号用導体柱900及び複数の接地用導体柱901が含まれる。複数の信号用導体柱900及び複数の接地用導体柱901の配列の順番は、RFモジュール20の信号用導体柱400及び接地用導体柱401の配列の順番と同様である。誘電体基板82の上面に、主に電源系の部品83が実装されている。 8A and 8B are cross-sectional views of the IF module 70 (FIG. 1). Similarly to the RF module 20, the IF module 70 also includes a dielectric substrate 82, a conductor post 90 protruding from the bottom surface of the dielectric substrate 82, and a semiconductor element 80 mounted on the bottom surface. 8A shows a cross-sectional view of a portion where the conductor pillars 90 are arranged in a straight line, and FIG. 8B shows a cross-sectional view of a portion where the semiconductor element 80 is disposed. The conductor pillar 90 includes a plurality of signal conductor pillars 900 and a plurality of ground conductor pillars 901. The order of arrangement of the plurality of signal conductor columns 900 and the plurality of ground conductor columns 901 is the same as the order of arrangement of the signal conductor columns 400 and the ground conductor columns 401 of the RF module 20. On the upper surface of the dielectric substrate 82, a power supply system component 83 is mainly mounted.
 誘電体基板82の底面を封止樹脂層85が被覆し、上面を封止樹脂層86が被覆する。半導体素子80及び導体柱90が、封止樹脂層85に埋め込まれている。導体柱90の先端は、封止樹脂層85の表面に露出している。電源系の部品83は、封止樹脂層86に埋め込まれている。 The bottom surface of the dielectric substrate 82 is covered with the sealing resin layer 85, and the top surface is covered with the sealing resin layer 86. The semiconductor element 80 and the conductor pillar 90 are embedded in the sealing resin layer 85. The tips of the conductor columns 90 are exposed on the surface of the sealing resin layer 85. The power supply system component 83 is embedded in the sealing resin layer 86.
 誘電体基板82に、底面の導体層を含めて4層の導体層が配置されている。底面の導体層(1層目の導体層)、2層目から4層目の導体層に、接地導体層92が含まれる。1層目の導体層に、さらに、複数のランド91、95が含まれる。複数のランド91は、それぞれ導体柱90に接続される。複数のランド95は、それぞれ半導体素子80に接続される。 On the dielectric substrate 82, four conductor layers including the bottom conductor layer are arranged. The ground conductor layer 92 is included in the bottom conductor layer (first conductor layer) and the second to fourth conductor layers. The first conductor layer further includes a plurality of lands 91 and 95. The plurality of lands 91 are each connected to the conductor pillar 90. The plurality of lands 95 are each connected to the semiconductor element 80.
 2層目の導体層に、接地導体層92の他に線状導体93が含まれる。4層目の導体層に、接地導体層92の他に配線94が含まれる。配線94は、電源系の部品83に接続される。線状導体93の一端は、層間接続導体99を介して信号用導体柱900に接続される。線状導体93は、上下の接地導体層92とともに、伝送線路を構成する。この伝送線路は、信号用導体柱900と半導体素子80とを接続する。 The second conductor layer includes a linear conductor 93 in addition to the ground conductor layer 92. The fourth conductor layer includes a wiring 94 in addition to the ground conductor layer 92. The wiring 94 is connected to the power supply system component 83. One end of the linear conductor 93 is connected to the signal conductor post 900 via the interlayer connection conductor 99. The linear conductor 93 constitutes a transmission line together with the upper and lower ground conductor layers 92. This transmission line connects the signal conductor pillar 900 and the semiconductor element 80.
 図9Aに、図8A及び図8Bに示した1層目の導体層の平断面図を示す。1層目の導体層に、ランド91、95、及び接地導体層92が含まれる。導体柱90(図8A、図8B)用のランド91は、接地導体層92の外側に配置されている。半導体素子80用のランド95は、接地導体層92の内部に配置されている。接地導体層92に、ランド95と絶縁するためのクリアランスホール96が設けられている。 FIG. 9A is a plan sectional view of the first conductor layer shown in FIGS. 8A and 8B. Lands 91 and 95 and a ground conductor layer 92 are included in the first conductor layer. The land 91 for the conductor pillar 90 (FIGS. 8A and 8B) is disposed outside the ground conductor layer 92. The land 95 for the semiconductor element 80 is disposed inside the ground conductor layer 92. A clearance hole 96 for insulating the land 95 is provided in the ground conductor layer 92.
 図9Bに、図8A及び図8Bに示した2層目の導体層の平断面図を示す。2層目の導体層に、接地導体層92及び線状導体93が含まれる。半導体素子80用のランド95(図9A)の位置に、クリアランスホール98が設けられている。信号用導体柱900の位置に、クリアランスホール97が設けられている。平面視において、クリアランスホール97は信号用導体柱900を内包する。クリアランスホール97と信号用導体柱900との位置関係は、RFモジュール20のクリアランスホール48と信号用導体柱400との位置関係と同様である。すなわち、2層目の接地導体層92は、信号用導体柱900と重ならない。このため、信号用導体柱900と接地導体層92との間の寄生容量を小さくすることができる。 FIG. 9B is a plan sectional view of the second conductor layer shown in FIGS. 8A and 8B. A ground conductor layer 92 and a linear conductor 93 are included in the second conductor layer. A clearance hole 98 is provided at the position of the land 95 (FIG. 9A) for the semiconductor element 80. A clearance hole 97 is provided at the position of the signal conductor post 900. In plan view, the clearance hole 97 includes the signal conductor column 900. The positional relationship between the clearance hole 97 and the signal conductor column 900 is the same as the positional relationship between the clearance hole 48 of the RF module 20 and the signal conductor column 400. That is, the second ground conductor layer 92 does not overlap the signal conductor pillar 900. For this reason, the parasitic capacitance between the signal conductor pillar 900 and the ground conductor layer 92 can be reduced.
 図9Cに、図8A及び図8Bに示した3層目の導体層の平断面図を示す。3層目の導体層に接地導体層92が含まれる。 FIG. 9C shows a plan sectional view of the third conductor layer shown in FIGS. 8A and 8B. The ground conductor layer 92 is included in the third conductor layer.
 線状導体93は、同一導体層に含まれる接地導体層92(図9B)、及び上下の接地導体層92(図9A、図9C)とともに、グランデッドコプレーナ線路を構成する。信号用導体柱900と、接地導体層92との間の寄生容量が小さいため、実装基板60(図4)の伝送線路と、線状導体93を中心導体とするグランデッドコプレーナ線路との結合箇所における特性インピーダンスの乱れを抑制することができる。 The linear conductor 93 constitutes a grounded coplanar line together with the ground conductor layer 92 (FIG. 9B) and the upper and lower ground conductor layers 92 (FIGS. 9A and 9C) included in the same conductor layer. Since the parasitic capacitance between the signal conductor pillar 900 and the ground conductor layer 92 is small, the coupling point between the transmission line of the mounting substrate 60 (FIG. 4) and the grounded coplanar line having the linear conductor 93 as the central conductor. Disturbances in characteristic impedance can be suppressed.
 上述のように、実施例においては、図1に示したIFモジュール70とRFモジュール20とを接続する伝送線路の特性インピーダンスの乱れを抑制することができる。このため、IFモジュール70とRFモジュール20との間で、効率的にIF信号及びLO信号の伝送を行うことができる。 As described above, in the embodiment, the disturbance of the characteristic impedance of the transmission line connecting the IF module 70 and the RF module 20 shown in FIG. 1 can be suppressed. For this reason, the IF signal and the LO signal can be efficiently transmitted between the IF module 70 and the RF module 20.
 本発明は上述の実施例に制限されるものではない。例えば、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。 The present invention is not limited to the above-described embodiments. It will be apparent to those skilled in the art that various modifications, improvements, combinations, and the like can be made.
10 実装基板
20 無線周波数モジュール(RFモジュール)
22 誘電体基板
23 ダイポールアンテナ
24 給電線
25 バラン(平衡不平衡変換器)
26 接続点
27 パッチアンテナ
28 反射器パターン
29 接続点
30 無線通信用の半導体素子
31 高周波回路部品
35 封止樹脂層
40 導体柱
41 ランド
42 層間接続導体
43 線状導体
44 接地導体層
46 ランド
47 線状導体
48、49 クリアランスホール
50 静電気を帯びた物体
60 実装基板
61 はんだ
62 ランド
63 伝送線路
70 中間周波数モジュール(IFモジュール)
80 無線通信用の半導体素子
81 局部発振器
82 誘電体基板
83 電源系の部品
85、86 封止樹脂層
90 導体柱
91 ランド
92 接地導体層
93 線状導体
94 配線
95 ランド
96、97、98 クリアランスホール
99 ビア導体
270 パッチアンテナの無給電素子
271 パッチアンテナの給電素子
300 信号用端子
301 接地用端子
400 信号用導体柱
401 接地用導体柱
420 ビア導体
421 内層ランド
900 信号用導体柱
901 接地用導体柱
10 Mounting Board 20 Radio Frequency Module (RF Module)
22 Dielectric substrate 23 Dipole antenna 24 Feed line 25 Balun (balance-unbalance converter)
26 Connection point 27 Patch antenna 28 Reflector pattern 29 Connection point 30 Semiconductor element 31 for wireless communication High frequency circuit component 35 Sealing resin layer 40 Conductor column 41 Land 42 Interlayer connection conductor 43 Linear conductor 44 Grounding conductor layer 46 Land 47 Line Conductor 48, 49 Clearance hole 50 Static object 60 Mounting substrate 61 Solder 62 Land 63 Transmission line 70 Intermediate frequency module (IF module)
80 Semiconductor Device 81 for Wireless Communication Local Oscillator 82 Dielectric Substrate 83 Power Supply Components 85 and 86 Sealing Resin Layer 90 Conductor Pillar 91 Land 92 Grounding Conductor Layer 93 Linear Conductor 94 Wiring 95 Land 96, 97, 98 Clearance Hole 99 Via conductor 270 Patch antenna parasitic element 271 Patch antenna power supply element 300 Signal terminal 301 Ground terminal 400 Signal conductor pillar 401 Ground conductor pillar 420 Via conductor 421 Inner layer land 900 Signal conductor pillar 901 Ground conductor pillar

Claims (8)

  1.  誘電体基板と、
     前記誘電体基板に実装された無線通信用の半導体素子と、
     前記誘電体基板の底面から突出し、先端において実装基板に接続される複数の信号用導体柱及び複数の接地用導体柱と、
     前記誘電体基板に配置され、前記信号用導体柱と前記半導体素子とを接続する伝送線路であって、前記誘電体基板の面内方向に延びる線状導体、及び前記線状導体と対を成す接地導体層を含む前記伝送線路と、
     前記線状導体と前記信号用導体柱とを厚さ方向に接続する第1の層間接続導体と
    を含み、
     前記信号用導体柱は、前記第1の層間接続導体より太く、
     前記接地導体層の、前記第1の層間接続導体に対応する位置にクリアランスホールが設けられており、前記クリアランスホールは、平面視において前記信号用導体柱を内包する無線通信モジュール。
    A dielectric substrate;
    A semiconductor element for wireless communication mounted on the dielectric substrate;
    A plurality of signal conductor pillars and a plurality of ground conductor pillars protruding from the bottom surface of the dielectric substrate and connected to the mounting substrate at the tip;
    A transmission line disposed on the dielectric substrate and connecting the signal conductor column and the semiconductor element, and is paired with a linear conductor extending in an in-plane direction of the dielectric substrate, and the linear conductor The transmission line including a ground conductor layer;
    Including a first interlayer connection conductor for connecting the linear conductor and the signal conductor pillar in the thickness direction;
    The signal conductor pillar is thicker than the first interlayer connection conductor,
    A clearance hole is provided in the ground conductor layer at a position corresponding to the first interlayer connection conductor, and the clearance hole includes the signal conductor pillar in a plan view.
  2.  前記クリアランスホールが設けられている前記接地導体層は、前記誘電体基板の厚さ方向に関して、前記線状導体と前記信号用導体柱との間に配置されている請求項1に記載の無線通信モジュール。 2. The wireless communication according to claim 1, wherein the ground conductor layer in which the clearance hole is provided is disposed between the linear conductor and the signal conductor column in a thickness direction of the dielectric substrate. module.
  3.  前記クリアランスホールが設けられている前記接地導体層は、前記線状導体と同一の層に配置されている請求項1に記載の無線通信モジュール。 The radio communication module according to claim 1, wherein the ground conductor layer in which the clearance hole is provided is disposed in the same layer as the linear conductor.
  4.  前記クリアランスホールは、前記接地導体層の外周に繋がっている請求項1乃至3のいずれか1項に記載の無線通信モジュール。 4. The wireless communication module according to claim 1, wherein the clearance hole is connected to an outer periphery of the ground conductor layer.
  5.  さらに、前記接地用導体柱と前記接地導体層とを接続する第2の層間接続導体を有する請求項1乃至4のいずれか1項に記載の無線通信モジュール。 The wireless communication module according to any one of claims 1 to 4, further comprising a second interlayer connection conductor that connects the grounding conductor post and the grounding conductor layer.
  6.  前記信号用導体柱及び前記接地用導体柱は、前記誘電体基板の縁の内側に、前記縁に沿って並んでおり、前記信号用導体柱の両隣に、前記接地用導体柱が配置されている請求項1乃至5のいずれか1項に記載の無線通信モジュール。 The signal conductor pillar and the ground conductor pillar are arranged along the edge inside the edge of the dielectric substrate, and the ground conductor pillar is arranged on both sides of the signal conductor pillar. The wireless communication module according to any one of claims 1 to 5.
  7.  前記信号用導体柱から1つ置いて隣にも、前記接地用導体柱が配置されている請求項6に記載の無線通信モジュール。 The wireless communication module according to claim 6, wherein the grounding conductor pillar is disposed adjacent to one of the signal conductor pillars.
  8.  前記信号用導体柱から前記接地導体層までの面内方向の最短距離が、前記信号用導体柱から隣の前記接地用導体柱までの間隔の1/4以上である請求項6または7に記載の無線通信モジュール。 8. The shortest distance in the in-plane direction from the signal conductor column to the ground conductor layer is ¼ or more of an interval from the signal conductor column to the adjacent ground conductor column. 9. Wireless communication module.
PCT/JP2015/078917 2014-10-29 2015-10-13 Wireless communication module WO2016067908A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-220355 2014-10-29
JP2014220355 2014-10-29

Publications (1)

Publication Number Publication Date
WO2016067908A1 true WO2016067908A1 (en) 2016-05-06

Family

ID=55857249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078917 WO2016067908A1 (en) 2014-10-29 2015-10-13 Wireless communication module

Country Status (1)

Country Link
WO (1) WO2016067908A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021193092A1 (en) 2020-03-25 2021-09-30 京セラ株式会社 Wiring board

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001160598A (en) * 1999-11-30 2001-06-12 Kyocera Corp Substrate for mounting semiconductor device and package for housing optical semiconductor device
JP2003218482A (en) * 2002-01-25 2003-07-31 Mitsubishi Electric Corp High frequency signal connection structure
JP2004095614A (en) * 2002-08-29 2004-03-25 Fujitsu Ltd Multilayer substrate and semiconductor device
WO2013035655A1 (en) * 2011-09-09 2013-03-14 株式会社村田製作所 Module substrate
JP2013069730A (en) * 2011-09-21 2013-04-18 Kyocer Slc Technologies Corp Wiring board
JP2013126029A (en) * 2011-12-13 2013-06-24 Mitsubishi Electric Corp High frequency transmission line
WO2014017228A1 (en) * 2012-07-26 2014-01-30 株式会社村田製作所 Module

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001160598A (en) * 1999-11-30 2001-06-12 Kyocera Corp Substrate for mounting semiconductor device and package for housing optical semiconductor device
JP2003218482A (en) * 2002-01-25 2003-07-31 Mitsubishi Electric Corp High frequency signal connection structure
JP2004095614A (en) * 2002-08-29 2004-03-25 Fujitsu Ltd Multilayer substrate and semiconductor device
WO2013035655A1 (en) * 2011-09-09 2013-03-14 株式会社村田製作所 Module substrate
JP2013069730A (en) * 2011-09-21 2013-04-18 Kyocer Slc Technologies Corp Wiring board
JP2013126029A (en) * 2011-12-13 2013-06-24 Mitsubishi Electric Corp High frequency transmission line
WO2014017228A1 (en) * 2012-07-26 2014-01-30 株式会社村田製作所 Module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021193092A1 (en) 2020-03-25 2021-09-30 京セラ株式会社 Wiring board
KR20220143068A (en) 2020-03-25 2022-10-24 교세라 가부시키가이샤 wiring board

Similar Documents

Publication Publication Date Title
US10498025B2 (en) Wireless communication module
CN108352599B (en) Antenna element for a base station antenna
US10790576B2 (en) Multi-band base station antennas having multi-layer feed boards
US9660340B2 (en) Multiband antenna
JP6129857B2 (en) Dual-polarized antenna
US7026999B2 (en) Pattern antenna
JP6500859B2 (en) Wireless module
US9172131B2 (en) Semiconductor structure having aperture antenna
US20160172761A1 (en) Antenna-in-package structures with broadside and end-fire radiations
US20160372839A1 (en) Antenna Element for Signals with Three Polarizations
US8390529B1 (en) PCB spiral antenna and feed network for ELINT applications
US8842046B2 (en) Loop antenna
US12015204B2 (en) Semiconductor device, communication system, and method of manufacturing semiconductor device
TWI686011B (en) High frequency module
US9496623B2 (en) Dual band multi-layer dipole antennas for wireless electronic devices
US20170133767A1 (en) Flexible polymer antenna with multiple ground resonators
JP6202281B2 (en) Antenna device
WO2019111025A1 (en) Antenna
WO2016067908A1 (en) Wireless communication module
JP2020174285A (en) Antenna device
US20190103666A1 (en) Mountable Antenna Fabrication and Integration Methods
WO2018100912A1 (en) High-frequency module and communication device
JP6761480B2 (en) Antenna, module board and module
JP6807946B2 (en) Antenna, module board and module
WO2024027900A1 (en) Radiating cavity antenna device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15854940

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15854940

Country of ref document: EP

Kind code of ref document: A1